Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  SMP related functions
   4 *
   5 *    Copyright IBM Corp. 1999, 2012
   6 *    Author(s): Denis Joseph Barrow,
   7 *		 Martin Schwidefsky <schwidefsky@de.ibm.com>,
   8 *
   9 *  based on other smp stuff by
  10 *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
  11 *    (c) 1998 Ingo Molnar
  12 *
  13 * The code outside of smp.c uses logical cpu numbers, only smp.c does
  14 * the translation of logical to physical cpu ids. All new code that
  15 * operates on physical cpu numbers needs to go into smp.c.
  16 */
  17
  18#define KMSG_COMPONENT "cpu"
  19#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  20
  21#include <linux/workqueue.h>
  22#include <linux/memblock.h>
  23#include <linux/export.h>
  24#include <linux/init.h>
  25#include <linux/mm.h>
  26#include <linux/err.h>
  27#include <linux/spinlock.h>
  28#include <linux/kernel_stat.h>
  29#include <linux/delay.h>
  30#include <linux/interrupt.h>
  31#include <linux/irqflags.h>
  32#include <linux/irq_work.h>
  33#include <linux/cpu.h>
  34#include <linux/slab.h>
  35#include <linux/sched/hotplug.h>
  36#include <linux/sched/task_stack.h>
  37#include <linux/crash_dump.h>
  38#include <linux/kprobes.h>
  39#include <asm/asm-offsets.h>
 
 
  40#include <asm/diag.h>
  41#include <asm/switch_to.h>
  42#include <asm/facility.h>
  43#include <asm/ipl.h>
  44#include <asm/setup.h>
  45#include <asm/irq.h>
  46#include <asm/tlbflush.h>
  47#include <asm/vtimer.h>
  48#include <asm/abs_lowcore.h>
  49#include <asm/sclp.h>
  50#include <asm/debug.h>
  51#include <asm/os_info.h>
  52#include <asm/sigp.h>
  53#include <asm/idle.h>
  54#include <asm/nmi.h>
  55#include <asm/stacktrace.h>
  56#include <asm/topology.h>
  57#include <asm/vdso.h>
  58#include <asm/maccess.h>
  59#include "entry.h"
  60
  61enum {
  62	ec_schedule = 0,
  63	ec_call_function_single,
  64	ec_stop_cpu,
  65	ec_mcck_pending,
  66	ec_irq_work,
  67};
  68
  69enum {
  70	CPU_STATE_STANDBY,
  71	CPU_STATE_CONFIGURED,
  72};
  73
  74static DEFINE_PER_CPU(struct cpu *, cpu_device);
  75
  76struct pcpu {
  77	unsigned long ec_mask;		/* bit mask for ec_xxx functions */
  78	unsigned long ec_clk;		/* sigp timestamp for ec_xxx */
  79	signed char state;		/* physical cpu state */
  80	signed char polarization;	/* physical polarization */
  81	u16 address;			/* physical cpu address */
  82};
  83
  84static u8 boot_core_type;
  85static struct pcpu pcpu_devices[NR_CPUS];
  86
  87unsigned int smp_cpu_mt_shift;
  88EXPORT_SYMBOL(smp_cpu_mt_shift);
  89
  90unsigned int smp_cpu_mtid;
  91EXPORT_SYMBOL(smp_cpu_mtid);
  92
  93#ifdef CONFIG_CRASH_DUMP
  94__vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
  95#endif
  96
  97static unsigned int smp_max_threads __initdata = -1U;
  98cpumask_t cpu_setup_mask;
  99
 100static int __init early_nosmt(char *s)
 101{
 102	smp_max_threads = 1;
 103	return 0;
 104}
 105early_param("nosmt", early_nosmt);
 106
 107static int __init early_smt(char *s)
 108{
 109	get_option(&s, &smp_max_threads);
 110	return 0;
 111}
 112early_param("smt", early_smt);
 113
 114/*
 115 * The smp_cpu_state_mutex must be held when changing the state or polarization
 116 * member of a pcpu data structure within the pcpu_devices arreay.
 117 */
 118DEFINE_MUTEX(smp_cpu_state_mutex);
 119
 120/*
 121 * Signal processor helper functions.
 122 */
 123static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
 124{
 125	int cc;
 126
 127	while (1) {
 128		cc = __pcpu_sigp(addr, order, parm, NULL);
 129		if (cc != SIGP_CC_BUSY)
 130			return cc;
 131		cpu_relax();
 132	}
 133}
 134
 135static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
 136{
 137	int cc, retry;
 138
 139	for (retry = 0; ; retry++) {
 140		cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
 141		if (cc != SIGP_CC_BUSY)
 142			break;
 143		if (retry >= 3)
 144			udelay(10);
 145	}
 146	return cc;
 147}
 148
 149static inline int pcpu_stopped(struct pcpu *pcpu)
 150{
 151	u32 status;
 152
 153	if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
 154			0, &status) != SIGP_CC_STATUS_STORED)
 155		return 0;
 156	return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
 157}
 158
 159static inline int pcpu_running(struct pcpu *pcpu)
 160{
 161	if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
 162			0, NULL) != SIGP_CC_STATUS_STORED)
 163		return 1;
 164	/* Status stored condition code is equivalent to cpu not running. */
 165	return 0;
 166}
 167
 168/*
 169 * Find struct pcpu by cpu address.
 170 */
 171static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
 172{
 173	int cpu;
 174
 175	for_each_cpu(cpu, mask)
 176		if (pcpu_devices[cpu].address == address)
 177			return pcpu_devices + cpu;
 178	return NULL;
 179}
 180
 181static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
 182{
 183	int order;
 184
 185	if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
 186		return;
 187	order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
 188	pcpu->ec_clk = get_tod_clock_fast();
 189	pcpu_sigp_retry(pcpu, order, 0);
 190}
 191
 192static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
 193{
 194	unsigned long async_stack, nodat_stack, mcck_stack;
 195	struct lowcore *lc;
 196
 197	lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
 198	nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
 199	async_stack = stack_alloc();
 200	mcck_stack = stack_alloc();
 201	if (!lc || !nodat_stack || !async_stack || !mcck_stack)
 202		goto out;
 203	memcpy(lc, &S390_lowcore, 512);
 204	memset((char *) lc + 512, 0, sizeof(*lc) - 512);
 205	lc->async_stack = async_stack + STACK_INIT_OFFSET;
 206	lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
 207	lc->mcck_stack = mcck_stack + STACK_INIT_OFFSET;
 208	lc->cpu_nr = cpu;
 209	lc->spinlock_lockval = arch_spin_lockval(cpu);
 210	lc->spinlock_index = 0;
 211	lc->return_lpswe = gen_lpswe(__LC_RETURN_PSW);
 212	lc->return_mcck_lpswe = gen_lpswe(__LC_RETURN_MCCK_PSW);
 213	lc->preempt_count = PREEMPT_DISABLED;
 214	if (nmi_alloc_mcesa(&lc->mcesad))
 215		goto out;
 216	if (abs_lowcore_map(cpu, lc, true))
 217		goto out_mcesa;
 218	lowcore_ptr[cpu] = lc;
 219	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, __pa(lc));
 220	return 0;
 221
 222out_mcesa:
 223	nmi_free_mcesa(&lc->mcesad);
 224out:
 225	stack_free(mcck_stack);
 226	stack_free(async_stack);
 227	free_pages(nodat_stack, THREAD_SIZE_ORDER);
 228	free_pages((unsigned long) lc, LC_ORDER);
 229	return -ENOMEM;
 230}
 231
 232static void pcpu_free_lowcore(struct pcpu *pcpu)
 233{
 234	unsigned long async_stack, nodat_stack, mcck_stack;
 235	struct lowcore *lc;
 236	int cpu;
 237
 238	cpu = pcpu - pcpu_devices;
 239	lc = lowcore_ptr[cpu];
 240	nodat_stack = lc->nodat_stack - STACK_INIT_OFFSET;
 241	async_stack = lc->async_stack - STACK_INIT_OFFSET;
 242	mcck_stack = lc->mcck_stack - STACK_INIT_OFFSET;
 243	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
 244	lowcore_ptr[cpu] = NULL;
 245	abs_lowcore_unmap(cpu);
 246	nmi_free_mcesa(&lc->mcesad);
 247	stack_free(async_stack);
 248	stack_free(mcck_stack);
 249	free_pages(nodat_stack, THREAD_SIZE_ORDER);
 250	free_pages((unsigned long) lc, LC_ORDER);
 251}
 252
 253static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
 254{
 255	struct lowcore *lc = lowcore_ptr[cpu];
 256
 
 257	cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
 258	cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
 259	lc->cpu_nr = cpu;
 260	lc->restart_flags = RESTART_FLAG_CTLREGS;
 261	lc->spinlock_lockval = arch_spin_lockval(cpu);
 262	lc->spinlock_index = 0;
 263	lc->percpu_offset = __per_cpu_offset[cpu];
 264	lc->kernel_asce = S390_lowcore.kernel_asce;
 265	lc->user_asce = s390_invalid_asce;
 266	lc->machine_flags = S390_lowcore.machine_flags;
 267	lc->user_timer = lc->system_timer =
 268		lc->steal_timer = lc->avg_steal_timer = 0;
 269	__ctl_store(lc->cregs_save_area, 0, 15);
 
 
 270	lc->cregs_save_area[1] = lc->kernel_asce;
 271	lc->cregs_save_area[7] = lc->user_asce;
 272	save_access_regs((unsigned int *) lc->access_regs_save_area);
 273	arch_spin_lock_setup(cpu);
 274}
 275
 276static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
 277{
 278	struct lowcore *lc;
 279	int cpu;
 280
 281	cpu = pcpu - pcpu_devices;
 282	lc = lowcore_ptr[cpu];
 283	lc->kernel_stack = (unsigned long) task_stack_page(tsk)
 284		+ THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
 285	lc->current_task = (unsigned long) tsk;
 286	lc->lpp = LPP_MAGIC;
 287	lc->current_pid = tsk->pid;
 288	lc->user_timer = tsk->thread.user_timer;
 289	lc->guest_timer = tsk->thread.guest_timer;
 290	lc->system_timer = tsk->thread.system_timer;
 291	lc->hardirq_timer = tsk->thread.hardirq_timer;
 292	lc->softirq_timer = tsk->thread.softirq_timer;
 293	lc->steal_timer = 0;
 294}
 295
 296static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
 297{
 298	struct lowcore *lc;
 299	int cpu;
 300
 301	cpu = pcpu - pcpu_devices;
 302	lc = lowcore_ptr[cpu];
 303	lc->restart_stack = lc->kernel_stack;
 304	lc->restart_fn = (unsigned long) func;
 305	lc->restart_data = (unsigned long) data;
 306	lc->restart_source = -1U;
 307	pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
 308}
 309
 310typedef void (pcpu_delegate_fn)(void *);
 311
 312/*
 313 * Call function via PSW restart on pcpu and stop the current cpu.
 314 */
 315static void __pcpu_delegate(pcpu_delegate_fn *func, void *data)
 316{
 317	func(data);	/* should not return */
 318}
 319
 320static void pcpu_delegate(struct pcpu *pcpu,
 321			  pcpu_delegate_fn *func,
 322			  void *data, unsigned long stack)
 323{
 324	struct lowcore *lc, *abs_lc;
 325	unsigned int source_cpu;
 326	unsigned long flags;
 327
 328	lc = lowcore_ptr[pcpu - pcpu_devices];
 329	source_cpu = stap();
 330	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
 331	if (pcpu->address == source_cpu) {
 332		call_on_stack(2, stack, void, __pcpu_delegate,
 333			      pcpu_delegate_fn *, func, void *, data);
 334	}
 335	/* Stop target cpu (if func returns this stops the current cpu). */
 336	pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
 
