Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Kernel-based Virtual Machine driver for Linux
   4 * cpuid support routines
   5 *
   6 * derived from arch/x86/kvm/x86.c
   7 *
   8 * Copyright 2011 Red Hat, Inc. and/or its affiliates.
   9 * Copyright IBM Corporation, 2008
  10 */
 
  11
  12#include <linux/kvm_host.h>
 
  13#include <linux/export.h>
  14#include <linux/vmalloc.h>
  15#include <linux/uaccess.h>
  16#include <linux/sched/stat.h>
  17
  18#include <asm/processor.h>
  19#include <asm/user.h>
  20#include <asm/fpu/xstate.h>
  21#include <asm/sgx.h>
  22#include <asm/cpuid.h>
  23#include "cpuid.h"
  24#include "lapic.h"
  25#include "mmu.h"
  26#include "trace.h"
  27#include "pmu.h"
 
  28
  29/*
  30 * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
  31 * aligned to sizeof(unsigned long) because it's not accessed via bitops.
  32 */
  33u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly;
  34EXPORT_SYMBOL_GPL(kvm_cpu_caps);
  35
  36u32 xstate_required_size(u64 xstate_bv, bool compacted)
  37{
  38	int feature_bit = 0;
  39	u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
  40
  41	xstate_bv &= XFEATURE_MASK_EXTEND;
  42	while (xstate_bv) {
  43		if (xstate_bv & 0x1) {
  44		        u32 eax, ebx, ecx, edx, offset;
  45		        cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
  46			/* ECX[1]: 64B alignment in compacted form */
  47			if (compacted)
  48				offset = (ecx & 0x2) ? ALIGN(ret, 64) : ret;
  49			else
  50				offset = ebx;
  51			ret = max(ret, offset + eax);
  52		}
  53
  54		xstate_bv >>= 1;
  55		feature_bit++;
  56	}
  57
  58	return ret;
  59}
  60
  61/*
  62 * This one is tied to SSB in the user API, and not
  63 * visible in /proc/cpuinfo.
  64 */
  65#define KVM_X86_FEATURE_AMD_PSFD	(13*32+28) /* Predictive Store Forwarding Disable */
  66
  67#define F feature_bit
  68
  69/* Scattered Flag - For features that are scattered by cpufeatures.h. */
  70#define SF(name)						\
  71({								\
  72	BUILD_BUG_ON(X86_FEATURE_##name >= MAX_CPU_FEATURES);	\
  73	(boot_cpu_has(X86_FEATURE_##name) ? F(name) : 0);	\
  74})
  75
  76/*
  77 * Magic value used by KVM when querying userspace-provided CPUID entries and
  78 * doesn't care about the CPIUD index because the index of the function in
  79 * question is not significant.  Note, this magic value must have at least one
  80 * bit set in bits[63:32] and must be consumed as a u64 by cpuid_entry2_find()
  81 * to avoid false positives when processing guest CPUID input.
  82 */
  83#define KVM_CPUID_INDEX_NOT_SIGNIFICANT -1ull
  84
  85static inline struct kvm_cpuid_entry2 *cpuid_entry2_find(
  86	struct kvm_cpuid_entry2 *entries, int nent, u32 function, u64 index)
  87{
  88	struct kvm_cpuid_entry2 *e;
  89	int i;
  90
 
 
 
 
 
 
 
 
 
 
 
 
  91	for (i = 0; i < nent; i++) {
  92		e = &entries[i];
  93
  94		if (e->function != function)
  95			continue;
  96
  97		/*
  98		 * If the index isn't significant, use the first entry with a
  99		 * matching function.  It's userspace's responsibilty to not
 100		 * provide "duplicate" entries in all cases.
 101		 */
 102		if (!(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) || e->index == index)
 103			return e;
 104
 105
 106		/*
 107		 * Similarly, use the first matching entry if KVM is doing a
 108		 * lookup (as opposed to emulating CPUID) for a function that's
 109		 * architecturally defined as not having a significant index.
 110		 */
 111		if (index == KVM_CPUID_INDEX_NOT_SIGNIFICANT) {
 112			/*
 113			 * Direct lookups from KVM should not diverge from what
 114			 * KVM defines internally (the architectural behavior).
 115			 */
 116			WARN_ON_ONCE(cpuid_function_is_indexed(function));
 117			return e;
 118		}
 119	}
 120
 121	return NULL;
 122}
 123
 124static int kvm_check_cpuid(struct kvm_vcpu *vcpu,
 125			   struct kvm_cpuid_entry2 *entries,
 126			   int nent)
 127{
 128	struct kvm_cpuid_entry2 *best;
 129	u64 xfeatures;
 130
 131	/*
 132	 * The existing code assumes virtual address is 48-bit or 57-bit in the
 133	 * canonical address checks; exit if it is ever changed.
 134	 */
 135	best = cpuid_entry2_find(entries, nent, 0x80000008,
 136				 KVM_CPUID_INDEX_NOT_SIGNIFICANT);
 137	if (best) {
 138		int vaddr_bits = (best->eax & 0xff00) >> 8;
 139
 140		if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
 141			return -EINVAL;
 142	}
 143
 144	/*
 145	 * Exposing dynamic xfeatures to the guest requires additional
 146	 * enabling in the FPU, e.g. to expand the guest XSAVE state size.
 147	 */
 148	best = cpuid_entry2_find(entries, nent, 0xd, 0);
 149	if (!best)
 150		return 0;
 151
 152	xfeatures = best->eax | ((u64)best->edx << 32);
 153	xfeatures &= XFEATURE_MASK_USER_DYNAMIC;
 154	if (!xfeatures)
 155		return 0;
 156
 157	return fpu_enable_guest_xfd_features(&vcpu->arch.guest_fpu, xfeatures);
 158}
 159
 160/* Check whether the supplied CPUID data is equal to what is already set for the vCPU. */
 161static int kvm_cpuid_check_equal(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
 162				 int nent)
 163{
 164	struct kvm_cpuid_entry2 *orig;
 165	int i;
 166
 167	if (nent != vcpu->arch.cpuid_nent)
 168		return -EINVAL;
 169
 170	for (i = 0; i < nent; i++) {
 171		orig = &vcpu->arch.cpuid_entries[i];
 172		if (e2[i].function != orig->function ||
 173		    e2[i].index != orig->index ||
 174		    e2[i].flags != orig->flags ||
 175		    e2[i].eax != orig->eax || e2[i].ebx != orig->ebx ||
 176		    e2[i].ecx != orig->ecx || e2[i].edx != orig->edx)
 177			return -EINVAL;
 178	}
 179
 180	return 0;
 181}
 182
 183static void kvm_update_kvm_cpuid_base(struct kvm_vcpu *vcpu)
 
 184{
 185	u32 function;
 186	struct kvm_cpuid_entry2 *entry;
 
 187
 188	vcpu->arch.kvm_cpuid_base = 0;
 189
 190	for_each_possible_hypervisor_cpuid_base(function) {
 191		entry = kvm_find_cpuid_entry(vcpu, function);
 192
 193		if (entry) {
 194			u32 signature[3];
 195
 196			signature[0] = entry->ebx;
 197			signature[1] = entry->ecx;
 198			signature[2] = entry->edx;
 199
 200			BUILD_BUG_ON(sizeof(signature) > sizeof(KVM_SIGNATURE));
 201			if (!memcmp(signature, KVM_SIGNATURE, sizeof(signature))) {
 202				vcpu->arch.kvm_cpuid_base = function;
 203				break;
 204			}
 205		}
 206	}
 
 
 207}
 208
 209static struct kvm_cpuid_entry2 *__kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu,
 210					      struct kvm_cpuid_entry2 *entries, int nent)
 211{
 212	u32 base = vcpu->arch.kvm_cpuid_base;
 213
 214	if (!base)
 215		return NULL;
 216
 217	return cpuid_entry2_find(entries, nent, base | KVM_CPUID_FEATURES,
 218				 KVM_CPUID_INDEX_NOT_SIGNIFICANT);
 219}
 220
 221static struct kvm_cpuid_entry2 *kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu)
 222{
 223	return __kvm_find_kvm_cpuid_features(vcpu, vcpu->arch.cpuid_entries,
 224					     vcpu->arch.cpuid_nent);
 225}
 226
 227void kvm_update_pv_runtime(struct kvm_vcpu *vcpu)
 228{
 229	struct kvm_cpuid_entry2 *best = kvm_find_kvm_cpuid_features(vcpu);
 230
 231	/*
 232	 * save the feature bitmap to avoid cpuid lookup for every PV
 233	 * operation
 234	 */
 235	if (best)
 236		vcpu->arch.pv_cpuid.features = best->eax;
 237}
 238
 239/*
 240 * Calculate guest's supported XCR0 taking into account guest CPUID data and
 241 * KVM's supported XCR0 (comprised of host's XCR0 and KVM_SUPPORTED_XCR0).
 242 */
 243static u64 cpuid_get_supported_xcr0(struct kvm_cpuid_entry2 *entries, int nent)
 244{
 245	struct kvm_cpuid_entry2 *best;
 246
 247	best = cpuid_entry2_find(entries, nent, 0xd, 0);
 248	if (!best)
 249		return 0;
 250
 251	return (best->eax | ((u64)best->edx << 32)) & kvm_caps.supported_xcr0;
 252}
 253
 254static void __kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *entries,
 255				       int nent)
 256{
 257	struct kvm_cpuid_entry2 *best;
 258	u64 guest_supported_xcr0 = cpuid_get_supported_xcr0(entries, nent);
 259
 260	best = cpuid_entry2_find(entries, nent, 1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
 261	if (best) {
 262		/* Update OSXSAVE bit */
 263		if (boot_cpu_has(X86_FEATURE_XSAVE))
 264			cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
 265				   kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE));
 266
 267		cpuid_entry_change(best, X86_FEATURE_APIC,
 268			   vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
 269	}
 270
 271	best = cpuid_entry2_find(entries, nent, 7, 0);
 272	if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
 273		cpuid_entry_change(best, X86_FEATURE_OSPKE,
 274				   kvm_read_cr4_bits(vcpu, X86_CR4_PKE));
 275
 276	best = cpuid_entry2_find(entries, nent, 0xD, 0);
 277	if (best)
 278		best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
 279
 280	best = cpuid_entry2_find(entries, nent, 0xD, 1);
 281	if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
 282		     cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
 283		best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
 284
 285	best = __kvm_find_kvm_cpuid_features(vcpu, entries, nent);
 286	if (kvm_hlt_in_guest(vcpu->kvm) && best &&
 287		(best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
 288		best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
 289
 290	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
 291		best = cpuid_entry2_find(entries, nent, 0x1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
 292		if (best)
 293			cpuid_entry_change(best, X86_FEATURE_MWAIT,
 294					   vcpu->arch.ia32_misc_enable_msr &
 295					   MSR_IA32_MISC_ENABLE_MWAIT);
 296	}
 297
 298	/*
 299	 * Bits 127:0 of the allowed SECS.ATTRIBUTES (CPUID.0x12.0x1) enumerate
 300	 * the supported XSAVE Feature Request Mask (XFRM), i.e. the enclave's
 301	 * requested XCR0 value.  The enclave's XFRM must be a subset of XCRO
 302	 * at the time of EENTER, thus adjust the allowed XFRM by the guest's
 303	 * supported XCR0.  Similar to XCR0 handling, FP and SSE are forced to
 304	 * '1' even on CPUs that don't support XSAVE.
 305	 */
 306	best = cpuid_entry2_find(entries, nent, 0x12, 0x1);
 307	if (best) {
 308		best->ecx &= guest_supported_xcr0 & 0xffffffff;
 309		best->edx &= guest_supported_xcr0 >> 32;
 310		best->ecx |= XFEATURE_MASK_FPSSE;
 311	}
 312}
 313
 314void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
 315{
 316	__kvm_update_cpuid_runtime(vcpu, vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
 317}
 318EXPORT_SYMBOL_GPL(kvm_update_cpuid_runtime);
 319
 320static bool kvm_cpuid_has_hyperv(struct kvm_cpuid_entry2 *entries, int nent)
 321{
 
 322	struct kvm_cpuid_entry2 *entry;
 323
 324	entry = cpuid_entry2_find(entries, nent, HYPERV_CPUID_INTERFACE,
 325				  KVM_CPUID_INDEX_NOT_SIGNIFICANT);
 326	return entry && entry->eax == HYPERV_CPUID_SIGNATURE_EAX;
 
 
 
