Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include <linux/iversion.h>
7
8#include "xfs.h"
9#include "xfs_fs.h"
10#include "xfs_shared.h"
11#include "xfs_format.h"
12#include "xfs_log_format.h"
13#include "xfs_trans_resv.h"
14#include "xfs_mount.h"
15#include "xfs_defer.h"
16#include "xfs_inode.h"
17#include "xfs_dir2.h"
18#include "xfs_attr.h"
19#include "xfs_trans_space.h"
20#include "xfs_trans.h"
21#include "xfs_buf_item.h"
22#include "xfs_inode_item.h"
23#include "xfs_iunlink_item.h"
24#include "xfs_ialloc.h"
25#include "xfs_bmap.h"
26#include "xfs_bmap_util.h"
27#include "xfs_errortag.h"
28#include "xfs_error.h"
29#include "xfs_quota.h"
30#include "xfs_filestream.h"
31#include "xfs_trace.h"
32#include "xfs_icache.h"
33#include "xfs_symlink.h"
34#include "xfs_trans_priv.h"
35#include "xfs_log.h"
36#include "xfs_bmap_btree.h"
37#include "xfs_reflink.h"
38#include "xfs_ag.h"
39#include "xfs_log_priv.h"
40
41struct kmem_cache *xfs_inode_cache;
42
43/*
44 * Used in xfs_itruncate_extents(). This is the maximum number of extents
45 * freed from a file in a single transaction.
46 */
47#define XFS_ITRUNC_MAX_EXTENTS 2
48
49STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
50STATIC int xfs_iunlink_remove(struct xfs_trans *tp, struct xfs_perag *pag,
51 struct xfs_inode *);
52
53/*
54 * helper function to extract extent size hint from inode
55 */
56xfs_extlen_t
57xfs_get_extsz_hint(
58 struct xfs_inode *ip)
59{
60 /*
61 * No point in aligning allocations if we need to COW to actually
62 * write to them.
63 */
64 if (xfs_is_always_cow_inode(ip))
65 return 0;
66 if ((ip->i_diflags & XFS_DIFLAG_EXTSIZE) && ip->i_extsize)
67 return ip->i_extsize;
68 if (XFS_IS_REALTIME_INODE(ip))
69 return ip->i_mount->m_sb.sb_rextsize;
70 return 0;
71}
72
73/*
74 * Helper function to extract CoW extent size hint from inode.
75 * Between the extent size hint and the CoW extent size hint, we
76 * return the greater of the two. If the value is zero (automatic),
77 * use the default size.
78 */
79xfs_extlen_t
80xfs_get_cowextsz_hint(
81 struct xfs_inode *ip)
82{
83 xfs_extlen_t a, b;
84
85 a = 0;
86 if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
87 a = ip->i_cowextsize;
88 b = xfs_get_extsz_hint(ip);
89
90 a = max(a, b);
91 if (a == 0)
92 return XFS_DEFAULT_COWEXTSZ_HINT;
93 return a;
94}
95
96/*
97 * These two are wrapper routines around the xfs_ilock() routine used to
98 * centralize some grungy code. They are used in places that wish to lock the
99 * inode solely for reading the extents. The reason these places can't just
100 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
101 * bringing in of the extents from disk for a file in b-tree format. If the
102 * inode is in b-tree format, then we need to lock the inode exclusively until
103 * the extents are read in. Locking it exclusively all the time would limit
104 * our parallelism unnecessarily, though. What we do instead is check to see
105 * if the extents have been read in yet, and only lock the inode exclusively
106 * if they have not.
107 *
108 * The functions return a value which should be given to the corresponding
109 * xfs_iunlock() call.
110 */
111uint
112xfs_ilock_data_map_shared(
113 struct xfs_inode *ip)
114{
115 uint lock_mode = XFS_ILOCK_SHARED;
116
117 if (xfs_need_iread_extents(&ip->i_df))
118 lock_mode = XFS_ILOCK_EXCL;
119 xfs_ilock(ip, lock_mode);
120 return lock_mode;
121}
122
123uint
124xfs_ilock_attr_map_shared(
125 struct xfs_inode *ip)
126{
127 uint lock_mode = XFS_ILOCK_SHARED;
128
129 if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af))
130 lock_mode = XFS_ILOCK_EXCL;
131 xfs_ilock(ip, lock_mode);
132 return lock_mode;
133}
134
135/*
136 * You can't set both SHARED and EXCL for the same lock,
137 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_MMAPLOCK_SHARED,
138 * XFS_MMAPLOCK_EXCL, XFS_ILOCK_SHARED, XFS_ILOCK_EXCL are valid values
139 * to set in lock_flags.
140 */
141static inline void
142xfs_lock_flags_assert(
143 uint lock_flags)
144{
145 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
146 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
147 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
148 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
149 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
150 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
151 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
152 ASSERT(lock_flags != 0);
153}
154
155/*
156 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
157 * multi-reader locks: invalidate_lock and the i_lock. This routine allows
158 * various combinations of the locks to be obtained.
159 *
160 * The 3 locks should always be ordered so that the IO lock is obtained first,
161 * the mmap lock second and the ilock last in order to prevent deadlock.
162 *
163 * Basic locking order:
164 *
165 * i_rwsem -> invalidate_lock -> page_lock -> i_ilock
166 *
167 * mmap_lock locking order:
168 *
169 * i_rwsem -> page lock -> mmap_lock
170 * mmap_lock -> invalidate_lock -> page_lock
171 *
172 * The difference in mmap_lock locking order mean that we cannot hold the
173 * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths
174 * can fault in pages during copy in/out (for buffered IO) or require the
175 * mmap_lock in get_user_pages() to map the user pages into the kernel address
176 * space for direct IO. Similarly the i_rwsem cannot be taken inside a page
177 * fault because page faults already hold the mmap_lock.
178 *
179 * Hence to serialise fully against both syscall and mmap based IO, we need to
180 * take both the i_rwsem and the invalidate_lock. These locks should *only* be
181 * both taken in places where we need to invalidate the page cache in a race
182 * free manner (e.g. truncate, hole punch and other extent manipulation
183 * functions).
184 */
185void
186xfs_ilock(
187 xfs_inode_t *ip,
188 uint lock_flags)
189{
190 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
191
192 xfs_lock_flags_assert(lock_flags);
193
194 if (lock_flags & XFS_IOLOCK_EXCL) {
195 down_write_nested(&VFS_I(ip)->i_rwsem,
196 XFS_IOLOCK_DEP(lock_flags));
197 } else if (lock_flags & XFS_IOLOCK_SHARED) {
198 down_read_nested(&VFS_I(ip)->i_rwsem,
199 XFS_IOLOCK_DEP(lock_flags));
200 }
201
202 if (lock_flags & XFS_MMAPLOCK_EXCL) {
203 down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
204 XFS_MMAPLOCK_DEP(lock_flags));
205 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
206 down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
207 XFS_MMAPLOCK_DEP(lock_flags));
208 }
209
210 if (lock_flags & XFS_ILOCK_EXCL)
211 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
212 else if (lock_flags & XFS_ILOCK_SHARED)
213 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
214}
215
216/*
217 * This is just like xfs_ilock(), except that the caller
218 * is guaranteed not to sleep. It returns 1 if it gets
219 * the requested locks and 0 otherwise. If the IO lock is
220 * obtained but the inode lock cannot be, then the IO lock
221 * is dropped before returning.
222 *
223 * ip -- the inode being locked
224 * lock_flags -- this parameter indicates the inode's locks to be
225 * to be locked. See the comment for xfs_ilock() for a list
226 * of valid values.
227 */
228int
229xfs_ilock_nowait(
230 xfs_inode_t *ip,
231 uint lock_flags)
232{
233 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
234
235 xfs_lock_flags_assert(lock_flags);
236
237 if (lock_flags & XFS_IOLOCK_EXCL) {
238 if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
239 goto out;
240 } else if (lock_flags & XFS_IOLOCK_SHARED) {
241 if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
242 goto out;
243 }
244
245 if (lock_flags & XFS_MMAPLOCK_EXCL) {
246 if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
247 goto out_undo_iolock;
248 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
249 if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
250 goto out_undo_iolock;
251 }
252
253 if (lock_flags & XFS_ILOCK_EXCL) {
254 if (!mrtryupdate(&ip->i_lock))
255 goto out_undo_mmaplock;
256 } else if (lock_flags & XFS_ILOCK_SHARED) {
257 if (!mrtryaccess(&ip->i_lock))
258 goto out_undo_mmaplock;
259 }
260 return 1;
261
262out_undo_mmaplock:
263 if (lock_flags & XFS_MMAPLOCK_EXCL)
264 up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
265 else if (lock_flags & XFS_MMAPLOCK_SHARED)
266 up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
267out_undo_iolock:
268 if (lock_flags & XFS_IOLOCK_EXCL)
269 up_write(&VFS_I(ip)->i_rwsem);
270 else if (lock_flags & XFS_IOLOCK_SHARED)
271 up_read(&VFS_I(ip)->i_rwsem);
272out:
273 return 0;
274}
275
276/*
277 * xfs_iunlock() is used to drop the inode locks acquired with
278 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
279 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
280 * that we know which locks to drop.
281 *
282 * ip -- the inode being unlocked
283 * lock_flags -- this parameter indicates the inode's locks to be
284 * to be unlocked. See the comment for xfs_ilock() for a list
285 * of valid values for this parameter.
286 *
287 */
288void
289xfs_iunlock(
290 xfs_inode_t *ip,
291 uint lock_flags)
292{
293 xfs_lock_flags_assert(lock_flags);
294
295 if (lock_flags & XFS_IOLOCK_EXCL)
296 up_write(&VFS_I(ip)->i_rwsem);
297 else if (lock_flags & XFS_IOLOCK_SHARED)
298 up_read(&VFS_I(ip)->i_rwsem);
299
300 if (lock_flags & XFS_MMAPLOCK_EXCL)
301 up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
302 else if (lock_flags & XFS_MMAPLOCK_SHARED)
303 up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
304
305 if (lock_flags & XFS_ILOCK_EXCL)
306 mrunlock_excl(&ip->i_lock);
307 else if (lock_flags & XFS_ILOCK_SHARED)
308 mrunlock_shared(&ip->i_lock);
309
310 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
311}
312
313/*
314 * give up write locks. the i/o lock cannot be held nested
315 * if it is being demoted.
316 */
317void
318xfs_ilock_demote(
319 xfs_inode_t *ip,
320 uint lock_flags)
321{
322 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
323 ASSERT((lock_flags &
324 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
325
326 if (lock_flags & XFS_ILOCK_EXCL)
327 mrdemote(&ip->i_lock);
328 if (lock_flags & XFS_MMAPLOCK_EXCL)
329 downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock);
330 if (lock_flags & XFS_IOLOCK_EXCL)
331 downgrade_write(&VFS_I(ip)->i_rwsem);
332
333 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
334}
335
336#if defined(DEBUG) || defined(XFS_WARN)
337static inline bool
338__xfs_rwsem_islocked(
339 struct rw_semaphore *rwsem,
340 bool shared)
341{
342 if (!debug_locks)
343 return rwsem_is_locked(rwsem);
344
345 if (!shared)
346 return lockdep_is_held_type(rwsem, 0);
347
348 /*
349 * We are checking that the lock is held at least in shared
350 * mode but don't care that it might be held exclusively
351 * (i.e. shared | excl). Hence we check if the lock is held
352 * in any mode rather than an explicit shared mode.
353 */
354 return lockdep_is_held_type(rwsem, -1);
355}
356
357bool
358xfs_isilocked(
359 struct xfs_inode *ip,
360 uint lock_flags)
361{
362 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
363 if (!(lock_flags & XFS_ILOCK_SHARED))
364 return !!ip->i_lock.mr_writer;
365 return rwsem_is_locked(&ip->i_lock.mr_lock);
366 }
367
368 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
369 return __xfs_rwsem_islocked(&VFS_I(ip)->i_mapping->invalidate_lock,
370 (lock_flags & XFS_MMAPLOCK_SHARED));
371 }
372
373 if (lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) {
374 return __xfs_rwsem_islocked(&VFS_I(ip)->i_rwsem,
375 (lock_flags & XFS_IOLOCK_SHARED));
376 }
377
378 ASSERT(0);
379 return false;
380}
381#endif
382
383/*
384 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
385 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
386 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
387 * errors and warnings.
388 */
389#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
390static bool
391xfs_lockdep_subclass_ok(
392 int subclass)
393{
394 return subclass < MAX_LOCKDEP_SUBCLASSES;
395}
396#else
397#define xfs_lockdep_subclass_ok(subclass) (true)
398#endif
399
400/*
401 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
402 * value. This can be called for any type of inode lock combination, including
403 * parent locking. Care must be taken to ensure we don't overrun the subclass
404 * storage fields in the class mask we build.
405 */
406static inline uint
407xfs_lock_inumorder(
408 uint lock_mode,
409 uint subclass)
410{
411 uint class = 0;
412
413 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
414 XFS_ILOCK_RTSUM)));
415 ASSERT(xfs_lockdep_subclass_ok(subclass));
416
417 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
418 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
419 class += subclass << XFS_IOLOCK_SHIFT;
420 }
421
422 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
423 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
424 class += subclass << XFS_MMAPLOCK_SHIFT;
425 }
426
427 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
428 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
429 class += subclass << XFS_ILOCK_SHIFT;
430 }
431
432 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
433}
434
435/*
436 * The following routine will lock n inodes in exclusive mode. We assume the
437 * caller calls us with the inodes in i_ino order.
438 *
439 * We need to detect deadlock where an inode that we lock is in the AIL and we
440 * start waiting for another inode that is locked by a thread in a long running
441 * transaction (such as truncate). This can result in deadlock since the long
442 * running trans might need to wait for the inode we just locked in order to
443 * push the tail and free space in the log.
444 *
445 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
446 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
447 * lock more than one at a time, lockdep will report false positives saying we
448 * have violated locking orders.
449 */
450static void
451xfs_lock_inodes(
452 struct xfs_inode **ips,
453 int inodes,
454 uint lock_mode)
455{
456 int attempts = 0;
457 uint i;
458 int j;
459 bool try_lock;
460 struct xfs_log_item *lp;
461
462 /*
463 * Currently supports between 2 and 5 inodes with exclusive locking. We
464 * support an arbitrary depth of locking here, but absolute limits on
465 * inodes depend on the type of locking and the limits placed by
466 * lockdep annotations in xfs_lock_inumorder. These are all checked by
467 * the asserts.
468 */
469 ASSERT(ips && inodes >= 2 && inodes <= 5);
470 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
471 XFS_ILOCK_EXCL));
472 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
473 XFS_ILOCK_SHARED)));
474 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
475 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
476 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
477 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
478
479 if (lock_mode & XFS_IOLOCK_EXCL) {
480 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
481 } else if (lock_mode & XFS_MMAPLOCK_EXCL)
482 ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
483
484again:
485 try_lock = false;
486 i = 0;
487 for (; i < inodes; i++) {
488 ASSERT(ips[i]);
489
490 if (i && (ips[i] == ips[i - 1])) /* Already locked */
491 continue;
492
493 /*
494 * If try_lock is not set yet, make sure all locked inodes are
495 * not in the AIL. If any are, set try_lock to be used later.
496 */
497 if (!try_lock) {
498 for (j = (i - 1); j >= 0 && !try_lock; j--) {
499 lp = &ips[j]->i_itemp->ili_item;
500 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
501 try_lock = true;
502 }
503 }
504
505 /*
506 * If any of the previous locks we have locked is in the AIL,
507 * we must TRY to get the second and subsequent locks. If
508 * we can't get any, we must release all we have
509 * and try again.
510 */
511 if (!try_lock) {
512 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
513 continue;
514 }
515
516 /* try_lock means we have an inode locked that is in the AIL. */
517 ASSERT(i != 0);
518 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
519 continue;
520
521 /*
522 * Unlock all previous guys and try again. xfs_iunlock will try
523 * to push the tail if the inode is in the AIL.
524 */
525 attempts++;
526 for (j = i - 1; j >= 0; j--) {
527 /*
528 * Check to see if we've already unlocked this one. Not
529 * the first one going back, and the inode ptr is the
530 * same.
531 */
532 if (j != (i - 1) && ips[j] == ips[j + 1])
533 continue;
534
535 xfs_iunlock(ips[j], lock_mode);
536 }
537
538 if ((attempts % 5) == 0) {
539 delay(1); /* Don't just spin the CPU */
540 }
541 goto again;
542 }
543}
544
545/*
546 * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and
547 * mmaplock must be double-locked separately since we use i_rwsem and
548 * invalidate_lock for that. We now support taking one lock EXCL and the
549 * other SHARED.
550 */
551void
552xfs_lock_two_inodes(
553 struct xfs_inode *ip0,
554 uint ip0_mode,
555 struct xfs_inode *ip1,
556 uint ip1_mode)
557{
558 int attempts = 0;
559 struct xfs_log_item *lp;
560
561 ASSERT(hweight32(ip0_mode) == 1);
562 ASSERT(hweight32(ip1_mode) == 1);
563 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
564 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
565 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
566 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
567 ASSERT(ip0->i_ino != ip1->i_ino);
568
569 if (ip0->i_ino > ip1->i_ino) {
570 swap(ip0, ip1);
571 swap(ip0_mode, ip1_mode);
572 }
573
574 again:
575 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
576
577 /*
578 * If the first lock we have locked is in the AIL, we must TRY to get
579 * the second lock. If we can't get it, we must release the first one
580 * and try again.
581 */
582 lp = &ip0->i_itemp->ili_item;
583 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
584 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
585 xfs_iunlock(ip0, ip0_mode);
586 if ((++attempts % 5) == 0)
587 delay(1); /* Don't just spin the CPU */
588 goto again;
589 }
590 } else {
591 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
592 }
593}
594
595uint
596xfs_ip2xflags(
597 struct xfs_inode *ip)
598{
599 uint flags = 0;
600
601 if (ip->i_diflags & XFS_DIFLAG_ANY) {
602 if (ip->i_diflags & XFS_DIFLAG_REALTIME)
603 flags |= FS_XFLAG_REALTIME;
604 if (ip->i_diflags & XFS_DIFLAG_PREALLOC)
605 flags |= FS_XFLAG_PREALLOC;
606 if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE)
607 flags |= FS_XFLAG_IMMUTABLE;
608 if (ip->i_diflags & XFS_DIFLAG_APPEND)
609 flags |= FS_XFLAG_APPEND;
610 if (ip->i_diflags & XFS_DIFLAG_SYNC)
611 flags |= FS_XFLAG_SYNC;
612 if (ip->i_diflags & XFS_DIFLAG_NOATIME)
613 flags |= FS_XFLAG_NOATIME;
614 if (ip->i_diflags & XFS_DIFLAG_NODUMP)
615 flags |= FS_XFLAG_NODUMP;
616 if (ip->i_diflags & XFS_DIFLAG_RTINHERIT)
617 flags |= FS_XFLAG_RTINHERIT;
618 if (ip->i_diflags & XFS_DIFLAG_PROJINHERIT)
619 flags |= FS_XFLAG_PROJINHERIT;
620 if (ip->i_diflags & XFS_DIFLAG_NOSYMLINKS)
621 flags |= FS_XFLAG_NOSYMLINKS;
622 if (ip->i_diflags & XFS_DIFLAG_EXTSIZE)
623 flags |= FS_XFLAG_EXTSIZE;
624 if (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT)
625 flags |= FS_XFLAG_EXTSZINHERIT;
626 if (ip->i_diflags & XFS_DIFLAG_NODEFRAG)
627 flags |= FS_XFLAG_NODEFRAG;
628 if (ip->i_diflags & XFS_DIFLAG_FILESTREAM)
629 flags |= FS_XFLAG_FILESTREAM;
630 }
631
632 if (ip->i_diflags2 & XFS_DIFLAG2_ANY) {
633 if (ip->i_diflags2 & XFS_DIFLAG2_DAX)
634 flags |= FS_XFLAG_DAX;
635 if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
636 flags |= FS_XFLAG_COWEXTSIZE;
637 }
638
639 if (xfs_inode_has_attr_fork(ip))
640 flags |= FS_XFLAG_HASATTR;
641 return flags;
642}
643
644/*
645 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
646 * is allowed, otherwise it has to be an exact match. If a CI match is found,
647 * ci_name->name will point to a the actual name (caller must free) or
648 * will be set to NULL if an exact match is found.
649 */
650int
651xfs_lookup(
652 struct xfs_inode *dp,
653 const struct xfs_name *name,
654 struct xfs_inode **ipp,
655 struct xfs_name *ci_name)
656{
657 xfs_ino_t inum;
658 int error;
659
660 trace_xfs_lookup(dp, name);
661
662 if (xfs_is_shutdown(dp->i_mount))
663 return -EIO;
664
665 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
666 if (error)
667 goto out_unlock;
668
669 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
670 if (error)
671 goto out_free_name;
672
673 return 0;
674
675out_free_name:
676 if (ci_name)
677 kmem_free(ci_name->name);
678out_unlock:
679 *ipp = NULL;
680 return error;
681}
682
683/* Propagate di_flags from a parent inode to a child inode. */
684static void
685xfs_inode_inherit_flags(
686 struct xfs_inode *ip,
687 const struct xfs_inode *pip)
688{
689 unsigned int di_flags = 0;
690 xfs_failaddr_t failaddr;
691 umode_t mode = VFS_I(ip)->i_mode;
692
693 if (S_ISDIR(mode)) {
694 if (pip->i_diflags & XFS_DIFLAG_RTINHERIT)
695 di_flags |= XFS_DIFLAG_RTINHERIT;
696 if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
697 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
698 ip->i_extsize = pip->i_extsize;
699 }
700 if (pip->i_diflags & XFS_DIFLAG_PROJINHERIT)
701 di_flags |= XFS_DIFLAG_PROJINHERIT;
702 } else if (S_ISREG(mode)) {
703 if ((pip->i_diflags & XFS_DIFLAG_RTINHERIT) &&
704 xfs_has_realtime(ip->i_mount))
705 di_flags |= XFS_DIFLAG_REALTIME;
706 if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
707 di_flags |= XFS_DIFLAG_EXTSIZE;
708 ip->i_extsize = pip->i_extsize;
709 }
710 }
711 if ((pip->i_diflags & XFS_DIFLAG_NOATIME) &&
712 xfs_inherit_noatime)
713 di_flags |= XFS_DIFLAG_NOATIME;
714 if ((pip->i_diflags & XFS_DIFLAG_NODUMP) &&
715 xfs_inherit_nodump)
716 di_flags |= XFS_DIFLAG_NODUMP;
717 if ((pip->i_diflags & XFS_DIFLAG_SYNC) &&
718 xfs_inherit_sync)
719 di_flags |= XFS_DIFLAG_SYNC;
720 if ((pip->i_diflags & XFS_DIFLAG_NOSYMLINKS) &&
721 xfs_inherit_nosymlinks)
722 di_flags |= XFS_DIFLAG_NOSYMLINKS;
723 if ((pip->i_diflags & XFS_DIFLAG_NODEFRAG) &&
724 xfs_inherit_nodefrag)
725 di_flags |= XFS_DIFLAG_NODEFRAG;
726 if (pip->i_diflags & XFS_DIFLAG_FILESTREAM)
727 di_flags |= XFS_DIFLAG_FILESTREAM;
728
729 ip->i_diflags |= di_flags;
730
731 /*
732 * Inode verifiers on older kernels only check that the extent size
733 * hint is an integer multiple of the rt extent size on realtime files.
734 * They did not check the hint alignment on a directory with both
735 * rtinherit and extszinherit flags set. If the misaligned hint is
736 * propagated from a directory into a new realtime file, new file
737 * allocations will fail due to math errors in the rt allocator and/or
738 * trip the verifiers. Validate the hint settings in the new file so
739 * that we don't let broken hints propagate.
740 */
741 failaddr = xfs_inode_validate_extsize(ip->i_mount, ip->i_extsize,
742 VFS_I(ip)->i_mode, ip->i_diflags);
743 if (failaddr) {
744 ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE |
745 XFS_DIFLAG_EXTSZINHERIT);
746 ip->i_extsize = 0;
747 }
748}
749
750/* Propagate di_flags2 from a parent inode to a child inode. */
751static void
752xfs_inode_inherit_flags2(
753 struct xfs_inode *ip,
754 const struct xfs_inode *pip)
755{
756 xfs_failaddr_t failaddr;
757
758 if (pip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) {
759 ip->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE;
760 ip->i_cowextsize = pip->i_cowextsize;
761 }
762 if (pip->i_diflags2 & XFS_DIFLAG2_DAX)
763 ip->i_diflags2 |= XFS_DIFLAG2_DAX;
764
765 /* Don't let invalid cowextsize hints propagate. */
766 failaddr = xfs_inode_validate_cowextsize(ip->i_mount, ip->i_cowextsize,
767 VFS_I(ip)->i_mode, ip->i_diflags, ip->i_diflags2);
768 if (failaddr) {
769 ip->i_diflags2 &= ~XFS_DIFLAG2_COWEXTSIZE;
770 ip->i_cowextsize = 0;
771 }
772}
773
774/*
775 * Initialise a newly allocated inode and return the in-core inode to the
776 * caller locked exclusively.
777 */
778int
779xfs_init_new_inode(
780 struct user_namespace *mnt_userns,
781 struct xfs_trans *tp,
782 struct xfs_inode *pip,
783 xfs_ino_t ino,
784 umode_t mode,
785 xfs_nlink_t nlink,
786 dev_t rdev,
787 prid_t prid,
788 bool init_xattrs,
789 struct xfs_inode **ipp)
790{
791 struct inode *dir = pip ? VFS_I(pip) : NULL;
792 struct xfs_mount *mp = tp->t_mountp;
793 struct xfs_inode *ip;
794 unsigned int flags;
795 int error;
796 struct timespec64 tv;
797 struct inode *inode;
798
799 /*
800 * Protect against obviously corrupt allocation btree records. Later
801 * xfs_iget checks will catch re-allocation of other active in-memory
802 * and on-disk inodes. If we don't catch reallocating the parent inode
803 * here we will deadlock in xfs_iget() so we have to do these checks
804 * first.
805 */
806 if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
807 xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
808 return -EFSCORRUPTED;
809 }
810
811 /*
812 * Get the in-core inode with the lock held exclusively to prevent
813 * others from looking at until we're done.
814 */
815 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
816 if (error)
817 return error;
818
819 ASSERT(ip != NULL);
820 inode = VFS_I(ip);
821 set_nlink(inode, nlink);
822 inode->i_rdev = rdev;
823 ip->i_projid = prid;
824
825 if (dir && !(dir->i_mode & S_ISGID) && xfs_has_grpid(mp)) {
826 inode_fsuid_set(inode, mnt_userns);
827 inode->i_gid = dir->i_gid;
828 inode->i_mode = mode;
829 } else {
830 inode_init_owner(mnt_userns, inode, dir, mode);
831 }
832
833 /*
834 * If the group ID of the new file does not match the effective group
835 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
836 * (and only if the irix_sgid_inherit compatibility variable is set).
837 */
838 if (irix_sgid_inherit && (inode->i_mode & S_ISGID) &&
839 !vfsgid_in_group_p(i_gid_into_vfsgid(mnt_userns, inode)))
840 inode->i_mode &= ~S_ISGID;
841
842 ip->i_disk_size = 0;
843 ip->i_df.if_nextents = 0;
844 ASSERT(ip->i_nblocks == 0);
845
846 tv = current_time(inode);
847 inode->i_mtime = tv;
848 inode->i_atime = tv;
849 inode->i_ctime = tv;
850
851 ip->i_extsize = 0;
852 ip->i_diflags = 0;
853
854 if (xfs_has_v3inodes(mp)) {
855 inode_set_iversion(inode, 1);
856 ip->i_cowextsize = 0;
857 ip->i_crtime = tv;
858 }
859
860 flags = XFS_ILOG_CORE;
861 switch (mode & S_IFMT) {
862 case S_IFIFO:
863 case S_IFCHR:
864 case S_IFBLK:
865 case S_IFSOCK:
866 ip->i_df.if_format = XFS_DINODE_FMT_DEV;
867 flags |= XFS_ILOG_DEV;
868 break;
869 case S_IFREG:
870 case S_IFDIR:
871 if (pip && (pip->i_diflags & XFS_DIFLAG_ANY))
872 xfs_inode_inherit_flags(ip, pip);
873 if (pip && (pip->i_diflags2 & XFS_DIFLAG2_ANY))
874 xfs_inode_inherit_flags2(ip, pip);
875 fallthrough;
876 case S_IFLNK:
877 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
878 ip->i_df.if_bytes = 0;
879 ip->i_df.if_u1.if_root = NULL;
880 break;
881 default:
882 ASSERT(0);
883 }
884
885 /*
886 * If we need to create attributes immediately after allocating the
887 * inode, initialise an empty attribute fork right now. We use the
888 * default fork offset for attributes here as we don't know exactly what
889 * size or how many attributes we might be adding. We can do this
890 * safely here because we know the data fork is completely empty and
891 * this saves us from needing to run a separate transaction to set the
892 * fork offset in the immediate future.
893 */
894 if (init_xattrs && xfs_has_attr(mp)) {
895 ip->i_forkoff = xfs_default_attroffset(ip) >> 3;
896 xfs_ifork_init_attr(ip, XFS_DINODE_FMT_EXTENTS, 0);
897 }
898
899 /*
900 * Log the new values stuffed into the inode.