 337	/* Restart func on the target cpu and stop the current cpu. */
 338	if (lc) {
 339		lc->restart_stack = stack;
 340		lc->restart_fn = (unsigned long)func;
 341		lc->restart_data = (unsigned long)data;
 342		lc->restart_source = source_cpu;
 343	} else {
 344		abs_lc = get_abs_lowcore(&flags);
 345		abs_lc->restart_stack = stack;
 346		abs_lc->restart_fn = (unsigned long)func;
 347		abs_lc->restart_data = (unsigned long)data;
 348		abs_lc->restart_source = source_cpu;
 349		put_abs_lowcore(abs_lc, flags);
 350	}
 351	__bpon();
 352	asm volatile(
 353		"0:	sigp	0,%0,%2	# sigp restart to target cpu\n"
 354		"	brc	2,0b	# busy, try again\n"
 355		"1:	sigp	0,%1,%3	# sigp stop to current cpu\n"
 356		"	brc	2,1b	# busy, try again\n"
 357		: : "d" (pcpu->address), "d" (source_cpu),
 358		    "K" (SIGP_RESTART), "K" (SIGP_STOP)
 359		: "0", "1", "cc");
 360	for (;;) ;
 361}
 362
 363/*
 364 * Enable additional logical cpus for multi-threading.
 365 */
 366static int pcpu_set_smt(unsigned int mtid)
 367{
 368	int cc;
 369
 370	if (smp_cpu_mtid == mtid)
 371		return 0;
 372	cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
 373	if (cc == 0) {
 374		smp_cpu_mtid = mtid;
 375		smp_cpu_mt_shift = 0;
 376		while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
 377			smp_cpu_mt_shift++;
 378		pcpu_devices[0].address = stap();
 379	}
 380	return cc;
 381}
 382
 383/*
 384 * Call function on an online CPU.
 385 */
 386void smp_call_online_cpu(void (*func)(void *), void *data)
 387{
 388	struct pcpu *pcpu;
 389
 390	/* Use the current cpu if it is online. */
 391	pcpu = pcpu_find_address(cpu_online_mask, stap());
 392	if (!pcpu)
 393		/* Use the first online cpu. */
 394		pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
 395	pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
 396}
 397
 398/*
 399 * Call function on the ipl CPU.
 400 */
 401void smp_call_ipl_cpu(void (*func)(void *), void *data)
 402{
 403	struct lowcore *lc = lowcore_ptr[0];
 404
 405	if (pcpu_devices[0].address == stap())
 406		lc = &S390_lowcore;
 407
 408	pcpu_delegate(&pcpu_devices[0], func, data,
 409		      lc->nodat_stack);
 410}
 411
 412int smp_find_processor_id(u16 address)
 413{
 414	int cpu;
 415
 416	for_each_present_cpu(cpu)
 417		if (pcpu_devices[cpu].address == address)
 418			return cpu;
 419	return -1;
 420}
 421
 422void schedule_mcck_handler(void)
 423{
 424	pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_mcck_pending);
 425}
 426
 427bool notrace arch_vcpu_is_preempted(int cpu)
 428{
 429	if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
 430		return false;
 431	if (pcpu_running(pcpu_devices + cpu))
 432		return false;
 433	return true;
 434}
 435EXPORT_SYMBOL(arch_vcpu_is_preempted);
 436
 437void notrace smp_yield_cpu(int cpu)
 438{
 439	if (!MACHINE_HAS_DIAG9C)
 440		return;
 441	diag_stat_inc_norecursion(DIAG_STAT_X09C);
 442	asm volatile("diag %0,0,0x9c"
 443		     : : "d" (pcpu_devices[cpu].address));
 444}
 445EXPORT_SYMBOL_GPL(smp_yield_cpu);
 446
 447/*
 448 * Send cpus emergency shutdown signal. This gives the cpus the
 449 * opportunity to complete outstanding interrupts.
 450 */
 451void notrace smp_emergency_stop(void)
 452{
 453	static arch_spinlock_t lock = __ARCH_SPIN_LOCK_UNLOCKED;
 454	static cpumask_t cpumask;
 455	u64 end;
 456	int cpu;
 457
 458	arch_spin_lock(&lock);
 459	cpumask_copy(&cpumask, cpu_online_mask);
 460	cpumask_clear_cpu(smp_processor_id(), &cpumask);
 461
 462	end = get_tod_clock() + (1000000UL << 12);
 463	for_each_cpu(cpu, &cpumask) {
 464		struct pcpu *pcpu = pcpu_devices + cpu;
 465		set_bit(ec_stop_cpu, &pcpu->ec_mask);
 466		while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
 467				   0, NULL) == SIGP_CC_BUSY &&
 468		       get_tod_clock() < end)
 469			cpu_relax();
 470	}
 471	while (get_tod_clock() < end) {
 472		for_each_cpu(cpu, &cpumask)
 473			if (pcpu_stopped(pcpu_devices + cpu))
 474				cpumask_clear_cpu(cpu, &cpumask);
 475		if (cpumask_empty(&cpumask))
 476			break;
 477		cpu_relax();
 478	}
 479	arch_spin_unlock(&lock);
 480}
 481NOKPROBE_SYMBOL(smp_emergency_stop);
 482
 483/*
 484 * Stop all cpus but the current one.
 485 */
 486void smp_send_stop(void)
 487{
 488	int cpu;
 489
 490	/* Disable all interrupts/machine checks */
 491	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
 492	trace_hardirqs_off();
 493
 494	debug_set_critical();
 495
 496	if (oops_in_progress)
 497		smp_emergency_stop();
 498
 499	/* stop all processors */
 500	for_each_online_cpu(cpu) {
 501		if (cpu == smp_processor_id())
 502			continue;
 503		pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
 504		while (!pcpu_stopped(pcpu_devices + cpu))
 505			cpu_relax();
 506	}
 507}
 508
 509/*
 510 * This is the main routine where commands issued by other
 511 * cpus are handled.
 512 */
 513static void smp_handle_ext_call(void)
 514{
 515	unsigned long bits;
 516
 517	/* handle bit signal external calls */
 518	bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
 519	if (test_bit(ec_stop_cpu, &bits))
 520		smp_stop_cpu();
 521	if (test_bit(ec_schedule, &bits))
 522		scheduler_ipi();
 523	if (test_bit(ec_call_function_single, &bits))
 524		generic_smp_call_function_single_interrupt();
 525	if (test_bit(ec_mcck_pending, &bits))
 526		__s390_handle_mcck();
 527	if (test_bit(ec_irq_work, &bits))
 528		irq_work_run();
 529}
 530
 531static void do_ext_call_interrupt(struct ext_code ext_code,
 532				  unsigned int param32, unsigned long param64)
 533{
 534	inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
 535	smp_handle_ext_call();
 536}
 537
 538void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 539{
 540	int cpu;
 541
 542	for_each_cpu(cpu, mask)
 543		pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
 544}
 545
 546void arch_send_call_function_single_ipi(int cpu)
 547{
 548	pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
 549}
 550
 551/*
 552 * this function sends a 'reschedule' IPI to another CPU.
 553 * it goes straight through and wastes no time serializing
 554 * anything. Worst case is that we lose a reschedule ...
 555 */
 556void smp_send_reschedule(int cpu)
 557{
 558	pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
 559}
 560
 561#ifdef CONFIG_IRQ_WORK
 562void arch_irq_work_raise(void)
 563{
 564	pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_irq_work);
 565}
 566#endif
 567
 568/*
 569 * parameter area for the set/clear control bit callbacks
 570 */
 571struct ec_creg_mask_parms {
 572	unsigned long orval;
 573	unsigned long andval;
 574	int cr;
 575};
 576
 577/*
 578 * callback for setting/clearing control bits
 579 */
 580static void smp_ctl_bit_callback(void *info)
 581{
 582	struct ec_creg_mask_parms *pp = info;
 583	unsigned long cregs[16];
 584
 585	__ctl_store(cregs, 0, 15);
 586	cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
 587	__ctl_load(cregs, 0, 15);
 588}
 589
 590static DEFINE_SPINLOCK(ctl_lock);
 591
 592void smp_ctl_set_clear_bit(int cr, int bit, bool set)
 593{
 594	struct ec_creg_mask_parms parms = { .cr = cr, };
 595	struct lowcore *abs_lc;
 596	unsigned long flags;
 597	u64 ctlreg;
 598
 599	if (set) {
 600		parms.orval = 1UL << bit;
 601		parms.andval = -1UL;
 602	} else {
 603		parms.orval = 0;
 604		parms.andval = ~(1UL << bit);
 605	}
 606	spin_lock(&ctl_lock);
 607	abs_lc = get_abs_lowcore(&flags);
 608	ctlreg = abs_lc->cregs_save_area[cr];
 609	ctlreg = (ctlreg & parms.andval) | parms.orval;
 610	abs_lc->cregs_save_area[cr] = ctlreg;
 611	put_abs_lowcore(abs_lc, flags);
 612	spin_unlock(&ctl_lock);
 613	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
 614}
 615EXPORT_SYMBOL(smp_ctl_set_clear_bit);
 616
 617#ifdef CONFIG_CRASH_DUMP
 618
 619int smp_store_status(int cpu)
 620{
 621	struct lowcore *lc;
 622	struct pcpu *pcpu;
 623	unsigned long pa;
 624
 625	pcpu = pcpu_devices + cpu;
 626	lc = lowcore_ptr[cpu];
 627	pa = __pa(&lc->floating_pt_save_area);
 628	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
 629			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
 630		return -EIO;
 631	if (!MACHINE_HAS_VX && !MACHINE_HAS_GS)
 632		return 0;
 633	pa = lc->mcesad & MCESA_ORIGIN_MASK;
 634	if (MACHINE_HAS_GS)
 635		pa |= lc->mcesad & MCESA_LC_MASK;
 636	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
 637			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
 638		return -EIO;
 639	return 0;
 640}
 641
 642/*
 643 * Collect CPU state of the previous, crashed system.
 644 * There are four cases:
 645 * 1) standard zfcp/nvme dump
 646 *    condition: OLDMEM_BASE == NULL && is_ipl_type_dump() == true
 647 *    The state for all CPUs except the boot CPU needs to be collected
 648 *    with sigp stop-and-store-status. The boot CPU state is located in
 649 *    the absolute lowcore of the memory stored in the HSA. The zcore code
 650 *    will copy the boot CPU state from the HSA.
 651 * 2) stand-alone kdump for SCSI/NVMe (zfcp/nvme dump with swapped memory)
 652 *    condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == true
 653 *    The state for all CPUs except the boot CPU needs to be collected
 654 *    with sigp stop-and-store-status. The firmware or the boot-loader
 655 *    stored the registers of the boot CPU in the absolute lowcore in the
 656 *    memory of the old system.
 657 * 3) kdump and the old kernel did not store the CPU state,
 658 *    or stand-alone kdump for DASD
 659 *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
 660 *    The state for all CPUs except the boot CPU needs to be collected
 661 *    with sigp stop-and-store-status. The kexec code or the boot-loader
 662 *    stored the registers of the boot CPU in the memory of the old system.
 663 * 4) kdump and the old kernel stored the CPU state
 664 *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
 665 *    This case does not exist for s390 anymore, setup_arch explicitly
 666 *    deactivates the elfcorehdr= kernel parameter
 667 */
 668static bool dump_available(void)
 669{
 670	return oldmem_data.start || is_ipl_type_dump();
 671}
 672
 673void __init smp_save_dump_ipl_cpu(void)
 674{
 675	struct save_area *sa;
 676	void *regs;
 677
 678	if (!dump_available())
 679		return;
 680	sa = save_area_alloc(true);
 681	regs = memblock_alloc(512, 8);
 682	if (!sa || !regs)
 683		panic("could not allocate memory for boot CPU save area\n");
 684	copy_oldmem_kernel(regs, __LC_FPREGS_SAVE_AREA, 512);
 685	save_area_add_regs(sa, regs);
 686	memblock_free(regs, 512);
 687	if (MACHINE_HAS_VX)
 688		save_area_add_vxrs(sa, boot_cpu_vector_save_area);
 689}
 690
 691void __init smp_save_dump_secondary_cpus(void)
 692{
 693	int addr, boot_cpu_addr, max_cpu_addr;
 694	struct save_area *sa;
 695	void *page;
 696
 697	if (!dump_available())
 698		return;
 699	/* Allocate a page as dumping area for the store status sigps */
 700	page = memblock_alloc_low(PAGE_SIZE, PAGE_SIZE);
 701	if (!page)
 702		panic("ERROR: Failed to allocate %lx bytes below %lx\n",
 703		      PAGE_SIZE, 1UL << 31);
 704
 705	/* Set multi-threading state to the previous system. */
 706	pcpu_set_smt(sclp.mtid_prev);
 707	boot_cpu_addr = stap();
 708	max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
 709	for (addr = 0; addr <= max_cpu_addr; addr++) {
 710		if (addr == boot_cpu_addr)
 711			continue;
 712		if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
 713		    SIGP_CC_NOT_OPERATIONAL)
 714			continue;
 715		sa = save_area_alloc(false);
 716		if (!sa)
 717			panic("could not allocate memory for save area\n");
 718		__pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, __pa(page));
 719		save_area_add_regs(sa, page);
 720		if (MACHINE_HAS_VX) {
 721			__pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, __pa(page));
 722			save_area_add_vxrs(sa, page);
 723		}
 724	}
 725	memblock_free(page, PAGE_SIZE);
 726	diag_amode31_ops.diag308_reset();
 727	pcpu_set_smt(0);
 728}
 729#endif /* CONFIG_CRASH_DUMP */
 730
 731void smp_cpu_set_polarization(int cpu, int val)
 732{
 733	pcpu_devices[cpu].polarization = val;
 734}
 735
 736int smp_cpu_get_polarization(int cpu)
 737{
 738	return pcpu_devices[cpu].polarization;
 739}
 740
 741int smp_cpu_get_cpu_address(int cpu)
 742{
 743	return pcpu_devices[cpu].address;
 744}
 745
 746static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
 747{
 748	static int use_sigp_detection;
 749	int address;
 750
 751	if (use_sigp_detection || sclp_get_core_info(info, early)) {
 752		use_sigp_detection = 1;
 753		for (address = 0;
 754		     address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
 755		     address += (1U << smp_cpu_mt_shift)) {
 756			if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
 757			    SIGP_CC_NOT_OPERATIONAL)
 758				continue;
 759			info->core[info->configured].core_id =
 760				address >> smp_cpu_mt_shift;
 761			info->configured++;
 762		}
 763		info->combined = info->configured;
 764	}
 765}
 766
 767static int smp_add_present_cpu(int cpu);
 768
 769static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail,
 770			bool configured, bool early)
 771{
 772	struct pcpu *pcpu;
 773	int cpu, nr, i;
 774	u16 address;
 775
 776	nr = 0;
 777	if (sclp.has_core_type && core->type != boot_core_type)
 778		return nr;
 779	cpu = cpumask_first(avail);
 780	address = core->core_id << smp_cpu_mt_shift;
 781	for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) {
 782		if (pcpu_find_address(cpu_present_mask, address + i))
 783			continue;
 784		pcpu = pcpu_devices + cpu;
 785		pcpu->address = address + i;
 786		if (configured)
 787			pcpu->state = CPU_STATE_CONFIGURED;
 788		else
 789			pcpu->state = CPU_STATE_STANDBY;
 790		smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
 791		set_cpu_present(cpu, true);
 792		if (!early && smp_add_present_cpu(cpu) != 0)
 793			set_cpu_present(cpu, false);
 794		else
 795			nr++;
 796		cpumask_clear_cpu(cpu, avail);
 797		cpu = cpumask_next(cpu, avail);
 798	}
 799	return nr;
 800}
 801
 802static int __smp_rescan_cpus(struct sclp_core_info *info, bool early)
 803{
 804	struct sclp_core_entry *core;
 805	static cpumask_t avail;
 806	bool configured;
 807	u16 core_id;
 808	int nr, i;
 809
 810	cpus_read_lock();
 811	mutex_lock(&smp_cpu_state_mutex);
 812	nr = 0;
 813	cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
 814	/*
 815	 * Add IPL core first (which got logical CPU number 0) to make sure
 816	 * that all SMT threads get subsequent logical CPU numbers.
 817	 */
 818	if (early) {
 819		core_id = pcpu_devices[0].address >> smp_cpu_mt_shift;
 820		for (i = 0; i < info->configured; i++) {
 821			core = &info->core[i];
 822			if (core->core_id == core_id) {
 823				nr += smp_add_core(core, &avail, true, early);
 824				break;
 825			}
 826		}
 827	}
 828	for (i = 0; i < info->combined; i++) {
 829		configured = i < info->configured;
 830		nr += smp_add_core(&info->core[i], &avail, configured, early);
 831	}
 832	mutex_unlock(&smp_cpu_state_mutex);
 833	cpus_read_unlock();
 834	return nr;
 835}
 836
 837void __init smp_detect_cpus(void)
 838{
 839	unsigned int cpu, mtid, c_cpus, s_cpus;
 840	struct sclp_core_info *info;
 841	u16 address;
 842
 843	/* Get CPU information */
 844	info = memblock_alloc(sizeof(*info), 8);
 845	if (!info)
 846		panic("%s: Failed to allocate %zu bytes align=0x%x\n",
 847		      __func__, sizeof(*info), 8);
 848	smp_get_core_info(info, 1);
 849	/* Find boot CPU type */
 850	if (sclp.has_core_type) {
 851		address = stap();
 852		for (cpu = 0; cpu < info->combined; cpu++)
 853			if (info->core[cpu].core_id == address) {
 854				/* The boot cpu dictates the cpu type. */
 855				boot_core_type = info->core[cpu].type;
 856				break;
 857			}
 858		if (cpu >= info->combined)
 859			panic("Could not find boot CPU type");
 860	}
 861
 862	/* Set multi-threading state for the current system */
 863	mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
 864	mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
 865	pcpu_set_smt(mtid);
 866
 867	/* Print number of CPUs */
 868	c_cpus = s_cpus = 0;
 869	for (cpu = 0; cpu < info->combined; cpu++) {
 870		if (sclp.has_core_type &&
 871		    info->core[cpu].type != boot_core_type)
 872			continue;
 873		if (cpu < info->configured)
 874			c_cpus += smp_cpu_mtid + 1;
 875		else
 876			s_cpus += smp_cpu_mtid + 1;
 877	}
 878	pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
 879
 880	/* Add CPUs present at boot */
 881	__smp_rescan_cpus(info, true);
 882	memblock_free(info, sizeof(*info));
 883}
 884
 885/*
 886 *	Activate a secondary processor.
 887 */
 888static void smp_start_secondary(void *cpuvoid)
 889{
 890	int cpu = raw_smp_processor_id();
 891
 892	S390_lowcore.last_update_clock = get_tod_clock();
 893	S390_lowcore.restart_stack = (unsigned long)restart_stack;
 894	S390_lowcore.restart_fn = (unsigned long)do_restart;
 895	S390_lowcore.restart_data = 0;
 896	S390_lowcore.restart_source = -1U;
 897	S390_lowcore.restart_flags = 0;
 898	restore_access_regs(S390_lowcore.access_regs_save_area);
 899	cpu_init();
 900	rcu_cpu_starting(cpu);
 901	init_cpu_timer();
 902	vtime_init();
 903	vdso_getcpu_init();
 904	pfault_init();
 905	cpumask_set_cpu(cpu, &cpu_setup_mask);
 906	update_cpu_masks();
 907	notify_cpu_starting(cpu);
 908	if (topology_cpu_dedicated(cpu))
 909		set_cpu_flag(CIF_DEDICATED_CPU);
 910	else
 911		clear_cpu_flag(CIF_DEDICATED_CPU);
 912	set_cpu_online(cpu, true);
 913	inc_irq_stat(CPU_RST);
 914	local_irq_enable();
 915	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 916}
 917
 918/* Upping and downing of CPUs */
 919int __cpu_up(unsigned int cpu, struct task_struct *tidle)
 920{
 921	struct pcpu *pcpu = pcpu_devices + cpu;
 922	int rc;
 923
 924	if (pcpu->state != CPU_STATE_CONFIGURED)
 925		return -EIO;
 926	if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
 927	    SIGP_CC_ORDER_CODE_ACCEPTED)
 928		return -EIO;
 929
 930	rc = pcpu_alloc_lowcore(pcpu, cpu);
 931	if (rc)
 932		return rc;
 
