Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * vMTRR implementation
4 *
5 * Copyright (C) 2006 Qumranet, Inc.
6 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
7 * Copyright(C) 2015 Intel Corporation.
8 *
9 * Authors:
10 * Yaniv Kamay <yaniv@qumranet.com>
11 * Avi Kivity <avi@qumranet.com>
12 * Marcelo Tosatti <mtosatti@redhat.com>
13 * Paolo Bonzini <pbonzini@redhat.com>
14 * Xiao Guangrong <guangrong.xiao@linux.intel.com>
15 */
16
17#include <linux/kvm_host.h>
18#include <asm/mtrr.h>
19
20#include "cpuid.h"
21#include "mmu.h"
22
23#define IA32_MTRR_DEF_TYPE_E (1ULL << 11)
24#define IA32_MTRR_DEF_TYPE_FE (1ULL << 10)
25#define IA32_MTRR_DEF_TYPE_TYPE_MASK (0xff)
26
27static bool msr_mtrr_valid(unsigned msr)
28{
29 switch (msr) {
30 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
31 case MSR_MTRRfix64K_00000:
32 case MSR_MTRRfix16K_80000:
33 case MSR_MTRRfix16K_A0000:
34 case MSR_MTRRfix4K_C0000:
35 case MSR_MTRRfix4K_C8000:
36 case MSR_MTRRfix4K_D0000:
37 case MSR_MTRRfix4K_D8000:
38 case MSR_MTRRfix4K_E0000:
39 case MSR_MTRRfix4K_E8000:
40 case MSR_MTRRfix4K_F0000:
41 case MSR_MTRRfix4K_F8000:
42 case MSR_MTRRdefType:
43 case MSR_IA32_CR_PAT:
44 return true;
45 }
46 return false;
47}
48
49static bool valid_mtrr_type(unsigned t)
50{
51 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
52}
53
54bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
55{
56 int i;
57 u64 mask;
58
59 if (!msr_mtrr_valid(msr))
60 return false;
61
62 if (msr == MSR_IA32_CR_PAT) {
63 return kvm_pat_valid(data);
64 } else if (msr == MSR_MTRRdefType) {
65 if (data & ~0xcff)
66 return false;
67 return valid_mtrr_type(data & 0xff);
68 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
69 for (i = 0; i < 8 ; i++)
70 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
71 return false;
72 return true;
73 }
74
75 /* variable MTRRs */
76 WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR));
77
78 mask = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
79 if ((msr & 1) == 0) {
80 /* MTRR base */
81 if (!valid_mtrr_type(data & 0xff))
82 return false;
83 mask |= 0xf00;
84 } else
85 /* MTRR mask */
86 mask |= 0x7ff;
87
88 return (data & mask) == 0;
89}
90EXPORT_SYMBOL_GPL(kvm_mtrr_valid);
91
92static bool mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
93{
94 return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_E);
95}
96
97static bool fixed_mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
98{
99 return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_FE);
100}
101
102static u8 mtrr_default_type(struct kvm_mtrr *mtrr_state)
103{
104 return mtrr_state->deftype & IA32_MTRR_DEF_TYPE_TYPE_MASK;
105}
106
107static u8 mtrr_disabled_type(struct kvm_vcpu *vcpu)
108{
109 /*
110 * Intel SDM 11.11.2.2: all MTRRs are disabled when
111 * IA32_MTRR_DEF_TYPE.E bit is cleared, and the UC
112 * memory type is applied to all of physical memory.
113 *
114 * However, virtual machines can be run with CPUID such that
115 * there are no MTRRs. In that case, the firmware will never
116 * enable MTRRs and it is obviously undesirable to run the
117 * guest entirely with UC memory and we use WB.
118 */
119 if (guest_cpuid_has(vcpu, X86_FEATURE_MTRR))
120 return MTRR_TYPE_UNCACHABLE;
121 else
122 return MTRR_TYPE_WRBACK;
123}
124
125/*
126* Three terms are used in the following code:
127* - segment, it indicates the address segments covered by fixed MTRRs.
128* - unit, it corresponds to the MSR entry in the segment.
129* - range, a range is covered in one memory cache type.
130*/
131struct fixed_mtrr_segment {
132 u64 start;
133 u64 end;
134
135 int range_shift;
136
137 /* the start position in kvm_mtrr.fixed_ranges[]. */
138 int range_start;
139};
140
141static struct fixed_mtrr_segment fixed_seg_table[] = {
142 /* MSR_MTRRfix64K_00000, 1 unit. 64K fixed mtrr. */
143 {
144 .start = 0x0,
145 .end = 0x80000,
146 .range_shift = 16, /* 64K */
147 .range_start = 0,
148 },
149
150 /*
151 * MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000, 2 units,
152 * 16K fixed mtrr.
153 */
154 {
155 .start = 0x80000,
156 .end = 0xc0000,
157 .range_shift = 14, /* 16K */
158 .range_start = 8,
159 },
160
161 /*
162 * MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000, 8 units,
163 * 4K fixed mtrr.
164 */
165 {
166 .start = 0xc0000,
167 .end = 0x100000,
168 .range_shift = 12, /* 12K */
169 .range_start = 24,
170 }
171};
172
173/*
174 * The size of unit is covered in one MSR, one MSR entry contains
175 * 8 ranges so that unit size is always 8 * 2^range_shift.