901 */
902 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
903 xfs_trans_log_inode(tp, ip, flags);
904
905 /* now that we have an i_mode we can setup the inode structure */
906 xfs_setup_inode(ip);
907
908 *ipp = ip;
909 return 0;
910}
911
912/*
913 * Decrement the link count on an inode & log the change. If this causes the
914 * link count to go to zero, move the inode to AGI unlinked list so that it can
915 * be freed when the last active reference goes away via xfs_inactive().
916 */
917static int /* error */
918xfs_droplink(
919 xfs_trans_t *tp,
920 xfs_inode_t *ip)
921{
922 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
923
924 drop_nlink(VFS_I(ip));
925 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
926
927 if (VFS_I(ip)->i_nlink)
928 return 0;
929
930 return xfs_iunlink(tp, ip);
931}
932
933/*
934 * Increment the link count on an inode & log the change.
935 */
936static void
937xfs_bumplink(
938 xfs_trans_t *tp,
939 xfs_inode_t *ip)
940{
941 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
942
943 inc_nlink(VFS_I(ip));
944 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
945}
946
947int
948xfs_create(
949 struct user_namespace *mnt_userns,
950 xfs_inode_t *dp,
951 struct xfs_name *name,
952 umode_t mode,
953 dev_t rdev,
954 bool init_xattrs,
955 xfs_inode_t **ipp)
956{
957 int is_dir = S_ISDIR(mode);
958 struct xfs_mount *mp = dp->i_mount;
959 struct xfs_inode *ip = NULL;
960 struct xfs_trans *tp = NULL;
961 int error;
962 bool unlock_dp_on_error = false;
963 prid_t prid;
964 struct xfs_dquot *udqp = NULL;
965 struct xfs_dquot *gdqp = NULL;
966 struct xfs_dquot *pdqp = NULL;
967 struct xfs_trans_res *tres;
968 uint resblks;
969 xfs_ino_t ino;
970
971 trace_xfs_create(dp, name);
972
973 if (xfs_is_shutdown(mp))
974 return -EIO;
975
976 prid = xfs_get_initial_prid(dp);
977
978 /*
979 * Make sure that we have allocated dquot(s) on disk.
980 */
981 error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns, &init_user_ns),
982 mapped_fsgid(mnt_userns, &init_user_ns), prid,
983 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
984 &udqp, &gdqp, &pdqp);
985 if (error)
986 return error;
987
988 if (is_dir) {
989 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
990 tres = &M_RES(mp)->tr_mkdir;
991 } else {
992 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
993 tres = &M_RES(mp)->tr_create;
994 }
995
996 /*
997 * Initially assume that the file does not exist and
998 * reserve the resources for that case. If that is not
999 * the case we'll drop the one we have and get a more
1000 * appropriate transaction later.
1001 */
1002 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1003 &tp);
1004 if (error == -ENOSPC) {
1005 /* flush outstanding delalloc blocks and retry */
1006 xfs_flush_inodes(mp);
1007 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp,
1008 resblks, &tp);
1009 }
1010 if (error)
1011 goto out_release_dquots;
1012
1013 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1014 unlock_dp_on_error = true;
1015
1016 /*
1017 * A newly created regular or special file just has one directory
1018 * entry pointing to them, but a directory also the "." entry
1019 * pointing to itself.
1020 */
1021 error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1022 if (!error)
1023 error = xfs_init_new_inode(mnt_userns, tp, dp, ino, mode,
1024 is_dir ? 2 : 1, rdev, prid, init_xattrs, &ip);
1025 if (error)
1026 goto out_trans_cancel;
1027
1028 /*
1029 * Now we join the directory inode to the transaction. We do not do it
1030 * earlier because xfs_dialloc might commit the previous transaction
1031 * (and release all the locks). An error from here on will result in
1032 * the transaction cancel unlocking dp so don't do it explicitly in the
1033 * error path.
1034 */
1035 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1036 unlock_dp_on_error = false;
1037
1038 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1039 resblks - XFS_IALLOC_SPACE_RES(mp));
1040 if (error) {
1041 ASSERT(error != -ENOSPC);
1042 goto out_trans_cancel;
1043 }
1044 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1045 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1046
1047 if (is_dir) {
1048 error = xfs_dir_init(tp, ip, dp);
1049 if (error)
1050 goto out_trans_cancel;
1051
1052 xfs_bumplink(tp, dp);
1053 }
1054
1055 /*
1056 * If this is a synchronous mount, make sure that the
1057 * create transaction goes to disk before returning to
1058 * the user.
1059 */
1060 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1061 xfs_trans_set_sync(tp);
1062
1063 /*
1064 * Attach the dquot(s) to the inodes and modify them incore.
1065 * These ids of the inode couldn't have changed since the new
1066 * inode has been locked ever since it was created.
1067 */
1068 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1069
1070 error = xfs_trans_commit(tp);
1071 if (error)
1072 goto out_release_inode;
1073
1074 xfs_qm_dqrele(udqp);
1075 xfs_qm_dqrele(gdqp);
1076 xfs_qm_dqrele(pdqp);
1077
1078 *ipp = ip;
1079 return 0;
1080
1081 out_trans_cancel:
1082 xfs_trans_cancel(tp);
1083 out_release_inode:
1084 /*
1085 * Wait until after the current transaction is aborted to finish the
1086 * setup of the inode and release the inode. This prevents recursive
1087 * transactions and deadlocks from xfs_inactive.
1088 */
1089 if (ip) {
1090 xfs_finish_inode_setup(ip);
1091 xfs_irele(ip);
1092 }
1093 out_release_dquots:
1094 xfs_qm_dqrele(udqp);
1095 xfs_qm_dqrele(gdqp);
1096 xfs_qm_dqrele(pdqp);
1097
1098 if (unlock_dp_on_error)
1099 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1100 return error;
1101}
1102
1103int
1104xfs_create_tmpfile(
1105 struct user_namespace *mnt_userns,
1106 struct xfs_inode *dp,
1107 umode_t mode,
1108 struct xfs_inode **ipp)
1109{
1110 struct xfs_mount *mp = dp->i_mount;
1111 struct xfs_inode *ip = NULL;
1112 struct xfs_trans *tp = NULL;
1113 int error;
1114 prid_t prid;
1115 struct xfs_dquot *udqp = NULL;
1116 struct xfs_dquot *gdqp = NULL;
1117 struct xfs_dquot *pdqp = NULL;
1118 struct xfs_trans_res *tres;
1119 uint resblks;
1120 xfs_ino_t ino;
1121
1122 if (xfs_is_shutdown(mp))
1123 return -EIO;
1124
1125 prid = xfs_get_initial_prid(dp);
1126
1127 /*
1128 * Make sure that we have allocated dquot(s) on disk.
1129 */
1130 error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns, &init_user_ns),
1131 mapped_fsgid(mnt_userns, &init_user_ns), prid,
1132 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1133 &udqp, &gdqp, &pdqp);
1134 if (error)
1135 return error;
1136
1137 resblks = XFS_IALLOC_SPACE_RES(mp);
1138 tres = &M_RES(mp)->tr_create_tmpfile;
1139
1140 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1141 &tp);
1142 if (error)
1143 goto out_release_dquots;
1144
1145 error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1146 if (!error)
1147 error = xfs_init_new_inode(mnt_userns, tp, dp, ino, mode,
1148 0, 0, prid, false, &ip);
1149 if (error)
1150 goto out_trans_cancel;
1151
1152 if (xfs_has_wsync(mp))
1153 xfs_trans_set_sync(tp);
1154
1155 /*
1156 * Attach the dquot(s) to the inodes and modify them incore.
1157 * These ids of the inode couldn't have changed since the new
1158 * inode has been locked ever since it was created.
1159 */
1160 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1161
1162 error = xfs_iunlink(tp, ip);
1163 if (error)
1164 goto out_trans_cancel;
1165
1166 error = xfs_trans_commit(tp);
1167 if (error)
1168 goto out_release_inode;
1169
1170 xfs_qm_dqrele(udqp);
1171 xfs_qm_dqrele(gdqp);
1172 xfs_qm_dqrele(pdqp);
1173
1174 *ipp = ip;
1175 return 0;
1176
1177 out_trans_cancel:
1178 xfs_trans_cancel(tp);
1179 out_release_inode:
1180 /*
1181 * Wait until after the current transaction is aborted to finish the
1182 * setup of the inode and release the inode. This prevents recursive
1183 * transactions and deadlocks from xfs_inactive.
1184 */
1185 if (ip) {
1186 xfs_finish_inode_setup(ip);
1187 xfs_irele(ip);
1188 }
1189 out_release_dquots:
1190 xfs_qm_dqrele(udqp);
1191 xfs_qm_dqrele(gdqp);
1192 xfs_qm_dqrele(pdqp);
1193
1194 return error;
1195}
1196
1197int
1198xfs_link(
1199 xfs_inode_t *tdp,
1200 xfs_inode_t *sip,
1201 struct xfs_name *target_name)
1202{
1203 xfs_mount_t *mp = tdp->i_mount;
1204 xfs_trans_t *tp;
1205 int error, nospace_error = 0;
1206 int resblks;
1207
1208 trace_xfs_link(tdp, target_name);
1209
1210 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1211
1212 if (xfs_is_shutdown(mp))
1213 return -EIO;
1214
1215 error = xfs_qm_dqattach(sip);
1216 if (error)
1217 goto std_return;
1218
1219 error = xfs_qm_dqattach(tdp);
1220 if (error)
1221 goto std_return;
1222
1223 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1224 error = xfs_trans_alloc_dir(tdp, &M_RES(mp)->tr_link, sip, &resblks,
1225 &tp, &nospace_error);
1226 if (error)
1227 goto std_return;
1228
1229 /*
1230 * If we are using project inheritance, we only allow hard link
1231 * creation in our tree when the project IDs are the same; else
1232 * the tree quota mechanism could be circumvented.
1233 */
1234 if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
1235 tdp->i_projid != sip->i_projid)) {
1236 error = -EXDEV;
1237 goto error_return;
1238 }
1239
1240 if (!resblks) {
1241 error = xfs_dir_canenter(tp, tdp, target_name);
1242 if (error)
1243 goto error_return;
1244 }
1245
1246 /*
1247 * Handle initial link state of O_TMPFILE inode
1248 */
1249 if (VFS_I(sip)->i_nlink == 0) {
1250 struct xfs_perag *pag;
1251
1252 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sip->i_ino));
1253 error = xfs_iunlink_remove(tp, pag, sip);
1254 xfs_perag_put(pag);
1255 if (error)
1256 goto error_return;
1257 }
1258
1259 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1260 resblks);
1261 if (error)
1262 goto error_return;
1263 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1264 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1265
1266 xfs_bumplink(tp, sip);
1267
1268 /*
1269 * If this is a synchronous mount, make sure that the
1270 * link transaction goes to disk before returning to
1271 * the user.
1272 */
1273 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1274 xfs_trans_set_sync(tp);
1275
1276 return xfs_trans_commit(tp);
1277
1278 error_return:
1279 xfs_trans_cancel(tp);
1280 std_return:
1281 if (error == -ENOSPC && nospace_error)
1282 error = nospace_error;
1283 return error;
1284}
1285
1286/* Clear the reflink flag and the cowblocks tag if possible. */
1287static void
1288xfs_itruncate_clear_reflink_flags(
1289 struct xfs_inode *ip)
1290{
1291 struct xfs_ifork *dfork;
1292 struct xfs_ifork *cfork;
1293
1294 if (!xfs_is_reflink_inode(ip))
1295 return;
1296 dfork = xfs_ifork_ptr(ip, XFS_DATA_FORK);
1297 cfork = xfs_ifork_ptr(ip, XFS_COW_FORK);
1298 if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1299 ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1300 if (cfork->if_bytes == 0)
1301 xfs_inode_clear_cowblocks_tag(ip);
1302}
1303
1304/*
1305 * Free up the underlying blocks past new_size. The new size must be smaller
1306 * than the current size. This routine can be used both for the attribute and
1307 * data fork, and does not modify the inode size, which is left to the caller.
1308 *
1309 * The transaction passed to this routine must have made a permanent log
1310 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1311 * given transaction and start new ones, so make sure everything involved in
1312 * the transaction is tidy before calling here. Some transaction will be
1313 * returned to the caller to be committed. The incoming transaction must
1314 * already include the inode, and both inode locks must be held exclusively.
1315 * The inode must also be "held" within the transaction. On return the inode
1316 * will be "held" within the returned transaction. This routine does NOT
1317 * require any disk space to be reserved for it within the transaction.
1318 *
1319 * If we get an error, we must return with the inode locked and linked into the
1320 * current transaction. This keeps things simple for the higher level code,
1321 * because it always knows that the inode is locked and held in the transaction
1322 * that returns to it whether errors occur or not. We don't mark the inode
1323 * dirty on error so that transactions can be easily aborted if possible.
1324 */
1325int
1326xfs_itruncate_extents_flags(
1327 struct xfs_trans **tpp,
1328 struct xfs_inode *ip,
1329 int whichfork,
1330 xfs_fsize_t new_size,
1331 int flags)
1332{
1333 struct xfs_mount *mp = ip->i_mount;
1334 struct xfs_trans *tp = *tpp;
1335 xfs_fileoff_t first_unmap_block;
1336 xfs_filblks_t unmap_len;
1337 int error = 0;
1338
1339 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1340 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1341 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1342 ASSERT(new_size <= XFS_ISIZE(ip));
1343 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1344 ASSERT(ip->i_itemp != NULL);
1345 ASSERT(ip->i_itemp->ili_lock_flags == 0);
1346 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1347
1348 trace_xfs_itruncate_extents_start(ip, new_size);
1349
1350 flags |= xfs_bmapi_aflag(whichfork);
1351
1352 /*
1353 * Since it is possible for space to become allocated beyond
1354 * the end of the file (in a crash where the space is allocated
1355 * but the inode size is not yet updated), simply remove any
1356 * blocks which show up between the new EOF and the maximum
1357 * possible file size.
1358 *
1359 * We have to free all the blocks to the bmbt maximum offset, even if
1360 * the page cache can't scale that far.
1361 */
1362 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1363 if (!xfs_verify_fileoff(mp, first_unmap_block)) {
1364 WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1365 return 0;
1366 }
1367
1368 unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1;
1369 while (unmap_len > 0) {
1370 ASSERT(tp->t_firstblock == NULLFSBLOCK);
1371 error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len,
1372 flags, XFS_ITRUNC_MAX_EXTENTS);
1373 if (error)
1374 goto out;
1375
1376 /* free the just unmapped extents */
1377 error = xfs_defer_finish(&tp);
1378 if (error)
1379 goto out;
1380 }
1381
1382 if (whichfork == XFS_DATA_FORK) {
1383 /* Remove all pending CoW reservations. */
1384 error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1385 first_unmap_block, XFS_MAX_FILEOFF, true);
1386 if (error)
1387 goto out;
1388
1389 xfs_itruncate_clear_reflink_flags(ip);
1390 }
1391
1392 /*
1393 * Always re-log the inode so that our permanent transaction can keep
1394 * on rolling it forward in the log.
1395 */
1396 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1397
1398 trace_xfs_itruncate_extents_end(ip, new_size);
1399
1400out:
1401 *tpp = tp;
1402 return error;
1403}
1404
1405int
1406xfs_release(
1407 xfs_inode_t *ip)
1408{
1409 xfs_mount_t *mp = ip->i_mount;
1410 int error = 0;
1411
1412 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1413 return 0;
1414
1415 /* If this is a read-only mount, don't do this (would generate I/O) */
1416 if (xfs_is_readonly(mp))
1417 return 0;
1418
1419 if (!xfs_is_shutdown(mp)) {
1420 int truncated;
1421
1422 /*
1423 * If we previously truncated this file and removed old data
1424 * in the process, we want to initiate "early" writeout on
1425 * the last close. This is an attempt to combat the notorious
1426 * NULL files problem which is particularly noticeable from a
1427 * truncate down, buffered (re-)write (delalloc), followed by
1428 * a crash. What we are effectively doing here is
1429 * significantly reducing the time window where we'd otherwise
1430 * be exposed to that problem.
1431 */
1432 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1433 if (truncated) {
1434 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1435 if (ip->i_delayed_blks > 0) {
1436 error = filemap_flush(VFS_I(ip)->i_mapping);
1437 if (error)
1438 return error;
1439 }
1440 }
1441 }
1442
1443 if (VFS_I(ip)->i_nlink == 0)
1444 return 0;
1445
1446 /*
1447 * If we can't get the iolock just skip truncating the blocks past EOF
1448 * because we could deadlock with the mmap_lock otherwise. We'll get
1449 * another chance to drop them once the last reference to the inode is
1450 * dropped, so we'll never leak blocks permanently.
1451 */
1452 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL))
1453 return 0;
1454
1455 if (xfs_can_free_eofblocks(ip, false)) {
1456 /*
1457 * Check if the inode is being opened, written and closed
1458 * frequently and we have delayed allocation blocks outstanding
1459 * (e.g. streaming writes from the NFS server), truncating the
1460 * blocks past EOF will cause fragmentation to occur.
1461 *
1462 * In this case don't do the truncation, but we have to be
1463 * careful how we detect this case. Blocks beyond EOF show up as
1464 * i_delayed_blks even when the inode is clean, so we need to
1465 * truncate them away first before checking for a dirty release.
1466 * Hence on the first dirty close we will still remove the
1467 * speculative allocation, but after that we will leave it in
1468 * place.
1469 */
1470 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1471 goto out_unlock;
1472
1473 error = xfs_free_eofblocks(ip);
1474 if (error)
1475 goto out_unlock;
1476
1477 /* delalloc blocks after truncation means it really is dirty */
1478 if (ip->i_delayed_blks)
1479 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1480 }
1481
1482out_unlock:
1483 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1484 return error;
1485}
1486
1487/*
1488 * xfs_inactive_truncate
1489 *
1490 * Called to perform a truncate when an inode becomes unlinked.
1491 */
1492STATIC int
1493xfs_inactive_truncate(
1494 struct xfs_inode *ip)
1495{
1496 struct xfs_mount *mp = ip->i_mount;
1497 struct xfs_trans *tp;
1498 int error;
1499
1500 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1501 if (error) {
1502 ASSERT(xfs_is_shutdown(mp));
1503 return error;
1504 }
1505 xfs_ilock(ip, XFS_ILOCK_EXCL);
1506 xfs_trans_ijoin(tp, ip, 0);
1507
1508 /*
1509 * Log the inode size first to prevent stale data exposure in the event
1510 * of a system crash before the truncate completes. See the related
1511 * comment in xfs_vn_setattr_size() for details.
1512 */
1513 ip->i_disk_size = 0;
1514 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1515
1516 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1517 if (error)
1518 goto error_trans_cancel;
1519
1520 ASSERT(ip->i_df.if_nextents == 0);
1521
1522 error = xfs_trans_commit(tp);
1523 if (error)
1524 goto error_unlock;
1525
1526 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1527 return 0;
1528
1529error_trans_cancel:
1530 xfs_trans_cancel(tp);
1531error_unlock:
1532 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1533 return error;
1534}
1535
1536/*
1537 * xfs_inactive_ifree()
1538 *
1539 * Perform the inode free when an inode is unlinked.
1540 */
1541STATIC int
1542xfs_inactive_ifree(
1543 struct xfs_inode *ip)
1544{
1545 struct xfs_mount *mp = ip->i_mount;
1546 struct xfs_trans *tp;
1547 int error;
1548
1549 /*
1550 * We try to use a per-AG reservation for any block needed by the finobt
1551 * tree, but as the finobt feature predates the per-AG reservation
1552 * support a degraded file system might not have enough space for the
1553 * reservation at mount time. In that case try to dip into the reserved
1554 * pool and pray.
1555 *
1556 * Send a warning if the reservation does happen to fail, as the inode
1557 * now remains allocated and sits on the unlinked list until the fs is
1558 * repaired.
1559 */
1560 if (unlikely(mp->m_finobt_nores)) {
1561 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1562 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1563 &tp);
1564 } else {
1565 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1566 }
1567 if (error) {
1568 if (error == -ENOSPC) {
1569 xfs_warn_ratelimited(mp,
1570 "Failed to remove inode(s) from unlinked list. "
1571 "Please free space, unmount and run xfs_repair.");
1572 } else {
1573 ASSERT(xfs_is_shutdown(mp));
1574 }
1575 return error;
1576 }
1577
1578 /*
1579 * We do not hold the inode locked across the entire rolling transaction
1580 * here. We only need to hold it for the first transaction that
1581 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1582 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1583 * here breaks the relationship between cluster buffer invalidation and
1584 * stale inode invalidation on cluster buffer item journal commit
1585 * completion, and can result in leaving dirty stale inodes hanging
1586 * around in memory.
1587 *
1588 * We have no need for serialising this inode operation against other
1589 * operations - we freed the inode and hence reallocation is required
1590 * and that will serialise on reallocating the space the deferops need
1591 * to free. Hence we can unlock the inode on the first commit of
1592 * the transaction rather than roll it right through the deferops. This
1593 * avoids relogging the XFS_ISTALE inode.
1594 *
1595 * We check that xfs_ifree() hasn't grown an internal transaction roll
1596 * by asserting that the inode is still locked when it returns.
1597 */
1598 xfs_ilock(ip, XFS_ILOCK_EXCL);
1599 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1600
1601 error = xfs_ifree(tp, ip);
1602 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1603 if (error) {
1604 /*
1605 * If we fail to free the inode, shut down. The cancel
1606 * might do that, we need to make sure. Otherwise the
1607 * inode might be lost for a long time or forever.
1608 */
1609 if (!xfs_is_shutdown(mp)) {
1610 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1611 __func__, error);
1612 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1613 }
1614 xfs_trans_cancel(tp);
1615 return error;
1616 }
1617
1618 /*
1619 * Credit the quota account(s). The inode is gone.
1620 */
1621 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1622
1623 /*
1624 * Just ignore errors at this point. There is nothing we can do except
1625 * to try to keep going. Make sure it's not a silent error.
1626 */
1627 error = xfs_trans_commit(tp);
1628 if (error)
1629 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1630 __func__, error);
1631
1632 return 0;
1633}
1634
1635/*
1636 * Returns true if we need to update the on-disk metadata before we can free
1637 * the memory used by this inode. Updates include freeing post-eof
1638 * preallocations; freeing COW staging extents; and marking the inode free in
1639 * the inobt if it is on the unlinked list.
1640 */
1641bool
1642xfs_inode_needs_inactive(
1643 struct xfs_inode *ip)
1644{
1645 struct xfs_mount *mp = ip->i_mount;
1646 struct xfs_ifork *cow_ifp = xfs_ifork_ptr(ip, XFS_COW_FORK);
1647
1648 /*
1649 * If the inode is already free, then there can be nothing
1650 * to clean up here.
1651 */
1652 if (VFS_I(ip)->i_mode == 0)
1653 return false;
1654
1655 /* If this is a read-only mount, don't do this (would generate I/O) */
1656 if (xfs_is_readonly(mp))
1657 return false;
1658
1659 /* If the log isn't running, push inodes straight to reclaim. */
1660 if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp))
1661 return false;
1662
1663 /* Metadata inodes require explicit resource cleanup. */
1664 if (xfs_is_metadata_inode(ip))
1665 return false;
1666
1667 /* Want to clean out the cow blocks if there are any. */
1668 if (cow_ifp && cow_ifp->if_bytes > 0)
1669 return true;
1670
1671 /* Unlinked files must be freed. */
1672 if (VFS_I(ip)->i_nlink == 0)
1673 return true;
1674
1675 /*
1676 * This file isn't being freed, so check if there are post-eof blocks
1677 * to free. @force is true because we are evicting an inode from the
1678 * cache. Post-eof blocks must be freed, lest we end up with broken
1679 * free space accounting.
1680 *
1681 * Note: don't bother with iolock here since lockdep complains about
1682 * acquiring it in reclaim context. We have the only reference to the
1683 * inode at this point anyways.
1684 */
1685 return xfs_can_free_eofblocks(ip, true);
1686}
1687
1688/*
1689 * xfs_inactive
1690 *
1691 * This is called when the vnode reference count for the vnode
1692 * goes to zero. If the file has been unlinked, then it must
1693 * now be truncated. Also, we clear all of the read-ahead state
1694 * kept for the inode here since the file is now closed.
1695 */
1696void
1697xfs_inactive(
1698 xfs_inode_t *ip)
1699{
1700 struct xfs_mount *mp;
1701 int error;
1702 int truncate = 0;
1703
1704 /*
1705 * If the inode is already free, then there can be nothing
1706 * to clean up here.
1707 */
1708 if (VFS_I(ip)->i_mode == 0) {
1709 ASSERT(ip->i_df.if_broot_bytes == 0);
1710 goto out;
1711 }
1712
1713 mp = ip->i_mount;
1714 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1715
1716 /* If this is a read-only mount, don't do this (would generate I/O) */
1717 if (xfs_is_readonly(mp))
1718 goto out;
1719
1720 /* Metadata inodes require explicit resource cleanup. */
1721 if (xfs_is_metadata_inode(ip))
1722 goto out;
1723
1724 /* Try to clean out the cow blocks if there are any. */
1725 if (xfs_inode_has_cow_data(ip))
1726 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1727
1728 if (VFS_I(ip)->i_nlink != 0) {
1729 /*
1730 * force is true because we are evicting an inode from the
1731 * cache. Post-eof blocks must be freed, lest we end up with
1732 * broken free space accounting.
1733 *
1734 * Note: don't bother with iolock here since lockdep complains
1735 * about acquiring it in reclaim context. We have the only
1736 * reference to the inode at this point anyways.
1737 */
1738 if (xfs_can_free_eofblocks(ip, true))
1739 xfs_free_eofblocks(ip);
1740
1741 goto out;
1742 }
1743
1744 if (S_ISREG(VFS_I(ip)->i_mode) &&
1745 (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 ||
1746 ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0))
1747 truncate = 1;
1748
1749 error = xfs_qm_dqattach(ip);
1750 if (error)
1751 goto out;
1752
1753 if (S_ISLNK(VFS_I(ip)->i_mode))
1754 error = xfs_inactive_symlink(ip);
1755 else if (truncate)
1756 error = xfs_inactive_truncate(ip);
1757 if (error)
1758 goto out;
1759
1760 /*
1761 * If there are attributes associated with the file then blow them away
1762 * now. The code calls a routine that recursively deconstructs the
1763 * attribute fork. If also blows away the in-core attribute fork.
1764 */
1765 if (xfs_inode_has_attr_fork(ip)) {
1766 error = xfs_attr_inactive(ip);
1767 if (error)
1768 goto out;
1769 }
1770
1771 ASSERT(ip->i_forkoff == 0);
1772
1773 /*
1774 * Free the inode.
1775 */
1776 xfs_inactive_ifree(ip);
1777
1778out:
1779 /*
1780 * We're done making metadata updates for this inode, so we can release
1781 * the attached dquots.
1782 */
1783 xfs_qm_dqdetach(ip);
1784}
1785
1786/*
1787 * In-Core Unlinked List Lookups
1788 * =============================
1789 *
1790 * Every inode is supposed to be reachable from some other piece of metadata
1791 * with the exception of the root directory. Inodes with a connection to a
1792 * file descriptor but not linked from anywhere in the on-disk directory tree
1793 * are collectively known as unlinked inodes, though the filesystem itself
1794 * maintains links to these inodes so that on-disk metadata are consistent.
1795 *
1796 * XFS implements a per-AG on-disk hash table of unlinked inodes. The AGI
1797 * header contains a number of buckets that point to an inode, and each inode
1798 * record has a pointer to the next inode in the hash chain. This
1799 * singly-linked list causes scaling problems in the iunlink remove function
1800 * because we must walk that list to find the inode that points to the inode
1801 * being removed from the unlinked hash bucket list.
1802 *
1803 * Hence we keep an in-memory double linked list to link each inode on an
1804 * unlinked list. Because there are 64 unlinked lists per AGI, keeping pointer
1805 * based lists would require having 64 list heads in the perag, one for each
1806 * list. This is expensive in terms of memory (think millions of AGs) and cache
1807 * misses on lookups. Instead, use the fact that inodes on the unlinked list
1808 * must be referenced at the VFS level to keep them on the list and hence we
1809 * have an existence guarantee for inodes on the unlinked list.
1810 *
1811 * Given we have an existence guarantee, we can use lockless inode cache lookups
1812 * to resolve aginos to xfs inodes. This means we only need 8 bytes per inode
1813 * for the double linked unlinked list, and we don't need any extra locking to
1814 * keep the list safe as all manipulations are done under the AGI buffer lock.
1815 * Keeping the list up to date does not require memory allocation, just finding
1816 * the XFS inode and updating the next/prev unlinked list aginos.
1817 */
1818
1819/*
1820 * Find an inode on the unlinked list. This does not take references to the
1821 * inode as we have existence guarantees by holding the AGI buffer lock and that
1822 * only unlinked, referenced inodes can be on the unlinked inode list. If we
1823 * don't find the inode in cache, then let the caller handle the situation.
1824 */
1825static struct xfs_inode *
1826xfs_iunlink_lookup(
1827 struct xfs_perag *pag,
1828 xfs_agino_t agino)
1829{
1830 struct xfs_inode *ip;
1831
1832 rcu_read_lock();
1833 ip = radix_tree_lookup(&pag->pag_ici_root, agino);
1834
1835 /*
1836 * Inode not in memory or in RCU freeing limbo should not happen.
1837 * Warn about this and let the caller handle the failure.