 327}
 328
 329static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
 330{
 331	struct kvm_lapic *apic = vcpu->arch.apic;
 332	struct kvm_cpuid_entry2 *best;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 333
 334	best = kvm_find_cpuid_entry(vcpu, 1);
 335	if (best && apic) {
 336		if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
 337			apic->lapic_timer.timer_mode_mask = 3 << 17;
 338		else
 339			apic->lapic_timer.timer_mode_mask = 1 << 17;
 340
 341		kvm_apic_set_version(vcpu);
 342	}
 343
 344	vcpu->arch.guest_supported_xcr0 =
 345		cpuid_get_supported_xcr0(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
 346
 347	/*
 348	 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
 349	 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
 350	 * supported by the host.
 351	 */
 352	vcpu->arch.guest_fpu.fpstate->user_xfeatures = vcpu->arch.guest_supported_xcr0 |
 353						       XFEATURE_MASK_FPSSE;
 354
 355	kvm_update_pv_runtime(vcpu);
 356
 357	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
 358	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
 359
 360	kvm_pmu_refresh(vcpu);
 361	vcpu->arch.cr4_guest_rsvd_bits =
 362	    __cr4_reserved_bits(guest_cpuid_has, vcpu);
 363
 364	kvm_hv_set_cpuid(vcpu, kvm_cpuid_has_hyperv(vcpu->arch.cpuid_entries,
 365						    vcpu->arch.cpuid_nent));
 366
 367	/* Invoke the vendor callback only after the above state is updated. */
 368	static_call(kvm_x86_vcpu_after_set_cpuid)(vcpu);
 369
 370	/*
 371	 * Except for the MMU, which needs to do its thing any vendor specific
 372	 * adjustments to the reserved GPA bits.
 373	 */
 374	kvm_mmu_after_set_cpuid(vcpu);
 375}
 376
 377int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
 378{
 379	struct kvm_cpuid_entry2 *best;
 380
 381	best = kvm_find_cpuid_entry(vcpu, 0x80000000);
 382	if (!best || best->eax < 0x80000008)
 383		goto not_found;
 384	best = kvm_find_cpuid_entry(vcpu, 0x80000008);
 385	if (best)
 386		return best->eax & 0xff;
 387not_found:
 388	return 36;
 389}
 390
 391/*
 392 * This "raw" version returns the reserved GPA bits without any adjustments for
 393 * encryption technologies that usurp bits.  The raw mask should be used if and
 394 * only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs.
 395 */
 396u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu)
 397{
 398	return rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
 399}
 400
 401static int kvm_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
 402                        int nent)
 403{
 404	int r;
 405
 406	__kvm_update_cpuid_runtime(vcpu, e2, nent);
 407
 408	/*
 409	 * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
 410	 * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
 411	 * tracked in kvm_mmu_page_role.  As a result, KVM may miss guest page
 412	 * faults due to reusing SPs/SPTEs. In practice no sane VMM mucks with
 413	 * the core vCPU model on the fly. It would've been better to forbid any
 414	 * KVM_SET_CPUID{,2} calls after KVM_RUN altogether but unfortunately
 415	 * some VMMs (e.g. QEMU) reuse vCPU fds for CPU hotplug/unplug and do
 416	 * KVM_SET_CPUID{,2} again. To support this legacy behavior, check
 417	 * whether the supplied CPUID data is equal to what's already set.
 418	 */
 419	if (vcpu->arch.last_vmentry_cpu != -1) {
 420		r = kvm_cpuid_check_equal(vcpu, e2, nent);
 421		if (r)
 422			return r;
 423
 424		kvfree(e2);
 425		return 0;
 426	}
 427
 
 428	if (kvm_cpuid_has_hyperv(e2, nent)) {
 429		r = kvm_hv_vcpu_init(vcpu);
 430		if (r)
 431			return r;
 432	}
 
 433
 434	r = kvm_check_cpuid(vcpu, e2, nent);
 435	if (r)
 436		return r;
 437
 438	kvfree(vcpu->arch.cpuid_entries);
 439	vcpu->arch.cpuid_entries = e2;
 440	vcpu->arch.cpuid_nent = nent;
 441
 442	kvm_update_kvm_cpuid_base(vcpu);
 
 
 
 443	kvm_vcpu_after_set_cpuid(vcpu);
 444
 445	return 0;
 446}
 447
 448/* when an old userspace process fills a new kernel module */
 449int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
 450			     struct kvm_cpuid *cpuid,
 451			     struct kvm_cpuid_entry __user *entries)
 452{
 453	int r, i;
 454	struct kvm_cpuid_entry *e = NULL;
 455	struct kvm_cpuid_entry2 *e2 = NULL;
 456
 457	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
 458		return -E2BIG;
 459
 460	if (cpuid->nent) {
 461		e = vmemdup_user(entries, array_size(sizeof(*e), cpuid->nent));
 462		if (IS_ERR(e))
 463			return PTR_ERR(e);
 464
 465		e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
 466		if (!e2) {
 467			r = -ENOMEM;
 468			goto out_free_cpuid;
 469		}
 470	}
 471	for (i = 0; i < cpuid->nent; i++) {
 472		e2[i].function = e[i].function;
 473		e2[i].eax = e[i].eax;
 474		e2[i].ebx = e[i].ebx;
 475		e2[i].ecx = e[i].ecx;
 476		e2[i].edx = e[i].edx;
 477		e2[i].index = 0;
 478		e2[i].flags = 0;
 479		e2[i].padding[0] = 0;
 480		e2[i].padding[1] = 0;
 481		e2[i].padding[2] = 0;
 482	}
 483
 484	r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
 485	if (r)
 486		kvfree(e2);
 487
 488out_free_cpuid:
 489	kvfree(e);
 490
 491	return r;
 492}
 493
 494int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
 495			      struct kvm_cpuid2 *cpuid,
 496			      struct kvm_cpuid_entry2 __user *entries)
 497{
 498	struct kvm_cpuid_entry2 *e2 = NULL;
 499	int r;
 500
 501	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
 502		return -E2BIG;
 503
 504	if (cpuid->nent) {
 505		e2 = vmemdup_user(entries, array_size(sizeof(*e2), cpuid->nent));
 506		if (IS_ERR(e2))
 507			return PTR_ERR(e2);
 508	}
 509
 510	r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
 511	if (r)
 512		kvfree(e2);
 513
 514	return r;
 515}
 516
 517int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
 518			      struct kvm_cpuid2 *cpuid,
 519			      struct kvm_cpuid_entry2 __user *entries)
 520{
 521	int r;
 522
 523	r = -E2BIG;
 524	if (cpuid->nent < vcpu->arch.cpuid_nent)
 525		goto out;
 526	r = -EFAULT;
 527	if (copy_to_user(entries, vcpu->arch.cpuid_entries,
 528			 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
 529		goto out;
 530	return 0;
 531
 532out:
 533	cpuid->nent = vcpu->arch.cpuid_nent;
 534	return r;
 535}
 536
 537/* Mask kvm_cpu_caps for @leaf with the raw CPUID capabilities of this CPU. */
 538static __always_inline void __kvm_cpu_cap_mask(unsigned int leaf)
 539{
 540	const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
 541	struct kvm_cpuid_entry2 entry;
 542
 543	reverse_cpuid_check(leaf);
 544
 545	cpuid_count(cpuid.function, cpuid.index,
 546		    &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
 547
 548	kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
 549}
 550
 551static __always_inline
 552void kvm_cpu_cap_init_kvm_defined(enum kvm_only_cpuid_leafs leaf, u32 mask)
 553{
 554	/* Use kvm_cpu_cap_mask for leafs that aren't KVM-only. */
 555	BUILD_BUG_ON(leaf < NCAPINTS);
 556
 557	kvm_cpu_caps[leaf] = mask;
 558
 559	__kvm_cpu_cap_mask(leaf);
 560}
 561
 562static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
 563{
 564	/* Use kvm_cpu_cap_init_kvm_defined for KVM-only leafs. */
 565	BUILD_BUG_ON(leaf >= NCAPINTS);
 566
 567	kvm_cpu_caps[leaf] &= mask;
 568
 569	__kvm_cpu_cap_mask(leaf);
 570}
 571
 572void kvm_set_cpu_caps(void)
 573{
 574#ifdef CONFIG_X86_64
 575	unsigned int f_gbpages = F(GBPAGES);
 576	unsigned int f_lm = F(LM);
 577	unsigned int f_xfd = F(XFD);
 578#else
 579	unsigned int f_gbpages = 0;
 580	unsigned int f_lm = 0;
 581	unsigned int f_xfd = 0;
 582#endif
 583	memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps));
 584
 585	BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) >
 586		     sizeof(boot_cpu_data.x86_capability));
 587
 588	memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
 589	       sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)));
 590
 591	kvm_cpu_cap_mask(CPUID_1_ECX,
 592		/*
 593		 * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
 594		 * advertised to guests via CPUID!
 595		 */
 596		F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
 597		0 /* DS-CPL, VMX, SMX, EST */ |
 598		0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
 599		F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
 600		F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
 601		F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
 602		0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
 603		F(F16C) | F(RDRAND)
 604	);
 605	/* KVM emulates x2apic in software irrespective of host support. */
 606	kvm_cpu_cap_set(X86_FEATURE_X2APIC);
 607
 608	kvm_cpu_cap_mask(CPUID_1_EDX,
 609		F(FPU) | F(VME) | F(DE) | F(PSE) |
 610		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
 611		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
 612		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
 613		F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
 614		0 /* Reserved, DS, ACPI */ | F(MMX) |
 615		F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
 616		0 /* HTT, TM, Reserved, PBE */
 617	);
 618
 619	kvm_cpu_cap_mask(CPUID_7_0_EBX,
 620		F(FSGSBASE) | F(SGX) | F(BMI1) | F(HLE) | F(AVX2) |
 621		F(FDP_EXCPTN_ONLY) | F(SMEP) | F(BMI2) | F(ERMS) | F(INVPCID) |
 622		F(RTM) | F(ZERO_FCS_FDS) | 0 /*MPX*/ | F(AVX512F) |
 623		F(AVX512DQ) | F(RDSEED) | F(ADX) | F(SMAP) | F(AVX512IFMA) |
 624		F(CLFLUSHOPT) | F(CLWB) | 0 /*INTEL_PT*/ | F(AVX512PF) |
 625		F(AVX512ER) | F(AVX512CD) | F(SHA_NI) | F(AVX512BW) |
 626		F(AVX512VL));
 627
 628	kvm_cpu_cap_mask(CPUID_7_ECX,
 629		F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
 630		F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
 631		F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
 632		F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/ |
 633		F(SGX_LC) | F(BUS_LOCK_DETECT)
 634	);
 635	/* Set LA57 based on hardware capability. */
 636	if (cpuid_ecx(7) & F(LA57))
 637		kvm_cpu_cap_set(X86_FEATURE_LA57);
 638
 639	/*
 640	 * PKU not yet implemented for shadow paging and requires OSPKE
 641	 * to be set on the host. Clear it if that is not the case
 642	 */
 643	if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
 644		kvm_cpu_cap_clear(X86_FEATURE_PKU);
 645
 646	kvm_cpu_cap_mask(CPUID_7_EDX,
 647		F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
 648		F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
 649		F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
 650		F(SERIALIZE) | F(TSXLDTRK) | F(AVX512_FP16) |
 651		F(AMX_TILE) | F(AMX_INT8) | F(AMX_BF16)
 652	);
 653
 654	/* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
 655	kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
 656	kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
 657
 658	if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
 659		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
 660	if (boot_cpu_has(X86_FEATURE_STIBP))
 661		kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
 662	if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
 663		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
 664
 665	kvm_cpu_cap_mask(CPUID_7_1_EAX,
 666		F(AVX_VNNI) | F(AVX512_BF16) | F(CMPCCXADD) | F(AMX_FP16) |
 667		F(AVX_IFMA)
 
 668	);
 669
 670	kvm_cpu_cap_init_kvm_defined(CPUID_7_1_EDX,
 671		F(AVX_VNNI_INT8) | F(AVX_NE_CONVERT) | F(PREFETCHITI)
 
 
 
 
 
 
 672	);
 673
 674	kvm_cpu_cap_mask(CPUID_D_1_EAX,
 675		F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES) | f_xfd
 676	);
 677
 678	kvm_cpu_cap_init_kvm_defined(CPUID_12_EAX,
 679		SF(SGX1) | SF(SGX2) | SF(SGX_EDECCSSA)
 680	);
 681
 682	kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
 683		F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
 684		F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
 685		F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
 686		0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
 687		F(TOPOEXT) | 0 /* PERFCTR_CORE */
 688	);
 689
 690	kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
 691		F(FPU) | F(VME) | F(DE) | F(PSE) |
 692		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
 693		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
 694		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
 695		F(PAT) | F(PSE36) | 0 /* Reserved */ |
 696		F(NX) | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
 697		F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
 698		0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
 699	);
 700
 701	if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
 702		kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
 703
 
 
 
