Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Common Block IO controller cgroup interface
4 *
5 * Based on ideas and code from CFQ, CFS and BFQ:
6 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7 *
8 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9 * Paolo Valente <paolo.valente@unimore.it>
10 *
11 * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com>
12 * Nauman Rafique <nauman@google.com>
13 *
14 * For policy-specific per-blkcg data:
15 * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
16 * Arianna Avanzini <avanzini.arianna@gmail.com>
17 */
18#include <linux/ioprio.h>
19#include <linux/kdev_t.h>
20#include <linux/module.h>
21#include <linux/sched/signal.h>
22#include <linux/err.h>
23#include <linux/blkdev.h>
24#include <linux/backing-dev.h>
25#include <linux/slab.h>
26#include <linux/delay.h>
27#include <linux/atomic.h>
28#include <linux/ctype.h>
29#include <linux/resume_user_mode.h>
30#include <linux/psi.h>
31#include <linux/part_stat.h>
32#include "blk.h"
33#include "blk-cgroup.h"
34#include "blk-ioprio.h"
35#include "blk-throttle.h"
36#include "blk-rq-qos.h"
37
38/*
39 * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation.
40 * blkcg_pol_register_mutex nests outside of it and synchronizes entire
41 * policy [un]register operations including cgroup file additions /
42 * removals. Putting cgroup file registration outside blkcg_pol_mutex
43 * allows grabbing it from cgroup callbacks.
44 */
45static DEFINE_MUTEX(blkcg_pol_register_mutex);
46static DEFINE_MUTEX(blkcg_pol_mutex);
47
48struct blkcg blkcg_root;
49EXPORT_SYMBOL_GPL(blkcg_root);
50
51struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css;
52EXPORT_SYMBOL_GPL(blkcg_root_css);
53
54static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS];
55
56static LIST_HEAD(all_blkcgs); /* protected by blkcg_pol_mutex */
57
58bool blkcg_debug_stats = false;
59static struct workqueue_struct *blkcg_punt_bio_wq;
60
61#define BLKG_DESTROY_BATCH_SIZE 64
62
63/*
64 * Lockless lists for tracking IO stats update
65 *
66 * New IO stats are stored in the percpu iostat_cpu within blkcg_gq (blkg).
67 * There are multiple blkg's (one for each block device) attached to each
68 * blkcg. The rstat code keeps track of which cpu has IO stats updated,
69 * but it doesn't know which blkg has the updated stats. If there are many
70 * block devices in a system, the cost of iterating all the blkg's to flush
71 * out the IO stats can be high. To reduce such overhead, a set of percpu
72 * lockless lists (lhead) per blkcg are used to track the set of recently
73 * updated iostat_cpu's since the last flush. An iostat_cpu will be put
74 * onto the lockless list on the update side [blk_cgroup_bio_start()] if
75 * not there yet and then removed when being flushed [blkcg_rstat_flush()].
76 * References to blkg are gotten and then put back in the process to
77 * protect against blkg removal.
78 *
79 * Return: 0 if successful or -ENOMEM if allocation fails.
80 */
81static int init_blkcg_llists(struct blkcg *blkcg)
82{
83 int cpu;
84
85 blkcg->lhead = alloc_percpu_gfp(struct llist_head, GFP_KERNEL);
86 if (!blkcg->lhead)
87 return -ENOMEM;
88
89 for_each_possible_cpu(cpu)
90 init_llist_head(per_cpu_ptr(blkcg->lhead, cpu));
91 return 0;
92}
93
94/**
95 * blkcg_css - find the current css
96 *
97 * Find the css associated with either the kthread or the current task.
98 * This may return a dying css, so it is up to the caller to use tryget logic
99 * to confirm it is alive and well.
100 */
101static struct cgroup_subsys_state *blkcg_css(void)
102{
103 struct cgroup_subsys_state *css;
104
105 css = kthread_blkcg();
106 if (css)
107 return css;
108 return task_css(current, io_cgrp_id);
109}
110
111static bool blkcg_policy_enabled(struct request_queue *q,
112 const struct blkcg_policy *pol)
113{
114 return pol && test_bit(pol->plid, q->blkcg_pols);
115}
116
117static void blkg_free_workfn(struct work_struct *work)
118{
119 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
120 free_work);
121 int i;
122
123 for (i = 0; i < BLKCG_MAX_POLS; i++)
124 if (blkg->pd[i])
125 blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
126
127 if (blkg->q)
128 blk_put_queue(blkg->q);
129 free_percpu(blkg->iostat_cpu);
130 percpu_ref_exit(&blkg->refcnt);
131 kfree(blkg);
132}
133
134/**
135 * blkg_free - free a blkg
136 * @blkg: blkg to free
137 *
138 * Free @blkg which may be partially allocated.
139 */
140static void blkg_free(struct blkcg_gq *blkg)
141{
142 if (!blkg)
143 return;
144
145 /*
146 * Both ->pd_free_fn() and request queue's release handler may
147 * sleep, so free us by scheduling one work func
148 */
149 INIT_WORK(&blkg->free_work, blkg_free_workfn);
150 schedule_work(&blkg->free_work);
151}
152
153static void __blkg_release(struct rcu_head *rcu)
154{
155 struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head);
156
157 WARN_ON(!bio_list_empty(&blkg->async_bios));
158
159 /* release the blkcg and parent blkg refs this blkg has been holding */
160 css_put(&blkg->blkcg->css);
161 if (blkg->parent)
162 blkg_put(blkg->parent);
163 blkg_free(blkg);
164}
165
166/*
167 * A group is RCU protected, but having an rcu lock does not mean that one
168 * can access all the fields of blkg and assume these are valid. For
169 * example, don't try to follow throtl_data and request queue links.
170 *
171 * Having a reference to blkg under an rcu allows accesses to only values
172 * local to groups like group stats and group rate limits.
173 */
174static void blkg_release(struct percpu_ref *ref)
175{
176 struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt);
177
178 call_rcu(&blkg->rcu_head, __blkg_release);
179}
180
181static void blkg_async_bio_workfn(struct work_struct *work)
182{
183 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
184 async_bio_work);
185 struct bio_list bios = BIO_EMPTY_LIST;
186 struct bio *bio;
187 struct blk_plug plug;
188 bool need_plug = false;
189
190 /* as long as there are pending bios, @blkg can't go away */
191 spin_lock_bh(&blkg->async_bio_lock);
192 bio_list_merge(&bios, &blkg->async_bios);
193 bio_list_init(&blkg->async_bios);
194 spin_unlock_bh(&blkg->async_bio_lock);
195
196 /* start plug only when bio_list contains at least 2 bios */
197 if (bios.head && bios.head->bi_next) {
198 need_plug = true;
199 blk_start_plug(&plug);
200 }
201 while ((bio = bio_list_pop(&bios)))
202 submit_bio(bio);
203 if (need_plug)
204 blk_finish_plug(&plug);
205}
206
207/**
208 * bio_blkcg_css - return the blkcg CSS associated with a bio
209 * @bio: target bio
210 *
211 * This returns the CSS for the blkcg associated with a bio, or %NULL if not
212 * associated. Callers are expected to either handle %NULL or know association
213 * has been done prior to calling this.
214 */
215struct cgroup_subsys_state *bio_blkcg_css(struct bio *bio)
216{
217 if (!bio || !bio->bi_blkg)
218 return NULL;
219 return &bio->bi_blkg->blkcg->css;
220}
221EXPORT_SYMBOL_GPL(bio_blkcg_css);
222
223/**
224 * blkcg_parent - get the parent of a blkcg
225 * @blkcg: blkcg of interest
226 *
227 * Return the parent blkcg of @blkcg. Can be called anytime.
228 */
229static inline struct blkcg *blkcg_parent(struct blkcg *blkcg)
230{
231 return css_to_blkcg(blkcg->css.parent);
232}
233
234/**
235 * blkg_alloc - allocate a blkg
236 * @blkcg: block cgroup the new blkg is associated with
237 * @disk: gendisk the new blkg is associated with
238 * @gfp_mask: allocation mask to use
239 *
240 * Allocate a new blkg assocating @blkcg and @q.
241 */
242static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct gendisk *disk,
243 gfp_t gfp_mask)
244{
245 struct blkcg_gq *blkg;
246 int i, cpu;
247
248 /* alloc and init base part */
249 blkg = kzalloc_node(sizeof(*blkg), gfp_mask, disk->queue->node);
250 if (!blkg)
251 return NULL;
252
253 if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask))
254 goto err_free;
255
256 blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask);
257 if (!blkg->iostat_cpu)
258 goto err_free;
259
260 if (!blk_get_queue(disk->queue))
261 goto err_free;
262
263 blkg->q = disk->queue;
264 INIT_LIST_HEAD(&blkg->q_node);
265 spin_lock_init(&blkg->async_bio_lock);
266 bio_list_init(&blkg->async_bios);
267 INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn);
268 blkg->blkcg = blkcg;
269
270 u64_stats_init(&blkg->iostat.sync);
271 for_each_possible_cpu(cpu) {
272 u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync);
273 per_cpu_ptr(blkg->iostat_cpu, cpu)->blkg = blkg;
274 }
275
276 for (i = 0; i < BLKCG_MAX_POLS; i++) {
277 struct blkcg_policy *pol = blkcg_policy[i];
278 struct blkg_policy_data *pd;
279
280 if (!blkcg_policy_enabled(disk->queue, pol))
281 continue;
282
283 /* alloc per-policy data and attach it to blkg */
284 pd = pol->pd_alloc_fn(gfp_mask, disk->queue, blkcg);
285 if (!pd)
286 goto err_free;
287
288 blkg->pd[i] = pd;
289 pd->blkg = blkg;
290 pd->plid = i;
291 }
292
293 return blkg;
294
295err_free:
296 blkg_free(blkg);
297 return NULL;
298}
299
300/*
301 * If @new_blkg is %NULL, this function tries to allocate a new one as
302 * necessary using %GFP_NOWAIT. @new_blkg is always consumed on return.
303 */
304static struct blkcg_gq *blkg_create(struct blkcg *blkcg, struct gendisk *disk,
305 struct blkcg_gq *new_blkg)
306{
307 struct blkcg_gq *blkg;
308 int i, ret;
309
310 lockdep_assert_held(&disk->queue->queue_lock);
311
312 /* request_queue is dying, do not create/recreate a blkg */
313 if (blk_queue_dying(disk->queue)) {
314 ret = -ENODEV;
315 goto err_free_blkg;
316 }
317
318 /* blkg holds a reference to blkcg */
319 if (!css_tryget_online(&blkcg->css)) {
320 ret = -ENODEV;
321 goto err_free_blkg;
322 }
323
324 /* allocate */
325 if (!new_blkg) {
326 new_blkg = blkg_alloc(blkcg, disk, GFP_NOWAIT | __GFP_NOWARN);
327 if (unlikely(!new_blkg)) {
328 ret = -ENOMEM;
329 goto err_put_css;
330 }
331 }
332 blkg = new_blkg;
333
334 /* link parent */
335 if (blkcg_parent(blkcg)) {
336 blkg->parent = blkg_lookup(blkcg_parent(blkcg), disk->queue);
337 if (WARN_ON_ONCE(!blkg->parent)) {
338 ret = -ENODEV;
339 goto err_put_css;
340 }
341 blkg_get(blkg->parent);
342 }
343
344 /* invoke per-policy init */
345 for (i = 0; i < BLKCG_MAX_POLS; i++) {
346 struct blkcg_policy *pol = blkcg_policy[i];
347
348 if (blkg->pd[i] && pol->pd_init_fn)
349 pol->pd_init_fn(blkg->pd[i]);
350 }
351
352 /* insert */
353 spin_lock(&blkcg->lock);
354 ret = radix_tree_insert(&blkcg->blkg_tree, disk->queue->id, blkg);
355 if (likely(!ret)) {
356 hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list);
357 list_add(&blkg->q_node, &disk->queue->blkg_list);
358
359 for (i = 0; i < BLKCG_MAX_POLS; i++) {
360 struct blkcg_policy *pol = blkcg_policy[i];
361
362 if (blkg->pd[i] && pol->pd_online_fn)
363 pol->pd_online_fn(blkg->pd[i]);
364 }
365 }
366 blkg->online = true;
367 spin_unlock(&blkcg->lock);
368
369 if (!ret)
370 return blkg;
371
372 /* @blkg failed fully initialized, use the usual release path */
373 blkg_put(blkg);
374 return ERR_PTR(ret);
375
376err_put_css:
377 css_put(&blkcg->css);
378err_free_blkg:
379 blkg_free(new_blkg);
380 return ERR_PTR(ret);
381}
382
383/**
384 * blkg_lookup_create - lookup blkg, try to create one if not there
385 * @blkcg: blkcg of interest
386 * @disk: gendisk of interest
387 *
388 * Lookup blkg for the @blkcg - @disk pair. If it doesn't exist, try to
389 * create one. blkg creation is performed recursively from blkcg_root such
390 * that all non-root blkg's have access to the parent blkg. This function
391 * should be called under RCU read lock and takes @disk->queue->queue_lock.
392 *
393 * Returns the blkg or the closest blkg if blkg_create() fails as it walks
394 * down from root.
395 */
396static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg,
397 struct gendisk *disk)
398{
399 struct request_queue *q = disk->queue;
400 struct blkcg_gq *blkg;
401 unsigned long flags;
402
403 WARN_ON_ONCE(!rcu_read_lock_held());
404
405 blkg = blkg_lookup(blkcg, q);
406 if (blkg)
407 return blkg;
408
409 spin_lock_irqsave(&q->queue_lock, flags);
410 blkg = blkg_lookup(blkcg, q);
411 if (blkg) {
412 if (blkcg != &blkcg_root &&
413 blkg != rcu_dereference(blkcg->blkg_hint))
414 rcu_assign_pointer(blkcg->blkg_hint, blkg);
415 goto found;
416 }
417
418 /*
419 * Create blkgs walking down from blkcg_root to @blkcg, so that all
420 * non-root blkgs have access to their parents. Returns the closest
421 * blkg to the intended blkg should blkg_create() fail.
422 */
423 while (true) {
424 struct blkcg *pos = blkcg;
425 struct blkcg *parent = blkcg_parent(blkcg);
426 struct blkcg_gq *ret_blkg = q->root_blkg;
427
428 while (parent) {
429 blkg = blkg_lookup(parent, q);
430 if (blkg) {
431 /* remember closest blkg */
432 ret_blkg = blkg;
433 break;
434 }
435 pos = parent;
436 parent = blkcg_parent(parent);
437 }
438
439 blkg = blkg_create(pos, disk, NULL);
440 if (IS_ERR(blkg)) {
441 blkg = ret_blkg;
442 break;
443 }
444 if (pos == blkcg)
445 break;
446 }
447
448found:
449 spin_unlock_irqrestore(&q->queue_lock, flags);
450 return blkg;
451}
452
453static void blkg_destroy(struct blkcg_gq *blkg)
454{
455 struct blkcg *blkcg = blkg->blkcg;
456 int i;
457
458 lockdep_assert_held(&blkg->q->queue_lock);
459 lockdep_assert_held(&blkcg->lock);
460
461 /* Something wrong if we are trying to remove same group twice */
462 WARN_ON_ONCE(list_empty(&blkg->q_node));
463 WARN_ON_ONCE(hlist_unhashed(&blkg->blkcg_node));
464
465 for (i = 0; i < BLKCG_MAX_POLS; i++) {
466 struct blkcg_policy *pol = blkcg_policy[i];
467
468 if (blkg->pd[i] && pol->pd_offline_fn)
469 pol->pd_offline_fn(blkg->pd[i]);
470 }
471
472 blkg->online = false;
473
474 radix_tree_delete(&blkcg->blkg_tree, blkg->q->id);
475 list_del_init(&blkg->q_node);
476 hlist_del_init_rcu(&blkg->blkcg_node);
477
478 /*
479 * Both setting lookup hint to and clearing it from @blkg are done
480 * under queue_lock. If it's not pointing to @blkg now, it never
481 * will. Hint assignment itself can race safely.
482 */
483 if (rcu_access_pointer(blkcg->blkg_hint) == blkg)
484 rcu_assign_pointer(blkcg->blkg_hint, NULL);
485
486 /*
487 * Put the reference taken at the time of creation so that when all
488 * queues are gone, group can be destroyed.
489 */
490 percpu_ref_kill(&blkg->refcnt);
491}
492
493static void blkg_destroy_all(struct gendisk *disk)
494{
495 struct request_queue *q = disk->queue;
496 struct blkcg_gq *blkg, *n;
497 int count = BLKG_DESTROY_BATCH_SIZE;
498
499restart:
500 spin_lock_irq(&q->queue_lock);
501 list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) {
502 struct blkcg *blkcg = blkg->blkcg;
503
504 spin_lock(&blkcg->lock);
505 blkg_destroy(blkg);
506 spin_unlock(&blkcg->lock);
507
508 /*
509 * in order to avoid holding the spin lock for too long, release
510 * it when a batch of blkgs are destroyed.
511 */
512 if (!(--count)) {
513 count = BLKG_DESTROY_BATCH_SIZE;
514 spin_unlock_irq(&q->queue_lock);
515 cond_resched();
516 goto restart;
517 }
518 }
519
520 q->root_blkg = NULL;
521 spin_unlock_irq(&q->queue_lock);
522}
523
524static int blkcg_reset_stats(struct cgroup_subsys_state *css,
525 struct cftype *cftype, u64 val)
526{
527 struct blkcg *blkcg = css_to_blkcg(css);
528 struct blkcg_gq *blkg;
529 int i, cpu;
530
531 mutex_lock(&blkcg_pol_mutex);
532 spin_lock_irq(&blkcg->lock);
533
534 /*
535 * Note that stat reset is racy - it doesn't synchronize against
536 * stat updates. This is a debug feature which shouldn't exist
537 * anyway. If you get hit by a race, retry.