1838 */
1839 if (WARN_ON_ONCE(!ip || !ip->i_ino)) {
1840 rcu_read_unlock();
1841 return NULL;
1842 }
1843 ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM));
1844 rcu_read_unlock();
1845 return ip;
1846}
1847
1848/* Update the prev pointer of the next agino. */
1849static int
1850xfs_iunlink_update_backref(
1851 struct xfs_perag *pag,
1852 xfs_agino_t prev_agino,
1853 xfs_agino_t next_agino)
1854{
1855 struct xfs_inode *ip;
1856
1857 /* No update necessary if we are at the end of the list. */
1858 if (next_agino == NULLAGINO)
1859 return 0;
1860
1861 ip = xfs_iunlink_lookup(pag, next_agino);
1862 if (!ip)
1863 return -EFSCORRUPTED;
1864 ip->i_prev_unlinked = prev_agino;
1865 return 0;
1866}
1867
1868/*
1869 * Point the AGI unlinked bucket at an inode and log the results. The caller
1870 * is responsible for validating the old value.
1871 */
1872STATIC int
1873xfs_iunlink_update_bucket(
1874 struct xfs_trans *tp,
1875 struct xfs_perag *pag,
1876 struct xfs_buf *agibp,
1877 unsigned int bucket_index,
1878 xfs_agino_t new_agino)
1879{
1880 struct xfs_agi *agi = agibp->b_addr;
1881 xfs_agino_t old_value;
1882 int offset;
1883
1884 ASSERT(xfs_verify_agino_or_null(pag, new_agino));
1885
1886 old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1887 trace_xfs_iunlink_update_bucket(tp->t_mountp, pag->pag_agno, bucket_index,
1888 old_value, new_agino);
1889
1890 /*
1891 * We should never find the head of the list already set to the value
1892 * passed in because either we're adding or removing ourselves from the
1893 * head of the list.
1894 */
1895 if (old_value == new_agino) {
1896 xfs_buf_mark_corrupt(agibp);
1897 return -EFSCORRUPTED;
1898 }
1899
1900 agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
1901 offset = offsetof(struct xfs_agi, agi_unlinked) +
1902 (sizeof(xfs_agino_t) * bucket_index);
1903 xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
1904 return 0;
1905}
1906
1907static int
1908xfs_iunlink_insert_inode(
1909 struct xfs_trans *tp,
1910 struct xfs_perag *pag,
1911 struct xfs_buf *agibp,
1912 struct xfs_inode *ip)
1913{
1914 struct xfs_mount *mp = tp->t_mountp;
1915 struct xfs_agi *agi = agibp->b_addr;
1916 xfs_agino_t next_agino;
1917 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1918 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1919 int error;
1920
1921 /*
1922 * Get the index into the agi hash table for the list this inode will
1923 * go on. Make sure the pointer isn't garbage and that this inode
1924 * isn't already on the list.
1925 */
1926 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1927 if (next_agino == agino ||
1928 !xfs_verify_agino_or_null(pag, next_agino)) {
1929 xfs_buf_mark_corrupt(agibp);
1930 return -EFSCORRUPTED;
1931 }
1932
1933 /*
1934 * Update the prev pointer in the next inode to point back to this
1935 * inode.
1936 */
1937 error = xfs_iunlink_update_backref(pag, agino, next_agino);
1938 if (error)
1939 return error;
1940
1941 if (next_agino != NULLAGINO) {
1942 /*
1943 * There is already another inode in the bucket, so point this
1944 * inode to the current head of the list.
1945 */
1946 error = xfs_iunlink_log_inode(tp, ip, pag, next_agino);
1947 if (error)
1948 return error;
1949 ip->i_next_unlinked = next_agino;
1950 }
1951
1952 /* Point the head of the list to point to this inode. */
1953 return xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, agino);
1954}
1955
1956/*
1957 * This is called when the inode's link count has gone to 0 or we are creating
1958 * a tmpfile via O_TMPFILE. The inode @ip must have nlink == 0.
1959 *
1960 * We place the on-disk inode on a list in the AGI. It will be pulled from this
1961 * list when the inode is freed.
1962 */
1963STATIC int
1964xfs_iunlink(
1965 struct xfs_trans *tp,
1966 struct xfs_inode *ip)
1967{
1968 struct xfs_mount *mp = tp->t_mountp;
1969 struct xfs_perag *pag;
1970 struct xfs_buf *agibp;
1971 int error;
1972
1973 ASSERT(VFS_I(ip)->i_nlink == 0);
1974 ASSERT(VFS_I(ip)->i_mode != 0);
1975 trace_xfs_iunlink(ip);
1976
1977 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1978
1979 /* Get the agi buffer first. It ensures lock ordering on the list. */
1980 error = xfs_read_agi(pag, tp, &agibp);
1981 if (error)
1982 goto out;
1983
1984 error = xfs_iunlink_insert_inode(tp, pag, agibp, ip);
1985out:
1986 xfs_perag_put(pag);
1987 return error;
1988}
1989
1990static int
1991xfs_iunlink_remove_inode(
1992 struct xfs_trans *tp,
1993 struct xfs_perag *pag,
1994 struct xfs_buf *agibp,
1995 struct xfs_inode *ip)
1996{
1997 struct xfs_mount *mp = tp->t_mountp;
1998 struct xfs_agi *agi = agibp->b_addr;
1999 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2000 xfs_agino_t head_agino;
2001 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2002 int error;
2003
2004 trace_xfs_iunlink_remove(ip);
2005
2006 /*
2007 * Get the index into the agi hash table for the list this inode will
2008 * go on. Make sure the head pointer isn't garbage.
2009 */
2010 head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2011 if (!xfs_verify_agino(pag, head_agino)) {
2012 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2013 agi, sizeof(*agi));
2014 return -EFSCORRUPTED;
2015 }
2016
2017 /*
2018 * Set our inode's next_unlinked pointer to NULL and then return
2019 * the old pointer value so that we can update whatever was previous
2020 * to us in the list to point to whatever was next in the list.
2021 */
2022 error = xfs_iunlink_log_inode(tp, ip, pag, NULLAGINO);
2023 if (error)
2024 return error;
2025
2026 /*
2027 * Update the prev pointer in the next inode to point back to previous
2028 * inode in the chain.
2029 */
2030 error = xfs_iunlink_update_backref(pag, ip->i_prev_unlinked,
2031 ip->i_next_unlinked);
2032 if (error)
2033 return error;
2034
2035 if (head_agino != agino) {
2036 struct xfs_inode *prev_ip;
2037
2038 prev_ip = xfs_iunlink_lookup(pag, ip->i_prev_unlinked);
2039 if (!prev_ip)
2040 return -EFSCORRUPTED;
2041
2042 error = xfs_iunlink_log_inode(tp, prev_ip, pag,
2043 ip->i_next_unlinked);
2044 prev_ip->i_next_unlinked = ip->i_next_unlinked;
2045 } else {
2046 /* Point the head of the list to the next unlinked inode. */
2047 error = xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index,
2048 ip->i_next_unlinked);
2049 }
2050
2051 ip->i_next_unlinked = NULLAGINO;
2052 ip->i_prev_unlinked = NULLAGINO;
2053 return error;
2054}
2055
2056/*
2057 * Pull the on-disk inode from the AGI unlinked list.
2058 */
2059STATIC int
2060xfs_iunlink_remove(
2061 struct xfs_trans *tp,
2062 struct xfs_perag *pag,
2063 struct xfs_inode *ip)
2064{
2065 struct xfs_buf *agibp;
2066 int error;
2067
2068 trace_xfs_iunlink_remove(ip);
2069
2070 /* Get the agi buffer first. It ensures lock ordering on the list. */
2071 error = xfs_read_agi(pag, tp, &agibp);
2072 if (error)
2073 return error;
2074
2075 return xfs_iunlink_remove_inode(tp, pag, agibp, ip);
2076}
2077
2078/*
2079 * Look up the inode number specified and if it is not already marked XFS_ISTALE
2080 * mark it stale. We should only find clean inodes in this lookup that aren't
2081 * already stale.
2082 */
2083static void
2084xfs_ifree_mark_inode_stale(
2085 struct xfs_perag *pag,
2086 struct xfs_inode *free_ip,
2087 xfs_ino_t inum)
2088{
2089 struct xfs_mount *mp = pag->pag_mount;
2090 struct xfs_inode_log_item *iip;
2091 struct xfs_inode *ip;
2092
2093retry:
2094 rcu_read_lock();
2095 ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
2096
2097 /* Inode not in memory, nothing to do */
2098 if (!ip) {
2099 rcu_read_unlock();
2100 return;
2101 }
2102
2103 /*
2104 * because this is an RCU protected lookup, we could find a recently
2105 * freed or even reallocated inode during the lookup. We need to check
2106 * under the i_flags_lock for a valid inode here. Skip it if it is not
2107 * valid, the wrong inode or stale.
2108 */
2109 spin_lock(&ip->i_flags_lock);
2110 if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
2111 goto out_iflags_unlock;
2112
2113 /*
2114 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
2115 * other inodes that we did not find in the list attached to the buffer
2116 * and are not already marked stale. If we can't lock it, back off and
2117 * retry.
2118 */
2119 if (ip != free_ip) {
2120 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2121 spin_unlock(&ip->i_flags_lock);
2122 rcu_read_unlock();
2123 delay(1);
2124 goto retry;
2125 }
2126 }
2127 ip->i_flags |= XFS_ISTALE;
2128
2129 /*
2130 * If the inode is flushing, it is already attached to the buffer. All
2131 * we needed to do here is mark the inode stale so buffer IO completion
2132 * will remove it from the AIL.
2133 */
2134 iip = ip->i_itemp;
2135 if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
2136 ASSERT(!list_empty(&iip->ili_item.li_bio_list));
2137 ASSERT(iip->ili_last_fields);
2138 goto out_iunlock;
2139 }
2140
2141 /*
2142 * Inodes not attached to the buffer can be released immediately.
2143 * Everything else has to go through xfs_iflush_abort() on journal
2144 * commit as the flock synchronises removal of the inode from the
2145 * cluster buffer against inode reclaim.
2146 */
2147 if (!iip || list_empty(&iip->ili_item.li_bio_list))
2148 goto out_iunlock;
2149
2150 __xfs_iflags_set(ip, XFS_IFLUSHING);
2151 spin_unlock(&ip->i_flags_lock);
2152 rcu_read_unlock();
2153
2154 /* we have a dirty inode in memory that has not yet been flushed. */
2155 spin_lock(&iip->ili_lock);
2156 iip->ili_last_fields = iip->ili_fields;
2157 iip->ili_fields = 0;
2158 iip->ili_fsync_fields = 0;
2159 spin_unlock(&iip->ili_lock);
2160 ASSERT(iip->ili_last_fields);
2161
2162 if (ip != free_ip)
2163 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2164 return;
2165
2166out_iunlock:
2167 if (ip != free_ip)
2168 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2169out_iflags_unlock:
2170 spin_unlock(&ip->i_flags_lock);
2171 rcu_read_unlock();
2172}
2173
2174/*
2175 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2176 * inodes that are in memory - they all must be marked stale and attached to
2177 * the cluster buffer.
2178 */
2179static int
2180xfs_ifree_cluster(
2181 struct xfs_trans *tp,
2182 struct xfs_perag *pag,
2183 struct xfs_inode *free_ip,
2184 struct xfs_icluster *xic)
2185{
2186 struct xfs_mount *mp = free_ip->i_mount;
2187 struct xfs_ino_geometry *igeo = M_IGEO(mp);
2188 struct xfs_buf *bp;
2189 xfs_daddr_t blkno;
2190 xfs_ino_t inum = xic->first_ino;
2191 int nbufs;
2192 int i, j;
2193 int ioffset;
2194 int error;
2195
2196 nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
2197
2198 for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
2199 /*
2200 * The allocation bitmap tells us which inodes of the chunk were
2201 * physically allocated. Skip the cluster if an inode falls into
2202 * a sparse region.
2203 */
2204 ioffset = inum - xic->first_ino;
2205 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2206 ASSERT(ioffset % igeo->inodes_per_cluster == 0);
2207 continue;
2208 }
2209
2210 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2211 XFS_INO_TO_AGBNO(mp, inum));
2212
2213 /*
2214 * We obtain and lock the backing buffer first in the process
2215 * here to ensure dirty inodes attached to the buffer remain in
2216 * the flushing state while we mark them stale.
2217 *
2218 * If we scan the in-memory inodes first, then buffer IO can
2219 * complete before we get a lock on it, and hence we may fail
2220 * to mark all the active inodes on the buffer stale.
2221 */
2222 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2223 mp->m_bsize * igeo->blocks_per_cluster,
2224 XBF_UNMAPPED, &bp);
2225 if (error)
2226 return error;
2227
2228 /*
2229 * This buffer may not have been correctly initialised as we
2230 * didn't read it from disk. That's not important because we are
2231 * only using to mark the buffer as stale in the log, and to
2232 * attach stale cached inodes on it. That means it will never be
2233 * dispatched for IO. If it is, we want to know about it, and we
2234 * want it to fail. We can acheive this by adding a write
2235 * verifier to the buffer.
2236 */
2237 bp->b_ops = &xfs_inode_buf_ops;
2238
2239 /*
2240 * Now we need to set all the cached clean inodes as XFS_ISTALE,
2241 * too. This requires lookups, and will skip inodes that we've
2242 * already marked XFS_ISTALE.
2243 */
2244 for (i = 0; i < igeo->inodes_per_cluster; i++)
2245 xfs_ifree_mark_inode_stale(pag, free_ip, inum + i);
2246
2247 xfs_trans_stale_inode_buf(tp, bp);
2248 xfs_trans_binval(tp, bp);
2249 }
2250 return 0;
2251}
2252
2253/*
2254 * This is called to return an inode to the inode free list. The inode should
2255 * already be truncated to 0 length and have no pages associated with it. This
2256 * routine also assumes that the inode is already a part of the transaction.
2257 *
2258 * The on-disk copy of the inode will have been added to the list of unlinked
2259 * inodes in the AGI. We need to remove the inode from that list atomically with
2260 * respect to freeing it here.
2261 */
2262int
2263xfs_ifree(
2264 struct xfs_trans *tp,
2265 struct xfs_inode *ip)
2266{
2267 struct xfs_mount *mp = ip->i_mount;
2268 struct xfs_perag *pag;
2269 struct xfs_icluster xic = { 0 };
2270 struct xfs_inode_log_item *iip = ip->i_itemp;
2271 int error;
2272
2273 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2274 ASSERT(VFS_I(ip)->i_nlink == 0);
2275 ASSERT(ip->i_df.if_nextents == 0);
2276 ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2277 ASSERT(ip->i_nblocks == 0);
2278
2279 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2280
2281 /*
2282 * Free the inode first so that we guarantee that the AGI lock is going
2283 * to be taken before we remove the inode from the unlinked list. This
2284 * makes the AGI lock -> unlinked list modification order the same as
2285 * used in O_TMPFILE creation.
2286 */
2287 error = xfs_difree(tp, pag, ip->i_ino, &xic);
2288 if (error)
2289 goto out;
2290
2291 error = xfs_iunlink_remove(tp, pag, ip);
2292 if (error)
2293 goto out;
2294
2295 /*
2296 * Free any local-format data sitting around before we reset the
2297 * data fork to extents format. Note that the attr fork data has
2298 * already been freed by xfs_attr_inactive.
2299 */
2300 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) {
2301 kmem_free(ip->i_df.if_u1.if_data);
2302 ip->i_df.if_u1.if_data = NULL;
2303 ip->i_df.if_bytes = 0;
2304 }
2305
2306 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */
2307 ip->i_diflags = 0;
2308 ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
2309 ip->i_forkoff = 0; /* mark the attr fork not in use */
2310 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
2311 if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS))
2312 xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS);
2313
2314 /* Don't attempt to replay owner changes for a deleted inode */
2315 spin_lock(&iip->ili_lock);
2316 iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
2317 spin_unlock(&iip->ili_lock);
2318
2319 /*
2320 * Bump the generation count so no one will be confused
2321 * by reincarnations of this inode.
2322 */
2323 VFS_I(ip)->i_generation++;
2324 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2325
2326 if (xic.deleted)
2327 error = xfs_ifree_cluster(tp, pag, ip, &xic);
2328out:
2329 xfs_perag_put(pag);
2330 return error;
2331}
2332
2333/*
2334 * This is called to unpin an inode. The caller must have the inode locked
2335 * in at least shared mode so that the buffer cannot be subsequently pinned
2336 * once someone is waiting for it to be unpinned.
2337 */
2338static void
2339xfs_iunpin(
2340 struct xfs_inode *ip)
2341{
2342 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2343
2344 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2345
2346 /* Give the log a push to start the unpinning I/O */
2347 xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL);
2348
2349}
2350
2351static void
2352__xfs_iunpin_wait(
2353 struct xfs_inode *ip)
2354{
2355 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2356 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2357
2358 xfs_iunpin(ip);
2359
2360 do {
2361 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2362 if (xfs_ipincount(ip))
2363 io_schedule();
2364 } while (xfs_ipincount(ip));
2365 finish_wait(wq, &wait.wq_entry);
2366}
2367
2368void
2369xfs_iunpin_wait(
2370 struct xfs_inode *ip)
2371{
2372 if (xfs_ipincount(ip))
2373 __xfs_iunpin_wait(ip);
2374}
2375
2376/*
2377 * Removing an inode from the namespace involves removing the directory entry
2378 * and dropping the link count on the inode. Removing the directory entry can
2379 * result in locking an AGF (directory blocks were freed) and removing a link
2380 * count can result in placing the inode on an unlinked list which results in
2381 * locking an AGI.
2382 *
2383 * The big problem here is that we have an ordering constraint on AGF and AGI
2384 * locking - inode allocation locks the AGI, then can allocate a new extent for
2385 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2386 * removes the inode from the unlinked list, requiring that we lock the AGI
2387 * first, and then freeing the inode can result in an inode chunk being freed
2388 * and hence freeing disk space requiring that we lock an AGF.
2389 *
2390 * Hence the ordering that is imposed by other parts of the code is AGI before
2391 * AGF. This means we cannot remove the directory entry before we drop the inode
2392 * reference count and put it on the unlinked list as this results in a lock
2393 * order of AGF then AGI, and this can deadlock against inode allocation and
2394 * freeing. Therefore we must drop the link counts before we remove the
2395 * directory entry.
2396 *
2397 * This is still safe from a transactional point of view - it is not until we
2398 * get to xfs_defer_finish() that we have the possibility of multiple
2399 * transactions in this operation. Hence as long as we remove the directory
2400 * entry and drop the link count in the first transaction of the remove
2401 * operation, there are no transactional constraints on the ordering here.
2402 */
2403int
2404xfs_remove(
2405 xfs_inode_t *dp,
2406 struct xfs_name *name,
2407 xfs_inode_t *ip)
2408{
2409 xfs_mount_t *mp = dp->i_mount;
2410 xfs_trans_t *tp = NULL;
2411 int is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2412 int dontcare;
2413 int error = 0;
2414 uint resblks;
2415
2416 trace_xfs_remove(dp, name);
2417
2418 if (xfs_is_shutdown(mp))
2419 return -EIO;
2420
2421 error = xfs_qm_dqattach(dp);
2422 if (error)
2423 goto std_return;
2424
2425 error = xfs_qm_dqattach(ip);
2426 if (error)
2427 goto std_return;
2428
2429 /*
2430 * We try to get the real space reservation first, allowing for
2431 * directory btree deletion(s) implying possible bmap insert(s). If we
2432 * can't get the space reservation then we use 0 instead, and avoid the
2433 * bmap btree insert(s) in the directory code by, if the bmap insert
2434 * tries to happen, instead trimming the LAST block from the directory.
2435 *
2436 * Ignore EDQUOT and ENOSPC being returned via nospace_error because
2437 * the directory code can handle a reservationless update and we don't
2438 * want to prevent a user from trying to free space by deleting things.
2439 */
2440 resblks = XFS_REMOVE_SPACE_RES(mp);
2441 error = xfs_trans_alloc_dir(dp, &M_RES(mp)->tr_remove, ip, &resblks,
2442 &tp, &dontcare);
2443 if (error) {
2444 ASSERT(error != -ENOSPC);
2445 goto std_return;
2446 }
2447
2448 /*
2449 * If we're removing a directory perform some additional validation.
2450 */
2451 if (is_dir) {
2452 ASSERT(VFS_I(ip)->i_nlink >= 2);
2453 if (VFS_I(ip)->i_nlink != 2) {
2454 error = -ENOTEMPTY;
2455 goto out_trans_cancel;
2456 }
2457 if (!xfs_dir_isempty(ip)) {
2458 error = -ENOTEMPTY;
2459 goto out_trans_cancel;
2460 }
2461
2462 /* Drop the link from ip's "..". */
2463 error = xfs_droplink(tp, dp);
2464 if (error)
2465 goto out_trans_cancel;
2466
2467 /* Drop the "." link from ip to self. */
2468 error = xfs_droplink(tp, ip);
2469 if (error)
2470 goto out_trans_cancel;
2471
2472 /*
2473 * Point the unlinked child directory's ".." entry to the root
2474 * directory to eliminate back-references to inodes that may
2475 * get freed before the child directory is closed. If the fs
2476 * gets shrunk, this can lead to dirent inode validation errors.
2477 */
2478 if (dp->i_ino != tp->t_mountp->m_sb.sb_rootino) {
2479 error = xfs_dir_replace(tp, ip, &xfs_name_dotdot,
2480 tp->t_mountp->m_sb.sb_rootino, 0);
2481 if (error)
2482 goto out_trans_cancel;
2483 }
2484 } else {
2485 /*
2486 * When removing a non-directory we need to log the parent
2487 * inode here. For a directory this is done implicitly
2488 * by the xfs_droplink call for the ".." entry.
2489 */
2490 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2491 }
2492 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2493
2494 /* Drop the link from dp to ip. */
2495 error = xfs_droplink(tp, ip);
2496 if (error)
2497 goto out_trans_cancel;
2498
2499 error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
2500 if (error) {
2501 ASSERT(error != -ENOENT);
2502 goto out_trans_cancel;
2503 }
2504
2505 /*
2506 * If this is a synchronous mount, make sure that the
2507 * remove transaction goes to disk before returning to
2508 * the user.
2509 */
2510 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
2511 xfs_trans_set_sync(tp);
2512
2513 error = xfs_trans_commit(tp);
2514 if (error)
2515 goto std_return;
2516
2517 if (is_dir && xfs_inode_is_filestream(ip))
2518 xfs_filestream_deassociate(ip);
2519
2520 return 0;
2521
2522 out_trans_cancel:
2523 xfs_trans_cancel(tp);
2524 std_return:
2525 return error;
2526}
2527
2528/*
2529 * Enter all inodes for a rename transaction into a sorted array.
2530 */
2531#define __XFS_SORT_INODES 5
2532STATIC void
2533xfs_sort_for_rename(
2534 struct xfs_inode *dp1, /* in: old (source) directory inode */
2535 struct xfs_inode *dp2, /* in: new (target) directory inode */
2536 struct xfs_inode *ip1, /* in: inode of old entry */
2537 struct xfs_inode *ip2, /* in: inode of new entry */
2538 struct xfs_inode *wip, /* in: whiteout inode */
2539 struct xfs_inode **i_tab,/* out: sorted array of inodes */
2540 int *num_inodes) /* in/out: inodes in array */
2541{
2542 int i, j;
2543
2544 ASSERT(*num_inodes == __XFS_SORT_INODES);
2545 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2546
2547 /*
2548 * i_tab contains a list of pointers to inodes. We initialize
2549 * the table here & we'll sort it. We will then use it to
2550 * order the acquisition of the inode locks.
2551 *
2552 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2553 */
2554 i = 0;
2555 i_tab[i++] = dp1;
2556 i_tab[i++] = dp2;
2557 i_tab[i++] = ip1;
2558 if (ip2)
2559 i_tab[i++] = ip2;
2560 if (wip)
2561 i_tab[i++] = wip;
2562 *num_inodes = i;
2563
2564 /*
2565 * Sort the elements via bubble sort. (Remember, there are at
2566 * most 5 elements to sort, so this is adequate.)
2567 */
2568 for (i = 0; i < *num_inodes; i++) {
2569 for (j = 1; j < *num_inodes; j++) {
2570 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2571 struct xfs_inode *temp = i_tab[j];
2572 i_tab[j] = i_tab[j-1];
2573 i_tab[j-1] = temp;
2574 }
2575 }
2576 }
2577}
2578
2579static int
2580xfs_finish_rename(
2581 struct xfs_trans *tp)
2582{
2583 /*
2584 * If this is a synchronous mount, make sure that the rename transaction
2585 * goes to disk before returning to the user.
2586 */
2587 if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp))
2588 xfs_trans_set_sync(tp);
2589
2590 return xfs_trans_commit(tp);
2591}
2592
2593/*
2594 * xfs_cross_rename()
2595 *
2596 * responsible for handling RENAME_EXCHANGE flag in renameat2() syscall
2597 */
2598STATIC int
2599xfs_cross_rename(
2600 struct xfs_trans *tp,
2601 struct xfs_inode *dp1,
2602 struct xfs_name *name1,
2603 struct xfs_inode *ip1,
2604 struct xfs_inode *dp2,
2605 struct xfs_name *name2,
2606 struct xfs_inode *ip2,
2607 int spaceres)
2608{
2609 int error = 0;
2610 int ip1_flags = 0;
2611 int ip2_flags = 0;
2612 int dp2_flags = 0;
2613
2614 /* Swap inode number for dirent in first parent */
2615 error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
2616 if (error)
2617 goto out_trans_abort;
2618
2619 /* Swap inode number for dirent in second parent */
2620 error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
2621 if (error)
2622 goto out_trans_abort;
2623
2624 /*
2625 * If we're renaming one or more directories across different parents,
2626 * update the respective ".." entries (and link counts) to match the new
2627 * parents.
2628 */
2629 if (dp1 != dp2) {
2630 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2631
2632 if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2633 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2634 dp1->i_ino, spaceres);
2635 if (error)
2636 goto out_trans_abort;
2637
2638 /* transfer ip2 ".." reference to dp1 */
2639 if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2640 error = xfs_droplink(tp, dp2);
2641 if (error)
2642 goto out_trans_abort;
2643 xfs_bumplink(tp, dp1);
2644 }
2645
2646 /*
2647 * Although ip1 isn't changed here, userspace needs
2648 * to be warned about the change, so that applications
2649 * relying on it (like backup ones), will properly
2650 * notify the change
2651 */
2652 ip1_flags |= XFS_ICHGTIME_CHG;
2653 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2654 }
2655
2656 if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2657 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2658 dp2->i_ino, spaceres);
2659 if (error)
2660 goto out_trans_abort;
2661
2662 /* transfer ip1 ".." reference to dp2 */
2663 if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2664 error = xfs_droplink(tp, dp1);
2665 if (error)
2666 goto out_trans_abort;
2667 xfs_bumplink(tp, dp2);
2668 }
2669
2670 /*
2671 * Although ip2 isn't changed here, userspace needs
2672 * to be warned about the change, so that applications
2673 * relying on it (like backup ones), will properly
2674 * notify the change
2675 */
2676 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2677 ip2_flags |= XFS_ICHGTIME_CHG;
2678 }
2679 }
2680
2681 if (ip1_flags) {
2682 xfs_trans_ichgtime(tp, ip1, ip1_flags);
2683 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2684 }
2685 if (ip2_flags) {
2686 xfs_trans_ichgtime(tp, ip2, ip2_flags);
2687 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2688 }
2689 if (dp2_flags) {
2690 xfs_trans_ichgtime(tp, dp2, dp2_flags);
2691 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2692 }
2693 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2694 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2695 return xfs_finish_rename(tp);
2696
2697out_trans_abort:
2698 xfs_trans_cancel(tp);
2699 return error;
2700}
2701
2702/*
2703 * xfs_rename_alloc_whiteout()
2704 *
2705 * Return a referenced, unlinked, unlocked inode that can be used as a
2706 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2707 * crash between allocating the inode and linking it into the rename transaction
2708 * recovery will free the inode and we won't leak it.
2709 */
2710static int
2711xfs_rename_alloc_whiteout(
2712 struct user_namespace *mnt_userns,
2713 struct xfs_name *src_name,
2714 struct xfs_inode *dp,
2715 struct xfs_inode **wip)
2716{
2717 struct xfs_inode *tmpfile;
2718 struct qstr name;
2719 int error;
2720
2721 error = xfs_create_tmpfile(mnt_userns, dp, S_IFCHR | WHITEOUT_MODE,
2722 &tmpfile);
2723 if (error)
2724 return error;
2725
2726 name.name = src_name->name;
2727 name.len = src_name->len;
2728 error = xfs_inode_init_security(VFS_I(tmpfile), VFS_I(dp), &name);
2729 if (error) {
2730 xfs_finish_inode_setup(tmpfile);
2731 xfs_irele(tmpfile);
2732 return error;
2733 }
2734
2735 /*
2736 * Prepare the tmpfile inode as if it were created through the VFS.
2737 * Complete the inode setup and flag it as linkable. nlink is already
2738 * zero, so we can skip the drop_nlink.