 
 
 
 
 933	pcpu_prepare_secondary(pcpu, cpu);
 934	pcpu_attach_task(pcpu, tidle);
 935	pcpu_start_fn(pcpu, smp_start_secondary, NULL);
 936	/* Wait until cpu puts itself in the online & active maps */
 937	while (!cpu_online(cpu))
 938		cpu_relax();
 
 939	return 0;
 940}
 941
 942static unsigned int setup_possible_cpus __initdata;
 943
 944static int __init _setup_possible_cpus(char *s)
 945{
 946	get_option(&s, &setup_possible_cpus);
 947	return 0;
 948}
 949early_param("possible_cpus", _setup_possible_cpus);
 950
 951int __cpu_disable(void)
 952{
 953	unsigned long cregs[16];
 954	int cpu;
 955
 956	/* Handle possible pending IPIs */
 957	smp_handle_ext_call();
 958	cpu = smp_processor_id();
 959	set_cpu_online(cpu, false);
 960	cpumask_clear_cpu(cpu, &cpu_setup_mask);
 961	update_cpu_masks();
 962	/* Disable pseudo page faults on this cpu. */
 963	pfault_fini();
 964	/* Disable interrupt sources via control register. */
 965	__ctl_store(cregs, 0, 15);
 966	cregs[0]  &= ~0x0000ee70UL;	/* disable all external interrupts */
 967	cregs[6]  &= ~0xff000000UL;	/* disable all I/O interrupts */
 968	cregs[14] &= ~0x1f000000UL;	/* disable most machine checks */
 969	__ctl_load(cregs, 0, 15);
 970	clear_cpu_flag(CIF_NOHZ_DELAY);
 971	return 0;
 972}
 973
 974void __cpu_die(unsigned int cpu)
 975{
 976	struct pcpu *pcpu;
 977
 978	/* Wait until target cpu is down */
 979	pcpu = pcpu_devices + cpu;
 980	while (!pcpu_stopped(pcpu))
 981		cpu_relax();
 982	pcpu_free_lowcore(pcpu);
 983	cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
 984	cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
 985}
 986
 987void __noreturn cpu_die(void)
 988{
 989	idle_task_exit();
 990	__bpon();
 991	pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
 992	for (;;) ;
 993}
 994
 995void __init smp_fill_possible_mask(void)
 996{
 997	unsigned int possible, sclp_max, cpu;
 998
 999	sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
1000	sclp_max = min(smp_max_threads, sclp_max);
1001	sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
1002	possible = setup_possible_cpus ?: nr_cpu_ids;
1003	possible = min(possible, sclp_max);
1004	for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
1005		set_cpu_possible(cpu, true);
1006}
1007
1008void __init smp_prepare_cpus(unsigned int max_cpus)
1009{
1010	/* request the 0x1201 emergency signal external interrupt */
1011	if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
1012		panic("Couldn't request external interrupt 0x1201");
1013	/* request the 0x1202 external call external interrupt */
1014	if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
1015		panic("Couldn't request external interrupt 0x1202");
 
1016}
1017
1018void __init smp_prepare_boot_cpu(void)
1019{
1020	struct pcpu *pcpu = pcpu_devices;
1021
1022	WARN_ON(!cpu_present(0) || !cpu_online(0));
1023	pcpu->state = CPU_STATE_CONFIGURED;
1024	S390_lowcore.percpu_offset = __per_cpu_offset[0];
1025	smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
1026}
1027
1028void __init smp_setup_processor_id(void)
1029{
1030	pcpu_devices[0].address = stap();
1031	S390_lowcore.cpu_nr = 0;
1032	S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
1033	S390_lowcore.spinlock_index = 0;
1034}
1035
1036/*
1037 * the frequency of the profiling timer can be changed
1038 * by writing a multiplier value into /proc/profile.
1039 *
1040 * usually you want to run this on all CPUs ;)
1041 */
1042int setup_profiling_timer(unsigned int multiplier)
1043{
1044	return 0;
1045}
1046
1047static ssize_t cpu_configure_show(struct device *dev,
1048				  struct device_attribute *attr, char *buf)
1049{
1050	ssize_t count;
1051
1052	mutex_lock(&smp_cpu_state_mutex);
1053	count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
1054	mutex_unlock(&smp_cpu_state_mutex);
1055	return count;
1056}
1057
1058static ssize_t cpu_configure_store(struct device *dev,
1059				   struct device_attribute *attr,
1060				   const char *buf, size_t count)
1061{
1062	struct pcpu *pcpu;
1063	int cpu, val, rc, i;
1064	char delim;
1065
1066	if (sscanf(buf, "%d %c", &val, &delim) != 1)
1067		return -EINVAL;
1068	if (val != 0 && val != 1)
1069		return -EINVAL;
1070	cpus_read_lock();
1071	mutex_lock(&smp_cpu_state_mutex);
1072	rc = -EBUSY;
1073	/* disallow configuration changes of online cpus and cpu 0 */
1074	cpu = dev->id;
1075	cpu = smp_get_base_cpu(cpu);
1076	if (cpu == 0)
1077		goto out;
1078	for (i = 0; i <= smp_cpu_mtid; i++)
1079		if (cpu_online(cpu + i))
1080			goto out;
1081	pcpu = pcpu_devices + cpu;
1082	rc = 0;
1083	switch (val) {
1084	case 0:
1085		if (pcpu->state != CPU_STATE_CONFIGURED)
1086			break;
1087		rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1088		if (rc)
1089			break;
1090		for (i = 0; i <= smp_cpu_mtid; i++) {
1091			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1092				continue;
1093			pcpu[i].state = CPU_STATE_STANDBY;
1094			smp_cpu_set_polarization(cpu + i,
1095						 POLARIZATION_UNKNOWN);
1096		}
1097		topology_expect_change();
1098		break;
1099	case 1:
1100		if (pcpu->state != CPU_STATE_STANDBY)
1101			break;
1102		rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1103		if (rc)
1104			break;
1105		for (i = 0; i <= smp_cpu_mtid; i++) {
1106			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1107				continue;
1108			pcpu[i].state = CPU_STATE_CONFIGURED;
1109			smp_cpu_set_polarization(cpu + i,
1110						 POLARIZATION_UNKNOWN);
1111		}
1112		topology_expect_change();
1113		break;
1114	default:
1115		break;
1116	}
1117out:
1118	mutex_unlock(&smp_cpu_state_mutex);
1119	cpus_read_unlock();
1120	return rc ? rc : count;
1121}
1122static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1123
1124static ssize_t show_cpu_address(struct device *dev,
1125				struct device_attribute *attr, char *buf)
1126{
1127	return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1128}
1129static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1130
1131static struct attribute *cpu_common_attrs[] = {
1132	&dev_attr_configure.attr,
1133	&dev_attr_address.attr,
1134	NULL,
1135};
1136
1137static struct attribute_group cpu_common_attr_group = {
1138	.attrs = cpu_common_attrs,
1139};
1140
1141static struct attribute *cpu_online_attrs[] = {
1142	&dev_attr_idle_count.attr,
1143	&dev_attr_idle_time_us.attr,
1144	NULL,
1145};
1146
1147static struct attribute_group cpu_online_attr_group = {
1148	.attrs = cpu_online_attrs,
1149};
1150
1151static int smp_cpu_online(unsigned int cpu)
1152{
1153	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1154
1155	return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1156}
1157
1158static int smp_cpu_pre_down(unsigned int cpu)
1159{
1160	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1161
1162	sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1163	return 0;
1164}
1165
1166static int smp_add_present_cpu(int cpu)
1167{
1168	struct device *s;
1169	struct cpu *c;
1170	int rc;
1171
1172	c = kzalloc(sizeof(*c), GFP_KERNEL);
1173	if (!c)
1174		return -ENOMEM;
1175	per_cpu(cpu_device, cpu) = c;
1176	s = &c->dev;
1177	c->hotpluggable = 1;
1178	rc = register_cpu(c, cpu);
1179	if (rc)
1180		goto out;
1181	rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1182	if (rc)
1183		goto out_cpu;
1184	rc = topology_cpu_init(c);
1185	if (rc)
1186		goto out_topology;
1187	return 0;
1188
1189out_topology:
1190	sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1191out_cpu:
1192	unregister_cpu(c);
1193out:
1194	return rc;
1195}
1196
1197int __ref smp_rescan_cpus(void)
1198{
1199	struct sclp_core_info *info;
1200	int nr;
1201
1202	info = kzalloc(sizeof(*info), GFP_KERNEL);
1203	if (!info)
1204		return -ENOMEM;
1205	smp_get_core_info(info, 0);
1206	nr = __smp_rescan_cpus(info, false);
1207	kfree(info);
1208	if (nr)
1209		topology_schedule_update();
1210	return 0;
1211}
1212
1213static ssize_t __ref rescan_store(struct device *dev,
1214				  struct device_attribute *attr,
1215				  const char *buf,
1216				  size_t count)
1217{
1218	int rc;
1219
1220	rc = lock_device_hotplug_sysfs();
1221	if (rc)
1222		return rc;
1223	rc = smp_rescan_cpus();
1224	unlock_device_hotplug();
1225	return rc ? rc : count;
1226}
1227static DEVICE_ATTR_WO(rescan);
1228
1229static int __init s390_smp_init(void)
1230{
 
1231	int cpu, rc = 0;
1232
1233	rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1234	if (rc)
1235		return rc;
 
 
 
 
 