538 */
539 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
540 for_each_possible_cpu(cpu) {
541 struct blkg_iostat_set *bis =
542 per_cpu_ptr(blkg->iostat_cpu, cpu);
543 memset(bis, 0, sizeof(*bis));
544 }
545 memset(&blkg->iostat, 0, sizeof(blkg->iostat));
546
547 for (i = 0; i < BLKCG_MAX_POLS; i++) {
548 struct blkcg_policy *pol = blkcg_policy[i];
549
550 if (blkg->pd[i] && pol->pd_reset_stats_fn)
551 pol->pd_reset_stats_fn(blkg->pd[i]);
552 }
553 }
554
555 spin_unlock_irq(&blkcg->lock);
556 mutex_unlock(&blkcg_pol_mutex);
557 return 0;
558}
559
560const char *blkg_dev_name(struct blkcg_gq *blkg)
561{
562 if (!blkg->q->disk || !blkg->q->disk->bdi->dev)
563 return NULL;
564 return bdi_dev_name(blkg->q->disk->bdi);
565}
566
567/**
568 * blkcg_print_blkgs - helper for printing per-blkg data
569 * @sf: seq_file to print to
570 * @blkcg: blkcg of interest
571 * @prfill: fill function to print out a blkg
572 * @pol: policy in question
573 * @data: data to be passed to @prfill
574 * @show_total: to print out sum of prfill return values or not
575 *
576 * This function invokes @prfill on each blkg of @blkcg if pd for the
577 * policy specified by @pol exists. @prfill is invoked with @sf, the
578 * policy data and @data and the matching queue lock held. If @show_total
579 * is %true, the sum of the return values from @prfill is printed with
580 * "Total" label at the end.
581 *
582 * This is to be used to construct print functions for
583 * cftype->read_seq_string method.
584 */
585void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg,
586 u64 (*prfill)(struct seq_file *,
587 struct blkg_policy_data *, int),
588 const struct blkcg_policy *pol, int data,
589 bool show_total)
590{
591 struct blkcg_gq *blkg;
592 u64 total = 0;
593
594 rcu_read_lock();
595 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
596 spin_lock_irq(&blkg->q->queue_lock);
597 if (blkcg_policy_enabled(blkg->q, pol))
598 total += prfill(sf, blkg->pd[pol->plid], data);
599 spin_unlock_irq(&blkg->q->queue_lock);
600 }
601 rcu_read_unlock();
602
603 if (show_total)
604 seq_printf(sf, "Total %llu\n", (unsigned long long)total);
605}
606EXPORT_SYMBOL_GPL(blkcg_print_blkgs);
607
608/**
609 * __blkg_prfill_u64 - prfill helper for a single u64 value
610 * @sf: seq_file to print to
611 * @pd: policy private data of interest
612 * @v: value to print
613 *
614 * Print @v to @sf for the device associated with @pd.
615 */
616u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v)
617{
618 const char *dname = blkg_dev_name(pd->blkg);
619
620 if (!dname)
621 return 0;
622
623 seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v);
624 return v;
625}
626EXPORT_SYMBOL_GPL(__blkg_prfill_u64);
627
628/**
629 * blkcg_conf_open_bdev - parse and open bdev for per-blkg config update
630 * @inputp: input string pointer
631 *
632 * Parse the device node prefix part, MAJ:MIN, of per-blkg config update
633 * from @input and get and return the matching bdev. *@inputp is
634 * updated to point past the device node prefix. Returns an ERR_PTR()
635 * value on error.
636 *
637 * Use this function iff blkg_conf_prep() can't be used for some reason.
638 */
639struct block_device *blkcg_conf_open_bdev(char **inputp)
640{
641 char *input = *inputp;
642 unsigned int major, minor;
643 struct block_device *bdev;
644 int key_len;
645
646 if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2)
647 return ERR_PTR(-EINVAL);
648
649 input += key_len;
650 if (!isspace(*input))
651 return ERR_PTR(-EINVAL);
652 input = skip_spaces(input);
653
654 bdev = blkdev_get_no_open(MKDEV(major, minor));
655 if (!bdev)
656 return ERR_PTR(-ENODEV);
657 if (bdev_is_partition(bdev)) {
658 blkdev_put_no_open(bdev);
659 return ERR_PTR(-ENODEV);
660 }
661
662 *inputp = input;
663 return bdev;
664}
665
666/**
667 * blkg_conf_prep - parse and prepare for per-blkg config update
668 * @blkcg: target block cgroup
669 * @pol: target policy
670 * @input: input string
671 * @ctx: blkg_conf_ctx to be filled
672 *
673 * Parse per-blkg config update from @input and initialize @ctx with the
674 * result. @ctx->blkg points to the blkg to be updated and @ctx->body the
675 * part of @input following MAJ:MIN. This function returns with RCU read
676 * lock and queue lock held and must be paired with blkg_conf_finish().
677 */
678int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol,
679 char *input, struct blkg_conf_ctx *ctx)
680 __acquires(rcu) __acquires(&bdev->bd_queue->queue_lock)
681{
682 struct block_device *bdev;
683 struct gendisk *disk;
684 struct request_queue *q;
685 struct blkcg_gq *blkg;
686 int ret;
687
688 bdev = blkcg_conf_open_bdev(&input);
689 if (IS_ERR(bdev))
690 return PTR_ERR(bdev);
691 disk = bdev->bd_disk;
692 q = disk->queue;
693
694 /*
695 * blkcg_deactivate_policy() requires queue to be frozen, we can grab
696 * q_usage_counter to prevent concurrent with blkcg_deactivate_policy().
697 */
698 ret = blk_queue_enter(q, 0);
699 if (ret)
700 goto fail;
701
702 rcu_read_lock();
703 spin_lock_irq(&q->queue_lock);
704
705 if (!blkcg_policy_enabled(q, pol)) {
706 ret = -EOPNOTSUPP;
707 goto fail_unlock;
708 }
709
710 blkg = blkg_lookup(blkcg, q);
711 if (blkg)
712 goto success;
713
714 /*
715 * Create blkgs walking down from blkcg_root to @blkcg, so that all
716 * non-root blkgs have access to their parents.
717 */
718 while (true) {
719 struct blkcg *pos = blkcg;
720 struct blkcg *parent;
721 struct blkcg_gq *new_blkg;
722
723 parent = blkcg_parent(blkcg);
724 while (parent && !blkg_lookup(parent, q)) {
725 pos = parent;
726 parent = blkcg_parent(parent);
727 }
728
729 /* Drop locks to do new blkg allocation with GFP_KERNEL. */
730 spin_unlock_irq(&q->queue_lock);
731 rcu_read_unlock();
732
733 new_blkg = blkg_alloc(pos, disk, GFP_KERNEL);
734 if (unlikely(!new_blkg)) {
735 ret = -ENOMEM;
736 goto fail_exit_queue;
737 }
738
739 if (radix_tree_preload(GFP_KERNEL)) {
740 blkg_free(new_blkg);
741 ret = -ENOMEM;
742 goto fail_exit_queue;
743 }
744
745 rcu_read_lock();
746 spin_lock_irq(&q->queue_lock);
747
748 if (!blkcg_policy_enabled(q, pol)) {
749 blkg_free(new_blkg);
750 ret = -EOPNOTSUPP;
751 goto fail_preloaded;
752 }
753
754 blkg = blkg_lookup(pos, q);
755 if (blkg) {
756 blkg_free(new_blkg);
757 } else {
758 blkg = blkg_create(pos, disk, new_blkg);
759 if (IS_ERR(blkg)) {
760 ret = PTR_ERR(blkg);
761 goto fail_preloaded;
762 }
763 }
764
765 radix_tree_preload_end();
766
767 if (pos == blkcg)
768 goto success;
769 }
770success:
771 blk_queue_exit(q);
772 ctx->bdev = bdev;
773 ctx->blkg = blkg;
774 ctx->body = input;
775 return 0;
776
777fail_preloaded:
778 radix_tree_preload_end();
779fail_unlock:
780 spin_unlock_irq(&q->queue_lock);
781 rcu_read_unlock();
782fail_exit_queue:
783 blk_queue_exit(q);
784fail:
785 blkdev_put_no_open(bdev);
786 /*
787 * If queue was bypassing, we should retry. Do so after a
788 * short msleep(). It isn't strictly necessary but queue
789 * can be bypassing for some time and it's always nice to
790 * avoid busy looping.
791 */
792 if (ret == -EBUSY) {
793 msleep(10);
794 ret = restart_syscall();
795 }
796 return ret;
797}
798EXPORT_SYMBOL_GPL(blkg_conf_prep);
799
800/**
801 * blkg_conf_finish - finish up per-blkg config update
802 * @ctx: blkg_conf_ctx initialized by blkg_conf_prep()
803 *
804 * Finish up after per-blkg config update. This function must be paired
805 * with blkg_conf_prep().
806 */
807void blkg_conf_finish(struct blkg_conf_ctx *ctx)
808 __releases(&ctx->bdev->bd_queue->queue_lock) __releases(rcu)
809{
810 spin_unlock_irq(&bdev_get_queue(ctx->bdev)->queue_lock);
811 rcu_read_unlock();
812 blkdev_put_no_open(ctx->bdev);
813}
814EXPORT_SYMBOL_GPL(blkg_conf_finish);
815
816static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src)
817{
818 int i;
819
820 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
821 dst->bytes[i] = src->bytes[i];
822 dst->ios[i] = src->ios[i];
823 }
824}
825
826static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src)
827{
828 int i;
829
830 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
831 dst->bytes[i] += src->bytes[i];
832 dst->ios[i] += src->ios[i];
833 }
834}
835
836static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src)
837{
838 int i;
839
840 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
841 dst->bytes[i] -= src->bytes[i];
842 dst->ios[i] -= src->ios[i];
843 }
844}
845
846static void blkcg_iostat_update(struct blkcg_gq *blkg, struct blkg_iostat *cur,
847 struct blkg_iostat *last)
848{
849 struct blkg_iostat delta;
850 unsigned long flags;
851
852 /* propagate percpu delta to global */
853 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
854 blkg_iostat_set(&delta, cur);
855 blkg_iostat_sub(&delta, last);
856 blkg_iostat_add(&blkg->iostat.cur, &delta);
857 blkg_iostat_add(last, &delta);
858 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
859}
860
861static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu)
862{
863 struct blkcg *blkcg = css_to_blkcg(css);
864 struct llist_head *lhead = per_cpu_ptr(blkcg->lhead, cpu);
865 struct llist_node *lnode;
866 struct blkg_iostat_set *bisc, *next_bisc;
867
868 /* Root-level stats are sourced from system-wide IO stats */
869 if (!cgroup_parent(css->cgroup))
870 return;
871
872 rcu_read_lock();
873
874 lnode = llist_del_all(lhead);
875 if (!lnode)
876 goto out;
877
878 /*
879 * Iterate only the iostat_cpu's queued in the lockless list.
880 */
881 llist_for_each_entry_safe(bisc, next_bisc, lnode, lnode) {
882 struct blkcg_gq *blkg = bisc->blkg;
883 struct blkcg_gq *parent = blkg->parent;
884 struct blkg_iostat cur;
885 unsigned int seq;
886
887 WRITE_ONCE(bisc->lqueued, false);
888
889 /* fetch the current per-cpu values */
890 do {
891 seq = u64_stats_fetch_begin(&bisc->sync);
892 blkg_iostat_set(&cur, &bisc->cur);
893 } while (u64_stats_fetch_retry(&bisc->sync, seq));
894
895 blkcg_iostat_update(blkg, &cur, &bisc->last);
896
897 /* propagate global delta to parent (unless that's root) */
898 if (parent && parent->parent)
899 blkcg_iostat_update(parent, &blkg->iostat.cur,
900 &blkg->iostat.last);
901 percpu_ref_put(&blkg->refcnt);
902 }
903
904out:
905 rcu_read_unlock();
906}
907
908/*
909 * We source root cgroup stats from the system-wide stats to avoid
910 * tracking the same information twice and incurring overhead when no
911 * cgroups are defined. For that reason, cgroup_rstat_flush in
912 * blkcg_print_stat does not actually fill out the iostat in the root
913 * cgroup's blkcg_gq.
914 *
915 * However, we would like to re-use the printing code between the root and
916 * non-root cgroups to the extent possible. For that reason, we simulate
917 * flushing the root cgroup's stats by explicitly filling in the iostat
918 * with disk level statistics.
919 */
920static void blkcg_fill_root_iostats(void)
921{
922 struct class_dev_iter iter;
923 struct device *dev;
924
925 class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
926 while ((dev = class_dev_iter_next(&iter))) {
927 struct block_device *bdev = dev_to_bdev(dev);
928 struct blkcg_gq *blkg = bdev->bd_disk->queue->root_blkg;
929 struct blkg_iostat tmp;
930 int cpu;
931 unsigned long flags;
932
933 memset(&tmp, 0, sizeof(tmp));
934 for_each_possible_cpu(cpu) {
935 struct disk_stats *cpu_dkstats;
936
937 cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu);
938 tmp.ios[BLKG_IOSTAT_READ] +=
939 cpu_dkstats->ios[STAT_READ];
940 tmp.ios[BLKG_IOSTAT_WRITE] +=
941 cpu_dkstats->ios[STAT_WRITE];
942 tmp.ios[BLKG_IOSTAT_DISCARD] +=
943 cpu_dkstats->ios[STAT_DISCARD];
944 // convert sectors to bytes
945 tmp.bytes[BLKG_IOSTAT_READ] +=
946 cpu_dkstats->sectors[STAT_READ] << 9;
947 tmp.bytes[BLKG_IOSTAT_WRITE] +=
948 cpu_dkstats->sectors[STAT_WRITE] << 9;
949 tmp.bytes[BLKG_IOSTAT_DISCARD] +=
950 cpu_dkstats->sectors[STAT_DISCARD] << 9;
951 }
952
953 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
954 blkg_iostat_set(&blkg->iostat.cur, &tmp);
955 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
956 }
957}
958
959static void blkcg_print_one_stat(struct blkcg_gq *blkg, struct seq_file *s)
960{
961 struct blkg_iostat_set *bis = &blkg->iostat;
962 u64 rbytes, wbytes, rios, wios, dbytes, dios;
963 const char *dname;
964 unsigned seq;
965 int i;
966
967 if (!blkg->online)
968 return;
969
970 dname = blkg_dev_name(blkg);
971 if (!dname)
972 return;
973
974 seq_printf(s, "%s ", dname);
975
976 do {
977 seq = u64_stats_fetch_begin(&bis->sync);
978
979 rbytes = bis->cur.bytes[BLKG_IOSTAT_READ];
980 wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE];
981 dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD];
982 rios = bis->cur.ios[BLKG_IOSTAT_READ];
983 wios = bis->cur.ios[BLKG_IOSTAT_WRITE];
984 dios = bis->cur.ios[BLKG_IOSTAT_DISCARD];
985 } while (u64_stats_fetch_retry(&bis->sync, seq));
986
987 if (rbytes || wbytes || rios || wios) {
988 seq_printf(s, "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu",
989 rbytes, wbytes, rios, wios,
990 dbytes, dios);
991 }
992
993 if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) {
994 seq_printf(s, " use_delay=%d delay_nsec=%llu",
995 atomic_read(&blkg->use_delay),
996 atomic64_read(&blkg->delay_nsec));
997 }
998
999 for (i = 0; i < BLKCG_MAX_POLS; i++) {
1000 struct blkcg_policy *pol = blkcg_policy[i];
1001
1002 if (!blkg->pd[i] || !pol->pd_stat_fn)
1003 continue;
1004
1005 pol->pd_stat_fn(blkg->pd[i], s);
1006 }
1007
1008 seq_puts(s, "\n");
1009}
1010
1011static int blkcg_print_stat(struct seq_file *sf, void *v)
1012{
1013 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1014 struct blkcg_gq *blkg;
1015
1016 if (!seq_css(sf)->parent)
1017 blkcg_fill_root_iostats();
1018 else
1019 cgroup_rstat_flush(blkcg->css.cgroup);
1020
1021 rcu_read_lock();
1022 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
1023 spin_lock_irq(&blkg->q->queue_lock);
1024 blkcg_print_one_stat(blkg, sf);
1025 spin_unlock_irq(&blkg->q->queue_lock);
1026 }
1027 rcu_read_unlock();
1028 return 0;
1029}
1030
1031static struct cftype blkcg_files[] = {
1032 {
1033 .name = "stat",
1034 .seq_show = blkcg_print_stat,
1035 },
1036 { } /* terminate */
1037};
1038
1039static struct cftype blkcg_legacy_files[] = {
1040 {
1041 .name = "reset_stats",
1042 .write_u64 = blkcg_reset_stats,
1043 },
1044 { } /* terminate */
1045};
1046
1047#ifdef CONFIG_CGROUP_WRITEBACK
1048struct list_head *blkcg_get_cgwb_list(struct cgroup_subsys_state *css)
1049{
1050 return &css_to_blkcg(css)->cgwb_list;
1051}
1052#endif
1053
1054/*
1055 * blkcg destruction is a three-stage process.
1056 *
1057 * 1. Destruction starts. The blkcg_css_offline() callback is invoked
1058 * which offlines writeback. Here we tie the next stage of blkg destruction
1059 * to the completion of writeback associated with the blkcg. This lets us
1060 * avoid punting potentially large amounts of outstanding writeback to root
1061 * while maintaining any ongoing policies. The next stage is triggered when
1062 * the nr_cgwbs count goes to zero.
1063 *
1064 * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called
1065 * and handles the destruction of blkgs. Here the css reference held by
1066 * the blkg is put back eventually allowing blkcg_css_free() to be called.
1067 * This work may occur in cgwb_release_workfn() on the cgwb_release
1068 * workqueue. Any submitted ios that fail to get the blkg ref will be
1069 * punted to the root_blkg.
1070 *
1071 * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called.
1072 * This finally frees the blkcg.
1073 */
1074
1075/**
1076 * blkcg_destroy_blkgs - responsible for shooting down blkgs
1077 * @blkcg: blkcg of interest
1078 *
1079 * blkgs should be removed while holding both q and blkcg locks. As blkcg lock
1080 * is nested inside q lock, this function performs reverse double lock dancing.
1081 * Destroying the blkgs releases the reference held on the blkcg's css allowing
1082 * blkcg_css_free to eventually be called.
1083 *
1084 * This is the blkcg counterpart of ioc_release_fn().
1085 */
1086static void blkcg_destroy_blkgs(struct blkcg *blkcg)
1087{
1088 might_sleep();
1089
1090 spin_lock_irq(&blkcg->lock);
1091
1092 while (!hlist_empty(&blkcg->blkg_list)) {
1093 struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first,
1094 struct blkcg_gq, blkcg_node);
1095 struct request_queue *q = blkg->q;
1096
1097 if (need_resched() || !spin_trylock(&q->queue_lock)) {
1098 /*
1099 * Given that the system can accumulate a huge number
1100 * of blkgs in pathological cases, check to see if we
1101 * need to rescheduling to avoid softlockup.