176 */
177static u64 fixed_mtrr_seg_unit_size(int seg)
178{
179 return 8 << fixed_seg_table[seg].range_shift;
180}
181
182static bool fixed_msr_to_seg_unit(u32 msr, int *seg, int *unit)
183{
184 switch (msr) {
185 case MSR_MTRRfix64K_00000:
186 *seg = 0;
187 *unit = 0;
188 break;
189 case MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000:
190 *seg = 1;
191 *unit = array_index_nospec(
192 msr - MSR_MTRRfix16K_80000,
193 MSR_MTRRfix16K_A0000 - MSR_MTRRfix16K_80000 + 1);
194 break;
195 case MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000:
196 *seg = 2;
197 *unit = array_index_nospec(
198 msr - MSR_MTRRfix4K_C0000,
199 MSR_MTRRfix4K_F8000 - MSR_MTRRfix4K_C0000 + 1);
200 break;
201 default:
202 return false;
203 }
204
205 return true;
206}
207
208static void fixed_mtrr_seg_unit_range(int seg, int unit, u64 *start, u64 *end)
209{
210 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
211 u64 unit_size = fixed_mtrr_seg_unit_size(seg);
212
213 *start = mtrr_seg->start + unit * unit_size;
214 *end = *start + unit_size;
215 WARN_ON(*end > mtrr_seg->end);
216}
217
218static int fixed_mtrr_seg_unit_range_index(int seg, int unit)
219{
220 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
221
222 WARN_ON(mtrr_seg->start + unit * fixed_mtrr_seg_unit_size(seg)
223 > mtrr_seg->end);
224
225 /* each unit has 8 ranges. */
226 return mtrr_seg->range_start + 8 * unit;
227}
228
229static int fixed_mtrr_seg_end_range_index(int seg)
230{
231 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
232 int n;
233
234 n = (mtrr_seg->end - mtrr_seg->start) >> mtrr_seg->range_shift;
235 return mtrr_seg->range_start + n - 1;
236}
237
238static bool fixed_msr_to_range(u32 msr, u64 *start, u64 *end)
239{
240 int seg, unit;
241
242 if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
243 return false;
244
245 fixed_mtrr_seg_unit_range(seg, unit, start, end);
246 return true;
247}
248
249static int fixed_msr_to_range_index(u32 msr)
250{
251 int seg, unit;
252
253 if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
254 return -1;
255
256 return fixed_mtrr_seg_unit_range_index(seg, unit);
257}
258
259static int fixed_mtrr_addr_to_seg(u64 addr)
260{
261 struct fixed_mtrr_segment *mtrr_seg;
262 int seg, seg_num = ARRAY_SIZE(fixed_seg_table);
263
264 for (seg = 0; seg < seg_num; seg++) {
265 mtrr_seg = &fixed_seg_table[seg];
266 if (mtrr_seg->start <= addr && addr < mtrr_seg->end)
267 return seg;
268 }
269
270 return -1;
271}
272
273static int fixed_mtrr_addr_seg_to_range_index(u64 addr, int seg)
274{
275 struct fixed_mtrr_segment *mtrr_seg;
276 int index;
277
278 mtrr_seg = &fixed_seg_table[seg];
279 index = mtrr_seg->range_start;
280 index += (addr - mtrr_seg->start) >> mtrr_seg->range_shift;
281 return index;
282}
283
284static u64 fixed_mtrr_range_end_addr(int seg, int index)
285{
286 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
287 int pos = index - mtrr_seg->range_start;
288
289 return mtrr_seg->start + ((pos + 1) << mtrr_seg->range_shift);
290}
291
292static void var_mtrr_range(struct kvm_mtrr_range *range, u64 *start, u64 *end)
293{
294 u64 mask;
295
296 *start = range->base & PAGE_MASK;
297
298 mask = range->mask & PAGE_MASK;
299
300 /* This cannot overflow because writing to the reserved bits of
301 * variable MTRRs causes a #GP.
302 */
303 *end = (*start | ~mask) + 1;
304}
305
306static void update_mtrr(struct kvm_vcpu *vcpu, u32 msr)
307{
308 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
309 gfn_t start, end;
310 int index;
311
312 if (msr == MSR_IA32_CR_PAT || !tdp_enabled ||
313 !kvm_arch_has_noncoherent_dma(vcpu->kvm))
314 return;
315
316 if (!mtrr_is_enabled(mtrr_state) && msr != MSR_MTRRdefType)
317 return;
318
319 /* fixed MTRRs. */
320 if (fixed_msr_to_range(msr, &start, &end)) {
321 if (!fixed_mtrr_is_enabled(mtrr_state))
322 return;
323 } else if (msr == MSR_MTRRdefType) {
324 start = 0x0;
325 end = ~0ULL;
326 } else {
327 /* variable range MTRRs. */
328 index = (msr - 0x200) / 2;
329 var_mtrr_range(&mtrr_state->var_ranges[index], &start, &end);
330 }
331
332 kvm_zap_gfn_range(vcpu->kvm, gpa_to_gfn(start), gpa_to_gfn(end));
333}
334
335static bool var_mtrr_range_is_valid(struct kvm_mtrr_range *range)
336{
337 return (range->mask & (1 << 11)) != 0;
338}
339
340static void set_var_mtrr_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
341{
342 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
343 struct kvm_mtrr_range *tmp, *cur;
344 int index, is_mtrr_mask;
345
346 index = (msr - 0x200) / 2;
347 is_mtrr_mask = msr - 0x200 - 2 * index;
348 cur = &mtrr_state->var_ranges[index];
349
350 /* remove the entry if it's in the list. */
351 if (var_mtrr_range_is_valid(cur))
352 list_del(&mtrr_state->var_ranges[index].node);
353
354 /*
355 * Set all illegal GPA bits in the mask, since those bits must
356 * implicitly be 0. The bits are then cleared when reading them.
