Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include <linux/iversion.h>
   7
   8#include "xfs.h"
   9#include "xfs_fs.h"
  10#include "xfs_shared.h"
  11#include "xfs_format.h"
  12#include "xfs_log_format.h"
  13#include "xfs_trans_resv.h"
  14#include "xfs_mount.h"
  15#include "xfs_defer.h"
  16#include "xfs_inode.h"
  17#include "xfs_dir2.h"
  18#include "xfs_attr.h"
  19#include "xfs_trans_space.h"
  20#include "xfs_trans.h"
  21#include "xfs_buf_item.h"
  22#include "xfs_inode_item.h"
  23#include "xfs_iunlink_item.h"
  24#include "xfs_ialloc.h"
  25#include "xfs_bmap.h"
  26#include "xfs_bmap_util.h"
  27#include "xfs_errortag.h"
  28#include "xfs_error.h"
  29#include "xfs_quota.h"
  30#include "xfs_filestream.h"
  31#include "xfs_trace.h"
  32#include "xfs_icache.h"
  33#include "xfs_symlink.h"
  34#include "xfs_trans_priv.h"
  35#include "xfs_log.h"
  36#include "xfs_bmap_btree.h"
  37#include "xfs_reflink.h"
  38#include "xfs_ag.h"
  39#include "xfs_log_priv.h"
  40
  41struct kmem_cache *xfs_inode_cache;
  42
  43/*
  44 * Used in xfs_itruncate_extents().  This is the maximum number of extents
  45 * freed from a file in a single transaction.
  46 */
  47#define	XFS_ITRUNC_MAX_EXTENTS	2
  48
  49STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
  50STATIC int xfs_iunlink_remove(struct xfs_trans *tp, struct xfs_perag *pag,
  51	struct xfs_inode *);
  52
  53/*
  54 * helper function to extract extent size hint from inode
  55 */
  56xfs_extlen_t
  57xfs_get_extsz_hint(
  58	struct xfs_inode	*ip)
  59{
  60	/*
  61	 * No point in aligning allocations if we need to COW to actually
  62	 * write to them.
  63	 */
  64	if (xfs_is_always_cow_inode(ip))
  65		return 0;
  66	if ((ip->i_diflags & XFS_DIFLAG_EXTSIZE) && ip->i_extsize)
  67		return ip->i_extsize;
  68	if (XFS_IS_REALTIME_INODE(ip))
  69		return ip->i_mount->m_sb.sb_rextsize;
  70	return 0;
  71}
  72
  73/*
  74 * Helper function to extract CoW extent size hint from inode.
  75 * Between the extent size hint and the CoW extent size hint, we
  76 * return the greater of the two.  If the value is zero (automatic),
  77 * use the default size.
  78 */
  79xfs_extlen_t
  80xfs_get_cowextsz_hint(
  81	struct xfs_inode	*ip)
  82{
  83	xfs_extlen_t		a, b;
  84
  85	a = 0;
  86	if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
  87		a = ip->i_cowextsize;
  88	b = xfs_get_extsz_hint(ip);
  89
  90	a = max(a, b);
  91	if (a == 0)
  92		return XFS_DEFAULT_COWEXTSZ_HINT;
  93	return a;
  94}
  95
  96/*
  97 * These two are wrapper routines around the xfs_ilock() routine used to
  98 * centralize some grungy code.  They are used in places that wish to lock the
  99 * inode solely for reading the extents.  The reason these places can't just
 100 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
 101 * bringing in of the extents from disk for a file in b-tree format.  If the
 102 * inode is in b-tree format, then we need to lock the inode exclusively until
 103 * the extents are read in.  Locking it exclusively all the time would limit
 104 * our parallelism unnecessarily, though.  What we do instead is check to see
 105 * if the extents have been read in yet, and only lock the inode exclusively
 106 * if they have not.
 107 *
 108 * The functions return a value which should be given to the corresponding
 109 * xfs_iunlock() call.
 110 */
 111uint
 112xfs_ilock_data_map_shared(
 113	struct xfs_inode	*ip)
 114{
 115	uint			lock_mode = XFS_ILOCK_SHARED;
 116
 117	if (xfs_need_iread_extents(&ip->i_df))
 118		lock_mode = XFS_ILOCK_EXCL;
 119	xfs_ilock(ip, lock_mode);
 120	return lock_mode;
 121}
 122
 123uint
 124xfs_ilock_attr_map_shared(
 125	struct xfs_inode	*ip)
 126{
 127	uint			lock_mode = XFS_ILOCK_SHARED;
 128
 129	if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af))
 130		lock_mode = XFS_ILOCK_EXCL;
 131	xfs_ilock(ip, lock_mode);
 132	return lock_mode;
 133}
 134
 135/*
 136 * You can't set both SHARED and EXCL for the same lock,
 137 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_MMAPLOCK_SHARED,
 138 * XFS_MMAPLOCK_EXCL, XFS_ILOCK_SHARED, XFS_ILOCK_EXCL are valid values
 139 * to set in lock_flags.
 140 */
 141static inline void
 142xfs_lock_flags_assert(
 143	uint		lock_flags)
 144{
 145	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 146		(XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 147	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 148		(XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 149	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 150		(XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 151	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 152	ASSERT(lock_flags != 0);
 153}
 154
 155/*
 156 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
 157 * multi-reader locks: invalidate_lock and the i_lock.  This routine allows
 158 * various combinations of the locks to be obtained.
 159 *
 160 * The 3 locks should always be ordered so that the IO lock is obtained first,
 161 * the mmap lock second and the ilock last in order to prevent deadlock.
 162 *
 163 * Basic locking order:
 164 *
 165 * i_rwsem -> invalidate_lock -> page_lock -> i_ilock
 166 *
 167 * mmap_lock locking order:
 168 *
 169 * i_rwsem -> page lock -> mmap_lock
 170 * mmap_lock -> invalidate_lock -> page_lock
 171 *
 172 * The difference in mmap_lock locking order mean that we cannot hold the
 173 * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths
 174 * can fault in pages during copy in/out (for buffered IO) or require the
 175 * mmap_lock in get_user_pages() to map the user pages into the kernel address
 176 * space for direct IO. Similarly the i_rwsem cannot be taken inside a page
 177 * fault because page faults already hold the mmap_lock.
 178 *
 179 * Hence to serialise fully against both syscall and mmap based IO, we need to
 180 * take both the i_rwsem and the invalidate_lock. These locks should *only* be
 181 * both taken in places where we need to invalidate the page cache in a race
 182 * free manner (e.g. truncate, hole punch and other extent manipulation
 183 * functions).
 184 */
 185void
 186xfs_ilock(
 187	xfs_inode_t		*ip,
 188	uint			lock_flags)
 189{
 190	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
 191
 192	xfs_lock_flags_assert(lock_flags);
 
 
 
 
 
 
 
 
 
 
 
 193
 194	if (lock_flags & XFS_IOLOCK_EXCL) {
 195		down_write_nested(&VFS_I(ip)->i_rwsem,
 196				  XFS_IOLOCK_DEP(lock_flags));
 197	} else if (lock_flags & XFS_IOLOCK_SHARED) {
 198		down_read_nested(&VFS_I(ip)->i_rwsem,
 199				 XFS_IOLOCK_DEP(lock_flags));
 200	}
 201
 202	if (lock_flags & XFS_MMAPLOCK_EXCL) {
 203		down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
 204				  XFS_MMAPLOCK_DEP(lock_flags));
 205	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
 206		down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
 207				 XFS_MMAPLOCK_DEP(lock_flags));
 208	}
 209
 210	if (lock_flags & XFS_ILOCK_EXCL)
 211		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 212	else if (lock_flags & XFS_ILOCK_SHARED)
 213		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 214}
 215
 216/*
 217 * This is just like xfs_ilock(), except that the caller
 218 * is guaranteed not to sleep.  It returns 1 if it gets
 219 * the requested locks and 0 otherwise.  If the IO lock is
 220 * obtained but the inode lock cannot be, then the IO lock
 221 * is dropped before returning.
 222 *
 223 * ip -- the inode being locked
 224 * lock_flags -- this parameter indicates the inode's locks to be
 225 *       to be locked.  See the comment for xfs_ilock() for a list
 226 *	 of valid values.
 227 */
 228int
 229xfs_ilock_nowait(
 230	xfs_inode_t		*ip,
 231	uint			lock_flags)
 232{
 233	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
 234
 235	xfs_lock_flags_assert(lock_flags);
 
 
 
 
 
 
 
 
 
 
 
 236
 237	if (lock_flags & XFS_IOLOCK_EXCL) {
 238		if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
 239			goto out;
 240	} else if (lock_flags & XFS_IOLOCK_SHARED) {
 241		if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
 242			goto out;
 243	}
 244
 245	if (lock_flags & XFS_MMAPLOCK_EXCL) {
 246		if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
 247			goto out_undo_iolock;
 248	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
 249		if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
 250			goto out_undo_iolock;
 251	}
 252
 253	if (lock_flags & XFS_ILOCK_EXCL) {
 254		if (!mrtryupdate(&ip->i_lock))
 255			goto out_undo_mmaplock;
 256	} else if (lock_flags & XFS_ILOCK_SHARED) {
 257		if (!mrtryaccess(&ip->i_lock))
 258			goto out_undo_mmaplock;
 259	}
 260	return 1;
 261
 262out_undo_mmaplock:
 263	if (lock_flags & XFS_MMAPLOCK_EXCL)
 264		up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
 265	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 266		up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
 267out_undo_iolock:
 268	if (lock_flags & XFS_IOLOCK_EXCL)
 269		up_write(&VFS_I(ip)->i_rwsem);
 270	else if (lock_flags & XFS_IOLOCK_SHARED)
 271		up_read(&VFS_I(ip)->i_rwsem);
 272out:
 273	return 0;
 274}
 275
 276/*
 277 * xfs_iunlock() is used to drop the inode locks acquired with
 278 * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
 279 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
 280 * that we know which locks to drop.
 281 *
 282 * ip -- the inode being unlocked
 283 * lock_flags -- this parameter indicates the inode's locks to be
 284 *       to be unlocked.  See the comment for xfs_ilock() for a list
 285 *	 of valid values for this parameter.
 286 *
 287 */
 288void
 289xfs_iunlock(
 290	xfs_inode_t		*ip,
 291	uint			lock_flags)
 292{
 293	xfs_lock_flags_assert(lock_flags);
 
 
 
 
 
 
 
 
 
 
 
 
 294
 295	if (lock_flags & XFS_IOLOCK_EXCL)
 296		up_write(&VFS_I(ip)->i_rwsem);
 297	else if (lock_flags & XFS_IOLOCK_SHARED)
 298		up_read(&VFS_I(ip)->i_rwsem);
 299
 300	if (lock_flags & XFS_MMAPLOCK_EXCL)
 301		up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
 302	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 303		up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
 304
 305	if (lock_flags & XFS_ILOCK_EXCL)
 306		mrunlock_excl(&ip->i_lock);
 307	else if (lock_flags & XFS_ILOCK_SHARED)
 308		mrunlock_shared(&ip->i_lock);
 309
 310	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
 311}
 312
 313/*
 314 * give up write locks.  the i/o lock cannot be held nested
 315 * if it is being demoted.
 316 */
 317void
 318xfs_ilock_demote(
 319	xfs_inode_t		*ip,
 320	uint			lock_flags)
 321{
 322	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
 323	ASSERT((lock_flags &
 324		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
 325
 326	if (lock_flags & XFS_ILOCK_EXCL)
 327		mrdemote(&ip->i_lock);
 328	if (lock_flags & XFS_MMAPLOCK_EXCL)
 329		downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock);
 330	if (lock_flags & XFS_IOLOCK_EXCL)
 331		downgrade_write(&VFS_I(ip)->i_rwsem);
 332
 333	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
 334}
 335
 336#if defined(DEBUG) || defined(XFS_WARN)
 337static inline bool
 338__xfs_rwsem_islocked(
 339	struct rw_semaphore	*rwsem,
 340	bool			shared)
 341{
 342	if (!debug_locks)
 343		return rwsem_is_locked(rwsem);
 344
 345	if (!shared)
 346		return lockdep_is_held_type(rwsem, 0);
 347
 348	/*
 349	 * We are checking that the lock is held at least in shared
 350	 * mode but don't care that it might be held exclusively
 351	 * (i.e. shared | excl). Hence we check if the lock is held
 352	 * in any mode rather than an explicit shared mode.
 353	 */
 354	return lockdep_is_held_type(rwsem, -1);
 355}
 356
 357bool
 358xfs_isilocked(
 359	struct xfs_inode	*ip,
 360	uint			lock_flags)
 361{
 362	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
 363		if (!(lock_flags & XFS_ILOCK_SHARED))
 364			return !!ip->i_lock.mr_writer;
 365		return rwsem_is_locked(&ip->i_lock.mr_lock);
 366	}
 367
 368	if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
 369		return __xfs_rwsem_islocked(&VFS_I(ip)->i_mapping->invalidate_lock,
 370				(lock_flags & XFS_MMAPLOCK_SHARED));
 
