Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Generic pidhash and scalable, time-bounded PID allocator
  4 *
  5 * (C) 2002-2003 Nadia Yvette Chambers, IBM
  6 * (C) 2004 Nadia Yvette Chambers, Oracle
  7 * (C) 2002-2004 Ingo Molnar, Red Hat
  8 *
  9 * pid-structures are backing objects for tasks sharing a given ID to chain
 10 * against. There is very little to them aside from hashing them and
 11 * parking tasks using given ID's on a list.
 12 *
 13 * The hash is always changed with the tasklist_lock write-acquired,
 14 * and the hash is only accessed with the tasklist_lock at least
 15 * read-acquired, so there's no additional SMP locking needed here.
 16 *
 17 * We have a list of bitmap pages, which bitmaps represent the PID space.
 18 * Allocating and freeing PIDs is completely lockless. The worst-case
 19 * allocation scenario when all but one out of 1 million PIDs possible are
 20 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
 21 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
 22 *
 23 * Pid namespaces:
 24 *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
 25 *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
 26 *     Many thanks to Oleg Nesterov for comments and help
 27 *
 28 */
 29
 30#include <linux/mm.h>
 31#include <linux/export.h>
 32#include <linux/slab.h>
 33#include <linux/init.h>
 34#include <linux/rculist.h>
 35#include <linux/memblock.h>
 36#include <linux/pid_namespace.h>
 37#include <linux/init_task.h>
 38#include <linux/syscalls.h>
 39#include <linux/proc_ns.h>
 40#include <linux/refcount.h>
 41#include <linux/anon_inodes.h>
 42#include <linux/sched/signal.h>
 43#include <linux/sched/task.h>
 44#include <linux/idr.h>
 45#include <net/sock.h>
 46#include <uapi/linux/pidfd.h>
 47
 48struct pid init_struct_pid = {
 49	.count		= REFCOUNT_INIT(1),
 50	.tasks		= {
 51		{ .first = NULL },
 52		{ .first = NULL },
 53		{ .first = NULL },
 54	},
 55	.level		= 0,
 56	.numbers	= { {
 57		.nr		= 0,
 58		.ns		= &init_pid_ns,
 59	}, }
 60};
 61
 62int pid_max = PID_MAX_DEFAULT;
 63
 64#define RESERVED_PIDS		300
 65
 66int pid_max_min = RESERVED_PIDS + 1;
 67int pid_max_max = PID_MAX_LIMIT;
 68
 69/*
 70 * PID-map pages start out as NULL, they get allocated upon
 71 * first use and are never deallocated. This way a low pid_max
 72 * value does not cause lots of bitmaps to be allocated, but
 73 * the scheme scales to up to 4 million PIDs, runtime.
 74 */
 75struct pid_namespace init_pid_ns = {
 76	.ns.count = REFCOUNT_INIT(2),
 77	.idr = IDR_INIT(init_pid_ns.idr),
 78	.pid_allocated = PIDNS_ADDING,
 79	.level = 0,
 80	.child_reaper = &init_task,
 81	.user_ns = &init_user_ns,
 82	.ns.inum = PROC_PID_INIT_INO,
 83#ifdef CONFIG_PID_NS
 84	.ns.ops = &pidns_operations,
 85#endif
 
 
 
 86};
 87EXPORT_SYMBOL_GPL(init_pid_ns);
 88
 89/*
 90 * Note: disable interrupts while the pidmap_lock is held as an
 91 * interrupt might come in and do read_lock(&tasklist_lock).
 92 *
 93 * If we don't disable interrupts there is a nasty deadlock between
 94 * detach_pid()->free_pid() and another cpu that does
 95 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
 96 * read_lock(&tasklist_lock);
 97 *
 98 * After we clean up the tasklist_lock and know there are no
 99 * irq handlers that take it we can leave the interrupts enabled.
100 * For now it is easier to be safe than to prove it can't happen.
101 */
102
103static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
104
105void put_pid(struct pid *pid)
106{
107	struct pid_namespace *ns;
108
109	if (!pid)
110		return;
111
112	ns = pid->numbers[pid->level].ns;
113	if (refcount_dec_and_test(&pid->count)) {
114		kmem_cache_free(ns->pid_cachep, pid);
115		put_pid_ns(ns);
116	}
117}
118EXPORT_SYMBOL_GPL(put_pid);
119
120static void delayed_put_pid(struct rcu_head *rhp)
121{
122	struct pid *pid = container_of(rhp, struct pid, rcu);
123	put_pid(pid);
124}
125
126void free_pid(struct pid *pid)
127{
128	/* We can be called with write_lock_irq(&tasklist_lock) held */
129	int i;
130	unsigned long flags;
131
132	spin_lock_irqsave(&pidmap_lock, flags);
133	for (i = 0; i <= pid->level; i++) {
134		struct upid *upid = pid->numbers + i;
135		struct pid_namespace *ns = upid->ns;
136		switch (--ns->pid_allocated) {
137		case 2:
138		case 1:
139			/* When all that is left in the pid namespace
140			 * is the reaper wake up the reaper.  The reaper
141			 * may be sleeping in zap_pid_ns_processes().
142			 */
143			wake_up_process(ns->child_reaper);
144			break;
145		case PIDNS_ADDING:
146			/* Handle a fork failure of the first process */
147			WARN_ON(ns->child_reaper);
148			ns->pid_allocated = 0;
149			break;
150		}
151
152		idr_remove(&ns->idr, upid->nr);
153	}
154	spin_unlock_irqrestore(&pidmap_lock, flags);
155
156	call_rcu(&pid->rcu, delayed_put_pid);
157}
158
159struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid,
160		      size_t set_tid_size)
161{
162	struct pid *pid;
163	enum pid_type type;
164	int i, nr;
165	struct pid_namespace *tmp;
166	struct upid *upid;
167	int retval = -ENOMEM;
168
169	/*
170	 * set_tid_size contains the size of the set_tid array. Starting at
171	 * the most nested currently active PID namespace it tells alloc_pid()
172	 * which PID to set for a process in that most nested PID namespace
173	 * up to set_tid_size PID namespaces. It does not have to set the PID
174	 * for a process in all nested PID namespaces but set_tid_size must
175	 * never be greater than the current ns->level + 1.