357 */
358 if (!is_mtrr_mask)
359 cur->base = data;
360 else
361 cur->mask = data | kvm_vcpu_reserved_gpa_bits_raw(vcpu);
362
363 /* add it to the list if it's enabled. */
364 if (var_mtrr_range_is_valid(cur)) {
365 list_for_each_entry(tmp, &mtrr_state->head, node)
366 if (cur->base >= tmp->base)
367 break;
368 list_add_tail(&cur->node, &tmp->node);
369 }
370}
371
372int kvm_mtrr_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
373{
374 int index;
375
376 if (!kvm_mtrr_valid(vcpu, msr, data))
377 return 1;
378
379 index = fixed_msr_to_range_index(msr);
380 if (index >= 0)
381 *(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index] = data;
382 else if (msr == MSR_MTRRdefType)
383 vcpu->arch.mtrr_state.deftype = data;
384 else if (msr == MSR_IA32_CR_PAT)
385 vcpu->arch.pat = data;
386 else
387 set_var_mtrr_msr(vcpu, msr, data);
388
389 update_mtrr(vcpu, msr);
390 return 0;
391}
392
393int kvm_mtrr_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
394{
395 int index;
396
397 /* MSR_MTRRcap is a readonly MSR. */
398 if (msr == MSR_MTRRcap) {
399 /*
400 * SMRR = 0
401 * WC = 1
402 * FIX = 1
403 * VCNT = KVM_NR_VAR_MTRR
404 */
405 *pdata = 0x500 | KVM_NR_VAR_MTRR;
406 return 0;
407 }
408
409 if (!msr_mtrr_valid(msr))
410 return 1;
411
412 index = fixed_msr_to_range_index(msr);
413 if (index >= 0)
414 *pdata = *(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index];
415 else if (msr == MSR_MTRRdefType)
416 *pdata = vcpu->arch.mtrr_state.deftype;
417 else if (msr == MSR_IA32_CR_PAT)
418 *pdata = vcpu->arch.pat;
419 else { /* Variable MTRRs */
420 int is_mtrr_mask;
421
422 index = (msr - 0x200) / 2;
423 is_mtrr_mask = msr - 0x200 - 2 * index;
424 if (!is_mtrr_mask)
425 *pdata = vcpu->arch.mtrr_state.var_ranges[index].base;
426 else
427 *pdata = vcpu->arch.mtrr_state.var_ranges[index].mask;
428
429 *pdata &= ~kvm_vcpu_reserved_gpa_bits_raw(vcpu);
430 }
431
432 return 0;
433}
434
435void kvm_vcpu_mtrr_init(struct kvm_vcpu *vcpu)
436{
437 INIT_LIST_HEAD(&vcpu->arch.mtrr_state.head);
438}
439
440struct mtrr_iter {
441 /* input fields. */
442 struct kvm_mtrr *mtrr_state;
443 u64 start;
444 u64 end;
445
446 /* output fields. */
447 int mem_type;
448 /* mtrr is completely disabled? */
449 bool mtrr_disabled;
450 /* [start, end) is not fully covered in MTRRs? */
451 bool partial_map;
452
453 /* private fields. */
454 union {
455 /* used for fixed MTRRs. */
456 struct {
457 int index;
458 int seg;
459 };
460
461 /* used for var MTRRs. */
462 struct {
463 struct kvm_mtrr_range *range;
464 /* max address has been covered in var MTRRs. */
465 u64 start_max;
466 };
467 };
468
469 bool fixed;
470};
471
472static bool mtrr_lookup_fixed_start(struct mtrr_iter *iter)
473{
474 int seg, index;
475
476 if (!fixed_mtrr_is_enabled(iter->mtrr_state))
477 return false;
478
479 seg = fixed_mtrr_addr_to_seg(iter->start);
480 if (seg < 0)
481 return false;
482
483 iter->fixed = true;
484 index = fixed_mtrr_addr_seg_to_range_index(iter->start, seg);
485 iter->index = index;
486 iter->seg = seg;
487 return true;
488}
489
490static bool match_var_range(struct mtrr_iter *iter,
491 struct kvm_mtrr_range *range)
492{
493 u64 start, end;
494
495 var_mtrr_range(range, &start, &end);
496 if (!(start >= iter->end || end <= iter->start)) {
497 iter->range = range;
498
499 /*
500 * the function is called when we do kvm_mtrr.head walking.
501 * Range has the minimum base address which interleaves
502 * [looker->start_max, looker->end).