 371	}
 372
 373	if (lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) {
 374		return __xfs_rwsem_islocked(&VFS_I(ip)->i_rwsem,
 375				(lock_flags & XFS_IOLOCK_SHARED));
 
 
 376	}
 377
 378	ASSERT(0);
 379	return false;
 380}
 381#endif
 382
 383/*
 384 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
 385 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
 386 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
 387 * errors and warnings.
 388 */
 389#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
 390static bool
 391xfs_lockdep_subclass_ok(
 392	int subclass)
 393{
 394	return subclass < MAX_LOCKDEP_SUBCLASSES;
 395}
 396#else
 397#define xfs_lockdep_subclass_ok(subclass)	(true)
 398#endif
 399
 400/*
 401 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
 402 * value. This can be called for any type of inode lock combination, including
 403 * parent locking. Care must be taken to ensure we don't overrun the subclass
 404 * storage fields in the class mask we build.
 405 */
 406static inline uint
 407xfs_lock_inumorder(
 408	uint	lock_mode,
 409	uint	subclass)
 410{
 411	uint	class = 0;
 412
 413	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
 414			      XFS_ILOCK_RTSUM)));
 415	ASSERT(xfs_lockdep_subclass_ok(subclass));
 416
 417	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
 418		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
 419		class += subclass << XFS_IOLOCK_SHIFT;
 420	}
 421
 422	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
 423		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
 424		class += subclass << XFS_MMAPLOCK_SHIFT;
 425	}
 426
 427	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
 428		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
 429		class += subclass << XFS_ILOCK_SHIFT;
 430	}
 431
 432	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
 433}
 434
 435/*
 436 * The following routine will lock n inodes in exclusive mode.  We assume the
 437 * caller calls us with the inodes in i_ino order.
 438 *
 439 * We need to detect deadlock where an inode that we lock is in the AIL and we
 440 * start waiting for another inode that is locked by a thread in a long running
 441 * transaction (such as truncate). This can result in deadlock since the long
 442 * running trans might need to wait for the inode we just locked in order to
 443 * push the tail and free space in the log.
 444 *
 445 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
 446 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
 447 * lock more than one at a time, lockdep will report false positives saying we
 448 * have violated locking orders.
 449 */
 450static void
 451xfs_lock_inodes(
 452	struct xfs_inode	**ips,
 453	int			inodes,
 454	uint			lock_mode)
 455{
 456	int			attempts = 0;
 457	uint			i;
 458	int			j;
 459	bool			try_lock;
 460	struct xfs_log_item	*lp;
 461
 462	/*
 463	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
 464	 * support an arbitrary depth of locking here, but absolute limits on
 465	 * inodes depend on the type of locking and the limits placed by
 466	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
 467	 * the asserts.
 468	 */
 469	ASSERT(ips && inodes >= 2 && inodes <= 5);
 470	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
 471			    XFS_ILOCK_EXCL));
 472	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
 473			      XFS_ILOCK_SHARED)));
 474	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
 475		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
 476	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
 477		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
 478
 479	if (lock_mode & XFS_IOLOCK_EXCL) {
 480		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
 481	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
 482		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
 483
 484again:
 485	try_lock = false;
 486	i = 0;
 
 487	for (; i < inodes; i++) {
 488		ASSERT(ips[i]);
 489
 490		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
 491			continue;
 492
 493		/*
 494		 * If try_lock is not set yet, make sure all locked inodes are
 495		 * not in the AIL.  If any are, set try_lock to be used later.
 496		 */
 497		if (!try_lock) {
 498			for (j = (i - 1); j >= 0 && !try_lock; j--) {
 499				lp = &ips[j]->i_itemp->ili_item;
 500				if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
 501					try_lock = true;
 502			}
 503		}
 504
 505		/*
 506		 * If any of the previous locks we have locked is in the AIL,
 507		 * we must TRY to get the second and subsequent locks. If
 508		 * we can't get any, we must release all we have
 509		 * and try again.
 510		 */
 511		if (!try_lock) {
 512			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
 513			continue;
 514		}
 515
 516		/* try_lock means we have an inode locked that is in the AIL. */
 517		ASSERT(i != 0);
 518		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
 519			continue;
 520
 521		/*
 522		 * Unlock all previous guys and try again.  xfs_iunlock will try
 523		 * to push the tail if the inode is in the AIL.
 524		 */
 525		attempts++;
 526		for (j = i - 1; j >= 0; j--) {
 527			/*
 528			 * Check to see if we've already unlocked this one.  Not
 529			 * the first one going back, and the inode ptr is the
 530			 * same.
 531			 */
 532			if (j != (i - 1) && ips[j] == ips[j + 1])
 533				continue;
 534
 535			xfs_iunlock(ips[j], lock_mode);
 536		}
 537
 538		if ((attempts % 5) == 0) {
 539			delay(1); /* Don't just spin the CPU */
 540		}
 
 
 541		goto again;
 542	}
 543}
 544
 545/*
 546 * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and
 547 * mmaplock must be double-locked separately since we use i_rwsem and
 548 * invalidate_lock for that. We now support taking one lock EXCL and the
 549 * other SHARED.
 
 
 550 */
 551void
 552xfs_lock_two_inodes(
 553	struct xfs_inode	*ip0,
 554	uint			ip0_mode,
 555	struct xfs_inode	*ip1,
 556	uint			ip1_mode)
 557{
 
 
 558	int			attempts = 0;
 559	struct xfs_log_item	*lp;
 560
 561	ASSERT(hweight32(ip0_mode) == 1);
 562	ASSERT(hweight32(ip1_mode) == 1);
 563	ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
 564	ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
 565	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
 566	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
 
 
 
 
 
 
 
 567	ASSERT(ip0->i_ino != ip1->i_ino);
 568
 569	if (ip0->i_ino > ip1->i_ino) {
 570		swap(ip0, ip1);
 571		swap(ip0_mode, ip1_mode);
 
 
 
 
 572	}
 573
 574 again:
 575	xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
 576
 577	/*
 578	 * If the first lock we have locked is in the AIL, we must TRY to get
 579	 * the second lock. If we can't get it, we must release the first one
 580	 * and try again.
 581	 */
 582	lp = &ip0->i_itemp->ili_item;
 583	if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
 584		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
 585			xfs_iunlock(ip0, ip0_mode);
 586			if ((++attempts % 5) == 0)
 587				delay(1); /* Don't just spin the CPU */
 588			goto again;
 589		}
 590	} else {
 591		xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
 592	}
 593}
 594
 595uint
 596xfs_ip2xflags(
 597	struct xfs_inode	*ip)
 598{
 599	uint			flags = 0;
 600
 601	if (ip->i_diflags & XFS_DIFLAG_ANY) {
 602		if (ip->i_diflags & XFS_DIFLAG_REALTIME)
 603			flags |= FS_XFLAG_REALTIME;
 604		if (ip->i_diflags & XFS_DIFLAG_PREALLOC)
 605			flags |= FS_XFLAG_PREALLOC;
 606		if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE)
 607			flags |= FS_XFLAG_IMMUTABLE;
 608		if (ip->i_diflags & XFS_DIFLAG_APPEND)
 609			flags |= FS_XFLAG_APPEND;
 610		if (ip->i_diflags & XFS_DIFLAG_SYNC)
 611			flags |= FS_XFLAG_SYNC;
 612		if (ip->i_diflags & XFS_DIFLAG_NOATIME)
 613			flags |= FS_XFLAG_NOATIME;
 614		if (ip->i_diflags & XFS_DIFLAG_NODUMP)
 615			flags |= FS_XFLAG_NODUMP;
 616		if (ip->i_diflags & XFS_DIFLAG_RTINHERIT)
 617			flags |= FS_XFLAG_RTINHERIT;
 618		if (ip->i_diflags & XFS_DIFLAG_PROJINHERIT)
 619			flags |= FS_XFLAG_PROJINHERIT;
 620		if (ip->i_diflags & XFS_DIFLAG_NOSYMLINKS)
 621			flags |= FS_XFLAG_NOSYMLINKS;
 622		if (ip->i_diflags & XFS_DIFLAG_EXTSIZE)
 623			flags |= FS_XFLAG_EXTSIZE;
 624		if (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT)
 625			flags |= FS_XFLAG_EXTSZINHERIT;
 626		if (ip->i_diflags & XFS_DIFLAG_NODEFRAG)
 627			flags |= FS_XFLAG_NODEFRAG;
 628		if (ip->i_diflags & XFS_DIFLAG_FILESTREAM)
 629			flags |= FS_XFLAG_FILESTREAM;
 630	}
 631
 632	if (ip->i_diflags2 & XFS_DIFLAG2_ANY) {
 633		if (ip->i_diflags2 & XFS_DIFLAG2_DAX)
 634			flags |= FS_XFLAG_DAX;
 635		if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
 636			flags |= FS_XFLAG_COWEXTSIZE;
 637	}
 638
 639	if (xfs_inode_has_attr_fork(ip))
 640		flags |= FS_XFLAG_HASATTR;
 641	return flags;
 642}
 643
 644/*
 645 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
 646 * is allowed, otherwise it has to be an exact match. If a CI match is found,
 647 * ci_name->name will point to a the actual name (caller must free) or
 648 * will be set to NULL if an exact match is found.
 649 */
 650int
 651xfs_lookup(
 652	struct xfs_inode	*dp,
 653	const struct xfs_name	*name,
 654	struct xfs_inode	**ipp,
 655	struct xfs_name		*ci_name)
 656{
 657	xfs_ino_t		inum;
 658	int			error;
 659
 660	trace_xfs_lookup(dp, name);
 661
 662	if (xfs_is_shutdown(dp->i_mount))
 663		return -EIO;
 664
 665	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
 666	if (error)
 667		goto out_unlock;
 668
 669	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
 670	if (error)
 671		goto out_free_name;
 672
 673	return 0;
 674
 675out_free_name:
 676	if (ci_name)
 677		kmem_free(ci_name->name);
 678out_unlock:
 679	*ipp = NULL;
 680	return error;
 681}
 682
 683/* Propagate di_flags from a parent inode to a child inode. */
 684static void
 685xfs_inode_inherit_flags(
 686	struct xfs_inode	*ip,
 687	const struct xfs_inode	*pip)
 688{
 689	unsigned int		di_flags = 0;
 690	xfs_failaddr_t		failaddr;
 691	umode_t			mode = VFS_I(ip)->i_mode;
 692
 693	if (S_ISDIR(mode)) {
 694		if (pip->i_diflags & XFS_DIFLAG_RTINHERIT)
 695			di_flags |= XFS_DIFLAG_RTINHERIT;
 696		if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
 697			di_flags |= XFS_DIFLAG_EXTSZINHERIT;
 698			ip->i_extsize = pip->i_extsize;
 699		}
 700		if (pip->i_diflags & XFS_DIFLAG_PROJINHERIT)
 701			di_flags |= XFS_DIFLAG_PROJINHERIT;
 702	} else if (S_ISREG(mode)) {
 703		if ((pip->i_diflags & XFS_DIFLAG_RTINHERIT) &&
 704		    xfs_has_realtime(ip->i_mount))
 705			di_flags |= XFS_DIFLAG_REALTIME;
 706		if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
 707			di_flags |= XFS_DIFLAG_EXTSIZE;
 708			ip->i_extsize = pip->i_extsize;
 709		}
 710	}
 711	if ((pip->i_diflags & XFS_DIFLAG_NOATIME) &&
 712	    xfs_inherit_noatime)
 713		di_flags |= XFS_DIFLAG_NOATIME;
 714	if ((pip->i_diflags & XFS_DIFLAG_NODUMP) &&
 715	    xfs_inherit_nodump)
 716		di_flags |= XFS_DIFLAG_NODUMP;
 717	if ((pip->i_diflags & XFS_DIFLAG_SYNC) &&
 718	    xfs_inherit_sync)
 719		di_flags |= XFS_DIFLAG_SYNC;
 720	if ((pip->i_diflags & XFS_DIFLAG_NOSYMLINKS) &&
 721	    xfs_inherit_nosymlinks)
 722		di_flags |= XFS_DIFLAG_NOSYMLINKS;
 723	if ((pip->i_diflags & XFS_DIFLAG_NODEFRAG) &&
 724	    xfs_inherit_nodefrag)
 725		di_flags |= XFS_DIFLAG_NODEFRAG;
 726	if (pip->i_diflags & XFS_DIFLAG_FILESTREAM)
 727		di_flags |= XFS_DIFLAG_FILESTREAM;
 728
 729	ip->i_diflags |= di_flags;
 730
 731	/*
 732	 * Inode verifiers on older kernels only check that the extent size
 733	 * hint is an integer multiple of the rt extent size on realtime files.
 734	 * They did not check the hint alignment on a directory with both
 735	 * rtinherit and extszinherit flags set.  If the misaligned hint is
 736	 * propagated from a directory into a new realtime file, new file
 737	 * allocations will fail due to math errors in the rt allocator and/or
 738	 * trip the verifiers.  Validate the hint settings in the new file so
 739	 * that we don't let broken hints propagate.
 740	 */
 741	failaddr = xfs_inode_validate_extsize(ip->i_mount, ip->i_extsize,
 742			VFS_I(ip)->i_mode, ip->i_diflags);
 743	if (failaddr) {
 744		ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE |
 745				   XFS_DIFLAG_EXTSZINHERIT);
 746		ip->i_extsize = 0;
 747	}
 748}
 749
 750/* Propagate di_flags2 from a parent inode to a child inode. */
 751static void
 752xfs_inode_inherit_flags2(
 753	struct xfs_inode	*ip,
 754	const struct xfs_inode	*pip)
 755{
 756	xfs_failaddr_t		failaddr;
 757
 758	if (pip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) {
 759		ip->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE;
 760		ip->i_cowextsize = pip->i_cowextsize;
 761	}
 762	if (pip->i_diflags2 & XFS_DIFLAG2_DAX)
 763		ip->i_diflags2 |= XFS_DIFLAG2_DAX;
 764
 765	/* Don't let invalid cowextsize hints propagate. */
 766	failaddr = xfs_inode_validate_cowextsize(ip->i_mount, ip->i_cowextsize,
 767			VFS_I(ip)->i_mode, ip->i_diflags, ip->i_diflags2);
 768	if (failaddr) {
 769		ip->i_diflags2 &= ~XFS_DIFLAG2_COWEXTSIZE;
 770		ip->i_cowextsize = 0;
 771	}
 772}
 773
 774/*
 775 * Initialise a newly allocated inode and return the in-core inode to the
 776 * caller locked exclusively.
 777 */
 778int
 779xfs_init_new_inode(
 780	struct user_namespace	*mnt_userns,
 781	struct xfs_trans	*tp,
 782	struct xfs_inode	*pip,
 783	xfs_ino_t		ino,
 784	umode_t			mode,
 785	xfs_nlink_t		nlink,
 786	dev_t			rdev,
 787	prid_t			prid,
 788	bool			init_xattrs,
 789	struct xfs_inode	**ipp)
 790{
 791	struct inode		*dir = pip ? VFS_I(pip) : NULL;
 792	struct xfs_mount	*mp = tp->t_mountp;
 793	struct xfs_inode	*ip;
 794	unsigned int		flags;
 795	int			error;
 796	struct timespec64	tv;
 797	struct inode		*inode;
 798
 799	/*
 800	 * Protect against obviously corrupt allocation btree records. Later
 801	 * xfs_iget checks will catch re-allocation of other active in-memory
 802	 * and on-disk inodes. If we don't catch reallocating the parent inode
 803	 * here we will deadlock in xfs_iget() so we have to do these checks
 804	 * first.
 805	 */
 806	if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
 807		xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
 808		return -EFSCORRUPTED;
 809	}
 810
 811	/*
 812	 * Get the in-core inode with the lock held exclusively to prevent
 813	 * others from looking at until we're done.
 814	 */
 815	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
 816	if (error)
 817		return error;
 818
 819	ASSERT(ip != NULL);
 820	inode = VFS_I(ip);
 821	set_nlink(inode, nlink);
 822	inode->i_rdev = rdev;
 823	ip->i_projid = prid;
 824
 825	if (dir && !(dir->i_mode & S_ISGID) && xfs_has_grpid(mp)) {
 