176	 */
177	if (set_tid_size > ns->level + 1)
178		return ERR_PTR(-EINVAL);
179
180	pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
181	if (!pid)
182		return ERR_PTR(retval);
183
184	tmp = ns;
185	pid->level = ns->level;
186
187	for (i = ns->level; i >= 0; i--) {
188		int tid = 0;
189
190		if (set_tid_size) {
191			tid = set_tid[ns->level - i];
192
193			retval = -EINVAL;
194			if (tid < 1 || tid >= pid_max)
195				goto out_free;
196			/*
197			 * Also fail if a PID != 1 is requested and
198			 * no PID 1 exists.
199			 */
200			if (tid != 1 && !tmp->child_reaper)
201				goto out_free;
202			retval = -EPERM;
203			if (!checkpoint_restore_ns_capable(tmp->user_ns))
204				goto out_free;
205			set_tid_size--;
206		}
207
208		idr_preload(GFP_KERNEL);
209		spin_lock_irq(&pidmap_lock);
210
211		if (tid) {
212			nr = idr_alloc(&tmp->idr, NULL, tid,
213				       tid + 1, GFP_ATOMIC);
214			/*
215			 * If ENOSPC is returned it means that the PID is
216			 * alreay in use. Return EEXIST in that case.
217			 */
218			if (nr == -ENOSPC)
219				nr = -EEXIST;
220		} else {
221			int pid_min = 1;
222			/*
223			 * init really needs pid 1, but after reaching the
224			 * maximum wrap back to RESERVED_PIDS
225			 */
226			if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS)
227				pid_min = RESERVED_PIDS;
228
229			/*
230			 * Store a null pointer so find_pid_ns does not find
231			 * a partially initialized PID (see below).
232			 */
233			nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min,
234					      pid_max, GFP_ATOMIC);
235		}
236		spin_unlock_irq(&pidmap_lock);
237		idr_preload_end();
238
239		if (nr < 0) {
240			retval = (nr == -ENOSPC) ? -EAGAIN : nr;
241			goto out_free;
242		}
243
244		pid->numbers[i].nr = nr;
245		pid->numbers[i].ns = tmp;
246		tmp = tmp->parent;
247	}
248
249	/*
250	 * ENOMEM is not the most obvious choice especially for the case
251	 * where the child subreaper has already exited and the pid
252	 * namespace denies the creation of any new processes. But ENOMEM
253	 * is what we have exposed to userspace for a long time and it is
254	 * documented behavior for pid namespaces. So we can't easily
255	 * change it even if there were an error code better suited.
256	 */
257	retval = -ENOMEM;
258
259	get_pid_ns(ns);
260	refcount_set(&pid->count, 1);
261	spin_lock_init(&pid->lock);
262	for (type = 0; type < PIDTYPE_MAX; ++type)
263		INIT_HLIST_HEAD(&pid->tasks[type]);
264
265	init_waitqueue_head(&pid->wait_pidfd);
266	INIT_HLIST_HEAD(&pid->inodes);
267
268	upid = pid->numbers + ns->level;
269	spin_lock_irq(&pidmap_lock);
270	if (!(ns->pid_allocated & PIDNS_ADDING))
271		goto out_unlock;
272	for ( ; upid >= pid->numbers; --upid) {
273		/* Make the PID visible to find_pid_ns. */
274		idr_replace(&upid->ns->idr, pid, upid->nr);
275		upid->ns->pid_allocated++;
276	}
277	spin_unlock_irq(&pidmap_lock);
278
279	return pid;
280
281out_unlock:
282	spin_unlock_irq(&pidmap_lock);
283	put_pid_ns(ns);
284
285out_free:
286	spin_lock_irq(&pidmap_lock);
287	while (++i <= ns->level) {
288		upid = pid->numbers + i;
289		idr_remove(&upid->ns->idr, upid->nr);
290	}
291
292	/* On failure to allocate the first pid, reset the state */
293	if (ns->pid_allocated == PIDNS_ADDING)
294		idr_set_cursor(&ns->idr, 0);
295
296	spin_unlock_irq(&pidmap_lock);
297
298	kmem_cache_free(ns->pid_cachep, pid);
299	return ERR_PTR(retval);
300}
301
302void disable_pid_allocation(struct pid_namespace *ns)
303{
304	spin_lock_irq(&pidmap_lock);
305	ns->pid_allocated &= ~PIDNS_ADDING;
306	spin_unlock_irq(&pidmap_lock);
307}
308
309struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
310{
311	return idr_find(&ns->idr, nr);
312}
313EXPORT_SYMBOL_GPL(find_pid_ns);
314
315struct pid *find_vpid(int nr)
316{
317	return find_pid_ns(nr, task_active_pid_ns(current));
318}
319EXPORT_SYMBOL_GPL(find_vpid);
320
321static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type)
322{
323	return (type == PIDTYPE_PID) ?
324		&task->thread_pid :
325		&task->signal->pids[type];
326}
327
328/*
329 * attach_pid() must be called with the tasklist_lock write-held.