503 */
504 iter->partial_map |= iter->start_max < start;
505
506 /* update the max address has been covered. */
507 iter->start_max = max(iter->start_max, end);
508 return true;
509 }
510
511 return false;
512}
513
514static void __mtrr_lookup_var_next(struct mtrr_iter *iter)
515{
516 struct kvm_mtrr *mtrr_state = iter->mtrr_state;
517
518 list_for_each_entry_continue(iter->range, &mtrr_state->head, node)
519 if (match_var_range(iter, iter->range))
520 return;
521
522 iter->range = NULL;
523 iter->partial_map |= iter->start_max < iter->end;
524}
525
526static void mtrr_lookup_var_start(struct mtrr_iter *iter)
527{
528 struct kvm_mtrr *mtrr_state = iter->mtrr_state;
529
530 iter->fixed = false;
531 iter->start_max = iter->start;
532 iter->range = NULL;
533 iter->range = list_prepare_entry(iter->range, &mtrr_state->head, node);
534
535 __mtrr_lookup_var_next(iter);
536}
537
538static void mtrr_lookup_fixed_next(struct mtrr_iter *iter)
539{
540 /* terminate the lookup. */
541 if (fixed_mtrr_range_end_addr(iter->seg, iter->index) >= iter->end) {
542 iter->fixed = false;
543 iter->range = NULL;
544 return;
545 }
546
547 iter->index++;
548
549 /* have looked up for all fixed MTRRs. */
550 if (iter->index >= ARRAY_SIZE(iter->mtrr_state->fixed_ranges))
551 return mtrr_lookup_var_start(iter);
552
553 /* switch to next segment. */
554 if (iter->index > fixed_mtrr_seg_end_range_index(iter->seg))
555 iter->seg++;
556}
557
558static void mtrr_lookup_var_next(struct mtrr_iter *iter)
559{
560 __mtrr_lookup_var_next(iter);
561}
562
563static void mtrr_lookup_start(struct mtrr_iter *iter)
564{
565 if (!mtrr_is_enabled(iter->mtrr_state)) {
566 iter->mtrr_disabled = true;
567 return;
568 }
569
570 if (!mtrr_lookup_fixed_start(iter))
571 mtrr_lookup_var_start(iter);
572}
573
574static void mtrr_lookup_init(struct mtrr_iter *iter,
575 struct kvm_mtrr *mtrr_state, u64 start, u64 end)
576{
577 iter->mtrr_state = mtrr_state;
578 iter->start = start;
579 iter->end = end;
580 iter->mtrr_disabled = false;
581 iter->partial_map = false;
582 iter->fixed = false;
583 iter->range = NULL;
584
585 mtrr_lookup_start(iter);
586}
587
588static bool mtrr_lookup_okay(struct mtrr_iter *iter)
589{
590 if (iter->fixed) {
591 iter->mem_type = iter->mtrr_state->fixed_ranges[iter->index];
592 return true;
593 }
594
595 if (iter->range) {
596 iter->mem_type = iter->range->base & 0xff;
597 return true;
598 }
599
600 return false;
601}
602
603static void mtrr_lookup_next(struct mtrr_iter *iter)
604{
605 if (iter->fixed)
606 mtrr_lookup_fixed_next(iter);
607 else
608 mtrr_lookup_var_next(iter);
609}
610
611#define mtrr_for_each_mem_type(_iter_, _mtrr_, _gpa_start_, _gpa_end_) \
612 for (mtrr_lookup_init(_iter_, _mtrr_, _gpa_start_, _gpa_end_); \
613 mtrr_lookup_okay(_iter_); mtrr_lookup_next(_iter_))
614
615u8 kvm_mtrr_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
616{
617 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
618 struct mtrr_iter iter;
619 u64 start, end;
620 int type = -1;
621 const int wt_wb_mask = (1 << MTRR_TYPE_WRBACK)
622 | (1 << MTRR_TYPE_WRTHROUGH);
623
624 start = gfn_to_gpa(gfn);
625 end = start + PAGE_SIZE;
626
627 mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
628 int curr_type = iter.mem_type;
629
630 /*
631 * Please refer to Intel SDM Volume 3: 11.11.4.1 MTRR
632 * Precedences.
633 */
634
635 if (type == -1) {
636 type = curr_type;
637 continue;
638 }
639
640 /*
641 * If two or more variable memory ranges match and the
642 * memory types are identical, then that memory type is
643 * used.
644 */
645 if (type == curr_type)
646 continue;
647
648 /*
649 * If two or more variable memory ranges match and one of
650 * the memory types is UC, the UC memory type used.
651 */
652 if (curr_type == MTRR_TYPE_UNCACHABLE)
653 return MTRR_TYPE_UNCACHABLE;
654
655 /*
656 * If two or more variable memory ranges match and the
657 * memory types are WT and WB, the WT memory type is used.
658 */
659 if (((1 << type) & wt_wb_mask) &&
660 ((1 << curr_type) & wt_wb_mask)) {
661 type = MTRR_TYPE_WRTHROUGH;
662 continue;
663 }
664
665 /*
666 * For overlaps not defined by the above rules, processor
667 * behavior is undefined.
668 */
669
670 /* We use WB for this undefined behavior. :( */
671 return MTRR_TYPE_WRBACK;
672 }
673
674 if (iter.mtrr_disabled)
675 return mtrr_disabled_type(vcpu);
676
677 /* not contained in any MTRRs. */
678 if (type == -1)
679 return mtrr_default_type(mtrr_state);
680
681 /*
682 * We just check one page, partially covered by MTRRs is
683 * impossible.
684 */
685 WARN_ON(iter.partial_map);
686
687 return type;
688}
689EXPORT_SYMBOL_GPL(kvm_mtrr_get_guest_memory_type);
690
691bool kvm_mtrr_check_gfn_range_consistency(struct kvm_vcpu *vcpu, gfn_t gfn,
692 int page_num)
693{
694 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
695 struct mtrr_iter iter;
696 u64 start, end;
697 int type = -1;
698
699 start = gfn_to_gpa(gfn);
700 end = gfn_to_gpa(gfn + page_num);
701 mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
702 if (type == -1) {
703 type = iter.mem_type;
704 continue;
705 }
706
707 if (type != iter.mem_type)
708 return false;
709 }
710
711 if (iter.mtrr_disabled)
712 return true;
713
714 if (!iter.partial_map)
715 return true;
716
717 if (type == -1)
718 return true;
719
720 return type == mtrr_default_type(mtrr_state);
721}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * vMTRR implementation
4 *
5 * Copyright (C) 2006 Qumranet, Inc.