 826		inode_fsuid_set(inode, mnt_userns);
 827		inode->i_gid = dir->i_gid;
 828		inode->i_mode = mode;
 829	} else {
 830		inode_init_owner(mnt_userns, inode, dir, mode);
 831	}
 832
 833	/*
 834	 * If the group ID of the new file does not match the effective group
 835	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
 836	 * (and only if the irix_sgid_inherit compatibility variable is set).
 837	 */
 838	if (irix_sgid_inherit && (inode->i_mode & S_ISGID) &&
 839	    !vfsgid_in_group_p(i_gid_into_vfsgid(mnt_userns, inode)))
 
 840		inode->i_mode &= ~S_ISGID;
 841
 842	ip->i_disk_size = 0;
 843	ip->i_df.if_nextents = 0;
 844	ASSERT(ip->i_nblocks == 0);
 845
 846	tv = current_time(inode);
 847	inode->i_mtime = tv;
 848	inode->i_atime = tv;
 849	inode->i_ctime = tv;
 850
 851	ip->i_extsize = 0;
 852	ip->i_diflags = 0;
 853
 854	if (xfs_has_v3inodes(mp)) {
 855		inode_set_iversion(inode, 1);
 856		ip->i_cowextsize = 0;
 857		ip->i_crtime = tv;
 858	}
 859
 860	flags = XFS_ILOG_CORE;
 861	switch (mode & S_IFMT) {
 862	case S_IFIFO:
 863	case S_IFCHR:
 864	case S_IFBLK:
 865	case S_IFSOCK:
 866		ip->i_df.if_format = XFS_DINODE_FMT_DEV;
 867		flags |= XFS_ILOG_DEV;
 868		break;
 869	case S_IFREG:
 870	case S_IFDIR:
 871		if (pip && (pip->i_diflags & XFS_DIFLAG_ANY))
 872			xfs_inode_inherit_flags(ip, pip);
 873		if (pip && (pip->i_diflags2 & XFS_DIFLAG2_ANY))
 874			xfs_inode_inherit_flags2(ip, pip);
 875		fallthrough;
 876	case S_IFLNK:
 877		ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
 878		ip->i_df.if_bytes = 0;
 879		ip->i_df.if_u1.if_root = NULL;
 880		break;
 881	default:
 882		ASSERT(0);
 883	}
 884
 885	/*
 886	 * If we need to create attributes immediately after allocating the
 887	 * inode, initialise an empty attribute fork right now. We use the
 888	 * default fork offset for attributes here as we don't know exactly what
 889	 * size or how many attributes we might be adding. We can do this
 890	 * safely here because we know the data fork is completely empty and
 891	 * this saves us from needing to run a separate transaction to set the
 892	 * fork offset in the immediate future.
 893	 */
 894	if (init_xattrs && xfs_has_attr(mp)) {
 895		ip->i_forkoff = xfs_default_attroffset(ip) >> 3;
 896		xfs_ifork_init_attr(ip, XFS_DINODE_FMT_EXTENTS, 0);
 897	}
 898
 899	/*
 900	 * Log the new values stuffed into the inode.
 901	 */
 902	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 903	xfs_trans_log_inode(tp, ip, flags);
 904
 905	/* now that we have an i_mode we can setup the inode structure */
 906	xfs_setup_inode(ip);
 907
 908	*ipp = ip;
 909	return 0;
 910}
 911
 912/*
 913 * Decrement the link count on an inode & log the change.  If this causes the
 914 * link count to go to zero, move the inode to AGI unlinked list so that it can
 915 * be freed when the last active reference goes away via xfs_inactive().
 916 */
 917static int			/* error */
 918xfs_droplink(
 919	xfs_trans_t *tp,
 920	xfs_inode_t *ip)
 921{
 922	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
 923
 924	drop_nlink(VFS_I(ip));
 925	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 926
 927	if (VFS_I(ip)->i_nlink)
 928		return 0;
 929
 930	return xfs_iunlink(tp, ip);
 931}
 932
 933/*
 934 * Increment the link count on an inode & log the change.
 935 */
 936static void
 937xfs_bumplink(
 938	xfs_trans_t *tp,
 939	xfs_inode_t *ip)
 940{
 941	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
 942
 943	inc_nlink(VFS_I(ip));
 944	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 945}
 946
 947int
 948xfs_create(
 949	struct user_namespace	*mnt_userns,
 950	xfs_inode_t		*dp,
 951	struct xfs_name		*name,
 952	umode_t			mode,
 953	dev_t			rdev,
 954	bool			init_xattrs,
 955	xfs_inode_t		**ipp)
 956{
 957	int			is_dir = S_ISDIR(mode);
 958	struct xfs_mount	*mp = dp->i_mount;
 959	struct xfs_inode	*ip = NULL;
 960	struct xfs_trans	*tp = NULL;
 961	int			error;
 962	bool                    unlock_dp_on_error = false;
 963	prid_t			prid;
 964	struct xfs_dquot	*udqp = NULL;
 965	struct xfs_dquot	*gdqp = NULL;
 966	struct xfs_dquot	*pdqp = NULL;
 967	struct xfs_trans_res	*tres;
 968	uint			resblks;
 969	xfs_ino_t		ino;
 970
 971	trace_xfs_create(dp, name);
 972
 973	if (xfs_is_shutdown(mp))
 974		return -EIO;
 975
 976	prid = xfs_get_initial_prid(dp);
 977
 978	/*
 979	 * Make sure that we have allocated dquot(s) on disk.
 980	 */
 981	error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns, &init_user_ns),
 982			mapped_fsgid(mnt_userns, &init_user_ns), prid,
 983			XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
 984			&udqp, &gdqp, &pdqp);
 985	if (error)
 986		return error;
 987
 988	if (is_dir) {
 989		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
 990		tres = &M_RES(mp)->tr_mkdir;
 991	} else {
 992		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
 993		tres = &M_RES(mp)->tr_create;
 994	}
 995
 996	/*
 997	 * Initially assume that the file does not exist and
 998	 * reserve the resources for that case.  If that is not
 999	 * the case we'll drop the one we have and get a more
1000	 * appropriate transaction later.
1001	 */
1002	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1003			&tp);
1004	if (error == -ENOSPC) {
1005		/* flush outstanding delalloc blocks and retry */
1006		xfs_flush_inodes(mp);
1007		error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp,
1008				resblks, &tp);
1009	}
1010	if (error)
1011		goto out_release_dquots;
1012
1013	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1014	unlock_dp_on_error = true;
1015
 
 
 
 
 