330 */
331void attach_pid(struct task_struct *task, enum pid_type type)
332{
333	struct pid *pid = *task_pid_ptr(task, type);
334	hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]);
335}
336
337static void __change_pid(struct task_struct *task, enum pid_type type,
338			struct pid *new)
339{
340	struct pid **pid_ptr = task_pid_ptr(task, type);
341	struct pid *pid;
342	int tmp;
343
344	pid = *pid_ptr;
345
346	hlist_del_rcu(&task->pid_links[type]);
347	*pid_ptr = new;
348
349	for (tmp = PIDTYPE_MAX; --tmp >= 0; )
350		if (pid_has_task(pid, tmp))
351			return;
352
353	free_pid(pid);
354}
355
356void detach_pid(struct task_struct *task, enum pid_type type)
357{
358	__change_pid(task, type, NULL);
359}
360
361void change_pid(struct task_struct *task, enum pid_type type,
362		struct pid *pid)
363{
364	__change_pid(task, type, pid);
365	attach_pid(task, type);
366}
367
368void exchange_tids(struct task_struct *left, struct task_struct *right)
369{
370	struct pid *pid1 = left->thread_pid;
371	struct pid *pid2 = right->thread_pid;
372	struct hlist_head *head1 = &pid1->tasks[PIDTYPE_PID];
373	struct hlist_head *head2 = &pid2->tasks[PIDTYPE_PID];
374
375	/* Swap the single entry tid lists */
376	hlists_swap_heads_rcu(head1, head2);
377
378	/* Swap the per task_struct pid */
379	rcu_assign_pointer(left->thread_pid, pid2);
380	rcu_assign_pointer(right->thread_pid, pid1);
381
382	/* Swap the cached value */
383	WRITE_ONCE(left->pid, pid_nr(pid2));
384	WRITE_ONCE(right->pid, pid_nr(pid1));
385}
386
387/* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
388void transfer_pid(struct task_struct *old, struct task_struct *new,
389			   enum pid_type type)
390{
391	if (type == PIDTYPE_PID)
392		new->thread_pid = old->thread_pid;
393	hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]);
394}
395
396struct task_struct *pid_task(struct pid *pid, enum pid_type type)
397{
398	struct task_struct *result = NULL;
399	if (pid) {
400		struct hlist_node *first;
401		first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
402					      lockdep_tasklist_lock_is_held());
403		if (first)
404			result = hlist_entry(first, struct task_struct, pid_links[(type)]);
405	}
406	return result;
407}
408EXPORT_SYMBOL(pid_task);
409
410/*
411 * Must be called under rcu_read_lock().
412 */
413struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
414{
415	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
416			 "find_task_by_pid_ns() needs rcu_read_lock() protection");
417	return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
418}
419
420struct task_struct *find_task_by_vpid(pid_t vnr)
421{
422	return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
423}
424
425struct task_struct *find_get_task_by_vpid(pid_t nr)
426{
427	struct task_struct *task;
428
429	rcu_read_lock();
430	task = find_task_by_vpid(nr);
431	if (task)
432		get_task_struct(task);
433	rcu_read_unlock();
434
435	return task;
436}
437
438struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
439{
440	struct pid *pid;
441	rcu_read_lock();
442	pid = get_pid(rcu_dereference(*task_pid_ptr(task, type)));
443	rcu_read_unlock();
444	return pid;
445}
446EXPORT_SYMBOL_GPL(get_task_pid);
447
448struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
449{
450	struct task_struct *result;
451	rcu_read_lock();
452	result = pid_task(pid, type);
453	if (result)
454		get_task_struct(result);
455	rcu_read_unlock();
456	return result;
457}
458EXPORT_SYMBOL_GPL(get_pid_task);
459
460struct pid *find_get_pid(pid_t nr)
461{
462	struct pid *pid;
463
464	rcu_read_lock();
465	pid = get_pid(find_vpid(nr));
466	rcu_read_unlock();
467
468	return pid;
469}
470EXPORT_SYMBOL_GPL(find_get_pid);
471
472pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
473{
474	struct upid *upid;
475	pid_t nr = 0;
476
477	if (pid && ns->level <= pid->level) {
478		upid = &pid->numbers[ns->level];
479		if (upid->ns == ns)
480			nr = upid->nr;
481	}
482	return nr;
483}
484EXPORT_SYMBOL_GPL(pid_nr_ns);
485
486pid_t pid_vnr(struct pid *pid)
487{
488	return pid_nr_ns(pid, task_active_pid_ns(current));
489}
490EXPORT_SYMBOL_GPL(pid_vnr);
491
492pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
493			struct pid_namespace *ns)
494{
495	pid_t nr = 0;
496
497	rcu_read_lock();
498	if (!ns)
499		ns = task_active_pid_ns(current);
500	nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns);
501	rcu_read_unlock();
502
503	return nr;
504}
505EXPORT_SYMBOL(__task_pid_nr_ns);
506
507struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
508{
509	return ns_of_pid(task_pid(tsk));
510}
511EXPORT_SYMBOL_GPL(task_active_pid_ns);
512
513/*
514 * Used by proc to find the first pid that is greater than or equal to nr.
515 *
516 * If there is a pid at nr this function is exactly the same as find_pid_ns.
517 */
518struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
519{
520	return idr_get_next(&ns->idr, &nr);
521}
522EXPORT_SYMBOL_GPL(find_ge_pid);
523
524struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags)
525{
526	struct fd f;
527	struct pid *pid;
528
529	f = fdget(fd);
530	if (!f.file)
531		return ERR_PTR(-EBADF);
532
533	pid = pidfd_pid(f.file);
534	if (!IS_ERR(pid)) {
535		get_pid(pid);
536		*flags = f.file->f_flags;
537	}
538
539	fdput(f);
540	return pid;
541}
542
543/**
544 * pidfd_get_task() - Get the task associated with a pidfd
545 *
546 * @pidfd: pidfd for which to get the task
547 * @flags: flags associated with this pidfd
548 *
549 * Return the task associated with @pidfd. The function takes a reference on
550 * the returned task. The caller is responsible for releasing that reference.
551 *
552 * Currently, the process identified by @pidfd is always a thread-group leader.
553 * This restriction currently exists for all aspects of pidfds including pidfd
554 * creation (CLONE_PIDFD cannot be used with CLONE_THREAD) and pidfd polling
555 * (only supports thread group leaders).