1236	for_each_present_cpu(cpu) {
1237		rc = smp_add_present_cpu(cpu);
1238		if (rc)
1239			goto out;
1240	}
1241
1242	rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1243			       smp_cpu_online, smp_cpu_pre_down);
1244	rc = rc <= 0 ? rc : 0;
1245out:
1246	return rc;
1247}
1248subsys_initcall(s390_smp_init);
1249
1250static __always_inline void set_new_lowcore(struct lowcore *lc)
1251{
1252	union register_pair dst, src;
1253	u32 pfx;
1254
1255	src.even = (unsigned long) &S390_lowcore;
1256	src.odd  = sizeof(S390_lowcore);
1257	dst.even = (unsigned long) lc;
1258	dst.odd  = sizeof(*lc);
1259	pfx = __pa(lc);
1260
1261	asm volatile(
1262		"	mvcl	%[dst],%[src]\n"
1263		"	spx	%[pfx]\n"
1264		: [dst] "+&d" (dst.pair), [src] "+&d" (src.pair)
1265		: [pfx] "Q" (pfx)
1266		: "memory", "cc");
1267}
1268
1269int __init smp_reinit_ipl_cpu(void)
1270{
1271	unsigned long async_stack, nodat_stack, mcck_stack;
1272	struct lowcore *lc, *lc_ipl;
1273	unsigned long flags, cr0;
1274	u64 mcesad;
1275
1276	lc_ipl = lowcore_ptr[0];
1277	lc = (struct lowcore *)	__get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
1278	nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
1279	async_stack = stack_alloc();
1280	mcck_stack = stack_alloc();
1281	if (!lc || !nodat_stack || !async_stack || !mcck_stack || nmi_alloc_mcesa(&mcesad))
1282		panic("Couldn't allocate memory");
1283
1284	local_irq_save(flags);
1285	local_mcck_disable();
1286	set_new_lowcore(lc);
1287	S390_lowcore.nodat_stack = nodat_stack + STACK_INIT_OFFSET;
1288	S390_lowcore.async_stack = async_stack + STACK_INIT_OFFSET;
1289	S390_lowcore.mcck_stack = mcck_stack + STACK_INIT_OFFSET;
1290	__ctl_store(cr0, 0, 0);
1291	__ctl_clear_bit(0, 28); /* disable lowcore protection */
1292	S390_lowcore.mcesad = mcesad;
1293	__ctl_load(cr0, 0, 0);
1294	if (abs_lowcore_map(0, lc, false))
1295		panic("Couldn't remap absolute lowcore");
1296	lowcore_ptr[0] = lc;
1297	local_mcck_enable();
1298	local_irq_restore(flags);
1299
1300	free_pages(lc_ipl->async_stack - STACK_INIT_OFFSET, THREAD_SIZE_ORDER);
1301	memblock_free_late(__pa(lc_ipl->mcck_stack - STACK_INIT_OFFSET), THREAD_SIZE);
1302	memblock_free_late(__pa(lc_ipl), sizeof(*lc_ipl));
1303
1304	return 0;
1305}
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  SMP related functions
   4 *
   5 *    Copyright IBM Corp. 1999, 2012
   6 *    Author(s): Denis Joseph Barrow,
   7 *		 Martin Schwidefsky <schwidefsky@de.ibm.com>,
   8 *
   9 *  based on other smp stuff by
  10 *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
  11 *    (c) 1998 Ingo Molnar
  12 *
  13 * The code outside of smp.c uses logical cpu numbers, only smp.c does
  14 * the translation of logical to physical cpu ids. All new code that
  15 * operates on physical cpu numbers needs to go into smp.c.
  16 */
  17
  18#define KMSG_COMPONENT "cpu"
  19#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  20
  21#include <linux/workqueue.h>
  22#include <linux/memblock.h>
  23#include <linux/export.h>
  24#include <linux/init.h>
  25#include <linux/mm.h>
  26#include <linux/err.h>
  27#include <linux/spinlock.h>
  28#include <linux/kernel_stat.h>
  29#include <linux/delay.h>
  30#include <linux/interrupt.h>
  31#include <linux/irqflags.h>
  32#include <linux/irq_work.h>
  33#include <linux/cpu.h>
  34#include <linux/slab.h>
  35#include <linux/sched/hotplug.h>
  36#include <linux/sched/task_stack.h>
  37#include <linux/crash_dump.h>
  38#include <linux/kprobes.h>
  39#include <asm/asm-offsets.h>
  40#include <asm/ctlreg.h>
  41#include <asm/pfault.h>
  42#include <asm/diag.h>
  43#include <asm/switch_to.h>
  44#include <asm/facility.h>
  45#include <asm/ipl.h>
  46#include <asm/setup.h>
  47#include <asm/irq.h>
  48#include <asm/tlbflush.h>
  49#include <asm/vtimer.h>
  50#include <asm/abs_lowcore.h>
  51#include <asm/sclp.h>
  52#include <asm/debug.h>
  53#include <asm/os_info.h>
  54#include <asm/sigp.h>
  55#include <asm/idle.h>
  56#include <asm/nmi.h>
  57#include <asm/stacktrace.h>
  58#include <asm/topology.h>
  59#include <asm/vdso.h>
  60#include <asm/maccess.h>
  61#include "entry.h"
  62
  63enum {
  64	ec_schedule = 0,
  65	ec_call_function_single,
  66	ec_stop_cpu,
  67	ec_mcck_pending,
  68	ec_irq_work,
  69};
  70
  71enum {
  72	CPU_STATE_STANDBY,
  73	CPU_STATE_CONFIGURED,
  74};
  75
  76static DEFINE_PER_CPU(struct cpu *, cpu_device);
  77
  78struct pcpu {
  79	unsigned long ec_mask;		/* bit mask for ec_xxx functions */
  80	unsigned long ec_clk;		/* sigp timestamp for ec_xxx */
  81	signed char state;		/* physical cpu state */
  82	signed char polarization;	/* physical polarization */
  83	u16 address;			/* physical cpu address */
  84};
  85
  86static u8 boot_core_type;
  87static struct pcpu pcpu_devices[NR_CPUS];
  88
  89unsigned int smp_cpu_mt_shift;
  90EXPORT_SYMBOL(smp_cpu_mt_shift);
  91
  92unsigned int smp_cpu_mtid;
  93EXPORT_SYMBOL(smp_cpu_mtid);
  94
  95#ifdef CONFIG_CRASH_DUMP
  96__vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
  97#endif
  98
  99static unsigned int smp_max_threads __initdata = -1U;
 100cpumask_t cpu_setup_mask;
 101
 102static int __init early_nosmt(char *s)
 103{
 104	smp_max_threads = 1;
 105	return 0;
 106}
 107early_param("nosmt", early_nosmt);
 108
 109static int __init early_smt(char *s)
 110{
 111	get_option(&s, &smp_max_threads);
 112	return 0;
 113}
 114early_param("smt", early_smt);
 115
 116/*
 117 * The smp_cpu_state_mutex must be held when changing the state or polarization
 118 * member of a pcpu data structure within the pcpu_devices array.
 119 */
 120DEFINE_MUTEX(smp_cpu_state_mutex);
 121
 122/*
 123 * Signal processor helper functions.
 124 */
 125static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
 126{
 127	int cc;
 128
 129	while (1) {
 130		cc = __pcpu_sigp(addr, order, parm, NULL);
 131		if (cc != SIGP_CC_BUSY)
 132			return cc;
 133		cpu_relax();
 134	}
 135}
 136
 137static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
 138{
 139	int cc, retry;
 140
 141	for (retry = 0; ; retry++) {
 142		cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
 143		if (cc != SIGP_CC_BUSY)
 144			break;
 145		if (retry >= 3)
 146			udelay(10);
 147	}
 148	return cc;
 149}
 150
 151static inline int pcpu_stopped(struct pcpu *pcpu)
 152{
 153	u32 status;
 154
 155	if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
 156			0, &status) != SIGP_CC_STATUS_STORED)
 157		return 0;
 158	return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
 159}
 160
 161static inline int pcpu_running(struct pcpu *pcpu)
 162{
 163	if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
 164			0, NULL) != SIGP_CC_STATUS_STORED)
 165		return 1;
 166	/* Status stored condition code is equivalent to cpu not running. */
 167	return 0;
 168}
 169
 170/*
 171 * Find struct pcpu by cpu address.
 172 */
 173static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
 174{
 175	int cpu;
 176
 177	for_each_cpu(cpu, mask)
 178		if (pcpu_devices[cpu].address == address)
 179			return pcpu_devices + cpu;
 180	return NULL;
 181}
 182
 183static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
 184{
 185	int order;
 186
 187	if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
 188		return;
 189	order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
 190	pcpu->ec_clk = get_tod_clock_fast();
 191	pcpu_sigp_retry(pcpu, order, 0);
 192}
 193
 194static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
 195{
 196	unsigned long async_stack, nodat_stack, mcck_stack;
 197	struct lowcore *lc;
 198
 199	lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
 200	nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
 201	async_stack = stack_alloc();
 202	mcck_stack = stack_alloc();
 203	if (!lc || !nodat_stack || !async_stack || !mcck_stack)
 204		goto out;
 205	memcpy(lc, &S390_lowcore, 512);
 206	memset((char *) lc + 512, 0, sizeof(*lc) - 512);
 207	lc->async_stack = async_stack + STACK_INIT_OFFSET;
 208	lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
 209	lc->mcck_stack = mcck_stack + STACK_INIT_OFFSET;
 210	lc->cpu_nr = cpu;
 211	lc->spinlock_lockval = arch_spin_lockval(cpu);
 212	lc->spinlock_index = 0;
 213	lc->return_lpswe = gen_lpswe(__LC_RETURN_PSW);
 214	lc->return_mcck_lpswe = gen_lpswe(__LC_RETURN_MCCK_PSW);
 215	lc->preempt_count = PREEMPT_DISABLED;
 216	if (nmi_alloc_mcesa(&lc->mcesad))
 217		goto out;
 218	if (abs_lowcore_map(cpu, lc, true))
 219		goto out_mcesa;
 220	lowcore_ptr[cpu] = lc;
 221	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, __pa(lc));
 222	return 0;
 223
 224out_mcesa:
 225	nmi_free_mcesa(&lc->mcesad);
 226out:
 227	stack_free(mcck_stack);
 228	stack_free(async_stack);
 229	free_pages(nodat_stack, THREAD_SIZE_ORDER);
 230	free_pages((unsigned long) lc, LC_ORDER);
 231	return -ENOMEM;
 232}
 233
 234static void pcpu_free_lowcore(struct pcpu *pcpu)
 235{
 236	unsigned long async_stack, nodat_stack, mcck_stack;
 237	struct lowcore *lc;
 238	int cpu;
 239
 240	cpu = pcpu - pcpu_devices;
 241	lc = lowcore_ptr[cpu];
 242	nodat_stack = lc->nodat_stack - STACK_INIT_OFFSET;
 243	async_stack = lc->async_stack - STACK_INIT_OFFSET;
 244	mcck_stack = lc->mcck_stack - STACK_INIT_OFFSET;
 245	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
 246	lowcore_ptr[cpu] = NULL;
 247	abs_lowcore_unmap(cpu);
 248	nmi_free_mcesa(&lc->mcesad);
 249	stack_free(async_stack);
 250	stack_free(mcck_stack);
 251	free_pages(nodat_stack, THREAD_SIZE_ORDER);
 252	free_pages((unsigned long) lc, LC_ORDER);
 253}
 254
 255static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
 256{
 257	struct lowcore *lc, *abs_lc;
 258
 259	lc = lowcore_ptr[cpu];
 260	cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
 261	cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
 262	lc->cpu_nr = cpu;
 263	lc->restart_flags = RESTART_FLAG_CTLREGS;
 264	lc->spinlock_lockval = arch_spin_lockval(cpu);
 265	lc->spinlock_index = 0;
 266	lc->percpu_offset = __per_cpu_offset[cpu];
 267	lc->kernel_asce = S390_lowcore.kernel_asce;
 268	lc->user_asce = s390_invalid_asce;
 269	lc->machine_flags = S390_lowcore.machine_flags;
 270	lc->user_timer = lc->system_timer =
 271		lc->steal_timer = lc->avg_steal_timer = 0;
 272	abs_lc = get_abs_lowcore();
 273	memcpy(lc->cregs_save_area, abs_lc->cregs_save_area, sizeof(lc->cregs_save_area));
 274	put_abs_lowcore(abs_lc);
 275	lc->cregs_save_area[1] = lc->kernel_asce;
 276	lc->cregs_save_area[7] = lc->user_asce;
 277	save_access_regs((unsigned int *) lc->access_regs_save_area);
 278	arch_spin_lock_setup(cpu);
 279}
 280
 281static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
 282{
 283	struct lowcore *lc;
 284	int cpu;
 285
 286	cpu = pcpu - pcpu_devices;
 287	lc = lowcore_ptr[cpu];
 288	lc->kernel_stack = (unsigned long)task_stack_page(tsk) + STACK_INIT_OFFSET;
 289	lc->current_task = (unsigned long)tsk;
 