1016	/*
1017	 * A newly created regular or special file just has one directory
1018	 * entry pointing to them, but a directory also the "." entry
1019	 * pointing to itself.
1020	 */
1021	error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1022	if (!error)
1023		error = xfs_init_new_inode(mnt_userns, tp, dp, ino, mode,
1024				is_dir ? 2 : 1, rdev, prid, init_xattrs, &ip);
1025	if (error)
1026		goto out_trans_cancel;
1027
1028	/*
1029	 * Now we join the directory inode to the transaction.  We do not do it
1030	 * earlier because xfs_dialloc might commit the previous transaction
1031	 * (and release all the locks).  An error from here on will result in
1032	 * the transaction cancel unlocking dp so don't do it explicitly in the
1033	 * error path.
1034	 */
1035	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1036	unlock_dp_on_error = false;
1037
1038	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1039					resblks - XFS_IALLOC_SPACE_RES(mp));
1040	if (error) {
1041		ASSERT(error != -ENOSPC);
1042		goto out_trans_cancel;
1043	}
1044	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1045	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1046
1047	if (is_dir) {
1048		error = xfs_dir_init(tp, ip, dp);
1049		if (error)
1050			goto out_trans_cancel;
1051
1052		xfs_bumplink(tp, dp);
1053	}
1054
1055	/*
1056	 * If this is a synchronous mount, make sure that the
1057	 * create transaction goes to disk before returning to
1058	 * the user.
1059	 */
1060	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1061		xfs_trans_set_sync(tp);
1062
1063	/*
1064	 * Attach the dquot(s) to the inodes and modify them incore.
1065	 * These ids of the inode couldn't have changed since the new
1066	 * inode has been locked ever since it was created.
1067	 */
1068	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1069
1070	error = xfs_trans_commit(tp);
1071	if (error)
1072		goto out_release_inode;
1073
1074	xfs_qm_dqrele(udqp);
1075	xfs_qm_dqrele(gdqp);
1076	xfs_qm_dqrele(pdqp);
1077
1078	*ipp = ip;
1079	return 0;
1080
1081 out_trans_cancel:
1082	xfs_trans_cancel(tp);
1083 out_release_inode:
1084	/*
1085	 * Wait until after the current transaction is aborted to finish the
1086	 * setup of the inode and release the inode.  This prevents recursive
1087	 * transactions and deadlocks from xfs_inactive.
1088	 */
1089	if (ip) {
1090		xfs_finish_inode_setup(ip);
1091		xfs_irele(ip);
1092	}
1093 out_release_dquots:
1094	xfs_qm_dqrele(udqp);
1095	xfs_qm_dqrele(gdqp);
1096	xfs_qm_dqrele(pdqp);
1097
1098	if (unlock_dp_on_error)
1099		xfs_iunlock(dp, XFS_ILOCK_EXCL);
1100	return error;
1101}
1102
1103int
1104xfs_create_tmpfile(
1105	struct user_namespace	*mnt_userns,
1106	struct xfs_inode	*dp,
1107	umode_t			mode,
1108	struct xfs_inode	**ipp)
1109{
1110	struct xfs_mount	*mp = dp->i_mount;
1111	struct xfs_inode	*ip = NULL;
1112	struct xfs_trans	*tp = NULL;
1113	int			error;
1114	prid_t                  prid;
1115	struct xfs_dquot	*udqp = NULL;
1116	struct xfs_dquot	*gdqp = NULL;
1117	struct xfs_dquot	*pdqp = NULL;
1118	struct xfs_trans_res	*tres;
1119	uint			resblks;
1120	xfs_ino_t		ino;
1121
1122	if (xfs_is_shutdown(mp))
1123		return -EIO;
1124
1125	prid = xfs_get_initial_prid(dp);
1126
1127	/*
1128	 * Make sure that we have allocated dquot(s) on disk.
1129	 */
1130	error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns, &init_user_ns),
1131			mapped_fsgid(mnt_userns, &init_user_ns), prid,
1132			XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1133			&udqp, &gdqp, &pdqp);
1134	if (error)
1135		return error;
1136
1137	resblks = XFS_IALLOC_SPACE_RES(mp);
1138	tres = &M_RES(mp)->tr_create_tmpfile;
1139
1140	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1141			&tp);
1142	if (error)
1143		goto out_release_dquots;
1144
1145	error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1146	if (!error)
1147		error = xfs_init_new_inode(mnt_userns, tp, dp, ino, mode,
1148				0, 0, prid, false, &ip);
1149	if (error)
1150		goto out_trans_cancel;
1151
1152	if (xfs_has_wsync(mp))
1153		xfs_trans_set_sync(tp);
1154
1155	/*
1156	 * Attach the dquot(s) to the inodes and modify them incore.
1157	 * These ids of the inode couldn't have changed since the new
1158	 * inode has been locked ever since it was created.
1159	 */
1160	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1161
1162	error = xfs_iunlink(tp, ip);
1163	if (error)
1164		goto out_trans_cancel;
1165
1166	error = xfs_trans_commit(tp);
1167	if (error)
1168		goto out_release_inode;
1169
1170	xfs_qm_dqrele(udqp);
1171	xfs_qm_dqrele(gdqp);
1172	xfs_qm_dqrele(pdqp);
1173
1174	*ipp = ip;
1175	return 0;
1176
1177 out_trans_cancel:
1178	xfs_trans_cancel(tp);
1179 out_release_inode:
1180	/*
1181	 * Wait until after the current transaction is aborted to finish the
1182	 * setup of the inode and release the inode.  This prevents recursive
1183	 * transactions and deadlocks from xfs_inactive.
1184	 */
1185	if (ip) {
1186		xfs_finish_inode_setup(ip);
1187		xfs_irele(ip);
1188	}
1189 out_release_dquots:
1190	xfs_qm_dqrele(udqp);
1191	xfs_qm_dqrele(gdqp);
1192	xfs_qm_dqrele(pdqp);
1193
1194	return error;
1195}
1196
1197int
1198xfs_link(
1199	xfs_inode_t		*tdp,
1200	xfs_inode_t		*sip,
1201	struct xfs_name		*target_name)
1202{
1203	xfs_mount_t		*mp = tdp->i_mount;
1204	xfs_trans_t		*tp;
1205	int			error, nospace_error = 0;
1206	int			resblks;
1207
1208	trace_xfs_link(tdp, target_name);
1209
1210	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1211
1212	if (xfs_is_shutdown(mp))
1213		return -EIO;
1214
1215	error = xfs_qm_dqattach(sip);
1216	if (error)
1217		goto std_return;
1218
1219	error = xfs_qm_dqattach(tdp);
1220	if (error)
1221		goto std_return;
1222
1223	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1224	error = xfs_trans_alloc_dir(tdp, &M_RES(mp)->tr_link, sip, &resblks,
1225			&tp, &nospace_error);
 
 
 
1226	if (error)
1227		goto std_return;
1228
 
 
 
 
 
 
 
 
 