2739 */
2740 xfs_setup_iops(tmpfile);
2741 xfs_finish_inode_setup(tmpfile);
2742 VFS_I(tmpfile)->i_state |= I_LINKABLE;
2743
2744 *wip = tmpfile;
2745 return 0;
2746}
2747
2748/*
2749 * xfs_rename
2750 */
2751int
2752xfs_rename(
2753 struct user_namespace *mnt_userns,
2754 struct xfs_inode *src_dp,
2755 struct xfs_name *src_name,
2756 struct xfs_inode *src_ip,
2757 struct xfs_inode *target_dp,
2758 struct xfs_name *target_name,
2759 struct xfs_inode *target_ip,
2760 unsigned int flags)
2761{
2762 struct xfs_mount *mp = src_dp->i_mount;
2763 struct xfs_trans *tp;
2764 struct xfs_inode *wip = NULL; /* whiteout inode */
2765 struct xfs_inode *inodes[__XFS_SORT_INODES];
2766 int i;
2767 int num_inodes = __XFS_SORT_INODES;
2768 bool new_parent = (src_dp != target_dp);
2769 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2770 int spaceres;
2771 bool retried = false;
2772 int error, nospace_error = 0;
2773
2774 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2775
2776 if ((flags & RENAME_EXCHANGE) && !target_ip)
2777 return -EINVAL;
2778
2779 /*
2780 * If we are doing a whiteout operation, allocate the whiteout inode
2781 * we will be placing at the target and ensure the type is set
2782 * appropriately.
2783 */
2784 if (flags & RENAME_WHITEOUT) {
2785 error = xfs_rename_alloc_whiteout(mnt_userns, src_name,
2786 target_dp, &wip);
2787 if (error)
2788 return error;
2789
2790 /* setup target dirent info as whiteout */
2791 src_name->type = XFS_DIR3_FT_CHRDEV;
2792 }
2793
2794 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
2795 inodes, &num_inodes);
2796
2797retry:
2798 nospace_error = 0;
2799 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2800 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2801 if (error == -ENOSPC) {
2802 nospace_error = error;
2803 spaceres = 0;
2804 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2805 &tp);
2806 }
2807 if (error)
2808 goto out_release_wip;
2809
2810 /*
2811 * Attach the dquots to the inodes
2812 */
2813 error = xfs_qm_vop_rename_dqattach(inodes);
2814 if (error)
2815 goto out_trans_cancel;
2816
2817 /*
2818 * Lock all the participating inodes. Depending upon whether
2819 * the target_name exists in the target directory, and
2820 * whether the target directory is the same as the source
2821 * directory, we can lock from 2 to 5 inodes.
2822 */
2823 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2824
2825 /*
2826 * Join all the inodes to the transaction. From this point on,
2827 * we can rely on either trans_commit or trans_cancel to unlock
2828 * them.
2829 */
2830 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
2831 if (new_parent)
2832 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
2833 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2834 if (target_ip)
2835 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2836 if (wip)
2837 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
2838
2839 /*
2840 * If we are using project inheritance, we only allow renames
2841 * into our tree when the project IDs are the same; else the
2842 * tree quota mechanism would be circumvented.
2843 */
2844 if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
2845 target_dp->i_projid != src_ip->i_projid)) {
2846 error = -EXDEV;
2847 goto out_trans_cancel;
2848 }
2849
2850 /* RENAME_EXCHANGE is unique from here on. */
2851 if (flags & RENAME_EXCHANGE)
2852 return xfs_cross_rename(tp, src_dp, src_name, src_ip,
2853 target_dp, target_name, target_ip,
2854 spaceres);
2855
2856 /*
2857 * Try to reserve quota to handle an expansion of the target directory.
2858 * We'll allow the rename to continue in reservationless mode if we hit
2859 * a space usage constraint. If we trigger reservationless mode, save
2860 * the errno if there isn't any free space in the target directory.
2861 */
2862 if (spaceres != 0) {
2863 error = xfs_trans_reserve_quota_nblks(tp, target_dp, spaceres,
2864 0, false);
2865 if (error == -EDQUOT || error == -ENOSPC) {
2866 if (!retried) {
2867 xfs_trans_cancel(tp);
2868 xfs_blockgc_free_quota(target_dp, 0);
2869 retried = true;
2870 goto retry;
2871 }
2872
2873 nospace_error = error;
2874 spaceres = 0;
2875 error = 0;
2876 }
2877 if (error)
2878 goto out_trans_cancel;
2879 }
2880
2881 /*
2882 * Check for expected errors before we dirty the transaction
2883 * so we can return an error without a transaction abort.
2884 */
2885 if (target_ip == NULL) {
2886 /*
2887 * If there's no space reservation, check the entry will
2888 * fit before actually inserting it.
2889 */
2890 if (!spaceres) {
2891 error = xfs_dir_canenter(tp, target_dp, target_name);
2892 if (error)
2893 goto out_trans_cancel;
2894 }
2895 } else {
2896 /*
2897 * If target exists and it's a directory, check that whether
2898 * it can be destroyed.
2899 */
2900 if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
2901 (!xfs_dir_isempty(target_ip) ||
2902 (VFS_I(target_ip)->i_nlink > 2))) {
2903 error = -EEXIST;
2904 goto out_trans_cancel;
2905 }
2906 }
2907
2908 /*
2909 * Lock the AGI buffers we need to handle bumping the nlink of the
2910 * whiteout inode off the unlinked list and to handle dropping the
2911 * nlink of the target inode. Per locking order rules, do this in
2912 * increasing AG order and before directory block allocation tries to
2913 * grab AGFs because we grab AGIs before AGFs.
2914 *
2915 * The (vfs) caller must ensure that if src is a directory then
2916 * target_ip is either null or an empty directory.
2917 */
2918 for (i = 0; i < num_inodes && inodes[i] != NULL; i++) {
2919 if (inodes[i] == wip ||
2920 (inodes[i] == target_ip &&
2921 (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) {
2922 struct xfs_perag *pag;
2923 struct xfs_buf *bp;
2924
2925 pag = xfs_perag_get(mp,
2926 XFS_INO_TO_AGNO(mp, inodes[i]->i_ino));
2927 error = xfs_read_agi(pag, tp, &bp);
2928 xfs_perag_put(pag);
2929 if (error)
2930 goto out_trans_cancel;
2931 }
2932 }
2933
2934 /*
2935 * Directory entry creation below may acquire the AGF. Remove
2936 * the whiteout from the unlinked list first to preserve correct
2937 * AGI/AGF locking order. This dirties the transaction so failures
2938 * after this point will abort and log recovery will clean up the
2939 * mess.
2940 *
2941 * For whiteouts, we need to bump the link count on the whiteout
2942 * inode. After this point, we have a real link, clear the tmpfile
2943 * state flag from the inode so it doesn't accidentally get misused
2944 * in future.
2945 */
2946 if (wip) {
2947 struct xfs_perag *pag;
2948
2949 ASSERT(VFS_I(wip)->i_nlink == 0);
2950
2951 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, wip->i_ino));
2952 error = xfs_iunlink_remove(tp, pag, wip);
2953 xfs_perag_put(pag);
2954 if (error)
2955 goto out_trans_cancel;
2956
2957 xfs_bumplink(tp, wip);
2958 VFS_I(wip)->i_state &= ~I_LINKABLE;
2959 }
2960
2961 /*
2962 * Set up the target.
2963 */
2964 if (target_ip == NULL) {
2965 /*
2966 * If target does not exist and the rename crosses
2967 * directories, adjust the target directory link count
2968 * to account for the ".." reference from the new entry.
2969 */
2970 error = xfs_dir_createname(tp, target_dp, target_name,
2971 src_ip->i_ino, spaceres);
2972 if (error)
2973 goto out_trans_cancel;
2974
2975 xfs_trans_ichgtime(tp, target_dp,
2976 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2977
2978 if (new_parent && src_is_directory) {
2979 xfs_bumplink(tp, target_dp);
2980 }
2981 } else { /* target_ip != NULL */
2982 /*
2983 * Link the source inode under the target name.
2984 * If the source inode is a directory and we are moving
2985 * it across directories, its ".." entry will be
2986 * inconsistent until we replace that down below.
2987 *
2988 * In case there is already an entry with the same
2989 * name at the destination directory, remove it first.
2990 */
2991 error = xfs_dir_replace(tp, target_dp, target_name,
2992 src_ip->i_ino, spaceres);
2993 if (error)
2994 goto out_trans_cancel;
2995
2996 xfs_trans_ichgtime(tp, target_dp,
2997 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2998
2999 /*
3000 * Decrement the link count on the target since the target
3001 * dir no longer points to it.
3002 */
3003 error = xfs_droplink(tp, target_ip);
3004 if (error)
3005 goto out_trans_cancel;
3006
3007 if (src_is_directory) {
3008 /*
3009 * Drop the link from the old "." entry.
3010 */
3011 error = xfs_droplink(tp, target_ip);
3012 if (error)
3013 goto out_trans_cancel;
3014 }
3015 } /* target_ip != NULL */
3016
3017 /*
3018 * Remove the source.
3019 */
3020 if (new_parent && src_is_directory) {
3021 /*
3022 * Rewrite the ".." entry to point to the new
3023 * directory.
3024 */
3025 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3026 target_dp->i_ino, spaceres);
3027 ASSERT(error != -EEXIST);
3028 if (error)
3029 goto out_trans_cancel;
3030 }
3031
3032 /*
3033 * We always want to hit the ctime on the source inode.
3034 *
3035 * This isn't strictly required by the standards since the source
3036 * inode isn't really being changed, but old unix file systems did
3037 * it and some incremental backup programs won't work without it.
3038 */
3039 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3040 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3041
3042 /*
3043 * Adjust the link count on src_dp. This is necessary when
3044 * renaming a directory, either within one parent when
3045 * the target existed, or across two parent directories.
3046 */
3047 if (src_is_directory && (new_parent || target_ip != NULL)) {
3048
3049 /*
3050 * Decrement link count on src_directory since the
3051 * entry that's moved no longer points to it.
3052 */
3053 error = xfs_droplink(tp, src_dp);
3054 if (error)
3055 goto out_trans_cancel;
3056 }
3057
3058 /*
3059 * For whiteouts, we only need to update the source dirent with the
3060 * inode number of the whiteout inode rather than removing it
3061 * altogether.
3062 */
3063 if (wip)
3064 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3065 spaceres);
3066 else
3067 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3068 spaceres);
3069
3070 if (error)
3071 goto out_trans_cancel;
3072
3073 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3074 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3075 if (new_parent)
3076 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3077
3078 error = xfs_finish_rename(tp);
3079 if (wip)
3080 xfs_irele(wip);
3081 return error;
3082
3083out_trans_cancel:
3084 xfs_trans_cancel(tp);
3085out_release_wip:
3086 if (wip)
3087 xfs_irele(wip);
3088 if (error == -ENOSPC && nospace_error)
3089 error = nospace_error;
3090 return error;
3091}
3092
3093static int
3094xfs_iflush(
3095 struct xfs_inode *ip,
3096 struct xfs_buf *bp)
3097{
3098 struct xfs_inode_log_item *iip = ip->i_itemp;
3099 struct xfs_dinode *dip;
3100 struct xfs_mount *mp = ip->i_mount;
3101 int error;
3102
3103 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3104 ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
3105 ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
3106 ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3107 ASSERT(iip->ili_item.li_buf == bp);
3108
3109 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3110
3111 /*
3112 * We don't flush the inode if any of the following checks fail, but we
3113 * do still update the log item and attach to the backing buffer as if
3114 * the flush happened. This is a formality to facilitate predictable
3115 * error handling as the caller will shutdown and fail the buffer.
3116 */
3117 error = -EFSCORRUPTED;
3118 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3119 mp, XFS_ERRTAG_IFLUSH_1)) {
3120 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3121 "%s: Bad inode %llu magic number 0x%x, ptr "PTR_FMT,
3122 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3123 goto flush_out;
3124 }
3125 if (S_ISREG(VFS_I(ip)->i_mode)) {
3126 if (XFS_TEST_ERROR(
3127 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3128 ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
3129 mp, XFS_ERRTAG_IFLUSH_3)) {
3130 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3131 "%s: Bad regular inode %llu, ptr "PTR_FMT,
3132 __func__, ip->i_ino, ip);
3133 goto flush_out;
3134 }
3135 } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3136 if (XFS_TEST_ERROR(
3137 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3138 ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
3139 ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
3140 mp, XFS_ERRTAG_IFLUSH_4)) {
3141 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3142 "%s: Bad directory inode %llu, ptr "PTR_FMT,
3143 __func__, ip->i_ino, ip);
3144 goto flush_out;
3145 }
3146 }
3147 if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af) >
3148 ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3149 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3150 "%s: detected corrupt incore inode %llu, "
3151 "total extents = %llu nblocks = %lld, ptr "PTR_FMT,
3152 __func__, ip->i_ino,
3153 ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af),
3154 ip->i_nblocks, ip);
3155 goto flush_out;
3156 }
3157 if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize,
3158 mp, XFS_ERRTAG_IFLUSH_6)) {
3159 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3160 "%s: bad inode %llu, forkoff 0x%x, ptr "PTR_FMT,
3161 __func__, ip->i_ino, ip->i_forkoff, ip);
3162 goto flush_out;
3163 }
3164
3165 /*
3166 * Inode item log recovery for v2 inodes are dependent on the flushiter
3167 * count for correct sequencing. We bump the flush iteration count so
3168 * we can detect flushes which postdate a log record during recovery.
3169 * This is redundant as we now log every change and hence this can't
3170 * happen but we need to still do it to ensure backwards compatibility
3171 * with old kernels that predate logging all inode changes.
3172 */
3173 if (!xfs_has_v3inodes(mp))
3174 ip->i_flushiter++;
3175
3176 /*
3177 * If there are inline format data / attr forks attached to this inode,
3178 * make sure they are not corrupt.
3179 */
3180 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
3181 xfs_ifork_verify_local_data(ip))
3182 goto flush_out;
3183 if (xfs_inode_has_attr_fork(ip) &&
3184 ip->i_af.if_format == XFS_DINODE_FMT_LOCAL &&
3185 xfs_ifork_verify_local_attr(ip))
3186 goto flush_out;
3187
3188 /*
3189 * Copy the dirty parts of the inode into the on-disk inode. We always
3190 * copy out the core of the inode, because if the inode is dirty at all
3191 * the core must be.
3192 */
3193 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3194
3195 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3196 if (!xfs_has_v3inodes(mp)) {
3197 if (ip->i_flushiter == DI_MAX_FLUSH)
3198 ip->i_flushiter = 0;
3199 }
3200
3201 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3202 if (xfs_inode_has_attr_fork(ip))
3203 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3204
3205 /*
3206 * We've recorded everything logged in the inode, so we'd like to clear
3207 * the ili_fields bits so we don't log and flush things unnecessarily.
3208 * However, we can't stop logging all this information until the data
3209 * we've copied into the disk buffer is written to disk. If we did we
3210 * might overwrite the copy of the inode in the log with all the data
3211 * after re-logging only part of it, and in the face of a crash we
3212 * wouldn't have all the data we need to recover.
3213 *
3214 * What we do is move the bits to the ili_last_fields field. When
3215 * logging the inode, these bits are moved back to the ili_fields field.
3216 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
3217 * we know that the information those bits represent is permanently on
3218 * disk. As long as the flush completes before the inode is logged
3219 * again, then both ili_fields and ili_last_fields will be cleared.
3220 */
3221 error = 0;
3222flush_out:
3223 spin_lock(&iip->ili_lock);
3224 iip->ili_last_fields = iip->ili_fields;
3225 iip->ili_fields = 0;
3226 iip->ili_fsync_fields = 0;
3227 spin_unlock(&iip->ili_lock);
3228
3229 /*
3230 * Store the current LSN of the inode so that we can tell whether the
3231 * item has moved in the AIL from xfs_buf_inode_iodone().
3232 */
3233 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3234 &iip->ili_item.li_lsn);
3235
3236 /* generate the checksum. */
3237 xfs_dinode_calc_crc(mp, dip);
3238 return error;
3239}
3240
3241/*
3242 * Non-blocking flush of dirty inode metadata into the backing buffer.
3243 *
3244 * The caller must have a reference to the inode and hold the cluster buffer
3245 * locked. The function will walk across all the inodes on the cluster buffer it
3246 * can find and lock without blocking, and flush them to the cluster buffer.
3247 *
3248 * On successful flushing of at least one inode, the caller must write out the
3249 * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
3250 * the caller needs to release the buffer. On failure, the filesystem will be
3251 * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
3252 * will be returned.
3253 */
3254int
3255xfs_iflush_cluster(
3256 struct xfs_buf *bp)
3257{
3258 struct xfs_mount *mp = bp->b_mount;
3259 struct xfs_log_item *lip, *n;
3260 struct xfs_inode *ip;
3261 struct xfs_inode_log_item *iip;
3262 int clcount = 0;
3263 int error = 0;
3264
3265 /*
3266 * We must use the safe variant here as on shutdown xfs_iflush_abort()
3267 * will remove itself from the list.
3268 */
3269 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
3270 iip = (struct xfs_inode_log_item *)lip;
3271 ip = iip->ili_inode;
3272
3273 /*
3274 * Quick and dirty check to avoid locks if possible.
3275 */
3276 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
3277 continue;
3278 if (xfs_ipincount(ip))
3279 continue;
3280
3281 /*
3282 * The inode is still attached to the buffer, which means it is
3283 * dirty but reclaim might try to grab it. Check carefully for
3284 * that, and grab the ilock while still holding the i_flags_lock
3285 * to guarantee reclaim will not be able to reclaim this inode
3286 * once we drop the i_flags_lock.
3287 */
3288 spin_lock(&ip->i_flags_lock);
3289 ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
3290 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
3291 spin_unlock(&ip->i_flags_lock);
3292 continue;
3293 }
3294
3295 /*
3296 * ILOCK will pin the inode against reclaim and prevent
3297 * concurrent transactions modifying the inode while we are
3298 * flushing the inode. If we get the lock, set the flushing
3299 * state before we drop the i_flags_lock.
3300 */
3301 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
3302 spin_unlock(&ip->i_flags_lock);
3303 continue;
3304 }
3305 __xfs_iflags_set(ip, XFS_IFLUSHING);
3306 spin_unlock(&ip->i_flags_lock);
3307
3308 /*
3309 * Abort flushing this inode if we are shut down because the
3310 * inode may not currently be in the AIL. This can occur when
3311 * log I/O failure unpins the inode without inserting into the
3312 * AIL, leaving a dirty/unpinned inode attached to the buffer
3313 * that otherwise looks like it should be flushed.
3314 */
3315 if (xlog_is_shutdown(mp->m_log)) {
3316 xfs_iunpin_wait(ip);
3317 xfs_iflush_abort(ip);
3318 xfs_iunlock(ip, XFS_ILOCK_SHARED);
3319 error = -EIO;
3320 continue;
3321 }
3322
3323 /* don't block waiting on a log force to unpin dirty inodes */
3324 if (xfs_ipincount(ip)) {
3325 xfs_iflags_clear(ip, XFS_IFLUSHING);
3326 xfs_iunlock(ip, XFS_ILOCK_SHARED);
3327 continue;
3328 }
3329
3330 if (!xfs_inode_clean(ip))
3331 error = xfs_iflush(ip, bp);
3332 else
3333 xfs_iflags_clear(ip, XFS_IFLUSHING);
3334 xfs_iunlock(ip, XFS_ILOCK_SHARED);
3335 if (error)
3336 break;
3337 clcount++;
3338 }
3339
3340 if (error) {
3341 /*
3342 * Shutdown first so we kill the log before we release this
3343 * buffer. If it is an INODE_ALLOC buffer and pins the tail
3344 * of the log, failing it before the _log_ is shut down can
3345 * result in the log tail being moved forward in the journal
3346 * on disk because log writes can still be taking place. Hence
3347 * unpinning the tail will allow the ICREATE intent to be
3348 * removed from the log an recovery will fail with uninitialised
3349 * inode cluster buffers.
3350 */
3351 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3352 bp->b_flags |= XBF_ASYNC;
3353 xfs_buf_ioend_fail(bp);
3354 return error;
3355 }
3356
3357 if (!clcount)
3358 return -EAGAIN;
3359
3360 XFS_STATS_INC(mp, xs_icluster_flushcnt);
3361 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3362 return 0;
3363
3364}
3365
3366/* Release an inode. */
3367void
3368xfs_irele(
3369 struct xfs_inode *ip)
3370{
3371 trace_xfs_irele(ip, _RET_IP_);
3372 iput(VFS_I(ip));
3373}
3374
3375/*
3376 * Ensure all commited transactions touching the inode are written to the log.
3377 */
3378int
3379xfs_log_force_inode(
3380 struct xfs_inode *ip)
3381{
3382 xfs_csn_t seq = 0;
3383
3384 xfs_ilock(ip, XFS_ILOCK_SHARED);
3385 if (xfs_ipincount(ip))
3386 seq = ip->i_itemp->ili_commit_seq;
3387 xfs_iunlock(ip, XFS_ILOCK_SHARED);
3388
3389 if (!seq)
3390 return 0;
3391 return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL);
3392}
3393
3394/*
3395 * Grab the exclusive iolock for a data copy from src to dest, making sure to
3396 * abide vfs locking order (lowest pointer value goes first) and breaking the
3397 * layout leases before proceeding. The loop is needed because we cannot call
3398 * the blocking break_layout() with the iolocks held, and therefore have to
3399 * back out both locks.
3400 */
3401static int
3402xfs_iolock_two_inodes_and_break_layout(
3403 struct inode *src,
3404 struct inode *dest)
3405{
3406 int error;
3407
3408 if (src > dest)
3409 swap(src, dest);
3410
3411retry:
3412 /* Wait to break both inodes' layouts before we start locking. */
3413 error = break_layout(src, true);
3414 if (error)
3415 return error;
3416 if (src != dest) {
3417 error = break_layout(dest, true);
3418 if (error)
3419 return error;
3420 }
3421
3422 /* Lock one inode and make sure nobody got in and leased it. */
3423 inode_lock(src);
3424 error = break_layout(src, false);
3425 if (error) {
3426 inode_unlock(src);
3427 if (error == -EWOULDBLOCK)
3428 goto retry;
3429 return error;
3430 }
3431
3432 if (src == dest)
3433 return 0;
3434
3435 /* Lock the other inode and make sure nobody got in and leased it. */
3436 inode_lock_nested(dest, I_MUTEX_NONDIR2);
3437 error = break_layout(dest, false);
3438 if (error) {
3439 inode_unlock(src);
3440 inode_unlock(dest);
3441 if (error == -EWOULDBLOCK)
3442 goto retry;
3443 return error;
3444 }
3445
3446 return 0;
3447}
3448
3449static int
3450xfs_mmaplock_two_inodes_and_break_dax_layout(
3451 struct xfs_inode *ip1,
3452 struct xfs_inode *ip2)
3453{
3454 int error;
3455 bool retry;
3456 struct page *page;
3457
3458 if (ip1->i_ino > ip2->i_ino)
3459 swap(ip1, ip2);
3460
3461again:
3462 retry = false;
3463 /* Lock the first inode */
3464 xfs_ilock(ip1, XFS_MMAPLOCK_EXCL);
3465 error = xfs_break_dax_layouts(VFS_I(ip1), &retry);
3466 if (error || retry) {
3467 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3468 if (error == 0 && retry)
3469 goto again;
3470 return error;
3471 }
3472
3473 if (ip1 == ip2)
3474 return 0;
3475
3476 /* Nested lock the second inode */
3477 xfs_ilock(ip2, xfs_lock_inumorder(XFS_MMAPLOCK_EXCL, 1));
3478 /*
3479 * We cannot use xfs_break_dax_layouts() directly here because it may
3480 * need to unlock & lock the XFS_MMAPLOCK_EXCL which is not suitable
3481 * for this nested lock case.
3482 */
3483 page = dax_layout_busy_page(VFS_I(ip2)->i_mapping);
3484 if (page && page_ref_count(page) != 1) {
3485 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3486 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3487 goto again;
3488 }
3489
3490 return 0;
3491}
3492
3493/*
3494 * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
3495 * mmap activity.
3496 */
3497int
3498xfs_ilock2_io_mmap(
3499 struct xfs_inode *ip1,
3500 struct xfs_inode *ip2)
3501{
3502 int ret;
3503
3504 ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
3505 if (ret)
3506 return ret;
3507
3508 if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
3509 ret = xfs_mmaplock_two_inodes_and_break_dax_layout(ip1, ip2);
3510 if (ret) {
3511 inode_unlock(VFS_I(ip2));
3512 if (ip1 != ip2)
3513 inode_unlock(VFS_I(ip1));
3514 return ret;
3515 }
3516 } else
3517 filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping,
3518 VFS_I(ip2)->i_mapping);
3519
3520 return 0;
3521}
3522
3523/* Unlock both inodes to allow IO and mmap activity. */
3524void
3525xfs_iunlock2_io_mmap(
3526 struct xfs_inode *ip1,
3527 struct xfs_inode *ip2)
3528{
3529 if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
3530 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3531 if (ip1 != ip2)
3532 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3533 } else
3534 filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping,
3535 VFS_I(ip2)->i_mapping);
3536
3537 inode_unlock(VFS_I(ip2));
3538 if (ip1 != ip2)
3539 inode_unlock(VFS_I(ip1));
3540}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include <linux/iversion.h>
7
8#include "xfs.h"
9#include "xfs_fs.h"
10#include "xfs_shared.h"
11#include "xfs_format.h"
12#include "xfs_log_format.h"
13#include "xfs_trans_resv.h"
14#include "xfs_mount.h"
15#include "xfs_defer.h"
16#include "xfs_inode.h"
17#include "xfs_dir2.h"
18#include "xfs_attr.h"
19#include "xfs_trans_space.h"
20#include "xfs_trans.h"
21#include "xfs_buf_item.h"
22#include "xfs_inode_item.h"
23#include "xfs_iunlink_item.h"
24#include "xfs_ialloc.h"
25#include "xfs_bmap.h"
26#include "xfs_bmap_util.h"
27#include "xfs_errortag.h"
28#include "xfs_error.h"
29#include "xfs_quota.h"
30#include "xfs_filestream.h"
31#include "xfs_trace.h"
32#include "xfs_icache.h"
33#include "xfs_symlink.h"
34#include "xfs_trans_priv.h"
35#include "xfs_log.h"
36#include "xfs_bmap_btree.h"
37#include "xfs_reflink.h"
38#include "xfs_ag.h"
39#include "xfs_log_priv.h"
40#include "xfs_health.h"
41
42struct kmem_cache *xfs_inode_cache;
43
44STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
45STATIC int xfs_iunlink_remove(struct xfs_trans *tp, struct xfs_perag *pag,
46 struct xfs_inode *);
47
48/*
49 * helper function to extract extent size hint from inode
50 */
51xfs_extlen_t
52xfs_get_extsz_hint(
53 struct xfs_inode *ip)
54{
55 /*
56 * No point in aligning allocations if we need to COW to actually
57 * write to them.
58 */
59 if (xfs_is_always_cow_inode(ip))
60 return 0;
61 if ((ip->i_diflags & XFS_DIFLAG_EXTSIZE) && ip->i_extsize)
62 return ip->i_extsize;
63 if (XFS_IS_REALTIME_INODE(ip))
64 return ip->i_mount->m_sb.sb_rextsize;
65 return 0;
66}
67
68/*
69 * Helper function to extract CoW extent size hint from inode.
70 * Between the extent size hint and the CoW extent size hint, we
71 * return the greater of the two. If the value is zero (automatic),
72 * use the default size.
73 */
74xfs_extlen_t
75xfs_get_cowextsz_hint(
76 struct xfs_inode *ip)
77{
78 xfs_extlen_t a, b;
79
80 a = 0;
81 if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
82 a = ip->i_cowextsize;
83 b = xfs_get_extsz_hint(ip);
84
85 a = max(a, b);
86 if (a == 0)
87 return XFS_DEFAULT_COWEXTSZ_HINT;
88 return a;
89}
90
91/*
92 * These two are wrapper routines around the xfs_ilock() routine used to
93 * centralize some grungy code. They are used in places that wish to lock the
94 * inode solely for reading the extents. The reason these places can't just
95 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
96 * bringing in of the extents from disk for a file in b-tree format. If the
97 * inode is in b-tree format, then we need to lock the inode exclusively until
98 * the extents are read in. Locking it exclusively all the time would limit
99 * our parallelism unnecessarily, though. What we do instead is check to see
100 * if the extents have been read in yet, and only lock the inode exclusively
101 * if they have not.
102 *
103 * The functions return a value which should be given to the corresponding
104 * xfs_iunlock() call.
105 */
106uint
107xfs_ilock_data_map_shared(
108 struct xfs_inode *ip)
109{
110 uint lock_mode = XFS_ILOCK_SHARED;
111
112 if (xfs_need_iread_extents(&ip->i_df))
113 lock_mode = XFS_ILOCK_EXCL;
114 xfs_ilock(ip, lock_mode);
115 return lock_mode;
116}
117
118uint
119xfs_ilock_attr_map_shared(
120 struct xfs_inode *ip)
121{
122 uint lock_mode = XFS_ILOCK_SHARED;
123
124 if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af))
125 lock_mode = XFS_ILOCK_EXCL;
126 xfs_ilock(ip, lock_mode);
127 return lock_mode;
128}
129
130/*
131 * You can't set both SHARED and EXCL for the same lock,
132 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_MMAPLOCK_SHARED,
133 * XFS_MMAPLOCK_EXCL, XFS_ILOCK_SHARED, XFS_ILOCK_EXCL are valid values
134 * to set in lock_flags.