1102 */
1103 spin_unlock_irq(&blkcg->lock);
1104 cond_resched();
1105 spin_lock_irq(&blkcg->lock);
1106 continue;
1107 }
1108
1109 blkg_destroy(blkg);
1110 spin_unlock(&q->queue_lock);
1111 }
1112
1113 spin_unlock_irq(&blkcg->lock);
1114}
1115
1116/**
1117 * blkcg_pin_online - pin online state
1118 * @blkcg_css: blkcg of interest
1119 *
1120 * While pinned, a blkcg is kept online. This is primarily used to
1121 * impedance-match blkg and cgwb lifetimes so that blkg doesn't go offline
1122 * while an associated cgwb is still active.
1123 */
1124void blkcg_pin_online(struct cgroup_subsys_state *blkcg_css)
1125{
1126 refcount_inc(&css_to_blkcg(blkcg_css)->online_pin);
1127}
1128
1129/**
1130 * blkcg_unpin_online - unpin online state
1131 * @blkcg_css: blkcg of interest
1132 *
1133 * This is primarily used to impedance-match blkg and cgwb lifetimes so
1134 * that blkg doesn't go offline while an associated cgwb is still active.
1135 * When this count goes to zero, all active cgwbs have finished so the
1136 * blkcg can continue destruction by calling blkcg_destroy_blkgs().
1137 */
1138void blkcg_unpin_online(struct cgroup_subsys_state *blkcg_css)
1139{
1140 struct blkcg *blkcg = css_to_blkcg(blkcg_css);
1141
1142 do {
1143 if (!refcount_dec_and_test(&blkcg->online_pin))
1144 break;
1145 blkcg_destroy_blkgs(blkcg);
1146 blkcg = blkcg_parent(blkcg);
1147 } while (blkcg);
1148}
1149
1150/**
1151 * blkcg_css_offline - cgroup css_offline callback
1152 * @css: css of interest
1153 *
1154 * This function is called when @css is about to go away. Here the cgwbs are
1155 * offlined first and only once writeback associated with the blkcg has
1156 * finished do we start step 2 (see above).
1157 */
1158static void blkcg_css_offline(struct cgroup_subsys_state *css)
1159{
1160 /* this prevents anyone from attaching or migrating to this blkcg */
1161 wb_blkcg_offline(css);
1162
1163 /* put the base online pin allowing step 2 to be triggered */
1164 blkcg_unpin_online(css);
1165}
1166
1167static void blkcg_css_free(struct cgroup_subsys_state *css)
1168{
1169 struct blkcg *blkcg = css_to_blkcg(css);
1170 int i;
1171
1172 mutex_lock(&blkcg_pol_mutex);
1173
1174 list_del(&blkcg->all_blkcgs_node);
1175
1176 for (i = 0; i < BLKCG_MAX_POLS; i++)
1177 if (blkcg->cpd[i])
1178 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1179
1180 mutex_unlock(&blkcg_pol_mutex);
1181
1182 free_percpu(blkcg->lhead);
1183 kfree(blkcg);
1184}
1185
1186static struct cgroup_subsys_state *
1187blkcg_css_alloc(struct cgroup_subsys_state *parent_css)
1188{
1189 struct blkcg *blkcg;
1190 int i;
1191
1192 mutex_lock(&blkcg_pol_mutex);
1193
1194 if (!parent_css) {
1195 blkcg = &blkcg_root;
1196 } else {
1197 blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL);
1198 if (!blkcg)
1199 goto unlock;
1200 }
1201
1202 if (init_blkcg_llists(blkcg))
1203 goto free_blkcg;
1204
1205 for (i = 0; i < BLKCG_MAX_POLS ; i++) {
1206 struct blkcg_policy *pol = blkcg_policy[i];
1207 struct blkcg_policy_data *cpd;
1208
1209 /*
1210 * If the policy hasn't been attached yet, wait for it
1211 * to be attached before doing anything else. Otherwise,
1212 * check if the policy requires any specific per-cgroup
1213 * data: if it does, allocate and initialize it.
1214 */
1215 if (!pol || !pol->cpd_alloc_fn)
1216 continue;
1217
1218 cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1219 if (!cpd)
1220 goto free_pd_blkcg;
1221
1222 blkcg->cpd[i] = cpd;
1223 cpd->blkcg = blkcg;
1224 cpd->plid = i;
1225 if (pol->cpd_init_fn)
1226 pol->cpd_init_fn(cpd);
1227 }
1228
1229 spin_lock_init(&blkcg->lock);
1230 refcount_set(&blkcg->online_pin, 1);
1231 INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN);
1232 INIT_HLIST_HEAD(&blkcg->blkg_list);
1233#ifdef CONFIG_CGROUP_WRITEBACK
1234 INIT_LIST_HEAD(&blkcg->cgwb_list);
1235#endif
1236 list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs);
1237
1238 mutex_unlock(&blkcg_pol_mutex);
1239 return &blkcg->css;
1240
1241free_pd_blkcg:
1242 for (i--; i >= 0; i--)
1243 if (blkcg->cpd[i])
1244 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1245 free_percpu(blkcg->lhead);
1246free_blkcg:
1247 if (blkcg != &blkcg_root)
1248 kfree(blkcg);
1249unlock:
1250 mutex_unlock(&blkcg_pol_mutex);
1251 return ERR_PTR(-ENOMEM);
1252}
1253
1254static int blkcg_css_online(struct cgroup_subsys_state *css)
1255{
1256 struct blkcg *parent = blkcg_parent(css_to_blkcg(css));
1257
1258 /*
1259 * blkcg_pin_online() is used to delay blkcg offline so that blkgs
1260 * don't go offline while cgwbs are still active on them. Pin the
1261 * parent so that offline always happens towards the root.
1262 */
1263 if (parent)
1264 blkcg_pin_online(&parent->css);
1265 return 0;
1266}
1267
1268int blkcg_init_disk(struct gendisk *disk)
1269{
1270 struct request_queue *q = disk->queue;
1271 struct blkcg_gq *new_blkg, *blkg;
1272 bool preloaded;
1273 int ret;
1274
1275 INIT_LIST_HEAD(&q->blkg_list);
1276
1277 new_blkg = blkg_alloc(&blkcg_root, disk, GFP_KERNEL);
1278 if (!new_blkg)
1279 return -ENOMEM;
1280
1281 preloaded = !radix_tree_preload(GFP_KERNEL);
1282
1283 /* Make sure the root blkg exists. */
1284 /* spin_lock_irq can serve as RCU read-side critical section. */
1285 spin_lock_irq(&q->queue_lock);
1286 blkg = blkg_create(&blkcg_root, disk, new_blkg);
1287 if (IS_ERR(blkg))
1288 goto err_unlock;
1289 q->root_blkg = blkg;
1290 spin_unlock_irq(&q->queue_lock);
1291
1292 if (preloaded)
1293 radix_tree_preload_end();
1294
1295 ret = blk_ioprio_init(disk);
1296 if (ret)
1297 goto err_destroy_all;
1298
1299 ret = blk_throtl_init(disk);
1300 if (ret)
1301 goto err_ioprio_exit;
1302
1303 ret = blk_iolatency_init(disk);
1304 if (ret)
1305 goto err_throtl_exit;
1306
1307 return 0;
1308
1309err_throtl_exit:
1310 blk_throtl_exit(disk);
1311err_ioprio_exit:
1312 blk_ioprio_exit(disk);
1313err_destroy_all:
1314 blkg_destroy_all(disk);
1315 return ret;
1316err_unlock:
1317 spin_unlock_irq(&q->queue_lock);
1318 if (preloaded)
1319 radix_tree_preload_end();
1320 return PTR_ERR(blkg);
1321}
1322
1323void blkcg_exit_disk(struct gendisk *disk)
1324{
1325 blkg_destroy_all(disk);
1326 rq_qos_exit(disk->queue);
1327 blk_throtl_exit(disk);
1328}
1329
1330static void blkcg_bind(struct cgroup_subsys_state *root_css)
1331{
1332 int i;
1333
1334 mutex_lock(&blkcg_pol_mutex);
1335
1336 for (i = 0; i < BLKCG_MAX_POLS; i++) {
1337 struct blkcg_policy *pol = blkcg_policy[i];
1338 struct blkcg *blkcg;
1339
1340 if (!pol || !pol->cpd_bind_fn)
1341 continue;
1342
1343 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node)
1344 if (blkcg->cpd[pol->plid])
1345 pol->cpd_bind_fn(blkcg->cpd[pol->plid]);
1346 }
1347 mutex_unlock(&blkcg_pol_mutex);
1348}
1349
1350static void blkcg_exit(struct task_struct *tsk)
1351{
1352 if (tsk->throttle_queue)
1353 blk_put_queue(tsk->throttle_queue);
1354 tsk->throttle_queue = NULL;
1355}
1356
1357struct cgroup_subsys io_cgrp_subsys = {
1358 .css_alloc = blkcg_css_alloc,
1359 .css_online = blkcg_css_online,
1360 .css_offline = blkcg_css_offline,
1361 .css_free = blkcg_css_free,
1362 .css_rstat_flush = blkcg_rstat_flush,
1363 .bind = blkcg_bind,
1364 .dfl_cftypes = blkcg_files,
1365 .legacy_cftypes = blkcg_legacy_files,
1366 .legacy_name = "blkio",
1367 .exit = blkcg_exit,
1368#ifdef CONFIG_MEMCG
1369 /*
1370 * This ensures that, if available, memcg is automatically enabled
1371 * together on the default hierarchy so that the owner cgroup can
1372 * be retrieved from writeback pages.
1373 */
1374 .depends_on = 1 << memory_cgrp_id,
1375#endif
1376};
1377EXPORT_SYMBOL_GPL(io_cgrp_subsys);
1378
1379/**
1380 * blkcg_activate_policy - activate a blkcg policy on a request_queue
1381 * @q: request_queue of interest
1382 * @pol: blkcg policy to activate
1383 *
1384 * Activate @pol on @q. Requires %GFP_KERNEL context. @q goes through
1385 * bypass mode to populate its blkgs with policy_data for @pol.
1386 *
1387 * Activation happens with @q bypassed, so nobody would be accessing blkgs
1388 * from IO path. Update of each blkg is protected by both queue and blkcg
1389 * locks so that holding either lock and testing blkcg_policy_enabled() is
1390 * always enough for dereferencing policy data.
1391 *
1392 * The caller is responsible for synchronizing [de]activations and policy
1393 * [un]registerations. Returns 0 on success, -errno on failure.
1394 */
1395int blkcg_activate_policy(struct request_queue *q,
1396 const struct blkcg_policy *pol)
1397{
1398 struct blkg_policy_data *pd_prealloc = NULL;
1399 struct blkcg_gq *blkg, *pinned_blkg = NULL;
1400 int ret;
1401
1402 if (blkcg_policy_enabled(q, pol))
1403 return 0;
1404
1405 if (queue_is_mq(q))
1406 blk_mq_freeze_queue(q);
1407retry:
1408 spin_lock_irq(&q->queue_lock);
1409
1410 /* blkg_list is pushed at the head, reverse walk to allocate parents first */
1411 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1412 struct blkg_policy_data *pd;
1413
1414 if (blkg->pd[pol->plid])
1415 continue;
1416
1417 /* If prealloc matches, use it; otherwise try GFP_NOWAIT */
1418 if (blkg == pinned_blkg) {
1419 pd = pd_prealloc;
1420 pd_prealloc = NULL;
1421 } else {
1422 pd = pol->pd_alloc_fn(GFP_NOWAIT | __GFP_NOWARN, q,
1423 blkg->blkcg);
1424 }
1425
1426 if (!pd) {
1427 /*
1428 * GFP_NOWAIT failed. Free the existing one and
1429 * prealloc for @blkg w/ GFP_KERNEL.
1430 */
1431 if (pinned_blkg)
1432 blkg_put(pinned_blkg);
1433 blkg_get(blkg);
1434 pinned_blkg = blkg;
1435
1436 spin_unlock_irq(&q->queue_lock);
1437
1438 if (pd_prealloc)
1439 pol->pd_free_fn(pd_prealloc);
1440 pd_prealloc = pol->pd_alloc_fn(GFP_KERNEL, q,
1441 blkg->blkcg);
1442 if (pd_prealloc)
1443 goto retry;
1444 else
1445 goto enomem;
1446 }
1447
1448 blkg->pd[pol->plid] = pd;
1449 pd->blkg = blkg;
1450 pd->plid = pol->plid;
1451 }
1452
1453 /* all allocated, init in the same order */
1454 if (pol->pd_init_fn)
1455 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node)
1456 pol->pd_init_fn(blkg->pd[pol->plid]);
1457
1458 if (pol->pd_online_fn)
1459 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node)
1460 pol->pd_online_fn(blkg->pd[pol->plid]);
1461
1462 __set_bit(pol->plid, q->blkcg_pols);
1463 ret = 0;
1464
1465 spin_unlock_irq(&q->queue_lock);
1466out:
1467 if (queue_is_mq(q))
1468 blk_mq_unfreeze_queue(q);
1469 if (pinned_blkg)
1470 blkg_put(pinned_blkg);
1471 if (pd_prealloc)
1472 pol->pd_free_fn(pd_prealloc);
1473 return ret;
1474
1475enomem:
1476 /* alloc failed, nothing's initialized yet, free everything */
1477 spin_lock_irq(&q->queue_lock);
1478 list_for_each_entry(blkg, &q->blkg_list, q_node) {
1479 struct blkcg *blkcg = blkg->blkcg;
1480
1481 spin_lock(&blkcg->lock);
1482 if (blkg->pd[pol->plid]) {
1483 pol->pd_free_fn(blkg->pd[pol->plid]);
1484 blkg->pd[pol->plid] = NULL;
1485 }
1486 spin_unlock(&blkcg->lock);
1487 }
1488 spin_unlock_irq(&q->queue_lock);
1489 ret = -ENOMEM;
1490 goto out;
1491}
1492EXPORT_SYMBOL_GPL(blkcg_activate_policy);
1493
1494/**
1495 * blkcg_deactivate_policy - deactivate a blkcg policy on a request_queue
1496 * @q: request_queue of interest
1497 * @pol: blkcg policy to deactivate
1498 *
1499 * Deactivate @pol on @q. Follows the same synchronization rules as
1500 * blkcg_activate_policy().
1501 */
1502void blkcg_deactivate_policy(struct request_queue *q,
1503 const struct blkcg_policy *pol)
1504{
1505 struct blkcg_gq *blkg;
1506
1507 if (!blkcg_policy_enabled(q, pol))
1508 return;
1509
1510 if (queue_is_mq(q))
1511 blk_mq_freeze_queue(q);
1512
1513 spin_lock_irq(&q->queue_lock);
1514
1515 __clear_bit(pol->plid, q->blkcg_pols);
1516
1517 list_for_each_entry(blkg, &q->blkg_list, q_node) {
1518 struct blkcg *blkcg = blkg->blkcg;
1519
1520 spin_lock(&blkcg->lock);
1521 if (blkg->pd[pol->plid]) {
1522 if (pol->pd_offline_fn)
1523 pol->pd_offline_fn(blkg->pd[pol->plid]);
1524 pol->pd_free_fn(blkg->pd[pol->plid]);
1525 blkg->pd[pol->plid] = NULL;
1526 }
1527 spin_unlock(&blkcg->lock);
1528 }
1529
1530 spin_unlock_irq(&q->queue_lock);
1531
1532 if (queue_is_mq(q))
1533 blk_mq_unfreeze_queue(q);
1534}
1535EXPORT_SYMBOL_GPL(blkcg_deactivate_policy);
1536
1537static void blkcg_free_all_cpd(struct blkcg_policy *pol)
1538{
1539 struct blkcg *blkcg;
1540
1541 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1542 if (blkcg->cpd[pol->plid]) {
1543 pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1544 blkcg->cpd[pol->plid] = NULL;
1545 }
1546 }
1547}
1548
1549/**
1550 * blkcg_policy_register - register a blkcg policy
1551 * @pol: blkcg policy to register
1552 *
1553 * Register @pol with blkcg core. Might sleep and @pol may be modified on
1554 * successful registration. Returns 0 on success and -errno on failure.
1555 */
1556int blkcg_policy_register(struct blkcg_policy *pol)
1557{
1558 struct blkcg *blkcg;
1559 int i, ret;
1560
1561 mutex_lock(&blkcg_pol_register_mutex);
1562 mutex_lock(&blkcg_pol_mutex);
1563
1564 /* find an empty slot */
1565 ret = -ENOSPC;
1566 for (i = 0; i < BLKCG_MAX_POLS; i++)
1567 if (!blkcg_policy[i])
1568 break;
1569 if (i >= BLKCG_MAX_POLS) {
1570 pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n");
1571 goto err_unlock;
1572 }
1573
1574 /* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */
1575 if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) ||
1576 (!pol->pd_alloc_fn ^ !pol->pd_free_fn))
1577 goto err_unlock;
1578
1579 /* register @pol */
1580 pol->plid = i;
1581 blkcg_policy[pol->plid] = pol;
1582
1583 /* allocate and install cpd's */
1584 if (pol->cpd_alloc_fn) {
1585 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1586 struct blkcg_policy_data *cpd;
1587
1588 cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1589 if (!cpd)
1590 goto err_free_cpds;
1591
1592 blkcg->cpd[pol->plid] = cpd;
1593 cpd->blkcg = blkcg;
1594 cpd->plid = pol->plid;
1595 if (pol->cpd_init_fn)
1596 pol->cpd_init_fn(cpd);
1597 }
1598 }
1599
1600 mutex_unlock(&blkcg_pol_mutex);
1601
1602 /* everything is in place, add intf files for the new policy */
1603 if (pol->dfl_cftypes)
1604 WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys,
1605 pol->dfl_cftypes));
1606 if (pol->legacy_cftypes)
1607 WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys,
1608 pol->legacy_cftypes));
1609 mutex_unlock(&blkcg_pol_register_mutex);
1610 return 0;
1611
1612err_free_cpds:
1613 if (pol->cpd_free_fn)
1614 blkcg_free_all_cpd(pol);
1615
1616 blkcg_policy[pol->plid] = NULL;
1617err_unlock:
1618 mutex_unlock(&blkcg_pol_mutex);
1619 mutex_unlock(&blkcg_pol_register_mutex);
1620 return ret;
1621}
1622EXPORT_SYMBOL_GPL(blkcg_policy_register);
1623
1624/**
1625 * blkcg_policy_unregister - unregister a blkcg policy
1626 * @pol: blkcg policy to unregister
1627 *
1628 * Undo blkcg_policy_register(@pol). Might sleep.