556 *
557 * Return: On success, the task_struct associated with the pidfd.
558 *	   On error, a negative errno number will be returned.
559 */
560struct task_struct *pidfd_get_task(int pidfd, unsigned int *flags)
561{
562	unsigned int f_flags;
563	struct pid *pid;
564	struct task_struct *task;
565
566	pid = pidfd_get_pid(pidfd, &f_flags);
567	if (IS_ERR(pid))
568		return ERR_CAST(pid);
569
570	task = get_pid_task(pid, PIDTYPE_TGID);
571	put_pid(pid);
572	if (!task)
573		return ERR_PTR(-ESRCH);
574
575	*flags = f_flags;
576	return task;
577}
578
579/**
580 * pidfd_create() - Create a new pid file descriptor.
581 *
582 * @pid:   struct pid that the pidfd will reference
583 * @flags: flags to pass
584 *
585 * This creates a new pid file descriptor with the O_CLOEXEC flag set.
586 *
587 * Note, that this function can only be called after the fd table has
588 * been unshared to avoid leaking the pidfd to the new process.
589 *
590 * This symbol should not be explicitly exported to loadable modules.
591 *
592 * Return: On success, a cloexec pidfd is returned.
593 *         On error, a negative errno number will be returned.
594 */
595int pidfd_create(struct pid *pid, unsigned int flags)
596{
597	int fd;
598
599	if (!pid || !pid_has_task(pid, PIDTYPE_TGID))
600		return -EINVAL;
601
602	if (flags & ~(O_NONBLOCK | O_RDWR | O_CLOEXEC))
603		return -EINVAL;
604
605	fd = anon_inode_getfd("[pidfd]", &pidfd_fops, get_pid(pid),
606			      flags | O_RDWR | O_CLOEXEC);
607	if (fd < 0)
608		put_pid(pid);
609
610	return fd;
 
611}
612
613/**
614 * pidfd_open() - Open new pid file descriptor.
615 *
616 * @pid:   pid for which to retrieve a pidfd
617 * @flags: flags to pass
618 *
619 * This creates a new pid file descriptor with the O_CLOEXEC flag set for
620 * the process identified by @pid. Currently, the process identified by
621 * @pid must be a thread-group leader. This restriction currently exists
622 * for all aspects of pidfds including pidfd creation (CLONE_PIDFD cannot
623 * be used with CLONE_THREAD) and pidfd polling (only supports thread group
624 * leaders).
625 *
626 * Return: On success, a cloexec pidfd is returned.
627 *         On error, a negative errno number will be returned.
628 */
629SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags)
630{
631	int fd;
632	struct pid *p;
633
634	if (flags & ~PIDFD_NONBLOCK)
635		return -EINVAL;
636
637	if (pid <= 0)
638		return -EINVAL;
639
640	p = find_get_pid(pid);
641	if (!p)
642		return -ESRCH;
643
644	fd = pidfd_create(p, flags);
645
646	put_pid(p);
647	return fd;
648}
649
650void __init pid_idr_init(void)
651{
652	/* Verify no one has done anything silly: */
653	BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING);
654
655	/* bump default and minimum pid_max based on number of cpus */
656	pid_max = min(pid_max_max, max_t(int, pid_max,
657				PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
658	pid_max_min = max_t(int, pid_max_min,
659				PIDS_PER_CPU_MIN * num_possible_cpus());
660	pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
661
662	idr_init(&init_pid_ns.idr);
663
664	init_pid_ns.pid_cachep = KMEM_CACHE(pid,
665			SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
 
 
 
666}
667
668static struct file *__pidfd_fget(struct task_struct *task, int fd)
669{
670	struct file *file;
671	int ret;
672
673	ret = down_read_killable(&task->signal->exec_update_lock);
674	if (ret)
675		return ERR_PTR(ret);
676
677	if (ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS))
678		file = fget_task(task, fd);
679	else
680		file = ERR_PTR(-EPERM);
681
682	up_read(&task->signal->exec_update_lock);
683
684	return file ?: ERR_PTR(-EBADF);
685}
686
687static int pidfd_getfd(struct pid *pid, int fd)
688{
689	struct task_struct *task;
690	struct file *file;
691	int ret;
692
693	task = get_pid_task(pid, PIDTYPE_PID);
694	if (!task)
695		return -ESRCH;
696
697	file = __pidfd_fget(task, fd);
698	put_task_struct(task);
699	if (IS_ERR(file))
700		return PTR_ERR(file);
701
702	ret = receive_fd(file, O_CLOEXEC);
703	fput(file);
704
705	return ret;
706}
707
708/**
709 * sys_pidfd_getfd() - Get a file descriptor from another process
710 *
711 * @pidfd:	the pidfd file descriptor of the process
712 * @fd:		the file descriptor number to get
713 * @flags:	flags on how to get the fd (reserved)
714 *
715 * This syscall gets a copy of a file descriptor from another process
716 * based on the pidfd, and file descriptor number. It requires that
717 * the calling process has the ability to ptrace the process represented
718 * by the pidfd. The process which is having its file descriptor copied
719 * is otherwise unaffected.
720 *
721 * Return: On success, a cloexec file descriptor is returned.
722 *         On error, a negative errno number will be returned.
723 */
724SYSCALL_DEFINE3(pidfd_getfd, int, pidfd, int, fd,
725		unsigned int, flags)
726{
727	struct pid *pid;
728	struct fd f;
729	int ret;
730
731	/* flags is currently unused - make sure it's unset */
732	if (flags)
733		return -EINVAL;
734
735	f = fdget(pidfd);
736	if (!f.file)
737		return -EBADF;
738
739	pid = pidfd_pid(f.file);
740	if (IS_ERR(pid))
741		ret = PTR_ERR(pid);
742	else
743		ret = pidfd_getfd(pid, fd);
744
745	fdput(f);
746	return ret;
747}
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Generic pidhash and scalable, time-bounded PID allocator
  4 *
  5 * (C) 2002-2003 Nadia Yvette Chambers, IBM
  6 * (C) 2004 Nadia Yvette Chambers, Oracle
  7 * (C) 2002-2004 Ingo Molnar, Red Hat
  8 *
  9 * pid-structures are backing objects for tasks sharing a given ID to chain
 10 * against. There is very little to them aside from hashing them and
 11 * parking tasks using given ID's on a list.