135 */
136static inline void
137xfs_lock_flags_assert(
138 uint lock_flags)
139{
140 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
141 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
142 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
143 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
144 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
145 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
146 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
147 ASSERT(lock_flags != 0);
148}
149
150/*
151 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
152 * multi-reader locks: invalidate_lock and the i_lock. This routine allows
153 * various combinations of the locks to be obtained.
154 *
155 * The 3 locks should always be ordered so that the IO lock is obtained first,
156 * the mmap lock second and the ilock last in order to prevent deadlock.
157 *
158 * Basic locking order:
159 *
160 * i_rwsem -> invalidate_lock -> page_lock -> i_ilock
161 *
162 * mmap_lock locking order:
163 *
164 * i_rwsem -> page lock -> mmap_lock
165 * mmap_lock -> invalidate_lock -> page_lock
166 *
167 * The difference in mmap_lock locking order mean that we cannot hold the
168 * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths
169 * can fault in pages during copy in/out (for buffered IO) or require the
170 * mmap_lock in get_user_pages() to map the user pages into the kernel address
171 * space for direct IO. Similarly the i_rwsem cannot be taken inside a page
172 * fault because page faults already hold the mmap_lock.
173 *
174 * Hence to serialise fully against both syscall and mmap based IO, we need to
175 * take both the i_rwsem and the invalidate_lock. These locks should *only* be
176 * both taken in places where we need to invalidate the page cache in a race
177 * free manner (e.g. truncate, hole punch and other extent manipulation
178 * functions).
179 */
180void
181xfs_ilock(
182 xfs_inode_t *ip,
183 uint lock_flags)
184{
185 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
186
187 xfs_lock_flags_assert(lock_flags);
188
189 if (lock_flags & XFS_IOLOCK_EXCL) {
190 down_write_nested(&VFS_I(ip)->i_rwsem,
191 XFS_IOLOCK_DEP(lock_flags));
192 } else if (lock_flags & XFS_IOLOCK_SHARED) {
193 down_read_nested(&VFS_I(ip)->i_rwsem,
194 XFS_IOLOCK_DEP(lock_flags));
195 }
196
197 if (lock_flags & XFS_MMAPLOCK_EXCL) {
198 down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
199 XFS_MMAPLOCK_DEP(lock_flags));
200 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
201 down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
202 XFS_MMAPLOCK_DEP(lock_flags));
203 }
204
205 if (lock_flags & XFS_ILOCK_EXCL)
206 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
207 else if (lock_flags & XFS_ILOCK_SHARED)
208 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
209}
210
211/*
212 * This is just like xfs_ilock(), except that the caller
213 * is guaranteed not to sleep. It returns 1 if it gets
214 * the requested locks and 0 otherwise. If the IO lock is
215 * obtained but the inode lock cannot be, then the IO lock
216 * is dropped before returning.
217 *
218 * ip -- the inode being locked
219 * lock_flags -- this parameter indicates the inode's locks to be
220 * to be locked. See the comment for xfs_ilock() for a list
221 * of valid values.
222 */
223int
224xfs_ilock_nowait(
225 xfs_inode_t *ip,
226 uint lock_flags)
227{
228 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
229
230 xfs_lock_flags_assert(lock_flags);
231
232 if (lock_flags & XFS_IOLOCK_EXCL) {
233 if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
234 goto out;
235 } else if (lock_flags & XFS_IOLOCK_SHARED) {
236 if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
237 goto out;
238 }
239
240 if (lock_flags & XFS_MMAPLOCK_EXCL) {
241 if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
242 goto out_undo_iolock;
243 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
244 if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
245 goto out_undo_iolock;
246 }
247
248 if (lock_flags & XFS_ILOCK_EXCL) {
249 if (!mrtryupdate(&ip->i_lock))
250 goto out_undo_mmaplock;
251 } else if (lock_flags & XFS_ILOCK_SHARED) {
252 if (!mrtryaccess(&ip->i_lock))
253 goto out_undo_mmaplock;
254 }
255 return 1;
256
257out_undo_mmaplock:
258 if (lock_flags & XFS_MMAPLOCK_EXCL)
259 up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
260 else if (lock_flags & XFS_MMAPLOCK_SHARED)
261 up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
262out_undo_iolock:
263 if (lock_flags & XFS_IOLOCK_EXCL)
264 up_write(&VFS_I(ip)->i_rwsem);
265 else if (lock_flags & XFS_IOLOCK_SHARED)
266 up_read(&VFS_I(ip)->i_rwsem);
267out:
268 return 0;
269}
270
271/*
272 * xfs_iunlock() is used to drop the inode locks acquired with
273 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
274 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
275 * that we know which locks to drop.
276 *
277 * ip -- the inode being unlocked
278 * lock_flags -- this parameter indicates the inode's locks to be
279 * to be unlocked. See the comment for xfs_ilock() for a list
280 * of valid values for this parameter.
281 *
282 */
283void
284xfs_iunlock(
285 xfs_inode_t *ip,
286 uint lock_flags)
287{
288 xfs_lock_flags_assert(lock_flags);
289
290 if (lock_flags & XFS_IOLOCK_EXCL)
291 up_write(&VFS_I(ip)->i_rwsem);
292 else if (lock_flags & XFS_IOLOCK_SHARED)
293 up_read(&VFS_I(ip)->i_rwsem);
294
295 if (lock_flags & XFS_MMAPLOCK_EXCL)
296 up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
297 else if (lock_flags & XFS_MMAPLOCK_SHARED)
298 up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
299
300 if (lock_flags & XFS_ILOCK_EXCL)
301 mrunlock_excl(&ip->i_lock);
302 else if (lock_flags & XFS_ILOCK_SHARED)
303 mrunlock_shared(&ip->i_lock);
304
305 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
306}
307
308/*
309 * give up write locks. the i/o lock cannot be held nested
310 * if it is being demoted.
311 */
312void
313xfs_ilock_demote(
314 xfs_inode_t *ip,
315 uint lock_flags)
316{
317 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
318 ASSERT((lock_flags &
319 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
320
321 if (lock_flags & XFS_ILOCK_EXCL)
322 mrdemote(&ip->i_lock);
323 if (lock_flags & XFS_MMAPLOCK_EXCL)
324 downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock);
325 if (lock_flags & XFS_IOLOCK_EXCL)
326 downgrade_write(&VFS_I(ip)->i_rwsem);
327
328 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
329}
330
331#if defined(DEBUG) || defined(XFS_WARN)
332static inline bool
333__xfs_rwsem_islocked(
334 struct rw_semaphore *rwsem,
335 bool shared)
336{
337 if (!debug_locks)
338 return rwsem_is_locked(rwsem);
339
340 if (!shared)
341 return lockdep_is_held_type(rwsem, 0);
342
343 /*
344 * We are checking that the lock is held at least in shared
345 * mode but don't care that it might be held exclusively
346 * (i.e. shared | excl). Hence we check if the lock is held
347 * in any mode rather than an explicit shared mode.
348 */
349 return lockdep_is_held_type(rwsem, -1);
350}
351
352bool
353xfs_isilocked(
354 struct xfs_inode *ip,
355 uint lock_flags)
356{
357 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
358 if (!(lock_flags & XFS_ILOCK_SHARED))
359 return !!ip->i_lock.mr_writer;
360 return rwsem_is_locked(&ip->i_lock.mr_lock);
361 }
362
363 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
364 return __xfs_rwsem_islocked(&VFS_I(ip)->i_mapping->invalidate_lock,
365 (lock_flags & XFS_MMAPLOCK_SHARED));
366 }
367
368 if (lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) {
369 return __xfs_rwsem_islocked(&VFS_I(ip)->i_rwsem,
370 (lock_flags & XFS_IOLOCK_SHARED));
371 }
372
373 ASSERT(0);
374 return false;
375}
376#endif
377
378/*
379 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
380 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
381 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
382 * errors and warnings.
383 */
384#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
385static bool
386xfs_lockdep_subclass_ok(
387 int subclass)
388{
389 return subclass < MAX_LOCKDEP_SUBCLASSES;
390}
391#else
392#define xfs_lockdep_subclass_ok(subclass) (true)
393#endif
394
395/*
396 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
397 * value. This can be called for any type of inode lock combination, including
398 * parent locking. Care must be taken to ensure we don't overrun the subclass
399 * storage fields in the class mask we build.
400 */
401static inline uint
402xfs_lock_inumorder(
403 uint lock_mode,
404 uint subclass)
405{
406 uint class = 0;
407
408 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
409 XFS_ILOCK_RTSUM)));
410 ASSERT(xfs_lockdep_subclass_ok(subclass));
411
412 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
413 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
414 class += subclass << XFS_IOLOCK_SHIFT;
415 }
416
417 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
418 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
419 class += subclass << XFS_MMAPLOCK_SHIFT;
420 }
421
422 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
423 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
424 class += subclass << XFS_ILOCK_SHIFT;
425 }
426
427 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
428}
429
430/*
431 * The following routine will lock n inodes in exclusive mode. We assume the
432 * caller calls us with the inodes in i_ino order.
433 *
434 * We need to detect deadlock where an inode that we lock is in the AIL and we
435 * start waiting for another inode that is locked by a thread in a long running
436 * transaction (such as truncate). This can result in deadlock since the long
437 * running trans might need to wait for the inode we just locked in order to
438 * push the tail and free space in the log.
439 *
440 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
441 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
442 * lock more than one at a time, lockdep will report false positives saying we
443 * have violated locking orders.
444 */
445static void
446xfs_lock_inodes(
447 struct xfs_inode **ips,
448 int inodes,
449 uint lock_mode)
450{
451 int attempts = 0;
452 uint i;
453 int j;
454 bool try_lock;
455 struct xfs_log_item *lp;
456
457 /*
458 * Currently supports between 2 and 5 inodes with exclusive locking. We
459 * support an arbitrary depth of locking here, but absolute limits on
460 * inodes depend on the type of locking and the limits placed by
461 * lockdep annotations in xfs_lock_inumorder. These are all checked by
462 * the asserts.
463 */
464 ASSERT(ips && inodes >= 2 && inodes <= 5);
465 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
466 XFS_ILOCK_EXCL));
467 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
468 XFS_ILOCK_SHARED)));
469 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
470 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
471 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
472 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
473
474 if (lock_mode & XFS_IOLOCK_EXCL) {
475 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
476 } else if (lock_mode & XFS_MMAPLOCK_EXCL)
477 ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
478
479again:
480 try_lock = false;
481 i = 0;
482 for (; i < inodes; i++) {
483 ASSERT(ips[i]);
484
485 if (i && (ips[i] == ips[i - 1])) /* Already locked */
486 continue;
487
488 /*
489 * If try_lock is not set yet, make sure all locked inodes are
490 * not in the AIL. If any are, set try_lock to be used later.
491 */
492 if (!try_lock) {
493 for (j = (i - 1); j >= 0 && !try_lock; j--) {
494 lp = &ips[j]->i_itemp->ili_item;
495 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
496 try_lock = true;
497 }
498 }
499
500 /*
501 * If any of the previous locks we have locked is in the AIL,
502 * we must TRY to get the second and subsequent locks. If
503 * we can't get any, we must release all we have
504 * and try again.
505 */
506 if (!try_lock) {
507 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
508 continue;
509 }
510
511 /* try_lock means we have an inode locked that is in the AIL. */
512 ASSERT(i != 0);
513 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
514 continue;
515
516 /*
517 * Unlock all previous guys and try again. xfs_iunlock will try
518 * to push the tail if the inode is in the AIL.
519 */
520 attempts++;
521 for (j = i - 1; j >= 0; j--) {
522 /*
523 * Check to see if we've already unlocked this one. Not
524 * the first one going back, and the inode ptr is the
525 * same.
526 */
527 if (j != (i - 1) && ips[j] == ips[j + 1])
528 continue;
529
530 xfs_iunlock(ips[j], lock_mode);
531 }
532
533 if ((attempts % 5) == 0) {
534 delay(1); /* Don't just spin the CPU */
535 }
536 goto again;
537 }
538}
539
540/*
541 * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and
542 * mmaplock must be double-locked separately since we use i_rwsem and
543 * invalidate_lock for that. We now support taking one lock EXCL and the
544 * other SHARED.
545 */
546void
547xfs_lock_two_inodes(
548 struct xfs_inode *ip0,
549 uint ip0_mode,
550 struct xfs_inode *ip1,
551 uint ip1_mode)
552{
553 int attempts = 0;
554 struct xfs_log_item *lp;
555
556 ASSERT(hweight32(ip0_mode) == 1);
557 ASSERT(hweight32(ip1_mode) == 1);
558 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
559 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
560 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
561 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
562 ASSERT(ip0->i_ino != ip1->i_ino);
563
564 if (ip0->i_ino > ip1->i_ino) {
565 swap(ip0, ip1);
566 swap(ip0_mode, ip1_mode);
567 }
568
569 again:
570 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
571
572 /*
573 * If the first lock we have locked is in the AIL, we must TRY to get
574 * the second lock. If we can't get it, we must release the first one
575 * and try again.
576 */
577 lp = &ip0->i_itemp->ili_item;
578 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
579 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
580 xfs_iunlock(ip0, ip0_mode);
581 if ((++attempts % 5) == 0)
582 delay(1); /* Don't just spin the CPU */
583 goto again;
584 }
585 } else {
586 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
587 }
588}
589
590uint
591xfs_ip2xflags(
592 struct xfs_inode *ip)
593{
594 uint flags = 0;
595
596 if (ip->i_diflags & XFS_DIFLAG_ANY) {
597 if (ip->i_diflags & XFS_DIFLAG_REALTIME)
598 flags |= FS_XFLAG_REALTIME;
599 if (ip->i_diflags & XFS_DIFLAG_PREALLOC)
600 flags |= FS_XFLAG_PREALLOC;
601 if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE)
602 flags |= FS_XFLAG_IMMUTABLE;
603 if (ip->i_diflags & XFS_DIFLAG_APPEND)
604 flags |= FS_XFLAG_APPEND;
605 if (ip->i_diflags & XFS_DIFLAG_SYNC)
606 flags |= FS_XFLAG_SYNC;
607 if (ip->i_diflags & XFS_DIFLAG_NOATIME)
608 flags |= FS_XFLAG_NOATIME;
609 if (ip->i_diflags & XFS_DIFLAG_NODUMP)
610 flags |= FS_XFLAG_NODUMP;
611 if (ip->i_diflags & XFS_DIFLAG_RTINHERIT)
612 flags |= FS_XFLAG_RTINHERIT;
613 if (ip->i_diflags & XFS_DIFLAG_PROJINHERIT)
614 flags |= FS_XFLAG_PROJINHERIT;
615 if (ip->i_diflags & XFS_DIFLAG_NOSYMLINKS)
616 flags |= FS_XFLAG_NOSYMLINKS;
617 if (ip->i_diflags & XFS_DIFLAG_EXTSIZE)
618 flags |= FS_XFLAG_EXTSIZE;
619 if (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT)
620 flags |= FS_XFLAG_EXTSZINHERIT;
621 if (ip->i_diflags & XFS_DIFLAG_NODEFRAG)
622 flags |= FS_XFLAG_NODEFRAG;
623 if (ip->i_diflags & XFS_DIFLAG_FILESTREAM)
624 flags |= FS_XFLAG_FILESTREAM;
625 }
626
627 if (ip->i_diflags2 & XFS_DIFLAG2_ANY) {
628 if (ip->i_diflags2 & XFS_DIFLAG2_DAX)
629 flags |= FS_XFLAG_DAX;
630 if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
631 flags |= FS_XFLAG_COWEXTSIZE;
632 }
633
634 if (xfs_inode_has_attr_fork(ip))
635 flags |= FS_XFLAG_HASATTR;
636 return flags;
637}
638
639/*
640 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
641 * is allowed, otherwise it has to be an exact match. If a CI match is found,
642 * ci_name->name will point to a the actual name (caller must free) or
643 * will be set to NULL if an exact match is found.
644 */
645int
646xfs_lookup(
647 struct xfs_inode *dp,
648 const struct xfs_name *name,
649 struct xfs_inode **ipp,
650 struct xfs_name *ci_name)
651{
652 xfs_ino_t inum;
653 int error;
654
655 trace_xfs_lookup(dp, name);
656
657 if (xfs_is_shutdown(dp->i_mount))
658 return -EIO;
659 if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
660 return -EIO;
661
662 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
663 if (error)
664 goto out_unlock;
665
666 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
667 if (error)
668 goto out_free_name;
669
670 return 0;
671
672out_free_name:
673 if (ci_name)
674 kmem_free(ci_name->name);
675out_unlock:
676 *ipp = NULL;
677 return error;
678}
679
680/* Propagate di_flags from a parent inode to a child inode. */
681static void
682xfs_inode_inherit_flags(
683 struct xfs_inode *ip,
684 const struct xfs_inode *pip)
685{
686 unsigned int di_flags = 0;
687 xfs_failaddr_t failaddr;
688 umode_t mode = VFS_I(ip)->i_mode;
689
690 if (S_ISDIR(mode)) {
691 if (pip->i_diflags & XFS_DIFLAG_RTINHERIT)
692 di_flags |= XFS_DIFLAG_RTINHERIT;
693 if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
694 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
695 ip->i_extsize = pip->i_extsize;
696 }
697 if (pip->i_diflags & XFS_DIFLAG_PROJINHERIT)
698 di_flags |= XFS_DIFLAG_PROJINHERIT;
699 } else if (S_ISREG(mode)) {
700 if ((pip->i_diflags & XFS_DIFLAG_RTINHERIT) &&
701 xfs_has_realtime(ip->i_mount))
702 di_flags |= XFS_DIFLAG_REALTIME;
703 if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
704 di_flags |= XFS_DIFLAG_EXTSIZE;
705 ip->i_extsize = pip->i_extsize;
706 }
707 }
708 if ((pip->i_diflags & XFS_DIFLAG_NOATIME) &&
709 xfs_inherit_noatime)
710 di_flags |= XFS_DIFLAG_NOATIME;
711 if ((pip->i_diflags & XFS_DIFLAG_NODUMP) &&
712 xfs_inherit_nodump)
713 di_flags |= XFS_DIFLAG_NODUMP;
714 if ((pip->i_diflags & XFS_DIFLAG_SYNC) &&
715 xfs_inherit_sync)
716 di_flags |= XFS_DIFLAG_SYNC;
717 if ((pip->i_diflags & XFS_DIFLAG_NOSYMLINKS) &&
718 xfs_inherit_nosymlinks)
719 di_flags |= XFS_DIFLAG_NOSYMLINKS;
720 if ((pip->i_diflags & XFS_DIFLAG_NODEFRAG) &&
721 xfs_inherit_nodefrag)
722 di_flags |= XFS_DIFLAG_NODEFRAG;
723 if (pip->i_diflags & XFS_DIFLAG_FILESTREAM)
724 di_flags |= XFS_DIFLAG_FILESTREAM;
725
726 ip->i_diflags |= di_flags;
727
728 /*
729 * Inode verifiers on older kernels only check that the extent size
730 * hint is an integer multiple of the rt extent size on realtime files.
731 * They did not check the hint alignment on a directory with both
732 * rtinherit and extszinherit flags set. If the misaligned hint is
733 * propagated from a directory into a new realtime file, new file
734 * allocations will fail due to math errors in the rt allocator and/or
735 * trip the verifiers. Validate the hint settings in the new file so
736 * that we don't let broken hints propagate.
737 */
738 failaddr = xfs_inode_validate_extsize(ip->i_mount, ip->i_extsize,
739 VFS_I(ip)->i_mode, ip->i_diflags);
740 if (failaddr) {
741 ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE |
742 XFS_DIFLAG_EXTSZINHERIT);
743 ip->i_extsize = 0;
744 }
745}
746
747/* Propagate di_flags2 from a parent inode to a child inode. */
748static void
749xfs_inode_inherit_flags2(
750 struct xfs_inode *ip,
751 const struct xfs_inode *pip)
752{
753 xfs_failaddr_t failaddr;
754
755 if (pip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) {
756 ip->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE;
757 ip->i_cowextsize = pip->i_cowextsize;
758 }
759 if (pip->i_diflags2 & XFS_DIFLAG2_DAX)
760 ip->i_diflags2 |= XFS_DIFLAG2_DAX;
761
762 /* Don't let invalid cowextsize hints propagate. */
763 failaddr = xfs_inode_validate_cowextsize(ip->i_mount, ip->i_cowextsize,
764 VFS_I(ip)->i_mode, ip->i_diflags, ip->i_diflags2);
765 if (failaddr) {
766 ip->i_diflags2 &= ~XFS_DIFLAG2_COWEXTSIZE;
767 ip->i_cowextsize = 0;
768 }
769}
770
771/*
772 * Initialise a newly allocated inode and return the in-core inode to the
773 * caller locked exclusively.
774 */
775int
776xfs_init_new_inode(
777 struct mnt_idmap *idmap,
778 struct xfs_trans *tp,
779 struct xfs_inode *pip,
780 xfs_ino_t ino,
781 umode_t mode,
782 xfs_nlink_t nlink,
783 dev_t rdev,
784 prid_t prid,
785 bool init_xattrs,
786 struct xfs_inode **ipp)
787{
788 struct inode *dir = pip ? VFS_I(pip) : NULL;
789 struct xfs_mount *mp = tp->t_mountp;
790 struct xfs_inode *ip;
791 unsigned int flags;
792 int error;
793 struct timespec64 tv;
794 struct inode *inode;
795
796 /*
797 * Protect against obviously corrupt allocation btree records. Later
798 * xfs_iget checks will catch re-allocation of other active in-memory
799 * and on-disk inodes. If we don't catch reallocating the parent inode
800 * here we will deadlock in xfs_iget() so we have to do these checks
801 * first.
802 */
803 if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
804 xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
805 return -EFSCORRUPTED;
806 }
807
808 /*
809 * Get the in-core inode with the lock held exclusively to prevent
810 * others from looking at until we're done.
811 */
812 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
813 if (error)
814 return error;
815
816 ASSERT(ip != NULL);
817 inode = VFS_I(ip);
818 set_nlink(inode, nlink);
819 inode->i_rdev = rdev;
820 ip->i_projid = prid;
821
822 if (dir && !(dir->i_mode & S_ISGID) && xfs_has_grpid(mp)) {
823 inode_fsuid_set(inode, idmap);
824 inode->i_gid = dir->i_gid;
825 inode->i_mode = mode;
826 } else {
827 inode_init_owner(idmap, inode, dir, mode);
828 }
829
830 /*
831 * If the group ID of the new file does not match the effective group
832 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
833 * (and only if the irix_sgid_inherit compatibility variable is set).
834 */
835 if (irix_sgid_inherit && (inode->i_mode & S_ISGID) &&
836 !vfsgid_in_group_p(i_gid_into_vfsgid(idmap, inode)))
837 inode->i_mode &= ~S_ISGID;
838
839 ip->i_disk_size = 0;
840 ip->i_df.if_nextents = 0;
841 ASSERT(ip->i_nblocks == 0);
842
843 tv = inode_set_ctime_current(inode);
844 inode_set_mtime_to_ts(inode, tv);
845 inode_set_atime_to_ts(inode, tv);
846
847 ip->i_extsize = 0;
848 ip->i_diflags = 0;
849
850 if (xfs_has_v3inodes(mp)) {
851 inode_set_iversion(inode, 1);
852 ip->i_cowextsize = 0;
853 ip->i_crtime = tv;
854 }
855
856 flags = XFS_ILOG_CORE;
857 switch (mode & S_IFMT) {
858 case S_IFIFO:
859 case S_IFCHR:
860 case S_IFBLK:
861 case S_IFSOCK:
862 ip->i_df.if_format = XFS_DINODE_FMT_DEV;
863 flags |= XFS_ILOG_DEV;
864 break;
865 case S_IFREG:
866 case S_IFDIR:
867 if (pip && (pip->i_diflags & XFS_DIFLAG_ANY))
868 xfs_inode_inherit_flags(ip, pip);
869 if (pip && (pip->i_diflags2 & XFS_DIFLAG2_ANY))
870 xfs_inode_inherit_flags2(ip, pip);
871 fallthrough;
872 case S_IFLNK:
873 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
874 ip->i_df.if_bytes = 0;
875 ip->i_df.if_data = NULL;
876 break;
877 default:
878 ASSERT(0);
879 }
880
881 /*
882 * If we need to create attributes immediately after allocating the
883 * inode, initialise an empty attribute fork right now. We use the
884 * default fork offset for attributes here as we don't know exactly what
885 * size or how many attributes we might be adding. We can do this
886 * safely here because we know the data fork is completely empty and
887 * this saves us from needing to run a separate transaction to set the
888 * fork offset in the immediate future.
889 */
890 if (init_xattrs && xfs_has_attr(mp)) {
891 ip->i_forkoff = xfs_default_attroffset(ip) >> 3;
892 xfs_ifork_init_attr(ip, XFS_DINODE_FMT_EXTENTS, 0);
893 }
894
895 /*
896 * Log the new values stuffed into the inode.
897 */
898 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
899 xfs_trans_log_inode(tp, ip, flags);
900
901 /* now that we have an i_mode we can setup the inode structure */
902 xfs_setup_inode(ip);
903
904 *ipp = ip;
905 return 0;
906}
907
908/*
909 * Decrement the link count on an inode & log the change. If this causes the
910 * link count to go to zero, move the inode to AGI unlinked list so that it can
911 * be freed when the last active reference goes away via xfs_inactive().
912 */
913static int /* error */
914xfs_droplink(
915 xfs_trans_t *tp,
916 xfs_inode_t *ip)
917{
918 if (VFS_I(ip)->i_nlink == 0) {
919 xfs_alert(ip->i_mount,
920 "%s: Attempt to drop inode (%llu) with nlink zero.",
921 __func__, ip->i_ino);
922 return -EFSCORRUPTED;
923 }
924
925 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
926
927 drop_nlink(VFS_I(ip));
928 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
929
930 if (VFS_I(ip)->i_nlink)
931 return 0;
932
933 return xfs_iunlink(tp, ip);
934}
935
936/*
937 * Increment the link count on an inode & log the change.
938 */
939static void
940xfs_bumplink(
941 xfs_trans_t *tp,
942 xfs_inode_t *ip)
943{
944 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
945
946 inc_nlink(VFS_I(ip));
947 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
948}
949
950int
951xfs_create(
952 struct mnt_idmap *idmap,
953 xfs_inode_t *dp,
954 struct xfs_name *name,
955 umode_t mode,
956 dev_t rdev,
957 bool init_xattrs,
958 xfs_inode_t **ipp)
959{
960 int is_dir = S_ISDIR(mode);
961 struct xfs_mount *mp = dp->i_mount;
962 struct xfs_inode *ip = NULL;
963 struct xfs_trans *tp = NULL;
964 int error;
965 bool unlock_dp_on_error = false;
966 prid_t prid;
967 struct xfs_dquot *udqp = NULL;
968 struct xfs_dquot *gdqp = NULL;
969 struct xfs_dquot *pdqp = NULL;
970 struct xfs_trans_res *tres;
971 uint resblks;
972 xfs_ino_t ino;
973
974 trace_xfs_create(dp, name);
975
976 if (xfs_is_shutdown(mp))
977 return -EIO;
978 if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
979 return -EIO;
980
981 prid = xfs_get_initial_prid(dp);
982
983 /*
984 * Make sure that we have allocated dquot(s) on disk.
985 */
986 error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(idmap, &init_user_ns),
987 mapped_fsgid(idmap, &init_user_ns), prid,
988 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
989 &udqp, &gdqp, &pdqp);
990 if (error)
991 return error;
992
993 if (is_dir) {
994 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
995 tres = &M_RES(mp)->tr_mkdir;
996 } else {
997 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
998 tres = &M_RES(mp)->tr_create;
999 }
1000
1001 /*
1002 * Initially assume that the file does not exist and
1003 * reserve the resources for that case. If that is not
1004 * the case we'll drop the one we have and get a more
1005 * appropriate transaction later.
1006 */
1007 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1008 &tp);
1009 if (error == -ENOSPC) {
1010 /* flush outstanding delalloc blocks and retry */
1011 xfs_flush_inodes(mp);
1012 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp,
1013 resblks, &tp);
1014 }
1015 if (error)
1016 goto out_release_dquots;
1017
1018 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1019 unlock_dp_on_error = true;
1020
1021 /*
1022 * A newly created regular or special file just has one directory
1023 * entry pointing to them, but a directory also the "." entry
1024 * pointing to itself.
1025 */
1026 error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1027 if (!error)
1028 error = xfs_init_new_inode(idmap, tp, dp, ino, mode,
1029 is_dir ? 2 : 1, rdev, prid, init_xattrs, &ip);
1030 if (error)
1031 goto out_trans_cancel;
1032
1033 /*
1034 * Now we join the directory inode to the transaction. We do not do it
1035 * earlier because xfs_dialloc might commit the previous transaction
1036 * (and release all the locks). An error from here on will result in
1037 * the transaction cancel unlocking dp so don't do it explicitly in the
1038 * error path.
1039 */
1040 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1041 unlock_dp_on_error = false;
1042
1043 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1044 resblks - XFS_IALLOC_SPACE_RES(mp));
1045 if (error) {
1046 ASSERT(error != -ENOSPC);
1047 goto out_trans_cancel;
1048 }
1049 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1050 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1051
1052 if (is_dir) {
1053 error = xfs_dir_init(tp, ip, dp);
1054 if (error)
1055 goto out_trans_cancel;
1056
1057 xfs_bumplink(tp, dp);
1058 }
1059
1060 /*
1061 * If this is a synchronous mount, make sure that the
1062 * create transaction goes to disk before returning to
1063 * the user.
