Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Generic pidhash and scalable, time-bounded PID allocator
  4 *
  5 * (C) 2002-2003 Nadia Yvette Chambers, IBM
  6 * (C) 2004 Nadia Yvette Chambers, Oracle
  7 * (C) 2002-2004 Ingo Molnar, Red Hat
  8 *
  9 * pid-structures are backing objects for tasks sharing a given ID to chain
 10 * against. There is very little to them aside from hashing them and
 11 * parking tasks using given ID's on a list.
 12 *
 13 * The hash is always changed with the tasklist_lock write-acquired,
 14 * and the hash is only accessed with the tasklist_lock at least
 15 * read-acquired, so there's no additional SMP locking needed here.
 16 *
 17 * We have a list of bitmap pages, which bitmaps represent the PID space.
 18 * Allocating and freeing PIDs is completely lockless. The worst-case
 19 * allocation scenario when all but one out of 1 million PIDs possible are
 20 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
 21 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
 22 *
 23 * Pid namespaces:
 24 *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
 25 *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
 26 *     Many thanks to Oleg Nesterov for comments and help
 27 *
 28 */
 29
 30#include <linux/mm.h>
 31#include <linux/export.h>
 32#include <linux/slab.h>
 33#include <linux/init.h>
 34#include <linux/rculist.h>
 35#include <linux/memblock.h>
 36#include <linux/pid_namespace.h>
 37#include <linux/init_task.h>
 38#include <linux/syscalls.h>
 39#include <linux/proc_ns.h>
 40#include <linux/refcount.h>
 41#include <linux/anon_inodes.h>
 42#include <linux/sched/signal.h>
 43#include <linux/sched/task.h>
 44#include <linux/idr.h>
 45#include <net/sock.h>
 46#include <uapi/linux/pidfd.h>
 47
 48struct pid init_struct_pid = {
 49	.count		= REFCOUNT_INIT(1),
 50	.tasks		= {
 51		{ .first = NULL },
 52		{ .first = NULL },
 53		{ .first = NULL },
 54	},
 55	.level		= 0,
 56	.numbers	= { {
 57		.nr		= 0,
 58		.ns		= &init_pid_ns,
 59	}, }
 60};
 61
 62int pid_max = PID_MAX_DEFAULT;
 63
 64#define RESERVED_PIDS		300
 65
 66int pid_max_min = RESERVED_PIDS + 1;
 67int pid_max_max = PID_MAX_LIMIT;
 68
 69/*
 70 * PID-map pages start out as NULL, they get allocated upon
 71 * first use and are never deallocated. This way a low pid_max
 72 * value does not cause lots of bitmaps to be allocated, but
 73 * the scheme scales to up to 4 million PIDs, runtime.
 74 */
 75struct pid_namespace init_pid_ns = {
 76	.ns.count = REFCOUNT_INIT(2),
 77	.idr = IDR_INIT(init_pid_ns.idr),
 78	.pid_allocated = PIDNS_ADDING,
 79	.level = 0,
 80	.child_reaper = &init_task,
 81	.user_ns = &init_user_ns,
 82	.ns.inum = PROC_PID_INIT_INO,
 83#ifdef CONFIG_PID_NS
 84	.ns.ops = &pidns_operations,
 85#endif
 86};
 87EXPORT_SYMBOL_GPL(init_pid_ns);
 88
 89/*
 90 * Note: disable interrupts while the pidmap_lock is held as an
 91 * interrupt might come in and do read_lock(&tasklist_lock).
 92 *
 93 * If we don't disable interrupts there is a nasty deadlock between
 94 * detach_pid()->free_pid() and another cpu that does
 95 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
 96 * read_lock(&tasklist_lock);
 97 *
 98 * After we clean up the tasklist_lock and know there are no
 99 * irq handlers that take it we can leave the interrupts enabled.
100 * For now it is easier to be safe than to prove it can't happen.
101 */
102
103static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
104
105void put_pid(struct pid *pid)
106{
107	struct pid_namespace *ns;
108
109	if (!pid)
110		return;
111
112	ns = pid->numbers[pid->level].ns;
113	if (refcount_dec_and_test(&pid->count)) {
114		kmem_cache_free(ns->pid_cachep, pid);
115		put_pid_ns(ns);
116	}
117}
118EXPORT_SYMBOL_GPL(put_pid);
119
120static void delayed_put_pid(struct rcu_head *rhp)
121{
122	struct pid *pid = container_of(rhp, struct pid, rcu);
123	put_pid(pid);
124}
125
126void free_pid(struct pid *pid)
127{
128	/* We can be called with write_lock_irq(&tasklist_lock) held */
129	int i;
130	unsigned long flags;
131
132	spin_lock_irqsave(&pidmap_lock, flags);
133	for (i = 0; i <= pid->level; i++) {
134		struct upid *upid = pid->numbers + i;
135		struct pid_namespace *ns = upid->ns;
136		switch (--ns->pid_allocated) {
137		case 2:
138		case 1:
139			/* When all that is left in the pid namespace
140			 * is the reaper wake up the reaper.  The reaper
141			 * may be sleeping in zap_pid_ns_processes().