 
1229	/*
1230	 * If we are using project inheritance, we only allow hard link
1231	 * creation in our tree when the project IDs are the same; else
1232	 * the tree quota mechanism could be circumvented.
1233	 */
1234	if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
1235		     tdp->i_projid != sip->i_projid)) {
1236		error = -EXDEV;
1237		goto error_return;
1238	}
1239
1240	if (!resblks) {
1241		error = xfs_dir_canenter(tp, tdp, target_name);
1242		if (error)
1243			goto error_return;
1244	}
1245
1246	/*
1247	 * Handle initial link state of O_TMPFILE inode
1248	 */
1249	if (VFS_I(sip)->i_nlink == 0) {
1250		struct xfs_perag	*pag;
1251
1252		pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sip->i_ino));
1253		error = xfs_iunlink_remove(tp, pag, sip);
1254		xfs_perag_put(pag);
1255		if (error)
1256			goto error_return;
1257	}
1258
1259	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1260				   resblks);
1261	if (error)
1262		goto error_return;
1263	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1264	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1265
1266	xfs_bumplink(tp, sip);
1267
1268	/*
1269	 * If this is a synchronous mount, make sure that the
1270	 * link transaction goes to disk before returning to
1271	 * the user.
1272	 */
1273	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1274		xfs_trans_set_sync(tp);
1275
1276	return xfs_trans_commit(tp);
1277
1278 error_return:
1279	xfs_trans_cancel(tp);
1280 std_return:
1281	if (error == -ENOSPC && nospace_error)
1282		error = nospace_error;
1283	return error;
1284}
1285
1286/* Clear the reflink flag and the cowblocks tag if possible. */
1287static void
1288xfs_itruncate_clear_reflink_flags(
1289	struct xfs_inode	*ip)
1290{
1291	struct xfs_ifork	*dfork;
1292	struct xfs_ifork	*cfork;
1293
1294	if (!xfs_is_reflink_inode(ip))
1295		return;
1296	dfork = xfs_ifork_ptr(ip, XFS_DATA_FORK);
1297	cfork = xfs_ifork_ptr(ip, XFS_COW_FORK);
1298	if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1299		ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1300	if (cfork->if_bytes == 0)
1301		xfs_inode_clear_cowblocks_tag(ip);
1302}
1303
1304/*
1305 * Free up the underlying blocks past new_size.  The new size must be smaller
1306 * than the current size.  This routine can be used both for the attribute and
1307 * data fork, and does not modify the inode size, which is left to the caller.
1308 *
1309 * The transaction passed to this routine must have made a permanent log
1310 * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1311 * given transaction and start new ones, so make sure everything involved in
1312 * the transaction is tidy before calling here.  Some transaction will be
1313 * returned to the caller to be committed.  The incoming transaction must
1314 * already include the inode, and both inode locks must be held exclusively.
1315 * The inode must also be "held" within the transaction.  On return the inode
1316 * will be "held" within the returned transaction.  This routine does NOT
1317 * require any disk space to be reserved for it within the transaction.
1318 *
1319 * If we get an error, we must return with the inode locked and linked into the
1320 * current transaction. This keeps things simple for the higher level code,
1321 * because it always knows that the inode is locked and held in the transaction
1322 * that returns to it whether errors occur or not.  We don't mark the inode
1323 * dirty on error so that transactions can be easily aborted if possible.
1324 */
1325int
1326xfs_itruncate_extents_flags(
1327	struct xfs_trans	**tpp,
1328	struct xfs_inode	*ip,
1329	int			whichfork,
1330	xfs_fsize_t		new_size,
1331	int			flags)
1332{
1333	struct xfs_mount	*mp = ip->i_mount;
1334	struct xfs_trans	*tp = *tpp;
1335	xfs_fileoff_t		first_unmap_block;
1336	xfs_filblks_t		unmap_len;
1337	int			error = 0;
1338
1339	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1340	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1341	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1342	ASSERT(new_size <= XFS_ISIZE(ip));
1343	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1344	ASSERT(ip->i_itemp != NULL);
1345	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1346	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1347
1348	trace_xfs_itruncate_extents_start(ip, new_size);
1349
1350	flags |= xfs_bmapi_aflag(whichfork);
1351
1352	/*
1353	 * Since it is possible for space to become allocated beyond
1354	 * the end of the file (in a crash where the space is allocated
1355	 * but the inode size is not yet updated), simply remove any
1356	 * blocks which show up between the new EOF and the maximum
1357	 * possible file size.
1358	 *
1359	 * We have to free all the blocks to the bmbt maximum offset, even if
1360	 * the page cache can't scale that far.
1361	 */
1362	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1363	if (!xfs_verify_fileoff(mp, first_unmap_block)) {
1364		WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1365		return 0;
1366	}
1367
1368	unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1;
1369	while (unmap_len > 0) {
1370		ASSERT(tp->t_firstblock == NULLFSBLOCK);
1371		error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len,
1372				flags, XFS_ITRUNC_MAX_EXTENTS);
1373		if (error)
1374			goto out;
1375
1376		/* free the just unmapped extents */
1377		error = xfs_defer_finish(&tp);
1378		if (error)
1379			goto out;
1380	}
1381
1382	if (whichfork == XFS_DATA_FORK) {
1383		/* Remove all pending CoW reservations. */
1384		error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1385				first_unmap_block, XFS_MAX_FILEOFF, true);
1386		if (error)
1387			goto out;
1388
1389		xfs_itruncate_clear_reflink_flags(ip);
1390	}
1391
1392	/*
1393	 * Always re-log the inode so that our permanent transaction can keep
1394	 * on rolling it forward in the log.
1395	 */
1396	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1397
1398	trace_xfs_itruncate_extents_end(ip, new_size);
1399
1400out:
1401	*tpp = tp;
1402	return error;
1403}
1404
1405int
1406xfs_release(
1407	xfs_inode_t	*ip)
1408{
1409	xfs_mount_t	*mp = ip->i_mount;
1410	int		error = 0;
1411
1412	if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1413		return 0;
1414
1415	/* If this is a read-only mount, don't do this (would generate I/O) */
1416	if (xfs_is_readonly(mp))
1417		return 0;
1418
1419	if (!xfs_is_shutdown(mp)) {
1420		int truncated;
1421
1422		/*
1423		 * If we previously truncated this file and removed old data
1424		 * in the process, we want to initiate "early" writeout on
1425		 * the last close.  This is an attempt to combat the notorious
1426		 * NULL files problem which is particularly noticeable from a
1427		 * truncate down, buffered (re-)write (delalloc), followed by
1428		 * a crash.  What we are effectively doing here is
1429		 * significantly reducing the time window where we'd otherwise
1430		 * be exposed to that problem.
1431		 */
1432		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1433		if (truncated) {
1434			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1435			if (ip->i_delayed_blks > 0) {
1436				error = filemap_flush(VFS_I(ip)->i_mapping);
1437				if (error)
1438					return error;
1439			}
1440		}
1441	}
1442
1443	if (VFS_I(ip)->i_nlink == 0)
1444		return 0;
1445
1446	/*
1447	 * If we can't get the iolock just skip truncating the blocks past EOF
1448	 * because we could deadlock with the mmap_lock otherwise. We'll get
1449	 * another chance to drop them once the last reference to the inode is
1450	 * dropped, so we'll never leak blocks permanently.
1451	 */
1452	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL))
1453		return 0;
1454
1455	if (xfs_can_free_eofblocks(ip, false)) {
1456		/*
1457		 * Check if the inode is being opened, written and closed
1458		 * frequently and we have delayed allocation blocks outstanding
1459		 * (e.g. streaming writes from the NFS server), truncating the
1460		 * blocks past EOF will cause fragmentation to occur.
1461		 *
1462		 * In this case don't do the truncation, but we have to be
1463		 * careful how we detect this case. Blocks beyond EOF show up as
1464		 * i_delayed_blks even when the inode is clean, so we need to
1465		 * truncate them away first before checking for a dirty release.
1466		 * Hence on the first dirty close we will still remove the
1467		 * speculative allocation, but after that we will leave it in
1468		 * place.
1469		 */
1470		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1471			goto out_unlock;
1472
1473		error = xfs_free_eofblocks(ip);
1474		if (error)
1475			goto out_unlock;
1476
1477		/* delalloc blocks after truncation means it really is dirty */
1478		if (ip->i_delayed_blks)
1479			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1480	}
1481
1482out_unlock:
1483	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1484	return error;
1485}
1486
1487/*
1488 * xfs_inactive_truncate
1489 *
1490 * Called to perform a truncate when an inode becomes unlinked.
1491 */
1492STATIC int
1493xfs_inactive_truncate(
1494	struct xfs_inode *ip)
1495{
1496	struct xfs_mount	*mp = ip->i_mount;
1497	struct xfs_trans	*tp;
1498	int			error;
1499
1500	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1501	if (error) {
1502		ASSERT(xfs_is_shutdown(mp));
1503		return error;
1504	}
1505	xfs_ilock(ip, XFS_ILOCK_EXCL);
1506	xfs_trans_ijoin(tp, ip, 0);
1507
1508	/*
1509	 * Log the inode size first to prevent stale data exposure in the event
1510	 * of a system crash before the truncate completes. See the related
1511	 * comment in xfs_vn_setattr_size() for details.
1512	 */
1513	ip->i_disk_size = 0;
1514	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1515
1516	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1517	if (error)
1518		goto error_trans_cancel;
1519
1520	ASSERT(ip->i_df.if_nextents == 0);
1521
1522	error = xfs_trans_commit(tp);
1523	if (error)
1524		goto error_unlock;
1525
1526	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1527	return 0;
1528
1529error_trans_cancel:
1530	xfs_trans_cancel(tp);
1531error_unlock:
1532	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1533	return error;
1534}
1535
1536/*
1537 * xfs_inactive_ifree()
1538 *
1539 * Perform the inode free when an inode is unlinked.
1540 */
1541STATIC int
1542xfs_inactive_ifree(
1543	struct xfs_inode *ip)
1544{
1545	struct xfs_mount	*mp = ip->i_mount;
1546	struct xfs_trans	*tp;
1547	int			error;
1548
1549	/*
1550	 * We try to use a per-AG reservation for any block needed by the finobt
1551	 * tree, but as the finobt feature predates the per-AG reservation
1552	 * support a degraded file system might not have enough space for the
1553	 * reservation at mount time.  In that case try to dip into the reserved
1554	 * pool and pray.
1555	 *
1556	 * Send a warning if the reservation does happen to fail, as the inode
1557	 * now remains allocated and sits on the unlinked list until the fs is
1558	 * repaired.
1559	 */
1560	if (unlikely(mp->m_finobt_nores)) {
1561		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1562				XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1563				&tp);
1564	} else {
1565		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1566	}
1567	if (error) {
1568		if (error == -ENOSPC) {
1569			xfs_warn_ratelimited(mp,
1570			"Failed to remove inode(s) from unlinked list. "
1571			"Please free space, unmount and run xfs_repair.");
1572		} else {
1573			ASSERT(xfs_is_shutdown(mp));
1574		}
1575		return error;
1576	}
1577
1578	/*
1579	 * We do not hold the inode locked across the entire rolling transaction
1580	 * here. We only need to hold it for the first transaction that
1581	 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1582	 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1583	 * here breaks the relationship between cluster buffer invalidation and
1584	 * stale inode invalidation on cluster buffer item journal commit
1585	 * completion, and can result in leaving dirty stale inodes hanging
1586	 * around in memory.
1587	 *
1588	 * We have no need for serialising this inode operation against other
1589	 * operations - we freed the inode and hence reallocation is required
1590	 * and that will serialise on reallocating the space the deferops need
1591	 * to free. Hence we can unlock the inode on the first commit of
1592	 * the transaction rather than roll it right through the deferops. This
1593	 * avoids relogging the XFS_ISTALE inode.
1594	 *
1595	 * We check that xfs_ifree() hasn't grown an internal transaction roll
1596	 * by asserting that the inode is still locked when it returns.
1597	 */
1598	xfs_ilock(ip, XFS_ILOCK_EXCL);
1599	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1600
1601	error = xfs_ifree(tp, ip);
1602	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1603	if (error) {
1604		/*
1605		 * If we fail to free the inode, shut down.  The cancel
1606		 * might do that, we need to make sure.  Otherwise the
1607		 * inode might be lost for a long time or forever.
1608		 */
1609		if (!xfs_is_shutdown(mp)) {
1610			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1611				__func__, error);
1612			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1613		}
1614		xfs_trans_cancel(tp);
1615		return error;
1616	}
1617
1618	/*
1619	 * Credit the quota account(s). The inode is gone.
1620	 */
1621	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1622
1623	/*
1624	 * Just ignore errors at this point.  There is nothing we can do except
1625	 * to try to keep going. Make sure it's not a silent error.
1626	 */
1627	error = xfs_trans_commit(tp);
1628	if (error)
1629		xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1630			__func__, error);
1631
1632	return 0;
1633}
1634
1635/*
1636 * Returns true if we need to update the on-disk metadata before we can free
1637 * the memory used by this inode.  Updates include freeing post-eof
1638 * preallocations; freeing COW staging extents; and marking the inode free in
1639 * the inobt if it is on the unlinked list.
1640 */
1641bool
1642xfs_inode_needs_inactive(
1643	struct xfs_inode	*ip)
1644{
1645	struct xfs_mount	*mp = ip->i_mount;
1646	struct xfs_ifork	*cow_ifp = xfs_ifork_ptr(ip, XFS_COW_FORK);
1647
1648	/*
1649	 * If the inode is already free, then there can be nothing
1650	 * to clean up here.
1651	 */
1652	if (VFS_I(ip)->i_mode == 0)
1653		return false;
1654
1655	/* If this is a read-only mount, don't do this (would generate I/O) */
1656	if (xfs_is_readonly(mp))
1657		return false;
1658
1659	/* If the log isn't running, push inodes straight to reclaim. */
1660	if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp))
1661		return false;
1662
1663	/* Metadata inodes require explicit resource cleanup. */
1664	if (xfs_is_metadata_inode(ip))
1665		return false;
1666
1667	/* Want to clean out the cow blocks if there are any. */
1668	if (cow_ifp && cow_ifp->if_bytes > 0)
1669		return true;
1670
1671	/* Unlinked files must be freed. */
1672	if (VFS_I(ip)->i_nlink == 0)
1673		return true;
1674
1675	/*
1676	 * This file isn't being freed, so check if there are post-eof blocks
1677	 * to free.  @force is true because we are evicting an inode from the
1678	 * cache.  Post-eof blocks must be freed, lest we end up with broken
1679	 * free space accounting.
1680	 *
1681	 * Note: don't bother with iolock here since lockdep complains about
1682	 * acquiring it in reclaim context. We have the only reference to the
1683	 * inode at this point anyways.
1684	 */
1685	return xfs_can_free_eofblocks(ip, true);
1686}
1687
1688/*
1689 * xfs_inactive
1690 *
1691 * This is called when the vnode reference count for the vnode
1692 * goes to zero.  If the file has been unlinked, then it must
1693 * now be truncated.  Also, we clear all of the read-ahead state
1694 * kept for the inode here since the file is now closed.
1695 */
1696void
1697xfs_inactive(
1698	xfs_inode_t	*ip)
1699{
1700	struct xfs_mount	*mp;
1701	int			error;
1702	int			truncate = 0;
1703
1704	/*
1705	 * If the inode is already free, then there can be nothing
1706	 * to clean up here.
1707	 */
1708	if (VFS_I(ip)->i_mode == 0) {
1709		ASSERT(ip->i_df.if_broot_bytes == 0);
1710		goto out;
1711	}
1712
1713	mp = ip->i_mount;
1714	ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1715
1716	/* If this is a read-only mount, don't do this (would generate I/O) */
1717	if (xfs_is_readonly(mp))
1718		goto out;
1719
1720	/* Metadata inodes require explicit resource cleanup. */
1721	if (xfs_is_metadata_inode(ip))
1722		goto out;
1723
1724	/* Try to clean out the cow blocks if there are any. */
1725	if (xfs_inode_has_cow_data(ip))
1726		xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1727
1728	if (VFS_I(ip)->i_nlink != 0) {
1729		/*
1730		 * force is true because we are evicting an inode from the
1731		 * cache. Post-eof blocks must be freed, lest we end up with
1732		 * broken free space accounting.
1733		 *
1734		 * Note: don't bother with iolock here since lockdep complains
1735		 * about acquiring it in reclaim context. We have the only
1736		 * reference to the inode at this point anyways.
1737		 */
1738		if (xfs_can_free_eofblocks(ip, true))
1739			xfs_free_eofblocks(ip);
1740
1741		goto out;
1742	}
1743
1744	if (S_ISREG(VFS_I(ip)->i_mode) &&
1745	    (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 ||
1746	     ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0))
1747		truncate = 1;
1748
1749	error = xfs_qm_dqattach(ip);
1750	if (error)
1751		goto out;
1752
1753	if (S_ISLNK(VFS_I(ip)->i_mode))
1754		error = xfs_inactive_symlink(ip);
1755	else if (truncate)
1756		error = xfs_inactive_truncate(ip);
1757	if (error)
1758		goto out;
1759
1760	/*
1761	 * If there are attributes associated with the file then blow them away
1762	 * now.  The code calls a routine that recursively deconstructs the
1763	 * attribute fork. If also blows away the in-core attribute fork.
1764	 */
1765	if (xfs_inode_has_attr_fork(ip)) {
1766		error = xfs_attr_inactive(ip);
1767		if (error)
1768			goto out;
1769	}
1770
 
1771	ASSERT(ip->i_forkoff == 0);
1772
1773	/*
1774	 * Free the inode.
1775	 */
1776	xfs_inactive_ifree(ip);
1777
1778out:
1779	/*
1780	 * We're done making metadata updates for this inode, so we can release
1781	 * the attached dquots.
1782	 */
1783	xfs_qm_dqdetach(ip);
1784}
1785
1786/*
1787 * In-Core Unlinked List Lookups
1788 * =============================
1789 *
1790 * Every inode is supposed to be reachable from some other piece of metadata
1791 * with the exception of the root directory.  Inodes with a connection to a
1792 * file descriptor but not linked from anywhere in the on-disk directory tree
1793 * are collectively known as unlinked inodes, though the filesystem itself
1794 * maintains links to these inodes so that on-disk metadata are consistent.
1795 *
1796 * XFS implements a per-AG on-disk hash table of unlinked inodes.  The AGI
1797 * header contains a number of buckets that point to an inode, and each inode
1798 * record has a pointer to the next inode in the hash chain.  This
1799 * singly-linked list causes scaling problems in the iunlink remove function
1800 * because we must walk that list to find the inode that points to the inode
1801 * being removed from the unlinked hash bucket list.
1802 *
1803 * Hence we keep an in-memory double linked list to link each inode on an
1804 * unlinked list. Because there are 64 unlinked lists per AGI, keeping pointer
1805 * based lists would require having 64 list heads in the perag, one for each
1806 * list. This is expensive in terms of memory (think millions of AGs) and cache
1807 * misses on lookups. Instead, use the fact that inodes on the unlinked list
1808 * must be referenced at the VFS level to keep them on the list and hence we
1809 * have an existence guarantee for inodes on the unlinked list.
1810 *
1811 * Given we have an existence guarantee, we can use lockless inode cache lookups
1812 * to resolve aginos to xfs inodes. This means we only need 8 bytes per inode
1813 * for the double linked unlinked list, and we don't need any extra locking to
1814 * keep the list safe as all manipulations are done under the AGI buffer lock.
1815 * Keeping the list up to date does not require memory allocation, just finding
1816 * the XFS inode and updating the next/prev unlinked list aginos.
1817 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1818
1819/*
1820 * Find an inode on the unlinked list. This does not take references to the
1821 * inode as we have existence guarantees by holding the AGI buffer lock and that
1822 * only unlinked, referenced inodes can be on the unlinked inode list.  If we
1823 * don't find the inode in cache, then let the caller handle the situation.
1824 */
1825static struct xfs_inode *
1826xfs_iunlink_lookup(
1827	struct xfs_perag	*pag,
1828	xfs_agino_t		agino)
1829{
1830	struct xfs_inode	*ip;
1831
1832	rcu_read_lock();
1833	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1834
 
 
1835	/*
1836	 * Inode not in memory or in RCU freeing limbo should not happen.
1837	 * Warn about this and let the caller handle the failure.
 
