Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  SMP related functions
   4 *
   5 *    Copyright IBM Corp. 1999, 2012
   6 *    Author(s): Denis Joseph Barrow,
   7 *		 Martin Schwidefsky <schwidefsky@de.ibm.com>,
 
   8 *
   9 *  based on other smp stuff by
  10 *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
  11 *    (c) 1998 Ingo Molnar
  12 *
  13 * The code outside of smp.c uses logical cpu numbers, only smp.c does
  14 * the translation of logical to physical cpu ids. All new code that
  15 * operates on physical cpu numbers needs to go into smp.c.
  16 */
  17
  18#define KMSG_COMPONENT "cpu"
  19#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  20
  21#include <linux/workqueue.h>
  22#include <linux/memblock.h>
  23#include <linux/export.h>
  24#include <linux/init.h>
  25#include <linux/mm.h>
  26#include <linux/err.h>
  27#include <linux/spinlock.h>
  28#include <linux/kernel_stat.h>
  29#include <linux/delay.h>
  30#include <linux/interrupt.h>
  31#include <linux/irqflags.h>
  32#include <linux/irq_work.h>
  33#include <linux/cpu.h>
  34#include <linux/slab.h>
  35#include <linux/sched/hotplug.h>
  36#include <linux/sched/task_stack.h>
  37#include <linux/crash_dump.h>
  38#include <linux/kprobes.h>
  39#include <asm/asm-offsets.h>
  40#include <asm/diag.h>
  41#include <asm/switch_to.h>
  42#include <asm/facility.h>
  43#include <asm/ipl.h>
  44#include <asm/setup.h>
  45#include <asm/irq.h>
  46#include <asm/tlbflush.h>
  47#include <asm/vtimer.h>
  48#include <asm/abs_lowcore.h>
  49#include <asm/sclp.h>
 
  50#include <asm/debug.h>
  51#include <asm/os_info.h>
  52#include <asm/sigp.h>
  53#include <asm/idle.h>
  54#include <asm/nmi.h>
  55#include <asm/stacktrace.h>
  56#include <asm/topology.h>
  57#include <asm/vdso.h>
  58#include <asm/maccess.h>
  59#include "entry.h"
  60
  61enum {
  62	ec_schedule = 0,
  63	ec_call_function_single,
  64	ec_stop_cpu,
  65	ec_mcck_pending,
  66	ec_irq_work,
  67};
  68
  69enum {
  70	CPU_STATE_STANDBY,
  71	CPU_STATE_CONFIGURED,
  72};
  73
  74static DEFINE_PER_CPU(struct cpu *, cpu_device);
  75
  76struct pcpu {
 
  77	unsigned long ec_mask;		/* bit mask for ec_xxx functions */
  78	unsigned long ec_clk;		/* sigp timestamp for ec_xxx */
  79	signed char state;		/* physical cpu state */
  80	signed char polarization;	/* physical polarization */
  81	u16 address;			/* physical cpu address */
  82};
  83
  84static u8 boot_core_type;
  85static struct pcpu pcpu_devices[NR_CPUS];
  86
  87unsigned int smp_cpu_mt_shift;
  88EXPORT_SYMBOL(smp_cpu_mt_shift);
  89
  90unsigned int smp_cpu_mtid;
  91EXPORT_SYMBOL(smp_cpu_mtid);
  92
  93#ifdef CONFIG_CRASH_DUMP
  94__vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
  95#endif
  96
  97static unsigned int smp_max_threads __initdata = -1U;
  98cpumask_t cpu_setup_mask;
  99
 100static int __init early_nosmt(char *s)
 101{
 102	smp_max_threads = 1;
 103	return 0;
 104}
 105early_param("nosmt", early_nosmt);
 106
 107static int __init early_smt(char *s)
 108{
 109	get_option(&s, &smp_max_threads);
 110	return 0;
 111}
 112early_param("smt", early_smt);
 113
 114/*
 115 * The smp_cpu_state_mutex must be held when changing the state or polarization
 116 * member of a pcpu data structure within the pcpu_devices arreay.
 117 */
 118DEFINE_MUTEX(smp_cpu_state_mutex);
 119
 120/*
 121 * Signal processor helper functions.
 122 */
 123static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
 124{
 125	int cc;
 126
 127	while (1) {
 128		cc = __pcpu_sigp(addr, order, parm, NULL);
 129		if (cc != SIGP_CC_BUSY)
 130			return cc;
 131		cpu_relax();
 132	}
 133}
 134
 135static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
 136{
 137	int cc, retry;
 138
 139	for (retry = 0; ; retry++) {
 140		cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
 141		if (cc != SIGP_CC_BUSY)
 142			break;
 143		if (retry >= 3)
 144			udelay(10);
 145	}
 146	return cc;
 147}
 148
 149static inline int pcpu_stopped(struct pcpu *pcpu)
 150{
 151	u32 status;
 152
 153	if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
 154			0, &status) != SIGP_CC_STATUS_STORED)
 155		return 0;
 156	return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
 157}
 158
 159static inline int pcpu_running(struct pcpu *pcpu)
 160{
 161	if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
 162			0, NULL) != SIGP_CC_STATUS_STORED)
 163		return 1;
 164	/* Status stored condition code is equivalent to cpu not running. */
 165	return 0;
 166}
 167
 168/*
 169 * Find struct pcpu by cpu address.
 170 */
 171static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
 172{
 173	int cpu;
 174
 175	for_each_cpu(cpu, mask)
 176		if (pcpu_devices[cpu].address == address)
 177			return pcpu_devices + cpu;
 178	return NULL;
 179}
 180
 181static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
 182{
 183	int order;
 184
 185	if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
 186		return;
 187	order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
 188	pcpu->ec_clk = get_tod_clock_fast();
 189	pcpu_sigp_retry(pcpu, order, 0);
 190}
 191
 192static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
 193{
 194	unsigned long async_stack, nodat_stack, mcck_stack;
 195	struct lowcore *lc;
 196
 197	lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
 198	nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
 
 
 
 
 
 
 
 199	async_stack = stack_alloc();
 200	mcck_stack = stack_alloc();
 201	if (!lc || !nodat_stack || !async_stack || !mcck_stack)
 202		goto out;
 
 203	memcpy(lc, &S390_lowcore, 512);
 204	memset((char *) lc + 512, 0, sizeof(*lc) - 512);
 205	lc->async_stack = async_stack + STACK_INIT_OFFSET;
 206	lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
 207	lc->mcck_stack = mcck_stack + STACK_INIT_OFFSET;
 208	lc->cpu_nr = cpu;
 209	lc->spinlock_lockval = arch_spin_lockval(cpu);
 210	lc->spinlock_index = 0;
 211	lc->return_lpswe = gen_lpswe(__LC_RETURN_PSW);
 212	lc->return_mcck_lpswe = gen_lpswe(__LC_RETURN_MCCK_PSW);
 213	lc->preempt_count = PREEMPT_DISABLED;
 214	if (nmi_alloc_mcesa(&lc->mcesad))
 215		goto out;
 216	if (abs_lowcore_map(cpu, lc, true))
 217		goto out_mcesa;
 218	lowcore_ptr[cpu] = lc;
 219	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, __pa(lc));
 220	return 0;
 221
 222out_mcesa:
 223	nmi_free_mcesa(&lc->mcesad);
 224out:
 225	stack_free(mcck_stack);
 226	stack_free(async_stack);
 227	free_pages(nodat_stack, THREAD_SIZE_ORDER);
 228	free_pages((unsigned long) lc, LC_ORDER);
 
 
 
 229	return -ENOMEM;
 230}
 231
 232static void pcpu_free_lowcore(struct pcpu *pcpu)
 233{
 234	unsigned long async_stack, nodat_stack, mcck_stack;
 235	struct lowcore *lc;
 236	int cpu;
 
 
 237
 238	cpu = pcpu - pcpu_devices;
 239	lc = lowcore_ptr[cpu];
 240	nodat_stack = lc->nodat_stack - STACK_INIT_OFFSET;
 241	async_stack = lc->async_stack - STACK_INIT_OFFSET;
 242	mcck_stack = lc->mcck_stack - STACK_INIT_OFFSET;
 243	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
 244	lowcore_ptr[cpu] = NULL;
 245	abs_lowcore_unmap(cpu);
 246	nmi_free_mcesa(&lc->mcesad);
 247	stack_free(async_stack);
 248	stack_free(mcck_stack);
 
 249	free_pages(nodat_stack, THREAD_SIZE_ORDER);
 250	free_pages((unsigned long) lc, LC_ORDER);
 251}
 252
 253static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
 254{
 255	struct lowcore *lc = lowcore_ptr[cpu];
 256
 257	cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
 258	cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
 259	lc->cpu_nr = cpu;
 260	lc->restart_flags = RESTART_FLAG_CTLREGS;
 261	lc->spinlock_lockval = arch_spin_lockval(cpu);
 262	lc->spinlock_index = 0;
 263	lc->percpu_offset = __per_cpu_offset[cpu];
 264	lc->kernel_asce = S390_lowcore.kernel_asce;
 265	lc->user_asce = s390_invalid_asce;
 266	lc->machine_flags = S390_lowcore.machine_flags;
 267	lc->user_timer = lc->system_timer =
 268		lc->steal_timer = lc->avg_steal_timer = 0;
 269	__ctl_store(lc->cregs_save_area, 0, 15);
 270	lc->cregs_save_area[1] = lc->kernel_asce;
 271	lc->cregs_save_area[7] = lc->user_asce;
 272	save_access_regs((unsigned int *) lc->access_regs_save_area);
 
 
 