142			 */
143			wake_up_process(ns->child_reaper);
144			break;
145		case PIDNS_ADDING:
146			/* Handle a fork failure of the first process */
147			WARN_ON(ns->child_reaper);
148			ns->pid_allocated = 0;
149			break;
150		}
151
152		idr_remove(&ns->idr, upid->nr);
153	}
154	spin_unlock_irqrestore(&pidmap_lock, flags);
155
156	call_rcu(&pid->rcu, delayed_put_pid);
157}
158
159struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid,
160		      size_t set_tid_size)
161{
162	struct pid *pid;
163	enum pid_type type;
164	int i, nr;
165	struct pid_namespace *tmp;
166	struct upid *upid;
167	int retval = -ENOMEM;
168
169	/*
170	 * set_tid_size contains the size of the set_tid array. Starting at
171	 * the most nested currently active PID namespace it tells alloc_pid()
172	 * which PID to set for a process in that most nested PID namespace
173	 * up to set_tid_size PID namespaces. It does not have to set the PID
174	 * for a process in all nested PID namespaces but set_tid_size must
175	 * never be greater than the current ns->level + 1.
176	 */
177	if (set_tid_size > ns->level + 1)
178		return ERR_PTR(-EINVAL);
179
180	pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
181	if (!pid)
182		return ERR_PTR(retval);
183
184	tmp = ns;
185	pid->level = ns->level;
186
187	for (i = ns->level; i >= 0; i--) {
188		int tid = 0;
189
190		if (set_tid_size) {
191			tid = set_tid[ns->level - i];
192
193			retval = -EINVAL;
194			if (tid < 1 || tid >= pid_max)
195				goto out_free;
196			/*
197			 * Also fail if a PID != 1 is requested and
198			 * no PID 1 exists.
199			 */
200			if (tid != 1 && !tmp->child_reaper)
201				goto out_free;
202			retval = -EPERM;
203			if (!checkpoint_restore_ns_capable(tmp->user_ns))
204				goto out_free;
205			set_tid_size--;
206		}
207
208		idr_preload(GFP_KERNEL);
209		spin_lock_irq(&pidmap_lock);
210
211		if (tid) {
212			nr = idr_alloc(&tmp->idr, NULL, tid,
213				       tid + 1, GFP_ATOMIC);
214			/*
215			 * If ENOSPC is returned it means that the PID is
216			 * alreay in use. Return EEXIST in that case.
217			 */
218			if (nr == -ENOSPC)
219				nr = -EEXIST;
220		} else {
221			int pid_min = 1;
222			/*
223			 * init really needs pid 1, but after reaching the
224			 * maximum wrap back to RESERVED_PIDS
225			 */
226			if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS)
227				pid_min = RESERVED_PIDS;
228
229			/*
230			 * Store a null pointer so find_pid_ns does not find
231			 * a partially initialized PID (see below).
232			 */
233			nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min,
234					      pid_max, GFP_ATOMIC);
235		}
236		spin_unlock_irq(&pidmap_lock);
237		idr_preload_end();
238
239		if (nr < 0) {
240			retval = (nr == -ENOSPC) ? -EAGAIN : nr;
241			goto out_free;
242		}
243
244		pid->numbers[i].nr = nr;
245		pid->numbers[i].ns = tmp;
246		tmp = tmp->parent;
247	}
248
249	/*
250	 * ENOMEM is not the most obvious choice especially for the case
251	 * where the child subreaper has already exited and the pid
252	 * namespace denies the creation of any new processes. But ENOMEM
253	 * is what we have exposed to userspace for a long time and it is
254	 * documented behavior for pid namespaces. So we can't easily
255	 * change it even if there were an error code better suited.
256	 */
257	retval = -ENOMEM;
258
259	get_pid_ns(ns);
260	refcount_set(&pid->count, 1);
261	spin_lock_init(&pid->lock);
262	for (type = 0; type < PIDTYPE_MAX; ++type)
263		INIT_HLIST_HEAD(&pid->tasks[type]);
264
265	init_waitqueue_head(&pid->wait_pidfd);
266	INIT_HLIST_HEAD(&pid->inodes);
267
268	upid = pid->numbers + ns->level;
269	spin_lock_irq(&pidmap_lock);
270	if (!(ns->pid_allocated & PIDNS_ADDING))
271		goto out_unlock;
272	for ( ; upid >= pid->numbers; --upid) {
273		/* Make the PID visible to find_pid_ns. */
274		idr_replace(&upid->ns->idr, pid, upid->nr);
275		upid->ns->pid_allocated++;
276	}
277	spin_unlock_irq(&pidmap_lock);
278
279	return pid;
280
281out_unlock:
282	spin_unlock_irq(&pidmap_lock);
283	put_pid_ns(ns);
284
285out_free:
286	spin_lock_irq(&pidmap_lock);
287	while (++i <= ns->level) {
288		upid = pid->numbers + i;
289		idr_remove(&upid->ns->idr, upid->nr);
290	}
291
292	/* On failure to allocate the first pid, reset the state */
293	if (ns->pid_allocated == PIDNS_ADDING)
294		idr_set_cursor(&ns->idr, 0);
295
296	spin_unlock_irq(&pidmap_lock);
297
298	kmem_cache_free(ns->pid_cachep, pid);
299	return ERR_PTR(retval);
300}
301
302void disable_pid_allocation(struct pid_namespace *ns)
303{
304	spin_lock_irq(&pidmap_lock);
305	ns->pid_allocated &= ~PIDNS_ADDING;
306	spin_unlock_irq(&pidmap_lock);
307}
308
309struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
310{
311	return idr_find(&ns->idr, nr);
312}
313EXPORT_SYMBOL_GPL(find_pid_ns);
314
315struct pid *find_vpid(int nr)
316{
317	return find_pid_ns(nr, task_active_pid_ns(current));
318}
319EXPORT_SYMBOL_GPL(find_vpid);
320
321static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type)
322{
323	return (type == PIDTYPE_PID) ?
324		&task->thread_pid :
325		&task->signal->pids[type];
326}
327
328/*
329 * attach_pid() must be called with the tasklist_lock write-held.