1629 */
1630void blkcg_policy_unregister(struct blkcg_policy *pol)
1631{
1632 mutex_lock(&blkcg_pol_register_mutex);
1633
1634 if (WARN_ON(blkcg_policy[pol->plid] != pol))
1635 goto out_unlock;
1636
1637 /* kill the intf files first */
1638 if (pol->dfl_cftypes)
1639 cgroup_rm_cftypes(pol->dfl_cftypes);
1640 if (pol->legacy_cftypes)
1641 cgroup_rm_cftypes(pol->legacy_cftypes);
1642
1643 /* remove cpds and unregister */
1644 mutex_lock(&blkcg_pol_mutex);
1645
1646 if (pol->cpd_free_fn)
1647 blkcg_free_all_cpd(pol);
1648
1649 blkcg_policy[pol->plid] = NULL;
1650
1651 mutex_unlock(&blkcg_pol_mutex);
1652out_unlock:
1653 mutex_unlock(&blkcg_pol_register_mutex);
1654}
1655EXPORT_SYMBOL_GPL(blkcg_policy_unregister);
1656
1657bool __blkcg_punt_bio_submit(struct bio *bio)
1658{
1659 struct blkcg_gq *blkg = bio->bi_blkg;
1660
1661 /* consume the flag first */
1662 bio->bi_opf &= ~REQ_CGROUP_PUNT;
1663
1664 /* never bounce for the root cgroup */
1665 if (!blkg->parent)
1666 return false;
1667
1668 spin_lock_bh(&blkg->async_bio_lock);
1669 bio_list_add(&blkg->async_bios, bio);
1670 spin_unlock_bh(&blkg->async_bio_lock);
1671
1672 queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work);
1673 return true;
1674}
1675
1676/*
1677 * Scale the accumulated delay based on how long it has been since we updated
1678 * the delay. We only call this when we are adding delay, in case it's been a
1679 * while since we added delay, and when we are checking to see if we need to
1680 * delay a task, to account for any delays that may have occurred.
1681 */
1682static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now)
1683{
1684 u64 old = atomic64_read(&blkg->delay_start);
1685
1686 /* negative use_delay means no scaling, see blkcg_set_delay() */
1687 if (atomic_read(&blkg->use_delay) < 0)
1688 return;
1689
1690 /*
1691 * We only want to scale down every second. The idea here is that we
1692 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain
1693 * time window. We only want to throttle tasks for recent delay that
1694 * has occurred, in 1 second time windows since that's the maximum
1695 * things can be throttled. We save the current delay window in
1696 * blkg->last_delay so we know what amount is still left to be charged
1697 * to the blkg from this point onward. blkg->last_use keeps track of
1698 * the use_delay counter. The idea is if we're unthrottling the blkg we
1699 * are ok with whatever is happening now, and we can take away more of
1700 * the accumulated delay as we've already throttled enough that
1701 * everybody is happy with their IO latencies.
1702 */
1703 if (time_before64(old + NSEC_PER_SEC, now) &&
1704 atomic64_try_cmpxchg(&blkg->delay_start, &old, now)) {
1705 u64 cur = atomic64_read(&blkg->delay_nsec);
1706 u64 sub = min_t(u64, blkg->last_delay, now - old);
1707 int cur_use = atomic_read(&blkg->use_delay);
1708
1709 /*
1710 * We've been unthrottled, subtract a larger chunk of our
1711 * accumulated delay.
1712 */
1713 if (cur_use < blkg->last_use)
1714 sub = max_t(u64, sub, blkg->last_delay >> 1);
1715
1716 /*
1717 * This shouldn't happen, but handle it anyway. Our delay_nsec
1718 * should only ever be growing except here where we subtract out
1719 * min(last_delay, 1 second), but lord knows bugs happen and I'd
1720 * rather not end up with negative numbers.
1721 */
1722 if (unlikely(cur < sub)) {
1723 atomic64_set(&blkg->delay_nsec, 0);
1724 blkg->last_delay = 0;
1725 } else {
1726 atomic64_sub(sub, &blkg->delay_nsec);
1727 blkg->last_delay = cur - sub;
1728 }
1729 blkg->last_use = cur_use;
1730 }
1731}
1732
1733/*
1734 * This is called when we want to actually walk up the hierarchy and check to
1735 * see if we need to throttle, and then actually throttle if there is some
1736 * accumulated delay. This should only be called upon return to user space so
1737 * we're not holding some lock that would induce a priority inversion.
1738 */
1739static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay)
1740{
1741 unsigned long pflags;
1742 bool clamp;
1743 u64 now = ktime_to_ns(ktime_get());
1744 u64 exp;
1745 u64 delay_nsec = 0;
1746 int tok;
1747
1748 while (blkg->parent) {
1749 int use_delay = atomic_read(&blkg->use_delay);
1750
1751 if (use_delay) {
1752 u64 this_delay;
1753
1754 blkcg_scale_delay(blkg, now);
1755 this_delay = atomic64_read(&blkg->delay_nsec);
1756 if (this_delay > delay_nsec) {
1757 delay_nsec = this_delay;
1758 clamp = use_delay > 0;
1759 }
1760 }
1761 blkg = blkg->parent;
1762 }
1763
1764 if (!delay_nsec)
1765 return;
1766
1767 /*
1768 * Let's not sleep for all eternity if we've amassed a huge delay.
1769 * Swapping or metadata IO can accumulate 10's of seconds worth of
1770 * delay, and we want userspace to be able to do _something_ so cap the
1771 * delays at 0.25s. If there's 10's of seconds worth of delay then the
1772 * tasks will be delayed for 0.25 second for every syscall. If
1773 * blkcg_set_delay() was used as indicated by negative use_delay, the
1774 * caller is responsible for regulating the range.
1775 */
1776 if (clamp)
1777 delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC);
1778
1779 if (use_memdelay)
1780 psi_memstall_enter(&pflags);
1781
1782 exp = ktime_add_ns(now, delay_nsec);
1783 tok = io_schedule_prepare();
1784 do {
1785 __set_current_state(TASK_KILLABLE);
1786 if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS))
1787 break;
1788 } while (!fatal_signal_pending(current));
1789 io_schedule_finish(tok);
1790
1791 if (use_memdelay)
1792 psi_memstall_leave(&pflags);
1793}
1794
1795/**
1796 * blkcg_maybe_throttle_current - throttle the current task if it has been marked
1797 *
1798 * This is only called if we've been marked with set_notify_resume(). Obviously
1799 * we can be set_notify_resume() for reasons other than blkcg throttling, so we
1800 * check to see if current->throttle_queue is set and if not this doesn't do
1801 * anything. This should only ever be called by the resume code, it's not meant
1802 * to be called by people willy-nilly as it will actually do the work to
1803 * throttle the task if it is setup for throttling.
1804 */
1805void blkcg_maybe_throttle_current(void)
1806{
1807 struct request_queue *q = current->throttle_queue;
1808 struct blkcg *blkcg;
1809 struct blkcg_gq *blkg;
1810 bool use_memdelay = current->use_memdelay;
1811
1812 if (!q)
1813 return;
1814
1815 current->throttle_queue = NULL;
1816 current->use_memdelay = false;
1817
1818 rcu_read_lock();
1819 blkcg = css_to_blkcg(blkcg_css());
1820 if (!blkcg)
1821 goto out;
1822 blkg = blkg_lookup(blkcg, q);
1823 if (!blkg)
1824 goto out;
1825 if (!blkg_tryget(blkg))
1826 goto out;
1827 rcu_read_unlock();
1828
1829 blkcg_maybe_throttle_blkg(blkg, use_memdelay);
1830 blkg_put(blkg);
1831 blk_put_queue(q);
1832 return;
1833out:
1834 rcu_read_unlock();
1835 blk_put_queue(q);
1836}
1837
1838/**
1839 * blkcg_schedule_throttle - this task needs to check for throttling
1840 * @disk: disk to throttle
1841 * @use_memdelay: do we charge this to memory delay for PSI
1842 *
1843 * This is called by the IO controller when we know there's delay accumulated
1844 * for the blkg for this task. We do not pass the blkg because there are places
1845 * we call this that may not have that information, the swapping code for
1846 * instance will only have a block_device at that point. This set's the
1847 * notify_resume for the task to check and see if it requires throttling before
1848 * returning to user space.
1849 *
1850 * We will only schedule once per syscall. You can call this over and over
1851 * again and it will only do the check once upon return to user space, and only
1852 * throttle once. If the task needs to be throttled again it'll need to be
1853 * re-set at the next time we see the task.
1854 */
1855void blkcg_schedule_throttle(struct gendisk *disk, bool use_memdelay)
1856{
1857 struct request_queue *q = disk->queue;
1858
1859 if (unlikely(current->flags & PF_KTHREAD))
1860 return;
1861
1862 if (current->throttle_queue != q) {
1863 if (!blk_get_queue(q))
1864 return;
1865
1866 if (current->throttle_queue)
1867 blk_put_queue(current->throttle_queue);
1868 current->throttle_queue = q;
1869 }
1870
1871 if (use_memdelay)
1872 current->use_memdelay = use_memdelay;
1873 set_notify_resume(current);
1874}
1875
1876/**
1877 * blkcg_add_delay - add delay to this blkg
1878 * @blkg: blkg of interest
1879 * @now: the current time in nanoseconds
1880 * @delta: how many nanoseconds of delay to add
1881 *
1882 * Charge @delta to the blkg's current delay accumulation. This is used to
1883 * throttle tasks if an IO controller thinks we need more throttling.
1884 */
1885void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta)
1886{
1887 if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0))
1888 return;
1889 blkcg_scale_delay(blkg, now);
1890 atomic64_add(delta, &blkg->delay_nsec);
1891}
1892
1893/**
1894 * blkg_tryget_closest - try and get a blkg ref on the closet blkg
1895 * @bio: target bio
1896 * @css: target css
1897 *
1898 * As the failure mode here is to walk up the blkg tree, this ensure that the
1899 * blkg->parent pointers are always valid. This returns the blkg that it ended
1900 * up taking a reference on or %NULL if no reference was taken.
1901 */
1902static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio,
1903 struct cgroup_subsys_state *css)
1904{
1905 struct blkcg_gq *blkg, *ret_blkg = NULL;
1906
1907 rcu_read_lock();
1908 blkg = blkg_lookup_create(css_to_blkcg(css), bio->bi_bdev->bd_disk);
1909 while (blkg) {
1910 if (blkg_tryget(blkg)) {
1911 ret_blkg = blkg;
1912 break;
1913 }
1914 blkg = blkg->parent;
1915 }
1916 rcu_read_unlock();
1917
1918 return ret_blkg;
1919}
1920
1921/**
1922 * bio_associate_blkg_from_css - associate a bio with a specified css
1923 * @bio: target bio
1924 * @css: target css
1925 *
1926 * Associate @bio with the blkg found by combining the css's blkg and the
1927 * request_queue of the @bio. An association failure is handled by walking up
1928 * the blkg tree. Therefore, the blkg associated can be anything between @blkg
1929 * and q->root_blkg. This situation only happens when a cgroup is dying and
1930 * then the remaining bios will spill to the closest alive blkg.
1931 *
1932 * A reference will be taken on the blkg and will be released when @bio is
1933 * freed.
1934 */
1935void bio_associate_blkg_from_css(struct bio *bio,
1936 struct cgroup_subsys_state *css)
1937{
1938 if (bio->bi_blkg)
1939 blkg_put(bio->bi_blkg);
1940
1941 if (css && css->parent) {
1942 bio->bi_blkg = blkg_tryget_closest(bio, css);
1943 } else {
1944 blkg_get(bdev_get_queue(bio->bi_bdev)->root_blkg);
1945 bio->bi_blkg = bdev_get_queue(bio->bi_bdev)->root_blkg;
1946 }
1947}
1948EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
1949
1950/**
1951 * bio_associate_blkg - associate a bio with a blkg
1952 * @bio: target bio
1953 *
1954 * Associate @bio with the blkg found from the bio's css and request_queue.
1955 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
1956 * already associated, the css is reused and association redone as the
1957 * request_queue may have changed.
1958 */
1959void bio_associate_blkg(struct bio *bio)
1960{
1961 struct cgroup_subsys_state *css;
1962
1963 rcu_read_lock();
1964
1965 if (bio->bi_blkg)
1966 css = bio_blkcg_css(bio);
1967 else
1968 css = blkcg_css();
1969
1970 bio_associate_blkg_from_css(bio, css);
1971
1972 rcu_read_unlock();
1973}
1974EXPORT_SYMBOL_GPL(bio_associate_blkg);
1975
1976/**
1977 * bio_clone_blkg_association - clone blkg association from src to dst bio
1978 * @dst: destination bio
1979 * @src: source bio
1980 */
1981void bio_clone_blkg_association(struct bio *dst, struct bio *src)
1982{
1983 if (src->bi_blkg)
1984 bio_associate_blkg_from_css(dst, bio_blkcg_css(src));
1985}
1986EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
1987
1988static int blk_cgroup_io_type(struct bio *bio)
1989{
1990 if (op_is_discard(bio->bi_opf))
1991 return BLKG_IOSTAT_DISCARD;
1992 if (op_is_write(bio->bi_opf))
1993 return BLKG_IOSTAT_WRITE;
1994 return BLKG_IOSTAT_READ;
1995}
1996
1997void blk_cgroup_bio_start(struct bio *bio)
1998{
1999 struct blkcg *blkcg = bio->bi_blkg->blkcg;
2000 int rwd = blk_cgroup_io_type(bio), cpu;
2001 struct blkg_iostat_set *bis;
2002 unsigned long flags;
2003
2004 /* Root-level stats are sourced from system-wide IO stats */
2005 if (!cgroup_parent(blkcg->css.cgroup))
2006 return;
2007
2008 cpu = get_cpu();
2009 bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu);
2010 flags = u64_stats_update_begin_irqsave(&bis->sync);
2011
2012 /*
2013 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split
2014 * bio and we would have already accounted for the size of the bio.
2015 */
2016 if (!bio_flagged(bio, BIO_CGROUP_ACCT)) {
2017 bio_set_flag(bio, BIO_CGROUP_ACCT);
2018 bis->cur.bytes[rwd] += bio->bi_iter.bi_size;
2019 }
2020 bis->cur.ios[rwd]++;
2021
2022 /*
2023 * If the iostat_cpu isn't in a lockless list, put it into the
2024 * list to indicate that a stat update is pending.
2025 */
2026 if (!READ_ONCE(bis->lqueued)) {
2027 struct llist_head *lhead = this_cpu_ptr(blkcg->lhead);
2028
2029 llist_add(&bis->lnode, lhead);
2030 WRITE_ONCE(bis->lqueued, true);
2031 percpu_ref_get(&bis->blkg->refcnt);
2032 }
2033
2034 u64_stats_update_end_irqrestore(&bis->sync, flags);
2035 if (cgroup_subsys_on_dfl(io_cgrp_subsys))
2036 cgroup_rstat_updated(blkcg->css.cgroup, cpu);
2037 put_cpu();
2038}
2039
2040bool blk_cgroup_congested(void)
2041{
2042 struct cgroup_subsys_state *css;
2043 bool ret = false;
2044
2045 rcu_read_lock();
2046 for (css = blkcg_css(); css; css = css->parent) {
2047 if (atomic_read(&css->cgroup->congestion_count)) {
2048 ret = true;
2049 break;
2050 }
2051 }
2052 rcu_read_unlock();
2053 return ret;
2054}
2055
2056static int __init blkcg_init(void)
2057{
2058 blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio",
2059 WQ_MEM_RECLAIM | WQ_FREEZABLE |
2060 WQ_UNBOUND | WQ_SYSFS, 0);
2061 if (!blkcg_punt_bio_wq)
2062 return -ENOMEM;
2063 return 0;
2064}
2065subsys_initcall(blkcg_init);
2066
2067module_param(blkcg_debug_stats, bool, 0644);
2068MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not");
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Common Block IO controller cgroup interface
4 *
5 * Based on ideas and code from CFQ, CFS and BFQ:
6 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7 *
8 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9 * Paolo Valente <paolo.valente@unimore.it>
10 *
11 * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com>
12 * Nauman Rafique <nauman@google.com>
13 *
14 * For policy-specific per-blkcg data:
15 * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
16 * Arianna Avanzini <avanzini.arianna@gmail.com>
17 */
18#include <linux/ioprio.h>
19#include <linux/kdev_t.h>
20#include <linux/module.h>
21#include <linux/sched/signal.h>
22#include <linux/err.h>
23#include <linux/blkdev.h>
24#include <linux/backing-dev.h>
25#include <linux/slab.h>
26#include <linux/delay.h>
27#include <linux/atomic.h>
28#include <linux/ctype.h>
29#include <linux/resume_user_mode.h>
30#include <linux/psi.h>
31#include <linux/part_stat.h>
32#include "blk.h"
33#include "blk-cgroup.h"
34#include "blk-ioprio.h"
35#include "blk-throttle.h"
36
37static void __blkcg_rstat_flush(struct blkcg *blkcg, int cpu);
38
39/*
40 * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation.
41 * blkcg_pol_register_mutex nests outside of it and synchronizes entire
42 * policy [un]register operations including cgroup file additions /
43 * removals. Putting cgroup file registration outside blkcg_pol_mutex
44 * allows grabbing it from cgroup callbacks.
45 */
46static DEFINE_MUTEX(blkcg_pol_register_mutex);
47static DEFINE_MUTEX(blkcg_pol_mutex);
48
49struct blkcg blkcg_root;
50EXPORT_SYMBOL_GPL(blkcg_root);
51
52struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css;
53EXPORT_SYMBOL_GPL(blkcg_root_css);
54
55static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS];
56
57static LIST_HEAD(all_blkcgs); /* protected by blkcg_pol_mutex */
58
59bool blkcg_debug_stats = false;
60
61static DEFINE_RAW_SPINLOCK(blkg_stat_lock);
62
63#define BLKG_DESTROY_BATCH_SIZE 64
64
65/*
66 * Lockless lists for tracking IO stats update
67 *
68 * New IO stats are stored in the percpu iostat_cpu within blkcg_gq (blkg).
69 * There are multiple blkg's (one for each block device) attached to each
70 * blkcg. The rstat code keeps track of which cpu has IO stats updated,
71 * but it doesn't know which blkg has the updated stats. If there are many
72 * block devices in a system, the cost of iterating all the blkg's to flush
73 * out the IO stats can be high. To reduce such overhead, a set of percpu
74 * lockless lists (lhead) per blkcg are used to track the set of recently
75 * updated iostat_cpu's since the last flush. An iostat_cpu will be put
76 * onto the lockless list on the update side [blk_cgroup_bio_start()] if
77 * not there yet and then removed when being flushed [blkcg_rstat_flush()].
78 * References to blkg are gotten and then put back in the process to
79 * protect against blkg removal.
80 *
81 * Return: 0 if successful or -ENOMEM if allocation fails.