 12 *
 13 * The hash is always changed with the tasklist_lock write-acquired,
 14 * and the hash is only accessed with the tasklist_lock at least
 15 * read-acquired, so there's no additional SMP locking needed here.
 16 *
 17 * We have a list of bitmap pages, which bitmaps represent the PID space.
 18 * Allocating and freeing PIDs is completely lockless. The worst-case
 19 * allocation scenario when all but one out of 1 million PIDs possible are
 20 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
 21 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
 22 *
 23 * Pid namespaces:
 24 *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
 25 *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
 26 *     Many thanks to Oleg Nesterov for comments and help
 27 *
 28 */
 29
 30#include <linux/mm.h>
 31#include <linux/export.h>
 32#include <linux/slab.h>
 33#include <linux/init.h>
 34#include <linux/rculist.h>
 35#include <linux/memblock.h>
 36#include <linux/pid_namespace.h>
 37#include <linux/init_task.h>
 38#include <linux/syscalls.h>
 39#include <linux/proc_ns.h>
 40#include <linux/refcount.h>
 41#include <linux/anon_inodes.h>
 42#include <linux/sched/signal.h>
 43#include <linux/sched/task.h>
 44#include <linux/idr.h>
 45#include <net/sock.h>
 46#include <uapi/linux/pidfd.h>
 47
 48struct pid init_struct_pid = {
 49	.count		= REFCOUNT_INIT(1),
 50	.tasks		= {
 51		{ .first = NULL },
 52		{ .first = NULL },
 53		{ .first = NULL },
 54	},
 55	.level		= 0,
 56	.numbers	= { {
 57		.nr		= 0,
 58		.ns		= &init_pid_ns,
 59	}, }
 60};
 61
 62int pid_max = PID_MAX_DEFAULT;
 63
 64#define RESERVED_PIDS		300
 65
 66int pid_max_min = RESERVED_PIDS + 1;
 67int pid_max_max = PID_MAX_LIMIT;
 68
 69/*
 70 * PID-map pages start out as NULL, they get allocated upon
 71 * first use and are never deallocated. This way a low pid_max
 72 * value does not cause lots of bitmaps to be allocated, but
 73 * the scheme scales to up to 4 million PIDs, runtime.
 74 */
 75struct pid_namespace init_pid_ns = {
 76	.ns.count = REFCOUNT_INIT(2),
 77	.idr = IDR_INIT(init_pid_ns.idr),
 78	.pid_allocated = PIDNS_ADDING,
 79	.level = 0,
 80	.child_reaper = &init_task,
 81	.user_ns = &init_user_ns,
 82	.ns.inum = PROC_PID_INIT_INO,
 83#ifdef CONFIG_PID_NS
 84	.ns.ops = &pidns_operations,
 85#endif
 86#if defined(CONFIG_SYSCTL) && defined(CONFIG_MEMFD_CREATE)
 87	.memfd_noexec_scope = MEMFD_NOEXEC_SCOPE_EXEC,
 88#endif
 89};
 90EXPORT_SYMBOL_GPL(init_pid_ns);
 91
 92/*
 93 * Note: disable interrupts while the pidmap_lock is held as an
 94 * interrupt might come in and do read_lock(&tasklist_lock).
 95 *
 96 * If we don't disable interrupts there is a nasty deadlock between
 97 * detach_pid()->free_pid() and another cpu that does
 98 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
 99 * read_lock(&tasklist_lock);
100 *
101 * After we clean up the tasklist_lock and know there are no
102 * irq handlers that take it we can leave the interrupts enabled.
103 * For now it is easier to be safe than to prove it can't happen.
104 */
105
106static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
107
108void put_pid(struct pid *pid)
109{
110	struct pid_namespace *ns;
111
112	if (!pid)
113		return;
114
115	ns = pid->numbers[pid->level].ns;
116	if (refcount_dec_and_test(&pid->count)) {
117		kmem_cache_free(ns->pid_cachep, pid);
118		put_pid_ns(ns);
119	}
120}
121EXPORT_SYMBOL_GPL(put_pid);
122
123static void delayed_put_pid(struct rcu_head *rhp)
124{
125	struct pid *pid = container_of(rhp, struct pid, rcu);
126	put_pid(pid);
127}
128
129void free_pid(struct pid *pid)
130{
131	/* We can be called with write_lock_irq(&tasklist_lock) held */
132	int i;
133	unsigned long flags;
134
135	spin_lock_irqsave(&pidmap_lock, flags);
136	for (i = 0; i <= pid->level; i++) {
137		struct upid *upid = pid->numbers + i;
138		struct pid_namespace *ns = upid->ns;
139		switch (--ns->pid_allocated) {
140		case 2:
141		case 1:
142			/* When all that is left in the pid namespace
143			 * is the reaper wake up the reaper.  The reaper
144			 * may be sleeping in zap_pid_ns_processes().
145			 */
146			wake_up_process(ns->child_reaper);
147			break;
148		case PIDNS_ADDING:
149			/* Handle a fork failure of the first process */
150			WARN_ON(ns->child_reaper);
151			ns->pid_allocated = 0;
152			break;
153		}
154
155		idr_remove(&ns->idr, upid->nr);
156	}
157	spin_unlock_irqrestore(&pidmap_lock, flags);
158
159	call_rcu(&pid->rcu, delayed_put_pid);
160}
161
162struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid,
163		      size_t set_tid_size)
164{
165	struct pid *pid;
166	enum pid_type type;
167	int i, nr;
168	struct pid_namespace *tmp;
169	struct upid *upid;
170	int retval = -ENOMEM;
171
172	/*
173	 * set_tid_size contains the size of the set_tid array. Starting at
174	 * the most nested currently active PID namespace it tells alloc_pid()
175	 * which PID to set for a process in that most nested PID namespace
176	 * up to set_tid_size PID namespaces. It does not have to set the PID
177	 * for a process in all nested PID namespaces but set_tid_size must
178	 * never be greater than the current ns->level + 1.