330 */
331void attach_pid(struct task_struct *task, enum pid_type type)
332{
333	struct pid *pid = *task_pid_ptr(task, type);
334	hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]);
335}
336
337static void __change_pid(struct task_struct *task, enum pid_type type,
338			struct pid *new)
339{
340	struct pid **pid_ptr = task_pid_ptr(task, type);
341	struct pid *pid;
342	int tmp;
343
344	pid = *pid_ptr;
345
346	hlist_del_rcu(&task->pid_links[type]);
347	*pid_ptr = new;
348
349	for (tmp = PIDTYPE_MAX; --tmp >= 0; )
350		if (pid_has_task(pid, tmp))
351			return;
352
353	free_pid(pid);
354}
355
356void detach_pid(struct task_struct *task, enum pid_type type)
357{
358	__change_pid(task, type, NULL);
359}
360
361void change_pid(struct task_struct *task, enum pid_type type,
362		struct pid *pid)
363{
364	__change_pid(task, type, pid);
365	attach_pid(task, type);
366}
367
368void exchange_tids(struct task_struct *left, struct task_struct *right)
369{
370	struct pid *pid1 = left->thread_pid;
371	struct pid *pid2 = right->thread_pid;
372	struct hlist_head *head1 = &pid1->tasks[PIDTYPE_PID];
373	struct hlist_head *head2 = &pid2->tasks[PIDTYPE_PID];
374
375	/* Swap the single entry tid lists */
376	hlists_swap_heads_rcu(head1, head2);
377
378	/* Swap the per task_struct pid */
379	rcu_assign_pointer(left->thread_pid, pid2);
380	rcu_assign_pointer(right->thread_pid, pid1);
381
382	/* Swap the cached value */
383	WRITE_ONCE(left->pid, pid_nr(pid2));
384	WRITE_ONCE(right->pid, pid_nr(pid1));
385}
386
387/* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
388void transfer_pid(struct task_struct *old, struct task_struct *new,
389			   enum pid_type type)
390{
391	if (type == PIDTYPE_PID)
392		new->thread_pid = old->thread_pid;
393	hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]);
394}
395
396struct task_struct *pid_task(struct pid *pid, enum pid_type type)
397{
398	struct task_struct *result = NULL;
399	if (pid) {
400		struct hlist_node *first;
401		first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
402					      lockdep_tasklist_lock_is_held());
403		if (first)
404			result = hlist_entry(first, struct task_struct, pid_links[(type)]);
405	}
406	return result;
407}
408EXPORT_SYMBOL(pid_task);
409
410/*
411 * Must be called under rcu_read_lock().
412 */
413struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
414{
415	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
416			 "find_task_by_pid_ns() needs rcu_read_lock() protection");
417	return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
418}
419
420struct task_struct *find_task_by_vpid(pid_t vnr)
421{
422	return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
423}
424
425struct task_struct *find_get_task_by_vpid(pid_t nr)
426{
427	struct task_struct *task;
428
429	rcu_read_lock();
430	task = find_task_by_vpid(nr);
431	if (task)
432		get_task_struct(task);
433	rcu_read_unlock();
434
435	return task;
436}
437
438struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
439{
440	struct pid *pid;
441	rcu_read_lock();
442	pid = get_pid(rcu_dereference(*task_pid_ptr(task, type)));
443	rcu_read_unlock();
444	return pid;
445}
446EXPORT_SYMBOL_GPL(get_task_pid);
447
448struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
449{
450	struct task_struct *result;
451	rcu_read_lock();
452	result = pid_task(pid, type);
453	if (result)
454		get_task_struct(result);
455	rcu_read_unlock();
456	return result;
457}
458EXPORT_SYMBOL_GPL(get_pid_task);
459
460struct pid *find_get_pid(pid_t nr)
461{
462	struct pid *pid;
463
464	rcu_read_lock();
465	pid = get_pid(find_vpid(nr));
466	rcu_read_unlock();
467
468	return pid;
469}
470EXPORT_SYMBOL_GPL(find_get_pid);
471
472pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
473{
474	struct upid *upid;
475	pid_t nr = 0;
476
477	if (pid && ns->level <= pid->level) {
478		upid = &pid->numbers[ns->level];
479		if (upid->ns == ns)
480			nr = upid->nr;
481	}
482	return nr;
483}
484EXPORT_SYMBOL_GPL(pid_nr_ns);
485
486pid_t pid_vnr(struct pid *pid)
487{
488	return pid_nr_ns(pid, task_active_pid_ns(current));
489}
490EXPORT_SYMBOL_GPL(pid_vnr);
491
492pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
493			struct pid_namespace *ns)
494{
495	pid_t nr = 0;
496
497	rcu_read_lock();
498	if (!ns)
499		ns = task_active_pid_ns(current);
500	nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns);
501	rcu_read_unlock();
502
503	return nr;
504}
505EXPORT_SYMBOL(__task_pid_nr_ns);
506
507struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
508{
509	return ns_of_pid(task_pid(tsk));
510}
511EXPORT_SYMBOL_GPL(task_active_pid_ns);
512
513/*
514 * Used by proc to find the first pid that is greater than or equal to nr.
515 *
516 * If there is a pid at nr this function is exactly the same as find_pid_ns.