 
 704	kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
 705		F(CLZERO) | F(XSAVEERPTR) |
 706		F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
 707		F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON) |
 708		__feature_bit(KVM_X86_FEATURE_AMD_PSFD)
 709	);
 710
 711	/*
 712	 * AMD has separate bits for each SPEC_CTRL bit.
 713	 * arch/x86/kernel/cpu/bugs.c is kind enough to
 714	 * record that in cpufeatures so use them.
 715	 */
 716	if (boot_cpu_has(X86_FEATURE_IBPB))
 717		kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
 718	if (boot_cpu_has(X86_FEATURE_IBRS))
 719		kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
 720	if (boot_cpu_has(X86_FEATURE_STIBP))
 721		kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
 722	if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
 723		kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
 724	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
 725		kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
 726	/*
 727	 * The preference is to use SPEC CTRL MSR instead of the
 728	 * VIRT_SPEC MSR.
 729	 */
 730	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
 731	    !boot_cpu_has(X86_FEATURE_AMD_SSBD))
 732		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
 733
 734	/*
 735	 * Hide all SVM features by default, SVM will set the cap bits for
 736	 * features it emulates and/or exposes for L1.
 737	 */
 738	kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
 739
 740	kvm_cpu_cap_mask(CPUID_8000_001F_EAX,
 741		0 /* SME */ | F(SEV) | 0 /* VM_PAGE_FLUSH */ | F(SEV_ES) |
 742		F(SME_COHERENT));
 743
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 744	kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
 745		F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
 746		F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
 747		F(PMM) | F(PMM_EN)
 748	);
 749
 750	/*
 751	 * Hide RDTSCP and RDPID if either feature is reported as supported but
 752	 * probing MSR_TSC_AUX failed.  This is purely a sanity check and
 753	 * should never happen, but the guest will likely crash if RDTSCP or
 754	 * RDPID is misreported, and KVM has botched MSR_TSC_AUX emulation in
 755	 * the past.  For example, the sanity check may fire if this instance of
 756	 * KVM is running as L1 on top of an older, broken KVM.
 757	 */
 758	if (WARN_ON((kvm_cpu_cap_has(X86_FEATURE_RDTSCP) ||
 759		     kvm_cpu_cap_has(X86_FEATURE_RDPID)) &&
 760		     !kvm_is_supported_user_return_msr(MSR_TSC_AUX))) {
 761		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
 762		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
 763	}
 764}
 765EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
 766
 767struct kvm_cpuid_array {
 768	struct kvm_cpuid_entry2 *entries;
 769	int maxnent;
 770	int nent;
 771};
 772
 773static struct kvm_cpuid_entry2 *get_next_cpuid(struct kvm_cpuid_array *array)
 774{
 775	if (array->nent >= array->maxnent)
 776		return NULL;
 777
 778	return &array->entries[array->nent++];
 779}
 780
 781static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
 782					      u32 function, u32 index)
 783{
 784	struct kvm_cpuid_entry2 *entry = get_next_cpuid(array);
 785
 786	if (!entry)
 787		return NULL;
 788
 789	memset(entry, 0, sizeof(*entry));
 790	entry->function = function;
 791	entry->index = index;
 792	switch (function & 0xC0000000) {
 793	case 0x40000000:
 794		/* Hypervisor leaves are always synthesized by __do_cpuid_func.  */
 795		return entry;
 796
 797	case 0x80000000:
 798		/*
 799		 * 0x80000021 is sometimes synthesized by __do_cpuid_func, which
 800		 * would result in out-of-bounds calls to do_host_cpuid.
 801		 */
 802		{
 803			static int max_cpuid_80000000;
 804			if (!READ_ONCE(max_cpuid_80000000))
 805				WRITE_ONCE(max_cpuid_80000000, cpuid_eax(0x80000000));
 806			if (function > READ_ONCE(max_cpuid_80000000))
 807				return entry;
 808		}
 809		break;
 810
 811	default:
 812		break;
 813	}
 814
 815	cpuid_count(entry->function, entry->index,
 816		    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
 817
 818	if (cpuid_function_is_indexed(function))
 819		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 820
 821	return entry;
 822}
 823
 824static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
 825{
 826	struct kvm_cpuid_entry2 *entry;
 827
 828	if (array->nent >= array->maxnent)
 829		return -E2BIG;
 830
 831	entry = &array->entries[array->nent];
 832	entry->function = func;
 833	entry->index = 0;
 834	entry->flags = 0;
 835
 836	switch (func) {
 837	case 0:
 838		entry->eax = 7;
 839		++array->nent;
 840		break;
 841	case 1:
 842		entry->ecx = F(MOVBE);
 843		++array->nent;
 844		break;
 845	case 7:
 846		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 847		entry->eax = 0;
 848		if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
 849			entry->ecx = F(RDPID);
 850		++array->nent;
 851		break;
 852	default:
 853		break;
 854	}
 855
 856	return 0;
 857}
 858
 859static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
 860{
 861	struct kvm_cpuid_entry2 *entry;
 862	int r, i, max_idx;
 863
 864	/* all calls to cpuid_count() should be made on the same cpu */
 865	get_cpu();
 866
 867	r = -E2BIG;
 868
 869	entry = do_host_cpuid(array, function, 0);
 870	if (!entry)
 871		goto out;
 872
 873	switch (function) {
 874	case 0:
 875		/* Limited to the highest leaf implemented in KVM. */
 876		entry->eax = min(entry->eax, 0x1fU);
 877		break;
 878	case 1:
 879		cpuid_entry_override(entry, CPUID_1_EDX);
 880		cpuid_entry_override(entry, CPUID_1_ECX);
 881		break;
 882	case 2:
 883		/*
 884		 * On ancient CPUs, function 2 entries are STATEFUL.  That is,
 885		 * CPUID(function=2, index=0) may return different results each
 886		 * time, with the least-significant byte in EAX enumerating the
 887		 * number of times software should do CPUID(2, 0).
 888		 *
 889		 * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
 890		 * idiotic.  Intel's SDM states that EAX & 0xff "will always
 891		 * return 01H. Software should ignore this value and not
 892		 * interpret it as an informational descriptor", while AMD's
 893		 * APM states that CPUID(2) is reserved.
 894		 *
 895		 * WARN if a frankenstein CPU that supports virtualization and
 896		 * a stateful CPUID.0x2 is encountered.
 897		 */
 898		WARN_ON_ONCE((entry->eax & 0xff) > 1);
 899		break;
 900	/* functions 4 and 0x8000001d have additional index. */
 901	case 4:
 902	case 0x8000001d:
 903		/*
 904		 * Read entries until the cache type in the previous entry is
 905		 * zero, i.e. indicates an invalid entry.
 906		 */
 907		for (i = 1; entry->eax & 0x1f; ++i) {
 908			entry = do_host_cpuid(array, function, i);
 909			if (!entry)
 910				goto out;
 911		}
 912		break;
 913	case 6: /* Thermal management */
 914		entry->eax = 0x4; /* allow ARAT */
 915		entry->ebx = 0;
 916		entry->ecx = 0;
 917		entry->edx = 0;
 918		break;
 919	/* function 7 has additional index. */
 920	case 7:
 921		entry->eax = min(entry->eax, 1u);
 922		cpuid_entry_override(entry, CPUID_7_0_EBX);
 923		cpuid_entry_override(entry, CPUID_7_ECX);
 924		cpuid_entry_override(entry, CPUID_7_EDX);
 925
 926		/* KVM only supports 0x7.0 and 0x7.1, capped above via min(). */
 927		if (entry->eax == 1) {
 928			entry = do_host_cpuid(array, function, 1);
 929			if (!entry)
 930				goto out;
 931
 932			cpuid_entry_override(entry, CPUID_7_1_EAX);
 933			cpuid_entry_override(entry, CPUID_7_1_EDX);
 934			entry->ebx = 0;
 935			entry->ecx = 0;
 936		}
 
 
 
 
 
 
 
 
 
 
 937		break;
 938	case 0xa: { /* Architectural Performance Monitoring */
 939		union cpuid10_eax eax;
 940		union cpuid10_edx edx;
 941
 942		if (!static_cpu_has(X86_FEATURE_ARCH_PERFMON)) {
 943			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
 944			break;
 945		}
 946
 947		eax.split.version_id = kvm_pmu_cap.version;
 948		eax.split.num_counters = kvm_pmu_cap.num_counters_gp;
 949		eax.split.bit_width = kvm_pmu_cap.bit_width_gp;
 950		eax.split.mask_length = kvm_pmu_cap.events_mask_len;
 951		edx.split.num_counters_fixed = kvm_pmu_cap.num_counters_fixed;
 952		edx.split.bit_width_fixed = kvm_pmu_cap.bit_width_fixed;
 953
 954		if (kvm_pmu_cap.version)
 955			edx.split.anythread_deprecated = 1;
 956		edx.split.reserved1 = 0;
 957		edx.split.reserved2 = 0;
 958
 959		entry->eax = eax.full;
 960		entry->ebx = kvm_pmu_cap.events_mask;
 961		entry->ecx = 0;
 962		entry->edx = edx.full;
 963		break;
 964	}
 965	case 0x1f:
 966	case 0xb:
 967		/*
 968		 * No topology; a valid topology is indicated by the presence
 969		 * of subleaf 1.
 970		 */
 971		entry->eax = entry->ebx = entry->ecx = 0;
 972		break;
 973	case 0xd: {
 974		u64 permitted_xcr0 = kvm_caps.supported_xcr0 & xstate_get_guest_group_perm();
 975		u64 permitted_xss = kvm_caps.supported_xss;
 976
 977		entry->eax &= permitted_xcr0;
 978		entry->ebx = xstate_required_size(permitted_xcr0, false);
 979		entry->ecx = entry->ebx;
 980		entry->edx &= permitted_xcr0 >> 32;
 981		if (!permitted_xcr0)
 982			break;
 983
 984		entry = do_host_cpuid(array, function, 1);
 985		if (!entry)
 986			goto out;
 987
 988		cpuid_entry_override(entry, CPUID_D_1_EAX);
 989		if (entry->eax & (F(XSAVES)|F(XSAVEC)))
 990			entry->ebx = xstate_required_size(permitted_xcr0 | permitted_xss,
 991							  true);
 992		else {
 993			WARN_ON_ONCE(permitted_xss != 0);
 994			entry->ebx = 0;
 995		}
 996		entry->ecx &= permitted_xss;
 997		entry->edx &= permitted_xss >> 32;
 998
 999		for (i = 2; i < 64; ++i) {
1000			bool s_state;
1001			if (permitted_xcr0 & BIT_ULL(i))
1002				s_state = false;
1003			else if (permitted_xss & BIT_ULL(i))
1004				s_state = true;
1005			else
1006				continue;
1007
1008			entry = do_host_cpuid(array, function, i);
1009			if (!entry)
1010				goto out;
1011
1012			/*
1013			 * The supported check above should have filtered out
1014			 * invalid sub-leafs.  Only valid sub-leafs should
1015			 * reach this point, and they should have a non-zero
1016			 * save state size.  Furthermore, check whether the
1017			 * processor agrees with permitted_xcr0/permitted_xss
1018			 * on whether this is an XCR0- or IA32_XSS-managed area.
1019			 */
1020			if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
1021				--array->nent;
1022				continue;
1023			}
1024
1025			if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
1026				entry->ecx &= ~BIT_ULL(2);
1027			entry->edx = 0;
1028		}
1029		break;
1030	}
1031	case 0x12:
1032		/* Intel SGX */
1033		if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) {
1034			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1035			break;
1036		}
1037
1038		/*
1039		 * Index 0: Sub-features, MISCSELECT (a.k.a extended features)
1040		 * and max enclave sizes.   The SGX sub-features and MISCSELECT
1041		 * are restricted by kernel and KVM capabilities (like most
1042		 * feature flags), while enclave size is unrestricted.
1043		 */
1044		cpuid_entry_override(entry, CPUID_12_EAX);
1045		entry->ebx &= SGX_MISC_EXINFO;
1046
1047		entry = do_host_cpuid(array, function, 1);
1048		if (!entry)
1049			goto out;
1050
1051		/*
1052		 * Index 1: SECS.ATTRIBUTES.  ATTRIBUTES are restricted a la
1053		 * feature flags.  Advertise all supported flags, including
1054		 * privileged attributes that require explicit opt-in from
1055		 * userspace.  ATTRIBUTES.XFRM is not adjusted as userspace is
1056		 * expected to derive it from supported XCR0.
1057		 */
1058		entry->eax &= SGX_ATTR_PRIV_MASK | SGX_ATTR_UNPRIV_MASK;
1059		entry->ebx &= 0;
1060		break;
1061	/* Intel PT */
1062	case 0x14:
1063		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
1064			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1065			break;
1066		}
1067
1068		for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1069			if (!do_host_cpuid(array, function, i))
1070				goto out;
1071		}
1072		break;
1073	/* Intel AMX TILE */
1074	case 0x1d:
1075		if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1076			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1077			break;
1078		}
1079
1080		for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1081			if (!do_host_cpuid(array, function, i))
1082				goto out;
1083		}
1084		break;
1085	case 0x1e: /* TMUL information */
1086		if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1087			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1088			break;
1089		}
1090		break;
1091	case KVM_CPUID_SIGNATURE: {
1092		const u32 *sigptr = (const u32 *)KVM_SIGNATURE;
1093		entry->eax = KVM_CPUID_FEATURES;
1094		entry->ebx = sigptr[0];
1095		entry->ecx = sigptr[1];
1096		entry->edx = sigptr[2];
1097		break;
1098	}
1099	case KVM_CPUID_FEATURES:
1100		entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
1101			     (1 << KVM_FEATURE_NOP_IO_DELAY) |
1102			     (1 << KVM_FEATURE_CLOCKSOURCE2) |
1103			     (1 << KVM_FEATURE_ASYNC_PF) |
1104			     (1 << KVM_FEATURE_PV_EOI) |
1105			     (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
1106			     (1 << KVM_FEATURE_PV_UNHALT) |
1107			     (1 << KVM_FEATURE_PV_TLB_FLUSH) |
1108			     (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
1109			     (1 << KVM_FEATURE_PV_SEND_IPI) |
1110			     (1 << KVM_FEATURE_POLL_CONTROL) |
1111			     (1 << KVM_FEATURE_PV_SCHED_YIELD) |
1112			     (1 << KVM_FEATURE_ASYNC_PF_INT);
1113
1114		if (sched_info_on())
1115			entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
1116
1117		entry->ebx = 0;
1118		entry->ecx = 0;
1119		entry->edx = 0;
1120		break;
1121	case 0x80000000:
1122		entry->eax = min(entry->eax, 0x80000021);
1123		/*
1124		 * Serializing LFENCE is reported in a multitude of ways, and
1125		 * NullSegClearsBase is not reported in CPUID on Zen2; help
1126		 * userspace by providing the CPUID leaf ourselves.
1127		 *
1128		 * However, only do it if the host has CPUID leaf 0x8000001d.
1129		 * QEMU thinks that it can query the host blindly for that
1130		 * CPUID leaf if KVM reports that it supports 0x8000001d or
1131		 * above.  The processor merrily returns values from the
1132		 * highest Intel leaf which QEMU tries to use as the guest's
1133		 * 0x8000001d.  Even worse, this can result in an infinite
1134		 * loop if said highest leaf has no subleaves indexed by ECX.
1135		 */
1136		if (entry->eax >= 0x8000001d &&
1137		    (static_cpu_has(X86_FEATURE_LFENCE_RDTSC)
1138		     || !static_cpu_has_bug(X86_BUG_NULL_SEG)))
1139			entry->eax = max(entry->eax, 0x80000021);
1140		break;
1141	case 0x80000001:
1142		entry->ebx &= ~GENMASK(27, 16);
1143		cpuid_entry_override(entry, CPUID_8000_0001_EDX);
1144		cpuid_entry_override(entry, CPUID_8000_0001_ECX);
1145		break;
 
 
 