 
 273	arch_spin_lock_setup(cpu);
 274}
 275
 276static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
 277{
 278	struct lowcore *lc;
 279	int cpu;
 280
 281	cpu = pcpu - pcpu_devices;
 282	lc = lowcore_ptr[cpu];
 283	lc->kernel_stack = (unsigned long) task_stack_page(tsk)
 284		+ THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
 285	lc->current_task = (unsigned long) tsk;
 286	lc->lpp = LPP_MAGIC;
 287	lc->current_pid = tsk->pid;
 288	lc->user_timer = tsk->thread.user_timer;
 289	lc->guest_timer = tsk->thread.guest_timer;
 290	lc->system_timer = tsk->thread.system_timer;
 291	lc->hardirq_timer = tsk->thread.hardirq_timer;
 292	lc->softirq_timer = tsk->thread.softirq_timer;
 293	lc->steal_timer = 0;
 294}
 295
 296static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
 297{
 298	struct lowcore *lc;
 299	int cpu;
 300
 301	cpu = pcpu - pcpu_devices;
 302	lc = lowcore_ptr[cpu];
 303	lc->restart_stack = lc->kernel_stack;
 304	lc->restart_fn = (unsigned long) func;
 305	lc->restart_data = (unsigned long) data;
 306	lc->restart_source = -1U;
 307	pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
 308}
 309
 310typedef void (pcpu_delegate_fn)(void *);
 311
 312/*
 313 * Call function via PSW restart on pcpu and stop the current cpu.
 314 */
 315static void __pcpu_delegate(pcpu_delegate_fn *func, void *data)
 316{
 317	func(data);	/* should not return */
 318}
 319
 320static void pcpu_delegate(struct pcpu *pcpu,
 321			  pcpu_delegate_fn *func,
 322			  void *data, unsigned long stack)
 323{
 324	struct lowcore *lc, *abs_lc;
 325	unsigned int source_cpu;
 326	unsigned long flags;
 327
 328	lc = lowcore_ptr[pcpu - pcpu_devices];
 329	source_cpu = stap();
 330	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
 331	if (pcpu->address == source_cpu) {
 332		call_on_stack(2, stack, void, __pcpu_delegate,
 333			      pcpu_delegate_fn *, func, void *, data);
 334	}
 335	/* Stop target cpu (if func returns this stops the current cpu). */
 336	pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
 337	/* Restart func on the target cpu and stop the current cpu. */
 338	if (lc) {
 339		lc->restart_stack = stack;
 340		lc->restart_fn = (unsigned long)func;
 341		lc->restart_data = (unsigned long)data;
 342		lc->restart_source = source_cpu;
 343	} else {
 344		abs_lc = get_abs_lowcore(&flags);
 345		abs_lc->restart_stack = stack;
 346		abs_lc->restart_fn = (unsigned long)func;
 347		abs_lc->restart_data = (unsigned long)data;
 348		abs_lc->restart_source = source_cpu;
 349		put_abs_lowcore(abs_lc, flags);
 350	}
 351	__bpon();
 352	asm volatile(
 353		"0:	sigp	0,%0,%2	# sigp restart to target cpu\n"
 354		"	brc	2,0b	# busy, try again\n"
 355		"1:	sigp	0,%1,%3	# sigp stop to current cpu\n"
 356		"	brc	2,1b	# busy, try again\n"
 357		: : "d" (pcpu->address), "d" (source_cpu),
 358		    "K" (SIGP_RESTART), "K" (SIGP_STOP)
 359		: "0", "1", "cc");
 360	for (;;) ;
 361}
 362
 363/*
 364 * Enable additional logical cpus for multi-threading.
 365 */
 366static int pcpu_set_smt(unsigned int mtid)
 367{
 368	int cc;
 369
 370	if (smp_cpu_mtid == mtid)
 371		return 0;
 372	cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
 373	if (cc == 0) {
 374		smp_cpu_mtid = mtid;
 375		smp_cpu_mt_shift = 0;
 376		while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
 377			smp_cpu_mt_shift++;
 378		pcpu_devices[0].address = stap();
 379	}
 380	return cc;
 381}
 382
 383/*
 384 * Call function on an online CPU.
 385 */
 386void smp_call_online_cpu(void (*func)(void *), void *data)
 387{
 388	struct pcpu *pcpu;
 389
 390	/* Use the current cpu if it is online. */
 391	pcpu = pcpu_find_address(cpu_online_mask, stap());
 392	if (!pcpu)
 393		/* Use the first online cpu. */
 394		pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
 395	pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
 396}
 397
 398/*
 399 * Call function on the ipl CPU.
 400 */
 401void smp_call_ipl_cpu(void (*func)(void *), void *data)
 402{
 403	struct lowcore *lc = lowcore_ptr[0];
 404
 405	if (pcpu_devices[0].address == stap())
 406		lc = &S390_lowcore;
 407
 408	pcpu_delegate(&pcpu_devices[0], func, data,
 409		      lc->nodat_stack);
 410}
 411
 412int smp_find_processor_id(u16 address)
 413{
 414	int cpu;
 415
 416	for_each_present_cpu(cpu)
 417		if (pcpu_devices[cpu].address == address)
 418			return cpu;
 419	return -1;
 420}
 421
 422void schedule_mcck_handler(void)
 423{
 424	pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_mcck_pending);
 425}
 426
 427bool notrace arch_vcpu_is_preempted(int cpu)
 428{
 429	if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
 430		return false;
 431	if (pcpu_running(pcpu_devices + cpu))
 432		return false;
 433	return true;
 434}
 435EXPORT_SYMBOL(arch_vcpu_is_preempted);
 436
 437void notrace smp_yield_cpu(int cpu)
 438{
 439	if (!MACHINE_HAS_DIAG9C)
 440		return;
 441	diag_stat_inc_norecursion(DIAG_STAT_X09C);
 442	asm volatile("diag %0,0,0x9c"
 443		     : : "d" (pcpu_devices[cpu].address));
 
 
 
 444}
 445EXPORT_SYMBOL_GPL(smp_yield_cpu);
 446
 447/*
 448 * Send cpus emergency shutdown signal. This gives the cpus the
 449 * opportunity to complete outstanding interrupts.
 450 */
 451void notrace smp_emergency_stop(void)
 452{
 453	static arch_spinlock_t lock = __ARCH_SPIN_LOCK_UNLOCKED;
 454	static cpumask_t cpumask;
 455	u64 end;
 456	int cpu;
 457
 458	arch_spin_lock(&lock);
 459	cpumask_copy(&cpumask, cpu_online_mask);
 460	cpumask_clear_cpu(smp_processor_id(), &cpumask);
 461
 462	end = get_tod_clock() + (1000000UL << 12);
 463	for_each_cpu(cpu, &cpumask) {
 464		struct pcpu *pcpu = pcpu_devices + cpu;
 465		set_bit(ec_stop_cpu, &pcpu->ec_mask);
 466		while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
 467				   0, NULL) == SIGP_CC_BUSY &&
 468		       get_tod_clock() < end)
 469			cpu_relax();
 470	}
 471	while (get_tod_clock() < end) {
 472		for_each_cpu(cpu, &cpumask)
 473			if (pcpu_stopped(pcpu_devices + cpu))
 474				cpumask_clear_cpu(cpu, &cpumask);
 475		if (cpumask_empty(&cpumask))
 476			break;
 477		cpu_relax();
 478	}
 479	arch_spin_unlock(&lock);
 480}
 481NOKPROBE_SYMBOL(smp_emergency_stop);
 482
 483/*
 484 * Stop all cpus but the current one.
 485 */
 486void smp_send_stop(void)
 487{
 488	int cpu;
 489
 490	/* Disable all interrupts/machine checks */
 491	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
 492	trace_hardirqs_off();
 493
 494	debug_set_critical();
 495
 496	if (oops_in_progress)
 497		smp_emergency_stop();
 498
 499	/* stop all processors */
 500	for_each_online_cpu(cpu) {
 501		if (cpu == smp_processor_id())
 502			continue;
 503		pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
 504		while (!pcpu_stopped(pcpu_devices + cpu))
 505			cpu_relax();
 506	}
 507}
 508
 509/*
 510 * This is the main routine where commands issued by other
 511 * cpus are handled.
 512 */
 513static void smp_handle_ext_call(void)
 514{
 515	unsigned long bits;
 516
 517	/* handle bit signal external calls */
 518	bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
 519	if (test_bit(ec_stop_cpu, &bits))
 520		smp_stop_cpu();
 521	if (test_bit(ec_schedule, &bits))
 522		scheduler_ipi();
 523	if (test_bit(ec_call_function_single, &bits))
 524		generic_smp_call_function_single_interrupt();
 525	if (test_bit(ec_mcck_pending, &bits))
 526		__s390_handle_mcck();
 527	if (test_bit(ec_irq_work, &bits))
 528		irq_work_run();
 529}
 530
 531static void do_ext_call_interrupt(struct ext_code ext_code,
 532				  unsigned int param32, unsigned long param64)
 533{
 534	inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
 535	smp_handle_ext_call();
 536}
 537
 538void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 539{
 540	int cpu;
 541
 542	for_each_cpu(cpu, mask)
 543		pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
 544}
 545
 546void arch_send_call_function_single_ipi(int cpu)
 547{
 548	pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
 549}
 550
 551/*
 552 * this function sends a 'reschedule' IPI to another CPU.
 553 * it goes straight through and wastes no time serializing
 554 * anything. Worst case is that we lose a reschedule ...
 555 */
 556void smp_send_reschedule(int cpu)
 557{
 558	pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
 559}
 560
 561#ifdef CONFIG_IRQ_WORK
 562void arch_irq_work_raise(void)
 563{
 564	pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_irq_work);
 565}
 566#endif
 567
 568/*
 569 * parameter area for the set/clear control bit callbacks
 570 */
 571struct ec_creg_mask_parms {
 572	unsigned long orval;
 573	unsigned long andval;
 574	int cr;
 575};
 576
 577/*
 578 * callback for setting/clearing control bits
 579 */
 580static void smp_ctl_bit_callback(void *info)
 581{
 582	struct ec_creg_mask_parms *pp = info;
 583	unsigned long cregs[16];
 584
 585	__ctl_store(cregs, 0, 15);
 586	cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
 587	__ctl_load(cregs, 0, 15);
 588}
 589
 590static DEFINE_SPINLOCK(ctl_lock);
 
 
 
 
 
 
 
 
 
 591
 592void smp_ctl_set_clear_bit(int cr, int bit, bool set)
 
 
 