517 */
518struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
519{
520	return idr_get_next(&ns->idr, &nr);
521}
522EXPORT_SYMBOL_GPL(find_ge_pid);
523
524struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags)
525{
526	struct fd f;
527	struct pid *pid;
528
529	f = fdget(fd);
530	if (!f.file)
531		return ERR_PTR(-EBADF);
532
533	pid = pidfd_pid(f.file);
534	if (!IS_ERR(pid)) {
535		get_pid(pid);
536		*flags = f.file->f_flags;
537	}
538
539	fdput(f);
540	return pid;
541}
542
543/**
544 * pidfd_get_task() - Get the task associated with a pidfd
545 *
546 * @pidfd: pidfd for which to get the task
547 * @flags: flags associated with this pidfd
548 *
549 * Return the task associated with @pidfd. The function takes a reference on
550 * the returned task. The caller is responsible for releasing that reference.
551 *
552 * Currently, the process identified by @pidfd is always a thread-group leader.
553 * This restriction currently exists for all aspects of pidfds including pidfd
554 * creation (CLONE_PIDFD cannot be used with CLONE_THREAD) and pidfd polling
555 * (only supports thread group leaders).
556 *
557 * Return: On success, the task_struct associated with the pidfd.
558 *	   On error, a negative errno number will be returned.
559 */
560struct task_struct *pidfd_get_task(int pidfd, unsigned int *flags)
561{
562	unsigned int f_flags;
563	struct pid *pid;
564	struct task_struct *task;
565
566	pid = pidfd_get_pid(pidfd, &f_flags);
567	if (IS_ERR(pid))
568		return ERR_CAST(pid);
569
570	task = get_pid_task(pid, PIDTYPE_TGID);
571	put_pid(pid);
572	if (!task)
573		return ERR_PTR(-ESRCH);
574
575	*flags = f_flags;
576	return task;
577}
578
579/**
580 * pidfd_create() - Create a new pid file descriptor.
581 *
582 * @pid:   struct pid that the pidfd will reference
583 * @flags: flags to pass
584 *
585 * This creates a new pid file descriptor with the O_CLOEXEC flag set.
586 *
587 * Note, that this function can only be called after the fd table has
588 * been unshared to avoid leaking the pidfd to the new process.
589 *
590 * This symbol should not be explicitly exported to loadable modules.
591 *
592 * Return: On success, a cloexec pidfd is returned.
593 *         On error, a negative errno number will be returned.
594 */
595int pidfd_create(struct pid *pid, unsigned int flags)
596{
597	int fd;
598
599	if (!pid || !pid_has_task(pid, PIDTYPE_TGID))
600		return -EINVAL;
601
602	if (flags & ~(O_NONBLOCK | O_RDWR | O_CLOEXEC))
603		return -EINVAL;
604
605	fd = anon_inode_getfd("[pidfd]", &pidfd_fops, get_pid(pid),
606			      flags | O_RDWR | O_CLOEXEC);
607	if (fd < 0)
608		put_pid(pid);
609
610	return fd;
611}
612
613/**
614 * pidfd_open() - Open new pid file descriptor.
615 *
616 * @pid:   pid for which to retrieve a pidfd
617 * @flags: flags to pass
618 *
619 * This creates a new pid file descriptor with the O_CLOEXEC flag set for
620 * the process identified by @pid. Currently, the process identified by
621 * @pid must be a thread-group leader. This restriction currently exists
622 * for all aspects of pidfds including pidfd creation (CLONE_PIDFD cannot
623 * be used with CLONE_THREAD) and pidfd polling (only supports thread group
624 * leaders).
625 *
626 * Return: On success, a cloexec pidfd is returned.
627 *         On error, a negative errno number will be returned.
628 */
629SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags)
630{
631	int fd;
632	struct pid *p;
633
634	if (flags & ~PIDFD_NONBLOCK)
635		return -EINVAL;
636
637	if (pid <= 0)
638		return -EINVAL;
639
640	p = find_get_pid(pid);
641	if (!p)
642		return -ESRCH;
643
644	fd = pidfd_create(p, flags);
 
 
 
645
646	put_pid(p);
647	return fd;
648}
649
650void __init pid_idr_init(void)
651{
652	/* Verify no one has done anything silly: */
653	BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING);
654
655	/* bump default and minimum pid_max based on number of cpus */
656	pid_max = min(pid_max_max, max_t(int, pid_max,
657				PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
658	pid_max_min = max_t(int, pid_max_min,
659				PIDS_PER_CPU_MIN * num_possible_cpus());
660	pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
661
662	idr_init(&init_pid_ns.idr);
663
664	init_pid_ns.pid_cachep = KMEM_CACHE(pid,
665			SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
666}
667
668static struct file *__pidfd_fget(struct task_struct *task, int fd)
669{
670	struct file *file;
671	int ret;
672
673	ret = down_read_killable(&task->signal->exec_update_lock);
674	if (ret)
675		return ERR_PTR(ret);
676
677	if (ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS))
678		file = fget_task(task, fd);
679	else
680		file = ERR_PTR(-EPERM);
681
682	up_read(&task->signal->exec_update_lock);
683
684	return file ?: ERR_PTR(-EBADF);
685}
686
687static int pidfd_getfd(struct pid *pid, int fd)
688{
689	struct task_struct *task;
690	struct file *file;
691	int ret;
692
693	task = get_pid_task(pid, PIDTYPE_PID);
694	if (!task)
695		return -ESRCH;
696
697	file = __pidfd_fget(task, fd);
698	put_task_struct(task);
699	if (IS_ERR(file))
700		return PTR_ERR(file);
701
702	ret = receive_fd(file, O_CLOEXEC);
703	fput(file);
704
705	return ret;
706}
707
708/**
709 * sys_pidfd_getfd() - Get a file descriptor from another process
710 *
711 * @pidfd:	the pidfd file descriptor of the process
712 * @fd:		the file descriptor number to get
713 * @flags:	flags on how to get the fd (reserved)
714 *
715 * This syscall gets a copy of a file descriptor from another process
716 * based on the pidfd, and file descriptor number. It requires that
717 * the calling process has the ability to ptrace the process represented
718 * by the pidfd. The process which is having its file descriptor copied
719 * is otherwise unaffected.