 290	lc->lpp = LPP_MAGIC;
 291	lc->current_pid = tsk->pid;
 292	lc->user_timer = tsk->thread.user_timer;
 293	lc->guest_timer = tsk->thread.guest_timer;
 294	lc->system_timer = tsk->thread.system_timer;
 295	lc->hardirq_timer = tsk->thread.hardirq_timer;
 296	lc->softirq_timer = tsk->thread.softirq_timer;
 297	lc->steal_timer = 0;
 298}
 299
 300static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
 301{
 302	struct lowcore *lc;
 303	int cpu;
 304
 305	cpu = pcpu - pcpu_devices;
 306	lc = lowcore_ptr[cpu];
 307	lc->restart_stack = lc->kernel_stack;
 308	lc->restart_fn = (unsigned long) func;
 309	lc->restart_data = (unsigned long) data;
 310	lc->restart_source = -1U;
 311	pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
 312}
 313
 314typedef void (pcpu_delegate_fn)(void *);
 315
 316/*
 317 * Call function via PSW restart on pcpu and stop the current cpu.
 318 */
 319static void __pcpu_delegate(pcpu_delegate_fn *func, void *data)
 320{
 321	func(data);	/* should not return */
 322}
 323
 324static void pcpu_delegate(struct pcpu *pcpu,
 325			  pcpu_delegate_fn *func,
 326			  void *data, unsigned long stack)
 327{
 328	struct lowcore *lc, *abs_lc;
 329	unsigned int source_cpu;
 
 330
 331	lc = lowcore_ptr[pcpu - pcpu_devices];
 332	source_cpu = stap();
 333
 334	if (pcpu->address == source_cpu) {
 335		call_on_stack(2, stack, void, __pcpu_delegate,
 336			      pcpu_delegate_fn *, func, void *, data);
 337	}
 338	/* Stop target cpu (if func returns this stops the current cpu). */
 339	pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
 340	pcpu_sigp_retry(pcpu, SIGP_CPU_RESET, 0);
 341	/* Restart func on the target cpu and stop the current cpu. */
 342	if (lc) {
 343		lc->restart_stack = stack;
 344		lc->restart_fn = (unsigned long)func;
 345		lc->restart_data = (unsigned long)data;
 346		lc->restart_source = source_cpu;
 347	} else {
 348		abs_lc = get_abs_lowcore();
 349		abs_lc->restart_stack = stack;
 350		abs_lc->restart_fn = (unsigned long)func;
 351		abs_lc->restart_data = (unsigned long)data;
 352		abs_lc->restart_source = source_cpu;
 353		put_abs_lowcore(abs_lc);
 354	}
 