 593{
 594	struct ec_creg_mask_parms parms = { .cr = cr, };
 595	struct lowcore *abs_lc;
 596	unsigned long flags;
 597	u64 ctlreg;
 598
 599	if (set) {
 600		parms.orval = 1UL << bit;
 601		parms.andval = -1UL;
 602	} else {
 603		parms.orval = 0;
 604		parms.andval = ~(1UL << bit);
 605	}
 606	spin_lock(&ctl_lock);
 607	abs_lc = get_abs_lowcore(&flags);
 608	ctlreg = abs_lc->cregs_save_area[cr];
 609	ctlreg = (ctlreg & parms.andval) | parms.orval;
 610	abs_lc->cregs_save_area[cr] = ctlreg;
 611	put_abs_lowcore(abs_lc, flags);
 612	spin_unlock(&ctl_lock);
 613	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
 614}
 615EXPORT_SYMBOL(smp_ctl_set_clear_bit);
 616
 617#ifdef CONFIG_CRASH_DUMP
 618
 619int smp_store_status(int cpu)
 620{
 621	struct lowcore *lc;
 622	struct pcpu *pcpu;
 623	unsigned long pa;
 624
 625	pcpu = pcpu_devices + cpu;
 626	lc = lowcore_ptr[cpu];
 627	pa = __pa(&lc->floating_pt_save_area);
 628	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
 629			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
 630		return -EIO;
 631	if (!MACHINE_HAS_VX && !MACHINE_HAS_GS)
 632		return 0;
 633	pa = lc->mcesad & MCESA_ORIGIN_MASK;
 634	if (MACHINE_HAS_GS)
 635		pa |= lc->mcesad & MCESA_LC_MASK;
 636	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
 637			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
 638		return -EIO;
 639	return 0;
 640}
 641
 642/*
 643 * Collect CPU state of the previous, crashed system.
 644 * There are four cases:
 645 * 1) standard zfcp/nvme dump
 646 *    condition: OLDMEM_BASE == NULL && is_ipl_type_dump() == true
 647 *    The state for all CPUs except the boot CPU needs to be collected
 648 *    with sigp stop-and-store-status. The boot CPU state is located in
 649 *    the absolute lowcore of the memory stored in the HSA. The zcore code
 650 *    will copy the boot CPU state from the HSA.
 651 * 2) stand-alone kdump for SCSI/NVMe (zfcp/nvme dump with swapped memory)
 652 *    condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == true
 653 *    The state for all CPUs except the boot CPU needs to be collected
 654 *    with sigp stop-and-store-status. The firmware or the boot-loader
 655 *    stored the registers of the boot CPU in the absolute lowcore in the
 656 *    memory of the old system.
 657 * 3) kdump and the old kernel did not store the CPU state,
 658 *    or stand-alone kdump for DASD
 659 *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
 660 *    The state for all CPUs except the boot CPU needs to be collected
 661 *    with sigp stop-and-store-status. The kexec code or the boot-loader
 662 *    stored the registers of the boot CPU in the memory of the old system.
 663 * 4) kdump and the old kernel stored the CPU state
 664 *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
 665 *    This case does not exist for s390 anymore, setup_arch explicitly
 666 *    deactivates the elfcorehdr= kernel parameter
 667 */
 668static bool dump_available(void)
 
 669{
 670	return oldmem_data.start || is_ipl_type_dump();
 
 
 
 
 
 
 671}
 672
 673void __init smp_save_dump_ipl_cpu(void)
 
 674{
 675	struct save_area *sa;
 676	void *regs;
 677
 678	if (!dump_available())
 679		return;
 680	sa = save_area_alloc(true);
 681	regs = memblock_alloc(512, 8);
 682	if (!sa || !regs)
 683		panic("could not allocate memory for boot CPU save area\n");
 684	copy_oldmem_kernel(regs, __LC_FPREGS_SAVE_AREA, 512);
 685	save_area_add_regs(sa, regs);
 686	memblock_free(regs, 512);
 687	if (MACHINE_HAS_VX)
 688		save_area_add_vxrs(sa, boot_cpu_vector_save_area);
 689}
 690
 691void __init smp_save_dump_secondary_cpus(void)
 692{
 693	int addr, boot_cpu_addr, max_cpu_addr;
 694	struct save_area *sa;
 695	void *page;
 
 696
 697	if (!dump_available())
 
 698		return;
 699	/* Allocate a page as dumping area for the store status sigps */
 700	page = memblock_alloc_low(PAGE_SIZE, PAGE_SIZE);
 701	if (!page)
 702		panic("ERROR: Failed to allocate %lx bytes below %lx\n",
 703		      PAGE_SIZE, 1UL << 31);
 704
 705	/* Set multi-threading state to the previous system. */
 706	pcpu_set_smt(sclp.mtid_prev);
 707	boot_cpu_addr = stap();
 708	max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
 709	for (addr = 0; addr <= max_cpu_addr; addr++) {
 710		if (addr == boot_cpu_addr)
 711			continue;
 712		if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
 713		    SIGP_CC_NOT_OPERATIONAL)
 714			continue;
 715		sa = save_area_alloc(false);
 
 
 716		if (!sa)
 717			panic("could not allocate memory for save area\n");
 718		__pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, __pa(page));
 719		save_area_add_regs(sa, page);
 720		if (MACHINE_HAS_VX) {
 721			__pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, __pa(page));
 722			save_area_add_vxrs(sa, page);
 723		}
 
 
 
 
 
 
 724	}
 725	memblock_free(page, PAGE_SIZE);
 726	diag_amode31_ops.diag308_reset();
 727	pcpu_set_smt(0);
 728}
 729#endif /* CONFIG_CRASH_DUMP */
 730
 731void smp_cpu_set_polarization(int cpu, int val)
 732{
 733	pcpu_devices[cpu].polarization = val;
 734}
 735
 736int smp_cpu_get_polarization(int cpu)
 737{
 738	return pcpu_devices[cpu].polarization;
 739}
 740
 741int smp_cpu_get_cpu_address(int cpu)
 742{
 743	return pcpu_devices[cpu].address;
 744}
 745
 746static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
 747{
 748	static int use_sigp_detection;
 749	int address;
 750
 751	if (use_sigp_detection || sclp_get_core_info(info, early)) {
 752		use_sigp_detection = 1;
 753		for (address = 0;
 754		     address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
 755		     address += (1U << smp_cpu_mt_shift)) {
 756			if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
 757			    SIGP_CC_NOT_OPERATIONAL)
 758				continue;
 759			info->core[info->configured].core_id =
 760				address >> smp_cpu_mt_shift;
 761			info->configured++;
 762		}
 763		info->combined = info->configured;
 764	}
 765}
 766
 767static int smp_add_present_cpu(int cpu);
 768
 769static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail,
 770			bool configured, bool early)
 771{
 772	struct pcpu *pcpu;
 773	int cpu, nr, i;
 
 774	u16 address;
 775
 776	nr = 0;
 777	if (sclp.has_core_type && core->type != boot_core_type)
 778		return nr;
 779	cpu = cpumask_first(avail);
 780	address = core->core_id << smp_cpu_mt_shift;
 781	for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) {
 782		if (pcpu_find_address(cpu_present_mask, address + i))
 783			continue;
 784		pcpu = pcpu_devices + cpu;
 785		pcpu->address = address + i;
 786		if (configured)
 787			pcpu->state = CPU_STATE_CONFIGURED;
 788		else
 789			pcpu->state = CPU_STATE_STANDBY;
 790		smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
 791		set_cpu_present(cpu, true);
 792		if (!early && smp_add_present_cpu(cpu) != 0)
 793			set_cpu_present(cpu, false);
 794		else
 795			nr++;
 796		cpumask_clear_cpu(cpu, avail);
 797		cpu = cpumask_next(cpu, avail);
 798	}
 799	return nr;
 800}
 801
 802static int __smp_rescan_cpus(struct sclp_core_info *info, bool early)
 803{
 804	struct sclp_core_entry *core;
 805	static cpumask_t avail;
 806	bool configured;
 807	u16 core_id;
 808	int nr, i;
 809
 810	cpus_read_lock();
 811	mutex_lock(&smp_cpu_state_mutex);
 812	nr = 0;
 813	cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
 814	/*
 815	 * Add IPL core first (which got logical CPU number 0) to make sure
 816	 * that all SMT threads get subsequent logical CPU numbers.
 817	 */
 818	if (early) {
 819		core_id = pcpu_devices[0].address >> smp_cpu_mt_shift;
 820		for (i = 0; i < info->configured; i++) {
 821			core = &info->core[i];
 822			if (core->core_id == core_id) {
 823				nr += smp_add_core(core, &avail, true, early);
 
 
 
 
 
 
 
 
 
 
 
 824				break;
 825			}
 826		}
 827	}
 828	for (i = 0; i < info->combined; i++) {
 829		configured = i < info->configured;
 830		nr += smp_add_core(&info->core[i], &avail, configured, early);
 831	}
 832	mutex_unlock(&smp_cpu_state_mutex);
 833	cpus_read_unlock();
 834	return nr;
 835}
 836
 837void __init smp_detect_cpus(void)
 838{
 839	unsigned int cpu, mtid, c_cpus, s_cpus;
 840	struct sclp_core_info *info;
 841	u16 address;
 842
 843	/* Get CPU information */
 844	info = memblock_alloc(sizeof(*info), 8);
 845	if (!info)
 846		panic("%s: Failed to allocate %zu bytes align=0x%x\n",
 847		      __func__, sizeof(*info), 8);
 848	smp_get_core_info(info, 1);
 849	/* Find boot CPU type */
 850	if (sclp.has_core_type) {
 851		address = stap();
 852		for (cpu = 0; cpu < info->combined; cpu++)
 853			if (info->core[cpu].core_id == address) {
 854				/* The boot cpu dictates the cpu type. */
 855				boot_core_type = info->core[cpu].type;
 856				break;
 857			}
 858		if (cpu >= info->combined)
 859			panic("Could not find boot CPU type");
 860	}
 861
 862	/* Set multi-threading state for the current system */
 863	mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
 864	mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
 865	pcpu_set_smt(mtid);
 866
 867	/* Print number of CPUs */
 868	c_cpus = s_cpus = 0;
 869	for (cpu = 0; cpu < info->combined; cpu++) {
 870		if (sclp.has_core_type &&
 871		    info->core[cpu].type != boot_core_type)
 872			continue;
 873		if (cpu < info->configured)
 874			c_cpus += smp_cpu_mtid + 1;
 875		else
 876			s_cpus += smp_cpu_mtid + 1;
 877	}
 878	pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
 879
 880	/* Add CPUs present at boot */
 881	__smp_rescan_cpus(info, true);
 882	memblock_free(info, sizeof(*info));
 
 
 883}
 884
 885/*
 886 *	Activate a secondary processor.
 887 */
 888static void smp_start_secondary(void *cpuvoid)
 889{
 890	int cpu = raw_smp_processor_id();
 891
 892	S390_lowcore.last_update_clock = get_tod_clock();
 893	S390_lowcore.restart_stack = (unsigned long)restart_stack;
 894	S390_lowcore.restart_fn = (unsigned long)do_restart;
 895	S390_lowcore.restart_data = 0;
 896	S390_lowcore.restart_source = -1U;
 897	S390_lowcore.restart_flags = 0;
 898	restore_access_regs(S390_lowcore.access_regs_save_area);
 899	cpu_init();
 900	rcu_cpu_starting(cpu);
 901	init_cpu_timer();
 902	vtime_init();
 903	vdso_getcpu_init();
 904	pfault_init();
 905	cpumask_set_cpu(cpu, &cpu_setup_mask);
 906	update_cpu_masks();
 907	notify_cpu_starting(cpu);
 908	if (topology_cpu_dedicated(cpu))
 909		set_cpu_flag(CIF_DEDICATED_CPU);
 910	else
 911		clear_cpu_flag(CIF_DEDICATED_CPU);
 912	set_cpu_online(cpu, true);
 913	inc_irq_stat(CPU_RST);
 914	local_irq_enable();
 915	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 916}
 917
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 918/* Upping and downing of CPUs */
 919int __cpu_up(unsigned int cpu, struct task_struct *tidle)
 920{
 921	struct pcpu *pcpu = pcpu_devices + cpu;
 922	int rc;
 923
 