 
1838	 */
1839	if (WARN_ON_ONCE(!ip || !ip->i_ino)) {
1840		rcu_read_unlock();
1841		return NULL;
1842	}
1843	ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM));
1844	rcu_read_unlock();
1845	return ip;
 
 
 
 
1846}
1847
1848/* Update the prev pointer of the next agino. */
1849static int
1850xfs_iunlink_update_backref(
1851	struct xfs_perag	*pag,
1852	xfs_agino_t		prev_agino,
1853	xfs_agino_t		next_agino)
1854{
1855	struct xfs_inode	*ip;
1856
1857	/* No update necessary if we are at the end of the list. */
1858	if (next_agino == NULLAGINO)
1859		return 0;
1860
1861	ip = xfs_iunlink_lookup(pag, next_agino);
1862	if (!ip)
1863		return -EFSCORRUPTED;
1864	ip->i_prev_unlinked = prev_agino;
1865	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1866}
1867
1868/*
1869 * Point the AGI unlinked bucket at an inode and log the results.  The caller
1870 * is responsible for validating the old value.
1871 */
1872STATIC int
1873xfs_iunlink_update_bucket(
1874	struct xfs_trans	*tp,
1875	struct xfs_perag	*pag,
1876	struct xfs_buf		*agibp,
1877	unsigned int		bucket_index,
1878	xfs_agino_t		new_agino)
1879{
1880	struct xfs_agi		*agi = agibp->b_addr;
1881	xfs_agino_t		old_value;
1882	int			offset;
1883
1884	ASSERT(xfs_verify_agino_or_null(pag, new_agino));
1885
1886	old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1887	trace_xfs_iunlink_update_bucket(tp->t_mountp, pag->pag_agno, bucket_index,
1888			old_value, new_agino);
1889
1890	/*
1891	 * We should never find the head of the list already set to the value
1892	 * passed in because either we're adding or removing ourselves from the
1893	 * head of the list.
1894	 */
1895	if (old_value == new_agino) {
1896		xfs_buf_mark_corrupt(agibp);
1897		return -EFSCORRUPTED;
1898	}
1899
1900	agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
1901	offset = offsetof(struct xfs_agi, agi_unlinked) +
1902			(sizeof(xfs_agino_t) * bucket_index);
1903	xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
1904	return 0;
1905}
1906
1907static int
1908xfs_iunlink_insert_inode(
 
1909	struct xfs_trans	*tp,
1910	struct xfs_perag	*pag,
1911	struct xfs_buf		*agibp,
1912	struct xfs_inode	*ip)
 
 
 
1913{
1914	struct xfs_mount	*mp = tp->t_mountp;
1915	struct xfs_agi		*agi = agibp->b_addr;
1916	xfs_agino_t		next_agino;
1917	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1918	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1919	int			error;
1920
1921	/*
1922	 * Get the index into the agi hash table for the list this inode will
1923	 * go on.  Make sure the pointer isn't garbage and that this inode
1924	 * isn't already on the list.
1925	 */
1926	next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1927	if (next_agino == agino ||
1928	    !xfs_verify_agino_or_null(pag, next_agino)) {
1929		xfs_buf_mark_corrupt(agibp);
1930		return -EFSCORRUPTED;
1931	}
1932
1933	/*
1934	 * Update the prev pointer in the next inode to point back to this
1935	 * inode.
1936	 */
1937	error = xfs_iunlink_update_backref(pag, agino, next_agino);
1938	if (error)
1939		return error;
 
1940
1941	if (next_agino != NULLAGINO) {
1942		/*
1943		 * There is already another inode in the bucket, so point this
1944		 * inode to the current head of the list.
1945		 */
1946		error = xfs_iunlink_log_inode(tp, ip, pag, next_agino);
1947		if (error)
1948			return error;
1949		ip->i_next_unlinked = next_agino;
1950	}
1951
1952	/* Point the head of the list to point to this inode. */
1953	return xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, agino);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1954}
1955
1956/*
1957 * This is called when the inode's link count has gone to 0 or we are creating
1958 * a tmpfile via O_TMPFILE.  The inode @ip must have nlink == 0.
1959 *
1960 * We place the on-disk inode on a list in the AGI.  It will be pulled from this
1961 * list when the inode is freed.
1962 */
1963STATIC int
1964xfs_iunlink(
1965	struct xfs_trans	*tp,
1966	struct xfs_inode	*ip)
1967{
1968	struct xfs_mount	*mp = tp->t_mountp;
1969	struct xfs_perag	*pag;
 
1970	struct xfs_buf		*agibp;
 
 
 
1971	int			error;
1972
1973	ASSERT(VFS_I(ip)->i_nlink == 0);
1974	ASSERT(VFS_I(ip)->i_mode != 0);
1975	trace_xfs_iunlink(ip);
1976
1977	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1978
1979	/* Get the agi buffer first.  It ensures lock ordering on the list. */
1980	error = xfs_read_agi(pag, tp, &agibp);
1981	if (error)
1982		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1983
1984	error = xfs_iunlink_insert_inode(tp, pag, agibp, ip);
 
1985out:
1986	xfs_perag_put(pag);
1987	return error;
1988}
1989
1990static int
1991xfs_iunlink_remove_inode(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1992	struct xfs_trans	*tp,
1993	struct xfs_perag	*pag,
1994	struct xfs_buf		*agibp,
1995	struct xfs_inode	*ip)
1996{
1997	struct xfs_mount	*mp = tp->t_mountp;
1998	struct xfs_agi		*agi = agibp->b_addr;
 
 
 
1999	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
 
2000	xfs_agino_t		head_agino;
2001	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2002	int			error;
2003
2004	trace_xfs_iunlink_remove(ip);
2005
 
 
 
 
 
 
2006	/*
2007	 * Get the index into the agi hash table for the list this inode will
2008	 * go on.  Make sure the head pointer isn't garbage.
2009	 */
2010	head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2011	if (!xfs_verify_agino(pag, head_agino)) {
2012		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2013				agi, sizeof(*agi));
2014		return -EFSCORRUPTED;
2015	}
2016
2017	/*
2018	 * Set our inode's next_unlinked pointer to NULL and then return
2019	 * the old pointer value so that we can update whatever was previous
2020	 * to us in the list to point to whatever was next in the list.
2021	 */
2022	error = xfs_iunlink_log_inode(tp, ip, pag, NULLAGINO);
2023	if (error)
2024		return error;
2025
2026	/*
2027	 * Update the prev pointer in the next inode to point back to previous
2028	 * inode in the chain.
 
 
 
2029	 */
2030	error = xfs_iunlink_update_backref(pag, ip->i_prev_unlinked,
2031			ip->i_next_unlinked);
2032	if (error)
2033		return error;
2034
2035	if (head_agino != agino) {
2036		struct xfs_inode	*prev_ip;
2037
2038		prev_ip = xfs_iunlink_lookup(pag, ip->i_prev_unlinked);
2039		if (!prev_ip)
2040			return -EFSCORRUPTED;
2041
2042		error = xfs_iunlink_log_inode(tp, prev_ip, pag,
2043				ip->i_next_unlinked);
2044		prev_ip->i_next_unlinked = ip->i_next_unlinked;
2045	} else {
2046		/* Point the head of the list to the next unlinked inode. */
2047		error = xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index,
2048				ip->i_next_unlinked);
2049	}
2050
2051	ip->i_next_unlinked = NULLAGINO;
2052	ip->i_prev_unlinked = NULLAGINO;
2053	return error;
2054}
2055
2056/*
2057 * Pull the on-disk inode from the AGI unlinked list.
2058 */
2059STATIC int
2060xfs_iunlink_remove(
2061	struct xfs_trans	*tp,
2062	struct xfs_perag	*pag,
2063	struct xfs_inode	*ip)
2064{
2065	struct xfs_buf		*agibp;
2066	int			error;
2067
2068	trace_xfs_iunlink_remove(ip);
 
 
2069
2070	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2071	error = xfs_read_agi(pag, tp, &agibp);
2072	if (error)
2073		return error;
 
 
 
 
 
 
 
2074
2075	return xfs_iunlink_remove_inode(tp, pag, agibp, ip);
 