179	 */
180	if (set_tid_size > ns->level + 1)
181		return ERR_PTR(-EINVAL);
182
183	pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
184	if (!pid)
185		return ERR_PTR(retval);
186
187	tmp = ns;
188	pid->level = ns->level;
189
190	for (i = ns->level; i >= 0; i--) {
191		int tid = 0;
192
193		if (set_tid_size) {
194			tid = set_tid[ns->level - i];
195
196			retval = -EINVAL;
197			if (tid < 1 || tid >= pid_max)
198				goto out_free;
199			/*
200			 * Also fail if a PID != 1 is requested and
201			 * no PID 1 exists.
202			 */
203			if (tid != 1 && !tmp->child_reaper)
204				goto out_free;
205			retval = -EPERM;
206			if (!checkpoint_restore_ns_capable(tmp->user_ns))
207				goto out_free;
208			set_tid_size--;
209		}
210
211		idr_preload(GFP_KERNEL);
212		spin_lock_irq(&pidmap_lock);
213
214		if (tid) {
215			nr = idr_alloc(&tmp->idr, NULL, tid,
216				       tid + 1, GFP_ATOMIC);
217			/*
218			 * If ENOSPC is returned it means that the PID is
219			 * alreay in use. Return EEXIST in that case.
220			 */
221			if (nr == -ENOSPC)
222				nr = -EEXIST;
223		} else {
224			int pid_min = 1;
225			/*
226			 * init really needs pid 1, but after reaching the
227			 * maximum wrap back to RESERVED_PIDS
228			 */
229			if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS)
230				pid_min = RESERVED_PIDS;
231
232			/*
233			 * Store a null pointer so find_pid_ns does not find
234			 * a partially initialized PID (see below).
235			 */
236			nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min,
237					      pid_max, GFP_ATOMIC);
238		}
239		spin_unlock_irq(&pidmap_lock);
240		idr_preload_end();
241
242		if (nr < 0) {
243			retval = (nr == -ENOSPC) ? -EAGAIN : nr;
244			goto out_free;
245		}
246
247		pid->numbers[i].nr = nr;
248		pid->numbers[i].ns = tmp;
249		tmp = tmp->parent;
250	}
251
252	/*
253	 * ENOMEM is not the most obvious choice especially for the case
254	 * where the child subreaper has already exited and the pid
255	 * namespace denies the creation of any new processes. But ENOMEM
256	 * is what we have exposed to userspace for a long time and it is
257	 * documented behavior for pid namespaces. So we can't easily
258	 * change it even if there were an error code better suited.
259	 */
260	retval = -ENOMEM;
261
262	get_pid_ns(ns);
263	refcount_set(&pid->count, 1);
264	spin_lock_init(&pid->lock);
265	for (type = 0; type < PIDTYPE_MAX; ++type)
266		INIT_HLIST_HEAD(&pid->tasks[type]);
267
268	init_waitqueue_head(&pid->wait_pidfd);
269	INIT_HLIST_HEAD(&pid->inodes);
270
271	upid = pid->numbers + ns->level;
272	spin_lock_irq(&pidmap_lock);
273	if (!(ns->pid_allocated & PIDNS_ADDING))
274		goto out_unlock;
275	for ( ; upid >= pid->numbers; --upid) {
276		/* Make the PID visible to find_pid_ns. */
277		idr_replace(&upid->ns->idr, pid, upid->nr);
278		upid->ns->pid_allocated++;
279	}
280	spin_unlock_irq(&pidmap_lock);
281
282	return pid;
283
284out_unlock:
285	spin_unlock_irq(&pidmap_lock);
286	put_pid_ns(ns);
287
288out_free:
289	spin_lock_irq(&pidmap_lock);
290	while (++i <= ns->level) {
291		upid = pid->numbers + i;
292		idr_remove(&upid->ns->idr, upid->nr);
293	}
294
295	/* On failure to allocate the first pid, reset the state */
296	if (ns->pid_allocated == PIDNS_ADDING)
297		idr_set_cursor(&ns->idr, 0);
298
299	spin_unlock_irq(&pidmap_lock);
300
301	kmem_cache_free(ns->pid_cachep, pid);
302	return ERR_PTR(retval);
303}
304
305void disable_pid_allocation(struct pid_namespace *ns)
306{
307	spin_lock_irq(&pidmap_lock);
308	ns->pid_allocated &= ~PIDNS_ADDING;
309	spin_unlock_irq(&pidmap_lock);
310}
311
312struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
313{
314	return idr_find(&ns->idr, nr);
315}
316EXPORT_SYMBOL_GPL(find_pid_ns);
317
318struct pid *find_vpid(int nr)
319{
320	return find_pid_ns(nr, task_active_pid_ns(current));
321}
322EXPORT_SYMBOL_GPL(find_vpid);
323
324static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type)
325{
326	return (type == PIDTYPE_PID) ?
327		&task->thread_pid :
328		&task->signal->pids[type];
329}
330
331/*
332 * attach_pid() must be called with the tasklist_lock write-held.