82 */
83static int init_blkcg_llists(struct blkcg *blkcg)
84{
85 int cpu;
86
87 blkcg->lhead = alloc_percpu_gfp(struct llist_head, GFP_KERNEL);
88 if (!blkcg->lhead)
89 return -ENOMEM;
90
91 for_each_possible_cpu(cpu)
92 init_llist_head(per_cpu_ptr(blkcg->lhead, cpu));
93 return 0;
94}
95
96/**
97 * blkcg_css - find the current css
98 *
99 * Find the css associated with either the kthread or the current task.
100 * This may return a dying css, so it is up to the caller to use tryget logic
101 * to confirm it is alive and well.
102 */
103static struct cgroup_subsys_state *blkcg_css(void)
104{
105 struct cgroup_subsys_state *css;
106
107 css = kthread_blkcg();
108 if (css)
109 return css;
110 return task_css(current, io_cgrp_id);
111}
112
113static bool blkcg_policy_enabled(struct request_queue *q,
114 const struct blkcg_policy *pol)
115{
116 return pol && test_bit(pol->plid, q->blkcg_pols);
117}
118
119static void blkg_free_workfn(struct work_struct *work)
120{
121 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
122 free_work);
123 struct request_queue *q = blkg->q;
124 int i;
125
126 /*
127 * pd_free_fn() can also be called from blkcg_deactivate_policy(),
128 * in order to make sure pd_free_fn() is called in order, the deletion
129 * of the list blkg->q_node is delayed to here from blkg_destroy(), and
130 * blkcg_mutex is used to synchronize blkg_free_workfn() and
131 * blkcg_deactivate_policy().
132 */
133 mutex_lock(&q->blkcg_mutex);
134 for (i = 0; i < BLKCG_MAX_POLS; i++)
135 if (blkg->pd[i])
136 blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
137 if (blkg->parent)
138 blkg_put(blkg->parent);
139 spin_lock_irq(&q->queue_lock);
140 list_del_init(&blkg->q_node);
141 spin_unlock_irq(&q->queue_lock);
142 mutex_unlock(&q->blkcg_mutex);
143
144 blk_put_queue(q);
145 free_percpu(blkg->iostat_cpu);
146 percpu_ref_exit(&blkg->refcnt);
147 kfree(blkg);
148}
149
150/**
151 * blkg_free - free a blkg
152 * @blkg: blkg to free
153 *
154 * Free @blkg which may be partially allocated.
155 */
156static void blkg_free(struct blkcg_gq *blkg)
157{
158 if (!blkg)
159 return;
160
161 /*
162 * Both ->pd_free_fn() and request queue's release handler may
163 * sleep, so free us by scheduling one work func
164 */
165 INIT_WORK(&blkg->free_work, blkg_free_workfn);
166 schedule_work(&blkg->free_work);
167}
168
169static void __blkg_release(struct rcu_head *rcu)
170{
171 struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head);
172 struct blkcg *blkcg = blkg->blkcg;
173 int cpu;
174
175#ifdef CONFIG_BLK_CGROUP_PUNT_BIO
176 WARN_ON(!bio_list_empty(&blkg->async_bios));
177#endif
178 /*
179 * Flush all the non-empty percpu lockless lists before releasing
180 * us, given these stat belongs to us.
181 *
182 * blkg_stat_lock is for serializing blkg stat update
183 */
184 for_each_possible_cpu(cpu)
185 __blkcg_rstat_flush(blkcg, cpu);
186
187 /* release the blkcg and parent blkg refs this blkg has been holding */
188 css_put(&blkg->blkcg->css);
189 blkg_free(blkg);
190}
191
192/*
193 * A group is RCU protected, but having an rcu lock does not mean that one
194 * can access all the fields of blkg and assume these are valid. For
195 * example, don't try to follow throtl_data and request queue links.
196 *
197 * Having a reference to blkg under an rcu allows accesses to only values
198 * local to groups like group stats and group rate limits.
199 */
200static void blkg_release(struct percpu_ref *ref)
201{
202 struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt);
203
204 call_rcu(&blkg->rcu_head, __blkg_release);
205}
206
207#ifdef CONFIG_BLK_CGROUP_PUNT_BIO
208static struct workqueue_struct *blkcg_punt_bio_wq;
209
210static void blkg_async_bio_workfn(struct work_struct *work)
211{
212 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
213 async_bio_work);
214 struct bio_list bios = BIO_EMPTY_LIST;
215 struct bio *bio;
216 struct blk_plug plug;
217 bool need_plug = false;
218
219 /* as long as there are pending bios, @blkg can't go away */
220 spin_lock(&blkg->async_bio_lock);
221 bio_list_merge_init(&bios, &blkg->async_bios);
222 spin_unlock(&blkg->async_bio_lock);
223
224 /* start plug only when bio_list contains at least 2 bios */
225 if (bios.head && bios.head->bi_next) {
226 need_plug = true;
227 blk_start_plug(&plug);
228 }
229 while ((bio = bio_list_pop(&bios)))
230 submit_bio(bio);
231 if (need_plug)
232 blk_finish_plug(&plug);
233}
234
235/*
236 * When a shared kthread issues a bio for a cgroup, doing so synchronously can
237 * lead to priority inversions as the kthread can be trapped waiting for that
238 * cgroup. Use this helper instead of submit_bio to punt the actual issuing to
239 * a dedicated per-blkcg work item to avoid such priority inversions.
240 */
241void blkcg_punt_bio_submit(struct bio *bio)
242{
243 struct blkcg_gq *blkg = bio->bi_blkg;
244
245 if (blkg->parent) {
246 spin_lock(&blkg->async_bio_lock);
247 bio_list_add(&blkg->async_bios, bio);
248 spin_unlock(&blkg->async_bio_lock);
249 queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work);
250 } else {
251 /* never bounce for the root cgroup */
252 submit_bio(bio);
253 }
254}
255EXPORT_SYMBOL_GPL(blkcg_punt_bio_submit);
256
257static int __init blkcg_punt_bio_init(void)
258{
259 blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio",
260 WQ_MEM_RECLAIM | WQ_FREEZABLE |
261 WQ_UNBOUND | WQ_SYSFS, 0);
262 if (!blkcg_punt_bio_wq)
263 return -ENOMEM;
264 return 0;
265}
266subsys_initcall(blkcg_punt_bio_init);
267#endif /* CONFIG_BLK_CGROUP_PUNT_BIO */
268
269/**
270 * bio_blkcg_css - return the blkcg CSS associated with a bio
271 * @bio: target bio
272 *
273 * This returns the CSS for the blkcg associated with a bio, or %NULL if not
274 * associated. Callers are expected to either handle %NULL or know association
275 * has been done prior to calling this.
276 */
277struct cgroup_subsys_state *bio_blkcg_css(struct bio *bio)
278{
279 if (!bio || !bio->bi_blkg)
280 return NULL;
281 return &bio->bi_blkg->blkcg->css;
282}
283EXPORT_SYMBOL_GPL(bio_blkcg_css);
284
285/**
286 * blkcg_parent - get the parent of a blkcg
287 * @blkcg: blkcg of interest
288 *
289 * Return the parent blkcg of @blkcg. Can be called anytime.
290 */
291static inline struct blkcg *blkcg_parent(struct blkcg *blkcg)
292{
293 return css_to_blkcg(blkcg->css.parent);
294}
295
296/**
297 * blkg_alloc - allocate a blkg
298 * @blkcg: block cgroup the new blkg is associated with
299 * @disk: gendisk the new blkg is associated with
300 * @gfp_mask: allocation mask to use
301 *
302 * Allocate a new blkg associating @blkcg and @disk.
303 */
304static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct gendisk *disk,
305 gfp_t gfp_mask)
306{
307 struct blkcg_gq *blkg;
308 int i, cpu;
309
310 /* alloc and init base part */
311 blkg = kzalloc_node(sizeof(*blkg), gfp_mask, disk->queue->node);
312 if (!blkg)
313 return NULL;
314 if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask))
315 goto out_free_blkg;
316 blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask);
317 if (!blkg->iostat_cpu)
318 goto out_exit_refcnt;
319 if (!blk_get_queue(disk->queue))
320 goto out_free_iostat;
321
322 blkg->q = disk->queue;
323 INIT_LIST_HEAD(&blkg->q_node);
324 blkg->blkcg = blkcg;
325 blkg->iostat.blkg = blkg;
326#ifdef CONFIG_BLK_CGROUP_PUNT_BIO
327 spin_lock_init(&blkg->async_bio_lock);
328 bio_list_init(&blkg->async_bios);
329 INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn);
330#endif
331
332 u64_stats_init(&blkg->iostat.sync);
333 for_each_possible_cpu(cpu) {
334 u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync);
335 per_cpu_ptr(blkg->iostat_cpu, cpu)->blkg = blkg;
336 }
337
338 for (i = 0; i < BLKCG_MAX_POLS; i++) {
339 struct blkcg_policy *pol = blkcg_policy[i];
340 struct blkg_policy_data *pd;
341
342 if (!blkcg_policy_enabled(disk->queue, pol))
343 continue;
344
345 /* alloc per-policy data and attach it to blkg */
346 pd = pol->pd_alloc_fn(disk, blkcg, gfp_mask);
347 if (!pd)
348 goto out_free_pds;
349 blkg->pd[i] = pd;
350 pd->blkg = blkg;
351 pd->plid = i;
352 pd->online = false;
353 }
354
355 return blkg;
356
357out_free_pds:
358 while (--i >= 0)
359 if (blkg->pd[i])
360 blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
361 blk_put_queue(disk->queue);
362out_free_iostat:
363 free_percpu(blkg->iostat_cpu);
364out_exit_refcnt:
365 percpu_ref_exit(&blkg->refcnt);
366out_free_blkg:
367 kfree(blkg);
368 return NULL;
369}
370
371/*
372 * If @new_blkg is %NULL, this function tries to allocate a new one as
373 * necessary using %GFP_NOWAIT. @new_blkg is always consumed on return.
374 */
375static struct blkcg_gq *blkg_create(struct blkcg *blkcg, struct gendisk *disk,
376 struct blkcg_gq *new_blkg)
377{
378 struct blkcg_gq *blkg;
379 int i, ret;
380
381 lockdep_assert_held(&disk->queue->queue_lock);
382
383 /* request_queue is dying, do not create/recreate a blkg */
384 if (blk_queue_dying(disk->queue)) {
385 ret = -ENODEV;
386 goto err_free_blkg;
387 }
388
389 /* blkg holds a reference to blkcg */
390 if (!css_tryget_online(&blkcg->css)) {
391 ret = -ENODEV;
392 goto err_free_blkg;
393 }
394
395 /* allocate */
396 if (!new_blkg) {
397 new_blkg = blkg_alloc(blkcg, disk, GFP_NOWAIT | __GFP_NOWARN);
398 if (unlikely(!new_blkg)) {
399 ret = -ENOMEM;
400 goto err_put_css;
401 }
402 }
403 blkg = new_blkg;
404
405 /* link parent */
406 if (blkcg_parent(blkcg)) {
407 blkg->parent = blkg_lookup(blkcg_parent(blkcg), disk->queue);
408 if (WARN_ON_ONCE(!blkg->parent)) {
409 ret = -ENODEV;
410 goto err_put_css;
411 }
412 blkg_get(blkg->parent);
413 }
414
415 /* invoke per-policy init */
416 for (i = 0; i < BLKCG_MAX_POLS; i++) {
417 struct blkcg_policy *pol = blkcg_policy[i];
418
419 if (blkg->pd[i] && pol->pd_init_fn)
420 pol->pd_init_fn(blkg->pd[i]);
421 }
422
423 /* insert */
424 spin_lock(&blkcg->lock);
425 ret = radix_tree_insert(&blkcg->blkg_tree, disk->queue->id, blkg);
426 if (likely(!ret)) {
427 hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list);
428 list_add(&blkg->q_node, &disk->queue->blkg_list);
429
430 for (i = 0; i < BLKCG_MAX_POLS; i++) {
431 struct blkcg_policy *pol = blkcg_policy[i];
432
433 if (blkg->pd[i]) {
434 if (pol->pd_online_fn)
435 pol->pd_online_fn(blkg->pd[i]);
436 blkg->pd[i]->online = true;
437 }
438 }
439 }
440 blkg->online = true;
441 spin_unlock(&blkcg->lock);
442
443 if (!ret)
444 return blkg;
445
446 /* @blkg failed fully initialized, use the usual release path */
447 blkg_put(blkg);
448 return ERR_PTR(ret);
449
450err_put_css:
451 css_put(&blkcg->css);
452err_free_blkg:
453 if (new_blkg)
454 blkg_free(new_blkg);
455 return ERR_PTR(ret);
456}
457
458/**
459 * blkg_lookup_create - lookup blkg, try to create one if not there
460 * @blkcg: blkcg of interest
461 * @disk: gendisk of interest
462 *
463 * Lookup blkg for the @blkcg - @disk pair. If it doesn't exist, try to
464 * create one. blkg creation is performed recursively from blkcg_root such
465 * that all non-root blkg's have access to the parent blkg. This function
466 * should be called under RCU read lock and takes @disk->queue->queue_lock.
467 *
468 * Returns the blkg or the closest blkg if blkg_create() fails as it walks
469 * down from root.
470 */
471static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg,
472 struct gendisk *disk)
473{
474 struct request_queue *q = disk->queue;
475 struct blkcg_gq *blkg;
476 unsigned long flags;
477
478 WARN_ON_ONCE(!rcu_read_lock_held());
479
480 blkg = blkg_lookup(blkcg, q);
481 if (blkg)
482 return blkg;
483
484 spin_lock_irqsave(&q->queue_lock, flags);
485 blkg = blkg_lookup(blkcg, q);
486 if (blkg) {
487 if (blkcg != &blkcg_root &&
488 blkg != rcu_dereference(blkcg->blkg_hint))
489 rcu_assign_pointer(blkcg->blkg_hint, blkg);
490 goto found;
491 }
492
493 /*
494 * Create blkgs walking down from blkcg_root to @blkcg, so that all
495 * non-root blkgs have access to their parents. Returns the closest
496 * blkg to the intended blkg should blkg_create() fail.
497 */
498 while (true) {
499 struct blkcg *pos = blkcg;
500 struct blkcg *parent = blkcg_parent(blkcg);
501 struct blkcg_gq *ret_blkg = q->root_blkg;
502
503 while (parent) {
504 blkg = blkg_lookup(parent, q);
505 if (blkg) {
506 /* remember closest blkg */
507 ret_blkg = blkg;
508 break;
509 }
510 pos = parent;
511 parent = blkcg_parent(parent);
512 }
513
514 blkg = blkg_create(pos, disk, NULL);
515 if (IS_ERR(blkg)) {
516 blkg = ret_blkg;
517 break;
518 }
519 if (pos == blkcg)
520 break;
521 }
522
523found:
524 spin_unlock_irqrestore(&q->queue_lock, flags);
525 return blkg;
526}
527
528static void blkg_destroy(struct blkcg_gq *blkg)
529{
530 struct blkcg *blkcg = blkg->blkcg;
531 int i;
532
533 lockdep_assert_held(&blkg->q->queue_lock);
534 lockdep_assert_held(&blkcg->lock);
535
536 /*
537 * blkg stays on the queue list until blkg_free_workfn(), see details in
538 * blkg_free_workfn(), hence this function can be called from
539 * blkcg_destroy_blkgs() first and again from blkg_destroy_all() before
540 * blkg_free_workfn().
541 */
542 if (hlist_unhashed(&blkg->blkcg_node))
543 return;
544
545 for (i = 0; i < BLKCG_MAX_POLS; i++) {
546 struct blkcg_policy *pol = blkcg_policy[i];
547
548 if (blkg->pd[i] && blkg->pd[i]->online) {
549 blkg->pd[i]->online = false;
550 if (pol->pd_offline_fn)
551 pol->pd_offline_fn(blkg->pd[i]);
552 }
553 }
554
555 blkg->online = false;
556
557 radix_tree_delete(&blkcg->blkg_tree, blkg->q->id);
558 hlist_del_init_rcu(&blkg->blkcg_node);
559
560 /*
561 * Both setting lookup hint to and clearing it from @blkg are done
562 * under queue_lock. If it's not pointing to @blkg now, it never
563 * will. Hint assignment itself can race safely.
564 */
565 if (rcu_access_pointer(blkcg->blkg_hint) == blkg)
566 rcu_assign_pointer(blkcg->blkg_hint, NULL);
567
568 /*
569 * Put the reference taken at the time of creation so that when all
570 * queues are gone, group can be destroyed.
571 */
572 percpu_ref_kill(&blkg->refcnt);
573}
574
575static void blkg_destroy_all(struct gendisk *disk)
576{
577 struct request_queue *q = disk->queue;
578 struct blkcg_gq *blkg;
579 int count = BLKG_DESTROY_BATCH_SIZE;
580 int i;
581
582restart:
583 spin_lock_irq(&q->queue_lock);
584 list_for_each_entry(blkg, &q->blkg_list, q_node) {
585 struct blkcg *blkcg = blkg->blkcg;
586
587 if (hlist_unhashed(&blkg->blkcg_node))
588 continue;
589
590 spin_lock(&blkcg->lock);
591 blkg_destroy(blkg);
592 spin_unlock(&blkcg->lock);
593
594 /*
595 * in order to avoid holding the spin lock for too long, release
596 * it when a batch of blkgs are destroyed.
597 */
598 if (!(--count)) {
599 count = BLKG_DESTROY_BATCH_SIZE;
600 spin_unlock_irq(&q->queue_lock);
601 cond_resched();
602 goto restart;
603 }
604 }
605
606 /*
607 * Mark policy deactivated since policy offline has been done, and
608 * the free is scheduled, so future blkcg_deactivate_policy() can
609 * be bypassed
610 */
611 for (i = 0; i < BLKCG_MAX_POLS; i++) {
612 struct blkcg_policy *pol = blkcg_policy[i];
613
614 if (pol)
615 __clear_bit(pol->plid, q->blkcg_pols);
616 }
617
618 q->root_blkg = NULL;
619 spin_unlock_irq(&q->queue_lock);
620}
621
622static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src)
623{
624 int i;
625
626 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
627 dst->bytes[i] = src->bytes[i];
628 dst->ios[i] = src->ios[i];
629 }
630}
631
632static void __blkg_clear_stat(struct blkg_iostat_set *bis)
633{
634 struct blkg_iostat cur = {0};
635 unsigned long flags;
636
637 flags = u64_stats_update_begin_irqsave(&bis->sync);
638 blkg_iostat_set(&bis->cur, &cur);
639 blkg_iostat_set(&bis->last, &cur);
640 u64_stats_update_end_irqrestore(&bis->sync, flags);
641}
642
643static void blkg_clear_stat(struct blkcg_gq *blkg)
644{
645 int cpu;
646
647 for_each_possible_cpu(cpu) {
648 struct blkg_iostat_set *s = per_cpu_ptr(blkg->iostat_cpu, cpu);
649
650 __blkg_clear_stat(s);
651 }
652 __blkg_clear_stat(&blkg->iostat);
653}
654
655static int blkcg_reset_stats(struct cgroup_subsys_state *css,
656 struct cftype *cftype, u64 val)
657{
658 struct blkcg *blkcg = css_to_blkcg(css);
659 struct blkcg_gq *blkg;
660 int i;
661
662 mutex_lock(&blkcg_pol_mutex);
663 spin_lock_irq(&blkcg->lock);
664
665 /*
666 * Note that stat reset is racy - it doesn't synchronize against
667 * stat updates. This is a debug feature which shouldn't exist
668 * anyway. If you get hit by a race, retry.