720 *
721 * Return: On success, a cloexec file descriptor is returned.
722 *         On error, a negative errno number will be returned.
723 */
724SYSCALL_DEFINE3(pidfd_getfd, int, pidfd, int, fd,
725		unsigned int, flags)
726{
727	struct pid *pid;
728	struct fd f;
729	int ret;
730
731	/* flags is currently unused - make sure it's unset */
732	if (flags)
733		return -EINVAL;
734
735	f = fdget(pidfd);
736	if (!f.file)
737		return -EBADF;
738
739	pid = pidfd_pid(f.file);
740	if (IS_ERR(pid))
741		ret = PTR_ERR(pid);
742	else
743		ret = pidfd_getfd(pid, fd);
744
745	fdput(f);
746	return ret;
747}
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Generic pidhash and scalable, time-bounded PID allocator
  4 *
  5 * (C) 2002-2003 Nadia Yvette Chambers, IBM
  6 * (C) 2004 Nadia Yvette Chambers, Oracle
  7 * (C) 2002-2004 Ingo Molnar, Red Hat
  8 *
  9 * pid-structures are backing objects for tasks sharing a given ID to chain
 10 * against. There is very little to them aside from hashing them and
 11 * parking tasks using given ID's on a list.
 12 *
 13 * The hash is always changed with the tasklist_lock write-acquired,
 14 * and the hash is only accessed with the tasklist_lock at least
 15 * read-acquired, so there's no additional SMP locking needed here.
 16 *
 17 * We have a list of bitmap pages, which bitmaps represent the PID space.
 18 * Allocating and freeing PIDs is completely lockless. The worst-case
 19 * allocation scenario when all but one out of 1 million PIDs possible are
 20 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
 21 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
 22 *
 23 * Pid namespaces:
 24 *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
 25 *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
 26 *     Many thanks to Oleg Nesterov for comments and help
 27 *
 28 */
 29
 30#include <linux/mm.h>
 31#include <linux/export.h>
 32#include <linux/slab.h>
 33#include <linux/init.h>
 34#include <linux/rculist.h>
 35#include <linux/memblock.h>
 36#include <linux/pid_namespace.h>
 37#include <linux/init_task.h>
 38#include <linux/syscalls.h>
 39#include <linux/proc_ns.h>
 40#include <linux/refcount.h>
 41#include <linux/anon_inodes.h>
 42#include <linux/sched/signal.h>
 43#include <linux/sched/task.h>
 44#include <linux/idr.h>
 45#include <net/sock.h>
 
 46
 47struct pid init_struct_pid = {
 48	.count		= REFCOUNT_INIT(1),
 49	.tasks		= {
 50		{ .first = NULL },
 51		{ .first = NULL },
 52		{ .first = NULL },
 53	},
 54	.level		= 0,
 55	.numbers	= { {
 56		.nr		= 0,
 57		.ns		= &init_pid_ns,
 58	}, }
 59};
 60
 61int pid_max = PID_MAX_DEFAULT;
 62
 63#define RESERVED_PIDS		300
 64
 65int pid_max_min = RESERVED_PIDS + 1;
 66int pid_max_max = PID_MAX_LIMIT;
 67
 68/*
 69 * PID-map pages start out as NULL, they get allocated upon
 70 * first use and are never deallocated. This way a low pid_max
 71 * value does not cause lots of bitmaps to be allocated, but
 72 * the scheme scales to up to 4 million PIDs, runtime.
 73 */
 74struct pid_namespace init_pid_ns = {
 75	.kref = KREF_INIT(2),
 76	.idr = IDR_INIT(init_pid_ns.idr),
 77	.pid_allocated = PIDNS_ADDING,
 78	.level = 0,
 79	.child_reaper = &init_task,
 80	.user_ns = &init_user_ns,
 81	.ns.inum = PROC_PID_INIT_INO,
 82#ifdef CONFIG_PID_NS
 83	.ns.ops = &pidns_operations,
 84#endif
 85};
 86EXPORT_SYMBOL_GPL(init_pid_ns);
 87
 88/*
 89 * Note: disable interrupts while the pidmap_lock is held as an
 90 * interrupt might come in and do read_lock(&tasklist_lock).
 91 *
 92 * If we don't disable interrupts there is a nasty deadlock between
 93 * detach_pid()->free_pid() and another cpu that does
 94 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
 95 * read_lock(&tasklist_lock);
 96 *
 97 * After we clean up the tasklist_lock and know there are no
 98 * irq handlers that take it we can leave the interrupts enabled.
 99 * For now it is easier to be safe than to prove it can't happen.
100 */
101
102static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
103
104void put_pid(struct pid *pid)
105{
106	struct pid_namespace *ns;
107
108	if (!pid)
109		return;
110
111	ns = pid->numbers[pid->level].ns;
112	if (refcount_dec_and_test(&pid->count)) {
113		kmem_cache_free(ns->pid_cachep, pid);
114		put_pid_ns(ns);
115	}
116}
117EXPORT_SYMBOL_GPL(put_pid);
118
119static void delayed_put_pid(struct rcu_head *rhp)
120{
121	struct pid *pid = container_of(rhp, struct pid, rcu);
122	put_pid(pid);
123}
124
125void free_pid(struct pid *pid)
126{
127	/* We can be called with write_lock_irq(&tasklist_lock) held */
128	int i;
129	unsigned long flags;
130
131	spin_lock_irqsave(&pidmap_lock, flags);
132	for (i = 0; i <= pid->level; i++) {
133		struct upid *upid = pid->numbers + i;
134		struct pid_namespace *ns = upid->ns;
135		switch (--ns->pid_allocated) {
136		case 2:
137		case 1:
138			/* When all that is left in the pid namespace
139			 * is the reaper wake up the reaper.  The reaper
140			 * may be sleeping in zap_pid_ns_processes().