 
2076}
2077
2078/*
2079 * Look up the inode number specified and if it is not already marked XFS_ISTALE
2080 * mark it stale. We should only find clean inodes in this lookup that aren't
2081 * already stale.
2082 */
2083static void
2084xfs_ifree_mark_inode_stale(
2085	struct xfs_perag	*pag,
2086	struct xfs_inode	*free_ip,
2087	xfs_ino_t		inum)
2088{
2089	struct xfs_mount	*mp = pag->pag_mount;
2090	struct xfs_inode_log_item *iip;
2091	struct xfs_inode	*ip;
2092
2093retry:
2094	rcu_read_lock();
2095	ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
2096
2097	/* Inode not in memory, nothing to do */
2098	if (!ip) {
2099		rcu_read_unlock();
2100		return;
2101	}
2102
2103	/*
2104	 * because this is an RCU protected lookup, we could find a recently
2105	 * freed or even reallocated inode during the lookup. We need to check
2106	 * under the i_flags_lock for a valid inode here. Skip it if it is not
2107	 * valid, the wrong inode or stale.
2108	 */
2109	spin_lock(&ip->i_flags_lock);
2110	if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
2111		goto out_iflags_unlock;
2112
2113	/*
2114	 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
2115	 * other inodes that we did not find in the list attached to the buffer
2116	 * and are not already marked stale. If we can't lock it, back off and
2117	 * retry.
2118	 */
2119	if (ip != free_ip) {
2120		if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2121			spin_unlock(&ip->i_flags_lock);
2122			rcu_read_unlock();
2123			delay(1);
2124			goto retry;
2125		}
2126	}
2127	ip->i_flags |= XFS_ISTALE;
2128
2129	/*
2130	 * If the inode is flushing, it is already attached to the buffer.  All
2131	 * we needed to do here is mark the inode stale so buffer IO completion
2132	 * will remove it from the AIL.
2133	 */
2134	iip = ip->i_itemp;
2135	if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
2136		ASSERT(!list_empty(&iip->ili_item.li_bio_list));
2137		ASSERT(iip->ili_last_fields);
2138		goto out_iunlock;
2139	}
2140
2141	/*
2142	 * Inodes not attached to the buffer can be released immediately.
2143	 * Everything else has to go through xfs_iflush_abort() on journal
2144	 * commit as the flock synchronises removal of the inode from the
2145	 * cluster buffer against inode reclaim.
2146	 */
2147	if (!iip || list_empty(&iip->ili_item.li_bio_list))
2148		goto out_iunlock;
2149
2150	__xfs_iflags_set(ip, XFS_IFLUSHING);
2151	spin_unlock(&ip->i_flags_lock);
2152	rcu_read_unlock();
2153
2154	/* we have a dirty inode in memory that has not yet been flushed. */
2155	spin_lock(&iip->ili_lock);
2156	iip->ili_last_fields = iip->ili_fields;
2157	iip->ili_fields = 0;
2158	iip->ili_fsync_fields = 0;
2159	spin_unlock(&iip->ili_lock);
2160	ASSERT(iip->ili_last_fields);
2161
2162	if (ip != free_ip)
2163		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2164	return;
2165
2166out_iunlock:
2167	if (ip != free_ip)
2168		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2169out_iflags_unlock:
2170	spin_unlock(&ip->i_flags_lock);
2171	rcu_read_unlock();
2172}
2173
2174/*
2175 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2176 * inodes that are in memory - they all must be marked stale and attached to
2177 * the cluster buffer.
2178 */
2179static int
2180xfs_ifree_cluster(
2181	struct xfs_trans	*tp,
2182	struct xfs_perag	*pag,
2183	struct xfs_inode	*free_ip,
2184	struct xfs_icluster	*xic)
2185{
2186	struct xfs_mount	*mp = free_ip->i_mount;
2187	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2188	struct xfs_buf		*bp;
2189	xfs_daddr_t		blkno;
2190	xfs_ino_t		inum = xic->first_ino;
2191	int			nbufs;
2192	int			i, j;
2193	int			ioffset;
2194	int			error;
2195
2196	nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
2197
2198	for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
2199		/*
2200		 * The allocation bitmap tells us which inodes of the chunk were
2201		 * physically allocated. Skip the cluster if an inode falls into
2202		 * a sparse region.
2203		 */
2204		ioffset = inum - xic->first_ino;
2205		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2206			ASSERT(ioffset % igeo->inodes_per_cluster == 0);
2207			continue;
2208		}
2209
2210		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2211					 XFS_INO_TO_AGBNO(mp, inum));
2212
2213		/*
2214		 * We obtain and lock the backing buffer first in the process
2215		 * here to ensure dirty inodes attached to the buffer remain in
2216		 * the flushing state while we mark them stale.
2217		 *
2218		 * If we scan the in-memory inodes first, then buffer IO can
2219		 * complete before we get a lock on it, and hence we may fail
2220		 * to mark all the active inodes on the buffer stale.
2221		 */
2222		error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2223				mp->m_bsize * igeo->blocks_per_cluster,
2224				XBF_UNMAPPED, &bp);
2225		if (error)
2226			return error;
2227
2228		/*
2229		 * This buffer may not have been correctly initialised as we
2230		 * didn't read it from disk. That's not important because we are
2231		 * only using to mark the buffer as stale in the log, and to
2232		 * attach stale cached inodes on it. That means it will never be
2233		 * dispatched for IO. If it is, we want to know about it, and we
2234		 * want it to fail. We can acheive this by adding a write
2235		 * verifier to the buffer.
2236		 */
2237		bp->b_ops = &xfs_inode_buf_ops;
2238
2239		/*
2240		 * Now we need to set all the cached clean inodes as XFS_ISTALE,
2241		 * too. This requires lookups, and will skip inodes that we've
2242		 * already marked XFS_ISTALE.
2243		 */
2244		for (i = 0; i < igeo->inodes_per_cluster; i++)
2245			xfs_ifree_mark_inode_stale(pag, free_ip, inum + i);
2246
2247		xfs_trans_stale_inode_buf(tp, bp);
2248		xfs_trans_binval(tp, bp);
2249	}
2250	return 0;
2251}
2252
2253/*
2254 * This is called to return an inode to the inode free list.  The inode should
2255 * already be truncated to 0 length and have no pages associated with it.  This
2256 * routine also assumes that the inode is already a part of the transaction.
2257 *
2258 * The on-disk copy of the inode will have been added to the list of unlinked
2259 * inodes in the AGI. We need to remove the inode from that list atomically with
2260 * respect to freeing it here.
 
2261 */
2262int
2263xfs_ifree(
2264	struct xfs_trans	*tp,
2265	struct xfs_inode	*ip)
2266{
2267	struct xfs_mount	*mp = ip->i_mount;
2268	struct xfs_perag	*pag;
2269	struct xfs_icluster	xic = { 0 };
2270	struct xfs_inode_log_item *iip = ip->i_itemp;
2271	int			error;
2272
2273	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2274	ASSERT(VFS_I(ip)->i_nlink == 0);
2275	ASSERT(ip->i_df.if_nextents == 0);
2276	ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2277	ASSERT(ip->i_nblocks == 0);
2278
2279	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2280
2281	/*
2282	 * Free the inode first so that we guarantee that the AGI lock is going
2283	 * to be taken before we remove the inode from the unlinked list. This
2284	 * makes the AGI lock -> unlinked list modification order the same as
2285	 * used in O_TMPFILE creation.
2286	 */
2287	error = xfs_difree(tp, pag, ip->i_ino, &xic);
2288	if (error)
2289		goto out;
2290
2291	error = xfs_iunlink_remove(tp, pag, ip);
2292	if (error)
2293		goto out;
2294
2295	/*
2296	 * Free any local-format data sitting around before we reset the
2297	 * data fork to extents format.  Note that the attr fork data has
2298	 * already been freed by xfs_attr_inactive.
2299	 */
2300	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) {
2301		kmem_free(ip->i_df.if_u1.if_data);
2302		ip->i_df.if_u1.if_data = NULL;
2303		ip->i_df.if_bytes = 0;
2304	}
2305
2306	VFS_I(ip)->i_mode = 0;		/* mark incore inode as free */
2307	ip->i_diflags = 0;
2308	ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
2309	ip->i_forkoff = 0;		/* mark the attr fork not in use */
2310	ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
2311	if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS))
2312		xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS);
2313
2314	/* Don't attempt to replay owner changes for a deleted inode */
2315	spin_lock(&iip->ili_lock);
2316	iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
2317	spin_unlock(&iip->ili_lock);
2318
2319	/*
2320	 * Bump the generation count so no one will be confused
2321	 * by reincarnations of this inode.
2322	 */
2323	VFS_I(ip)->i_generation++;
2324	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2325
2326	if (xic.deleted)
2327		error = xfs_ifree_cluster(tp, pag, ip, &xic);
2328out:
2329	xfs_perag_put(pag);
2330	return error;
2331}
2332
2333/*
2334 * This is called to unpin an inode.  The caller must have the inode locked
2335 * in at least shared mode so that the buffer cannot be subsequently pinned
2336 * once someone is waiting for it to be unpinned.
2337 */
2338static void
2339xfs_iunpin(
2340	struct xfs_inode	*ip)
2341{
2342	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2343
2344	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2345
2346	/* Give the log a push to start the unpinning I/O */
2347	xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL);
2348
2349}
2350
2351static void
2352__xfs_iunpin_wait(
2353	struct xfs_inode	*ip)
2354{
2355	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2356	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2357
2358	xfs_iunpin(ip);
2359
2360	do {
2361		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2362		if (xfs_ipincount(ip))
2363			io_schedule();
2364	} while (xfs_ipincount(ip));
2365	finish_wait(wq, &wait.wq_entry);
2366}
2367
2368void
2369xfs_iunpin_wait(
2370	struct xfs_inode	*ip)
2371{
2372	if (xfs_ipincount(ip))
2373		__xfs_iunpin_wait(ip);
2374}
2375
2376/*
2377 * Removing an inode from the namespace involves removing the directory entry
2378 * and dropping the link count on the inode. Removing the directory entry can
2379 * result in locking an AGF (directory blocks were freed) and removing a link
2380 * count can result in placing the inode on an unlinked list which results in
2381 * locking an AGI.
2382 *
2383 * The big problem here is that we have an ordering constraint on AGF and AGI
2384 * locking - inode allocation locks the AGI, then can allocate a new extent for
2385 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2386 * removes the inode from the unlinked list, requiring that we lock the AGI
2387 * first, and then freeing the inode can result in an inode chunk being freed
2388 * and hence freeing disk space requiring that we lock an AGF.
2389 *
2390 * Hence the ordering that is imposed by other parts of the code is AGI before
2391 * AGF. This means we cannot remove the directory entry before we drop the inode
2392 * reference count and put it on the unlinked list as this results in a lock
2393 * order of AGF then AGI, and this can deadlock against inode allocation and
2394 * freeing. Therefore we must drop the link counts before we remove the
2395 * directory entry.
2396 *
2397 * This is still safe from a transactional point of view - it is not until we
2398 * get to xfs_defer_finish() that we have the possibility of multiple
2399 * transactions in this operation. Hence as long as we remove the directory
2400 * entry and drop the link count in the first transaction of the remove
2401 * operation, there are no transactional constraints on the ordering here.
2402 */
2403int
2404xfs_remove(
2405	xfs_inode_t             *dp,
2406	struct xfs_name		*name,
2407	xfs_inode_t		*ip)
2408{
2409	xfs_mount_t		*mp = dp->i_mount;
2410	xfs_trans_t             *tp = NULL;
2411	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2412	int			dontcare;
2413	int                     error = 0;
2414	uint			resblks;
2415
2416	trace_xfs_remove(dp, name);
2417
2418	if (xfs_is_shutdown(mp))
2419		return -EIO;
2420
2421	error = xfs_qm_dqattach(dp);
2422	if (error)
2423		goto std_return;
2424
2425	error = xfs_qm_dqattach(ip);
2426	if (error)
2427		goto std_return;
2428
2429	/*
2430	 * We try to get the real space reservation first, allowing for
2431	 * directory btree deletion(s) implying possible bmap insert(s).  If we
2432	 * can't get the space reservation then we use 0 instead, and avoid the
2433	 * bmap btree insert(s) in the directory code by, if the bmap insert
2434	 * tries to happen, instead trimming the LAST block from the directory.
2435	 *
2436	 * Ignore EDQUOT and ENOSPC being returned via nospace_error because
2437	 * the directory code can handle a reservationless update and we don't
2438	 * want to prevent a user from trying to free space by deleting things.
2439	 */
2440	resblks = XFS_REMOVE_SPACE_RES(mp);
2441	error = xfs_trans_alloc_dir(dp, &M_RES(mp)->tr_remove, ip, &resblks,
2442			&tp, &dontcare);
 
 
 
 
2443	if (error) {
2444		ASSERT(error != -ENOSPC);
2445		goto std_return;
2446	}
2447
 
 
 
 
 