669 */
670 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
671 blkg_clear_stat(blkg);
672 for (i = 0; i < BLKCG_MAX_POLS; i++) {
673 struct blkcg_policy *pol = blkcg_policy[i];
674
675 if (blkg->pd[i] && pol->pd_reset_stats_fn)
676 pol->pd_reset_stats_fn(blkg->pd[i]);
677 }
678 }
679
680 spin_unlock_irq(&blkcg->lock);
681 mutex_unlock(&blkcg_pol_mutex);
682 return 0;
683}
684
685const char *blkg_dev_name(struct blkcg_gq *blkg)
686{
687 if (!blkg->q->disk)
688 return NULL;
689 return bdi_dev_name(blkg->q->disk->bdi);
690}
691
692/**
693 * blkcg_print_blkgs - helper for printing per-blkg data
694 * @sf: seq_file to print to
695 * @blkcg: blkcg of interest
696 * @prfill: fill function to print out a blkg
697 * @pol: policy in question
698 * @data: data to be passed to @prfill
699 * @show_total: to print out sum of prfill return values or not
700 *
701 * This function invokes @prfill on each blkg of @blkcg if pd for the
702 * policy specified by @pol exists. @prfill is invoked with @sf, the
703 * policy data and @data and the matching queue lock held. If @show_total
704 * is %true, the sum of the return values from @prfill is printed with
705 * "Total" label at the end.
706 *
707 * This is to be used to construct print functions for
708 * cftype->read_seq_string method.
709 */
710void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg,
711 u64 (*prfill)(struct seq_file *,
712 struct blkg_policy_data *, int),
713 const struct blkcg_policy *pol, int data,
714 bool show_total)
715{
716 struct blkcg_gq *blkg;
717 u64 total = 0;
718
719 rcu_read_lock();
720 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
721 spin_lock_irq(&blkg->q->queue_lock);
722 if (blkcg_policy_enabled(blkg->q, pol))
723 total += prfill(sf, blkg->pd[pol->plid], data);
724 spin_unlock_irq(&blkg->q->queue_lock);
725 }
726 rcu_read_unlock();
727
728 if (show_total)
729 seq_printf(sf, "Total %llu\n", (unsigned long long)total);
730}
731EXPORT_SYMBOL_GPL(blkcg_print_blkgs);
732
733/**
734 * __blkg_prfill_u64 - prfill helper for a single u64 value
735 * @sf: seq_file to print to
736 * @pd: policy private data of interest
737 * @v: value to print
738 *
739 * Print @v to @sf for the device associated with @pd.
740 */
741u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v)
742{
743 const char *dname = blkg_dev_name(pd->blkg);
744
745 if (!dname)
746 return 0;
747
748 seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v);
749 return v;
750}
751EXPORT_SYMBOL_GPL(__blkg_prfill_u64);
752
753/**
754 * blkg_conf_init - initialize a blkg_conf_ctx
755 * @ctx: blkg_conf_ctx to initialize
756 * @input: input string
757 *
758 * Initialize @ctx which can be used to parse blkg config input string @input.
759 * Once initialized, @ctx can be used with blkg_conf_open_bdev() and
760 * blkg_conf_prep(), and must be cleaned up with blkg_conf_exit().
761 */
762void blkg_conf_init(struct blkg_conf_ctx *ctx, char *input)
763{
764 *ctx = (struct blkg_conf_ctx){ .input = input };
765}
766EXPORT_SYMBOL_GPL(blkg_conf_init);
767
768/**
769 * blkg_conf_open_bdev - parse and open bdev for per-blkg config update
770 * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
771 *
772 * Parse the device node prefix part, MAJ:MIN, of per-blkg config update from
773 * @ctx->input and get and store the matching bdev in @ctx->bdev. @ctx->body is
774 * set to point past the device node prefix.
775 *
776 * This function may be called multiple times on @ctx and the extra calls become
777 * NOOPs. blkg_conf_prep() implicitly calls this function. Use this function
778 * explicitly if bdev access is needed without resolving the blkcg / policy part
779 * of @ctx->input. Returns -errno on error.
780 */
781int blkg_conf_open_bdev(struct blkg_conf_ctx *ctx)
782{
783 char *input = ctx->input;
784 unsigned int major, minor;
785 struct block_device *bdev;
786 int key_len;
787
788 if (ctx->bdev)
789 return 0;
790
791 if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2)
792 return -EINVAL;
793
794 input += key_len;
795 if (!isspace(*input))
796 return -EINVAL;
797 input = skip_spaces(input);
798
799 bdev = blkdev_get_no_open(MKDEV(major, minor));
800 if (!bdev)
801 return -ENODEV;
802 if (bdev_is_partition(bdev)) {
803 blkdev_put_no_open(bdev);
804 return -ENODEV;
805 }
806
807 mutex_lock(&bdev->bd_queue->rq_qos_mutex);
808 if (!disk_live(bdev->bd_disk)) {
809 blkdev_put_no_open(bdev);
810 mutex_unlock(&bdev->bd_queue->rq_qos_mutex);
811 return -ENODEV;
812 }
813
814 ctx->body = input;
815 ctx->bdev = bdev;
816 return 0;
817}
818
819/**
820 * blkg_conf_prep - parse and prepare for per-blkg config update
821 * @blkcg: target block cgroup
822 * @pol: target policy
823 * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
824 *
825 * Parse per-blkg config update from @ctx->input and initialize @ctx
826 * accordingly. On success, @ctx->body points to the part of @ctx->input
827 * following MAJ:MIN, @ctx->bdev points to the target block device and
828 * @ctx->blkg to the blkg being configured.
829 *
830 * blkg_conf_open_bdev() may be called on @ctx beforehand. On success, this
831 * function returns with queue lock held and must be followed by
832 * blkg_conf_exit().
833 */
834int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol,
835 struct blkg_conf_ctx *ctx)
836 __acquires(&bdev->bd_queue->queue_lock)
837{
838 struct gendisk *disk;
839 struct request_queue *q;
840 struct blkcg_gq *blkg;
841 int ret;
842
843 ret = blkg_conf_open_bdev(ctx);
844 if (ret)
845 return ret;
846
847 disk = ctx->bdev->bd_disk;
848 q = disk->queue;
849
850 /*
851 * blkcg_deactivate_policy() requires queue to be frozen, we can grab
852 * q_usage_counter to prevent concurrent with blkcg_deactivate_policy().
853 */
854 ret = blk_queue_enter(q, 0);
855 if (ret)
856 goto fail;
857
858 spin_lock_irq(&q->queue_lock);
859
860 if (!blkcg_policy_enabled(q, pol)) {
861 ret = -EOPNOTSUPP;
862 goto fail_unlock;
863 }
864
865 blkg = blkg_lookup(blkcg, q);
866 if (blkg)
867 goto success;
868
869 /*
870 * Create blkgs walking down from blkcg_root to @blkcg, so that all
871 * non-root blkgs have access to their parents.
872 */
873 while (true) {
874 struct blkcg *pos = blkcg;
875 struct blkcg *parent;
876 struct blkcg_gq *new_blkg;
877
878 parent = blkcg_parent(blkcg);
879 while (parent && !blkg_lookup(parent, q)) {
880 pos = parent;
881 parent = blkcg_parent(parent);
882 }
883
884 /* Drop locks to do new blkg allocation with GFP_KERNEL. */
885 spin_unlock_irq(&q->queue_lock);
886
887 new_blkg = blkg_alloc(pos, disk, GFP_KERNEL);
888 if (unlikely(!new_blkg)) {
889 ret = -ENOMEM;
890 goto fail_exit_queue;
891 }
892
893 if (radix_tree_preload(GFP_KERNEL)) {
894 blkg_free(new_blkg);
895 ret = -ENOMEM;
896 goto fail_exit_queue;
897 }
898
899 spin_lock_irq(&q->queue_lock);
900
901 if (!blkcg_policy_enabled(q, pol)) {
902 blkg_free(new_blkg);
903 ret = -EOPNOTSUPP;
904 goto fail_preloaded;
905 }
906
907 blkg = blkg_lookup(pos, q);
908 if (blkg) {
909 blkg_free(new_blkg);
910 } else {
911 blkg = blkg_create(pos, disk, new_blkg);
912 if (IS_ERR(blkg)) {
913 ret = PTR_ERR(blkg);
914 goto fail_preloaded;
915 }
916 }
917
918 radix_tree_preload_end();
919
920 if (pos == blkcg)
921 goto success;
922 }
923success:
924 blk_queue_exit(q);
925 ctx->blkg = blkg;
926 return 0;
927
928fail_preloaded:
929 radix_tree_preload_end();
930fail_unlock:
931 spin_unlock_irq(&q->queue_lock);
932fail_exit_queue:
933 blk_queue_exit(q);
934fail:
935 /*
936 * If queue was bypassing, we should retry. Do so after a
937 * short msleep(). It isn't strictly necessary but queue
938 * can be bypassing for some time and it's always nice to
939 * avoid busy looping.
940 */
941 if (ret == -EBUSY) {
942 msleep(10);
943 ret = restart_syscall();
944 }
945 return ret;
946}
947EXPORT_SYMBOL_GPL(blkg_conf_prep);
948
949/**
950 * blkg_conf_exit - clean up per-blkg config update
951 * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
952 *
953 * Clean up after per-blkg config update. This function must be called on all
954 * blkg_conf_ctx's initialized with blkg_conf_init().
955 */
956void blkg_conf_exit(struct blkg_conf_ctx *ctx)
957 __releases(&ctx->bdev->bd_queue->queue_lock)
958 __releases(&ctx->bdev->bd_queue->rq_qos_mutex)
959{
960 if (ctx->blkg) {
961 spin_unlock_irq(&bdev_get_queue(ctx->bdev)->queue_lock);
962 ctx->blkg = NULL;
963 }
964
965 if (ctx->bdev) {
966 mutex_unlock(&ctx->bdev->bd_queue->rq_qos_mutex);
967 blkdev_put_no_open(ctx->bdev);
968 ctx->body = NULL;
969 ctx->bdev = NULL;
970 }
971}
972EXPORT_SYMBOL_GPL(blkg_conf_exit);
973
974static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src)
975{
976 int i;
977
978 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
979 dst->bytes[i] += src->bytes[i];
980 dst->ios[i] += src->ios[i];
981 }
982}
983
984static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src)
985{
986 int i;
987
988 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
989 dst->bytes[i] -= src->bytes[i];
990 dst->ios[i] -= src->ios[i];
991 }
992}
993
994static void blkcg_iostat_update(struct blkcg_gq *blkg, struct blkg_iostat *cur,
995 struct blkg_iostat *last)
996{
997 struct blkg_iostat delta;
998 unsigned long flags;
999
1000 /* propagate percpu delta to global */
1001 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
1002 blkg_iostat_set(&delta, cur);
1003 blkg_iostat_sub(&delta, last);
1004 blkg_iostat_add(&blkg->iostat.cur, &delta);
1005 blkg_iostat_add(last, &delta);
1006 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
1007}
1008
1009static void __blkcg_rstat_flush(struct blkcg *blkcg, int cpu)
1010{
1011 struct llist_head *lhead = per_cpu_ptr(blkcg->lhead, cpu);
1012 struct llist_node *lnode;
1013 struct blkg_iostat_set *bisc, *next_bisc;
1014 unsigned long flags;
1015
1016 rcu_read_lock();
1017
1018 lnode = llist_del_all(lhead);
1019 if (!lnode)
1020 goto out;
1021
1022 /*
1023 * For covering concurrent parent blkg update from blkg_release().
1024 *
1025 * When flushing from cgroup, cgroup_rstat_lock is always held, so
1026 * this lock won't cause contention most of time.
1027 */
1028 raw_spin_lock_irqsave(&blkg_stat_lock, flags);
1029
1030 /*
1031 * Iterate only the iostat_cpu's queued in the lockless list.
1032 */
1033 llist_for_each_entry_safe(bisc, next_bisc, lnode, lnode) {
1034 struct blkcg_gq *blkg = bisc->blkg;
1035 struct blkcg_gq *parent = blkg->parent;
1036 struct blkg_iostat cur;
1037 unsigned int seq;
1038
1039 /*
1040 * Order assignment of `next_bisc` from `bisc->lnode.next` in
1041 * llist_for_each_entry_safe and clearing `bisc->lqueued` for
1042 * avoiding to assign `next_bisc` with new next pointer added
1043 * in blk_cgroup_bio_start() in case of re-ordering.
1044 *
1045 * The pair barrier is implied in llist_add() in blk_cgroup_bio_start().
1046 */
1047 smp_mb();
1048
1049 WRITE_ONCE(bisc->lqueued, false);
1050 if (bisc == &blkg->iostat)
1051 goto propagate_up; /* propagate up to parent only */
1052
1053 /* fetch the current per-cpu values */
1054 do {
1055 seq = u64_stats_fetch_begin(&bisc->sync);
1056 blkg_iostat_set(&cur, &bisc->cur);
1057 } while (u64_stats_fetch_retry(&bisc->sync, seq));
1058
1059 blkcg_iostat_update(blkg, &cur, &bisc->last);
1060
1061propagate_up:
1062 /* propagate global delta to parent (unless that's root) */
1063 if (parent && parent->parent) {
1064 blkcg_iostat_update(parent, &blkg->iostat.cur,
1065 &blkg->iostat.last);
1066 /*
1067 * Queue parent->iostat to its blkcg's lockless
1068 * list to propagate up to the grandparent if the
1069 * iostat hasn't been queued yet.
1070 */
1071 if (!parent->iostat.lqueued) {
1072 struct llist_head *plhead;
1073
1074 plhead = per_cpu_ptr(parent->blkcg->lhead, cpu);
1075 llist_add(&parent->iostat.lnode, plhead);
1076 parent->iostat.lqueued = true;
1077 }
1078 }
1079 }
1080 raw_spin_unlock_irqrestore(&blkg_stat_lock, flags);
1081out:
1082 rcu_read_unlock();
1083}
1084
1085static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu)
1086{
1087 /* Root-level stats are sourced from system-wide IO stats */
1088 if (cgroup_parent(css->cgroup))
1089 __blkcg_rstat_flush(css_to_blkcg(css), cpu);
1090}
1091
1092/*
1093 * We source root cgroup stats from the system-wide stats to avoid
1094 * tracking the same information twice and incurring overhead when no
1095 * cgroups are defined. For that reason, cgroup_rstat_flush in
1096 * blkcg_print_stat does not actually fill out the iostat in the root
1097 * cgroup's blkcg_gq.
1098 *
1099 * However, we would like to re-use the printing code between the root and
1100 * non-root cgroups to the extent possible. For that reason, we simulate
1101 * flushing the root cgroup's stats by explicitly filling in the iostat
1102 * with disk level statistics.
1103 */
1104static void blkcg_fill_root_iostats(void)
1105{
1106 struct class_dev_iter iter;
1107 struct device *dev;
1108
1109 class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1110 while ((dev = class_dev_iter_next(&iter))) {
1111 struct block_device *bdev = dev_to_bdev(dev);
1112 struct blkcg_gq *blkg = bdev->bd_disk->queue->root_blkg;
1113 struct blkg_iostat tmp;
1114 int cpu;
1115 unsigned long flags;
1116
1117 memset(&tmp, 0, sizeof(tmp));
1118 for_each_possible_cpu(cpu) {
1119 struct disk_stats *cpu_dkstats;
1120
1121 cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu);
1122 tmp.ios[BLKG_IOSTAT_READ] +=
1123 cpu_dkstats->ios[STAT_READ];
1124 tmp.ios[BLKG_IOSTAT_WRITE] +=
1125 cpu_dkstats->ios[STAT_WRITE];
1126 tmp.ios[BLKG_IOSTAT_DISCARD] +=
1127 cpu_dkstats->ios[STAT_DISCARD];
1128 // convert sectors to bytes
1129 tmp.bytes[BLKG_IOSTAT_READ] +=
1130 cpu_dkstats->sectors[STAT_READ] << 9;
1131 tmp.bytes[BLKG_IOSTAT_WRITE] +=
1132 cpu_dkstats->sectors[STAT_WRITE] << 9;
1133 tmp.bytes[BLKG_IOSTAT_DISCARD] +=
1134 cpu_dkstats->sectors[STAT_DISCARD] << 9;
1135 }
1136
1137 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
1138 blkg_iostat_set(&blkg->iostat.cur, &tmp);
1139 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
1140 }
1141 class_dev_iter_exit(&iter);
1142}
1143
1144static void blkcg_print_one_stat(struct blkcg_gq *blkg, struct seq_file *s)
1145{
1146 struct blkg_iostat_set *bis = &blkg->iostat;
1147 u64 rbytes, wbytes, rios, wios, dbytes, dios;
1148 const char *dname;
1149 unsigned seq;
1150 int i;
1151
1152 if (!blkg->online)
1153 return;
1154
1155 dname = blkg_dev_name(blkg);
1156 if (!dname)
1157 return;
1158
1159 seq_printf(s, "%s ", dname);
1160
1161 do {
1162 seq = u64_stats_fetch_begin(&bis->sync);
1163
1164 rbytes = bis->cur.bytes[BLKG_IOSTAT_READ];
1165 wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE];
1166 dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD];
1167 rios = bis->cur.ios[BLKG_IOSTAT_READ];
1168 wios = bis->cur.ios[BLKG_IOSTAT_WRITE];
1169 dios = bis->cur.ios[BLKG_IOSTAT_DISCARD];
1170 } while (u64_stats_fetch_retry(&bis->sync, seq));
1171
1172 if (rbytes || wbytes || rios || wios) {
1173 seq_printf(s, "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu",
1174 rbytes, wbytes, rios, wios,
1175 dbytes, dios);
1176 }
1177
1178 if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) {
1179 seq_printf(s, " use_delay=%d delay_nsec=%llu",
1180 atomic_read(&blkg->use_delay),
1181 atomic64_read(&blkg->delay_nsec));
1182 }
1183
1184 for (i = 0; i < BLKCG_MAX_POLS; i++) {
1185 struct blkcg_policy *pol = blkcg_policy[i];
1186
1187 if (!blkg->pd[i] || !pol->pd_stat_fn)
1188 continue;
1189
1190 pol->pd_stat_fn(blkg->pd[i], s);
1191 }
1192
1193 seq_puts(s, "\n");
1194}
1195
1196static int blkcg_print_stat(struct seq_file *sf, void *v)
1197{
1198 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1199 struct blkcg_gq *blkg;
1200
1201 if (!seq_css(sf)->parent)
1202 blkcg_fill_root_iostats();
1203 else
1204 cgroup_rstat_flush(blkcg->css.cgroup);
1205
1206 rcu_read_lock();
1207 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
1208 spin_lock_irq(&blkg->q->queue_lock);
1209 blkcg_print_one_stat(blkg, sf);
1210 spin_unlock_irq(&blkg->q->queue_lock);
1211 }
1212 rcu_read_unlock();
1213 return 0;
1214}
1215
1216static struct cftype blkcg_files[] = {
1217 {
1218 .name = "stat",
1219 .seq_show = blkcg_print_stat,
1220 },
1221 { } /* terminate */
1222};
1223
1224static struct cftype blkcg_legacy_files[] = {
1225 {
1226 .name = "reset_stats",
1227 .write_u64 = blkcg_reset_stats,
1228 },
1229 { } /* terminate */
1230};
1231
1232#ifdef CONFIG_CGROUP_WRITEBACK
1233struct list_head *blkcg_get_cgwb_list(struct cgroup_subsys_state *css)
1234{
1235 return &css_to_blkcg(css)->cgwb_list;
1236}
1237#endif
1238
1239/*
1240 * blkcg destruction is a three-stage process.