141			 */
142			wake_up_process(ns->child_reaper);
143			break;
144		case PIDNS_ADDING:
145			/* Handle a fork failure of the first process */
146			WARN_ON(ns->child_reaper);
147			ns->pid_allocated = 0;
148			break;
149		}
150
151		idr_remove(&ns->idr, upid->nr);
152	}
153	spin_unlock_irqrestore(&pidmap_lock, flags);
154
155	call_rcu(&pid->rcu, delayed_put_pid);
156}
157
158struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid,
159		      size_t set_tid_size)
160{
161	struct pid *pid;
162	enum pid_type type;
163	int i, nr;
164	struct pid_namespace *tmp;
165	struct upid *upid;
166	int retval = -ENOMEM;
167
168	/*
169	 * set_tid_size contains the size of the set_tid array. Starting at
170	 * the most nested currently active PID namespace it tells alloc_pid()
171	 * which PID to set for a process in that most nested PID namespace
172	 * up to set_tid_size PID namespaces. It does not have to set the PID
173	 * for a process in all nested PID namespaces but set_tid_size must
174	 * never be greater than the current ns->level + 1.
175	 */
176	if (set_tid_size > ns->level + 1)
177		return ERR_PTR(-EINVAL);
178
179	pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
180	if (!pid)
181		return ERR_PTR(retval);
182
183	tmp = ns;
184	pid->level = ns->level;
185
186	for (i = ns->level; i >= 0; i--) {
187		int tid = 0;
188
189		if (set_tid_size) {
190			tid = set_tid[ns->level - i];
191
192			retval = -EINVAL;
193			if (tid < 1 || tid >= pid_max)
194				goto out_free;
195			/*
196			 * Also fail if a PID != 1 is requested and
197			 * no PID 1 exists.
198			 */
199			if (tid != 1 && !tmp->child_reaper)
200				goto out_free;
201			retval = -EPERM;
202			if (!checkpoint_restore_ns_capable(tmp->user_ns))
203				goto out_free;
204			set_tid_size--;
205		}
206
207		idr_preload(GFP_KERNEL);
208		spin_lock_irq(&pidmap_lock);
209
210		if (tid) {
211			nr = idr_alloc(&tmp->idr, NULL, tid,
212				       tid + 1, GFP_ATOMIC);
213			/*
214			 * If ENOSPC is returned it means that the PID is
215			 * alreay in use. Return EEXIST in that case.
216			 */
217			if (nr == -ENOSPC)
218				nr = -EEXIST;
219		} else {
220			int pid_min = 1;
221			/*
222			 * init really needs pid 1, but after reaching the
223			 * maximum wrap back to RESERVED_PIDS
224			 */
225			if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS)
226				pid_min = RESERVED_PIDS;
227
228			/*
229			 * Store a null pointer so find_pid_ns does not find
230			 * a partially initialized PID (see below).
231			 */
232			nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min,
233					      pid_max, GFP_ATOMIC);
234		}
235		spin_unlock_irq(&pidmap_lock);
236		idr_preload_end();
237
238		if (nr < 0) {
239			retval = (nr == -ENOSPC) ? -EAGAIN : nr;
240			goto out_free;
241		}
242
243		pid->numbers[i].nr = nr;
244		pid->numbers[i].ns = tmp;
245		tmp = tmp->parent;
246	}
247
248	/*
249	 * ENOMEM is not the most obvious choice especially for the case
250	 * where the child subreaper has already exited and the pid
251	 * namespace denies the creation of any new processes. But ENOMEM
252	 * is what we have exposed to userspace for a long time and it is
253	 * documented behavior for pid namespaces. So we can't easily
254	 * change it even if there were an error code better suited.
255	 */
256	retval = -ENOMEM;
257
258	get_pid_ns(ns);
259	refcount_set(&pid->count, 1);
260	spin_lock_init(&pid->lock);
261	for (type = 0; type < PIDTYPE_MAX; ++type)
262		INIT_HLIST_HEAD(&pid->tasks[type]);
263
264	init_waitqueue_head(&pid->wait_pidfd);
265	INIT_HLIST_HEAD(&pid->inodes);
266
267	upid = pid->numbers + ns->level;
268	spin_lock_irq(&pidmap_lock);
269	if (!(ns->pid_allocated & PIDNS_ADDING))
270		goto out_unlock;
271	for ( ; upid >= pid->numbers; --upid) {
272		/* Make the PID visible to find_pid_ns. */
273		idr_replace(&upid->ns->idr, pid, upid->nr);
274		upid->ns->pid_allocated++;
275	}
276	spin_unlock_irq(&pidmap_lock);
277
278	return pid;
279
280out_unlock:
281	spin_unlock_irq(&pidmap_lock);
282	put_pid_ns(ns);
283
284out_free:
285	spin_lock_irq(&pidmap_lock);
286	while (++i <= ns->level) {
287		upid = pid->numbers + i;
288		idr_remove(&upid->ns->idr, upid->nr);
289	}
290
291	/* On failure to allocate the first pid, reset the state */
292	if (ns->pid_allocated == PIDNS_ADDING)
293		idr_set_cursor(&ns->idr, 0);
294
295	spin_unlock_irq(&pidmap_lock);
296
297	kmem_cache_free(ns->pid_cachep, pid);
298	return ERR_PTR(retval);
299}
300
301void disable_pid_allocation(struct pid_namespace *ns)
302{
303	spin_lock_irq(&pidmap_lock);
304	ns->pid_allocated &= ~PIDNS_ADDING;
305	spin_unlock_irq(&pidmap_lock);
306}
307
308struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
309{
310	return idr_find(&ns->idr, nr);
311}
312EXPORT_SYMBOL_GPL(find_pid_ns);
313
314struct pid *find_vpid(int nr)
315{
316	return find_pid_ns(nr, task_active_pid_ns(current));
317}
318EXPORT_SYMBOL_GPL(find_vpid);
319
320static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type)
321{
322	return (type == PIDTYPE_PID) ?