 924	if (pcpu->state != CPU_STATE_CONFIGURED)
 925		return -EIO;
 926	if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
 
 
 
 
 
 
 
 
 
 
 
 927	    SIGP_CC_ORDER_CODE_ACCEPTED)
 928		return -EIO;
 929
 930	rc = pcpu_alloc_lowcore(pcpu, cpu);
 931	if (rc)
 932		return rc;
 933	pcpu_prepare_secondary(pcpu, cpu);
 934	pcpu_attach_task(pcpu, tidle);
 935	pcpu_start_fn(pcpu, smp_start_secondary, NULL);
 936	/* Wait until cpu puts itself in the online & active maps */
 937	while (!cpu_online(cpu))
 938		cpu_relax();
 939	return 0;
 940}
 941
 942static unsigned int setup_possible_cpus __initdata;
 943
 944static int __init _setup_possible_cpus(char *s)
 945{
 946	get_option(&s, &setup_possible_cpus);
 947	return 0;
 948}
 949early_param("possible_cpus", _setup_possible_cpus);
 950
 951int __cpu_disable(void)
 952{
 953	unsigned long cregs[16];
 954	int cpu;
 955
 956	/* Handle possible pending IPIs */
 957	smp_handle_ext_call();
 958	cpu = smp_processor_id();
 959	set_cpu_online(cpu, false);
 960	cpumask_clear_cpu(cpu, &cpu_setup_mask);
 961	update_cpu_masks();
 962	/* Disable pseudo page faults on this cpu. */
 963	pfault_fini();
 964	/* Disable interrupt sources via control register. */
 965	__ctl_store(cregs, 0, 15);
 966	cregs[0]  &= ~0x0000ee70UL;	/* disable all external interrupts */
 967	cregs[6]  &= ~0xff000000UL;	/* disable all I/O interrupts */
 968	cregs[14] &= ~0x1f000000UL;	/* disable most machine checks */
 969	__ctl_load(cregs, 0, 15);
 970	clear_cpu_flag(CIF_NOHZ_DELAY);
 971	return 0;
 972}
 973
 974void __cpu_die(unsigned int cpu)
 975{
 976	struct pcpu *pcpu;
 977
 978	/* Wait until target cpu is down */
 979	pcpu = pcpu_devices + cpu;
 980	while (!pcpu_stopped(pcpu))
 981		cpu_relax();
 982	pcpu_free_lowcore(pcpu);
 983	cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
 984	cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
 985}
 986
 987void __noreturn cpu_die(void)
 988{
 989	idle_task_exit();
 990	__bpon();
 991	pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
 992	for (;;) ;
 993}
 994
 995void __init smp_fill_possible_mask(void)
 996{
 997	unsigned int possible, sclp_max, cpu;
 998
 999	sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
1000	sclp_max = min(smp_max_threads, sclp_max);
1001	sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
1002	possible = setup_possible_cpus ?: nr_cpu_ids;
1003	possible = min(possible, sclp_max);
1004	for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
1005		set_cpu_possible(cpu, true);
1006}
1007
1008void __init smp_prepare_cpus(unsigned int max_cpus)
1009{
1010	/* request the 0x1201 emergency signal external interrupt */
1011	if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
1012		panic("Couldn't request external interrupt 0x1201");
1013	/* request the 0x1202 external call external interrupt */
1014	if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
1015		panic("Couldn't request external interrupt 0x1202");
1016}
1017
1018void __init smp_prepare_boot_cpu(void)
1019{
1020	struct pcpu *pcpu = pcpu_devices;
1021
1022	WARN_ON(!cpu_present(0) || !cpu_online(0));
1023	pcpu->state = CPU_STATE_CONFIGURED;
 
1024	S390_lowcore.percpu_offset = __per_cpu_offset[0];
1025	smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
1026}
1027
 
 
 
 
1028void __init smp_setup_processor_id(void)
1029{
1030	pcpu_devices[0].address = stap();
1031	S390_lowcore.cpu_nr = 0;
1032	S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
1033	S390_lowcore.spinlock_index = 0;
1034}
1035
1036/*
1037 * the frequency of the profiling timer can be changed
1038 * by writing a multiplier value into /proc/profile.
1039 *
1040 * usually you want to run this on all CPUs ;)
1041 */
1042int setup_profiling_timer(unsigned int multiplier)
1043{
1044	return 0;
1045}
1046
1047static ssize_t cpu_configure_show(struct device *dev,
1048				  struct device_attribute *attr, char *buf)
1049{
1050	ssize_t count;
1051
1052	mutex_lock(&smp_cpu_state_mutex);
1053	count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
1054	mutex_unlock(&smp_cpu_state_mutex);
1055	return count;
1056}
1057
1058static ssize_t cpu_configure_store(struct device *dev,
1059				   struct device_attribute *attr,
1060				   const char *buf, size_t count)
1061{
1062	struct pcpu *pcpu;
1063	int cpu, val, rc, i;
1064	char delim;
1065
1066	if (sscanf(buf, "%d %c", &val, &delim) != 1)
1067		return -EINVAL;
1068	if (val != 0 && val != 1)
1069		return -EINVAL;
1070	cpus_read_lock();
1071	mutex_lock(&smp_cpu_state_mutex);
1072	rc = -EBUSY;
1073	/* disallow configuration changes of online cpus and cpu 0 */
1074	cpu = dev->id;
1075	cpu = smp_get_base_cpu(cpu);
1076	if (cpu == 0)
1077		goto out;
1078	for (i = 0; i <= smp_cpu_mtid; i++)
1079		if (cpu_online(cpu + i))
1080			goto out;
1081	pcpu = pcpu_devices + cpu;
1082	rc = 0;
1083	switch (val) {
1084	case 0:
1085		if (pcpu->state != CPU_STATE_CONFIGURED)
1086			break;
1087		rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1088		if (rc)
1089			break;
1090		for (i = 0; i <= smp_cpu_mtid; i++) {
1091			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1092				continue;
1093			pcpu[i].state = CPU_STATE_STANDBY;
1094			smp_cpu_set_polarization(cpu + i,
1095						 POLARIZATION_UNKNOWN);
1096		}
1097		topology_expect_change();
1098		break;
1099	case 1:
1100		if (pcpu->state != CPU_STATE_STANDBY)
1101			break;
1102		rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1103		if (rc)
1104			break;
1105		for (i = 0; i <= smp_cpu_mtid; i++) {
1106			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1107				continue;
1108			pcpu[i].state = CPU_STATE_CONFIGURED;
1109			smp_cpu_set_polarization(cpu + i,
1110						 POLARIZATION_UNKNOWN);
1111		}
1112		topology_expect_change();
1113		break;
1114	default:
1115		break;
1116	}
1117out:
1118	mutex_unlock(&smp_cpu_state_mutex);
1119	cpus_read_unlock();
1120	return rc ? rc : count;
1121}
1122static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1123
1124static ssize_t show_cpu_address(struct device *dev,
1125				struct device_attribute *attr, char *buf)
1126{
1127	return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1128}
1129static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1130
1131static struct attribute *cpu_common_attrs[] = {
1132	&dev_attr_configure.attr,
1133	&dev_attr_address.attr,
1134	NULL,
1135};
1136
1137static struct attribute_group cpu_common_attr_group = {
1138	.attrs = cpu_common_attrs,
1139};
1140
1141static struct attribute *cpu_online_attrs[] = {
1142	&dev_attr_idle_count.attr,
1143	&dev_attr_idle_time_us.attr,
1144	NULL,
1145};
1146
1147static struct attribute_group cpu_online_attr_group = {
1148	.attrs = cpu_online_attrs,
1149};
1150
1151static int smp_cpu_online(unsigned int cpu)
1152{
1153	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1154
1155	return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1156}
1157
1158static int smp_cpu_pre_down(unsigned int cpu)
1159{
1160	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1161
1162	sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1163	return 0;
1164}
1165
1166static int smp_add_present_cpu(int cpu)
1167{
1168	struct device *s;
1169	struct cpu *c;
1170	int rc;
1171
1172	c = kzalloc(sizeof(*c), GFP_KERNEL);
1173	if (!c)
1174		return -ENOMEM;
1175	per_cpu(cpu_device, cpu) = c;
1176	s = &c->dev;
1177	c->hotpluggable = 1;
1178	rc = register_cpu(c, cpu);
1179	if (rc)
1180		goto out;
1181	rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1182	if (rc)
1183		goto out_cpu;
1184	rc = topology_cpu_init(c);
1185	if (rc)
1186		goto out_topology;
1187	return 0;
1188
1189out_topology:
1190	sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1191out_cpu:
1192	unregister_cpu(c);
1193out:
1194	return rc;
1195}
1196
1197int __ref smp_rescan_cpus(void)
1198{
1199	struct sclp_core_info *info;
1200	int nr;
1201
1202	info = kzalloc(sizeof(*info), GFP_KERNEL);
1203	if (!info)
1204		return -ENOMEM;
1205	smp_get_core_info(info, 0);
1206	nr = __smp_rescan_cpus(info, false);
 
 
 