333 */
334void attach_pid(struct task_struct *task, enum pid_type type)
335{
336	struct pid *pid = *task_pid_ptr(task, type);
337	hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]);
338}
339
340static void __change_pid(struct task_struct *task, enum pid_type type,
341			struct pid *new)
342{
343	struct pid **pid_ptr = task_pid_ptr(task, type);
344	struct pid *pid;
345	int tmp;
346
347	pid = *pid_ptr;
348
349	hlist_del_rcu(&task->pid_links[type]);
350	*pid_ptr = new;
351
352	for (tmp = PIDTYPE_MAX; --tmp >= 0; )
353		if (pid_has_task(pid, tmp))
354			return;
355
356	free_pid(pid);
357}
358
359void detach_pid(struct task_struct *task, enum pid_type type)
360{
361	__change_pid(task, type, NULL);
362}
363
364void change_pid(struct task_struct *task, enum pid_type type,
365		struct pid *pid)
366{
367	__change_pid(task, type, pid);
368	attach_pid(task, type);
369}
370
371void exchange_tids(struct task_struct *left, struct task_struct *right)
372{
373	struct pid *pid1 = left->thread_pid;
374	struct pid *pid2 = right->thread_pid;
375	struct hlist_head *head1 = &pid1->tasks[PIDTYPE_PID];
376	struct hlist_head *head2 = &pid2->tasks[PIDTYPE_PID];
377
378	/* Swap the single entry tid lists */
379	hlists_swap_heads_rcu(head1, head2);
380
381	/* Swap the per task_struct pid */
382	rcu_assign_pointer(left->thread_pid, pid2);
383	rcu_assign_pointer(right->thread_pid, pid1);
384
385	/* Swap the cached value */
386	WRITE_ONCE(left->pid, pid_nr(pid2));
387	WRITE_ONCE(right->pid, pid_nr(pid1));
388}
389
390/* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
391void transfer_pid(struct task_struct *old, struct task_struct *new,
392			   enum pid_type type)
393{
394	if (type == PIDTYPE_PID)
395		new->thread_pid = old->thread_pid;
396	hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]);
397}
398
399struct task_struct *pid_task(struct pid *pid, enum pid_type type)
400{
401	struct task_struct *result = NULL;
402	if (pid) {
403		struct hlist_node *first;
404		first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
405					      lockdep_tasklist_lock_is_held());
406		if (first)
407			result = hlist_entry(first, struct task_struct, pid_links[(type)]);
408	}
409	return result;
410}
411EXPORT_SYMBOL(pid_task);
412
413/*
414 * Must be called under rcu_read_lock().
415 */
416struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
417{
418	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
419			 "find_task_by_pid_ns() needs rcu_read_lock() protection");
420	return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
421}
422
423struct task_struct *find_task_by_vpid(pid_t vnr)
424{
425	return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
426}
427
428struct task_struct *find_get_task_by_vpid(pid_t nr)
429{
430	struct task_struct *task;
431
432	rcu_read_lock();
433	task = find_task_by_vpid(nr);
434	if (task)
435		get_task_struct(task);
436	rcu_read_unlock();
437
438	return task;
439}
440
441struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
442{
443	struct pid *pid;
444	rcu_read_lock();
445	pid = get_pid(rcu_dereference(*task_pid_ptr(task, type)));
446	rcu_read_unlock();
447	return pid;
448}
449EXPORT_SYMBOL_GPL(get_task_pid);
450
451struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
452{
453	struct task_struct *result;
454	rcu_read_lock();
455	result = pid_task(pid, type);
456	if (result)
457		get_task_struct(result);
458	rcu_read_unlock();
459	return result;
460}
461EXPORT_SYMBOL_GPL(get_pid_task);
462
463struct pid *find_get_pid(pid_t nr)
464{
465	struct pid *pid;
466
467	rcu_read_lock();
468	pid = get_pid(find_vpid(nr));
469	rcu_read_unlock();
470
471	return pid;
472}
473EXPORT_SYMBOL_GPL(find_get_pid);
474
475pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
476{
477	struct upid *upid;
478	pid_t nr = 0;
479
480	if (pid && ns->level <= pid->level) {
481		upid = &pid->numbers[ns->level];
482		if (upid->ns == ns)
483			nr = upid->nr;
484	}
485	return nr;
486}
487EXPORT_SYMBOL_GPL(pid_nr_ns);
488
489pid_t pid_vnr(struct pid *pid)
490{
491	return pid_nr_ns(pid, task_active_pid_ns(current));
492}
493EXPORT_SYMBOL_GPL(pid_vnr);
494
495pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
496			struct pid_namespace *ns)
497{
498	pid_t nr = 0;
499
500	rcu_read_lock();
501	if (!ns)
502		ns = task_active_pid_ns(current);
503	nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns);
504	rcu_read_unlock();
505
506	return nr;
507}
508EXPORT_SYMBOL(__task_pid_nr_ns);
509
510struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
511{
512	return ns_of_pid(task_pid(tsk));
513}
514EXPORT_SYMBOL_GPL(task_active_pid_ns);
515
516/*
517 * Used by proc to find the first pid that is greater than or equal to nr.
518 *
519 * If there is a pid at nr this function is exactly the same as find_pid_ns.
520 */
521struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
522{
523	return idr_get_next(&ns->idr, &nr);
524}
525EXPORT_SYMBOL_GPL(find_ge_pid);
526
527struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags)
528{
529	struct fd f;
530	struct pid *pid;
531
532	f = fdget(fd);
533	if (!f.file)
534		return ERR_PTR(-EBADF);
535
536	pid = pidfd_pid(f.file);
537	if (!IS_ERR(pid)) {
538		get_pid(pid);
539		*flags = f.file->f_flags;
540	}
541
542	fdput(f);
543	return pid;
544}
545
546/**
547 * pidfd_get_task() - Get the task associated with a pidfd
548 *
549 * @pidfd: pidfd for which to get the task
550 * @flags: flags associated with this pidfd
551 *
552 * Return the task associated with @pidfd. The function takes a reference on
553 * the returned task. The caller is responsible for releasing that reference.
554 *
555 * Currently, the process identified by @pidfd is always a thread-group leader.