323		&task->thread_pid :
324		&task->signal->pids[type];
325}
326
327/*
328 * attach_pid() must be called with the tasklist_lock write-held.
329 */
330void attach_pid(struct task_struct *task, enum pid_type type)
331{
332	struct pid *pid = *task_pid_ptr(task, type);
333	hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]);
334}
335
336static void __change_pid(struct task_struct *task, enum pid_type type,
337			struct pid *new)
338{
339	struct pid **pid_ptr = task_pid_ptr(task, type);
340	struct pid *pid;
341	int tmp;
342
343	pid = *pid_ptr;
344
345	hlist_del_rcu(&task->pid_links[type]);
346	*pid_ptr = new;
347
348	for (tmp = PIDTYPE_MAX; --tmp >= 0; )
349		if (pid_has_task(pid, tmp))
350			return;
351
352	free_pid(pid);
353}
354
355void detach_pid(struct task_struct *task, enum pid_type type)
356{
357	__change_pid(task, type, NULL);
358}
359
360void change_pid(struct task_struct *task, enum pid_type type,
361		struct pid *pid)
362{
363	__change_pid(task, type, pid);
364	attach_pid(task, type);
365}
366
367void exchange_tids(struct task_struct *left, struct task_struct *right)
368{
369	struct pid *pid1 = left->thread_pid;
370	struct pid *pid2 = right->thread_pid;
371	struct hlist_head *head1 = &pid1->tasks[PIDTYPE_PID];
372	struct hlist_head *head2 = &pid2->tasks[PIDTYPE_PID];
373
374	/* Swap the single entry tid lists */
375	hlists_swap_heads_rcu(head1, head2);
376
377	/* Swap the per task_struct pid */
378	rcu_assign_pointer(left->thread_pid, pid2);
379	rcu_assign_pointer(right->thread_pid, pid1);
380
381	/* Swap the cached value */
382	WRITE_ONCE(left->pid, pid_nr(pid2));
383	WRITE_ONCE(right->pid, pid_nr(pid1));
384}
385
386/* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
387void transfer_pid(struct task_struct *old, struct task_struct *new,
388			   enum pid_type type)
389{
390	if (type == PIDTYPE_PID)
391		new->thread_pid = old->thread_pid;
392	hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]);
393}
394
395struct task_struct *pid_task(struct pid *pid, enum pid_type type)
396{
397	struct task_struct *result = NULL;
398	if (pid) {
399		struct hlist_node *first;
400		first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
401					      lockdep_tasklist_lock_is_held());
402		if (first)
403			result = hlist_entry(first, struct task_struct, pid_links[(type)]);
404	}
405	return result;
406}
407EXPORT_SYMBOL(pid_task);
408
409/*
410 * Must be called under rcu_read_lock().
411 */
412struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
413{
414	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
415			 "find_task_by_pid_ns() needs rcu_read_lock() protection");
416	return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
417}
418
419struct task_struct *find_task_by_vpid(pid_t vnr)
420{
421	return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
422}
423
424struct task_struct *find_get_task_by_vpid(pid_t nr)
425{
426	struct task_struct *task;
427
428	rcu_read_lock();
429	task = find_task_by_vpid(nr);
430	if (task)
431		get_task_struct(task);
432	rcu_read_unlock();
433
434	return task;
435}
436
437struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
438{
439	struct pid *pid;
440	rcu_read_lock();
441	pid = get_pid(rcu_dereference(*task_pid_ptr(task, type)));
442	rcu_read_unlock();
443	return pid;
444}
445EXPORT_SYMBOL_GPL(get_task_pid);
446
447struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
448{
449	struct task_struct *result;
450	rcu_read_lock();
451	result = pid_task(pid, type);
452	if (result)
453		get_task_struct(result);
454	rcu_read_unlock();
455	return result;
456}
457EXPORT_SYMBOL_GPL(get_pid_task);
458
459struct pid *find_get_pid(pid_t nr)
460{
461	struct pid *pid;
462
463	rcu_read_lock();
464	pid = get_pid(find_vpid(nr));
465	rcu_read_unlock();
466
467	return pid;
468}
469EXPORT_SYMBOL_GPL(find_get_pid);
470
471pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
472{
473	struct upid *upid;
474	pid_t nr = 0;
475
476	if (pid && ns->level <= pid->level) {
477		upid = &pid->numbers[ns->level];
478		if (upid->ns == ns)
479			nr = upid->nr;
480	}
481	return nr;
482}
483EXPORT_SYMBOL_GPL(pid_nr_ns);
484
485pid_t pid_vnr(struct pid *pid)
486{
487	return pid_nr_ns(pid, task_active_pid_ns(current));
488}
489EXPORT_SYMBOL_GPL(pid_vnr);
490
491pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
492			struct pid_namespace *ns)
493{
494	pid_t nr = 0;
495
496	rcu_read_lock();
497	if (!ns)
498		ns = task_active_pid_ns(current);
499	nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns);
500	rcu_read_unlock();
501
502	return nr;
503}
504EXPORT_SYMBOL(__task_pid_nr_ns);
505
506struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
507{
508	return ns_of_pid(task_pid(tsk));
509}
510EXPORT_SYMBOL_GPL(task_active_pid_ns);
511
512/*
513 * Used by proc to find the first pid that is greater than or equal to nr.