1146	case 0x80000006:
1147		/* Drop reserved bits, pass host L2 cache and TLB info. */
1148		entry->edx &= ~GENMASK(17, 16);
1149		break;
1150	case 0x80000007: /* Advanced power management */
1151		/* invariant TSC is CPUID.80000007H:EDX[8] */
1152		entry->edx &= (1 << 8);
1153		/* mask against host */
1154		entry->edx &= boot_cpu_data.x86_power;
1155		entry->eax = entry->ebx = entry->ecx = 0;
1156		break;
1157	case 0x80000008: {
1158		unsigned g_phys_as = (entry->eax >> 16) & 0xff;
1159		unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
1160		unsigned phys_as = entry->eax & 0xff;
1161
1162		/*
1163		 * If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as
1164		 * the guest operates in the same PA space as the host, i.e.
1165		 * reductions in MAXPHYADDR for memory encryption affect shadow
1166		 * paging, too.
1167		 *
1168		 * If TDP is enabled but an explicit guest MAXPHYADDR is not
1169		 * provided, use the raw bare metal MAXPHYADDR as reductions to
1170		 * the HPAs do not affect GPAs.
1171		 */
1172		if (!tdp_enabled)
1173			g_phys_as = boot_cpu_data.x86_phys_bits;
1174		else if (!g_phys_as)
1175			g_phys_as = phys_as;
1176
1177		entry->eax = g_phys_as | (virt_as << 8);
1178		entry->ecx &= ~(GENMASK(31, 16) | GENMASK(11, 8));
1179		entry->edx = 0;
1180		cpuid_entry_override(entry, CPUID_8000_0008_EBX);
1181		break;
1182	}
1183	case 0x8000000A:
1184		if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
1185			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1186			break;
1187		}
1188		entry->eax = 1; /* SVM revision 1 */
1189		entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
1190				   ASID emulation to nested SVM */
1191		entry->ecx = 0; /* Reserved */
1192		cpuid_entry_override(entry, CPUID_8000_000A_EDX);
1193		break;
1194	case 0x80000019:
1195		entry->ecx = entry->edx = 0;
1196		break;
1197	case 0x8000001a:
1198		entry->eax &= GENMASK(2, 0);
1199		entry->ebx = entry->ecx = entry->edx = 0;
1200		break;
1201	case 0x8000001e:
1202		/* Do not return host topology information.  */
1203		entry->eax = entry->ebx = entry->ecx = 0;
1204		entry->edx = 0; /* reserved */
1205		break;
1206	case 0x8000001F:
1207		if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) {
1208			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1209		} else {
1210			cpuid_entry_override(entry, CPUID_8000_001F_EAX);
1211			/* Clear NumVMPL since KVM does not support VMPL.  */
1212			entry->ebx &= ~GENMASK(31, 12);
1213			/*
1214			 * Enumerate '0' for "PA bits reduction", the adjusted
1215			 * MAXPHYADDR is enumerated directly (see 0x80000008).
1216			 */
1217			entry->ebx &= ~GENMASK(11, 6);
1218		}
1219		break;
1220	case 0x80000020:
1221		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1222		break;
1223	case 0x80000021:
1224		entry->ebx = entry->ecx = entry->edx = 0;
1225		/*
1226		 * Pass down these bits:
1227		 *    EAX      0      NNDBP, Processor ignores nested data breakpoints
1228		 *    EAX      2      LAS, LFENCE always serializing
1229		 *    EAX      6      NSCB, Null selector clear base
1230		 *
1231		 * Other defined bits are for MSRs that KVM does not expose:
1232		 *   EAX      3      SPCL, SMM page configuration lock
1233		 *   EAX      13     PCMSR, Prefetch control MSR
1234		 *
1235		 * KVM doesn't support SMM_CTL.
1236		 *   EAX       9     SMM_CTL MSR is not supported
1237		 */
1238		entry->eax &= BIT(0) | BIT(2) | BIT(6);
1239		entry->eax |= BIT(9);
1240		if (static_cpu_has(X86_FEATURE_LFENCE_RDTSC))
1241			entry->eax |= BIT(2);
1242		if (!static_cpu_has_bug(X86_BUG_NULL_SEG))
1243			entry->eax |= BIT(6);
1244		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1245	/*Add support for Centaur's CPUID instruction*/
1246	case 0xC0000000:
1247		/*Just support up to 0xC0000004 now*/
1248		entry->eax = min(entry->eax, 0xC0000004);
1249		break;
1250	case 0xC0000001:
1251		cpuid_entry_override(entry, CPUID_C000_0001_EDX);
1252		break;
1253	case 3: /* Processor serial number */
1254	case 5: /* MONITOR/MWAIT */
1255	case 0xC0000002:
1256	case 0xC0000003:
1257	case 0xC0000004:
1258	default:
1259		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1260		break;
1261	}
1262
1263	r = 0;
1264
1265out:
1266	put_cpu();
1267
1268	return r;
1269}
1270
1271static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1272			 unsigned int type)
1273{
1274	if (type == KVM_GET_EMULATED_CPUID)
1275		return __do_cpuid_func_emulated(array, func);
1276
1277	return __do_cpuid_func(array, func);
1278}
1279
1280#define CENTAUR_CPUID_SIGNATURE 0xC0000000
1281
1282static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1283			  unsigned int type)
1284{
1285	u32 limit;
1286	int r;
1287
1288	if (func == CENTAUR_CPUID_SIGNATURE &&
1289	    boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
1290		return 0;
1291
1292	r = do_cpuid_func(array, func, type);
1293	if (r)
1294		return r;
1295
1296	limit = array->entries[array->nent - 1].eax;
1297	for (func = func + 1; func <= limit; ++func) {
1298		r = do_cpuid_func(array, func, type);
1299		if (r)
1300			break;
1301	}
1302
1303	return r;
1304}
1305
1306static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
1307				 __u32 num_entries, unsigned int ioctl_type)
1308{
1309	int i;
1310	__u32 pad[3];
1311
1312	if (ioctl_type != KVM_GET_EMULATED_CPUID)
1313		return false;
1314
1315	/*
1316	 * We want to make sure that ->padding is being passed clean from
1317	 * userspace in case we want to use it for something in the future.
1318	 *
1319	 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
1320	 * have to give ourselves satisfied only with the emulated side. /me
1321	 * sheds a tear.
1322	 */
1323	for (i = 0; i < num_entries; i++) {
1324		if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
1325			return true;
1326
1327		if (pad[0] || pad[1] || pad[2])
1328			return true;
1329	}
1330	return false;
1331}
1332
1333int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
1334			    struct kvm_cpuid_entry2 __user *entries,
1335			    unsigned int type)
1336{
1337	static const u32 funcs[] = {
1338		0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
1339	};
1340
1341	struct kvm_cpuid_array array = {
1342		.nent = 0,
1343	};
1344	int r, i;
1345
1346	if (cpuid->nent < 1)
1347		return -E2BIG;
1348	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1349		cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1350
1351	if (sanity_check_entries(entries, cpuid->nent, type))
1352		return -EINVAL;
1353
1354	array.entries = kvcalloc(cpuid->nent, sizeof(struct kvm_cpuid_entry2), GFP_KERNEL);
1355	if (!array.entries)
1356		return -ENOMEM;
1357
1358	array.maxnent = cpuid->nent;
1359
1360	for (i = 0; i < ARRAY_SIZE(funcs); i++) {
1361		r = get_cpuid_func(&array, funcs[i], type);
1362		if (r)
1363			goto out_free;
1364	}
1365	cpuid->nent = array.nent;
1366
1367	if (copy_to_user(entries, array.entries,
1368			 array.nent * sizeof(struct kvm_cpuid_entry2)))
1369		r = -EFAULT;
1370
1371out_free:
1372	kvfree(array.entries);
1373	return r;
1374}
1375
1376struct kvm_cpuid_entry2 *kvm_find_cpuid_entry_index(struct kvm_vcpu *vcpu,
1377						    u32 function, u32 index)
1378{
1379	return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1380				 function, index);
1381}
1382EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry_index);
1383
1384struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
1385					      u32 function)
1386{
1387	return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1388				 function, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
1389}
1390EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
1391
1392/*
1393 * Intel CPUID semantics treats any query for an out-of-range leaf as if the
1394 * highest basic leaf (i.e. CPUID.0H:EAX) were requested.  AMD CPUID semantics
1395 * returns all zeroes for any undefined leaf, whether or not the leaf is in
1396 * range.  Centaur/VIA follows Intel semantics.
1397 *
1398 * A leaf is considered out-of-range if its function is higher than the maximum
1399 * supported leaf of its associated class or if its associated class does not
1400 * exist.
1401 *
1402 * There are three primary classes to be considered, with their respective
1403 * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive.  A primary
1404 * class exists if a guest CPUID entry for its <base> leaf exists.  For a given
1405 * class, CPUID.<base>.EAX contains the max supported leaf for the class.
1406 *
1407 *  - Basic:      0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
1408 *  - Hypervisor: 0x40000000 - 0x4fffffff
1409 *  - Extended:   0x80000000 - 0xbfffffff
1410 *  - Centaur:    0xc0000000 - 0xcfffffff
1411 *
1412 * The Hypervisor class is further subdivided into sub-classes that each act as
1413 * their own independent class associated with a 0x100 byte range.  E.g. if Qemu
1414 * is advertising support for both HyperV and KVM, the resulting Hypervisor
1415 * CPUID sub-classes are:
1416 *
1417 *  - HyperV:     0x40000000 - 0x400000ff
1418 *  - KVM:        0x40000100 - 0x400001ff
1419 */
1420static struct kvm_cpuid_entry2 *
1421get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
1422{
1423	struct kvm_cpuid_entry2 *basic, *class;
1424	u32 function = *fn_ptr;
1425
1426	basic = kvm_find_cpuid_entry(vcpu, 0);
1427	if (!basic)
1428		return NULL;
1429
1430	if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
1431	    is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
1432		return NULL;
1433
1434	if (function >= 0x40000000 && function <= 0x4fffffff)
1435		class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00);
1436	else if (function >= 0xc0000000)
1437		class = kvm_find_cpuid_entry(vcpu, 0xc0000000);
1438	else
1439		class = kvm_find_cpuid_entry(vcpu, function & 0x80000000);
1440
1441	if (class && function <= class->eax)
1442		return NULL;
1443
1444	/*
1445	 * Leaf specific adjustments are also applied when redirecting to the
1446	 * max basic entry, e.g. if the max basic leaf is 0xb but there is no
1447	 * entry for CPUID.0xb.index (see below), then the output value for EDX
1448	 * needs to be pulled from CPUID.0xb.1.
1449	 */
1450	*fn_ptr = basic->eax;
1451
1452	/*
1453	 * The class does not exist or the requested function is out of range;
1454	 * the effective CPUID entry is the max basic leaf.  Note, the index of
1455	 * the original requested leaf is observed!
1456	 */
1457	return kvm_find_cpuid_entry_index(vcpu, basic->eax, index);
1458}
1459
1460bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1461	       u32 *ecx, u32 *edx, bool exact_only)
1462{
1463	u32 orig_function = *eax, function = *eax, index = *ecx;
1464	struct kvm_cpuid_entry2 *entry;
1465	bool exact, used_max_basic = false;
1466
1467	entry = kvm_find_cpuid_entry_index(vcpu, function, index);
1468	exact = !!entry;
1469
1470	if (!entry && !exact_only) {
1471		entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1472		used_max_basic = !!entry;
1473	}
1474
1475	if (entry) {
1476		*eax = entry->eax;
1477		*ebx = entry->ebx;
1478		*ecx = entry->ecx;
1479		*edx = entry->edx;
1480		if (function == 7 && index == 0) {
1481			u64 data;
1482		        if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1483			    (data & TSX_CTRL_CPUID_CLEAR))
1484				*ebx &= ~(F(RTM) | F(HLE));
 
 
 
1485		}
1486	} else {
1487		*eax = *ebx = *ecx = *edx = 0;
1488		/*
1489		 * When leaf 0BH or 1FH is defined, CL is pass-through
1490		 * and EDX is always the x2APIC ID, even for undefined
1491		 * subleaves. Index 1 will exist iff the leaf is
1492		 * implemented, so we pass through CL iff leaf 1
1493		 * exists. EDX can be copied from any existing index.
1494		 */
1495		if (function == 0xb || function == 0x1f) {
1496			entry = kvm_find_cpuid_entry_index(vcpu, function, 1);
1497			if (entry) {
1498				*ecx = index & 0xff;
1499				*edx = entry->edx;
1500			}
1501		}
1502	}
1503	trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
1504			used_max_basic);
1505	return exact;
1506}
1507EXPORT_SYMBOL_GPL(kvm_cpuid);
1508
1509int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1510{
1511	u32 eax, ebx, ecx, edx;
1512
1513	if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1514		return 1;
1515
1516	eax = kvm_rax_read(vcpu);
1517	ecx = kvm_rcx_read(vcpu);
1518	kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1519	kvm_rax_write(vcpu, eax);
1520	kvm_rbx_write(vcpu, ebx);
1521	kvm_rcx_write(vcpu, ecx);
1522	kvm_rdx_write(vcpu, edx);
1523	return kvm_skip_emulated_instruction(vcpu);
1524}
1525EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Kernel-based Virtual Machine driver for Linux
   4 * cpuid support routines
   5 *
   6 * derived from arch/x86/kvm/x86.c
   7 *
   8 * Copyright 2011 Red Hat, Inc. and/or its affiliates.
   9 * Copyright IBM Corporation, 2008
  10 */
  11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12
  13#include <linux/kvm_host.h>
  14#include "linux/lockdep.h"
  15#include <linux/export.h>
  16#include <linux/vmalloc.h>
  17#include <linux/uaccess.h>
  18#include <linux/sched/stat.h>
  19
  20#include <asm/processor.h>
  21#include <asm/user.h>
  22#include <asm/fpu/xstate.h>
  23#include <asm/sgx.h>
  24#include <asm/cpuid.h>
  25#include "cpuid.h"
  26#include "lapic.h"
  27#include "mmu.h"
  28#include "trace.h"
  29#include "pmu.h"
  30#include "xen.h"
  31
  32/*
  33 * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
  34 * aligned to sizeof(unsigned long) because it's not accessed via bitops.
  35 */
  36u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly;
  37EXPORT_SYMBOL_GPL(kvm_cpu_caps);
  38
  39u32 xstate_required_size(u64 xstate_bv, bool compacted)
  40{
  41	int feature_bit = 0;
  42	u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
  43
  44	xstate_bv &= XFEATURE_MASK_EXTEND;
  45	while (xstate_bv) {
  46		if (xstate_bv & 0x1) {
  47		        u32 eax, ebx, ecx, edx, offset;
  48		        cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
  49			/* ECX[1]: 64B alignment in compacted form */
  50			if (compacted)
  51				offset = (ecx & 0x2) ? ALIGN(ret, 64) : ret;
  52			else
  53				offset = ebx;
  54			ret = max(ret, offset + eax);
  55		}
  56
  57		xstate_bv >>= 1;
  58		feature_bit++;
  59	}
  60
  61	return ret;
  62}
  63
 