 
1207	kfree(info);
1208	if (nr)
1209		topology_schedule_update();
1210	return 0;
1211}
1212
1213static ssize_t __ref rescan_store(struct device *dev,
1214				  struct device_attribute *attr,
1215				  const char *buf,
1216				  size_t count)
1217{
1218	int rc;
1219
1220	rc = lock_device_hotplug_sysfs();
1221	if (rc)
1222		return rc;
1223	rc = smp_rescan_cpus();
1224	unlock_device_hotplug();
1225	return rc ? rc : count;
1226}
1227static DEVICE_ATTR_WO(rescan);
1228
1229static int __init s390_smp_init(void)
1230{
1231	int cpu, rc = 0;
1232
1233	rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1234	if (rc)
1235		return rc;
1236	for_each_present_cpu(cpu) {
1237		rc = smp_add_present_cpu(cpu);
1238		if (rc)
1239			goto out;
1240	}
1241
1242	rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1243			       smp_cpu_online, smp_cpu_pre_down);
1244	rc = rc <= 0 ? rc : 0;
1245out:
1246	return rc;
1247}
1248subsys_initcall(s390_smp_init);
1249
1250static __always_inline void set_new_lowcore(struct lowcore *lc)
1251{
1252	union register_pair dst, src;
1253	u32 pfx;
1254
1255	src.even = (unsigned long) &S390_lowcore;
1256	src.odd  = sizeof(S390_lowcore);
1257	dst.even = (unsigned long) lc;
1258	dst.odd  = sizeof(*lc);
1259	pfx = __pa(lc);
1260
1261	asm volatile(
1262		"	mvcl	%[dst],%[src]\n"
1263		"	spx	%[pfx]\n"
1264		: [dst] "+&d" (dst.pair), [src] "+&d" (src.pair)
1265		: [pfx] "Q" (pfx)
1266		: "memory", "cc");
1267}
1268
1269int __init smp_reinit_ipl_cpu(void)
1270{
1271	unsigned long async_stack, nodat_stack, mcck_stack;
1272	struct lowcore *lc, *lc_ipl;
1273	unsigned long flags, cr0;
1274	u64 mcesad;
1275
1276	lc_ipl = lowcore_ptr[0];
1277	lc = (struct lowcore *)	__get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
1278	nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
1279	async_stack = stack_alloc();
1280	mcck_stack = stack_alloc();
1281	if (!lc || !nodat_stack || !async_stack || !mcck_stack || nmi_alloc_mcesa(&mcesad))
1282		panic("Couldn't allocate memory");
1283
1284	local_irq_save(flags);
1285	local_mcck_disable();
1286	set_new_lowcore(lc);
1287	S390_lowcore.nodat_stack = nodat_stack + STACK_INIT_OFFSET;
1288	S390_lowcore.async_stack = async_stack + STACK_INIT_OFFSET;
1289	S390_lowcore.mcck_stack = mcck_stack + STACK_INIT_OFFSET;
1290	__ctl_store(cr0, 0, 0);
1291	__ctl_clear_bit(0, 28); /* disable lowcore protection */
1292	S390_lowcore.mcesad = mcesad;
1293	__ctl_load(cr0, 0, 0);
1294	if (abs_lowcore_map(0, lc, false))
1295		panic("Couldn't remap absolute lowcore");
1296	lowcore_ptr[0] = lc;
1297	local_mcck_enable();
1298	local_irq_restore(flags);
1299
1300	free_pages(lc_ipl->async_stack - STACK_INIT_OFFSET, THREAD_SIZE_ORDER);
1301	memblock_free_late(__pa(lc_ipl->mcck_stack - STACK_INIT_OFFSET), THREAD_SIZE);
1302	memblock_free_late(__pa(lc_ipl), sizeof(*lc_ipl));
1303
1304	return 0;
1305}
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  SMP related functions
   4 *
   5 *    Copyright IBM Corp. 1999, 2012
   6 *    Author(s): Denis Joseph Barrow,
   7 *		 Martin Schwidefsky <schwidefsky@de.ibm.com>,
   8 *		 Heiko Carstens <heiko.carstens@de.ibm.com>,
   9 *
  10 *  based on other smp stuff by
  11 *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
  12 *    (c) 1998 Ingo Molnar
  13 *
  14 * The code outside of smp.c uses logical cpu numbers, only smp.c does
  15 * the translation of logical to physical cpu ids. All new code that
  16 * operates on physical cpu numbers needs to go into smp.c.
  17 */
  18
  19#define KMSG_COMPONENT "cpu"
  20#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  21
  22#include <linux/workqueue.h>
  23#include <linux/memblock.h>
  24#include <linux/export.h>
  25#include <linux/init.h>
  26#include <linux/mm.h>
  27#include <linux/err.h>
  28#include <linux/spinlock.h>
  29#include <linux/kernel_stat.h>
  30#include <linux/delay.h>
  31#include <linux/interrupt.h>
  32#include <linux/irqflags.h>
 
  33#include <linux/cpu.h>
  34#include <linux/slab.h>
  35#include <linux/sched/hotplug.h>
  36#include <linux/sched/task_stack.h>
  37#include <linux/crash_dump.h>
  38#include <linux/kprobes.h>
  39#include <asm/asm-offsets.h>
  40#include <asm/diag.h>
  41#include <asm/switch_to.h>
  42#include <asm/facility.h>
  43#include <asm/ipl.h>
  44#include <asm/setup.h>
  45#include <asm/irq.h>
  46#include <asm/tlbflush.h>
  47#include <asm/vtimer.h>
  48#include <asm/lowcore.h>
  49#include <asm/sclp.h>
  50#include <asm/vdso.h>
  51#include <asm/debug.h>
  52#include <asm/os_info.h>
  53#include <asm/sigp.h>
  54#include <asm/idle.h>
  55#include <asm/nmi.h>
  56#include <asm/stacktrace.h>
  57#include <asm/topology.h>
 
 
  58#include "entry.h"
  59
  60enum {
  61	ec_schedule = 0,
  62	ec_call_function_single,
  63	ec_stop_cpu,
 
 
  64};
  65
  66enum {
  67	CPU_STATE_STANDBY,
  68	CPU_STATE_CONFIGURED,
  69};
  70
  71static DEFINE_PER_CPU(struct cpu *, cpu_device);
  72
  73struct pcpu {
  74	struct lowcore *lowcore;	/* lowcore page(s) for the cpu */
  75	unsigned long ec_mask;		/* bit mask for ec_xxx functions */
  76	unsigned long ec_clk;		/* sigp timestamp for ec_xxx */
  77	signed char state;		/* physical cpu state */
  78	signed char polarization;	/* physical polarization */
  79	u16 address;			/* physical cpu address */
  80};
  81
  82static u8 boot_core_type;
  83static struct pcpu pcpu_devices[NR_CPUS];
  84
  85unsigned int smp_cpu_mt_shift;
  86EXPORT_SYMBOL(smp_cpu_mt_shift);
  87
  88unsigned int smp_cpu_mtid;
  89EXPORT_SYMBOL(smp_cpu_mtid);
  90
  91#ifdef CONFIG_CRASH_DUMP
  92__vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
  93#endif
  94
  95static unsigned int smp_max_threads __initdata = -1U;
 
  96
  97static int __init early_nosmt(char *s)
  98{
  99	smp_max_threads = 1;
 100	return 0;
 101}
 102early_param("nosmt", early_nosmt);
 103
 104static int __init early_smt(char *s)
 105{
 106	get_option(&s, &smp_max_threads);
 107	return 0;
 108}
 109early_param("smt", early_smt);
 110
 111/*
 112 * The smp_cpu_state_mutex must be held when changing the state or polarization
 113 * member of a pcpu data structure within the pcpu_devices arreay.
 114 */
 115DEFINE_MUTEX(smp_cpu_state_mutex);
 116
 117/*
 118 * Signal processor helper functions.
 119 */
 120static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
 121{
 122	int cc;
 123
 124	while (1) {
 125		cc = __pcpu_sigp(addr, order, parm, NULL);
 126		if (cc != SIGP_CC_BUSY)
 127			return cc;
 128		cpu_relax();
 129	}
 130}
 131
 132static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
 133{
 134	int cc, retry;
 135
 136	for (retry = 0; ; retry++) {
 137		cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
 138		if (cc != SIGP_CC_BUSY)
 139			break;
 140		if (retry >= 3)
 141			udelay(10);
 142	}
 143	return cc;
 144}
 145
 146static inline int pcpu_stopped(struct pcpu *pcpu)
 147{
 148	u32 uninitialized_var(status);
 149
 150	if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
 151			0, &status) != SIGP_CC_STATUS_STORED)
 152		return 0;
 153	return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
 154}
 155
 156static inline int pcpu_running(struct pcpu *pcpu)
 157{
 158	if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
 159			0, NULL) != SIGP_CC_STATUS_STORED)
 160		return 1;
 161	/* Status stored condition code is equivalent to cpu not running. */
 162	return 0;
 163}
 164
 165/*
 166 * Find struct pcpu by cpu address.
 167 */
 168static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
 169{
 170	int cpu;
 171
 172	for_each_cpu(cpu, mask)
 173		if (pcpu_devices[cpu].address == address)
 174			return pcpu_devices + cpu;
 175	return NULL;
 176}
 177
 178static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
 179{
 180	int order;
 181
 182	if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
 183		return;
 184	order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
 185	pcpu->ec_clk = get_tod_clock_fast();
 186	pcpu_sigp_retry(pcpu, order, 0);
 187}
 188
 189static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
 190{
 191	unsigned long async_stack, nodat_stack;
 192	struct lowcore *lc;
 193
 194	if (pcpu != &pcpu_devices[0]) {
 195		pcpu->lowcore =	(struct lowcore *)
 196			__get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
 197		nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
 198		if (!pcpu->lowcore || !nodat_stack)
 199			goto out;
 200	} else {
 201		nodat_stack = pcpu->lowcore->nodat_stack - STACK_INIT_OFFSET;
 202	}
 203	async_stack = stack_alloc();
 204	if (!async_stack)
 
 205		goto out;
 206	lc = pcpu->lowcore;
 207	memcpy(lc, &S390_lowcore, 512);
 208	memset((char *) lc + 512, 0, sizeof(*lc) - 512);
 209	lc->async_stack = async_stack + STACK_INIT_OFFSET;
 210	lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
 
 211	lc->cpu_nr = cpu;
 212	lc->spinlock_lockval = arch_spin_lockval(cpu);
 213	lc->spinlock_index = 0;
 214	lc->br_r1_trampoline = 0x07f1;	/* br %r1 */
 215	if (nmi_alloc_per_cpu(lc))
 216		goto out_async;
 217	if (vdso_alloc_per_cpu(lc))
 
 
 218		goto out_mcesa;
 219	lowcore_ptr[cpu] = lc;
 220	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
 221	return 0;
 222
 223out_mcesa:
 224	nmi_free_per_cpu(lc);
 225out_async:
 
 226	stack_free(async_stack);
 227out:
 228	if (pcpu != &pcpu_devices[0]) {
 229		free_pages(nodat_stack, THREAD_SIZE_ORDER);
 230		free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
 231	}
 232	return -ENOMEM;
 233}
 234
 235static void pcpu_free_lowcore(struct pcpu *pcpu)
 236{
 237	unsigned long async_stack, nodat_stack, lowcore;
 238
 239	nodat_stack = pcpu->lowcore->nodat_stack - STACK_INIT_OFFSET;
 240	async_stack = pcpu->lowcore->async_stack - STACK_INIT_OFFSET;
 241	lowcore = (unsigned long) pcpu->lowcore;
 242
 
 
 
 
 
 243	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
 244	lowcore_ptr[pcpu - pcpu_devices] = NULL;
 245	vdso_free_per_cpu(pcpu->lowcore);
 246	nmi_free_per_cpu(pcpu->lowcore);
 247	stack_free(async_stack);
 248	if (pcpu == &pcpu_devices[0])
 249		return;
 250	free_pages(nodat_stack, THREAD_SIZE_ORDER);
 251	free_pages(lowcore, LC_ORDER);
 252}
 253
 254static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
 255{
 256	struct lowcore *lc = pcpu->lowcore;
 257
 258	cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
 259	cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
 260	lc->cpu_nr = cpu;
 
 261	lc->spinlock_lockval = arch_spin_lockval(cpu);
 262	lc->spinlock_index = 0;
 263	lc->percpu_offset = __per_cpu_offset[cpu];
 264	lc->kernel_asce = S390_lowcore.kernel_asce;
 