514 *
515 * If there is a pid at nr this function is exactly the same as find_pid_ns.
516 */
517struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
518{
519	return idr_get_next(&ns->idr, &nr);
520}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
521
522/**
523 * pidfd_create() - Create a new pid file descriptor.
524 *
525 * @pid:  struct pid that the pidfd will reference
 
526 *
527 * This creates a new pid file descriptor with the O_CLOEXEC flag set.
528 *
529 * Note, that this function can only be called after the fd table has
530 * been unshared to avoid leaking the pidfd to the new process.
531 *
 
 
532 * Return: On success, a cloexec pidfd is returned.
533 *         On error, a negative errno number will be returned.
534 */
535static int pidfd_create(struct pid *pid)
536{
537	int fd;
538
 
 
 
 
 
 
539	fd = anon_inode_getfd("[pidfd]", &pidfd_fops, get_pid(pid),
540			      O_RDWR | O_CLOEXEC);
541	if (fd < 0)
542		put_pid(pid);
543
544	return fd;
545}
546
547/**
548 * pidfd_open() - Open new pid file descriptor.
549 *
550 * @pid:   pid for which to retrieve a pidfd
551 * @flags: flags to pass
552 *
553 * This creates a new pid file descriptor with the O_CLOEXEC flag set for
554 * the process identified by @pid. Currently, the process identified by
555 * @pid must be a thread-group leader. This restriction currently exists
556 * for all aspects of pidfds including pidfd creation (CLONE_PIDFD cannot
557 * be used with CLONE_THREAD) and pidfd polling (only supports thread group
558 * leaders).
559 *
560 * Return: On success, a cloexec pidfd is returned.
561 *         On error, a negative errno number will be returned.
562 */
563SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags)
564{
565	int fd;
566	struct pid *p;
567
568	if (flags)
569		return -EINVAL;
570
571	if (pid <= 0)
572		return -EINVAL;
573
574	p = find_get_pid(pid);
575	if (!p)
576		return -ESRCH;
577
578	if (pid_has_task(p, PIDTYPE_TGID))
579		fd = pidfd_create(p);
580	else
581		fd = -EINVAL;
582
583	put_pid(p);
584	return fd;
585}
586
587void __init pid_idr_init(void)
588{
589	/* Verify no one has done anything silly: */
590	BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING);
591
592	/* bump default and minimum pid_max based on number of cpus */
593	pid_max = min(pid_max_max, max_t(int, pid_max,
594				PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
595	pid_max_min = max_t(int, pid_max_min,
596				PIDS_PER_CPU_MIN * num_possible_cpus());
597	pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
598
599	idr_init(&init_pid_ns.idr);
600
601	init_pid_ns.pid_cachep = KMEM_CACHE(pid,
602			SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
603}
604
605static struct file *__pidfd_fget(struct task_struct *task, int fd)
606{
607	struct file *file;
608	int ret;
609
610	ret = mutex_lock_killable(&task->signal->exec_update_mutex);
611	if (ret)
612		return ERR_PTR(ret);
613
614	if (ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS))
615		file = fget_task(task, fd);
616	else
617		file = ERR_PTR(-EPERM);
618
619	mutex_unlock(&task->signal->exec_update_mutex);
620
621	return file ?: ERR_PTR(-EBADF);
622}
623
624static int pidfd_getfd(struct pid *pid, int fd)
625{
626	struct task_struct *task;
627	struct file *file;
628	int ret;
629
630	task = get_pid_task(pid, PIDTYPE_PID);
631	if (!task)
632		return -ESRCH;
633
634	file = __pidfd_fget(task, fd);
635	put_task_struct(task);
636	if (IS_ERR(file))
637		return PTR_ERR(file);
638
639	ret = receive_fd(file, O_CLOEXEC);
640	fput(file);
641
642	return ret;
643}
644
645/**
646 * sys_pidfd_getfd() - Get a file descriptor from another process
647 *
648 * @pidfd:	the pidfd file descriptor of the process
649 * @fd:		the file descriptor number to get
650 * @flags:	flags on how to get the fd (reserved)
651 *
652 * This syscall gets a copy of a file descriptor from another process
653 * based on the pidfd, and file descriptor number. It requires that
654 * the calling process has the ability to ptrace the process represented
655 * by the pidfd. The process which is having its file descriptor copied
656 * is otherwise unaffected.
657 *
658 * Return: On success, a cloexec file descriptor is returned.
659 *         On error, a negative errno number will be returned.
660 */
661SYSCALL_DEFINE3(pidfd_getfd, int, pidfd, int, fd,
662		unsigned int, flags)
663{
664	struct pid *pid;
665	struct fd f;
666	int ret;
667
668	/* flags is currently unused - make sure it's unset */
669	if (flags)
670		return -EINVAL;
671
672	f = fdget(pidfd);
673	if (!f.file)
674		return -EBADF;
675
676	pid = pidfd_pid(f.file);
677	if (IS_ERR(pid))
678		ret = PTR_ERR(pid);
679	else
680		ret = pidfd_getfd(pid, fd);
681
682	fdput(f);
683	return ret;
684}