1064 */
1065 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1066 xfs_trans_set_sync(tp);
1067
1068 /*
1069 * Attach the dquot(s) to the inodes and modify them incore.
1070 * These ids of the inode couldn't have changed since the new
1071 * inode has been locked ever since it was created.
1072 */
1073 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1074
1075 error = xfs_trans_commit(tp);
1076 if (error)
1077 goto out_release_inode;
1078
1079 xfs_qm_dqrele(udqp);
1080 xfs_qm_dqrele(gdqp);
1081 xfs_qm_dqrele(pdqp);
1082
1083 *ipp = ip;
1084 return 0;
1085
1086 out_trans_cancel:
1087 xfs_trans_cancel(tp);
1088 out_release_inode:
1089 /*
1090 * Wait until after the current transaction is aborted to finish the
1091 * setup of the inode and release the inode. This prevents recursive
1092 * transactions and deadlocks from xfs_inactive.
1093 */
1094 if (ip) {
1095 xfs_finish_inode_setup(ip);
1096 xfs_irele(ip);
1097 }
1098 out_release_dquots:
1099 xfs_qm_dqrele(udqp);
1100 xfs_qm_dqrele(gdqp);
1101 xfs_qm_dqrele(pdqp);
1102
1103 if (unlock_dp_on_error)
1104 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1105 return error;
1106}
1107
1108int
1109xfs_create_tmpfile(
1110 struct mnt_idmap *idmap,
1111 struct xfs_inode *dp,
1112 umode_t mode,
1113 struct xfs_inode **ipp)
1114{
1115 struct xfs_mount *mp = dp->i_mount;
1116 struct xfs_inode *ip = NULL;
1117 struct xfs_trans *tp = NULL;
1118 int error;
1119 prid_t prid;
1120 struct xfs_dquot *udqp = NULL;
1121 struct xfs_dquot *gdqp = NULL;
1122 struct xfs_dquot *pdqp = NULL;
1123 struct xfs_trans_res *tres;
1124 uint resblks;
1125 xfs_ino_t ino;
1126
1127 if (xfs_is_shutdown(mp))
1128 return -EIO;
1129
1130 prid = xfs_get_initial_prid(dp);
1131
1132 /*
1133 * Make sure that we have allocated dquot(s) on disk.
1134 */
1135 error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(idmap, &init_user_ns),
1136 mapped_fsgid(idmap, &init_user_ns), prid,
1137 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1138 &udqp, &gdqp, &pdqp);
1139 if (error)
1140 return error;
1141
1142 resblks = XFS_IALLOC_SPACE_RES(mp);
1143 tres = &M_RES(mp)->tr_create_tmpfile;
1144
1145 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1146 &tp);
1147 if (error)
1148 goto out_release_dquots;
1149
1150 error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1151 if (!error)
1152 error = xfs_init_new_inode(idmap, tp, dp, ino, mode,
1153 0, 0, prid, false, &ip);
1154 if (error)
1155 goto out_trans_cancel;
1156
1157 if (xfs_has_wsync(mp))
1158 xfs_trans_set_sync(tp);
1159
1160 /*
1161 * Attach the dquot(s) to the inodes and modify them incore.
1162 * These ids of the inode couldn't have changed since the new
1163 * inode has been locked ever since it was created.
1164 */
1165 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1166
1167 error = xfs_iunlink(tp, ip);
1168 if (error)
1169 goto out_trans_cancel;
1170
1171 error = xfs_trans_commit(tp);
1172 if (error)
1173 goto out_release_inode;
1174
1175 xfs_qm_dqrele(udqp);
1176 xfs_qm_dqrele(gdqp);
1177 xfs_qm_dqrele(pdqp);
1178
1179 *ipp = ip;
1180 return 0;
1181
1182 out_trans_cancel:
1183 xfs_trans_cancel(tp);
1184 out_release_inode:
1185 /*
1186 * Wait until after the current transaction is aborted to finish the
1187 * setup of the inode and release the inode. This prevents recursive
1188 * transactions and deadlocks from xfs_inactive.
1189 */
1190 if (ip) {
1191 xfs_finish_inode_setup(ip);
1192 xfs_irele(ip);
1193 }
1194 out_release_dquots:
1195 xfs_qm_dqrele(udqp);
1196 xfs_qm_dqrele(gdqp);
1197 xfs_qm_dqrele(pdqp);
1198
1199 return error;
1200}
1201
1202int
1203xfs_link(
1204 xfs_inode_t *tdp,
1205 xfs_inode_t *sip,
1206 struct xfs_name *target_name)
1207{
1208 xfs_mount_t *mp = tdp->i_mount;
1209 xfs_trans_t *tp;
1210 int error, nospace_error = 0;
1211 int resblks;
1212
1213 trace_xfs_link(tdp, target_name);
1214
1215 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1216
1217 if (xfs_is_shutdown(mp))
1218 return -EIO;
1219 if (xfs_ifork_zapped(tdp, XFS_DATA_FORK))
1220 return -EIO;
1221
1222 error = xfs_qm_dqattach(sip);
1223 if (error)
1224 goto std_return;
1225
1226 error = xfs_qm_dqattach(tdp);
1227 if (error)
1228 goto std_return;
1229
1230 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1231 error = xfs_trans_alloc_dir(tdp, &M_RES(mp)->tr_link, sip, &resblks,
1232 &tp, &nospace_error);
1233 if (error)
1234 goto std_return;
1235
1236 /*
1237 * If we are using project inheritance, we only allow hard link
1238 * creation in our tree when the project IDs are the same; else
1239 * the tree quota mechanism could be circumvented.
1240 */
1241 if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
1242 tdp->i_projid != sip->i_projid)) {
1243 error = -EXDEV;
1244 goto error_return;
1245 }
1246
1247 if (!resblks) {
1248 error = xfs_dir_canenter(tp, tdp, target_name);
1249 if (error)
1250 goto error_return;
1251 }
1252
1253 /*
1254 * Handle initial link state of O_TMPFILE inode
1255 */
1256 if (VFS_I(sip)->i_nlink == 0) {
1257 struct xfs_perag *pag;
1258
1259 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sip->i_ino));
1260 error = xfs_iunlink_remove(tp, pag, sip);
1261 xfs_perag_put(pag);
1262 if (error)
1263 goto error_return;
1264 }
1265
1266 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1267 resblks);
1268 if (error)
1269 goto error_return;
1270 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1271 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1272
1273 xfs_bumplink(tp, sip);
1274
1275 /*
1276 * If this is a synchronous mount, make sure that the
1277 * link transaction goes to disk before returning to
1278 * the user.
1279 */
1280 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1281 xfs_trans_set_sync(tp);
1282
1283 return xfs_trans_commit(tp);
1284
1285 error_return:
1286 xfs_trans_cancel(tp);
1287 std_return:
1288 if (error == -ENOSPC && nospace_error)
1289 error = nospace_error;
1290 return error;
1291}
1292
1293/* Clear the reflink flag and the cowblocks tag if possible. */
1294static void
1295xfs_itruncate_clear_reflink_flags(
1296 struct xfs_inode *ip)
1297{
1298 struct xfs_ifork *dfork;
1299 struct xfs_ifork *cfork;
1300
1301 if (!xfs_is_reflink_inode(ip))
1302 return;
1303 dfork = xfs_ifork_ptr(ip, XFS_DATA_FORK);
1304 cfork = xfs_ifork_ptr(ip, XFS_COW_FORK);
1305 if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1306 ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1307 if (cfork->if_bytes == 0)
1308 xfs_inode_clear_cowblocks_tag(ip);
1309}
1310
1311/*
1312 * Free up the underlying blocks past new_size. The new size must be smaller
1313 * than the current size. This routine can be used both for the attribute and
1314 * data fork, and does not modify the inode size, which is left to the caller.
1315 *
1316 * The transaction passed to this routine must have made a permanent log
1317 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1318 * given transaction and start new ones, so make sure everything involved in
1319 * the transaction is tidy before calling here. Some transaction will be
1320 * returned to the caller to be committed. The incoming transaction must
1321 * already include the inode, and both inode locks must be held exclusively.
1322 * The inode must also be "held" within the transaction. On return the inode
1323 * will be "held" within the returned transaction. This routine does NOT
1324 * require any disk space to be reserved for it within the transaction.
1325 *
1326 * If we get an error, we must return with the inode locked and linked into the
1327 * current transaction. This keeps things simple for the higher level code,
1328 * because it always knows that the inode is locked and held in the transaction
1329 * that returns to it whether errors occur or not. We don't mark the inode
1330 * dirty on error so that transactions can be easily aborted if possible.
1331 */
1332int
1333xfs_itruncate_extents_flags(
1334 struct xfs_trans **tpp,
1335 struct xfs_inode *ip,
1336 int whichfork,
1337 xfs_fsize_t new_size,
1338 int flags)
1339{
1340 struct xfs_mount *mp = ip->i_mount;
1341 struct xfs_trans *tp = *tpp;
1342 xfs_fileoff_t first_unmap_block;
1343 int error = 0;
1344
1345 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1346 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1347 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1348 ASSERT(new_size <= XFS_ISIZE(ip));
1349 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1350 ASSERT(ip->i_itemp != NULL);
1351 ASSERT(ip->i_itemp->ili_lock_flags == 0);
1352 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1353
1354 trace_xfs_itruncate_extents_start(ip, new_size);
1355
1356 flags |= xfs_bmapi_aflag(whichfork);
1357
1358 /*
1359 * Since it is possible for space to become allocated beyond
1360 * the end of the file (in a crash where the space is allocated
1361 * but the inode size is not yet updated), simply remove any
1362 * blocks which show up between the new EOF and the maximum
1363 * possible file size.
1364 *
1365 * We have to free all the blocks to the bmbt maximum offset, even if
1366 * the page cache can't scale that far.
1367 */
1368 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1369 if (!xfs_verify_fileoff(mp, first_unmap_block)) {
1370 WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1371 return 0;
1372 }
1373
1374 error = xfs_bunmapi_range(&tp, ip, flags, first_unmap_block,
1375 XFS_MAX_FILEOFF);
1376 if (error)
1377 goto out;
1378
1379 if (whichfork == XFS_DATA_FORK) {
1380 /* Remove all pending CoW reservations. */
1381 error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1382 first_unmap_block, XFS_MAX_FILEOFF, true);
1383 if (error)
1384 goto out;
1385
1386 xfs_itruncate_clear_reflink_flags(ip);
1387 }
1388
1389 /*
1390 * Always re-log the inode so that our permanent transaction can keep
1391 * on rolling it forward in the log.
1392 */
1393 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1394
1395 trace_xfs_itruncate_extents_end(ip, new_size);
1396
1397out:
1398 *tpp = tp;
1399 return error;
1400}
1401
1402int
1403xfs_release(
1404 xfs_inode_t *ip)
1405{
1406 xfs_mount_t *mp = ip->i_mount;
1407 int error = 0;
1408
1409 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1410 return 0;
1411
1412 /* If this is a read-only mount, don't do this (would generate I/O) */
1413 if (xfs_is_readonly(mp))
1414 return 0;
1415
1416 if (!xfs_is_shutdown(mp)) {
1417 int truncated;
1418
1419 /*
1420 * If we previously truncated this file and removed old data
1421 * in the process, we want to initiate "early" writeout on
1422 * the last close. This is an attempt to combat the notorious
1423 * NULL files problem which is particularly noticeable from a
1424 * truncate down, buffered (re-)write (delalloc), followed by
1425 * a crash. What we are effectively doing here is
1426 * significantly reducing the time window where we'd otherwise
1427 * be exposed to that problem.
1428 */
1429 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1430 if (truncated) {
1431 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1432 if (ip->i_delayed_blks > 0) {
1433 error = filemap_flush(VFS_I(ip)->i_mapping);
1434 if (error)
1435 return error;
1436 }
1437 }
1438 }
1439
1440 if (VFS_I(ip)->i_nlink == 0)
1441 return 0;
1442
1443 /*
1444 * If we can't get the iolock just skip truncating the blocks past EOF
1445 * because we could deadlock with the mmap_lock otherwise. We'll get
1446 * another chance to drop them once the last reference to the inode is
1447 * dropped, so we'll never leak blocks permanently.
1448 */
1449 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL))
1450 return 0;
1451
1452 if (xfs_can_free_eofblocks(ip, false)) {
1453 /*
1454 * Check if the inode is being opened, written and closed
1455 * frequently and we have delayed allocation blocks outstanding
1456 * (e.g. streaming writes from the NFS server), truncating the
1457 * blocks past EOF will cause fragmentation to occur.
1458 *
1459 * In this case don't do the truncation, but we have to be
1460 * careful how we detect this case. Blocks beyond EOF show up as
1461 * i_delayed_blks even when the inode is clean, so we need to
1462 * truncate them away first before checking for a dirty release.
1463 * Hence on the first dirty close we will still remove the
1464 * speculative allocation, but after that we will leave it in
1465 * place.
1466 */
1467 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1468 goto out_unlock;
1469
1470 error = xfs_free_eofblocks(ip);
1471 if (error)
1472 goto out_unlock;
1473
1474 /* delalloc blocks after truncation means it really is dirty */
1475 if (ip->i_delayed_blks)
1476 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1477 }
1478
1479out_unlock:
1480 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1481 return error;
1482}
1483
1484/*
1485 * xfs_inactive_truncate
1486 *
1487 * Called to perform a truncate when an inode becomes unlinked.
1488 */
1489STATIC int
1490xfs_inactive_truncate(
1491 struct xfs_inode *ip)
1492{
1493 struct xfs_mount *mp = ip->i_mount;
1494 struct xfs_trans *tp;
1495 int error;
1496
1497 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1498 if (error) {
1499 ASSERT(xfs_is_shutdown(mp));
1500 return error;
1501 }
1502 xfs_ilock(ip, XFS_ILOCK_EXCL);
1503 xfs_trans_ijoin(tp, ip, 0);
1504
1505 /*
1506 * Log the inode size first to prevent stale data exposure in the event
1507 * of a system crash before the truncate completes. See the related
1508 * comment in xfs_vn_setattr_size() for details.
1509 */
1510 ip->i_disk_size = 0;
1511 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1512
1513 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1514 if (error)
1515 goto error_trans_cancel;
1516
1517 ASSERT(ip->i_df.if_nextents == 0);
1518
1519 error = xfs_trans_commit(tp);
1520 if (error)
1521 goto error_unlock;
1522
1523 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1524 return 0;
1525
1526error_trans_cancel:
1527 xfs_trans_cancel(tp);
1528error_unlock:
1529 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1530 return error;
1531}
1532
1533/*
1534 * xfs_inactive_ifree()
1535 *
1536 * Perform the inode free when an inode is unlinked.
1537 */
1538STATIC int
1539xfs_inactive_ifree(
1540 struct xfs_inode *ip)
1541{
1542 struct xfs_mount *mp = ip->i_mount;
1543 struct xfs_trans *tp;
1544 int error;
1545
1546 /*
1547 * We try to use a per-AG reservation for any block needed by the finobt
1548 * tree, but as the finobt feature predates the per-AG reservation
1549 * support a degraded file system might not have enough space for the
1550 * reservation at mount time. In that case try to dip into the reserved
1551 * pool and pray.
1552 *
1553 * Send a warning if the reservation does happen to fail, as the inode
1554 * now remains allocated and sits on the unlinked list until the fs is
1555 * repaired.
1556 */
1557 if (unlikely(mp->m_finobt_nores)) {
1558 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1559 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1560 &tp);
1561 } else {
1562 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1563 }
1564 if (error) {
1565 if (error == -ENOSPC) {
1566 xfs_warn_ratelimited(mp,
1567 "Failed to remove inode(s) from unlinked list. "
1568 "Please free space, unmount and run xfs_repair.");
1569 } else {
1570 ASSERT(xfs_is_shutdown(mp));
1571 }
1572 return error;
1573 }
1574
1575 /*
1576 * We do not hold the inode locked across the entire rolling transaction
1577 * here. We only need to hold it for the first transaction that
1578 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1579 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1580 * here breaks the relationship between cluster buffer invalidation and
1581 * stale inode invalidation on cluster buffer item journal commit
1582 * completion, and can result in leaving dirty stale inodes hanging
1583 * around in memory.
1584 *
1585 * We have no need for serialising this inode operation against other
1586 * operations - we freed the inode and hence reallocation is required
1587 * and that will serialise on reallocating the space the deferops need
1588 * to free. Hence we can unlock the inode on the first commit of
1589 * the transaction rather than roll it right through the deferops. This
1590 * avoids relogging the XFS_ISTALE inode.
1591 *
1592 * We check that xfs_ifree() hasn't grown an internal transaction roll
1593 * by asserting that the inode is still locked when it returns.
1594 */
1595 xfs_ilock(ip, XFS_ILOCK_EXCL);
1596 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1597
1598 error = xfs_ifree(tp, ip);
1599 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1600 if (error) {
1601 /*
1602 * If we fail to free the inode, shut down. The cancel
1603 * might do that, we need to make sure. Otherwise the
1604 * inode might be lost for a long time or forever.
1605 */
1606 if (!xfs_is_shutdown(mp)) {
1607 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1608 __func__, error);
1609 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1610 }
1611 xfs_trans_cancel(tp);
1612 return error;
1613 }
1614
1615 /*
1616 * Credit the quota account(s). The inode is gone.
1617 */
1618 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1619
1620 return xfs_trans_commit(tp);
1621}
1622
1623/*
1624 * Returns true if we need to update the on-disk metadata before we can free
1625 * the memory used by this inode. Updates include freeing post-eof
1626 * preallocations; freeing COW staging extents; and marking the inode free in
1627 * the inobt if it is on the unlinked list.
1628 */
1629bool
1630xfs_inode_needs_inactive(
1631 struct xfs_inode *ip)
1632{
1633 struct xfs_mount *mp = ip->i_mount;
1634 struct xfs_ifork *cow_ifp = xfs_ifork_ptr(ip, XFS_COW_FORK);
1635
1636 /*
1637 * If the inode is already free, then there can be nothing
1638 * to clean up here.
1639 */
1640 if (VFS_I(ip)->i_mode == 0)
1641 return false;
1642
1643 /*
1644 * If this is a read-only mount, don't do this (would generate I/O)
1645 * unless we're in log recovery and cleaning the iunlinked list.
1646 */
1647 if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log))
1648 return false;
1649
1650 /* If the log isn't running, push inodes straight to reclaim. */
1651 if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp))
1652 return false;
1653
1654 /* Metadata inodes require explicit resource cleanup. */
1655 if (xfs_is_metadata_inode(ip))
1656 return false;
1657
1658 /* Want to clean out the cow blocks if there are any. */
1659 if (cow_ifp && cow_ifp->if_bytes > 0)
1660 return true;
1661
1662 /* Unlinked files must be freed. */
1663 if (VFS_I(ip)->i_nlink == 0)
1664 return true;
1665
1666 /*
1667 * This file isn't being freed, so check if there are post-eof blocks
1668 * to free. @force is true because we are evicting an inode from the
1669 * cache. Post-eof blocks must be freed, lest we end up with broken
1670 * free space accounting.
1671 *
1672 * Note: don't bother with iolock here since lockdep complains about
1673 * acquiring it in reclaim context. We have the only reference to the
1674 * inode at this point anyways.
1675 */
1676 return xfs_can_free_eofblocks(ip, true);
1677}
1678
1679/*
1680 * xfs_inactive
1681 *
1682 * This is called when the vnode reference count for the vnode
1683 * goes to zero. If the file has been unlinked, then it must
1684 * now be truncated. Also, we clear all of the read-ahead state
1685 * kept for the inode here since the file is now closed.
1686 */
1687int
1688xfs_inactive(
1689 xfs_inode_t *ip)
1690{
1691 struct xfs_mount *mp;
1692 int error = 0;
1693 int truncate = 0;
1694
1695 /*
1696 * If the inode is already free, then there can be nothing
1697 * to clean up here.
1698 */
1699 if (VFS_I(ip)->i_mode == 0) {
1700 ASSERT(ip->i_df.if_broot_bytes == 0);
1701 goto out;
1702 }
1703
1704 mp = ip->i_mount;
1705 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1706
1707 /*
1708 * If this is a read-only mount, don't do this (would generate I/O)
1709 * unless we're in log recovery and cleaning the iunlinked list.
1710 */
1711 if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log))
1712 goto out;
1713
1714 /* Metadata inodes require explicit resource cleanup. */
1715 if (xfs_is_metadata_inode(ip))
1716 goto out;
1717
1718 /* Try to clean out the cow blocks if there are any. */
1719 if (xfs_inode_has_cow_data(ip))
1720 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1721
1722 if (VFS_I(ip)->i_nlink != 0) {
1723 /*
1724 * force is true because we are evicting an inode from the
1725 * cache. Post-eof blocks must be freed, lest we end up with
1726 * broken free space accounting.
1727 *
1728 * Note: don't bother with iolock here since lockdep complains
1729 * about acquiring it in reclaim context. We have the only
1730 * reference to the inode at this point anyways.
1731 */
1732 if (xfs_can_free_eofblocks(ip, true))
1733 error = xfs_free_eofblocks(ip);
1734
1735 goto out;
1736 }
1737
1738 if (S_ISREG(VFS_I(ip)->i_mode) &&
1739 (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 ||
1740 ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0))
1741 truncate = 1;
1742
1743 if (xfs_iflags_test(ip, XFS_IQUOTAUNCHECKED)) {
1744 /*
1745 * If this inode is being inactivated during a quotacheck and
1746 * has not yet been scanned by quotacheck, we /must/ remove
1747 * the dquots from the inode before inactivation changes the
1748 * block and inode counts. Most probably this is a result of
1749 * reloading the incore iunlinked list to purge unrecovered
1750 * unlinked inodes.
1751 */
1752 xfs_qm_dqdetach(ip);
1753 } else {
1754 error = xfs_qm_dqattach(ip);
1755 if (error)
1756 goto out;
1757 }
1758
1759 if (S_ISLNK(VFS_I(ip)->i_mode))
1760 error = xfs_inactive_symlink(ip);
1761 else if (truncate)
1762 error = xfs_inactive_truncate(ip);
1763 if (error)
1764 goto out;
1765
1766 /*
1767 * If there are attributes associated with the file then blow them away
1768 * now. The code calls a routine that recursively deconstructs the
1769 * attribute fork. If also blows away the in-core attribute fork.
1770 */
1771 if (xfs_inode_has_attr_fork(ip)) {
1772 error = xfs_attr_inactive(ip);
1773 if (error)
1774 goto out;
1775 }
1776
1777 ASSERT(ip->i_forkoff == 0);
1778
1779 /*
1780 * Free the inode.
1781 */
1782 error = xfs_inactive_ifree(ip);
1783
1784out:
1785 /*
1786 * We're done making metadata updates for this inode, so we can release
1787 * the attached dquots.
1788 */
1789 xfs_qm_dqdetach(ip);
1790 return error;
1791}
1792
1793/*
1794 * In-Core Unlinked List Lookups
1795 * =============================
1796 *
1797 * Every inode is supposed to be reachable from some other piece of metadata
1798 * with the exception of the root directory. Inodes with a connection to a
1799 * file descriptor but not linked from anywhere in the on-disk directory tree
1800 * are collectively known as unlinked inodes, though the filesystem itself
1801 * maintains links to these inodes so that on-disk metadata are consistent.
1802 *
1803 * XFS implements a per-AG on-disk hash table of unlinked inodes. The AGI
1804 * header contains a number of buckets that point to an inode, and each inode
1805 * record has a pointer to the next inode in the hash chain. This
1806 * singly-linked list causes scaling problems in the iunlink remove function
1807 * because we must walk that list to find the inode that points to the inode
1808 * being removed from the unlinked hash bucket list.
1809 *
1810 * Hence we keep an in-memory double linked list to link each inode on an
1811 * unlinked list. Because there are 64 unlinked lists per AGI, keeping pointer
1812 * based lists would require having 64 list heads in the perag, one for each
1813 * list. This is expensive in terms of memory (think millions of AGs) and cache
1814 * misses on lookups. Instead, use the fact that inodes on the unlinked list
1815 * must be referenced at the VFS level to keep them on the list and hence we
1816 * have an existence guarantee for inodes on the unlinked list.
1817 *
1818 * Given we have an existence guarantee, we can use lockless inode cache lookups
1819 * to resolve aginos to xfs inodes. This means we only need 8 bytes per inode
1820 * for the double linked unlinked list, and we don't need any extra locking to
1821 * keep the list safe as all manipulations are done under the AGI buffer lock.
1822 * Keeping the list up to date does not require memory allocation, just finding
1823 * the XFS inode and updating the next/prev unlinked list aginos.
1824 */
1825
1826/*
1827 * Find an inode on the unlinked list. This does not take references to the
1828 * inode as we have existence guarantees by holding the AGI buffer lock and that
1829 * only unlinked, referenced inodes can be on the unlinked inode list. If we
1830 * don't find the inode in cache, then let the caller handle the situation.
1831 */
1832static struct xfs_inode *
1833xfs_iunlink_lookup(
1834 struct xfs_perag *pag,
1835 xfs_agino_t agino)
1836{
1837 struct xfs_inode *ip;
1838
1839 rcu_read_lock();
1840 ip = radix_tree_lookup(&pag->pag_ici_root, agino);
1841 if (!ip) {
1842 /* Caller can handle inode not being in memory. */
1843 rcu_read_unlock();
1844 return NULL;
1845 }
1846
1847 /*
1848 * Inode in RCU freeing limbo should not happen. Warn about this and
1849 * let the caller handle the failure.
1850 */
1851 if (WARN_ON_ONCE(!ip->i_ino)) {
1852 rcu_read_unlock();
1853 return NULL;
1854 }
1855 ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM));
1856 rcu_read_unlock();
1857 return ip;
1858}
1859
1860/*
1861 * Update the prev pointer of the next agino. Returns -ENOLINK if the inode
1862 * is not in cache.
1863 */
1864static int
1865xfs_iunlink_update_backref(
1866 struct xfs_perag *pag,
1867 xfs_agino_t prev_agino,
1868 xfs_agino_t next_agino)
1869{
1870 struct xfs_inode *ip;
1871
1872 /* No update necessary if we are at the end of the list. */
1873 if (next_agino == NULLAGINO)
1874 return 0;
1875
1876 ip = xfs_iunlink_lookup(pag, next_agino);
1877 if (!ip)
1878 return -ENOLINK;
1879
1880 ip->i_prev_unlinked = prev_agino;
1881 return 0;
1882}
1883
1884/*
1885 * Point the AGI unlinked bucket at an inode and log the results. The caller
1886 * is responsible for validating the old value.
1887 */
1888STATIC int
1889xfs_iunlink_update_bucket(
1890 struct xfs_trans *tp,
1891 struct xfs_perag *pag,
1892 struct xfs_buf *agibp,
1893 unsigned int bucket_index,
1894 xfs_agino_t new_agino)
1895{
1896 struct xfs_agi *agi = agibp->b_addr;
1897 xfs_agino_t old_value;
1898 int offset;
1899
1900 ASSERT(xfs_verify_agino_or_null(pag, new_agino));
1901
1902 old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1903 trace_xfs_iunlink_update_bucket(tp->t_mountp, pag->pag_agno, bucket_index,
1904 old_value, new_agino);
1905
1906 /*
1907 * We should never find the head of the list already set to the value
1908 * passed in because either we're adding or removing ourselves from the
1909 * head of the list.
1910 */
1911 if (old_value == new_agino) {
1912 xfs_buf_mark_corrupt(agibp);
1913 return -EFSCORRUPTED;
1914 }
1915
1916 agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
1917 offset = offsetof(struct xfs_agi, agi_unlinked) +
1918 (sizeof(xfs_agino_t) * bucket_index);
1919 xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
1920 return 0;
1921}
1922
1923/*
1924 * Load the inode @next_agino into the cache and set its prev_unlinked pointer
1925 * to @prev_agino. Caller must hold the AGI to synchronize with other changes
1926 * to the unlinked list.
1927 */
1928STATIC int
1929xfs_iunlink_reload_next(
1930 struct xfs_trans *tp,
1931 struct xfs_buf *agibp,
1932 xfs_agino_t prev_agino,
1933 xfs_agino_t next_agino)
1934{
1935 struct xfs_perag *pag = agibp->b_pag;
1936 struct xfs_mount *mp = pag->pag_mount;
1937 struct xfs_inode *next_ip = NULL;
1938 xfs_ino_t ino;
1939 int error;
1940
1941 ASSERT(next_agino != NULLAGINO);
1942
1943#ifdef DEBUG
1944 rcu_read_lock();
1945 next_ip = radix_tree_lookup(&pag->pag_ici_root, next_agino);
1946 ASSERT(next_ip == NULL);
1947 rcu_read_unlock();
1948#endif
1949
1950 xfs_info_ratelimited(mp,
1951 "Found unrecovered unlinked inode 0x%x in AG 0x%x. Initiating recovery.",
1952 next_agino, pag->pag_agno);
1953
1954 /*
1955 * Use an untrusted lookup just to be cautious in case the AGI has been
1956 * corrupted and now points at a free inode. That shouldn't happen,
1957 * but we'd rather shut down now since we're already running in a weird
1958 * situation.