 265	lc->machine_flags = S390_lowcore.machine_flags;
 266	lc->user_timer = lc->system_timer =
 267		lc->steal_timer = lc->avg_steal_timer = 0;
 268	__ctl_store(lc->cregs_save_area, 0, 15);
 
 
 269	save_access_regs((unsigned int *) lc->access_regs_save_area);
 270	memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
 271	       sizeof(lc->stfle_fac_list));
 272	memcpy(lc->alt_stfle_fac_list, S390_lowcore.alt_stfle_fac_list,
 273	       sizeof(lc->alt_stfle_fac_list));
 274	arch_spin_lock_setup(cpu);
 275}
 276
 277static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
 278{
 279	struct lowcore *lc = pcpu->lowcore;
 
 280
 
 
 281	lc->kernel_stack = (unsigned long) task_stack_page(tsk)
 282		+ THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
 283	lc->current_task = (unsigned long) tsk;
 284	lc->lpp = LPP_MAGIC;
 285	lc->current_pid = tsk->pid;
 286	lc->user_timer = tsk->thread.user_timer;
 287	lc->guest_timer = tsk->thread.guest_timer;
 288	lc->system_timer = tsk->thread.system_timer;
 289	lc->hardirq_timer = tsk->thread.hardirq_timer;
 290	lc->softirq_timer = tsk->thread.softirq_timer;
 291	lc->steal_timer = 0;
 292}
 293
 294static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
 295{
 296	struct lowcore *lc = pcpu->lowcore;
 
 297
 298	lc->restart_stack = lc->nodat_stack;
 
 
 299	lc->restart_fn = (unsigned long) func;
 300	lc->restart_data = (unsigned long) data;
 301	lc->restart_source = -1UL;
 302	pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
 303}
 304
 
 
 305/*
 306 * Call function via PSW restart on pcpu and stop the current cpu.
 307 */
 308static void __pcpu_delegate(void (*func)(void*), void *data)
 309{
 310	func(data);	/* should not return */
 311}
 312
 313static void __no_sanitize_address pcpu_delegate(struct pcpu *pcpu,
 314						void (*func)(void *),
 315						void *data, unsigned long stack)
 316{
 317	struct lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
 318	unsigned long source_cpu = stap();
 
 319
 
 
 320	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
 321	if (pcpu->address == source_cpu)
 322		CALL_ON_STACK(__pcpu_delegate, stack, 2, func, data);
 
 
 323	/* Stop target cpu (if func returns this stops the current cpu). */
 324	pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
 325	/* Restart func on the target cpu and stop the current cpu. */
 326	mem_assign_absolute(lc->restart_stack, stack);
 327	mem_assign_absolute(lc->restart_fn, (unsigned long) func);
 328	mem_assign_absolute(lc->restart_data, (unsigned long) data);
 329	mem_assign_absolute(lc->restart_source, source_cpu);
 
 
 
 
 
 
 
 
 
 330	__bpon();
 331	asm volatile(
 332		"0:	sigp	0,%0,%2	# sigp restart to target cpu\n"
 333		"	brc	2,0b	# busy, try again\n"
 334		"1:	sigp	0,%1,%3	# sigp stop to current cpu\n"
 335		"	brc	2,1b	# busy, try again\n"
 336		: : "d" (pcpu->address), "d" (source_cpu),
 337		    "K" (SIGP_RESTART), "K" (SIGP_STOP)
 338		: "0", "1", "cc");
 339	for (;;) ;
 340}
 341
 342/*
 343 * Enable additional logical cpus for multi-threading.
 344 */
 345static int pcpu_set_smt(unsigned int mtid)
 346{
 347	int cc;
 348
 349	if (smp_cpu_mtid == mtid)
 350		return 0;
 351	cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
 352	if (cc == 0) {
 353		smp_cpu_mtid = mtid;
 354		smp_cpu_mt_shift = 0;
 355		while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
 356			smp_cpu_mt_shift++;
 357		pcpu_devices[0].address = stap();
 358	}
 359	return cc;
 360}
 361
 362/*
 363 * Call function on an online CPU.
 364 */
 365void smp_call_online_cpu(void (*func)(void *), void *data)
 366{
 367	struct pcpu *pcpu;
 368
 369	/* Use the current cpu if it is online. */
 370	pcpu = pcpu_find_address(cpu_online_mask, stap());
 371	if (!pcpu)
 372		/* Use the first online cpu. */
 373		pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
 374	pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
 375}
 376
 377/*
 378 * Call function on the ipl CPU.
 379 */
 380void smp_call_ipl_cpu(void (*func)(void *), void *data)
 381{
 382	struct lowcore *lc = pcpu_devices->lowcore;
 383
 384	if (pcpu_devices[0].address == stap())
 385		lc = &S390_lowcore;
 386
 387	pcpu_delegate(&pcpu_devices[0], func, data,
 388		      lc->nodat_stack);
 389}
 390
 391int smp_find_processor_id(u16 address)
 392{
 393	int cpu;
 394
 395	for_each_present_cpu(cpu)
 396		if (pcpu_devices[cpu].address == address)
 397			return cpu;
 398	return -1;
 399}
 400
 401bool arch_vcpu_is_preempted(int cpu)
 
 
 
 
 
 402{
 403	if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
 404		return false;
 405	if (pcpu_running(pcpu_devices + cpu))
 406		return false;
 407	return true;
 408}
 409EXPORT_SYMBOL(arch_vcpu_is_preempted);
 410
 411void smp_yield_cpu(int cpu)
 412{
 413	if (MACHINE_HAS_DIAG9C) {
 414		diag_stat_inc_norecursion(DIAG_STAT_X09C);
 415		asm volatile("diag %0,0,0x9c"
 416			     : : "d" (pcpu_devices[cpu].address));
 417	} else if (MACHINE_HAS_DIAG44 && !smp_cpu_mtid) {
 418		diag_stat_inc_norecursion(DIAG_STAT_X044);
 419		asm volatile("diag 0,0,0x44");
 420	}
 421}
 
 422
 423/*
 424 * Send cpus emergency shutdown signal. This gives the cpus the
 425 * opportunity to complete outstanding interrupts.
 426 */
 427void notrace smp_emergency_stop(void)
 428{
 429	cpumask_t cpumask;
 
 430	u64 end;
 431	int cpu;
 432
 
 433	cpumask_copy(&cpumask, cpu_online_mask);
 434	cpumask_clear_cpu(smp_processor_id(), &cpumask);
 435
 436	end = get_tod_clock() + (1000000UL << 12);
 437	for_each_cpu(cpu, &cpumask) {
 438		struct pcpu *pcpu = pcpu_devices + cpu;
 439		set_bit(ec_stop_cpu, &pcpu->ec_mask);
 440		while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
 441				   0, NULL) == SIGP_CC_BUSY &&
 442		       get_tod_clock() < end)
 443			cpu_relax();
 444	}
 445	while (get_tod_clock() < end) {
 446		for_each_cpu(cpu, &cpumask)
 447			if (pcpu_stopped(pcpu_devices + cpu))
 448				cpumask_clear_cpu(cpu, &cpumask);
 449		if (cpumask_empty(&cpumask))
 450			break;
 451		cpu_relax();
 452	}
 
 453}
 454NOKPROBE_SYMBOL(smp_emergency_stop);
 455
 456/*
 457 * Stop all cpus but the current one.
 458 */
 459void smp_send_stop(void)
 460{
 461	int cpu;
 462
 463	/* Disable all interrupts/machine checks */
 464	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
 465	trace_hardirqs_off();
 466
 467	debug_set_critical();
 468
 469	if (oops_in_progress)
 470		smp_emergency_stop();
 471
 472	/* stop all processors */
 473	for_each_online_cpu(cpu) {
 474		if (cpu == smp_processor_id())
 475			continue;
 476		pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
 477		while (!pcpu_stopped(pcpu_devices + cpu))
 478			cpu_relax();
 479	}
 480}
 481
 482/*
 483 * This is the main routine where commands issued by other
 484 * cpus are handled.
 485 */
 486static void smp_handle_ext_call(void)
 487{
 488	unsigned long bits;
 489
 490	/* handle bit signal external calls */
 491	bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
 492	if (test_bit(ec_stop_cpu, &bits))
 493		smp_stop_cpu();
 494	if (test_bit(ec_schedule, &bits))
 495		scheduler_ipi();
 496	if (test_bit(ec_call_function_single, &bits))
 497		generic_smp_call_function_single_interrupt();
 
 
 
 
 498}
 499
 500static void do_ext_call_interrupt(struct ext_code ext_code,
 501				  unsigned int param32, unsigned long param64)
 502{
 503	inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
 504	smp_handle_ext_call();
 505}
 506
 507void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 508{
 509	int cpu;
 510
 511	for_each_cpu(cpu, mask)
 512		pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
 513}
 514
 515void arch_send_call_function_single_ipi(int cpu)
 516{
 517	pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
 518}
 519
 520/*
 521 * this function sends a 'reschedule' IPI to another CPU.
 522 * it goes straight through and wastes no time serializing
 523 * anything. Worst case is that we lose a reschedule ...
 524 */
 525void smp_send_reschedule(int cpu)
 526{
 527	pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
 528}
 529
 
 
 
 
 
 
 
 530/*
 531 * parameter area for the set/clear control bit callbacks
 532 */
 533struct ec_creg_mask_parms {
 534	unsigned long orval;
 535	unsigned long andval;
 536	int cr;
 537};
 538
 539/*
 540 * callback for setting/clearing control bits
 541 */
 542static void smp_ctl_bit_callback(void *info)
 543{
 544	struct ec_creg_mask_parms *pp = info;
 545	unsigned long cregs[16];
 546
 547	__ctl_store(cregs, 0, 15);
 548	cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
 549	__ctl_load(cregs, 0, 15);
 550}
 551
 552/*
 553 * Set a bit in a control register of all cpus
 554 */
 555void smp_ctl_set_bit(int cr, int bit)
 556{
 557	struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
 558
 559	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
 560}
 561EXPORT_SYMBOL(smp_ctl_set_bit);
 562
 563/*
 564 * Clear a bit in a control register of all cpus
 565 */
 566void smp_ctl_clear_bit(int cr, int bit)
 567{
 568	struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
 569
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 570	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
 571}
 572EXPORT_SYMBOL(smp_ctl_clear_bit);
 573
 574#ifdef CONFIG_CRASH_DUMP
 575
 576int smp_store_status(int cpu)
 577{
 578	struct pcpu *pcpu = pcpu_devices + cpu;
 
 579	unsigned long pa;
 580
 581	pa = __pa(&pcpu->lowcore->floating_pt_save_area);
 