 355	asm volatile(
 356		"0:	sigp	0,%0,%2	# sigp restart to target cpu\n"
 357		"	brc	2,0b	# busy, try again\n"
 358		"1:	sigp	0,%1,%3	# sigp stop to current cpu\n"
 359		"	brc	2,1b	# busy, try again\n"
 360		: : "d" (pcpu->address), "d" (source_cpu),
 361		    "K" (SIGP_RESTART), "K" (SIGP_STOP)
 362		: "0", "1", "cc");
 363	for (;;) ;
 364}
 365
 366/*
 367 * Enable additional logical cpus for multi-threading.
 368 */
 369static int pcpu_set_smt(unsigned int mtid)
 370{
 371	int cc;
 372
 373	if (smp_cpu_mtid == mtid)
 374		return 0;
 375	cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
 376	if (cc == 0) {
 377		smp_cpu_mtid = mtid;
 378		smp_cpu_mt_shift = 0;
 379		while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
 380			smp_cpu_mt_shift++;
 381		pcpu_devices[0].address = stap();
 382	}
 383	return cc;
 384}
 385
 386/*
 387 * Call function on an online CPU.
 388 */
 389void smp_call_online_cpu(void (*func)(void *), void *data)
 390{
 391	struct pcpu *pcpu;
 392
 393	/* Use the current cpu if it is online. */
 394	pcpu = pcpu_find_address(cpu_online_mask, stap());
 395	if (!pcpu)
 396		/* Use the first online cpu. */
 397		pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
 398	pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
 399}
 400
 401/*
 402 * Call function on the ipl CPU.
 403 */
 404void smp_call_ipl_cpu(void (*func)(void *), void *data)
 405{
 406	struct lowcore *lc = lowcore_ptr[0];
 407
 408	if (pcpu_devices[0].address == stap())
 409		lc = &S390_lowcore;
 410
 411	pcpu_delegate(&pcpu_devices[0], func, data,
 412		      lc->nodat_stack);
 413}
 414
 415int smp_find_processor_id(u16 address)
 416{
 417	int cpu;
 418
 419	for_each_present_cpu(cpu)
 420		if (pcpu_devices[cpu].address == address)
 421			return cpu;
 422	return -1;
 423}
 424
 425void schedule_mcck_handler(void)
 426{
 427	pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_mcck_pending);
 428}
 429
 430bool notrace arch_vcpu_is_preempted(int cpu)
 431{
 432	if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
 433		return false;
 434	if (pcpu_running(pcpu_devices + cpu))
 435		return false;
 436	return true;
 437}
 438EXPORT_SYMBOL(arch_vcpu_is_preempted);
 439
 440void notrace smp_yield_cpu(int cpu)
 441{
 442	if (!MACHINE_HAS_DIAG9C)
 443		return;
 444	diag_stat_inc_norecursion(DIAG_STAT_X09C);
 445	asm volatile("diag %0,0,0x9c"
 446		     : : "d" (pcpu_devices[cpu].address));
 447}
 448EXPORT_SYMBOL_GPL(smp_yield_cpu);
 449
 450/*
 451 * Send cpus emergency shutdown signal. This gives the cpus the
 452 * opportunity to complete outstanding interrupts.
 453 */
 454void notrace smp_emergency_stop(void)
 455{
 456	static arch_spinlock_t lock = __ARCH_SPIN_LOCK_UNLOCKED;
 457	static cpumask_t cpumask;
 458	u64 end;
 459	int cpu;
 460
 461	arch_spin_lock(&lock);
 462	cpumask_copy(&cpumask, cpu_online_mask);
 463	cpumask_clear_cpu(smp_processor_id(), &cpumask);
 464
 465	end = get_tod_clock() + (1000000UL << 12);
 466	for_each_cpu(cpu, &cpumask) {
 467		struct pcpu *pcpu = pcpu_devices + cpu;
 468		set_bit(ec_stop_cpu, &pcpu->ec_mask);
 469		while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
 470				   0, NULL) == SIGP_CC_BUSY &&
 471		       get_tod_clock() < end)
 472			cpu_relax();
 473	}
 474	while (get_tod_clock() < end) {
 475		for_each_cpu(cpu, &cpumask)
 476			if (pcpu_stopped(pcpu_devices + cpu))
 477				cpumask_clear_cpu(cpu, &cpumask);
 478		if (cpumask_empty(&cpumask))
 479			break;
 480		cpu_relax();
 481	}
 482	arch_spin_unlock(&lock);
 483}
 484NOKPROBE_SYMBOL(smp_emergency_stop);
 485
 486/*
 487 * Stop all cpus but the current one.
 488 */
 489void smp_send_stop(void)
 490{
 491	int cpu;
 492
 493	/* Disable all interrupts/machine checks */
 494	__load_psw_mask(PSW_KERNEL_BITS);
 495	trace_hardirqs_off();
 496
 497	debug_set_critical();
 498
 499	if (oops_in_progress)
 500		smp_emergency_stop();
 501
 502	/* stop all processors */
 503	for_each_online_cpu(cpu) {
 504		if (cpu == smp_processor_id())
 505			continue;
 506		pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
 507		while (!pcpu_stopped(pcpu_devices + cpu))
 508			cpu_relax();
 509	}
 510}
 511
 512/*
 513 * This is the main routine where commands issued by other
 514 * cpus are handled.
 515 */
 516static void smp_handle_ext_call(void)
 517{
 518	unsigned long bits;
 519
 520	/* handle bit signal external calls */
 521	bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
 522	if (test_bit(ec_stop_cpu, &bits))
 523		smp_stop_cpu();
 524	if (test_bit(ec_schedule, &bits))
 525		scheduler_ipi();
 526	if (test_bit(ec_call_function_single, &bits))
 527		generic_smp_call_function_single_interrupt();
 528	if (test_bit(ec_mcck_pending, &bits))
 529		s390_handle_mcck();
 530	if (test_bit(ec_irq_work, &bits))
 531		irq_work_run();
 532}
 533
 534static void do_ext_call_interrupt(struct ext_code ext_code,
 535				  unsigned int param32, unsigned long param64)
 536{
 537	inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
 538	smp_handle_ext_call();
 539}
 540
 541void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 542{
 543	int cpu;
 544
 545	for_each_cpu(cpu, mask)
 546		pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
 547}
 548
 549void arch_send_call_function_single_ipi(int cpu)
 550{
 551	pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
 552}
 553
 554/*
 555 * this function sends a 'reschedule' IPI to another CPU.
 556 * it goes straight through and wastes no time serializing
 557 * anything. Worst case is that we lose a reschedule ...
 558 */
 559void arch_smp_send_reschedule(int cpu)
 560{
 561	pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
 562}
 563
 564#ifdef CONFIG_IRQ_WORK
 565void arch_irq_work_raise(void)
 566{
 567	pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_irq_work);
 568}
 569#endif
 570
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 571#ifdef CONFIG_CRASH_DUMP
 572
 573int smp_store_status(int cpu)
 574{
 575	struct lowcore *lc;
 576	struct pcpu *pcpu;
 577	unsigned long pa;
 578
 579	pcpu = pcpu_devices + cpu;
 580	lc = lowcore_ptr[cpu];
 581	pa = __pa(&lc->floating_pt_save_area);
 582	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
 583			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
 584		return -EIO;
 585	if (!cpu_has_vx() && !MACHINE_HAS_GS)
 586		return 0;
 587	pa = lc->mcesad & MCESA_ORIGIN_MASK;
 588	if (MACHINE_HAS_GS)
 589		pa |= lc->mcesad & MCESA_LC_MASK;
 590	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
 591			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
 592		return -EIO;
 593	return 0;
 594}
 595
 596/*
 597 * Collect CPU state of the previous, crashed system.
 598 * There are four cases:
 599 * 1) standard zfcp/nvme dump
 600 *    condition: OLDMEM_BASE == NULL && is_ipl_type_dump() == true
 601 *    The state for all CPUs except the boot CPU needs to be collected
 602 *    with sigp stop-and-store-status. The boot CPU state is located in
 603 *    the absolute lowcore of the memory stored in the HSA. The zcore code
 604 *    will copy the boot CPU state from the HSA.
 605 * 2) stand-alone kdump for SCSI/NVMe (zfcp/nvme dump with swapped memory)
 606 *    condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == true
 607 *    The state for all CPUs except the boot CPU needs to be collected
 608 *    with sigp stop-and-store-status. The firmware or the boot-loader
 609 *    stored the registers of the boot CPU in the absolute lowcore in the
 610 *    memory of the old system.
 611 * 3) kdump and the old kernel did not store the CPU state,
 612 *    or stand-alone kdump for DASD
 613 *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
 614 *    The state for all CPUs except the boot CPU needs to be collected
 615 *    with sigp stop-and-store-status. The kexec code or the boot-loader
 616 *    stored the registers of the boot CPU in the memory of the old system.
 617 * 4) kdump and the old kernel stored the CPU state
 618 *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
 619 *    This case does not exist for s390 anymore, setup_arch explicitly
 620 *    deactivates the elfcorehdr= kernel parameter
 621 */
 622static bool dump_available(void)
 623{
 624	return oldmem_data.start || is_ipl_type_dump();
 625}
 626
 627void __init smp_save_dump_ipl_cpu(void)
 628{
 629	struct save_area *sa;
 630	void *regs;
 631
 632	if (!dump_available())
 633		return;
 634	sa = save_area_alloc(true);
 635	regs = memblock_alloc(512, 8);
 636	if (!sa || !regs)
 637		panic("could not allocate memory for boot CPU save area\n");
 638	copy_oldmem_kernel(regs, __LC_FPREGS_SAVE_AREA, 512);
 639	save_area_add_regs(sa, regs);
 640	memblock_free(regs, 512);
 641	if (cpu_has_vx())
 642		save_area_add_vxrs(sa, boot_cpu_vector_save_area);
 643}
 644
 645void __init smp_save_dump_secondary_cpus(void)
 646{
 647	int addr, boot_cpu_addr, max_cpu_addr;
 648	struct save_area *sa;
 649	void *page;
 650
 651	if (!dump_available())
 652		return;
 653	/* Allocate a page as dumping area for the store status sigps */