 
 
 
 
 
  64#define F feature_bit
  65
  66/* Scattered Flag - For features that are scattered by cpufeatures.h. */
  67#define SF(name)						\
  68({								\
  69	BUILD_BUG_ON(X86_FEATURE_##name >= MAX_CPU_FEATURES);	\
  70	(boot_cpu_has(X86_FEATURE_##name) ? F(name) : 0);	\
  71})
  72
  73/*
  74 * Magic value used by KVM when querying userspace-provided CPUID entries and
  75 * doesn't care about the CPIUD index because the index of the function in
  76 * question is not significant.  Note, this magic value must have at least one
  77 * bit set in bits[63:32] and must be consumed as a u64 by cpuid_entry2_find()
  78 * to avoid false positives when processing guest CPUID input.
  79 */
  80#define KVM_CPUID_INDEX_NOT_SIGNIFICANT -1ull
  81
  82static inline struct kvm_cpuid_entry2 *cpuid_entry2_find(
  83	struct kvm_cpuid_entry2 *entries, int nent, u32 function, u64 index)
  84{
  85	struct kvm_cpuid_entry2 *e;
  86	int i;
  87
  88	/*
  89	 * KVM has a semi-arbitrary rule that querying the guest's CPUID model
  90	 * with IRQs disabled is disallowed.  The CPUID model can legitimately
  91	 * have over one hundred entries, i.e. the lookup is slow, and IRQs are
  92	 * typically disabled in KVM only when KVM is in a performance critical
  93	 * path, e.g. the core VM-Enter/VM-Exit run loop.  Nothing will break
  94	 * if this rule is violated, this assertion is purely to flag potential
  95	 * performance issues.  If this fires, consider moving the lookup out
  96	 * of the hotpath, e.g. by caching information during CPUID updates.
  97	 */
  98	lockdep_assert_irqs_enabled();
  99
 100	for (i = 0; i < nent; i++) {
 101		e = &entries[i];
 102
 103		if (e->function != function)
 104			continue;
 105
 106		/*
 107		 * If the index isn't significant, use the first entry with a
 108		 * matching function.  It's userspace's responsibility to not
 109		 * provide "duplicate" entries in all cases.
 110		 */
 111		if (!(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) || e->index == index)
 112			return e;
 113
 114
 115		/*
 116		 * Similarly, use the first matching entry if KVM is doing a
 117		 * lookup (as opposed to emulating CPUID) for a function that's
 118		 * architecturally defined as not having a significant index.
 119		 */
 120		if (index == KVM_CPUID_INDEX_NOT_SIGNIFICANT) {
 121			/*
 122			 * Direct lookups from KVM should not diverge from what
 123			 * KVM defines internally (the architectural behavior).
 124			 */
 125			WARN_ON_ONCE(cpuid_function_is_indexed(function));
 126			return e;
 127		}
 128	}
 129
 130	return NULL;
 131}
 132
 133static int kvm_check_cpuid(struct kvm_vcpu *vcpu,
 134			   struct kvm_cpuid_entry2 *entries,
 135			   int nent)
 136{
 137	struct kvm_cpuid_entry2 *best;
 138	u64 xfeatures;
 139
 140	/*
 141	 * The existing code assumes virtual address is 48-bit or 57-bit in the
 142	 * canonical address checks; exit if it is ever changed.
 143	 */
 144	best = cpuid_entry2_find(entries, nent, 0x80000008,
 145				 KVM_CPUID_INDEX_NOT_SIGNIFICANT);
 146	if (best) {
 147		int vaddr_bits = (best->eax & 0xff00) >> 8;
 148
 149		if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
 150			return -EINVAL;
 151	}
 152
 153	/*
 154	 * Exposing dynamic xfeatures to the guest requires additional
 155	 * enabling in the FPU, e.g. to expand the guest XSAVE state size.
 156	 */
 157	best = cpuid_entry2_find(entries, nent, 0xd, 0);
 158	if (!best)
 159		return 0;
 160
 161	xfeatures = best->eax | ((u64)best->edx << 32);
 162	xfeatures &= XFEATURE_MASK_USER_DYNAMIC;
 163	if (!xfeatures)
 164		return 0;
 165
 166	return fpu_enable_guest_xfd_features(&vcpu->arch.guest_fpu, xfeatures);
 167}
 168
 169/* Check whether the supplied CPUID data is equal to what is already set for the vCPU. */
 170static int kvm_cpuid_check_equal(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
 171				 int nent)
 172{
 173	struct kvm_cpuid_entry2 *orig;
 174	int i;
 175
 176	if (nent != vcpu->arch.cpuid_nent)
 177		return -EINVAL;
 178
 179	for (i = 0; i < nent; i++) {
 180		orig = &vcpu->arch.cpuid_entries[i];
 181		if (e2[i].function != orig->function ||
 182		    e2[i].index != orig->index ||
 183		    e2[i].flags != orig->flags ||
 184		    e2[i].eax != orig->eax || e2[i].ebx != orig->ebx ||
 185		    e2[i].ecx != orig->ecx || e2[i].edx != orig->edx)
 186			return -EINVAL;
 187	}
 188
 189	return 0;
 190}
 191
 192static struct kvm_hypervisor_cpuid kvm_get_hypervisor_cpuid(struct kvm_vcpu *vcpu,
 193							    const char *sig)
 194{
 195	struct kvm_hypervisor_cpuid cpuid = {};
 196	struct kvm_cpuid_entry2 *entry;
 197	u32 base;
 198
 199	for_each_possible_hypervisor_cpuid_base(base) {
 200		entry = kvm_find_cpuid_entry(vcpu, base);
 
 
 201
 202		if (entry) {
 203			u32 signature[3];
 204
 205			signature[0] = entry->ebx;
 206			signature[1] = entry->ecx;
 207			signature[2] = entry->edx;
 208
 209			if (!memcmp(signature, sig, sizeof(signature))) {
 210				cpuid.base = base;
 211				cpuid.limit = entry->eax;
 212				break;
 213			}
 214		}
 215	}
 216
 217	return cpuid;
 218}
 219
 220static struct kvm_cpuid_entry2 *__kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu,
 221					      struct kvm_cpuid_entry2 *entries, int nent)
 222{
 223	u32 base = vcpu->arch.kvm_cpuid.base;
 224
 225	if (!base)
 226		return NULL;
 227
 228	return cpuid_entry2_find(entries, nent, base | KVM_CPUID_FEATURES,
 229				 KVM_CPUID_INDEX_NOT_SIGNIFICANT);
 230}
 231
 232static struct kvm_cpuid_entry2 *kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu)
 233{
 234	return __kvm_find_kvm_cpuid_features(vcpu, vcpu->arch.cpuid_entries,
 235					     vcpu->arch.cpuid_nent);
 236}
 237
 238void kvm_update_pv_runtime(struct kvm_vcpu *vcpu)
 239{
 240	struct kvm_cpuid_entry2 *best = kvm_find_kvm_cpuid_features(vcpu);
 241
 242	/*
 243	 * save the feature bitmap to avoid cpuid lookup for every PV
 244	 * operation
 245	 */
 246	if (best)
 247		vcpu->arch.pv_cpuid.features = best->eax;
 248}
 249
 250/*
 251 * Calculate guest's supported XCR0 taking into account guest CPUID data and
 252 * KVM's supported XCR0 (comprised of host's XCR0 and KVM_SUPPORTED_XCR0).
 253 */
 254static u64 cpuid_get_supported_xcr0(struct kvm_cpuid_entry2 *entries, int nent)
 255{
 256	struct kvm_cpuid_entry2 *best;
 257
 258	best = cpuid_entry2_find(entries, nent, 0xd, 0);
 259	if (!best)
 260		return 0;
 261
 262	return (best->eax | ((u64)best->edx << 32)) & kvm_caps.supported_xcr0;
 263}
 264
 265static void __kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *entries,
 266				       int nent)
 267{
 268	struct kvm_cpuid_entry2 *best;
 
 269
 270	best = cpuid_entry2_find(entries, nent, 1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
 271	if (best) {
 272		/* Update OSXSAVE bit */
 273		if (boot_cpu_has(X86_FEATURE_XSAVE))
 274			cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
 275					   kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE));
 276
 277		cpuid_entry_change(best, X86_FEATURE_APIC,
 278			   vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
 279	}
 280
 281	best = cpuid_entry2_find(entries, nent, 7, 0);
 282	if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
 283		cpuid_entry_change(best, X86_FEATURE_OSPKE,
 284				   kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE));
 285
 286	best = cpuid_entry2_find(entries, nent, 0xD, 0);
 287	if (best)
 288		best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
 289
 290	best = cpuid_entry2_find(entries, nent, 0xD, 1);
 291	if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
 292		     cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
 293		best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
 294
 295	best = __kvm_find_kvm_cpuid_features(vcpu, entries, nent);
 296	if (kvm_hlt_in_guest(vcpu->kvm) && best &&
 297		(best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
 298		best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
 299
 300	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
 301		best = cpuid_entry2_find(entries, nent, 0x1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
 302		if (best)
 303			cpuid_entry_change(best, X86_FEATURE_MWAIT,
 304					   vcpu->arch.ia32_misc_enable_msr &
 305					   MSR_IA32_MISC_ENABLE_MWAIT);
 306	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 307}
 308
 309void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
 310{
 311	__kvm_update_cpuid_runtime(vcpu, vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
 312}
 313EXPORT_SYMBOL_GPL(kvm_update_cpuid_runtime);
 314
 315static bool kvm_cpuid_has_hyperv(struct kvm_cpuid_entry2 *entries, int nent)
 316{
 317#ifdef CONFIG_KVM_HYPERV
 318	struct kvm_cpuid_entry2 *entry;
 319
 320	entry = cpuid_entry2_find(entries, nent, HYPERV_CPUID_INTERFACE,
 321				  KVM_CPUID_INDEX_NOT_SIGNIFICANT);
 322	return entry && entry->eax == HYPERV_CPUID_SIGNATURE_EAX;
 323#else
 324	return false;
 325#endif
 326}
 327
 328static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
 329{
 330	struct kvm_lapic *apic = vcpu->arch.apic;
 331	struct kvm_cpuid_entry2 *best;
 332	bool allow_gbpages;
 333
 334	BUILD_BUG_ON(KVM_NR_GOVERNED_FEATURES > KVM_MAX_NR_GOVERNED_FEATURES);
 335	bitmap_zero(vcpu->arch.governed_features.enabled,
 336		    KVM_MAX_NR_GOVERNED_FEATURES);
 337
 338	/*
 339	 * If TDP is enabled, let the guest use GBPAGES if they're supported in
 340	 * hardware.  The hardware page walker doesn't let KVM disable GBPAGES,
 341	 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
 342	 * walk for performance and complexity reasons.  Not to mention KVM
 343	 * _can't_ solve the problem because GVA->GPA walks aren't visible to
 344	 * KVM once a TDP translation is installed.  Mimic hardware behavior so
 345	 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
 346	 * If TDP is disabled, honor *only* guest CPUID as KVM has full control
 347	 * and can install smaller shadow pages if the host lacks 1GiB support.
 348	 */
 349	allow_gbpages = tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
 350				      guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
 351	if (allow_gbpages)
 352		kvm_governed_feature_set(vcpu, X86_FEATURE_GBPAGES);
 353
 354	best = kvm_find_cpuid_entry(vcpu, 1);
 355	if (best && apic) {
 356		if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
 357			apic->lapic_timer.timer_mode_mask = 3 << 17;
 358		else
 359			apic->lapic_timer.timer_mode_mask = 1 << 17;
 360
 361		kvm_apic_set_version(vcpu);
 362	}
 363
 364	vcpu->arch.guest_supported_xcr0 =
 365		cpuid_get_supported_xcr0(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
 366
 
 
 
 
 
 
 