1959 */
1960 ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, next_agino);
1961 error = xfs_iget(mp, tp, ino, XFS_IGET_UNTRUSTED, 0, &next_ip);
1962 if (error)
1963 return error;
1964
1965 /* If this is not an unlinked inode, something is very wrong. */
1966 if (VFS_I(next_ip)->i_nlink != 0) {
1967 error = -EFSCORRUPTED;
1968 goto rele;
1969 }
1970
1971 next_ip->i_prev_unlinked = prev_agino;
1972 trace_xfs_iunlink_reload_next(next_ip);
1973rele:
1974 ASSERT(!(VFS_I(next_ip)->i_state & I_DONTCACHE));
1975 if (xfs_is_quotacheck_running(mp) && next_ip)
1976 xfs_iflags_set(next_ip, XFS_IQUOTAUNCHECKED);
1977 xfs_irele(next_ip);
1978 return error;
1979}
1980
1981static int
1982xfs_iunlink_insert_inode(
1983 struct xfs_trans *tp,
1984 struct xfs_perag *pag,
1985 struct xfs_buf *agibp,
1986 struct xfs_inode *ip)
1987{
1988 struct xfs_mount *mp = tp->t_mountp;
1989 struct xfs_agi *agi = agibp->b_addr;
1990 xfs_agino_t next_agino;
1991 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1992 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1993 int error;
1994
1995 /*
1996 * Get the index into the agi hash table for the list this inode will
1997 * go on. Make sure the pointer isn't garbage and that this inode
1998 * isn't already on the list.
1999 */
2000 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2001 if (next_agino == agino ||
2002 !xfs_verify_agino_or_null(pag, next_agino)) {
2003 xfs_buf_mark_corrupt(agibp);
2004 return -EFSCORRUPTED;
2005 }
2006
2007 /*
2008 * Update the prev pointer in the next inode to point back to this
2009 * inode.
2010 */
2011 error = xfs_iunlink_update_backref(pag, agino, next_agino);
2012 if (error == -ENOLINK)
2013 error = xfs_iunlink_reload_next(tp, agibp, agino, next_agino);
2014 if (error)
2015 return error;
2016
2017 if (next_agino != NULLAGINO) {
2018 /*
2019 * There is already another inode in the bucket, so point this
2020 * inode to the current head of the list.
2021 */
2022 error = xfs_iunlink_log_inode(tp, ip, pag, next_agino);
2023 if (error)
2024 return error;
2025 ip->i_next_unlinked = next_agino;
2026 }
2027
2028 /* Point the head of the list to point to this inode. */
2029 ip->i_prev_unlinked = NULLAGINO;
2030 return xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, agino);
2031}
2032
2033/*
2034 * This is called when the inode's link count has gone to 0 or we are creating
2035 * a tmpfile via O_TMPFILE. The inode @ip must have nlink == 0.
2036 *
2037 * We place the on-disk inode on a list in the AGI. It will be pulled from this
2038 * list when the inode is freed.
2039 */
2040STATIC int
2041xfs_iunlink(
2042 struct xfs_trans *tp,
2043 struct xfs_inode *ip)
2044{
2045 struct xfs_mount *mp = tp->t_mountp;
2046 struct xfs_perag *pag;
2047 struct xfs_buf *agibp;
2048 int error;
2049
2050 ASSERT(VFS_I(ip)->i_nlink == 0);
2051 ASSERT(VFS_I(ip)->i_mode != 0);
2052 trace_xfs_iunlink(ip);
2053
2054 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2055
2056 /* Get the agi buffer first. It ensures lock ordering on the list. */
2057 error = xfs_read_agi(pag, tp, &agibp);
2058 if (error)
2059 goto out;
2060
2061 error = xfs_iunlink_insert_inode(tp, pag, agibp, ip);
2062out:
2063 xfs_perag_put(pag);
2064 return error;
2065}
2066
2067static int
2068xfs_iunlink_remove_inode(
2069 struct xfs_trans *tp,
2070 struct xfs_perag *pag,
2071 struct xfs_buf *agibp,
2072 struct xfs_inode *ip)
2073{
2074 struct xfs_mount *mp = tp->t_mountp;
2075 struct xfs_agi *agi = agibp->b_addr;
2076 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2077 xfs_agino_t head_agino;
2078 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2079 int error;
2080
2081 trace_xfs_iunlink_remove(ip);
2082
2083 /*
2084 * Get the index into the agi hash table for the list this inode will
2085 * go on. Make sure the head pointer isn't garbage.
2086 */
2087 head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2088 if (!xfs_verify_agino(pag, head_agino)) {
2089 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2090 agi, sizeof(*agi));
2091 return -EFSCORRUPTED;
2092 }
2093
2094 /*
2095 * Set our inode's next_unlinked pointer to NULL and then return
2096 * the old pointer value so that we can update whatever was previous
2097 * to us in the list to point to whatever was next in the list.
2098 */
2099 error = xfs_iunlink_log_inode(tp, ip, pag, NULLAGINO);
2100 if (error)
2101 return error;
2102
2103 /*
2104 * Update the prev pointer in the next inode to point back to previous
2105 * inode in the chain.
2106 */
2107 error = xfs_iunlink_update_backref(pag, ip->i_prev_unlinked,
2108 ip->i_next_unlinked);
2109 if (error == -ENOLINK)
2110 error = xfs_iunlink_reload_next(tp, agibp, ip->i_prev_unlinked,
2111 ip->i_next_unlinked);
2112 if (error)
2113 return error;
2114
2115 if (head_agino != agino) {
2116 struct xfs_inode *prev_ip;
2117
2118 prev_ip = xfs_iunlink_lookup(pag, ip->i_prev_unlinked);
2119 if (!prev_ip)
2120 return -EFSCORRUPTED;
2121
2122 error = xfs_iunlink_log_inode(tp, prev_ip, pag,
2123 ip->i_next_unlinked);
2124 prev_ip->i_next_unlinked = ip->i_next_unlinked;
2125 } else {
2126 /* Point the head of the list to the next unlinked inode. */
2127 error = xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index,
2128 ip->i_next_unlinked);
2129 }
2130
2131 ip->i_next_unlinked = NULLAGINO;
2132 ip->i_prev_unlinked = 0;
2133 return error;
2134}
2135
2136/*
2137 * Pull the on-disk inode from the AGI unlinked list.
2138 */
2139STATIC int
2140xfs_iunlink_remove(
2141 struct xfs_trans *tp,
2142 struct xfs_perag *pag,
2143 struct xfs_inode *ip)
2144{
2145 struct xfs_buf *agibp;
2146 int error;
2147
2148 trace_xfs_iunlink_remove(ip);
2149
2150 /* Get the agi buffer first. It ensures lock ordering on the list. */
2151 error = xfs_read_agi(pag, tp, &agibp);
2152 if (error)
2153 return error;
2154
2155 return xfs_iunlink_remove_inode(tp, pag, agibp, ip);
2156}
2157
2158/*
2159 * Look up the inode number specified and if it is not already marked XFS_ISTALE
2160 * mark it stale. We should only find clean inodes in this lookup that aren't
2161 * already stale.
2162 */
2163static void
2164xfs_ifree_mark_inode_stale(
2165 struct xfs_perag *pag,
2166 struct xfs_inode *free_ip,
2167 xfs_ino_t inum)
2168{
2169 struct xfs_mount *mp = pag->pag_mount;
2170 struct xfs_inode_log_item *iip;
2171 struct xfs_inode *ip;
2172
2173retry:
2174 rcu_read_lock();
2175 ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
2176
2177 /* Inode not in memory, nothing to do */
2178 if (!ip) {
2179 rcu_read_unlock();
2180 return;
2181 }
2182
2183 /*
2184 * because this is an RCU protected lookup, we could find a recently
2185 * freed or even reallocated inode during the lookup. We need to check
2186 * under the i_flags_lock for a valid inode here. Skip it if it is not
2187 * valid, the wrong inode or stale.
2188 */
2189 spin_lock(&ip->i_flags_lock);
2190 if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
2191 goto out_iflags_unlock;
2192
2193 /*
2194 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
2195 * other inodes that we did not find in the list attached to the buffer
2196 * and are not already marked stale. If we can't lock it, back off and
2197 * retry.
2198 */
2199 if (ip != free_ip) {
2200 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2201 spin_unlock(&ip->i_flags_lock);
2202 rcu_read_unlock();
2203 delay(1);
2204 goto retry;
2205 }
2206 }
2207 ip->i_flags |= XFS_ISTALE;
2208
2209 /*
2210 * If the inode is flushing, it is already attached to the buffer. All
2211 * we needed to do here is mark the inode stale so buffer IO completion
2212 * will remove it from the AIL.
2213 */
2214 iip = ip->i_itemp;
2215 if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
2216 ASSERT(!list_empty(&iip->ili_item.li_bio_list));
2217 ASSERT(iip->ili_last_fields);
2218 goto out_iunlock;
2219 }
2220
2221 /*
2222 * Inodes not attached to the buffer can be released immediately.
2223 * Everything else has to go through xfs_iflush_abort() on journal
2224 * commit as the flock synchronises removal of the inode from the
2225 * cluster buffer against inode reclaim.
2226 */
2227 if (!iip || list_empty(&iip->ili_item.li_bio_list))
2228 goto out_iunlock;
2229
2230 __xfs_iflags_set(ip, XFS_IFLUSHING);
2231 spin_unlock(&ip->i_flags_lock);
2232 rcu_read_unlock();
2233
2234 /* we have a dirty inode in memory that has not yet been flushed. */
2235 spin_lock(&iip->ili_lock);
2236 iip->ili_last_fields = iip->ili_fields;
2237 iip->ili_fields = 0;
2238 iip->ili_fsync_fields = 0;
2239 spin_unlock(&iip->ili_lock);
2240 ASSERT(iip->ili_last_fields);
2241
2242 if (ip != free_ip)
2243 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2244 return;
2245
2246out_iunlock:
2247 if (ip != free_ip)
2248 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2249out_iflags_unlock:
2250 spin_unlock(&ip->i_flags_lock);
2251 rcu_read_unlock();
2252}
2253
2254/*
2255 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2256 * inodes that are in memory - they all must be marked stale and attached to
2257 * the cluster buffer.
2258 */
2259static int
2260xfs_ifree_cluster(
2261 struct xfs_trans *tp,
2262 struct xfs_perag *pag,
2263 struct xfs_inode *free_ip,
2264 struct xfs_icluster *xic)
2265{
2266 struct xfs_mount *mp = free_ip->i_mount;
2267 struct xfs_ino_geometry *igeo = M_IGEO(mp);
2268 struct xfs_buf *bp;
2269 xfs_daddr_t blkno;
2270 xfs_ino_t inum = xic->first_ino;
2271 int nbufs;
2272 int i, j;
2273 int ioffset;
2274 int error;
2275
2276 nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
2277
2278 for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
2279 /*
2280 * The allocation bitmap tells us which inodes of the chunk were
2281 * physically allocated. Skip the cluster if an inode falls into
2282 * a sparse region.
2283 */
2284 ioffset = inum - xic->first_ino;
2285 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2286 ASSERT(ioffset % igeo->inodes_per_cluster == 0);
2287 continue;
2288 }
2289
2290 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2291 XFS_INO_TO_AGBNO(mp, inum));
2292
2293 /*
2294 * We obtain and lock the backing buffer first in the process
2295 * here to ensure dirty inodes attached to the buffer remain in
2296 * the flushing state while we mark them stale.
2297 *
2298 * If we scan the in-memory inodes first, then buffer IO can
2299 * complete before we get a lock on it, and hence we may fail
2300 * to mark all the active inodes on the buffer stale.
2301 */
2302 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2303 mp->m_bsize * igeo->blocks_per_cluster,
2304 XBF_UNMAPPED, &bp);
2305 if (error)
2306 return error;
2307
2308 /*
2309 * This buffer may not have been correctly initialised as we
2310 * didn't read it from disk. That's not important because we are
2311 * only using to mark the buffer as stale in the log, and to
2312 * attach stale cached inodes on it. That means it will never be
2313 * dispatched for IO. If it is, we want to know about it, and we
2314 * want it to fail. We can acheive this by adding a write
2315 * verifier to the buffer.
2316 */
2317 bp->b_ops = &xfs_inode_buf_ops;
2318
2319 /*
2320 * Now we need to set all the cached clean inodes as XFS_ISTALE,
2321 * too. This requires lookups, and will skip inodes that we've
2322 * already marked XFS_ISTALE.
2323 */
2324 for (i = 0; i < igeo->inodes_per_cluster; i++)
2325 xfs_ifree_mark_inode_stale(pag, free_ip, inum + i);
2326
2327 xfs_trans_stale_inode_buf(tp, bp);
2328 xfs_trans_binval(tp, bp);
2329 }
2330 return 0;
2331}
2332
2333/*
2334 * This is called to return an inode to the inode free list. The inode should
2335 * already be truncated to 0 length and have no pages associated with it. This
2336 * routine also assumes that the inode is already a part of the transaction.
2337 *
2338 * The on-disk copy of the inode will have been added to the list of unlinked
2339 * inodes in the AGI. We need to remove the inode from that list atomically with
2340 * respect to freeing it here.
2341 */
2342int
2343xfs_ifree(
2344 struct xfs_trans *tp,
2345 struct xfs_inode *ip)
2346{
2347 struct xfs_mount *mp = ip->i_mount;
2348 struct xfs_perag *pag;
2349 struct xfs_icluster xic = { 0 };
2350 struct xfs_inode_log_item *iip = ip->i_itemp;
2351 int error;
2352
2353 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2354 ASSERT(VFS_I(ip)->i_nlink == 0);
2355 ASSERT(ip->i_df.if_nextents == 0);
2356 ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2357 ASSERT(ip->i_nblocks == 0);
2358
2359 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2360
2361 /*
2362 * Free the inode first so that we guarantee that the AGI lock is going
2363 * to be taken before we remove the inode from the unlinked list. This
2364 * makes the AGI lock -> unlinked list modification order the same as
2365 * used in O_TMPFILE creation.
2366 */
2367 error = xfs_difree(tp, pag, ip->i_ino, &xic);
2368 if (error)
2369 goto out;
2370
2371 error = xfs_iunlink_remove(tp, pag, ip);
2372 if (error)
2373 goto out;
2374
2375 /*
2376 * Free any local-format data sitting around before we reset the
2377 * data fork to extents format. Note that the attr fork data has
2378 * already been freed by xfs_attr_inactive.
2379 */
2380 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) {
2381 kmem_free(ip->i_df.if_data);
2382 ip->i_df.if_data = NULL;
2383 ip->i_df.if_bytes = 0;
2384 }
2385
2386 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */
2387 ip->i_diflags = 0;
2388 ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
2389 ip->i_forkoff = 0; /* mark the attr fork not in use */
2390 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
2391 if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS))
2392 xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS);
2393
2394 /* Don't attempt to replay owner changes for a deleted inode */
2395 spin_lock(&iip->ili_lock);
2396 iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
2397 spin_unlock(&iip->ili_lock);
2398
2399 /*
2400 * Bump the generation count so no one will be confused
2401 * by reincarnations of this inode.
2402 */
2403 VFS_I(ip)->i_generation++;
2404 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2405
2406 if (xic.deleted)
2407 error = xfs_ifree_cluster(tp, pag, ip, &xic);
2408out:
2409 xfs_perag_put(pag);
2410 return error;
2411}
2412
2413/*
2414 * This is called to unpin an inode. The caller must have the inode locked
2415 * in at least shared mode so that the buffer cannot be subsequently pinned
2416 * once someone is waiting for it to be unpinned.
2417 */
2418static void
2419xfs_iunpin(
2420 struct xfs_inode *ip)
2421{
2422 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2423
2424 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2425
2426 /* Give the log a push to start the unpinning I/O */
2427 xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL);
2428
2429}
2430
2431static void
2432__xfs_iunpin_wait(
2433 struct xfs_inode *ip)
2434{
2435 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2436 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2437
2438 xfs_iunpin(ip);
2439
2440 do {
2441 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2442 if (xfs_ipincount(ip))
2443 io_schedule();
2444 } while (xfs_ipincount(ip));
2445 finish_wait(wq, &wait.wq_entry);
2446}
2447
2448void
2449xfs_iunpin_wait(
2450 struct xfs_inode *ip)
2451{
2452 if (xfs_ipincount(ip))
2453 __xfs_iunpin_wait(ip);
2454}
2455
2456/*
2457 * Removing an inode from the namespace involves removing the directory entry
2458 * and dropping the link count on the inode. Removing the directory entry can
2459 * result in locking an AGF (directory blocks were freed) and removing a link
2460 * count can result in placing the inode on an unlinked list which results in
2461 * locking an AGI.
2462 *
2463 * The big problem here is that we have an ordering constraint on AGF and AGI
2464 * locking - inode allocation locks the AGI, then can allocate a new extent for
2465 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2466 * removes the inode from the unlinked list, requiring that we lock the AGI
2467 * first, and then freeing the inode can result in an inode chunk being freed
2468 * and hence freeing disk space requiring that we lock an AGF.
2469 *
2470 * Hence the ordering that is imposed by other parts of the code is AGI before
2471 * AGF. This means we cannot remove the directory entry before we drop the inode
2472 * reference count and put it on the unlinked list as this results in a lock
2473 * order of AGF then AGI, and this can deadlock against inode allocation and
2474 * freeing. Therefore we must drop the link counts before we remove the
2475 * directory entry.
2476 *
2477 * This is still safe from a transactional point of view - it is not until we
2478 * get to xfs_defer_finish() that we have the possibility of multiple
2479 * transactions in this operation. Hence as long as we remove the directory
2480 * entry and drop the link count in the first transaction of the remove
2481 * operation, there are no transactional constraints on the ordering here.
2482 */
2483int
2484xfs_remove(
2485 xfs_inode_t *dp,
2486 struct xfs_name *name,
2487 xfs_inode_t *ip)
2488{
2489 xfs_mount_t *mp = dp->i_mount;
2490 xfs_trans_t *tp = NULL;
2491 int is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2492 int dontcare;
2493 int error = 0;
2494 uint resblks;
2495
2496 trace_xfs_remove(dp, name);
2497
2498 if (xfs_is_shutdown(mp))
2499 return -EIO;
2500 if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
2501 return -EIO;
2502
2503 error = xfs_qm_dqattach(dp);
2504 if (error)
2505 goto std_return;
2506
2507 error = xfs_qm_dqattach(ip);
2508 if (error)
2509 goto std_return;
2510
2511 /*
2512 * We try to get the real space reservation first, allowing for
2513 * directory btree deletion(s) implying possible bmap insert(s). If we
2514 * can't get the space reservation then we use 0 instead, and avoid the
2515 * bmap btree insert(s) in the directory code by, if the bmap insert
2516 * tries to happen, instead trimming the LAST block from the directory.
2517 *
2518 * Ignore EDQUOT and ENOSPC being returned via nospace_error because
2519 * the directory code can handle a reservationless update and we don't
2520 * want to prevent a user from trying to free space by deleting things.
2521 */
2522 resblks = XFS_REMOVE_SPACE_RES(mp);
2523 error = xfs_trans_alloc_dir(dp, &M_RES(mp)->tr_remove, ip, &resblks,
2524 &tp, &dontcare);
2525 if (error) {
2526 ASSERT(error != -ENOSPC);
2527 goto std_return;
2528 }
2529
2530 /*
2531 * If we're removing a directory perform some additional validation.
2532 */
2533 if (is_dir) {
2534 ASSERT(VFS_I(ip)->i_nlink >= 2);
2535 if (VFS_I(ip)->i_nlink != 2) {
2536 error = -ENOTEMPTY;
2537 goto out_trans_cancel;
2538 }
2539 if (!xfs_dir_isempty(ip)) {
2540 error = -ENOTEMPTY;
2541 goto out_trans_cancel;
2542 }
2543
2544 /* Drop the link from ip's "..". */
2545 error = xfs_droplink(tp, dp);
2546 if (error)
2547 goto out_trans_cancel;
2548
2549 /* Drop the "." link from ip to self. */
2550 error = xfs_droplink(tp, ip);
2551 if (error)
2552 goto out_trans_cancel;
2553
2554 /*
2555 * Point the unlinked child directory's ".." entry to the root
2556 * directory to eliminate back-references to inodes that may
2557 * get freed before the child directory is closed. If the fs
2558 * gets shrunk, this can lead to dirent inode validation errors.
2559 */
2560 if (dp->i_ino != tp->t_mountp->m_sb.sb_rootino) {
2561 error = xfs_dir_replace(tp, ip, &xfs_name_dotdot,
2562 tp->t_mountp->m_sb.sb_rootino, 0);
2563 if (error)
2564 goto out_trans_cancel;
2565 }
2566 } else {
2567 /*
2568 * When removing a non-directory we need to log the parent
2569 * inode here. For a directory this is done implicitly
2570 * by the xfs_droplink call for the ".." entry.
2571 */
2572 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2573 }
2574 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2575
2576 /* Drop the link from dp to ip. */
2577 error = xfs_droplink(tp, ip);
2578 if (error)
2579 goto out_trans_cancel;
2580
2581 error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
2582 if (error) {
2583 ASSERT(error != -ENOENT);
2584 goto out_trans_cancel;
2585 }
2586
2587 /*
2588 * If this is a synchronous mount, make sure that the
2589 * remove transaction goes to disk before returning to
2590 * the user.
2591 */
2592 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
2593 xfs_trans_set_sync(tp);
2594
2595 error = xfs_trans_commit(tp);
2596 if (error)
2597 goto std_return;
2598
2599 if (is_dir && xfs_inode_is_filestream(ip))
2600 xfs_filestream_deassociate(ip);
2601
2602 return 0;
2603
2604 out_trans_cancel:
2605 xfs_trans_cancel(tp);
2606 std_return:
2607 return error;
2608}
2609
2610/*
2611 * Enter all inodes for a rename transaction into a sorted array.
2612 */
2613#define __XFS_SORT_INODES 5
2614STATIC void
2615xfs_sort_for_rename(
2616 struct xfs_inode *dp1, /* in: old (source) directory inode */
2617 struct xfs_inode *dp2, /* in: new (target) directory inode */
2618 struct xfs_inode *ip1, /* in: inode of old entry */
2619 struct xfs_inode *ip2, /* in: inode of new entry */
2620 struct xfs_inode *wip, /* in: whiteout inode */
2621 struct xfs_inode **i_tab,/* out: sorted array of inodes */
2622 int *num_inodes) /* in/out: inodes in array */
2623{
2624 int i, j;
2625
2626 ASSERT(*num_inodes == __XFS_SORT_INODES);
2627 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2628
2629 /*
2630 * i_tab contains a list of pointers to inodes. We initialize
2631 * the table here & we'll sort it. We will then use it to
2632 * order the acquisition of the inode locks.
2633 *
2634 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2635 */
2636 i = 0;
2637 i_tab[i++] = dp1;
2638 i_tab[i++] = dp2;
2639 i_tab[i++] = ip1;
2640 if (ip2)
2641 i_tab[i++] = ip2;
2642 if (wip)
2643 i_tab[i++] = wip;
2644 *num_inodes = i;
2645
2646 /*
2647 * Sort the elements via bubble sort. (Remember, there are at
2648 * most 5 elements to sort, so this is adequate.)
2649 */
2650 for (i = 0; i < *num_inodes; i++) {
2651 for (j = 1; j < *num_inodes; j++) {
2652 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2653 struct xfs_inode *temp = i_tab[j];
2654 i_tab[j] = i_tab[j-1];
2655 i_tab[j-1] = temp;
2656 }
2657 }
2658 }
2659}
2660
2661static int
2662xfs_finish_rename(
2663 struct xfs_trans *tp)
2664{
2665 /*
2666 * If this is a synchronous mount, make sure that the rename transaction
2667 * goes to disk before returning to the user.
2668 */
2669 if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp))
2670 xfs_trans_set_sync(tp);
2671
2672 return xfs_trans_commit(tp);
2673}
2674
2675/*
2676 * xfs_cross_rename()
2677 *
2678 * responsible for handling RENAME_EXCHANGE flag in renameat2() syscall
2679 */
2680STATIC int
2681xfs_cross_rename(
2682 struct xfs_trans *tp,
2683 struct xfs_inode *dp1,
2684 struct xfs_name *name1,
2685 struct xfs_inode *ip1,
2686 struct xfs_inode *dp2,
2687 struct xfs_name *name2,
2688 struct xfs_inode *ip2,
2689 int spaceres)
2690{
2691 int error = 0;
2692 int ip1_flags = 0;
2693 int ip2_flags = 0;
2694 int dp2_flags = 0;
2695
2696 /* Swap inode number for dirent in first parent */
2697 error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
2698 if (error)
2699 goto out_trans_abort;
2700
2701 /* Swap inode number for dirent in second parent */
2702 error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
2703 if (error)
2704 goto out_trans_abort;
2705
2706 /*
2707 * If we're renaming one or more directories across different parents,
2708 * update the respective ".." entries (and link counts) to match the new
2709 * parents.
2710 */
2711 if (dp1 != dp2) {
2712 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2713
2714 if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2715 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2716 dp1->i_ino, spaceres);
2717 if (error)
2718 goto out_trans_abort;
2719
2720 /* transfer ip2 ".." reference to dp1 */
2721 if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2722 error = xfs_droplink(tp, dp2);
2723 if (error)
2724 goto out_trans_abort;
2725 xfs_bumplink(tp, dp1);
2726 }
2727
2728 /*
2729 * Although ip1 isn't changed here, userspace needs
2730 * to be warned about the change, so that applications
2731 * relying on it (like backup ones), will properly
2732 * notify the change
2733 */
2734 ip1_flags |= XFS_ICHGTIME_CHG;
2735 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2736 }
2737
2738 if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2739 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2740 dp2->i_ino, spaceres);
2741 if (error)
2742 goto out_trans_abort;
2743
2744 /* transfer ip1 ".." reference to dp2 */
2745 if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2746 error = xfs_droplink(tp, dp1);
2747 if (error)
2748 goto out_trans_abort;
2749 xfs_bumplink(tp, dp2);
2750 }
2751
2752 /*
2753 * Although ip2 isn't changed here, userspace needs
2754 * to be warned about the change, so that applications
2755 * relying on it (like backup ones), will properly
2756 * notify the change
2757 */
2758 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2759 ip2_flags |= XFS_ICHGTIME_CHG;
2760 }
2761 }
2762
2763 if (ip1_flags) {
2764 xfs_trans_ichgtime(tp, ip1, ip1_flags);
2765 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2766 }
2767 if (ip2_flags) {
2768 xfs_trans_ichgtime(tp, ip2, ip2_flags);
2769 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2770 }
2771 if (dp2_flags) {
2772 xfs_trans_ichgtime(tp, dp2, dp2_flags);
2773 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2774 }
2775 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2776 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2777 return xfs_finish_rename(tp);
2778
2779out_trans_abort:
2780 xfs_trans_cancel(tp);
2781 return error;
2782}
2783
2784/*
2785 * xfs_rename_alloc_whiteout()
2786 *
2787 * Return a referenced, unlinked, unlocked inode that can be used as a
2788 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2789 * crash between allocating the inode and linking it into the rename transaction
2790 * recovery will free the inode and we won't leak it.
2791 */
2792static int
2793xfs_rename_alloc_whiteout(
2794 struct mnt_idmap *idmap,
2795 struct xfs_name *src_name,
2796 struct xfs_inode *dp,
2797 struct xfs_inode **wip)
2798{
2799 struct xfs_inode *tmpfile;
2800 struct qstr name;
2801 int error;
2802
2803 error = xfs_create_tmpfile(idmap, dp, S_IFCHR | WHITEOUT_MODE,
2804 &tmpfile);
2805 if (error)
2806 return error;
2807
2808 name.name = src_name->name;
2809 name.len = src_name->len;
2810 error = xfs_inode_init_security(VFS_I(tmpfile), VFS_I(dp), &name);
2811 if (error) {
2812 xfs_finish_inode_setup(tmpfile);
2813 xfs_irele(tmpfile);
2814 return error;
2815 }
2816
2817 /*
2818 * Prepare the tmpfile inode as if it were created through the VFS.
2819 * Complete the inode setup and flag it as linkable. nlink is already
2820 * zero, so we can skip the drop_nlink.
2821 */
2822 xfs_setup_iops(tmpfile);
2823 xfs_finish_inode_setup(tmpfile);
2824 VFS_I(tmpfile)->i_state |= I_LINKABLE;
2825
2826 *wip = tmpfile;
2827 return 0;
2828}
2829
2830/*
2831 * xfs_rename
2832 */
2833int
2834xfs_rename(
2835 struct mnt_idmap *idmap,
2836 struct xfs_inode *src_dp,
2837 struct xfs_name *src_name,
2838 struct xfs_inode *src_ip,
2839 struct xfs_inode *target_dp,
2840 struct xfs_name *target_name,
2841 struct xfs_inode *target_ip,
2842 unsigned int flags)
2843{
2844 struct xfs_mount *mp = src_dp->i_mount;
2845 struct xfs_trans *tp;
2846 struct xfs_inode *wip = NULL; /* whiteout inode */
2847 struct xfs_inode *inodes[__XFS_SORT_INODES];
2848 int i;
2849 int num_inodes = __XFS_SORT_INODES;
2850 bool new_parent = (src_dp != target_dp);
2851 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2852 int spaceres;
2853 bool retried = false;
2854 int error, nospace_error = 0;
2855
2856 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2857
2858 if ((flags & RENAME_EXCHANGE) && !target_ip)
2859 return -EINVAL;
2860
2861 /*
2862 * If we are doing a whiteout operation, allocate the whiteout inode
2863 * we will be placing at the target and ensure the type is set
2864 * appropriately.