 654	page = memblock_alloc_low(PAGE_SIZE, PAGE_SIZE);
 655	if (!page)
 656		panic("ERROR: Failed to allocate %lx bytes below %lx\n",
 657		      PAGE_SIZE, 1UL << 31);
 658
 659	/* Set multi-threading state to the previous system. */
 660	pcpu_set_smt(sclp.mtid_prev);
 661	boot_cpu_addr = stap();
 662	max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
 663	for (addr = 0; addr <= max_cpu_addr; addr++) {
 664		if (addr == boot_cpu_addr)
 665			continue;
 666		if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
 667		    SIGP_CC_NOT_OPERATIONAL)
 668			continue;
 669		sa = save_area_alloc(false);
 670		if (!sa)
 671			panic("could not allocate memory for save area\n");
 672		__pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, __pa(page));
 673		save_area_add_regs(sa, page);
 674		if (cpu_has_vx()) {
 675			__pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, __pa(page));
 676			save_area_add_vxrs(sa, page);
 677		}
 678	}
 679	memblock_free(page, PAGE_SIZE);
 680	diag_amode31_ops.diag308_reset();
 681	pcpu_set_smt(0);
 682}
 683#endif /* CONFIG_CRASH_DUMP */
 684
 685void smp_cpu_set_polarization(int cpu, int val)
 686{
 687	pcpu_devices[cpu].polarization = val;
 688}
 689
 690int smp_cpu_get_polarization(int cpu)
 691{
 692	return pcpu_devices[cpu].polarization;
 693}
 694
 695int smp_cpu_get_cpu_address(int cpu)
 696{
 697	return pcpu_devices[cpu].address;
 698}
 699
 700static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
 701{
 702	static int use_sigp_detection;
 703	int address;
 704
 705	if (use_sigp_detection || sclp_get_core_info(info, early)) {
 706		use_sigp_detection = 1;
 707		for (address = 0;
 708		     address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
 709		     address += (1U << smp_cpu_mt_shift)) {
 710			if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
 711			    SIGP_CC_NOT_OPERATIONAL)
 712				continue;
 713			info->core[info->configured].core_id =
 714				address >> smp_cpu_mt_shift;
 715			info->configured++;
 716		}
 717		info->combined = info->configured;
 718	}
 719}
 720
 721static int smp_add_present_cpu(int cpu);
 722
 723static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail,
 724			bool configured, bool early)
 725{
 726	struct pcpu *pcpu;
 727	int cpu, nr, i;
 728	u16 address;
 729
 730	nr = 0;
 731	if (sclp.has_core_type && core->type != boot_core_type)
 732		return nr;
 733	cpu = cpumask_first(avail);
 734	address = core->core_id << smp_cpu_mt_shift;
 735	for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) {
 736		if (pcpu_find_address(cpu_present_mask, address + i))
 737			continue;
 738		pcpu = pcpu_devices + cpu;
 739		pcpu->address = address + i;
 740		if (configured)
 741			pcpu->state = CPU_STATE_CONFIGURED;
 742		else
 743			pcpu->state = CPU_STATE_STANDBY;
 744		smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
 745		set_cpu_present(cpu, true);
 746		if (!early && smp_add_present_cpu(cpu) != 0)
 747			set_cpu_present(cpu, false);
 748		else
 749			nr++;
 750		cpumask_clear_cpu(cpu, avail);
 751		cpu = cpumask_next(cpu, avail);
 752	}
 753	return nr;
 754}
 755
 756static int __smp_rescan_cpus(struct sclp_core_info *info, bool early)
 757{
 758	struct sclp_core_entry *core;
 759	static cpumask_t avail;
 760	bool configured;
 761	u16 core_id;
 762	int nr, i;
 763
 764	cpus_read_lock();
 765	mutex_lock(&smp_cpu_state_mutex);
 766	nr = 0;
 767	cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
 768	/*
 769	 * Add IPL core first (which got logical CPU number 0) to make sure
 770	 * that all SMT threads get subsequent logical CPU numbers.
 771	 */
 772	if (early) {
 773		core_id = pcpu_devices[0].address >> smp_cpu_mt_shift;
 774		for (i = 0; i < info->configured; i++) {
 775			core = &info->core[i];
 776			if (core->core_id == core_id) {
 777				nr += smp_add_core(core, &avail, true, early);
 778				break;
 779			}
 780		}
 781	}
 782	for (i = 0; i < info->combined; i++) {
 783		configured = i < info->configured;
 784		nr += smp_add_core(&info->core[i], &avail, configured, early);
 785	}
 786	mutex_unlock(&smp_cpu_state_mutex);
 787	cpus_read_unlock();
 788	return nr;
 789}
 790
 791void __init smp_detect_cpus(void)
 792{
 793	unsigned int cpu, mtid, c_cpus, s_cpus;
 794	struct sclp_core_info *info;
 795	u16 address;
 796
 797	/* Get CPU information */
 798	info = memblock_alloc(sizeof(*info), 8);
 799	if (!info)
 800		panic("%s: Failed to allocate %zu bytes align=0x%x\n",
 801		      __func__, sizeof(*info), 8);
 802	smp_get_core_info(info, 1);
 803	/* Find boot CPU type */
 804	if (sclp.has_core_type) {
 805		address = stap();
 806		for (cpu = 0; cpu < info->combined; cpu++)
 807			if (info->core[cpu].core_id == address) {
 808				/* The boot cpu dictates the cpu type. */
 809				boot_core_type = info->core[cpu].type;
 810				break;
 811			}
 812		if (cpu >= info->combined)
 813			panic("Could not find boot CPU type");
 814	}
 815
 816	/* Set multi-threading state for the current system */
 817	mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
 818	mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
 819	pcpu_set_smt(mtid);
 820
 821	/* Print number of CPUs */
 822	c_cpus = s_cpus = 0;
 823	for (cpu = 0; cpu < info->combined; cpu++) {
 824		if (sclp.has_core_type &&
 825		    info->core[cpu].type != boot_core_type)
 826			continue;
 827		if (cpu < info->configured)
 828			c_cpus += smp_cpu_mtid + 1;
 829		else
 830			s_cpus += smp_cpu_mtid + 1;
 831	}
 832	pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
 833
 834	/* Add CPUs present at boot */
 835	__smp_rescan_cpus(info, true);
 836	memblock_free(info, sizeof(*info));
 837}
 838
 839/*
 840 *	Activate a secondary processor.
 841 */
 842static void smp_start_secondary(void *cpuvoid)
 843{
 844	int cpu = raw_smp_processor_id();
 845
 846	S390_lowcore.last_update_clock = get_tod_clock();
 847	S390_lowcore.restart_stack = (unsigned long)restart_stack;
 848	S390_lowcore.restart_fn = (unsigned long)do_restart;
 849	S390_lowcore.restart_data = 0;
 850	S390_lowcore.restart_source = -1U;
 851	S390_lowcore.restart_flags = 0;
 852	restore_access_regs(S390_lowcore.access_regs_save_area);
 853	cpu_init();
 854	rcutree_report_cpu_starting(cpu);
 855	init_cpu_timer();
 856	vtime_init();
 857	vdso_getcpu_init();
 858	pfault_init();
 859	cpumask_set_cpu(cpu, &cpu_setup_mask);
 860	update_cpu_masks();
 861	notify_cpu_starting(cpu);
 862	if (topology_cpu_dedicated(cpu))
 863		set_cpu_flag(CIF_DEDICATED_CPU);
 864	else
 865		clear_cpu_flag(CIF_DEDICATED_CPU);
 866	set_cpu_online(cpu, true);
 867	inc_irq_stat(CPU_RST);
 868	local_irq_enable();
 869	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 870}
 871
 872/* Upping and downing of CPUs */
 873int __cpu_up(unsigned int cpu, struct task_struct *tidle)
 874{
 875	struct pcpu *pcpu = pcpu_devices + cpu;
 876	int rc;
 877
 878	if (pcpu->state != CPU_STATE_CONFIGURED)
 879		return -EIO;
 880	if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
 881	    SIGP_CC_ORDER_CODE_ACCEPTED)
 882		return -EIO;
 883
 884	rc = pcpu_alloc_lowcore(pcpu, cpu);
 885	if (rc)
 886		return rc;
 887	/*
 888	 * Make sure global control register contents do not change
 889	 * until new CPU has initialized control registers.
 890	 */
 891	system_ctlreg_lock();
 892	pcpu_prepare_secondary(pcpu, cpu);
 893	pcpu_attach_task(pcpu, tidle);
 894	pcpu_start_fn(pcpu, smp_start_secondary, NULL);
 895	/* Wait until cpu puts itself in the online & active maps */
 896	while (!cpu_online(cpu))
 897		cpu_relax();
 898	system_ctlreg_unlock();
 899	return 0;
 900}
 901
 902static unsigned int setup_possible_cpus __initdata;
 903
 904static int __init _setup_possible_cpus(char *s)
 905{
 906	get_option(&s, &setup_possible_cpus);
 907	return 0;
 908}
 909early_param("possible_cpus", _setup_possible_cpus);
 910
 911int __cpu_disable(void)
 912{
 913	struct ctlreg cregs[16];
 914	int cpu;
 915
 916	/* Handle possible pending IPIs */
 917	smp_handle_ext_call();
 918	cpu = smp_processor_id();
 919	set_cpu_online(cpu, false);
 920	cpumask_clear_cpu(cpu, &cpu_setup_mask);
 921	update_cpu_masks();
 922	/* Disable pseudo page faults on this cpu. */
 923	pfault_fini();
 924	/* Disable interrupt sources via control register. */
 925	__local_ctl_store(0, 15, cregs);
 926	cregs[0].val  &= ~0x0000ee70UL;	/* disable all external interrupts */
 927	cregs[6].val  &= ~0xff000000UL;	/* disable all I/O interrupts */
 928	cregs[14].val &= ~0x1f000000UL;	/* disable most machine checks */
 929	__local_ctl_load(0, 15, cregs);
 930	clear_cpu_flag(CIF_NOHZ_DELAY);
 931	return 0;
 932}
 933
 934void __cpu_die(unsigned int cpu)
 935{
 936	struct pcpu *pcpu;
 937
 938	/* Wait until target cpu is down */
 939	pcpu = pcpu_devices + cpu;
 940	while (!pcpu_stopped(pcpu))
 941		cpu_relax();
 942	pcpu_free_lowcore(pcpu);
 943	cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
 944	cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
 945}
 946
 947void __noreturn cpu_die(void)
 948{
 949	idle_task_exit();
 