6 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
7 * Copyright(C) 2015 Intel Corporation.
8 *
9 * Authors:
10 * Yaniv Kamay <yaniv@qumranet.com>
11 * Avi Kivity <avi@qumranet.com>
12 * Marcelo Tosatti <mtosatti@redhat.com>
13 * Paolo Bonzini <pbonzini@redhat.com>
14 * Xiao Guangrong <guangrong.xiao@linux.intel.com>
15 */
16#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17
18#include <linux/kvm_host.h>
19#include <asm/mtrr.h>
20
21#include "cpuid.h"
22#include "mmu.h"
23
24#define IA32_MTRR_DEF_TYPE_E (1ULL << 11)
25#define IA32_MTRR_DEF_TYPE_FE (1ULL << 10)
26#define IA32_MTRR_DEF_TYPE_TYPE_MASK (0xff)
27
28static bool is_mtrr_base_msr(unsigned int msr)
29{
30 /* MTRR base MSRs use even numbers, masks use odd numbers. */
31 return !(msr & 0x1);
32}
33
34static struct kvm_mtrr_range *var_mtrr_msr_to_range(struct kvm_vcpu *vcpu,
35 unsigned int msr)
36{
37 int index = (msr - MTRRphysBase_MSR(0)) / 2;
38
39 return &vcpu->arch.mtrr_state.var_ranges[index];
40}
41
42static bool msr_mtrr_valid(unsigned msr)
43{
44 switch (msr) {
45 case MTRRphysBase_MSR(0) ... MTRRphysMask_MSR(KVM_NR_VAR_MTRR - 1):
46 case MSR_MTRRfix64K_00000:
47 case MSR_MTRRfix16K_80000:
48 case MSR_MTRRfix16K_A0000:
49 case MSR_MTRRfix4K_C0000:
50 case MSR_MTRRfix4K_C8000:
51 case MSR_MTRRfix4K_D0000:
52 case MSR_MTRRfix4K_D8000:
53 case MSR_MTRRfix4K_E0000:
54 case MSR_MTRRfix4K_E8000:
55 case MSR_MTRRfix4K_F0000:
56 case MSR_MTRRfix4K_F8000:
57 case MSR_MTRRdefType:
58 return true;
59 }
60 return false;
61}
62
63static bool valid_mtrr_type(unsigned t)
64{
65 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
66}
67
68static bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
69{
70 int i;
71 u64 mask;
72
73 if (!msr_mtrr_valid(msr))
74 return false;
75
76 if (msr == MSR_MTRRdefType) {
77 if (data & ~0xcff)
78 return false;
79 return valid_mtrr_type(data & 0xff);
80 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
81 for (i = 0; i < 8 ; i++)
82 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
83 return false;
84 return true;
85 }
86
87 /* variable MTRRs */
88 WARN_ON(!(msr >= MTRRphysBase_MSR(0) &&
89 msr <= MTRRphysMask_MSR(KVM_NR_VAR_MTRR - 1)));
90
91 mask = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
92 if ((msr & 1) == 0) {
93 /* MTRR base */
94 if (!valid_mtrr_type(data & 0xff))
95 return false;
96 mask |= 0xf00;
97 } else
98 /* MTRR mask */
99 mask |= 0x7ff;
100
101 return (data & mask) == 0;
102}
103
104static bool mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
105{
106 return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_E);
107}
108
109static bool fixed_mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
110{
111 return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_FE);
112}
113
114static u8 mtrr_default_type(struct kvm_mtrr *mtrr_state)
115{
116 return mtrr_state->deftype & IA32_MTRR_DEF_TYPE_TYPE_MASK;
117}
118
119static u8 mtrr_disabled_type(struct kvm_vcpu *vcpu)
120{
121 /*
122 * Intel SDM 11.11.2.2: all MTRRs are disabled when
123 * IA32_MTRR_DEF_TYPE.E bit is cleared, and the UC
124 * memory type is applied to all of physical memory.
125 *
126 * However, virtual machines can be run with CPUID such that
127 * there are no MTRRs. In that case, the firmware will never
128 * enable MTRRs and it is obviously undesirable to run the
129 * guest entirely with UC memory and we use WB.
130 */
131 if (guest_cpuid_has(vcpu, X86_FEATURE_MTRR))
132 return MTRR_TYPE_UNCACHABLE;
133 else
134 return MTRR_TYPE_WRBACK;
135}
136
137/*
138* Three terms are used in the following code:
139* - segment, it indicates the address segments covered by fixed MTRRs.
140* - unit, it corresponds to the MSR entry in the segment.
141* - range, a range is covered in one memory cache type.
142*/
143struct fixed_mtrr_segment {
144 u64 start;
145 u64 end;
146
147 int range_shift;
148
149 /* the start position in kvm_mtrr.fixed_ranges[]. */
150 int range_start;
151};
152
153static struct fixed_mtrr_segment fixed_seg_table[] = {
154 /* MSR_MTRRfix64K_00000, 1 unit. 64K fixed mtrr. */
155 {
156 .start = 0x0,
157 .end = 0x80000,
158 .range_shift = 16, /* 64K */
159 .range_start = 0,
160 },
161
162 /*
163 * MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000, 2 units,
164 * 16K fixed mtrr.
165 */
166 {
167 .start = 0x80000,
168 .end = 0xc0000,
169 .range_shift = 14, /* 16K */
170 .range_start = 8,
171 },
172
173 /*
174 * MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000, 8 units,
175 * 4K fixed mtrr.