 
 582	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
 583			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
 584		return -EIO;
 585	if (!MACHINE_HAS_VX && !MACHINE_HAS_GS)
 586		return 0;
 587	pa = __pa(pcpu->lowcore->mcesad & MCESA_ORIGIN_MASK);
 588	if (MACHINE_HAS_GS)
 589		pa |= pcpu->lowcore->mcesad & MCESA_LC_MASK;
 590	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
 591			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
 592		return -EIO;
 593	return 0;
 594}
 595
 596/*
 597 * Collect CPU state of the previous, crashed system.
 598 * There are four cases:
 599 * 1) standard zfcp dump
 600 *    condition: OLDMEM_BASE == NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
 601 *    The state for all CPUs except the boot CPU needs to be collected
 602 *    with sigp stop-and-store-status. The boot CPU state is located in
 603 *    the absolute lowcore of the memory stored in the HSA. The zcore code
 604 *    will copy the boot CPU state from the HSA.
 605 * 2) stand-alone kdump for SCSI (zfcp dump with swapped memory)
 606 *    condition: OLDMEM_BASE != NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
 607 *    The state for all CPUs except the boot CPU needs to be collected
 608 *    with sigp stop-and-store-status. The firmware or the boot-loader
 609 *    stored the registers of the boot CPU in the absolute lowcore in the
 610 *    memory of the old system.
 611 * 3) kdump and the old kernel did not store the CPU state,
 612 *    or stand-alone kdump for DASD
 613 *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
 614 *    The state for all CPUs except the boot CPU needs to be collected
 615 *    with sigp stop-and-store-status. The kexec code or the boot-loader
 616 *    stored the registers of the boot CPU in the memory of the old system.
 617 * 4) kdump and the old kernel stored the CPU state
 618 *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
 619 *    This case does not exist for s390 anymore, setup_arch explicitly
 620 *    deactivates the elfcorehdr= kernel parameter
 621 */
 622static __init void smp_save_cpu_vxrs(struct save_area *sa, u16 addr,
 623				     bool is_boot_cpu, unsigned long page)
 624{
 625	__vector128 *vxrs = (__vector128 *) page;
 626
 627	if (is_boot_cpu)
 628		vxrs = boot_cpu_vector_save_area;
 629	else
 630		__pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, page);
 631	save_area_add_vxrs(sa, vxrs);
 632}
 633
 634static __init void smp_save_cpu_regs(struct save_area *sa, u16 addr,
 635				     bool is_boot_cpu, unsigned long page)
 636{
 637	void *regs = (void *) page;
 
 638
 639	if (is_boot_cpu)
 640		copy_oldmem_kernel(regs, (void *) __LC_FPREGS_SAVE_AREA, 512);
 641	else
 642		__pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, page);
 
 
 
 643	save_area_add_regs(sa, regs);
 
 
 
 644}
 645
 646void __init smp_save_dump_cpus(void)
 647{
 648	int addr, boot_cpu_addr, max_cpu_addr;
 649	struct save_area *sa;
 650	unsigned long page;
 651	bool is_boot_cpu;
 652
 653	if (!(OLDMEM_BASE || ipl_info.type == IPL_TYPE_FCP_DUMP))
 654		/* No previous system present, normal boot. */
 655		return;
 656	/* Allocate a page as dumping area for the store status sigps */
 657	page = memblock_phys_alloc_range(PAGE_SIZE, PAGE_SIZE, 0, 1UL << 31);
 658	if (!page)
 659		panic("ERROR: Failed to allocate %lx bytes below %lx\n",
 660		      PAGE_SIZE, 1UL << 31);
 661
 662	/* Set multi-threading state to the previous system. */
 663	pcpu_set_smt(sclp.mtid_prev);
 664	boot_cpu_addr = stap();
 665	max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
 666	for (addr = 0; addr <= max_cpu_addr; addr++) {
 
 
 667		if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
 668		    SIGP_CC_NOT_OPERATIONAL)
 669			continue;
 670		is_boot_cpu = (addr == boot_cpu_addr);
 671		/* Allocate save area */
 672		sa = save_area_alloc(is_boot_cpu);
 673		if (!sa)
 674			panic("could not allocate memory for save area\n");
 675		if (MACHINE_HAS_VX)
 676			/* Get the vector registers */
 677			smp_save_cpu_vxrs(sa, addr, is_boot_cpu, page);
 678		/*
 679		 * For a zfcp dump OLDMEM_BASE == NULL and the registers
 680		 * of the boot CPU are stored in the HSA. To retrieve
 681		 * these registers an SCLP request is required which is
 682		 * done by drivers/s390/char/zcore.c:init_cpu_info()
 683		 */
 684		if (!is_boot_cpu || OLDMEM_BASE)
 685			/* Get the CPU registers */
 686			smp_save_cpu_regs(sa, addr, is_boot_cpu, page);
 687	}
 688	memblock_free(page, PAGE_SIZE);
 689	diag_dma_ops.diag308_reset();
 690	pcpu_set_smt(0);
 691}
 692#endif /* CONFIG_CRASH_DUMP */
 693
 694void smp_cpu_set_polarization(int cpu, int val)
 695{
 696	pcpu_devices[cpu].polarization = val;
 697}
 698
 699int smp_cpu_get_polarization(int cpu)
 700{
 701	return pcpu_devices[cpu].polarization;
 702}
 703
 
 
 
 
 
 704static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
 705{
 706	static int use_sigp_detection;
 707	int address;
 708
 709	if (use_sigp_detection || sclp_get_core_info(info, early)) {
 710		use_sigp_detection = 1;
 711		for (address = 0;
 712		     address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
 713		     address += (1U << smp_cpu_mt_shift)) {
 714			if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
 715			    SIGP_CC_NOT_OPERATIONAL)
 716				continue;
 717			info->core[info->configured].core_id =
 718				address >> smp_cpu_mt_shift;
 719			info->configured++;
 720		}
 721		info->combined = info->configured;
 722	}
 723}
 724
 725static int smp_add_present_cpu(int cpu);
 726
 727static int __smp_rescan_cpus(struct sclp_core_info *info, int sysfs_add)
 
 728{
 729	struct pcpu *pcpu;
 730	cpumask_t avail;
 731	int cpu, nr, i, j;
 732	u16 address;
 733
 734	nr = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 735	cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
 736	cpu = cpumask_first(&avail);
 737	for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) {
 738		if (sclp.has_core_type && info->core[i].type != boot_core_type)
 739			continue;
 740		address = info->core[i].core_id << smp_cpu_mt_shift;
 741		for (j = 0; j <= smp_cpu_mtid; j++) {
 742			if (pcpu_find_address(cpu_present_mask, address + j))
 743				continue;
 744			pcpu = pcpu_devices + cpu;
 745			pcpu->address = address + j;
 746			pcpu->state =
 747				(cpu >= info->configured*(smp_cpu_mtid + 1)) ?
 748				CPU_STATE_STANDBY : CPU_STATE_CONFIGURED;
 749			smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
 750			set_cpu_present(cpu, true);
 751			if (sysfs_add && smp_add_present_cpu(cpu) != 0)
 752				set_cpu_present(cpu, false);
 753			else
 754				nr++;
 755			cpu = cpumask_next(cpu, &avail);
 756			if (cpu >= nr_cpu_ids)
 757				break;
 
 758		}
 759	}
 
 
 
 
 
 
 760	return nr;
 761}
 762
 763void __init smp_detect_cpus(void)
 764{
 765	unsigned int cpu, mtid, c_cpus, s_cpus;
 766	struct sclp_core_info *info;
 767	u16 address;
 768
 769	/* Get CPU information */
 770	info = memblock_alloc(sizeof(*info), 8);
 771	if (!info)
 772		panic("%s: Failed to allocate %zu bytes align=0x%x\n",
 773		      __func__, sizeof(*info), 8);
 774	smp_get_core_info(info, 1);
 775	/* Find boot CPU type */
 776	if (sclp.has_core_type) {
 777		address = stap();
 778		for (cpu = 0; cpu < info->combined; cpu++)
 779			if (info->core[cpu].core_id == address) {
 780				/* The boot cpu dictates the cpu type. */
 781				boot_core_type = info->core[cpu].type;
 782				break;
 783			}
 784		if (cpu >= info->combined)
 785			panic("Could not find boot CPU type");
 786	}
 787
 788	/* Set multi-threading state for the current system */
 789	mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
 790	mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
 791	pcpu_set_smt(mtid);
 792
 793	/* Print number of CPUs */
 794	c_cpus = s_cpus = 0;
 795	for (cpu = 0; cpu < info->combined; cpu++) {
 796		if (sclp.has_core_type &&
 797		    info->core[cpu].type != boot_core_type)
 798			continue;
 799		if (cpu < info->configured)
 800			c_cpus += smp_cpu_mtid + 1;
 801		else
 802			s_cpus += smp_cpu_mtid + 1;
 803	}
 804	pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
 805
 806	/* Add CPUs present at boot */
 807	get_online_cpus();
 808	__smp_rescan_cpus(info, 0);
 809	put_online_cpus();
 810	memblock_free_early((unsigned long)info, sizeof(*info));
 811}
 812
 813static void smp_init_secondary(void)
 
 
 
 814{
 815	int cpu = smp_processor_id();
 816
 817	S390_lowcore.last_update_clock = get_tod_clock();
 
 
 
 
 
 818	restore_access_regs(S390_lowcore.access_regs_save_area);
 819	cpu_init();
 820	preempt_disable();
 821	init_cpu_timer();
 822	vtime_init();
 
 823	pfault_init();
 824	notify_cpu_starting(smp_processor_id());
 