556 * This restriction currently exists for all aspects of pidfds including pidfd
557 * creation (CLONE_PIDFD cannot be used with CLONE_THREAD) and pidfd polling
558 * (only supports thread group leaders).
559 *
560 * Return: On success, the task_struct associated with the pidfd.
561 *	   On error, a negative errno number will be returned.
562 */
563struct task_struct *pidfd_get_task(int pidfd, unsigned int *flags)
564{
565	unsigned int f_flags;
566	struct pid *pid;
567	struct task_struct *task;
568
569	pid = pidfd_get_pid(pidfd, &f_flags);
570	if (IS_ERR(pid))
571		return ERR_CAST(pid);
572
573	task = get_pid_task(pid, PIDTYPE_TGID);
574	put_pid(pid);
575	if (!task)
576		return ERR_PTR(-ESRCH);
577
578	*flags = f_flags;
579	return task;
580}
581
582/**
583 * pidfd_create() - Create a new pid file descriptor.
584 *
585 * @pid:   struct pid that the pidfd will reference
586 * @flags: flags to pass
587 *
588 * This creates a new pid file descriptor with the O_CLOEXEC flag set.
589 *
590 * Note, that this function can only be called after the fd table has
591 * been unshared to avoid leaking the pidfd to the new process.
592 *
593 * This symbol should not be explicitly exported to loadable modules.
594 *
595 * Return: On success, a cloexec pidfd is returned.
596 *         On error, a negative errno number will be returned.
597 */
598int pidfd_create(struct pid *pid, unsigned int flags)
599{
600	int pidfd;
601	struct file *pidfd_file;
 
 
602
603	pidfd = pidfd_prepare(pid, flags, &pidfd_file);
604	if (pidfd < 0)
605		return pidfd;
 
 
 
 
606
607	fd_install(pidfd, pidfd_file);
608	return pidfd;
609}
610
611/**
612 * sys_pidfd_open() - Open new pid file descriptor.
613 *
614 * @pid:   pid for which to retrieve a pidfd
615 * @flags: flags to pass
616 *
617 * This creates a new pid file descriptor with the O_CLOEXEC flag set for
618 * the process identified by @pid. Currently, the process identified by
619 * @pid must be a thread-group leader. This restriction currently exists
620 * for all aspects of pidfds including pidfd creation (CLONE_PIDFD cannot
621 * be used with CLONE_THREAD) and pidfd polling (only supports thread group
622 * leaders).
623 *
624 * Return: On success, a cloexec pidfd is returned.
625 *         On error, a negative errno number will be returned.
626 */
627SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags)
628{
629	int fd;
630	struct pid *p;
631
632	if (flags & ~PIDFD_NONBLOCK)
633		return -EINVAL;
634
635	if (pid <= 0)
636		return -EINVAL;
637
638	p = find_get_pid(pid);
639	if (!p)
640		return -ESRCH;
641
642	fd = pidfd_create(p, flags);
643
644	put_pid(p);
645	return fd;
646}
647
648void __init pid_idr_init(void)
649{
650	/* Verify no one has done anything silly: */
651	BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING);
652
653	/* bump default and minimum pid_max based on number of cpus */
654	pid_max = min(pid_max_max, max_t(int, pid_max,
655				PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
656	pid_max_min = max_t(int, pid_max_min,
657				PIDS_PER_CPU_MIN * num_possible_cpus());
658	pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
659
660	idr_init(&init_pid_ns.idr);
661
662	init_pid_ns.pid_cachep = kmem_cache_create("pid",
663			struct_size_t(struct pid, numbers, 1),
664			__alignof__(struct pid),
665			SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT,
666			NULL);
667}
668
669static struct file *__pidfd_fget(struct task_struct *task, int fd)
670{
671	struct file *file;
672	int ret;
673
674	ret = down_read_killable(&task->signal->exec_update_lock);
675	if (ret)
676		return ERR_PTR(ret);
677
678	if (ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS))
679		file = fget_task(task, fd);
680	else
681		file = ERR_PTR(-EPERM);
682
683	up_read(&task->signal->exec_update_lock);
684
685	return file ?: ERR_PTR(-EBADF);
686}
687
688static int pidfd_getfd(struct pid *pid, int fd)
689{
690	struct task_struct *task;
691	struct file *file;
692	int ret;
693
694	task = get_pid_task(pid, PIDTYPE_PID);
695	if (!task)
696		return -ESRCH;
697
698	file = __pidfd_fget(task, fd);
699	put_task_struct(task);
700	if (IS_ERR(file))
701		return PTR_ERR(file);
702
703	ret = receive_fd(file, NULL, O_CLOEXEC);
704	fput(file);
705
706	return ret;
707}
708
709/**
710 * sys_pidfd_getfd() - Get a file descriptor from another process
711 *
712 * @pidfd:	the pidfd file descriptor of the process
713 * @fd:		the file descriptor number to get
714 * @flags:	flags on how to get the fd (reserved)
715 *
716 * This syscall gets a copy of a file descriptor from another process
717 * based on the pidfd, and file descriptor number. It requires that
718 * the calling process has the ability to ptrace the process represented
719 * by the pidfd. The process which is having its file descriptor copied
720 * is otherwise unaffected.
721 *
722 * Return: On success, a cloexec file descriptor is returned.
723 *         On error, a negative errno number will be returned.
724 */
725SYSCALL_DEFINE3(pidfd_getfd, int, pidfd, int, fd,
726		unsigned int, flags)
727{
728	struct pid *pid;
729	struct fd f;
730	int ret;
731
732	/* flags is currently unused - make sure it's unset */
733	if (flags)
734		return -EINVAL;
735
736	f = fdget(pidfd);
737	if (!f.file)
738		return -EBADF;
739
740	pid = pidfd_pid(f.file);
741	if (IS_ERR(pid))
742		ret = PTR_ERR(pid);
743	else
744		ret = pidfd_getfd(pid, fd);
745
746	fdput(f);
747	return ret;
748}