176 */
177 {
178 .start = 0xc0000,
179 .end = 0x100000,
180 .range_shift = 12, /* 12K */
181 .range_start = 24,
182 }
183};
184
185/*
186 * The size of unit is covered in one MSR, one MSR entry contains
187 * 8 ranges so that unit size is always 8 * 2^range_shift.
188 */
189static u64 fixed_mtrr_seg_unit_size(int seg)
190{
191 return 8 << fixed_seg_table[seg].range_shift;
192}
193
194static bool fixed_msr_to_seg_unit(u32 msr, int *seg, int *unit)
195{
196 switch (msr) {
197 case MSR_MTRRfix64K_00000:
198 *seg = 0;
199 *unit = 0;
200 break;
201 case MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000:
202 *seg = 1;
203 *unit = array_index_nospec(
204 msr - MSR_MTRRfix16K_80000,
205 MSR_MTRRfix16K_A0000 - MSR_MTRRfix16K_80000 + 1);
206 break;
207 case MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000:
208 *seg = 2;
209 *unit = array_index_nospec(
210 msr - MSR_MTRRfix4K_C0000,
211 MSR_MTRRfix4K_F8000 - MSR_MTRRfix4K_C0000 + 1);
212 break;
213 default:
214 return false;
215 }
216
217 return true;
218}
219
220static void fixed_mtrr_seg_unit_range(int seg, int unit, u64 *start, u64 *end)
221{
222 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
223 u64 unit_size = fixed_mtrr_seg_unit_size(seg);
224
225 *start = mtrr_seg->start + unit * unit_size;
226 *end = *start + unit_size;
227 WARN_ON(*end > mtrr_seg->end);
228}
229
230static int fixed_mtrr_seg_unit_range_index(int seg, int unit)
231{
232 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
233
234 WARN_ON(mtrr_seg->start + unit * fixed_mtrr_seg_unit_size(seg)
235 > mtrr_seg->end);
236
237 /* each unit has 8 ranges. */
238 return mtrr_seg->range_start + 8 * unit;
239}
240
241static int fixed_mtrr_seg_end_range_index(int seg)
242{
243 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
244 int n;
245
246 n = (mtrr_seg->end - mtrr_seg->start) >> mtrr_seg->range_shift;
247 return mtrr_seg->range_start + n - 1;
248}
249
250static bool fixed_msr_to_range(u32 msr, u64 *start, u64 *end)
251{
252 int seg, unit;
253
254 if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
255 return false;
256
257 fixed_mtrr_seg_unit_range(seg, unit, start, end);
258 return true;
259}
260
261static int fixed_msr_to_range_index(u32 msr)
262{
263 int seg, unit;
264
265 if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
266 return -1;
267
268 return fixed_mtrr_seg_unit_range_index(seg, unit);
269}
270
271static int fixed_mtrr_addr_to_seg(u64 addr)
272{
273 struct fixed_mtrr_segment *mtrr_seg;
274 int seg, seg_num = ARRAY_SIZE(fixed_seg_table);
275
276 for (seg = 0; seg < seg_num; seg++) {
277 mtrr_seg = &fixed_seg_table[seg];
278 if (mtrr_seg->start <= addr && addr < mtrr_seg->end)
279 return seg;
280 }
281
282 return -1;
283}
284
285static int fixed_mtrr_addr_seg_to_range_index(u64 addr, int seg)
286{
287 struct fixed_mtrr_segment *mtrr_seg;
288 int index;
289
290 mtrr_seg = &fixed_seg_table[seg];
291 index = mtrr_seg->range_start;
292 index += (addr - mtrr_seg->start) >> mtrr_seg->range_shift;
293 return index;
294}
295
296static u64 fixed_mtrr_range_end_addr(int seg, int index)
297{
298 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
299 int pos = index - mtrr_seg->range_start;
300
301 return mtrr_seg->start + ((pos + 1) << mtrr_seg->range_shift);
302}
303
304static void var_mtrr_range(struct kvm_mtrr_range *range, u64 *start, u64 *end)
305{
306 u64 mask;
307
308 *start = range->base & PAGE_MASK;
309
310 mask = range->mask & PAGE_MASK;
311
312 /* This cannot overflow because writing to the reserved bits of
313 * variable MTRRs causes a #GP.
314 */
315 *end = (*start | ~mask) + 1;
316}
317
318static void update_mtrr(struct kvm_vcpu *vcpu, u32 msr)
319{
320 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
321 gfn_t start, end;
322
323 if (!kvm_mmu_honors_guest_mtrrs(vcpu->kvm))
324 return;
325
326 if (!mtrr_is_enabled(mtrr_state) && msr != MSR_MTRRdefType)
327 return;
328
329 /* fixed MTRRs. */
330 if (fixed_msr_to_range(msr, &start, &end)) {
331 if (!fixed_mtrr_is_enabled(mtrr_state))
332 return;
333 } else if (msr == MSR_MTRRdefType) {
334 start = 0x0;
335 end = ~0ULL;
336 } else {
337 /* variable range MTRRs. */
338 var_mtrr_range(var_mtrr_msr_to_range(vcpu, msr), &start, &end);
339 }
340
341 kvm_zap_gfn_range(vcpu->kvm, gpa_to_gfn(start), gpa_to_gfn(end));
342}
343
344static bool var_mtrr_range_is_valid(struct kvm_mtrr_range *range)
345{
346 return (range->mask & (1 << 11)) != 0;
347}
348
349static void set_var_mtrr_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
350{
351 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
352 struct kvm_mtrr_range *tmp, *cur;
353
354 cur = var_mtrr_msr_to_range(vcpu, msr);
355
356 /* remove the entry if it's in the list. */
357 if (var_mtrr_range_is_valid(cur))
358 list_del(&cur->node);
359
360 /*
361 * Set all illegal GPA bits in the mask, since those bits must
362 * implicitly be 0. The bits are then cleared when reading them.