 950	pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
 951	for (;;) ;
 952}
 953
 954void __init smp_fill_possible_mask(void)
 955{
 956	unsigned int possible, sclp_max, cpu;
 957
 958	sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
 959	sclp_max = min(smp_max_threads, sclp_max);
 960	sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
 961	possible = setup_possible_cpus ?: nr_cpu_ids;
 962	possible = min(possible, sclp_max);
 963	for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
 964		set_cpu_possible(cpu, true);
 965}
 966
 967void __init smp_prepare_cpus(unsigned int max_cpus)
 968{
 
 969	if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
 970		panic("Couldn't request external interrupt 0x1201");
 971	system_ctl_set_bit(0, 14);
 972	if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
 973		panic("Couldn't request external interrupt 0x1202");
 974	system_ctl_set_bit(0, 13);
 975}
 976
 977void __init smp_prepare_boot_cpu(void)
 978{
 979	struct pcpu *pcpu = pcpu_devices;
 980
 981	WARN_ON(!cpu_present(0) || !cpu_online(0));
 982	pcpu->state = CPU_STATE_CONFIGURED;
 983	S390_lowcore.percpu_offset = __per_cpu_offset[0];
 984	smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
 985}
 986
 987void __init smp_setup_processor_id(void)
 988{
 989	pcpu_devices[0].address = stap();
 990	S390_lowcore.cpu_nr = 0;
 991	S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
 992	S390_lowcore.spinlock_index = 0;
 993}
 994
 995/*
 996 * the frequency of the profiling timer can be changed
 997 * by writing a multiplier value into /proc/profile.
 998 *
 999 * usually you want to run this on all CPUs ;)
1000 */
1001int setup_profiling_timer(unsigned int multiplier)
1002{
1003	return 0;
1004}
1005
1006static ssize_t cpu_configure_show(struct device *dev,
1007				  struct device_attribute *attr, char *buf)
1008{
1009	ssize_t count;
1010
1011	mutex_lock(&smp_cpu_state_mutex);
1012	count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
1013	mutex_unlock(&smp_cpu_state_mutex);
1014	return count;
1015}
1016
1017static ssize_t cpu_configure_store(struct device *dev,
1018				   struct device_attribute *attr,
1019				   const char *buf, size_t count)
1020{
1021	struct pcpu *pcpu;
1022	int cpu, val, rc, i;
1023	char delim;
1024
1025	if (sscanf(buf, "%d %c", &val, &delim) != 1)
1026		return -EINVAL;
1027	if (val != 0 && val != 1)
1028		return -EINVAL;
1029	cpus_read_lock();
1030	mutex_lock(&smp_cpu_state_mutex);
1031	rc = -EBUSY;
1032	/* disallow configuration changes of online cpus */
1033	cpu = dev->id;
1034	cpu = smp_get_base_cpu(cpu);
 
 
1035	for (i = 0; i <= smp_cpu_mtid; i++)
1036		if (cpu_online(cpu + i))
1037			goto out;
1038	pcpu = pcpu_devices + cpu;
1039	rc = 0;
1040	switch (val) {
1041	case 0:
1042		if (pcpu->state != CPU_STATE_CONFIGURED)
1043			break;
1044		rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1045		if (rc)
1046			break;
1047		for (i = 0; i <= smp_cpu_mtid; i++) {
1048			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1049				continue;
1050			pcpu[i].state = CPU_STATE_STANDBY;
1051			smp_cpu_set_polarization(cpu + i,
1052						 POLARIZATION_UNKNOWN);
1053		}
1054		topology_expect_change();
1055		break;
1056	case 1:
1057		if (pcpu->state != CPU_STATE_STANDBY)
1058			break;
1059		rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1060		if (rc)
1061			break;
1062		for (i = 0; i <= smp_cpu_mtid; i++) {
1063			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1064				continue;
1065			pcpu[i].state = CPU_STATE_CONFIGURED;
1066			smp_cpu_set_polarization(cpu + i,
1067						 POLARIZATION_UNKNOWN);
1068		}
1069		topology_expect_change();
1070		break;
1071	default:
1072		break;
1073	}
1074out:
1075	mutex_unlock(&smp_cpu_state_mutex);
1076	cpus_read_unlock();
1077	return rc ? rc : count;
1078}
1079static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1080
1081static ssize_t show_cpu_address(struct device *dev,
1082				struct device_attribute *attr, char *buf)
1083{
1084	return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1085}
1086static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1087
1088static struct attribute *cpu_common_attrs[] = {
1089	&dev_attr_configure.attr,
1090	&dev_attr_address.attr,
1091	NULL,
1092};
1093
1094static struct attribute_group cpu_common_attr_group = {
1095	.attrs = cpu_common_attrs,
1096};
1097
1098static struct attribute *cpu_online_attrs[] = {
1099	&dev_attr_idle_count.attr,
1100	&dev_attr_idle_time_us.attr,
1101	NULL,
1102};
1103
1104static struct attribute_group cpu_online_attr_group = {
1105	.attrs = cpu_online_attrs,
1106};
1107
1108static int smp_cpu_online(unsigned int cpu)
1109{
1110	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1111
1112	return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1113}
1114
1115static int smp_cpu_pre_down(unsigned int cpu)
1116{
1117	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1118
1119	sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1120	return 0;
1121}
1122
1123static int smp_add_present_cpu(int cpu)
1124{
1125	struct device *s;
1126	struct cpu *c;
1127	int rc;
1128
1129	c = kzalloc(sizeof(*c), GFP_KERNEL);
1130	if (!c)
1131		return -ENOMEM;
1132	per_cpu(cpu_device, cpu) = c;
1133	s = &c->dev;
1134	c->hotpluggable = !!cpu;
1135	rc = register_cpu(c, cpu);
1136	if (rc)
1137		goto out;
1138	rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1139	if (rc)
1140		goto out_cpu;
1141	rc = topology_cpu_init(c);
1142	if (rc)
1143		goto out_topology;
1144	return 0;
1145
1146out_topology:
1147	sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1148out_cpu:
1149	unregister_cpu(c);
1150out:
1151	return rc;
1152}
1153
1154int __ref smp_rescan_cpus(void)
1155{
1156	struct sclp_core_info *info;
1157	int nr;
1158
1159	info = kzalloc(sizeof(*info), GFP_KERNEL);
1160	if (!info)
1161		return -ENOMEM;
1162	smp_get_core_info(info, 0);
1163	nr = __smp_rescan_cpus(info, false);
1164	kfree(info);
1165	if (nr)
1166		topology_schedule_update();
1167	return 0;
1168}
1169
1170static ssize_t __ref rescan_store(struct device *dev,
1171				  struct device_attribute *attr,
1172				  const char *buf,
1173				  size_t count)
1174{
1175	int rc;
1176
1177	rc = lock_device_hotplug_sysfs();
1178	if (rc)
1179		return rc;
1180	rc = smp_rescan_cpus();
1181	unlock_device_hotplug();
1182	return rc ? rc : count;
1183}
1184static DEVICE_ATTR_WO(rescan);
1185
1186static int __init s390_smp_init(void)
1187{
1188	struct device *dev_root;
1189	int cpu, rc = 0;
1190
1191	dev_root = bus_get_dev_root(&cpu_subsys);
1192	if (dev_root) {
1193		rc = device_create_file(dev_root, &dev_attr_rescan);
1194		put_device(dev_root);
1195		if (rc)
1196			return rc;
1197	}
1198
1199	for_each_present_cpu(cpu) {
1200		rc = smp_add_present_cpu(cpu);
1201		if (rc)
1202			goto out;
1203	}
1204
1205	rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1206			       smp_cpu_online, smp_cpu_pre_down);
1207	rc = rc <= 0 ? rc : 0;
1208out:
1209	return rc;
1210}
1211subsys_initcall(s390_smp_init);