 
 367	kvm_update_pv_runtime(vcpu);
 368
 369	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
 370	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
 371
 372	kvm_pmu_refresh(vcpu);
 373	vcpu->arch.cr4_guest_rsvd_bits =
 374	    __cr4_reserved_bits(guest_cpuid_has, vcpu);
 375
 376	kvm_hv_set_cpuid(vcpu, kvm_cpuid_has_hyperv(vcpu->arch.cpuid_entries,
 377						    vcpu->arch.cpuid_nent));
 378
 379	/* Invoke the vendor callback only after the above state is updated. */
 380	static_call(kvm_x86_vcpu_after_set_cpuid)(vcpu);
 381
 382	/*
 383	 * Except for the MMU, which needs to do its thing any vendor specific
 384	 * adjustments to the reserved GPA bits.
 385	 */
 386	kvm_mmu_after_set_cpuid(vcpu);
 387}
 388
 389int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
 390{
 391	struct kvm_cpuid_entry2 *best;
 392
 393	best = kvm_find_cpuid_entry(vcpu, 0x80000000);
 394	if (!best || best->eax < 0x80000008)
 395		goto not_found;
 396	best = kvm_find_cpuid_entry(vcpu, 0x80000008);
 397	if (best)
 398		return best->eax & 0xff;
 399not_found:
 400	return 36;
 401}
 402
 403/*
 404 * This "raw" version returns the reserved GPA bits without any adjustments for
 405 * encryption technologies that usurp bits.  The raw mask should be used if and
 406 * only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs.
 407 */
 408u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu)
 409{
 410	return rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
 411}
 412
 413static int kvm_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
 414                        int nent)
 415{
 416	int r;
 417
 418	__kvm_update_cpuid_runtime(vcpu, e2, nent);
 419
 420	/*
 421	 * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
 422	 * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
 423	 * tracked in kvm_mmu_page_role.  As a result, KVM may miss guest page
 424	 * faults due to reusing SPs/SPTEs. In practice no sane VMM mucks with
 425	 * the core vCPU model on the fly. It would've been better to forbid any
 426	 * KVM_SET_CPUID{,2} calls after KVM_RUN altogether but unfortunately
 427	 * some VMMs (e.g. QEMU) reuse vCPU fds for CPU hotplug/unplug and do
 428	 * KVM_SET_CPUID{,2} again. To support this legacy behavior, check
 429	 * whether the supplied CPUID data is equal to what's already set.
 430	 */
 431	if (kvm_vcpu_has_run(vcpu)) {
 432		r = kvm_cpuid_check_equal(vcpu, e2, nent);
 433		if (r)
 434			return r;
 435
 436		kvfree(e2);
 437		return 0;
 438	}
 439
 440#ifdef CONFIG_KVM_HYPERV
 441	if (kvm_cpuid_has_hyperv(e2, nent)) {
 442		r = kvm_hv_vcpu_init(vcpu);
 443		if (r)
 444			return r;
 445	}
 446#endif
 447
 448	r = kvm_check_cpuid(vcpu, e2, nent);
 449	if (r)
 450		return r;
 451
 452	kvfree(vcpu->arch.cpuid_entries);
 453	vcpu->arch.cpuid_entries = e2;
 454	vcpu->arch.cpuid_nent = nent;
 455
 456	vcpu->arch.kvm_cpuid = kvm_get_hypervisor_cpuid(vcpu, KVM_SIGNATURE);
 457#ifdef CONFIG_KVM_XEN
 458	vcpu->arch.xen.cpuid = kvm_get_hypervisor_cpuid(vcpu, XEN_SIGNATURE);
 459#endif
 460	kvm_vcpu_after_set_cpuid(vcpu);
 461
 462	return 0;
 463}
 464
 465/* when an old userspace process fills a new kernel module */
 466int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
 467			     struct kvm_cpuid *cpuid,
 468			     struct kvm_cpuid_entry __user *entries)
 469{
 470	int r, i;
 471	struct kvm_cpuid_entry *e = NULL;
 472	struct kvm_cpuid_entry2 *e2 = NULL;
 473
 474	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
 475		return -E2BIG;
 476
 477	if (cpuid->nent) {
 478		e = vmemdup_array_user(entries, cpuid->nent, sizeof(*e));
 479		if (IS_ERR(e))
 480			return PTR_ERR(e);
 481
 482		e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
 483		if (!e2) {
 484			r = -ENOMEM;
 485			goto out_free_cpuid;
 486		}
 487	}
 488	for (i = 0; i < cpuid->nent; i++) {
 489		e2[i].function = e[i].function;
 490		e2[i].eax = e[i].eax;
 491		e2[i].ebx = e[i].ebx;
 492		e2[i].ecx = e[i].ecx;
 493		e2[i].edx = e[i].edx;
 494		e2[i].index = 0;
 495		e2[i].flags = 0;
 496		e2[i].padding[0] = 0;
 497		e2[i].padding[1] = 0;
 498		e2[i].padding[2] = 0;
 499	}
 500
 501	r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
 502	if (r)
 503		kvfree(e2);
 504
 505out_free_cpuid:
 506	kvfree(e);
 507
 508	return r;
 509}
 510
 511int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
 512			      struct kvm_cpuid2 *cpuid,
 513			      struct kvm_cpuid_entry2 __user *entries)
 514{
 515	struct kvm_cpuid_entry2 *e2 = NULL;
 516	int r;
 517
 518	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
 519		return -E2BIG;
 520
 521	if (cpuid->nent) {
 522		e2 = vmemdup_array_user(entries, cpuid->nent, sizeof(*e2));
 523		if (IS_ERR(e2))
 524			return PTR_ERR(e2);
 525	}
 526
 527	r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
 528	if (r)
 529		kvfree(e2);
 530
 531	return r;
 532}
 533
 534int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
 535			      struct kvm_cpuid2 *cpuid,
 536			      struct kvm_cpuid_entry2 __user *entries)
 537{
 
 
 
 538	if (cpuid->nent < vcpu->arch.cpuid_nent)
 539		return -E2BIG;
 540
 541	if (copy_to_user(entries, vcpu->arch.cpuid_entries,
 542			 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
 543		return -EFAULT;
 