363 */
364 if (is_mtrr_base_msr(msr))
365 cur->base = data;
366 else
367 cur->mask = data | kvm_vcpu_reserved_gpa_bits_raw(vcpu);
368
369 /* add it to the list if it's enabled. */
370 if (var_mtrr_range_is_valid(cur)) {
371 list_for_each_entry(tmp, &mtrr_state->head, node)
372 if (cur->base >= tmp->base)
373 break;
374 list_add_tail(&cur->node, &tmp->node);
375 }
376}
377
378int kvm_mtrr_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
379{
380 int index;
381
382 if (!kvm_mtrr_valid(vcpu, msr, data))
383 return 1;
384
385 index = fixed_msr_to_range_index(msr);
386 if (index >= 0)
387 *(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index] = data;
388 else if (msr == MSR_MTRRdefType)
389 vcpu->arch.mtrr_state.deftype = data;
390 else
391 set_var_mtrr_msr(vcpu, msr, data);
392
393 update_mtrr(vcpu, msr);
394 return 0;
395}
396
397int kvm_mtrr_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
398{
399 int index;
400
401 /* MSR_MTRRcap is a readonly MSR. */
402 if (msr == MSR_MTRRcap) {
403 /*
404 * SMRR = 0
405 * WC = 1
406 * FIX = 1
407 * VCNT = KVM_NR_VAR_MTRR
408 */
409 *pdata = 0x500 | KVM_NR_VAR_MTRR;
410 return 0;
411 }
412
413 if (!msr_mtrr_valid(msr))
414 return 1;
415
416 index = fixed_msr_to_range_index(msr);
417 if (index >= 0) {
418 *pdata = *(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index];
419 } else if (msr == MSR_MTRRdefType) {
420 *pdata = vcpu->arch.mtrr_state.deftype;
421 } else {
422 /* Variable MTRRs */
423 if (is_mtrr_base_msr(msr))
424 *pdata = var_mtrr_msr_to_range(vcpu, msr)->base;
425 else
426 *pdata = var_mtrr_msr_to_range(vcpu, msr)->mask;
427
428 *pdata &= ~kvm_vcpu_reserved_gpa_bits_raw(vcpu);
429 }
430
431 return 0;
432}
433
434void kvm_vcpu_mtrr_init(struct kvm_vcpu *vcpu)
435{
436 INIT_LIST_HEAD(&vcpu->arch.mtrr_state.head);
437}
438
439struct mtrr_iter {
440 /* input fields. */
441 struct kvm_mtrr *mtrr_state;
442 u64 start;
443 u64 end;
444
445 /* output fields. */
446 int mem_type;
447 /* mtrr is completely disabled? */
448 bool mtrr_disabled;
449 /* [start, end) is not fully covered in MTRRs? */
450 bool partial_map;
451
452 /* private fields. */
453 union {
454 /* used for fixed MTRRs. */
455 struct {
456 int index;
457 int seg;
458 };
459
460 /* used for var MTRRs. */
461 struct {
462 struct kvm_mtrr_range *range;
463 /* max address has been covered in var MTRRs. */
464 u64 start_max;
465 };
466 };
467
468 bool fixed;
469};
470
471static bool mtrr_lookup_fixed_start(struct mtrr_iter *iter)
472{
473 int seg, index;
474
475 if (!fixed_mtrr_is_enabled(iter->mtrr_state))
476 return false;
477
478 seg = fixed_mtrr_addr_to_seg(iter->start);
479 if (seg < 0)
480 return false;
481
482 iter->fixed = true;
483 index = fixed_mtrr_addr_seg_to_range_index(iter->start, seg);
484 iter->index = index;
485 iter->seg = seg;
486 return true;
487}
488
489static bool match_var_range(struct mtrr_iter *iter,
490 struct kvm_mtrr_range *range)
491{
492 u64 start, end;
493
494 var_mtrr_range(range, &start, &end);
495 if (!(start >= iter->end || end <= iter->start)) {
496 iter->range = range;
497
498 /*
499 * the function is called when we do kvm_mtrr.head walking.
500 * Range has the minimum base address which interleaves
501 * [looker->start_max, looker->end).