1241 *
1242 * 1. Destruction starts. The blkcg_css_offline() callback is invoked
1243 * which offlines writeback. Here we tie the next stage of blkg destruction
1244 * to the completion of writeback associated with the blkcg. This lets us
1245 * avoid punting potentially large amounts of outstanding writeback to root
1246 * while maintaining any ongoing policies. The next stage is triggered when
1247 * the nr_cgwbs count goes to zero.
1248 *
1249 * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called
1250 * and handles the destruction of blkgs. Here the css reference held by
1251 * the blkg is put back eventually allowing blkcg_css_free() to be called.
1252 * This work may occur in cgwb_release_workfn() on the cgwb_release
1253 * workqueue. Any submitted ios that fail to get the blkg ref will be
1254 * punted to the root_blkg.
1255 *
1256 * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called.
1257 * This finally frees the blkcg.
1258 */
1259
1260/**
1261 * blkcg_destroy_blkgs - responsible for shooting down blkgs
1262 * @blkcg: blkcg of interest
1263 *
1264 * blkgs should be removed while holding both q and blkcg locks. As blkcg lock
1265 * is nested inside q lock, this function performs reverse double lock dancing.
1266 * Destroying the blkgs releases the reference held on the blkcg's css allowing
1267 * blkcg_css_free to eventually be called.
1268 *
1269 * This is the blkcg counterpart of ioc_release_fn().
1270 */
1271static void blkcg_destroy_blkgs(struct blkcg *blkcg)
1272{
1273 might_sleep();
1274
1275 spin_lock_irq(&blkcg->lock);
1276
1277 while (!hlist_empty(&blkcg->blkg_list)) {
1278 struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first,
1279 struct blkcg_gq, blkcg_node);
1280 struct request_queue *q = blkg->q;
1281
1282 if (need_resched() || !spin_trylock(&q->queue_lock)) {
1283 /*
1284 * Given that the system can accumulate a huge number
1285 * of blkgs in pathological cases, check to see if we
1286 * need to rescheduling to avoid softlockup.
1287 */
1288 spin_unlock_irq(&blkcg->lock);
1289 cond_resched();
1290 spin_lock_irq(&blkcg->lock);
1291 continue;
1292 }
1293
1294 blkg_destroy(blkg);
1295 spin_unlock(&q->queue_lock);
1296 }
1297
1298 spin_unlock_irq(&blkcg->lock);
1299}
1300
1301/**
1302 * blkcg_pin_online - pin online state
1303 * @blkcg_css: blkcg of interest
1304 *
1305 * While pinned, a blkcg is kept online. This is primarily used to
1306 * impedance-match blkg and cgwb lifetimes so that blkg doesn't go offline
1307 * while an associated cgwb is still active.
1308 */
1309void blkcg_pin_online(struct cgroup_subsys_state *blkcg_css)
1310{
1311 refcount_inc(&css_to_blkcg(blkcg_css)->online_pin);
1312}
1313
1314/**
1315 * blkcg_unpin_online - unpin online state
1316 * @blkcg_css: blkcg of interest
1317 *
1318 * This is primarily used to impedance-match blkg and cgwb lifetimes so
1319 * that blkg doesn't go offline while an associated cgwb is still active.
1320 * When this count goes to zero, all active cgwbs have finished so the
1321 * blkcg can continue destruction by calling blkcg_destroy_blkgs().
1322 */
1323void blkcg_unpin_online(struct cgroup_subsys_state *blkcg_css)
1324{
1325 struct blkcg *blkcg = css_to_blkcg(blkcg_css);
1326
1327 do {
1328 struct blkcg *parent;
1329
1330 if (!refcount_dec_and_test(&blkcg->online_pin))
1331 break;
1332
1333 parent = blkcg_parent(blkcg);
1334 blkcg_destroy_blkgs(blkcg);
1335 blkcg = parent;
1336 } while (blkcg);
1337}
1338
1339/**
1340 * blkcg_css_offline - cgroup css_offline callback
1341 * @css: css of interest
1342 *
1343 * This function is called when @css is about to go away. Here the cgwbs are
1344 * offlined first and only once writeback associated with the blkcg has
1345 * finished do we start step 2 (see above).
1346 */
1347static void blkcg_css_offline(struct cgroup_subsys_state *css)
1348{
1349 /* this prevents anyone from attaching or migrating to this blkcg */
1350 wb_blkcg_offline(css);
1351
1352 /* put the base online pin allowing step 2 to be triggered */
1353 blkcg_unpin_online(css);
1354}
1355
1356static void blkcg_css_free(struct cgroup_subsys_state *css)
1357{
1358 struct blkcg *blkcg = css_to_blkcg(css);
1359 int i;
1360
1361 mutex_lock(&blkcg_pol_mutex);
1362
1363 list_del(&blkcg->all_blkcgs_node);
1364
1365 for (i = 0; i < BLKCG_MAX_POLS; i++)
1366 if (blkcg->cpd[i])
1367 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1368
1369 mutex_unlock(&blkcg_pol_mutex);
1370
1371 free_percpu(blkcg->lhead);
1372 kfree(blkcg);
1373}
1374
1375static struct cgroup_subsys_state *
1376blkcg_css_alloc(struct cgroup_subsys_state *parent_css)
1377{
1378 struct blkcg *blkcg;
1379 int i;
1380
1381 mutex_lock(&blkcg_pol_mutex);
1382
1383 if (!parent_css) {
1384 blkcg = &blkcg_root;
1385 } else {
1386 blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL);
1387 if (!blkcg)
1388 goto unlock;
1389 }
1390
1391 if (init_blkcg_llists(blkcg))
1392 goto free_blkcg;
1393
1394 for (i = 0; i < BLKCG_MAX_POLS ; i++) {
1395 struct blkcg_policy *pol = blkcg_policy[i];
1396 struct blkcg_policy_data *cpd;
1397
1398 /*
1399 * If the policy hasn't been attached yet, wait for it
1400 * to be attached before doing anything else. Otherwise,
1401 * check if the policy requires any specific per-cgroup
1402 * data: if it does, allocate and initialize it.
1403 */
1404 if (!pol || !pol->cpd_alloc_fn)
1405 continue;
1406
1407 cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1408 if (!cpd)
1409 goto free_pd_blkcg;
1410
1411 blkcg->cpd[i] = cpd;
1412 cpd->blkcg = blkcg;
1413 cpd->plid = i;
1414 }
1415
1416 spin_lock_init(&blkcg->lock);
1417 refcount_set(&blkcg->online_pin, 1);
1418 INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN);
1419 INIT_HLIST_HEAD(&blkcg->blkg_list);
1420#ifdef CONFIG_CGROUP_WRITEBACK
1421 INIT_LIST_HEAD(&blkcg->cgwb_list);
1422#endif
1423 list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs);
1424
1425 mutex_unlock(&blkcg_pol_mutex);
1426 return &blkcg->css;
1427
1428free_pd_blkcg:
1429 for (i--; i >= 0; i--)
1430 if (blkcg->cpd[i])
1431 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1432 free_percpu(blkcg->lhead);
1433free_blkcg:
1434 if (blkcg != &blkcg_root)
1435 kfree(blkcg);
1436unlock:
1437 mutex_unlock(&blkcg_pol_mutex);
1438 return ERR_PTR(-ENOMEM);
1439}
1440
1441static int blkcg_css_online(struct cgroup_subsys_state *css)
1442{
1443 struct blkcg *parent = blkcg_parent(css_to_blkcg(css));
1444
1445 /*
1446 * blkcg_pin_online() is used to delay blkcg offline so that blkgs
1447 * don't go offline while cgwbs are still active on them. Pin the
1448 * parent so that offline always happens towards the root.
1449 */
1450 if (parent)
1451 blkcg_pin_online(&parent->css);
1452 return 0;
1453}
1454
1455void blkg_init_queue(struct request_queue *q)
1456{
1457 INIT_LIST_HEAD(&q->blkg_list);
1458 mutex_init(&q->blkcg_mutex);
1459}
1460
1461int blkcg_init_disk(struct gendisk *disk)
1462{
1463 struct request_queue *q = disk->queue;
1464 struct blkcg_gq *new_blkg, *blkg;
1465 bool preloaded;
1466
1467 new_blkg = blkg_alloc(&blkcg_root, disk, GFP_KERNEL);
1468 if (!new_blkg)
1469 return -ENOMEM;
1470
1471 preloaded = !radix_tree_preload(GFP_KERNEL);
1472
1473 /* Make sure the root blkg exists. */
1474 /* spin_lock_irq can serve as RCU read-side critical section. */
1475 spin_lock_irq(&q->queue_lock);
1476 blkg = blkg_create(&blkcg_root, disk, new_blkg);
1477 if (IS_ERR(blkg))
1478 goto err_unlock;
1479 q->root_blkg = blkg;
1480 spin_unlock_irq(&q->queue_lock);
1481
1482 if (preloaded)
1483 radix_tree_preload_end();
1484
1485 return 0;
1486
1487err_unlock:
1488 spin_unlock_irq(&q->queue_lock);
1489 if (preloaded)
1490 radix_tree_preload_end();
1491 return PTR_ERR(blkg);
1492}
1493
1494void blkcg_exit_disk(struct gendisk *disk)
1495{
1496 blkg_destroy_all(disk);
1497 blk_throtl_exit(disk);
1498}
1499
1500static void blkcg_exit(struct task_struct *tsk)
1501{
1502 if (tsk->throttle_disk)
1503 put_disk(tsk->throttle_disk);
1504 tsk->throttle_disk = NULL;
1505}
1506
1507struct cgroup_subsys io_cgrp_subsys = {
1508 .css_alloc = blkcg_css_alloc,
1509 .css_online = blkcg_css_online,
1510 .css_offline = blkcg_css_offline,
1511 .css_free = blkcg_css_free,
1512 .css_rstat_flush = blkcg_rstat_flush,
1513 .dfl_cftypes = blkcg_files,
1514 .legacy_cftypes = blkcg_legacy_files,
1515 .legacy_name = "blkio",
1516 .exit = blkcg_exit,
1517#ifdef CONFIG_MEMCG
1518 /*
1519 * This ensures that, if available, memcg is automatically enabled
1520 * together on the default hierarchy so that the owner cgroup can
1521 * be retrieved from writeback pages.
1522 */
1523 .depends_on = 1 << memory_cgrp_id,
1524#endif
1525};
1526EXPORT_SYMBOL_GPL(io_cgrp_subsys);
1527
1528/**
1529 * blkcg_activate_policy - activate a blkcg policy on a gendisk
1530 * @disk: gendisk of interest
1531 * @pol: blkcg policy to activate
1532 *
1533 * Activate @pol on @disk. Requires %GFP_KERNEL context. @disk goes through
1534 * bypass mode to populate its blkgs with policy_data for @pol.
1535 *
1536 * Activation happens with @disk bypassed, so nobody would be accessing blkgs
1537 * from IO path. Update of each blkg is protected by both queue and blkcg
1538 * locks so that holding either lock and testing blkcg_policy_enabled() is
1539 * always enough for dereferencing policy data.
1540 *
1541 * The caller is responsible for synchronizing [de]activations and policy
1542 * [un]registerations. Returns 0 on success, -errno on failure.
1543 */
1544int blkcg_activate_policy(struct gendisk *disk, const struct blkcg_policy *pol)
1545{
1546 struct request_queue *q = disk->queue;
1547 struct blkg_policy_data *pd_prealloc = NULL;
1548 struct blkcg_gq *blkg, *pinned_blkg = NULL;
1549 int ret;
1550
1551 if (blkcg_policy_enabled(q, pol))
1552 return 0;
1553
1554 /*
1555 * Policy is allowed to be registered without pd_alloc_fn/pd_free_fn,
1556 * for example, ioprio. Such policy will work on blkcg level, not disk
1557 * level, and don't need to be activated.
1558 */
1559 if (WARN_ON_ONCE(!pol->pd_alloc_fn || !pol->pd_free_fn))
1560 return -EINVAL;
1561
1562 if (queue_is_mq(q))
1563 blk_mq_freeze_queue(q);
1564retry:
1565 spin_lock_irq(&q->queue_lock);
1566
1567 /* blkg_list is pushed at the head, reverse walk to initialize parents first */
1568 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1569 struct blkg_policy_data *pd;
1570
1571 if (blkg->pd[pol->plid])
1572 continue;
1573
1574 /* If prealloc matches, use it; otherwise try GFP_NOWAIT */
1575 if (blkg == pinned_blkg) {
1576 pd = pd_prealloc;
1577 pd_prealloc = NULL;
1578 } else {
1579 pd = pol->pd_alloc_fn(disk, blkg->blkcg,
1580 GFP_NOWAIT | __GFP_NOWARN);
1581 }
1582
1583 if (!pd) {
1584 /*
1585 * GFP_NOWAIT failed. Free the existing one and
1586 * prealloc for @blkg w/ GFP_KERNEL.
1587 */
1588 if (pinned_blkg)
1589 blkg_put(pinned_blkg);
1590 blkg_get(blkg);
1591 pinned_blkg = blkg;
1592
1593 spin_unlock_irq(&q->queue_lock);
1594
1595 if (pd_prealloc)
1596 pol->pd_free_fn(pd_prealloc);
1597 pd_prealloc = pol->pd_alloc_fn(disk, blkg->blkcg,
1598 GFP_KERNEL);
1599 if (pd_prealloc)
1600 goto retry;
1601 else
1602 goto enomem;
1603 }
1604
1605 spin_lock(&blkg->blkcg->lock);
1606
1607 pd->blkg = blkg;
1608 pd->plid = pol->plid;
1609 blkg->pd[pol->plid] = pd;
1610
1611 if (pol->pd_init_fn)
1612 pol->pd_init_fn(pd);
1613
1614 if (pol->pd_online_fn)
1615 pol->pd_online_fn(pd);
1616 pd->online = true;
1617
1618 spin_unlock(&blkg->blkcg->lock);
1619 }
1620
1621 __set_bit(pol->plid, q->blkcg_pols);
1622 ret = 0;
1623
1624 spin_unlock_irq(&q->queue_lock);
1625out:
1626 if (queue_is_mq(q))
1627 blk_mq_unfreeze_queue(q);
1628 if (pinned_blkg)
1629 blkg_put(pinned_blkg);
1630 if (pd_prealloc)
1631 pol->pd_free_fn(pd_prealloc);
1632 return ret;
1633
1634enomem:
1635 /* alloc failed, take down everything */
1636 spin_lock_irq(&q->queue_lock);
1637 list_for_each_entry(blkg, &q->blkg_list, q_node) {
1638 struct blkcg *blkcg = blkg->blkcg;
1639 struct blkg_policy_data *pd;
1640
1641 spin_lock(&blkcg->lock);
1642 pd = blkg->pd[pol->plid];
1643 if (pd) {
1644 if (pd->online && pol->pd_offline_fn)
1645 pol->pd_offline_fn(pd);
1646 pd->online = false;
1647 pol->pd_free_fn(pd);
1648 blkg->pd[pol->plid] = NULL;
1649 }
1650 spin_unlock(&blkcg->lock);
1651 }
1652 spin_unlock_irq(&q->queue_lock);
1653 ret = -ENOMEM;
1654 goto out;
1655}
1656EXPORT_SYMBOL_GPL(blkcg_activate_policy);
1657
1658/**
1659 * blkcg_deactivate_policy - deactivate a blkcg policy on a gendisk
1660 * @disk: gendisk of interest
1661 * @pol: blkcg policy to deactivate
1662 *
1663 * Deactivate @pol on @disk. Follows the same synchronization rules as
1664 * blkcg_activate_policy().