 544
 
 545	cpuid->nent = vcpu->arch.cpuid_nent;
 546	return 0;
 547}
 548
 549/* Mask kvm_cpu_caps for @leaf with the raw CPUID capabilities of this CPU. */
 550static __always_inline void __kvm_cpu_cap_mask(unsigned int leaf)
 551{
 552	const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
 553	struct kvm_cpuid_entry2 entry;
 554
 555	reverse_cpuid_check(leaf);
 556
 557	cpuid_count(cpuid.function, cpuid.index,
 558		    &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
 559
 560	kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
 561}
 562
 563static __always_inline
 564void kvm_cpu_cap_init_kvm_defined(enum kvm_only_cpuid_leafs leaf, u32 mask)
 565{
 566	/* Use kvm_cpu_cap_mask for leafs that aren't KVM-only. */
 567	BUILD_BUG_ON(leaf < NCAPINTS);
 568
 569	kvm_cpu_caps[leaf] = mask;
 570
 571	__kvm_cpu_cap_mask(leaf);
 572}
 573
 574static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
 575{
 576	/* Use kvm_cpu_cap_init_kvm_defined for KVM-only leafs. */
 577	BUILD_BUG_ON(leaf >= NCAPINTS);
 578
 579	kvm_cpu_caps[leaf] &= mask;
 580
 581	__kvm_cpu_cap_mask(leaf);
 582}
 583
 584void kvm_set_cpu_caps(void)
 585{
 586#ifdef CONFIG_X86_64
 587	unsigned int f_gbpages = F(GBPAGES);
 588	unsigned int f_lm = F(LM);
 589	unsigned int f_xfd = F(XFD);
 590#else
 591	unsigned int f_gbpages = 0;
 592	unsigned int f_lm = 0;
 593	unsigned int f_xfd = 0;
 594#endif
 595	memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps));
 596
 597	BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) >
 598		     sizeof(boot_cpu_data.x86_capability));
 599
 600	memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
 601	       sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)));
 602
 603	kvm_cpu_cap_mask(CPUID_1_ECX,
 604		/*
 605		 * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
 606		 * advertised to guests via CPUID!
 607		 */
 608		F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
 609		0 /* DS-CPL, VMX, SMX, EST */ |
 610		0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
 611		F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
 612		F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
 613		F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
 614		0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
 615		F(F16C) | F(RDRAND)
 616	);
 617	/* KVM emulates x2apic in software irrespective of host support. */
 618	kvm_cpu_cap_set(X86_FEATURE_X2APIC);
 619
 620	kvm_cpu_cap_mask(CPUID_1_EDX,
 621		F(FPU) | F(VME) | F(DE) | F(PSE) |
 622		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
 623		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
 624		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
 625		F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
 626		0 /* Reserved, DS, ACPI */ | F(MMX) |
 627		F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
 628		0 /* HTT, TM, Reserved, PBE */
 629	);
 630
 631	kvm_cpu_cap_mask(CPUID_7_0_EBX,
 632		F(FSGSBASE) | F(SGX) | F(BMI1) | F(HLE) | F(AVX2) |
 633		F(FDP_EXCPTN_ONLY) | F(SMEP) | F(BMI2) | F(ERMS) | F(INVPCID) |
 634		F(RTM) | F(ZERO_FCS_FDS) | 0 /*MPX*/ | F(AVX512F) |
 635		F(AVX512DQ) | F(RDSEED) | F(ADX) | F(SMAP) | F(AVX512IFMA) |
 636		F(CLFLUSHOPT) | F(CLWB) | 0 /*INTEL_PT*/ | F(AVX512PF) |
 637		F(AVX512ER) | F(AVX512CD) | F(SHA_NI) | F(AVX512BW) |
 638		F(AVX512VL));
 639
 640	kvm_cpu_cap_mask(CPUID_7_ECX,
 641		F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
 642		F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
 643		F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
 644		F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/ |
 645		F(SGX_LC) | F(BUS_LOCK_DETECT)
 646	);
 647	/* Set LA57 based on hardware capability. */
 648	if (cpuid_ecx(7) & F(LA57))
 649		kvm_cpu_cap_set(X86_FEATURE_LA57);
 650
 651	/*
 652	 * PKU not yet implemented for shadow paging and requires OSPKE
 653	 * to be set on the host. Clear it if that is not the case
 654	 */
 655	if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
 656		kvm_cpu_cap_clear(X86_FEATURE_PKU);
 657
 658	kvm_cpu_cap_mask(CPUID_7_EDX,
 659		F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
 660		F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
 661		F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
 662		F(SERIALIZE) | F(TSXLDTRK) | F(AVX512_FP16) |
 663		F(AMX_TILE) | F(AMX_INT8) | F(AMX_BF16) | F(FLUSH_L1D)
 664	);
 665
 666	/* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
 667	kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
 668	kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
 669
 670	if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
 671		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
 672	if (boot_cpu_has(X86_FEATURE_STIBP))
 673		kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
 674	if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
 675		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
 676
 677	kvm_cpu_cap_mask(CPUID_7_1_EAX,
 678		F(AVX_VNNI) | F(AVX512_BF16) | F(CMPCCXADD) |
 679		F(FZRM) | F(FSRS) | F(FSRC) |
 680		F(AMX_FP16) | F(AVX_IFMA) | F(LAM)
 681	);
 682
 683	kvm_cpu_cap_init_kvm_defined(CPUID_7_1_EDX,
 684		F(AVX_VNNI_INT8) | F(AVX_NE_CONVERT) | F(PREFETCHITI) |
 685		F(AMX_COMPLEX)
 686	);
 687
 688	kvm_cpu_cap_init_kvm_defined(CPUID_7_2_EDX,
 689		F(INTEL_PSFD) | F(IPRED_CTRL) | F(RRSBA_CTRL) | F(DDPD_U) |
 690		F(BHI_CTRL) | F(MCDT_NO)
 691	);
 692
 693	kvm_cpu_cap_mask(CPUID_D_1_EAX,
 694		F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES) | f_xfd
 695	);
 696
 697	kvm_cpu_cap_init_kvm_defined(CPUID_12_EAX,
 698		SF(SGX1) | SF(SGX2) | SF(SGX_EDECCSSA)
 699	);
 700
 701	kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
 702		F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
 703		F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
 704		F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
 705		0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
 706		F(TOPOEXT) | 0 /* PERFCTR_CORE */
 707	);
 708
 709	kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
 710		F(FPU) | F(VME) | F(DE) | F(PSE) |
 711		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
 712		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
 713		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
 714		F(PAT) | F(PSE36) | 0 /* Reserved */ |
 715		F(NX) | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
 716		F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
 717		0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
 718	);
 719
 720	if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
 721		kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
 722
 723	kvm_cpu_cap_init_kvm_defined(CPUID_8000_0007_EDX,
 724		SF(CONSTANT_TSC)
 725	);
 726
 727	kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
 728		F(CLZERO) | F(XSAVEERPTR) |
 729		F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
 730		F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON) |
 731		F(AMD_PSFD)
 732	);
 733
 734	/*
 735	 * AMD has separate bits for each SPEC_CTRL bit.
 736	 * arch/x86/kernel/cpu/bugs.c is kind enough to
 737	 * record that in cpufeatures so use them.
 738	 */
 739	if (boot_cpu_has(X86_FEATURE_IBPB))
 740		kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
 741	if (boot_cpu_has(X86_FEATURE_IBRS))
 742		kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
 743	if (boot_cpu_has(X86_FEATURE_STIBP))
 744		kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
 745	if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
 746		kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
 747	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
 748		kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
 749	/*
 750	 * The preference is to use SPEC CTRL MSR instead of the
 751	 * VIRT_SPEC MSR.
 752	 */
 753	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
 754	    !boot_cpu_has(X86_FEATURE_AMD_SSBD))
 755		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
 756
 757	/*
 758	 * Hide all SVM features by default, SVM will set the cap bits for
 759	 * features it emulates and/or exposes for L1.
 760	 */
 761	kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
 762
 763	kvm_cpu_cap_mask(CPUID_8000_001F_EAX,
 764		0 /* SME */ | F(SEV) | 0 /* VM_PAGE_FLUSH */ | F(SEV_ES) |
 765		F(SME_COHERENT));
 766
 767	kvm_cpu_cap_mask(CPUID_8000_0021_EAX,
 768		F(NO_NESTED_DATA_BP) | F(LFENCE_RDTSC) | 0 /* SmmPgCfgLock */ |
 769		F(NULL_SEL_CLR_BASE) | F(AUTOIBRS) | 0 /* PrefetchCtlMsr */ |
 770		F(WRMSR_XX_BASE_NS)
 771	);
 772
 773	kvm_cpu_cap_check_and_set(X86_FEATURE_SBPB);
 774	kvm_cpu_cap_check_and_set(X86_FEATURE_IBPB_BRTYPE);
 775	kvm_cpu_cap_check_and_set(X86_FEATURE_SRSO_NO);
 776
 777	kvm_cpu_cap_init_kvm_defined(CPUID_8000_0022_EAX,
 778		F(PERFMON_V2)
 779	);
 780
 781	/*
 782	 * Synthesize "LFENCE is serializing" into the AMD-defined entry in
 783	 * KVM's supported CPUID if the feature is reported as supported by the
 784	 * kernel.  LFENCE_RDTSC was a Linux-defined synthetic feature long
 785	 * before AMD joined the bandwagon, e.g. LFENCE is serializing on most
 786	 * CPUs that support SSE2.  On CPUs that don't support AMD's leaf,
 787	 * kvm_cpu_cap_mask() will unfortunately drop the flag due to ANDing
 788	 * the mask with the raw host CPUID, and reporting support in AMD's
 789	 * leaf can make it easier for userspace to detect the feature.
 790	 */
 791	if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
 792		kvm_cpu_cap_set(X86_FEATURE_LFENCE_RDTSC);
 793	if (!static_cpu_has_bug(X86_BUG_NULL_SEG))
 794		kvm_cpu_cap_set(X86_FEATURE_NULL_SEL_CLR_BASE);
 795	kvm_cpu_cap_set(X86_FEATURE_NO_SMM_CTL_MSR);
 796
 797	kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
 798		F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
 799		F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
 800		F(PMM) | F(PMM_EN)
 801	);
 802
 803	/*
 804	 * Hide RDTSCP and RDPID if either feature is reported as supported but
 805	 * probing MSR_TSC_AUX failed.  This is purely a sanity check and
 806	 * should never happen, but the guest will likely crash if RDTSCP or
 807	 * RDPID is misreported, and KVM has botched MSR_TSC_AUX emulation in
 808	 * the past.  For example, the sanity check may fire if this instance of
 809	 * KVM is running as L1 on top of an older, broken KVM.
 810	 */
 811	if (WARN_ON((kvm_cpu_cap_has(X86_FEATURE_RDTSCP) ||
 812		     kvm_cpu_cap_has(X86_FEATURE_RDPID)) &&
 813		     !kvm_is_supported_user_return_msr(MSR_TSC_AUX))) {
 814		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
 815		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
 816	}
 817}
 818EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
 819
 820struct kvm_cpuid_array {
 821	struct kvm_cpuid_entry2 *entries;
 822	int maxnent;
 823	int nent;
 824};
 825
 826static struct kvm_cpuid_entry2 *get_next_cpuid(struct kvm_cpuid_array *array)
 827{
 828	if (array->nent >= array->maxnent)
 829		return NULL;
 830
 831	return &array->entries[array->nent++];
 832}
 833
 834static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
 835					      u32 function, u32 index)
 836{
 837	struct kvm_cpuid_entry2 *entry = get_next_cpuid(array);
 838
 839	if (!entry)
 840		return NULL;
 841
 842	memset(entry, 0, sizeof(*entry));
 843	entry->function = function;
 844	entry->index = index;
 845	switch (function & 0xC0000000) {
 846	case 0x40000000:
 847		/* Hypervisor leaves are always synthesized by __do_cpuid_func.  */
 848		return entry;
 849
 850	case 0x80000000:
 851		/*
 852		 * 0x80000021 is sometimes synthesized by __do_cpuid_func, which
 853		 * would result in out-of-bounds calls to do_host_cpuid.
 854		 */
 855		{
 856			static int max_cpuid_80000000;
 857			if (!READ_ONCE(max_cpuid_80000000))
 858				WRITE_ONCE(max_cpuid_80000000, cpuid_eax(0x80000000));
 859			if (function > READ_ONCE(max_cpuid_80000000))
 860				return entry;
 861		}
 862		break;
 863
 864	default:
 865		break;
 866	}
 867
 868	cpuid_count(entry->function, entry->index,
 869		    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
 870
 871	if (cpuid_function_is_indexed(function))
 872		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 873
 874	return entry;
 875}
 876
 877static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
 878{
 879	struct kvm_cpuid_entry2 *entry;
 880
 881	if (array->nent >= array->maxnent)
 882		return -E2BIG;
 883
 884	entry = &array->entries[array->nent];
 885	entry->function = func;
 886	entry->index = 0;
 887	entry->flags = 0;
 888
 889	switch (func) {
 890	case 0:
 891		entry->eax = 7;
 892		++array->nent;
 893		break;
 894	case 1:
 895		entry->ecx = F(MOVBE);
 896		++array->nent;
 897		break;
 898	case 7:
 899		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 900		entry->eax = 0;
 901		if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
 902			entry->ecx = F(RDPID);
 903		++array->nent;
 904		break;
 905	default:
 906		break;
 907	}
 908
 909	return 0;
 910}
 911
 912static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
 913{
 914	struct kvm_cpuid_entry2 *entry;
 915	int r, i, max_idx;
 916
 917	/* all calls to cpuid_count() should be made on the same cpu */
 918	get_cpu();
 919
 920	r = -E2BIG;
 921
 922	entry = do_host_cpuid(array, function, 0);
 923	if (!entry)
 924		goto out;
 925
 926	switch (function) {
 927	case 0:
 928		/* Limited to the highest leaf implemented in KVM. */
 929		entry->eax = min(entry->eax, 0x1fU);
 930		break;
 931	case 1:
 932		cpuid_entry_override(entry, CPUID_1_EDX);
 933		cpuid_entry_override(entry, CPUID_1_ECX);
 934		break;
 935	case 2:
 936		/*
 937		 * On ancient CPUs, function 2 entries are STATEFUL.  That is,
 938		 * CPUID(function=2, index=0) may return different results each
 939		 * time, with the least-significant byte in EAX enumerating the
 940		 * number of times software should do CPUID(2, 0).
 941		 *
 942		 * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
 943		 * idiotic.  Intel's SDM states that EAX & 0xff "will always
 944		 * return 01H. Software should ignore this value and not
 945		 * interpret it as an informational descriptor", while AMD's
 946		 * APM states that CPUID(2) is reserved.
 947		 *
 948		 * WARN if a frankenstein CPU that supports virtualization and
 949		 * a stateful CPUID.0x2 is encountered.
 950		 */
 951		WARN_ON_ONCE((entry->eax & 0xff) > 1);
 952		break;
 953	/* functions 4 and 0x8000001d have additional index. */
 954	case 4:
 955	case 0x8000001d:
 956		/*
 957		 * Read entries until the cache type in the previous entry is
 958		 * zero, i.e. indicates an invalid entry.
 959		 */
 960		for (i = 1; entry->eax & 0x1f; ++i) {
 961			entry = do_host_cpuid(array, function, i);
 962			if (!entry)
 963				goto out;
 964		}
 965		break;
 966	case 6: /* Thermal management */
 967		entry->eax = 0x4; /* allow ARAT */
 968		entry->ebx = 0;
 969		entry->ecx = 0;
 970		entry->edx = 0;
 971		break;
 972	/* function 7 has additional index. */
 973	case 7:
 974		max_idx = entry->eax = min(entry->eax, 2u);
 975		cpuid_entry_override(entry, CPUID_7_0_EBX);
 976		cpuid_entry_override(entry, CPUID_7_ECX);
 977		cpuid_entry_override(entry, CPUID_7_EDX);
 978
 979		/* KVM only supports up to 0x7.2, capped above via min(). */
 980		if (max_idx >= 1) {
 981			entry = do_host_cpuid(array, function, 1);
 982			if (!entry)
 983				goto out;
 984
 985			cpuid_entry_override(entry, CPUID_7_1_EAX);
 986			cpuid_entry_override(entry, CPUID_7_1_EDX);
 987			entry->ebx = 0;
 988			entry->ecx = 0;
 989		}
 990		if (max_idx >= 2) {
 991			entry = do_host_cpuid(array, function, 2);
 992			if (!entry)
 993				goto out;
 994
 995			cpuid_entry_override(entry, CPUID_7_2_EDX);
 996			entry->ecx = 0;
 997			entry->ebx = 0;
 998			entry->eax = 0;
 999		}
1000		break;
1001	case 0xa: { /* Architectural Performance Monitoring */
1002		union cpuid10_eax eax;
1003		union cpuid10_edx edx;
1004
1005		if (!enable_pmu || !static_cpu_has(X86_FEATURE_ARCH_PERFMON)) {
1006			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1007			break;
1008		}
1009
1010		eax.split.version_id = kvm_pmu_cap.version;
1011		eax.split.num_counters = kvm_pmu_cap.num_counters_gp;
1012		eax.split.bit_width = kvm_pmu_cap.bit_width_gp;
1013		eax.split.mask_length = kvm_pmu_cap.events_mask_len;
1014		edx.split.num_counters_fixed = kvm_pmu_cap.num_counters_fixed;
1015		edx.split.bit_width_fixed = kvm_pmu_cap.bit_width_fixed;
1016
1017		if (kvm_pmu_cap.version)
1018			edx.split.anythread_deprecated = 1;
1019		edx.split.reserved1 = 0;
1020		edx.split.reserved2 = 0;
1021
1022		entry->eax = eax.full;
1023		entry->ebx = kvm_pmu_cap.events_mask;
1024		entry->ecx = 0;
1025		entry->edx = edx.full;
1026		break;
1027	}
1028	case 0x1f:
1029	case 0xb:
1030		/*
1031		 * No topology; a valid topology is indicated by the presence
1032		 * of subleaf 1.
1033		 */
1034		entry->eax = entry->ebx = entry->ecx = 0;
1035		break;
1036	case 0xd: {
1037		u64 permitted_xcr0 = kvm_get_filtered_xcr0();
1038		u64 permitted_xss = kvm_caps.supported_xss;
1039
1040		entry->eax &= permitted_xcr0;
1041		entry->ebx = xstate_required_size(permitted_xcr0, false);
1042		entry->ecx = entry->ebx;
1043		entry->edx &= permitted_xcr0 >> 32;
1044		if (!permitted_xcr0)
1045			break;
1046
1047		entry = do_host_cpuid(array, function, 1);
1048		if (!entry)
1049			goto out;
1050
1051		cpuid_entry_override(entry, CPUID_D_1_EAX);
1052		if (entry->eax & (F(XSAVES)|F(XSAVEC)))
1053			entry->ebx = xstate_required_size(permitted_xcr0 | permitted_xss,
1054							  true);
1055		else {
1056			WARN_ON_ONCE(permitted_xss != 0);
1057			entry->ebx = 0;
1058		}
1059		entry->ecx &= permitted_xss;
1060		entry->edx &= permitted_xss >> 32;
1061
1062		for (i = 2; i < 64; ++i) {
1063			bool s_state;
1064			if (permitted_xcr0 & BIT_ULL(i))