502 */
503 iter->partial_map |= iter->start_max < start;
504
505 /* update the max address has been covered. */
506 iter->start_max = max(iter->start_max, end);
507 return true;
508 }
509
510 return false;
511}
512
513static void __mtrr_lookup_var_next(struct mtrr_iter *iter)
514{
515 struct kvm_mtrr *mtrr_state = iter->mtrr_state;
516
517 list_for_each_entry_continue(iter->range, &mtrr_state->head, node)
518 if (match_var_range(iter, iter->range))
519 return;
520
521 iter->range = NULL;
522 iter->partial_map |= iter->start_max < iter->end;
523}
524
525static void mtrr_lookup_var_start(struct mtrr_iter *iter)
526{
527 struct kvm_mtrr *mtrr_state = iter->mtrr_state;
528
529 iter->fixed = false;
530 iter->start_max = iter->start;
531 iter->range = NULL;
532 iter->range = list_prepare_entry(iter->range, &mtrr_state->head, node);
533
534 __mtrr_lookup_var_next(iter);
535}
536
537static void mtrr_lookup_fixed_next(struct mtrr_iter *iter)
538{
539 /* terminate the lookup. */
540 if (fixed_mtrr_range_end_addr(iter->seg, iter->index) >= iter->end) {
541 iter->fixed = false;
542 iter->range = NULL;
543 return;
544 }
545
546 iter->index++;
547
548 /* have looked up for all fixed MTRRs. */
549 if (iter->index >= ARRAY_SIZE(iter->mtrr_state->fixed_ranges))
550 return mtrr_lookup_var_start(iter);
551
552 /* switch to next segment. */
553 if (iter->index > fixed_mtrr_seg_end_range_index(iter->seg))
554 iter->seg++;
555}
556
557static void mtrr_lookup_var_next(struct mtrr_iter *iter)
558{
559 __mtrr_lookup_var_next(iter);
560}
561
562static void mtrr_lookup_start(struct mtrr_iter *iter)
563{
564 if (!mtrr_is_enabled(iter->mtrr_state)) {
565 iter->mtrr_disabled = true;
566 return;
567 }
568
569 if (!mtrr_lookup_fixed_start(iter))
570 mtrr_lookup_var_start(iter);
571}
572
573static void mtrr_lookup_init(struct mtrr_iter *iter,
574 struct kvm_mtrr *mtrr_state, u64 start, u64 end)
575{
576 iter->mtrr_state = mtrr_state;
577 iter->start = start;
578 iter->end = end;
579 iter->mtrr_disabled = false;
580 iter->partial_map = false;
581 iter->fixed = false;
582 iter->range = NULL;
583
584 mtrr_lookup_start(iter);
585}
586
587static bool mtrr_lookup_okay(struct mtrr_iter *iter)
588{
589 if (iter->fixed) {
590 iter->mem_type = iter->mtrr_state->fixed_ranges[iter->index];
591 return true;
592 }
593
594 if (iter->range) {
595 iter->mem_type = iter->range->base & 0xff;
596 return true;
597 }
598
599 return false;
600}
601
602static void mtrr_lookup_next(struct mtrr_iter *iter)
603{
604 if (iter->fixed)
605 mtrr_lookup_fixed_next(iter);
606 else
607 mtrr_lookup_var_next(iter);
608}
609
610#define mtrr_for_each_mem_type(_iter_, _mtrr_, _gpa_start_, _gpa_end_) \
611 for (mtrr_lookup_init(_iter_, _mtrr_, _gpa_start_, _gpa_end_); \
612 mtrr_lookup_okay(_iter_); mtrr_lookup_next(_iter_))
613
614u8 kvm_mtrr_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
615{
616 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
617 struct mtrr_iter iter;
618 u64 start, end;
619 int type = -1;
620 const int wt_wb_mask = (1 << MTRR_TYPE_WRBACK)
621 | (1 << MTRR_TYPE_WRTHROUGH);
622
623 start = gfn_to_gpa(gfn);
624 end = start + PAGE_SIZE;
625
626 mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
627 int curr_type = iter.mem_type;
628
629 /*
630 * Please refer to Intel SDM Volume 3: 11.11.4.1 MTRR
631 * Precedences.
632 */
633
634 if (type == -1) {
635 type = curr_type;
636 continue;
637 }
638
639 /*
640 * If two or more variable memory ranges match and the
641 * memory types are identical, then that memory type is
642 * used.
643 */
644 if (type == curr_type)
645 continue;
646
647 /*
648 * If two or more variable memory ranges match and one of
649 * the memory types is UC, the UC memory type used.
650 */
651 if (curr_type == MTRR_TYPE_UNCACHABLE)
652 return MTRR_TYPE_UNCACHABLE;
653
654 /*
655 * If two or more variable memory ranges match and the
656 * memory types are WT and WB, the WT memory type is used.
657 */
658 if (((1 << type) & wt_wb_mask) &&
659 ((1 << curr_type) & wt_wb_mask)) {
660 type = MTRR_TYPE_WRTHROUGH;
661 continue;
662 }
663
664 /*
665 * For overlaps not defined by the above rules, processor
666 * behavior is undefined.
667 */
668
669 /* We use WB for this undefined behavior. :( */
670 return MTRR_TYPE_WRBACK;
671 }
672
673 if (iter.mtrr_disabled)
674 return mtrr_disabled_type(vcpu);
675
676 /* not contained in any MTRRs. */
677 if (type == -1)
678 return mtrr_default_type(mtrr_state);
679
680 /*
681 * We just check one page, partially covered by MTRRs is
682 * impossible.
683 */
684 WARN_ON(iter.partial_map);
685
686 return type;
687}
688EXPORT_SYMBOL_GPL(kvm_mtrr_get_guest_memory_type);
689
690bool kvm_mtrr_check_gfn_range_consistency(struct kvm_vcpu *vcpu, gfn_t gfn,
691 int page_num)
692{
693 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
694 struct mtrr_iter iter;
695 u64 start, end;
696 int type = -1;
697
698 start = gfn_to_gpa(gfn);
699 end = gfn_to_gpa(gfn + page_num);
700 mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
701 if (type == -1) {
702 type = iter.mem_type;
703 continue;
704 }
705
706 if (type != iter.mem_type)
707 return false;
708 }
709
710 if (iter.mtrr_disabled)
711 return true;
712
713 if (!iter.partial_map)
714 return true;
715
716 if (type == -1)
717 return true;
718
719 return type == mtrr_default_type(mtrr_state);
720}