 
 825	if (topology_cpu_dedicated(cpu))
 826		set_cpu_flag(CIF_DEDICATED_CPU);
 827	else
 828		clear_cpu_flag(CIF_DEDICATED_CPU);
 829	set_cpu_online(smp_processor_id(), true);
 830	inc_irq_stat(CPU_RST);
 831	local_irq_enable();
 832	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 833}
 834
 835/*
 836 *	Activate a secondary processor.
 837 */
 838static void __no_sanitize_address smp_start_secondary(void *cpuvoid)
 839{
 840	S390_lowcore.restart_stack = (unsigned long) restart_stack;
 841	S390_lowcore.restart_fn = (unsigned long) do_restart;
 842	S390_lowcore.restart_data = 0;
 843	S390_lowcore.restart_source = -1UL;
 844	__ctl_load(S390_lowcore.cregs_save_area, 0, 15);
 845	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
 846	CALL_ON_STACK(smp_init_secondary, S390_lowcore.kernel_stack, 0);
 847}
 848
 849/* Upping and downing of CPUs */
 850int __cpu_up(unsigned int cpu, struct task_struct *tidle)
 851{
 852	struct pcpu *pcpu;
 853	int base, i, rc;
 854
 855	pcpu = pcpu_devices + cpu;
 856	if (pcpu->state != CPU_STATE_CONFIGURED)
 857		return -EIO;
 858	base = smp_get_base_cpu(cpu);
 859	for (i = 0; i <= smp_cpu_mtid; i++) {
 860		if (base + i < nr_cpu_ids)
 861			if (cpu_online(base + i))
 862				break;
 863	}
 864	/*
 865	 * If this is the first CPU of the core to get online
 866	 * do an initial CPU reset.
 867	 */
 868	if (i > smp_cpu_mtid &&
 869	    pcpu_sigp_retry(pcpu_devices + base, SIGP_INITIAL_CPU_RESET, 0) !=
 870	    SIGP_CC_ORDER_CODE_ACCEPTED)
 871		return -EIO;
 872
 873	rc = pcpu_alloc_lowcore(pcpu, cpu);
 874	if (rc)
 875		return rc;
 876	pcpu_prepare_secondary(pcpu, cpu);
 877	pcpu_attach_task(pcpu, tidle);
 878	pcpu_start_fn(pcpu, smp_start_secondary, NULL);
 879	/* Wait until cpu puts itself in the online & active maps */
 880	while (!cpu_online(cpu))
 881		cpu_relax();
 882	return 0;
 883}
 884
 885static unsigned int setup_possible_cpus __initdata;
 886
 887static int __init _setup_possible_cpus(char *s)
 888{
 889	get_option(&s, &setup_possible_cpus);
 890	return 0;
 891}
 892early_param("possible_cpus", _setup_possible_cpus);
 893
 894int __cpu_disable(void)
 895{
 896	unsigned long cregs[16];
 
 897
 898	/* Handle possible pending IPIs */
 899	smp_handle_ext_call();
 900	set_cpu_online(smp_processor_id(), false);
 
 
 
 901	/* Disable pseudo page faults on this cpu. */
 902	pfault_fini();
 903	/* Disable interrupt sources via control register. */
 904	__ctl_store(cregs, 0, 15);
 905	cregs[0]  &= ~0x0000ee70UL;	/* disable all external interrupts */
 906	cregs[6]  &= ~0xff000000UL;	/* disable all I/O interrupts */
 907	cregs[14] &= ~0x1f000000UL;	/* disable most machine checks */
 908	__ctl_load(cregs, 0, 15);
 909	clear_cpu_flag(CIF_NOHZ_DELAY);
 910	return 0;
 911}
 912
 913void __cpu_die(unsigned int cpu)
 914{
 915	struct pcpu *pcpu;
 916
 917	/* Wait until target cpu is down */
 918	pcpu = pcpu_devices + cpu;
 919	while (!pcpu_stopped(pcpu))
 920		cpu_relax();
 921	pcpu_free_lowcore(pcpu);
 922	cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
 923	cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
 924}
 925
 926void __noreturn cpu_die(void)
 927{
 928	idle_task_exit();
 929	__bpon();
 930	pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
 931	for (;;) ;
 932}
 933
 934void __init smp_fill_possible_mask(void)
 935{
 936	unsigned int possible, sclp_max, cpu;
 937
 938	sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
 939	sclp_max = min(smp_max_threads, sclp_max);
 940	sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
 941	possible = setup_possible_cpus ?: nr_cpu_ids;
 942	possible = min(possible, sclp_max);
 943	for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
 944		set_cpu_possible(cpu, true);
 945}
 946
 947void __init smp_prepare_cpus(unsigned int max_cpus)
 948{
 949	/* request the 0x1201 emergency signal external interrupt */
 950	if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
 951		panic("Couldn't request external interrupt 0x1201");
 952	/* request the 0x1202 external call external interrupt */
 953	if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
 954		panic("Couldn't request external interrupt 0x1202");
 955}
 956
 957void __init smp_prepare_boot_cpu(void)
 958{
 959	struct pcpu *pcpu = pcpu_devices;
 960
 961	WARN_ON(!cpu_present(0) || !cpu_online(0));
 962	pcpu->state = CPU_STATE_CONFIGURED;
 963	pcpu->lowcore = (struct lowcore *)(unsigned long) store_prefix();
 964	S390_lowcore.percpu_offset = __per_cpu_offset[0];
 965	smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
 966}
 967
 968void __init smp_cpus_done(unsigned int max_cpus)
 969{
 970}
 971
 972void __init smp_setup_processor_id(void)
 973{
 974	pcpu_devices[0].address = stap();
 975	S390_lowcore.cpu_nr = 0;
 976	S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
 977	S390_lowcore.spinlock_index = 0;
 978}
 979
 980/*
 981 * the frequency of the profiling timer can be changed
 982 * by writing a multiplier value into /proc/profile.
 983 *
 984 * usually you want to run this on all CPUs ;)
 985 */
 986int setup_profiling_timer(unsigned int multiplier)
 987{
 988	return 0;
 989}
 990
 991static ssize_t cpu_configure_show(struct device *dev,
 992				  struct device_attribute *attr, char *buf)
 993{
 994	ssize_t count;
 995
 996	mutex_lock(&smp_cpu_state_mutex);
 997	count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
 998	mutex_unlock(&smp_cpu_state_mutex);
 999	return count;
1000}
1001
1002static ssize_t cpu_configure_store(struct device *dev,
1003				   struct device_attribute *attr,
1004				   const char *buf, size_t count)
1005{
1006	struct pcpu *pcpu;
1007	int cpu, val, rc, i;
1008	char delim;
1009
1010	if (sscanf(buf, "%d %c", &val, &delim) != 1)
1011		return -EINVAL;
1012	if (val != 0 && val != 1)
1013		return -EINVAL;
1014	get_online_cpus();
1015	mutex_lock(&smp_cpu_state_mutex);
1016	rc = -EBUSY;
1017	/* disallow configuration changes of online cpus and cpu 0 */
1018	cpu = dev->id;
1019	cpu = smp_get_base_cpu(cpu);
1020	if (cpu == 0)
1021		goto out;
1022	for (i = 0; i <= smp_cpu_mtid; i++)
1023		if (cpu_online(cpu + i))
1024			goto out;
1025	pcpu = pcpu_devices + cpu;
1026	rc = 0;
1027	switch (val) {
1028	case 0:
1029		if (pcpu->state != CPU_STATE_CONFIGURED)
1030			break;
1031		rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1032		if (rc)
1033			break;
1034		for (i = 0; i <= smp_cpu_mtid; i++) {
1035			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1036				continue;
1037			pcpu[i].state = CPU_STATE_STANDBY;
1038			smp_cpu_set_polarization(cpu + i,
1039						 POLARIZATION_UNKNOWN);
1040		}
1041		topology_expect_change();
1042		break;
1043	case 1:
1044		if (pcpu->state != CPU_STATE_STANDBY)
1045			break;
1046		rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1047		if (rc)
1048			break;
1049		for (i = 0; i <= smp_cpu_mtid; i++) {
1050			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1051				continue;
1052			pcpu[i].state = CPU_STATE_CONFIGURED;
1053			smp_cpu_set_polarization(cpu + i,
1054						 POLARIZATION_UNKNOWN);
1055		}
1056		topology_expect_change();
1057		break;
1058	default:
1059		break;
1060	}
1061out:
1062	mutex_unlock(&smp_cpu_state_mutex);
1063	put_online_cpus();
1064	return rc ? rc : count;
1065}
1066static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1067
1068static ssize_t show_cpu_address(struct device *dev,
1069				struct device_attribute *attr, char *buf)
1070{
1071	return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1072}
1073static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1074
1075static struct attribute *cpu_common_attrs[] = {
1076	&dev_attr_configure.attr,
1077	&dev_attr_address.attr,
1078	NULL,
1079};
1080
1081static struct attribute_group cpu_common_attr_group = {
1082	.attrs = cpu_common_attrs,
1083};
1084
1085static struct attribute *cpu_online_attrs[] = {
1086	&dev_attr_idle_count.attr,
1087	&dev_attr_idle_time_us.attr,
1088	NULL,
1089};
1090
1091static struct attribute_group cpu_online_attr_group = {
1092	.attrs = cpu_online_attrs,
1093};
1094
1095static int smp_cpu_online(unsigned int cpu)
1096{
1097	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1098
1099	return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1100}
 
1101static int smp_cpu_pre_down(unsigned int cpu)
1102{
1103	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1104
1105	sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1106	return 0;
1107}
1108
1109static int smp_add_present_cpu(int cpu)
1110{
1111	struct device *s;
1112	struct cpu *c;
1113	int rc;
1114
1115	c = kzalloc(sizeof(*c), GFP_KERNEL);
1116	if (!c)
1117		return -ENOMEM;
1118	per_cpu(cpu_device, cpu) = c;
1119	s = &c->dev;
1120	c->hotpluggable = 1;
1121	rc = register_cpu(c, cpu);
1122	if (rc)
1123		goto out;
1124	rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1125	if (rc)
1126		goto out_cpu;
1127	rc = topology_cpu_init(c);
1128	if (rc)
1129		goto out_topology;
1130	return 0;
1131
1132out_topology:
1133	sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1134out_cpu:
1135	unregister_cpu(c);
1136out:
1137	return rc;
1138}
1139
1140int __ref smp_rescan_cpus(void)
1141{
1142	struct sclp_core_info *info;
1143	int nr;
1144
1145	info = kzalloc(sizeof(*info), GFP_KERNEL);
1146	if (!info)
1147		return -ENOMEM;
1148	smp_get_core_info(info, 0);
1149	get_online_cpus();
1150	mutex_lock(&smp_cpu_state_mutex);
1151	nr = __smp_rescan_cpus(info, 1);
1152	mutex_unlock(&smp_cpu_state_mutex);
1153	put_online_cpus();
1154	kfree(info);
1155	if (nr)
1156		topology_schedule_update();
1157	return 0;
1158}
1159
1160static ssize_t __ref rescan_store(struct device *dev,
1161				  struct device_attribute *attr,
1162				  const char *buf,
1163				  size_t count)
1164{
1165	int rc;
1166
1167	rc = lock_device_hotplug_sysfs();
1168	if (rc)
1169		return rc;
1170	rc = smp_rescan_cpus();
1171	unlock_device_hotplug();
1172	return rc ? rc : count;
1173}
1174static DEVICE_ATTR_WO(rescan);
1175
1176static int __init s390_smp_init(void)
1177{
1178	int cpu, rc = 0;
1179
1180	rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1181	if (rc)
1182		return rc;
1183	for_each_present_cpu(cpu) {
1184		rc = smp_add_present_cpu(cpu);
1185		if (rc)
1186			goto out;
1187	}
1188
1189	rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1190			       smp_cpu_online, smp_cpu_pre_down);
1191	rc = rc <= 0 ? rc : 0;
1192out:
1193	return rc;
1194}
1195subsys_initcall(s390_smp_init);