2865 */
2866 if (flags & RENAME_WHITEOUT) {
2867 error = xfs_rename_alloc_whiteout(idmap, src_name,
2868 target_dp, &wip);
2869 if (error)
2870 return error;
2871
2872 /* setup target dirent info as whiteout */
2873 src_name->type = XFS_DIR3_FT_CHRDEV;
2874 }
2875
2876 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
2877 inodes, &num_inodes);
2878
2879retry:
2880 nospace_error = 0;
2881 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2882 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2883 if (error == -ENOSPC) {
2884 nospace_error = error;
2885 spaceres = 0;
2886 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2887 &tp);
2888 }
2889 if (error)
2890 goto out_release_wip;
2891
2892 /*
2893 * Attach the dquots to the inodes
2894 */
2895 error = xfs_qm_vop_rename_dqattach(inodes);
2896 if (error)
2897 goto out_trans_cancel;
2898
2899 /*
2900 * Lock all the participating inodes. Depending upon whether
2901 * the target_name exists in the target directory, and
2902 * whether the target directory is the same as the source
2903 * directory, we can lock from 2 to 5 inodes.
2904 */
2905 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2906
2907 /*
2908 * Join all the inodes to the transaction. From this point on,
2909 * we can rely on either trans_commit or trans_cancel to unlock
2910 * them.
2911 */
2912 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
2913 if (new_parent)
2914 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
2915 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2916 if (target_ip)
2917 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2918 if (wip)
2919 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
2920
2921 /*
2922 * If we are using project inheritance, we only allow renames
2923 * into our tree when the project IDs are the same; else the
2924 * tree quota mechanism would be circumvented.
2925 */
2926 if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
2927 target_dp->i_projid != src_ip->i_projid)) {
2928 error = -EXDEV;
2929 goto out_trans_cancel;
2930 }
2931
2932 /* RENAME_EXCHANGE is unique from here on. */
2933 if (flags & RENAME_EXCHANGE)
2934 return xfs_cross_rename(tp, src_dp, src_name, src_ip,
2935 target_dp, target_name, target_ip,
2936 spaceres);
2937
2938 /*
2939 * Try to reserve quota to handle an expansion of the target directory.
2940 * We'll allow the rename to continue in reservationless mode if we hit
2941 * a space usage constraint. If we trigger reservationless mode, save
2942 * the errno if there isn't any free space in the target directory.
2943 */
2944 if (spaceres != 0) {
2945 error = xfs_trans_reserve_quota_nblks(tp, target_dp, spaceres,
2946 0, false);
2947 if (error == -EDQUOT || error == -ENOSPC) {
2948 if (!retried) {
2949 xfs_trans_cancel(tp);
2950 xfs_blockgc_free_quota(target_dp, 0);
2951 retried = true;
2952 goto retry;
2953 }
2954
2955 nospace_error = error;
2956 spaceres = 0;
2957 error = 0;
2958 }
2959 if (error)
2960 goto out_trans_cancel;
2961 }
2962
2963 /*
2964 * Check for expected errors before we dirty the transaction
2965 * so we can return an error without a transaction abort.
2966 */
2967 if (target_ip == NULL) {
2968 /*
2969 * If there's no space reservation, check the entry will
2970 * fit before actually inserting it.
2971 */
2972 if (!spaceres) {
2973 error = xfs_dir_canenter(tp, target_dp, target_name);
2974 if (error)
2975 goto out_trans_cancel;
2976 }
2977 } else {
2978 /*
2979 * If target exists and it's a directory, check that whether
2980 * it can be destroyed.
2981 */
2982 if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
2983 (!xfs_dir_isempty(target_ip) ||
2984 (VFS_I(target_ip)->i_nlink > 2))) {
2985 error = -EEXIST;
2986 goto out_trans_cancel;
2987 }
2988 }
2989
2990 /*
2991 * Lock the AGI buffers we need to handle bumping the nlink of the
2992 * whiteout inode off the unlinked list and to handle dropping the
2993 * nlink of the target inode. Per locking order rules, do this in
2994 * increasing AG order and before directory block allocation tries to
2995 * grab AGFs because we grab AGIs before AGFs.
2996 *
2997 * The (vfs) caller must ensure that if src is a directory then
2998 * target_ip is either null or an empty directory.
2999 */
3000 for (i = 0; i < num_inodes && inodes[i] != NULL; i++) {
3001 if (inodes[i] == wip ||
3002 (inodes[i] == target_ip &&
3003 (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) {
3004 struct xfs_perag *pag;
3005 struct xfs_buf *bp;
3006
3007 pag = xfs_perag_get(mp,
3008 XFS_INO_TO_AGNO(mp, inodes[i]->i_ino));
3009 error = xfs_read_agi(pag, tp, &bp);
3010 xfs_perag_put(pag);
3011 if (error)
3012 goto out_trans_cancel;
3013 }
3014 }
3015
3016 /*
3017 * Directory entry creation below may acquire the AGF. Remove
3018 * the whiteout from the unlinked list first to preserve correct
3019 * AGI/AGF locking order. This dirties the transaction so failures
3020 * after this point will abort and log recovery will clean up the
3021 * mess.
3022 *
3023 * For whiteouts, we need to bump the link count on the whiteout
3024 * inode. After this point, we have a real link, clear the tmpfile
3025 * state flag from the inode so it doesn't accidentally get misused
3026 * in future.
3027 */
3028 if (wip) {
3029 struct xfs_perag *pag;
3030
3031 ASSERT(VFS_I(wip)->i_nlink == 0);
3032
3033 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, wip->i_ino));
3034 error = xfs_iunlink_remove(tp, pag, wip);
3035 xfs_perag_put(pag);
3036 if (error)
3037 goto out_trans_cancel;
3038
3039 xfs_bumplink(tp, wip);
3040 VFS_I(wip)->i_state &= ~I_LINKABLE;
3041 }
3042
3043 /*
3044 * Set up the target.
3045 */
3046 if (target_ip == NULL) {
3047 /*
3048 * If target does not exist and the rename crosses
3049 * directories, adjust the target directory link count
3050 * to account for the ".." reference from the new entry.
3051 */
3052 error = xfs_dir_createname(tp, target_dp, target_name,
3053 src_ip->i_ino, spaceres);
3054 if (error)
3055 goto out_trans_cancel;
3056
3057 xfs_trans_ichgtime(tp, target_dp,
3058 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3059
3060 if (new_parent && src_is_directory) {
3061 xfs_bumplink(tp, target_dp);
3062 }
3063 } else { /* target_ip != NULL */
3064 /*
3065 * Link the source inode under the target name.
3066 * If the source inode is a directory and we are moving
3067 * it across directories, its ".." entry will be
3068 * inconsistent until we replace that down below.
3069 *
3070 * In case there is already an entry with the same
3071 * name at the destination directory, remove it first.
3072 */
3073 error = xfs_dir_replace(tp, target_dp, target_name,
3074 src_ip->i_ino, spaceres);
3075 if (error)
3076 goto out_trans_cancel;
3077
3078 xfs_trans_ichgtime(tp, target_dp,
3079 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3080
3081 /*
3082 * Decrement the link count on the target since the target
3083 * dir no longer points to it.
3084 */
3085 error = xfs_droplink(tp, target_ip);
3086 if (error)
3087 goto out_trans_cancel;
3088
3089 if (src_is_directory) {
3090 /*
3091 * Drop the link from the old "." entry.
3092 */
3093 error = xfs_droplink(tp, target_ip);
3094 if (error)
3095 goto out_trans_cancel;
3096 }
3097 } /* target_ip != NULL */
3098
3099 /*
3100 * Remove the source.
3101 */
3102 if (new_parent && src_is_directory) {
3103 /*
3104 * Rewrite the ".." entry to point to the new
3105 * directory.
3106 */
3107 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3108 target_dp->i_ino, spaceres);
3109 ASSERT(error != -EEXIST);
3110 if (error)
3111 goto out_trans_cancel;
3112 }
3113
3114 /*
3115 * We always want to hit the ctime on the source inode.
3116 *
3117 * This isn't strictly required by the standards since the source
3118 * inode isn't really being changed, but old unix file systems did
3119 * it and some incremental backup programs won't work without it.
3120 */
3121 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3122 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3123
3124 /*
3125 * Adjust the link count on src_dp. This is necessary when
3126 * renaming a directory, either within one parent when
3127 * the target existed, or across two parent directories.
3128 */
3129 if (src_is_directory && (new_parent || target_ip != NULL)) {
3130
3131 /*
3132 * Decrement link count on src_directory since the
3133 * entry that's moved no longer points to it.
3134 */
3135 error = xfs_droplink(tp, src_dp);
3136 if (error)
3137 goto out_trans_cancel;
3138 }
3139
3140 /*
3141 * For whiteouts, we only need to update the source dirent with the
3142 * inode number of the whiteout inode rather than removing it
3143 * altogether.
3144 */
3145 if (wip)
3146 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3147 spaceres);
3148 else
3149 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3150 spaceres);
3151
3152 if (error)
3153 goto out_trans_cancel;
3154
3155 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3156 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3157 if (new_parent)
3158 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3159
3160 error = xfs_finish_rename(tp);
3161 if (wip)
3162 xfs_irele(wip);
3163 return error;
3164
3165out_trans_cancel:
3166 xfs_trans_cancel(tp);
3167out_release_wip:
3168 if (wip)
3169 xfs_irele(wip);
3170 if (error == -ENOSPC && nospace_error)
3171 error = nospace_error;
3172 return error;
3173}
3174
3175static int
3176xfs_iflush(
3177 struct xfs_inode *ip,
3178 struct xfs_buf *bp)
3179{
3180 struct xfs_inode_log_item *iip = ip->i_itemp;
3181 struct xfs_dinode *dip;
3182 struct xfs_mount *mp = ip->i_mount;
3183 int error;
3184
3185 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3186 ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
3187 ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
3188 ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3189 ASSERT(iip->ili_item.li_buf == bp);
3190
3191 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3192
3193 /*
3194 * We don't flush the inode if any of the following checks fail, but we
3195 * do still update the log item and attach to the backing buffer as if
3196 * the flush happened. This is a formality to facilitate predictable
3197 * error handling as the caller will shutdown and fail the buffer.
3198 */
3199 error = -EFSCORRUPTED;
3200 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3201 mp, XFS_ERRTAG_IFLUSH_1)) {
3202 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3203 "%s: Bad inode %llu magic number 0x%x, ptr "PTR_FMT,
3204 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3205 goto flush_out;
3206 }
3207 if (S_ISREG(VFS_I(ip)->i_mode)) {
3208 if (XFS_TEST_ERROR(
3209 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3210 ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
3211 mp, XFS_ERRTAG_IFLUSH_3)) {
3212 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3213 "%s: Bad regular inode %llu, ptr "PTR_FMT,
3214 __func__, ip->i_ino, ip);
3215 goto flush_out;
3216 }
3217 } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3218 if (XFS_TEST_ERROR(
3219 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3220 ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
3221 ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
3222 mp, XFS_ERRTAG_IFLUSH_4)) {
3223 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3224 "%s: Bad directory inode %llu, ptr "PTR_FMT,
3225 __func__, ip->i_ino, ip);
3226 goto flush_out;
3227 }
3228 }
3229 if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af) >
3230 ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3231 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3232 "%s: detected corrupt incore inode %llu, "
3233 "total extents = %llu nblocks = %lld, ptr "PTR_FMT,
3234 __func__, ip->i_ino,
3235 ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af),
3236 ip->i_nblocks, ip);
3237 goto flush_out;
3238 }
3239 if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize,
3240 mp, XFS_ERRTAG_IFLUSH_6)) {
3241 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3242 "%s: bad inode %llu, forkoff 0x%x, ptr "PTR_FMT,
3243 __func__, ip->i_ino, ip->i_forkoff, ip);
3244 goto flush_out;
3245 }
3246
3247 /*
3248 * Inode item log recovery for v2 inodes are dependent on the flushiter
3249 * count for correct sequencing. We bump the flush iteration count so
3250 * we can detect flushes which postdate a log record during recovery.
3251 * This is redundant as we now log every change and hence this can't
3252 * happen but we need to still do it to ensure backwards compatibility
3253 * with old kernels that predate logging all inode changes.
3254 */
3255 if (!xfs_has_v3inodes(mp))
3256 ip->i_flushiter++;
3257
3258 /*
3259 * If there are inline format data / attr forks attached to this inode,
3260 * make sure they are not corrupt.
3261 */
3262 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
3263 xfs_ifork_verify_local_data(ip))
3264 goto flush_out;
3265 if (xfs_inode_has_attr_fork(ip) &&
3266 ip->i_af.if_format == XFS_DINODE_FMT_LOCAL &&
3267 xfs_ifork_verify_local_attr(ip))
3268 goto flush_out;
3269
3270 /*
3271 * Copy the dirty parts of the inode into the on-disk inode. We always
3272 * copy out the core of the inode, because if the inode is dirty at all
3273 * the core must be.
3274 */
3275 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3276
3277 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3278 if (!xfs_has_v3inodes(mp)) {
3279 if (ip->i_flushiter == DI_MAX_FLUSH)
3280 ip->i_flushiter = 0;
3281 }
3282
3283 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3284 if (xfs_inode_has_attr_fork(ip))
3285 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3286
3287 /*
3288 * We've recorded everything logged in the inode, so we'd like to clear
3289 * the ili_fields bits so we don't log and flush things unnecessarily.
3290 * However, we can't stop logging all this information until the data
3291 * we've copied into the disk buffer is written to disk. If we did we
3292 * might overwrite the copy of the inode in the log with all the data
3293 * after re-logging only part of it, and in the face of a crash we
3294 * wouldn't have all the data we need to recover.
3295 *
3296 * What we do is move the bits to the ili_last_fields field. When
3297 * logging the inode, these bits are moved back to the ili_fields field.
3298 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
3299 * we know that the information those bits represent is permanently on
3300 * disk. As long as the flush completes before the inode is logged
3301 * again, then both ili_fields and ili_last_fields will be cleared.
3302 */
3303 error = 0;
3304flush_out:
3305 spin_lock(&iip->ili_lock);
3306 iip->ili_last_fields = iip->ili_fields;
3307 iip->ili_fields = 0;
3308 iip->ili_fsync_fields = 0;
3309 spin_unlock(&iip->ili_lock);
3310
3311 /*
3312 * Store the current LSN of the inode so that we can tell whether the
3313 * item has moved in the AIL from xfs_buf_inode_iodone().
3314 */
3315 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3316 &iip->ili_item.li_lsn);
3317
3318 /* generate the checksum. */
3319 xfs_dinode_calc_crc(mp, dip);
3320 return error;
3321}
3322
3323/*
3324 * Non-blocking flush of dirty inode metadata into the backing buffer.
3325 *
3326 * The caller must have a reference to the inode and hold the cluster buffer
3327 * locked. The function will walk across all the inodes on the cluster buffer it
3328 * can find and lock without blocking, and flush them to the cluster buffer.
3329 *
3330 * On successful flushing of at least one inode, the caller must write out the
3331 * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
3332 * the caller needs to release the buffer. On failure, the filesystem will be
3333 * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
3334 * will be returned.
3335 */
3336int
3337xfs_iflush_cluster(
3338 struct xfs_buf *bp)
3339{
3340 struct xfs_mount *mp = bp->b_mount;
3341 struct xfs_log_item *lip, *n;
3342 struct xfs_inode *ip;
3343 struct xfs_inode_log_item *iip;
3344 int clcount = 0;
3345 int error = 0;
3346
3347 /*
3348 * We must use the safe variant here as on shutdown xfs_iflush_abort()
3349 * will remove itself from the list.
3350 */
3351 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
3352 iip = (struct xfs_inode_log_item *)lip;
3353 ip = iip->ili_inode;
3354
3355 /*
3356 * Quick and dirty check to avoid locks if possible.
3357 */
3358 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
3359 continue;
3360 if (xfs_ipincount(ip))
3361 continue;
3362
3363 /*
3364 * The inode is still attached to the buffer, which means it is
3365 * dirty but reclaim might try to grab it. Check carefully for
3366 * that, and grab the ilock while still holding the i_flags_lock
3367 * to guarantee reclaim will not be able to reclaim this inode
3368 * once we drop the i_flags_lock.
3369 */
3370 spin_lock(&ip->i_flags_lock);
3371 ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
3372 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
3373 spin_unlock(&ip->i_flags_lock);
3374 continue;
3375 }
3376
3377 /*
3378 * ILOCK will pin the inode against reclaim and prevent
3379 * concurrent transactions modifying the inode while we are
3380 * flushing the inode. If we get the lock, set the flushing
3381 * state before we drop the i_flags_lock.
3382 */
3383 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
3384 spin_unlock(&ip->i_flags_lock);
3385 continue;
3386 }
3387 __xfs_iflags_set(ip, XFS_IFLUSHING);
3388 spin_unlock(&ip->i_flags_lock);
3389
3390 /*
3391 * Abort flushing this inode if we are shut down because the
3392 * inode may not currently be in the AIL. This can occur when
3393 * log I/O failure unpins the inode without inserting into the
3394 * AIL, leaving a dirty/unpinned inode attached to the buffer
3395 * that otherwise looks like it should be flushed.
3396 */
3397 if (xlog_is_shutdown(mp->m_log)) {
3398 xfs_iunpin_wait(ip);
3399 xfs_iflush_abort(ip);
3400 xfs_iunlock(ip, XFS_ILOCK_SHARED);
3401 error = -EIO;
3402 continue;
3403 }
3404
3405 /* don't block waiting on a log force to unpin dirty inodes */
3406 if (xfs_ipincount(ip)) {
3407 xfs_iflags_clear(ip, XFS_IFLUSHING);
3408 xfs_iunlock(ip, XFS_ILOCK_SHARED);
3409 continue;
3410 }
3411
3412 if (!xfs_inode_clean(ip))
3413 error = xfs_iflush(ip, bp);
3414 else
3415 xfs_iflags_clear(ip, XFS_IFLUSHING);
3416 xfs_iunlock(ip, XFS_ILOCK_SHARED);
3417 if (error)
3418 break;
3419 clcount++;
3420 }
3421
3422 if (error) {
3423 /*
3424 * Shutdown first so we kill the log before we release this
3425 * buffer. If it is an INODE_ALLOC buffer and pins the tail
3426 * of the log, failing it before the _log_ is shut down can
3427 * result in the log tail being moved forward in the journal
3428 * on disk because log writes can still be taking place. Hence
3429 * unpinning the tail will allow the ICREATE intent to be
3430 * removed from the log an recovery will fail with uninitialised
3431 * inode cluster buffers.
3432 */
3433 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3434 bp->b_flags |= XBF_ASYNC;
3435 xfs_buf_ioend_fail(bp);
3436 return error;
3437 }
3438
3439 if (!clcount)
3440 return -EAGAIN;
3441
3442 XFS_STATS_INC(mp, xs_icluster_flushcnt);
3443 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3444 return 0;
3445
3446}
3447
3448/* Release an inode. */
3449void
3450xfs_irele(
3451 struct xfs_inode *ip)
3452{
3453 trace_xfs_irele(ip, _RET_IP_);
3454 iput(VFS_I(ip));
3455}
3456
3457/*
3458 * Ensure all commited transactions touching the inode are written to the log.
3459 */
3460int
3461xfs_log_force_inode(
3462 struct xfs_inode *ip)
3463{
3464 xfs_csn_t seq = 0;
3465
3466 xfs_ilock(ip, XFS_ILOCK_SHARED);
3467 if (xfs_ipincount(ip))
3468 seq = ip->i_itemp->ili_commit_seq;
3469 xfs_iunlock(ip, XFS_ILOCK_SHARED);
3470
3471 if (!seq)
3472 return 0;
3473 return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL);
3474}
3475
3476/*
3477 * Grab the exclusive iolock for a data copy from src to dest, making sure to
3478 * abide vfs locking order (lowest pointer value goes first) and breaking the
3479 * layout leases before proceeding. The loop is needed because we cannot call
3480 * the blocking break_layout() with the iolocks held, and therefore have to
3481 * back out both locks.
3482 */
3483static int
3484xfs_iolock_two_inodes_and_break_layout(
3485 struct inode *src,
3486 struct inode *dest)
3487{
3488 int error;
3489
3490 if (src > dest)
3491 swap(src, dest);
3492
3493retry:
3494 /* Wait to break both inodes' layouts before we start locking. */
3495 error = break_layout(src, true);
3496 if (error)
3497 return error;
3498 if (src != dest) {
3499 error = break_layout(dest, true);
3500 if (error)
3501 return error;
3502 }
3503
3504 /* Lock one inode and make sure nobody got in and leased it. */
3505 inode_lock(src);
3506 error = break_layout(src, false);
3507 if (error) {
3508 inode_unlock(src);
3509 if (error == -EWOULDBLOCK)
3510 goto retry;
3511 return error;
3512 }
3513
3514 if (src == dest)
3515 return 0;
3516
3517 /* Lock the other inode and make sure nobody got in and leased it. */
3518 inode_lock_nested(dest, I_MUTEX_NONDIR2);
3519 error = break_layout(dest, false);
3520 if (error) {
3521 inode_unlock(src);
3522 inode_unlock(dest);
3523 if (error == -EWOULDBLOCK)
3524 goto retry;
3525 return error;
3526 }
3527
3528 return 0;
3529}
3530
3531static int
3532xfs_mmaplock_two_inodes_and_break_dax_layout(
3533 struct xfs_inode *ip1,
3534 struct xfs_inode *ip2)
3535{
3536 int error;
3537 bool retry;
3538 struct page *page;
3539
3540 if (ip1->i_ino > ip2->i_ino)
3541 swap(ip1, ip2);
3542
3543again:
3544 retry = false;
3545 /* Lock the first inode */
3546 xfs_ilock(ip1, XFS_MMAPLOCK_EXCL);
3547 error = xfs_break_dax_layouts(VFS_I(ip1), &retry);
3548 if (error || retry) {
3549 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3550 if (error == 0 && retry)
3551 goto again;
3552 return error;
3553 }
3554
3555 if (ip1 == ip2)
3556 return 0;
3557
3558 /* Nested lock the second inode */
3559 xfs_ilock(ip2, xfs_lock_inumorder(XFS_MMAPLOCK_EXCL, 1));
3560 /*
3561 * We cannot use xfs_break_dax_layouts() directly here because it may
3562 * need to unlock & lock the XFS_MMAPLOCK_EXCL which is not suitable
3563 * for this nested lock case.
3564 */
3565 page = dax_layout_busy_page(VFS_I(ip2)->i_mapping);
3566 if (page && page_ref_count(page) != 1) {
3567 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3568 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3569 goto again;
3570 }
3571
3572 return 0;
3573}
3574
3575/*
3576 * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
3577 * mmap activity.
3578 */
3579int
3580xfs_ilock2_io_mmap(
3581 struct xfs_inode *ip1,
3582 struct xfs_inode *ip2)
3583{
3584 int ret;
3585
3586 ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
3587 if (ret)
3588 return ret;
3589
3590 if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
3591 ret = xfs_mmaplock_two_inodes_and_break_dax_layout(ip1, ip2);
3592 if (ret) {
3593 inode_unlock(VFS_I(ip2));
3594 if (ip1 != ip2)
3595 inode_unlock(VFS_I(ip1));
3596 return ret;
3597 }
3598 } else
3599 filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping,
3600 VFS_I(ip2)->i_mapping);
3601
3602 return 0;
3603}
3604
3605/* Unlock both inodes to allow IO and mmap activity. */
3606void
3607xfs_iunlock2_io_mmap(
3608 struct xfs_inode *ip1,
3609 struct xfs_inode *ip2)
3610{
3611 if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
3612 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3613 if (ip1 != ip2)
3614 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3615 } else
3616 filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping,
3617 VFS_I(ip2)->i_mapping);
3618
3619 inode_unlock(VFS_I(ip2));
3620 if (ip1 != ip2)
3621 inode_unlock(VFS_I(ip1));
3622}
3623
3624/* Drop the MMAPLOCK and the IOLOCK after a remap completes. */
3625void
3626xfs_iunlock2_remapping(
3627 struct xfs_inode *ip1,
3628 struct xfs_inode *ip2)
3629{
3630 xfs_iflags_clear(ip1, XFS_IREMAPPING);
3631
3632 if (ip1 != ip2)
3633 xfs_iunlock(ip1, XFS_MMAPLOCK_SHARED);
3634 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3635
3636 if (ip1 != ip2)
3637 inode_unlock_shared(VFS_I(ip1));
3638 inode_unlock(VFS_I(ip2));
3639}
3640
3641/*
3642 * Reload the incore inode list for this inode. Caller should ensure that
3643 * the link count cannot change, either by taking ILOCK_SHARED or otherwise
3644 * preventing other threads from executing.
3645 */
3646int
3647xfs_inode_reload_unlinked_bucket(
3648 struct xfs_trans *tp,
3649 struct xfs_inode *ip)
3650{
3651 struct xfs_mount *mp = tp->t_mountp;
3652 struct xfs_buf *agibp;
3653 struct xfs_agi *agi;
3654 struct xfs_perag *pag;
3655 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
3656 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
3657 xfs_agino_t prev_agino, next_agino;
3658 unsigned int bucket;
3659 bool foundit = false;
3660 int error;
3661
3662 /* Grab the first inode in the list */
3663 pag = xfs_perag_get(mp, agno);
3664 error = xfs_ialloc_read_agi(pag, tp, &agibp);
3665 xfs_perag_put(pag);
3666 if (error)
3667 return error;
3668
3669 /*
3670 * We've taken ILOCK_SHARED and the AGI buffer lock to stabilize the
3671 * incore unlinked list pointers for this inode. Check once more to
3672 * see if we raced with anyone else to reload the unlinked list.
3673 */
3674 if (!xfs_inode_unlinked_incomplete(ip)) {
3675 foundit = true;
3676 goto out_agibp;
3677 }
3678
3679 bucket = agino % XFS_AGI_UNLINKED_BUCKETS;
3680 agi = agibp->b_addr;
3681
3682 trace_xfs_inode_reload_unlinked_bucket(ip);
3683
3684 xfs_info_ratelimited(mp,
3685 "Found unrecovered unlinked inode 0x%x in AG 0x%x. Initiating list recovery.",
3686 agino, agno);
3687
3688 prev_agino = NULLAGINO;
3689 next_agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3690 while (next_agino != NULLAGINO) {
3691 struct xfs_inode *next_ip = NULL;
3692
3693 /* Found this caller's inode, set its backlink. */
3694 if (next_agino == agino) {
3695 next_ip = ip;
3696 next_ip->i_prev_unlinked = prev_agino;
3697 foundit = true;
3698 goto next_inode;
3699 }
3700
3701 /* Try in-memory lookup first. */
3702 next_ip = xfs_iunlink_lookup(pag, next_agino);
3703 if (next_ip)
3704 goto next_inode;
3705
3706 /* Inode not in memory, try reloading it. */
3707 error = xfs_iunlink_reload_next(tp, agibp, prev_agino,
3708 next_agino);
3709 if (error)
3710 break;
3711
3712 /* Grab the reloaded inode. */
3713 next_ip = xfs_iunlink_lookup(pag, next_agino);
3714 if (!next_ip) {
3715 /* No incore inode at all? We reloaded it... */
3716 ASSERT(next_ip != NULL);
3717 error = -EFSCORRUPTED;
3718 break;
3719 }
3720
3721next_inode:
3722 prev_agino = next_agino;
3723 next_agino = next_ip->i_next_unlinked;
3724 }
3725
3726out_agibp:
3727 xfs_trans_brelse(tp, agibp);
3728 /* Should have found this inode somewhere in the iunlinked bucket. */
3729 if (!error && !foundit)
3730 error = -EFSCORRUPTED;
3731 return error;
3732}
3733
3734/* Decide if this inode is missing its unlinked list and reload it. */
3735int
3736xfs_inode_reload_unlinked(
3737 struct xfs_inode *ip)
3738{
3739 struct xfs_trans *tp;
3740 int error;
3741
3742 error = xfs_trans_alloc_empty(ip->i_mount, &tp);
3743 if (error)
3744 return error;
3745
3746 xfs_ilock(ip, XFS_ILOCK_SHARED);
3747 if (xfs_inode_unlinked_incomplete(ip))
3748 error = xfs_inode_reload_unlinked_bucket(tp, ip);
3749 xfs_iunlock(ip, XFS_ILOCK_SHARED);
3750 xfs_trans_cancel(tp);
3751
3752 return error;
3753}
3754
3755/* Has this inode fork been zapped by repair? */
3756bool
3757xfs_ifork_zapped(
3758 const struct xfs_inode *ip,
3759 int whichfork)
3760{
3761 unsigned int datamask = 0;
3762
3763 switch (whichfork) {
3764 case XFS_DATA_FORK:
3765 switch (ip->i_vnode.i_mode & S_IFMT) {
3766 case S_IFDIR:
3767 datamask = XFS_SICK_INO_DIR_ZAPPED;
3768 break;
3769 case S_IFLNK:
3770 datamask = XFS_SICK_INO_SYMLINK_ZAPPED;
3771 break;
3772 }
3773 return ip->i_sick & (XFS_SICK_INO_BMBTD_ZAPPED | datamask);
3774 case XFS_ATTR_FORK:
3775 return ip->i_sick & XFS_SICK_INO_BMBTA_ZAPPED;
3776 default:
3777 return false;
3778 }
3779}