1065				s_state = false;
1066			else if (permitted_xss & BIT_ULL(i))
1067				s_state = true;
1068			else
1069				continue;
1070
1071			entry = do_host_cpuid(array, function, i);
1072			if (!entry)
1073				goto out;
1074
1075			/*
1076			 * The supported check above should have filtered out
1077			 * invalid sub-leafs.  Only valid sub-leafs should
1078			 * reach this point, and they should have a non-zero
1079			 * save state size.  Furthermore, check whether the
1080			 * processor agrees with permitted_xcr0/permitted_xss
1081			 * on whether this is an XCR0- or IA32_XSS-managed area.
1082			 */
1083			if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
1084				--array->nent;
1085				continue;
1086			}
1087
1088			if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
1089				entry->ecx &= ~BIT_ULL(2);
1090			entry->edx = 0;
1091		}
1092		break;
1093	}
1094	case 0x12:
1095		/* Intel SGX */
1096		if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) {
1097			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1098			break;
1099		}
1100
1101		/*
1102		 * Index 0: Sub-features, MISCSELECT (a.k.a extended features)
1103		 * and max enclave sizes.   The SGX sub-features and MISCSELECT
1104		 * are restricted by kernel and KVM capabilities (like most
1105		 * feature flags), while enclave size is unrestricted.
1106		 */
1107		cpuid_entry_override(entry, CPUID_12_EAX);
1108		entry->ebx &= SGX_MISC_EXINFO;
1109
1110		entry = do_host_cpuid(array, function, 1);
1111		if (!entry)
1112			goto out;
1113
1114		/*
1115		 * Index 1: SECS.ATTRIBUTES.  ATTRIBUTES are restricted a la
1116		 * feature flags.  Advertise all supported flags, including
1117		 * privileged attributes that require explicit opt-in from
1118		 * userspace.  ATTRIBUTES.XFRM is not adjusted as userspace is
1119		 * expected to derive it from supported XCR0.
1120		 */
1121		entry->eax &= SGX_ATTR_PRIV_MASK | SGX_ATTR_UNPRIV_MASK;
1122		entry->ebx &= 0;
1123		break;
1124	/* Intel PT */
1125	case 0x14:
1126		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
1127			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1128			break;
1129		}
1130
1131		for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1132			if (!do_host_cpuid(array, function, i))
1133				goto out;
1134		}
1135		break;
1136	/* Intel AMX TILE */
1137	case 0x1d:
1138		if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1139			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1140			break;
1141		}
1142
1143		for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1144			if (!do_host_cpuid(array, function, i))
1145				goto out;
1146		}
1147		break;
1148	case 0x1e: /* TMUL information */
1149		if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1150			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1151			break;
1152		}
1153		break;
1154	case KVM_CPUID_SIGNATURE: {
1155		const u32 *sigptr = (const u32 *)KVM_SIGNATURE;
1156		entry->eax = KVM_CPUID_FEATURES;
1157		entry->ebx = sigptr[0];
1158		entry->ecx = sigptr[1];
1159		entry->edx = sigptr[2];
1160		break;
1161	}
1162	case KVM_CPUID_FEATURES:
1163		entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
1164			     (1 << KVM_FEATURE_NOP_IO_DELAY) |
1165			     (1 << KVM_FEATURE_CLOCKSOURCE2) |
1166			     (1 << KVM_FEATURE_ASYNC_PF) |
1167			     (1 << KVM_FEATURE_PV_EOI) |
1168			     (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
1169			     (1 << KVM_FEATURE_PV_UNHALT) |
1170			     (1 << KVM_FEATURE_PV_TLB_FLUSH) |
1171			     (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
1172			     (1 << KVM_FEATURE_PV_SEND_IPI) |
1173			     (1 << KVM_FEATURE_POLL_CONTROL) |
1174			     (1 << KVM_FEATURE_PV_SCHED_YIELD) |
1175			     (1 << KVM_FEATURE_ASYNC_PF_INT);
1176
1177		if (sched_info_on())
1178			entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
1179
1180		entry->ebx = 0;
1181		entry->ecx = 0;
1182		entry->edx = 0;
1183		break;
1184	case 0x80000000:
1185		entry->eax = min(entry->eax, 0x80000022);
1186		/*
1187		 * Serializing LFENCE is reported in a multitude of ways, and
1188		 * NullSegClearsBase is not reported in CPUID on Zen2; help
1189		 * userspace by providing the CPUID leaf ourselves.
1190		 *
1191		 * However, only do it if the host has CPUID leaf 0x8000001d.
1192		 * QEMU thinks that it can query the host blindly for that
1193		 * CPUID leaf if KVM reports that it supports 0x8000001d or
1194		 * above.  The processor merrily returns values from the
1195		 * highest Intel leaf which QEMU tries to use as the guest's
1196		 * 0x8000001d.  Even worse, this can result in an infinite
1197		 * loop if said highest leaf has no subleaves indexed by ECX.
1198		 */
1199		if (entry->eax >= 0x8000001d &&
1200		    (static_cpu_has(X86_FEATURE_LFENCE_RDTSC)
1201		     || !static_cpu_has_bug(X86_BUG_NULL_SEG)))
1202			entry->eax = max(entry->eax, 0x80000021);
1203		break;
1204	case 0x80000001:
1205		entry->ebx &= ~GENMASK(27, 16);
1206		cpuid_entry_override(entry, CPUID_8000_0001_EDX);
1207		cpuid_entry_override(entry, CPUID_8000_0001_ECX);
1208		break;
1209	case 0x80000005:
1210		/*  Pass host L1 cache and TLB info. */
1211		break;
1212	case 0x80000006:
1213		/* Drop reserved bits, pass host L2 cache and TLB info. */
1214		entry->edx &= ~GENMASK(17, 16);
1215		break;
1216	case 0x80000007: /* Advanced power management */
1217		cpuid_entry_override(entry, CPUID_8000_0007_EDX);
1218
1219		/* mask against host */
1220		entry->edx &= boot_cpu_data.x86_power;
1221		entry->eax = entry->ebx = entry->ecx = 0;
1222		break;
1223	case 0x80000008: {
1224		unsigned g_phys_as = (entry->eax >> 16) & 0xff;
1225		unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
1226		unsigned phys_as = entry->eax & 0xff;
1227
1228		/*
1229		 * If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as
1230		 * the guest operates in the same PA space as the host, i.e.
1231		 * reductions in MAXPHYADDR for memory encryption affect shadow
1232		 * paging, too.
1233		 *
1234		 * If TDP is enabled but an explicit guest MAXPHYADDR is not
1235		 * provided, use the raw bare metal MAXPHYADDR as reductions to
1236		 * the HPAs do not affect GPAs.
1237		 */
1238		if (!tdp_enabled)
1239			g_phys_as = boot_cpu_data.x86_phys_bits;
1240		else if (!g_phys_as)
1241			g_phys_as = phys_as;
1242
1243		entry->eax = g_phys_as | (virt_as << 8);
1244		entry->ecx &= ~(GENMASK(31, 16) | GENMASK(11, 8));
1245		entry->edx = 0;
1246		cpuid_entry_override(entry, CPUID_8000_0008_EBX);
1247		break;
1248	}
1249	case 0x8000000A:
1250		if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
1251			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1252			break;
1253		}
1254		entry->eax = 1; /* SVM revision 1 */
1255		entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
1256				   ASID emulation to nested SVM */
1257		entry->ecx = 0; /* Reserved */
1258		cpuid_entry_override(entry, CPUID_8000_000A_EDX);
1259		break;
1260	case 0x80000019:
1261		entry->ecx = entry->edx = 0;
1262		break;
1263	case 0x8000001a:
1264		entry->eax &= GENMASK(2, 0);
1265		entry->ebx = entry->ecx = entry->edx = 0;
1266		break;
1267	case 0x8000001e:
1268		/* Do not return host topology information.  */
1269		entry->eax = entry->ebx = entry->ecx = 0;
1270		entry->edx = 0; /* reserved */
1271		break;
1272	case 0x8000001F:
1273		if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) {
1274			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1275		} else {
1276			cpuid_entry_override(entry, CPUID_8000_001F_EAX);
1277			/* Clear NumVMPL since KVM does not support VMPL.  */
1278			entry->ebx &= ~GENMASK(31, 12);
1279			/*
1280			 * Enumerate '0' for "PA bits reduction", the adjusted
1281			 * MAXPHYADDR is enumerated directly (see 0x80000008).
1282			 */
1283			entry->ebx &= ~GENMASK(11, 6);
1284		}
1285		break;
1286	case 0x80000020:
1287		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1288		break;
1289	case 0x80000021:
1290		entry->ebx = entry->ecx = entry->edx = 0;
1291		cpuid_entry_override(entry, CPUID_8000_0021_EAX);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1292		break;
1293	/* AMD Extended Performance Monitoring and Debug */
1294	case 0x80000022: {
1295		union cpuid_0x80000022_ebx ebx;
1296
1297		entry->ecx = entry->edx = 0;
1298		if (!enable_pmu || !kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) {
1299			entry->eax = entry->ebx;
1300			break;
1301		}
1302
1303		cpuid_entry_override(entry, CPUID_8000_0022_EAX);
1304
1305		if (kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
1306			ebx.split.num_core_pmc = kvm_pmu_cap.num_counters_gp;
1307		else if (kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE))
1308			ebx.split.num_core_pmc = AMD64_NUM_COUNTERS_CORE;
1309		else
1310			ebx.split.num_core_pmc = AMD64_NUM_COUNTERS;
1311
1312		entry->ebx = ebx.full;
1313		break;
1314	}
1315	/*Add support for Centaur's CPUID instruction*/
1316	case 0xC0000000:
1317		/*Just support up to 0xC0000004 now*/
1318		entry->eax = min(entry->eax, 0xC0000004);
1319		break;
1320	case 0xC0000001:
1321		cpuid_entry_override(entry, CPUID_C000_0001_EDX);
1322		break;
1323	case 3: /* Processor serial number */
1324	case 5: /* MONITOR/MWAIT */
1325	case 0xC0000002:
1326	case 0xC0000003:
1327	case 0xC0000004:
1328	default:
1329		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1330		break;
1331	}
1332
1333	r = 0;
1334
1335out:
1336	put_cpu();
1337
1338	return r;
1339}
1340
1341static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1342			 unsigned int type)
1343{
1344	if (type == KVM_GET_EMULATED_CPUID)
1345		return __do_cpuid_func_emulated(array, func);
1346
1347	return __do_cpuid_func(array, func);
1348}
1349
1350#define CENTAUR_CPUID_SIGNATURE 0xC0000000
1351
1352static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1353			  unsigned int type)
1354{
1355	u32 limit;
1356	int r;
1357
1358	if (func == CENTAUR_CPUID_SIGNATURE &&
1359	    boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
1360		return 0;
1361
1362	r = do_cpuid_func(array, func, type);
1363	if (r)
1364		return r;
1365
1366	limit = array->entries[array->nent - 1].eax;
1367	for (func = func + 1; func <= limit; ++func) {
1368		r = do_cpuid_func(array, func, type);
1369		if (r)
1370			break;
1371	}
1372
1373	return r;
1374}
1375
1376static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
1377				 __u32 num_entries, unsigned int ioctl_type)
1378{
1379	int i;
1380	__u32 pad[3];
1381
1382	if (ioctl_type != KVM_GET_EMULATED_CPUID)
1383		return false;
1384
1385	/*
1386	 * We want to make sure that ->padding is being passed clean from
1387	 * userspace in case we want to use it for something in the future.
1388	 *
1389	 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
1390	 * have to give ourselves satisfied only with the emulated side. /me
1391	 * sheds a tear.
1392	 */
1393	for (i = 0; i < num_entries; i++) {
1394		if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
1395			return true;
1396
1397		if (pad[0] || pad[1] || pad[2])
1398			return true;
1399	}
1400	return false;
1401}
1402
1403int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
1404			    struct kvm_cpuid_entry2 __user *entries,
1405			    unsigned int type)
1406{
1407	static const u32 funcs[] = {
1408		0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
1409	};
1410
1411	struct kvm_cpuid_array array = {
1412		.nent = 0,
1413	};
1414	int r, i;
1415
1416	if (cpuid->nent < 1)
1417		return -E2BIG;
1418	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1419		cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1420
1421	if (sanity_check_entries(entries, cpuid->nent, type))
1422		return -EINVAL;
1423
1424	array.entries = kvcalloc(cpuid->nent, sizeof(struct kvm_cpuid_entry2), GFP_KERNEL);
1425	if (!array.entries)
1426		return -ENOMEM;
1427
1428	array.maxnent = cpuid->nent;
1429
1430	for (i = 0; i < ARRAY_SIZE(funcs); i++) {
1431		r = get_cpuid_func(&array, funcs[i], type);
1432		if (r)
1433			goto out_free;
1434	}
1435	cpuid->nent = array.nent;
1436
1437	if (copy_to_user(entries, array.entries,
1438			 array.nent * sizeof(struct kvm_cpuid_entry2)))
1439		r = -EFAULT;
1440
1441out_free:
1442	kvfree(array.entries);
1443	return r;
1444}
1445
1446struct kvm_cpuid_entry2 *kvm_find_cpuid_entry_index(struct kvm_vcpu *vcpu,
1447						    u32 function, u32 index)
1448{
1449	return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1450				 function, index);
1451}
1452EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry_index);
1453
1454struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
1455					      u32 function)
1456{
1457	return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1458				 function, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
1459}
1460EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
1461
1462/*
1463 * Intel CPUID semantics treats any query for an out-of-range leaf as if the
1464 * highest basic leaf (i.e. CPUID.0H:EAX) were requested.  AMD CPUID semantics
1465 * returns all zeroes for any undefined leaf, whether or not the leaf is in
1466 * range.  Centaur/VIA follows Intel semantics.
1467 *
1468 * A leaf is considered out-of-range if its function is higher than the maximum
1469 * supported leaf of its associated class or if its associated class does not
1470 * exist.
1471 *
1472 * There are three primary classes to be considered, with their respective
1473 * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive.  A primary
1474 * class exists if a guest CPUID entry for its <base> leaf exists.  For a given
1475 * class, CPUID.<base>.EAX contains the max supported leaf for the class.
1476 *
1477 *  - Basic:      0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
1478 *  - Hypervisor: 0x40000000 - 0x4fffffff
1479 *  - Extended:   0x80000000 - 0xbfffffff
1480 *  - Centaur:    0xc0000000 - 0xcfffffff
1481 *
1482 * The Hypervisor class is further subdivided into sub-classes that each act as
1483 * their own independent class associated with a 0x100 byte range.  E.g. if Qemu
1484 * is advertising support for both HyperV and KVM, the resulting Hypervisor
1485 * CPUID sub-classes are:
1486 *
1487 *  - HyperV:     0x40000000 - 0x400000ff
1488 *  - KVM:        0x40000100 - 0x400001ff
1489 */
1490static struct kvm_cpuid_entry2 *
1491get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
1492{
1493	struct kvm_cpuid_entry2 *basic, *class;
1494	u32 function = *fn_ptr;
1495
1496	basic = kvm_find_cpuid_entry(vcpu, 0);
1497	if (!basic)
1498		return NULL;
1499
1500	if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
1501	    is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
1502		return NULL;
1503
1504	if (function >= 0x40000000 && function <= 0x4fffffff)
1505		class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00);
1506	else if (function >= 0xc0000000)
1507		class = kvm_find_cpuid_entry(vcpu, 0xc0000000);
1508	else
1509		class = kvm_find_cpuid_entry(vcpu, function & 0x80000000);
1510
1511	if (class && function <= class->eax)
1512		return NULL;
1513
1514	/*
1515	 * Leaf specific adjustments are also applied when redirecting to the
1516	 * max basic entry, e.g. if the max basic leaf is 0xb but there is no
1517	 * entry for CPUID.0xb.index (see below), then the output value for EDX
1518	 * needs to be pulled from CPUID.0xb.1.
1519	 */
1520	*fn_ptr = basic->eax;
1521
1522	/*
1523	 * The class does not exist or the requested function is out of range;
1524	 * the effective CPUID entry is the max basic leaf.  Note, the index of
1525	 * the original requested leaf is observed!
1526	 */
1527	return kvm_find_cpuid_entry_index(vcpu, basic->eax, index);
1528}
1529
1530bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1531	       u32 *ecx, u32 *edx, bool exact_only)
1532{
1533	u32 orig_function = *eax, function = *eax, index = *ecx;
1534	struct kvm_cpuid_entry2 *entry;
1535	bool exact, used_max_basic = false;
1536
1537	entry = kvm_find_cpuid_entry_index(vcpu, function, index);
1538	exact = !!entry;
1539
1540	if (!entry && !exact_only) {
1541		entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1542		used_max_basic = !!entry;
1543	}
1544
1545	if (entry) {
1546		*eax = entry->eax;
1547		*ebx = entry->ebx;
1548		*ecx = entry->ecx;
1549		*edx = entry->edx;
1550		if (function == 7 && index == 0) {
1551			u64 data;
1552		        if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1553			    (data & TSX_CTRL_CPUID_CLEAR))
1554				*ebx &= ~(F(RTM) | F(HLE));
1555		} else if (function == 0x80000007) {
1556			if (kvm_hv_invtsc_suppressed(vcpu))
1557				*edx &= ~SF(CONSTANT_TSC);
1558		}
1559	} else {
1560		*eax = *ebx = *ecx = *edx = 0;
1561		/*
1562		 * When leaf 0BH or 1FH is defined, CL is pass-through
1563		 * and EDX is always the x2APIC ID, even for undefined
1564		 * subleaves. Index 1 will exist iff the leaf is
1565		 * implemented, so we pass through CL iff leaf 1
1566		 * exists. EDX can be copied from any existing index.
1567		 */
1568		if (function == 0xb || function == 0x1f) {
1569			entry = kvm_find_cpuid_entry_index(vcpu, function, 1);
1570			if (entry) {
1571				*ecx = index & 0xff;
1572				*edx = entry->edx;
1573			}
1574		}
1575	}
1576	trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
1577			used_max_basic);
1578	return exact;
1579}
1580EXPORT_SYMBOL_GPL(kvm_cpuid);
1581
1582int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1583{
1584	u32 eax, ebx, ecx, edx;
1585
1586	if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1587		return 1;
1588
1589	eax = kvm_rax_read(vcpu);
1590	ecx = kvm_rcx_read(vcpu);
1591	kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1592	kvm_rax_write(vcpu, eax);
1593	kvm_rbx_write(vcpu, ebx);
1594	kvm_rcx_write(vcpu, ecx);
1595	kvm_rdx_write(vcpu, edx);
1596	return kvm_skip_emulated_instruction(vcpu);
1597}
1598EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);