1665 */
1666void blkcg_deactivate_policy(struct gendisk *disk,
1667 const struct blkcg_policy *pol)
1668{
1669 struct request_queue *q = disk->queue;
1670 struct blkcg_gq *blkg;
1671
1672 if (!blkcg_policy_enabled(q, pol))
1673 return;
1674
1675 if (queue_is_mq(q))
1676 blk_mq_freeze_queue(q);
1677
1678 mutex_lock(&q->blkcg_mutex);
1679 spin_lock_irq(&q->queue_lock);
1680
1681 __clear_bit(pol->plid, q->blkcg_pols);
1682
1683 list_for_each_entry(blkg, &q->blkg_list, q_node) {
1684 struct blkcg *blkcg = blkg->blkcg;
1685
1686 spin_lock(&blkcg->lock);
1687 if (blkg->pd[pol->plid]) {
1688 if (blkg->pd[pol->plid]->online && pol->pd_offline_fn)
1689 pol->pd_offline_fn(blkg->pd[pol->plid]);
1690 pol->pd_free_fn(blkg->pd[pol->plid]);
1691 blkg->pd[pol->plid] = NULL;
1692 }
1693 spin_unlock(&blkcg->lock);
1694 }
1695
1696 spin_unlock_irq(&q->queue_lock);
1697 mutex_unlock(&q->blkcg_mutex);
1698
1699 if (queue_is_mq(q))
1700 blk_mq_unfreeze_queue(q);
1701}
1702EXPORT_SYMBOL_GPL(blkcg_deactivate_policy);
1703
1704static void blkcg_free_all_cpd(struct blkcg_policy *pol)
1705{
1706 struct blkcg *blkcg;
1707
1708 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1709 if (blkcg->cpd[pol->plid]) {
1710 pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1711 blkcg->cpd[pol->plid] = NULL;
1712 }
1713 }
1714}
1715
1716/**
1717 * blkcg_policy_register - register a blkcg policy
1718 * @pol: blkcg policy to register
1719 *
1720 * Register @pol with blkcg core. Might sleep and @pol may be modified on
1721 * successful registration. Returns 0 on success and -errno on failure.
1722 */
1723int blkcg_policy_register(struct blkcg_policy *pol)
1724{
1725 struct blkcg *blkcg;
1726 int i, ret;
1727
1728 mutex_lock(&blkcg_pol_register_mutex);
1729 mutex_lock(&blkcg_pol_mutex);
1730
1731 /* find an empty slot */
1732 ret = -ENOSPC;
1733 for (i = 0; i < BLKCG_MAX_POLS; i++)
1734 if (!blkcg_policy[i])
1735 break;
1736 if (i >= BLKCG_MAX_POLS) {
1737 pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n");
1738 goto err_unlock;
1739 }
1740
1741 /*
1742 * Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs, and policy
1743 * without pd_alloc_fn/pd_free_fn can't be activated.
1744 */
1745 if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) ||
1746 (!pol->pd_alloc_fn ^ !pol->pd_free_fn))
1747 goto err_unlock;
1748
1749 /* register @pol */
1750 pol->plid = i;
1751 blkcg_policy[pol->plid] = pol;
1752
1753 /* allocate and install cpd's */
1754 if (pol->cpd_alloc_fn) {
1755 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1756 struct blkcg_policy_data *cpd;
1757
1758 cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1759 if (!cpd)
1760 goto err_free_cpds;
1761
1762 blkcg->cpd[pol->plid] = cpd;
1763 cpd->blkcg = blkcg;
1764 cpd->plid = pol->plid;
1765 }
1766 }
1767
1768 mutex_unlock(&blkcg_pol_mutex);
1769
1770 /* everything is in place, add intf files for the new policy */
1771 if (pol->dfl_cftypes)
1772 WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys,
1773 pol->dfl_cftypes));
1774 if (pol->legacy_cftypes)
1775 WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys,
1776 pol->legacy_cftypes));
1777 mutex_unlock(&blkcg_pol_register_mutex);
1778 return 0;
1779
1780err_free_cpds:
1781 if (pol->cpd_free_fn)
1782 blkcg_free_all_cpd(pol);
1783
1784 blkcg_policy[pol->plid] = NULL;
1785err_unlock:
1786 mutex_unlock(&blkcg_pol_mutex);
1787 mutex_unlock(&blkcg_pol_register_mutex);
1788 return ret;
1789}
1790EXPORT_SYMBOL_GPL(blkcg_policy_register);
1791
1792/**
1793 * blkcg_policy_unregister - unregister a blkcg policy
1794 * @pol: blkcg policy to unregister
1795 *
1796 * Undo blkcg_policy_register(@pol). Might sleep.
1797 */
1798void blkcg_policy_unregister(struct blkcg_policy *pol)
1799{
1800 mutex_lock(&blkcg_pol_register_mutex);
1801
1802 if (WARN_ON(blkcg_policy[pol->plid] != pol))
1803 goto out_unlock;
1804
1805 /* kill the intf files first */
1806 if (pol->dfl_cftypes)
1807 cgroup_rm_cftypes(pol->dfl_cftypes);
1808 if (pol->legacy_cftypes)
1809 cgroup_rm_cftypes(pol->legacy_cftypes);
1810
1811 /* remove cpds and unregister */
1812 mutex_lock(&blkcg_pol_mutex);
1813
1814 if (pol->cpd_free_fn)
1815 blkcg_free_all_cpd(pol);
1816
1817 blkcg_policy[pol->plid] = NULL;
1818
1819 mutex_unlock(&blkcg_pol_mutex);
1820out_unlock:
1821 mutex_unlock(&blkcg_pol_register_mutex);
1822}
1823EXPORT_SYMBOL_GPL(blkcg_policy_unregister);
1824
1825/*
1826 * Scale the accumulated delay based on how long it has been since we updated
1827 * the delay. We only call this when we are adding delay, in case it's been a
1828 * while since we added delay, and when we are checking to see if we need to
1829 * delay a task, to account for any delays that may have occurred.
1830 */
1831static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now)
1832{
1833 u64 old = atomic64_read(&blkg->delay_start);
1834
1835 /* negative use_delay means no scaling, see blkcg_set_delay() */
1836 if (atomic_read(&blkg->use_delay) < 0)
1837 return;
1838
1839 /*
1840 * We only want to scale down every second. The idea here is that we
1841 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain
1842 * time window. We only want to throttle tasks for recent delay that
1843 * has occurred, in 1 second time windows since that's the maximum
1844 * things can be throttled. We save the current delay window in
1845 * blkg->last_delay so we know what amount is still left to be charged
1846 * to the blkg from this point onward. blkg->last_use keeps track of
1847 * the use_delay counter. The idea is if we're unthrottling the blkg we
1848 * are ok with whatever is happening now, and we can take away more of
1849 * the accumulated delay as we've already throttled enough that
1850 * everybody is happy with their IO latencies.
1851 */
1852 if (time_before64(old + NSEC_PER_SEC, now) &&
1853 atomic64_try_cmpxchg(&blkg->delay_start, &old, now)) {
1854 u64 cur = atomic64_read(&blkg->delay_nsec);
1855 u64 sub = min_t(u64, blkg->last_delay, now - old);
1856 int cur_use = atomic_read(&blkg->use_delay);
1857
1858 /*
1859 * We've been unthrottled, subtract a larger chunk of our
1860 * accumulated delay.
1861 */
1862 if (cur_use < blkg->last_use)
1863 sub = max_t(u64, sub, blkg->last_delay >> 1);
1864
1865 /*
1866 * This shouldn't happen, but handle it anyway. Our delay_nsec
1867 * should only ever be growing except here where we subtract out
1868 * min(last_delay, 1 second), but lord knows bugs happen and I'd
1869 * rather not end up with negative numbers.
1870 */
1871 if (unlikely(cur < sub)) {
1872 atomic64_set(&blkg->delay_nsec, 0);
1873 blkg->last_delay = 0;
1874 } else {
1875 atomic64_sub(sub, &blkg->delay_nsec);
1876 blkg->last_delay = cur - sub;
1877 }
1878 blkg->last_use = cur_use;
1879 }
1880}
1881
1882/*
1883 * This is called when we want to actually walk up the hierarchy and check to
1884 * see if we need to throttle, and then actually throttle if there is some
1885 * accumulated delay. This should only be called upon return to user space so
1886 * we're not holding some lock that would induce a priority inversion.
1887 */
1888static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay)
1889{
1890 unsigned long pflags;
1891 bool clamp;
1892 u64 now = blk_time_get_ns();
1893 u64 exp;
1894 u64 delay_nsec = 0;
1895 int tok;
1896
1897 while (blkg->parent) {
1898 int use_delay = atomic_read(&blkg->use_delay);
1899
1900 if (use_delay) {
1901 u64 this_delay;
1902
1903 blkcg_scale_delay(blkg, now);
1904 this_delay = atomic64_read(&blkg->delay_nsec);
1905 if (this_delay > delay_nsec) {
1906 delay_nsec = this_delay;
1907 clamp = use_delay > 0;
1908 }
1909 }
1910 blkg = blkg->parent;
1911 }
1912
1913 if (!delay_nsec)
1914 return;
1915
1916 /*
1917 * Let's not sleep for all eternity if we've amassed a huge delay.
1918 * Swapping or metadata IO can accumulate 10's of seconds worth of
1919 * delay, and we want userspace to be able to do _something_ so cap the
1920 * delays at 0.25s. If there's 10's of seconds worth of delay then the
1921 * tasks will be delayed for 0.25 second for every syscall. If
1922 * blkcg_set_delay() was used as indicated by negative use_delay, the
1923 * caller is responsible for regulating the range.
1924 */
1925 if (clamp)
1926 delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC);
1927
1928 if (use_memdelay)
1929 psi_memstall_enter(&pflags);
1930
1931 exp = ktime_add_ns(now, delay_nsec);
1932 tok = io_schedule_prepare();
1933 do {
1934 __set_current_state(TASK_KILLABLE);
1935 if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS))
1936 break;
1937 } while (!fatal_signal_pending(current));
1938 io_schedule_finish(tok);
1939
1940 if (use_memdelay)
1941 psi_memstall_leave(&pflags);
1942}
1943
1944/**
1945 * blkcg_maybe_throttle_current - throttle the current task if it has been marked
1946 *
1947 * This is only called if we've been marked with set_notify_resume(). Obviously
1948 * we can be set_notify_resume() for reasons other than blkcg throttling, so we
1949 * check to see if current->throttle_disk is set and if not this doesn't do
1950 * anything. This should only ever be called by the resume code, it's not meant
1951 * to be called by people willy-nilly as it will actually do the work to
1952 * throttle the task if it is setup for throttling.
1953 */
1954void blkcg_maybe_throttle_current(void)
1955{
1956 struct gendisk *disk = current->throttle_disk;
1957 struct blkcg *blkcg;
1958 struct blkcg_gq *blkg;
1959 bool use_memdelay = current->use_memdelay;
1960
1961 if (!disk)
1962 return;
1963
1964 current->throttle_disk = NULL;
1965 current->use_memdelay = false;
1966
1967 rcu_read_lock();
1968 blkcg = css_to_blkcg(blkcg_css());
1969 if (!blkcg)
1970 goto out;
1971 blkg = blkg_lookup(blkcg, disk->queue);
1972 if (!blkg)
1973 goto out;
1974 if (!blkg_tryget(blkg))
1975 goto out;
1976 rcu_read_unlock();
1977
1978 blkcg_maybe_throttle_blkg(blkg, use_memdelay);
1979 blkg_put(blkg);
1980 put_disk(disk);
1981 return;
1982out:
1983 rcu_read_unlock();
1984}
1985
1986/**
1987 * blkcg_schedule_throttle - this task needs to check for throttling
1988 * @disk: disk to throttle
1989 * @use_memdelay: do we charge this to memory delay for PSI
1990 *
1991 * This is called by the IO controller when we know there's delay accumulated
1992 * for the blkg for this task. We do not pass the blkg because there are places
1993 * we call this that may not have that information, the swapping code for
1994 * instance will only have a block_device at that point. This set's the
1995 * notify_resume for the task to check and see if it requires throttling before
1996 * returning to user space.
1997 *
1998 * We will only schedule once per syscall. You can call this over and over
1999 * again and it will only do the check once upon return to user space, and only
2000 * throttle once. If the task needs to be throttled again it'll need to be
2001 * re-set at the next time we see the task.
2002 */
2003void blkcg_schedule_throttle(struct gendisk *disk, bool use_memdelay)
2004{
2005 if (unlikely(current->flags & PF_KTHREAD))
2006 return;
2007
2008 if (current->throttle_disk != disk) {
2009 if (test_bit(GD_DEAD, &disk->state))
2010 return;
2011 get_device(disk_to_dev(disk));
2012
2013 if (current->throttle_disk)
2014 put_disk(current->throttle_disk);
2015 current->throttle_disk = disk;
2016 }
2017
2018 if (use_memdelay)
2019 current->use_memdelay = use_memdelay;
2020 set_notify_resume(current);
2021}
2022
2023/**
2024 * blkcg_add_delay - add delay to this blkg
2025 * @blkg: blkg of interest
2026 * @now: the current time in nanoseconds
2027 * @delta: how many nanoseconds of delay to add
2028 *
2029 * Charge @delta to the blkg's current delay accumulation. This is used to
2030 * throttle tasks if an IO controller thinks we need more throttling.
2031 */
2032void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta)
2033{
2034 if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0))
2035 return;
2036 blkcg_scale_delay(blkg, now);
2037 atomic64_add(delta, &blkg->delay_nsec);
2038}
2039
2040/**
2041 * blkg_tryget_closest - try and get a blkg ref on the closet blkg
2042 * @bio: target bio
2043 * @css: target css
2044 *
2045 * As the failure mode here is to walk up the blkg tree, this ensure that the
2046 * blkg->parent pointers are always valid. This returns the blkg that it ended
2047 * up taking a reference on or %NULL if no reference was taken.
2048 */
2049static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio,
2050 struct cgroup_subsys_state *css)
2051{
2052 struct blkcg_gq *blkg, *ret_blkg = NULL;
2053
2054 rcu_read_lock();
2055 blkg = blkg_lookup_create(css_to_blkcg(css), bio->bi_bdev->bd_disk);
2056 while (blkg) {
2057 if (blkg_tryget(blkg)) {
2058 ret_blkg = blkg;
2059 break;
2060 }
2061 blkg = blkg->parent;
2062 }
2063 rcu_read_unlock();
2064
2065 return ret_blkg;
2066}
2067
2068/**
2069 * bio_associate_blkg_from_css - associate a bio with a specified css
2070 * @bio: target bio
2071 * @css: target css
2072 *
2073 * Associate @bio with the blkg found by combining the css's blkg and the
2074 * request_queue of the @bio. An association failure is handled by walking up
2075 * the blkg tree. Therefore, the blkg associated can be anything between @blkg
2076 * and q->root_blkg. This situation only happens when a cgroup is dying and
2077 * then the remaining bios will spill to the closest alive blkg.
2078 *
2079 * A reference will be taken on the blkg and will be released when @bio is
2080 * freed.
2081 */
2082void bio_associate_blkg_from_css(struct bio *bio,
2083 struct cgroup_subsys_state *css)
2084{
2085 if (bio->bi_blkg)
2086 blkg_put(bio->bi_blkg);
2087
2088 if (css && css->parent) {
2089 bio->bi_blkg = blkg_tryget_closest(bio, css);
2090 } else {
2091 blkg_get(bdev_get_queue(bio->bi_bdev)->root_blkg);
2092 bio->bi_blkg = bdev_get_queue(bio->bi_bdev)->root_blkg;
2093 }
2094}
2095EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
2096
2097/**
2098 * bio_associate_blkg - associate a bio with a blkg
2099 * @bio: target bio
2100 *
2101 * Associate @bio with the blkg found from the bio's css and request_queue.
2102 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
2103 * already associated, the css is reused and association redone as the
2104 * request_queue may have changed.
2105 */
2106void bio_associate_blkg(struct bio *bio)
2107{
2108 struct cgroup_subsys_state *css;
2109
2110 if (blk_op_is_passthrough(bio->bi_opf))
2111 return;
2112
2113 rcu_read_lock();
2114
2115 if (bio->bi_blkg)
2116 css = bio_blkcg_css(bio);
2117 else
2118 css = blkcg_css();
2119
2120 bio_associate_blkg_from_css(bio, css);
2121
2122 rcu_read_unlock();
2123}
2124EXPORT_SYMBOL_GPL(bio_associate_blkg);
2125
2126/**
2127 * bio_clone_blkg_association - clone blkg association from src to dst bio
2128 * @dst: destination bio
2129 * @src: source bio
2130 */
2131void bio_clone_blkg_association(struct bio *dst, struct bio *src)
2132{
2133 if (src->bi_blkg)
2134 bio_associate_blkg_from_css(dst, bio_blkcg_css(src));
2135}
2136EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
2137
2138static int blk_cgroup_io_type(struct bio *bio)
2139{
2140 if (op_is_discard(bio->bi_opf))
2141 return BLKG_IOSTAT_DISCARD;
2142 if (op_is_write(bio->bi_opf))
2143 return BLKG_IOSTAT_WRITE;
2144 return BLKG_IOSTAT_READ;
2145}
2146
2147void blk_cgroup_bio_start(struct bio *bio)
2148{
2149 struct blkcg *blkcg = bio->bi_blkg->blkcg;
2150 int rwd = blk_cgroup_io_type(bio), cpu;
2151 struct blkg_iostat_set *bis;
2152 unsigned long flags;
2153
2154 if (!cgroup_subsys_on_dfl(io_cgrp_subsys))
2155 return;
2156
2157 /* Root-level stats are sourced from system-wide IO stats */
2158 if (!cgroup_parent(blkcg->css.cgroup))
2159 return;
2160
2161 cpu = get_cpu();
2162 bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu);
2163 flags = u64_stats_update_begin_irqsave(&bis->sync);
2164
2165 /*
2166 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split
2167 * bio and we would have already accounted for the size of the bio.
2168 */
2169 if (!bio_flagged(bio, BIO_CGROUP_ACCT)) {
2170 bio_set_flag(bio, BIO_CGROUP_ACCT);
2171 bis->cur.bytes[rwd] += bio->bi_iter.bi_size;
2172 }
2173 bis->cur.ios[rwd]++;
2174
2175 /*
2176 * If the iostat_cpu isn't in a lockless list, put it into the
2177 * list to indicate that a stat update is pending.
2178 */
2179 if (!READ_ONCE(bis->lqueued)) {
2180 struct llist_head *lhead = this_cpu_ptr(blkcg->lhead);
2181
2182 llist_add(&bis->lnode, lhead);
2183 WRITE_ONCE(bis->lqueued, true);
2184 }
2185
2186 u64_stats_update_end_irqrestore(&bis->sync, flags);
2187 cgroup_rstat_updated(blkcg->css.cgroup, cpu);
2188 put_cpu();
2189}
2190
2191bool blk_cgroup_congested(void)
2192{
2193 struct blkcg *blkcg;
2194 bool ret = false;
2195
2196 rcu_read_lock();
2197 for (blkcg = css_to_blkcg(blkcg_css()); blkcg;
2198 blkcg = blkcg_parent(blkcg)) {
2199 if (atomic_read(&blkcg->congestion_count)) {
2200 ret = true;
2201 break;
2202 }
2203 }
2204 rcu_read_unlock();
2205 return ret;
2206}
2207
2208module_param(blkcg_debug_stats, bool, 0644);
2209MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not");