2448	/*
2449	 * If we're removing a directory perform some additional validation.
2450	 */
2451	if (is_dir) {
2452		ASSERT(VFS_I(ip)->i_nlink >= 2);
2453		if (VFS_I(ip)->i_nlink != 2) {
2454			error = -ENOTEMPTY;
2455			goto out_trans_cancel;
2456		}
2457		if (!xfs_dir_isempty(ip)) {
2458			error = -ENOTEMPTY;
2459			goto out_trans_cancel;
2460		}
2461
2462		/* Drop the link from ip's "..".  */
2463		error = xfs_droplink(tp, dp);
2464		if (error)
2465			goto out_trans_cancel;
2466
2467		/* Drop the "." link from ip to self.  */
2468		error = xfs_droplink(tp, ip);
2469		if (error)
2470			goto out_trans_cancel;
2471
2472		/*
2473		 * Point the unlinked child directory's ".." entry to the root
2474		 * directory to eliminate back-references to inodes that may
2475		 * get freed before the child directory is closed.  If the fs
2476		 * gets shrunk, this can lead to dirent inode validation errors.
2477		 */
2478		if (dp->i_ino != tp->t_mountp->m_sb.sb_rootino) {
2479			error = xfs_dir_replace(tp, ip, &xfs_name_dotdot,
2480					tp->t_mountp->m_sb.sb_rootino, 0);
2481			if (error)
2482				goto out_trans_cancel;
2483		}
2484	} else {
2485		/*
2486		 * When removing a non-directory we need to log the parent
2487		 * inode here.  For a directory this is done implicitly
2488		 * by the xfs_droplink call for the ".." entry.
2489		 */
2490		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2491	}
2492	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2493
2494	/* Drop the link from dp to ip. */
2495	error = xfs_droplink(tp, ip);
2496	if (error)
2497		goto out_trans_cancel;
2498
2499	error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
2500	if (error) {
2501		ASSERT(error != -ENOENT);
2502		goto out_trans_cancel;
2503	}
2504
2505	/*
2506	 * If this is a synchronous mount, make sure that the
2507	 * remove transaction goes to disk before returning to
2508	 * the user.
2509	 */
2510	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
2511		xfs_trans_set_sync(tp);
2512
2513	error = xfs_trans_commit(tp);
2514	if (error)
2515		goto std_return;
2516
2517	if (is_dir && xfs_inode_is_filestream(ip))
2518		xfs_filestream_deassociate(ip);
2519
2520	return 0;
2521
2522 out_trans_cancel:
2523	xfs_trans_cancel(tp);
2524 std_return:
2525	return error;
2526}
2527
2528/*
2529 * Enter all inodes for a rename transaction into a sorted array.
2530 */
2531#define __XFS_SORT_INODES	5
2532STATIC void
2533xfs_sort_for_rename(
2534	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2535	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2536	struct xfs_inode	*ip1,	/* in: inode of old entry */
2537	struct xfs_inode	*ip2,	/* in: inode of new entry */
2538	struct xfs_inode	*wip,	/* in: whiteout inode */
2539	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2540	int			*num_inodes)  /* in/out: inodes in array */
2541{
2542	int			i, j;
2543
2544	ASSERT(*num_inodes == __XFS_SORT_INODES);
2545	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2546
2547	/*
2548	 * i_tab contains a list of pointers to inodes.  We initialize
2549	 * the table here & we'll sort it.  We will then use it to
2550	 * order the acquisition of the inode locks.
2551	 *
2552	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2553	 */
2554	i = 0;
2555	i_tab[i++] = dp1;
2556	i_tab[i++] = dp2;
2557	i_tab[i++] = ip1;
2558	if (ip2)
2559		i_tab[i++] = ip2;
2560	if (wip)
2561		i_tab[i++] = wip;
2562	*num_inodes = i;
2563
2564	/*
2565	 * Sort the elements via bubble sort.  (Remember, there are at
2566	 * most 5 elements to sort, so this is adequate.)
2567	 */
2568	for (i = 0; i < *num_inodes; i++) {
2569		for (j = 1; j < *num_inodes; j++) {
2570			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2571				struct xfs_inode *temp = i_tab[j];
2572				i_tab[j] = i_tab[j-1];
2573				i_tab[j-1] = temp;
2574			}
2575		}
2576	}
2577}
2578
2579static int
2580xfs_finish_rename(
2581	struct xfs_trans	*tp)
2582{
2583	/*
2584	 * If this is a synchronous mount, make sure that the rename transaction
2585	 * goes to disk before returning to the user.
2586	 */
2587	if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp))
2588		xfs_trans_set_sync(tp);
2589
2590	return xfs_trans_commit(tp);
2591}
2592
2593/*
2594 * xfs_cross_rename()
2595 *
2596 * responsible for handling RENAME_EXCHANGE flag in renameat2() syscall
2597 */
2598STATIC int
2599xfs_cross_rename(
2600	struct xfs_trans	*tp,
2601	struct xfs_inode	*dp1,
2602	struct xfs_name		*name1,
2603	struct xfs_inode	*ip1,
2604	struct xfs_inode	*dp2,
2605	struct xfs_name		*name2,
2606	struct xfs_inode	*ip2,
2607	int			spaceres)
2608{
2609	int		error = 0;
2610	int		ip1_flags = 0;
2611	int		ip2_flags = 0;
2612	int		dp2_flags = 0;
2613
2614	/* Swap inode number for dirent in first parent */
2615	error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
2616	if (error)
2617		goto out_trans_abort;
2618
2619	/* Swap inode number for dirent in second parent */
2620	error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
2621	if (error)
2622		goto out_trans_abort;
2623
2624	/*
2625	 * If we're renaming one or more directories across different parents,
2626	 * update the respective ".." entries (and link counts) to match the new
2627	 * parents.
2628	 */
2629	if (dp1 != dp2) {
2630		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2631
2632		if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2633			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2634						dp1->i_ino, spaceres);
2635			if (error)
2636				goto out_trans_abort;
2637
2638			/* transfer ip2 ".." reference to dp1 */
2639			if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2640				error = xfs_droplink(tp, dp2);
2641				if (error)
2642					goto out_trans_abort;
2643				xfs_bumplink(tp, dp1);
2644			}
2645
2646			/*
2647			 * Although ip1 isn't changed here, userspace needs
2648			 * to be warned about the change, so that applications
2649			 * relying on it (like backup ones), will properly
2650			 * notify the change
2651			 */
2652			ip1_flags |= XFS_ICHGTIME_CHG;
2653			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2654		}
2655
2656		if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2657			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2658						dp2->i_ino, spaceres);
2659			if (error)
2660				goto out_trans_abort;
2661
2662			/* transfer ip1 ".." reference to dp2 */
2663			if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2664				error = xfs_droplink(tp, dp1);
2665				if (error)
2666					goto out_trans_abort;
2667				xfs_bumplink(tp, dp2);
2668			}
2669
2670			/*
2671			 * Although ip2 isn't changed here, userspace needs
2672			 * to be warned about the change, so that applications
2673			 * relying on it (like backup ones), will properly
2674			 * notify the change
2675			 */
2676			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2677			ip2_flags |= XFS_ICHGTIME_CHG;
2678		}
2679	}
2680
2681	if (ip1_flags) {
2682		xfs_trans_ichgtime(tp, ip1, ip1_flags);
2683		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2684	}
2685	if (ip2_flags) {
2686		xfs_trans_ichgtime(tp, ip2, ip2_flags);
2687		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2688	}
2689	if (dp2_flags) {
2690		xfs_trans_ichgtime(tp, dp2, dp2_flags);
2691		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2692	}
2693	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2694	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2695	return xfs_finish_rename(tp);
2696
2697out_trans_abort:
2698	xfs_trans_cancel(tp);
2699	return error;
2700}
2701
2702/*
2703 * xfs_rename_alloc_whiteout()
2704 *
2705 * Return a referenced, unlinked, unlocked inode that can be used as a
2706 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2707 * crash between allocating the inode and linking it into the rename transaction
2708 * recovery will free the inode and we won't leak it.
2709 */
2710static int
2711xfs_rename_alloc_whiteout(
2712	struct user_namespace	*mnt_userns,
2713	struct xfs_name		*src_name,
2714	struct xfs_inode	*dp,
2715	struct xfs_inode	**wip)
2716{
2717	struct xfs_inode	*tmpfile;
2718	struct qstr		name;
2719	int			error;
2720
2721	error = xfs_create_tmpfile(mnt_userns, dp, S_IFCHR | WHITEOUT_MODE,
2722				   &tmpfile);
2723	if (error)
2724		return error;
2725
2726	name.name = src_name->name;
2727	name.len = src_name->len;
2728	error = xfs_inode_init_security(VFS_I(tmpfile), VFS_I(dp), &name);
2729	if (error) {
2730		xfs_finish_inode_setup(tmpfile);
2731		xfs_irele(tmpfile);
2732		return error;
2733	}
2734
2735	/*
2736	 * Prepare the tmpfile inode as if it were created through the VFS.
2737	 * Complete the inode setup and flag it as linkable.  nlink is already
2738	 * zero, so we can skip the drop_nlink.
2739	 */
2740	xfs_setup_iops(tmpfile);
2741	xfs_finish_inode_setup(tmpfile);
2742	VFS_I(tmpfile)->i_state |= I_LINKABLE;
2743
2744	*wip = tmpfile;
2745	return 0;
2746}
2747
2748/*
2749 * xfs_rename
2750 */
2751int
2752xfs_rename(
2753	struct user_namespace	*mnt_userns,
2754	struct xfs_inode	*src_dp,
2755	struct xfs_name		*src_name,
2756	struct xfs_inode	*src_ip,
2757	struct xfs_inode	*target_dp,
2758	struct xfs_name		*target_name,
2759	struct xfs_inode	*target_ip,
2760	unsigned int		flags)
2761{
2762	struct xfs_mount	*mp = src_dp->i_mount;
2763	struct xfs_trans	*tp;
2764	struct xfs_inode	*wip = NULL;		/* whiteout inode */
2765	struct xfs_inode	*inodes[__XFS_SORT_INODES];
2766	int			i;
2767	int			num_inodes = __XFS_SORT_INODES;
2768	bool			new_parent = (src_dp != target_dp);
2769	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2770	int			spaceres;
2771	bool			retried = false;
2772	int			error, nospace_error = 0;
2773
2774	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2775
2776	if ((flags & RENAME_EXCHANGE) && !target_ip)
2777		return -EINVAL;
2778
2779	/*
2780	 * If we are doing a whiteout operation, allocate the whiteout inode
2781	 * we will be placing at the target and ensure the type is set
2782	 * appropriately.
2783	 */
2784	if (flags & RENAME_WHITEOUT) {
2785		error = xfs_rename_alloc_whiteout(mnt_userns, src_name,
2786						  target_dp, &wip);
2787		if (error)
2788			return error;
2789
2790		/* setup target dirent info as whiteout */
2791		src_name->type = XFS_DIR3_FT_CHRDEV;
2792	}
2793
2794	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
2795				inodes, &num_inodes);
2796
2797retry:
2798	nospace_error = 0;
2799	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2800	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2801	if (error == -ENOSPC) {
2802		nospace_error = error;
2803		spaceres = 0;
2804		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2805				&tp);
2806	}
2807	if (error)
2808		goto out_release_wip;
2809
2810	/*
2811	 * Attach the dquots to the inodes
2812	 */
2813	error = xfs_qm_vop_rename_dqattach(inodes);
2814	if (error)
2815		goto out_trans_cancel;
2816
2817	/*
2818	 * Lock all the participating inodes. Depending upon whether
2819	 * the target_name exists in the target directory, and
2820	 * whether the target directory is the same as the source
2821	 * directory, we can lock from 2 to 5 inodes.
2822	 */
2823	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2824
2825	/*
2826	 * Join all the inodes to the transaction. From this point on,
2827	 * we can rely on either trans_commit or trans_cancel to unlock
2828	 * them.
2829	 */
2830	xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
2831	if (new_parent)
2832		xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
2833	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2834	if (target_ip)
2835		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2836	if (wip)
2837		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
2838
2839	/*
2840	 * If we are using project inheritance, we only allow renames
2841	 * into our tree when the project IDs are the same; else the
2842	 * tree quota mechanism would be circumvented.
2843	 */
2844	if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
2845		     target_dp->i_projid != src_ip->i_projid)) {
2846		error = -EXDEV;
2847		goto out_trans_cancel;
2848	}
2849
2850	/* RENAME_EXCHANGE is unique from here on. */
2851	if (flags & RENAME_EXCHANGE)
2852		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
2853					target_dp, target_name, target_ip,
2854					spaceres);
2855
2856	/*
2857	 * Try to reserve quota to handle an expansion of the target directory.
2858	 * We'll allow the rename to continue in reservationless mode if we hit
2859	 * a space usage constraint.  If we trigger reservationless mode, save
2860	 * the errno if there isn't any free space in the target directory.
2861	 */
2862	if (spaceres != 0) {
2863		error = xfs_trans_reserve_quota_nblks(tp, target_dp, spaceres,
2864				0, false);
2865		if (error == -EDQUOT || error == -ENOSPC) {
2866			if (!retried) {
2867				xfs_trans_cancel(tp);
2868				xfs_blockgc_free_quota(target_dp, 0);
2869				retried = true;
2870				goto retry;
2871			}
2872
2873			nospace_error = error;
2874			spaceres = 0;
2875			error = 0;
2876		}
2877		if (error)
2878			goto out_trans_cancel;
2879	}
2880
2881	/*
2882	 * Check for expected errors before we dirty the transaction
2883	 * so we can return an error without a transaction abort.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2884	 */
2885	if (target_ip == NULL) {
2886		/*
2887		 * If there's no space reservation, check the entry will
2888		 * fit before actually inserting it.
2889		 */
2890		if (!spaceres) {
2891			error = xfs_dir_canenter(tp, target_dp, target_name);
2892			if (error)
2893				goto out_trans_cancel;
 
 
 
 
 
 
2894		}
2895	} else {
2896		/*
2897		 * If target exists and it's a directory, check that whether
2898		 * it can be destroyed.
2899		 */
2900		if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
2901		    (!xfs_dir_isempty(target_ip) ||
2902		     (VFS_I(target_ip)->i_nlink > 2))) {
2903			error = -EEXIST;
2904			goto out_trans_cancel;
2905		}
2906	}
2907
2908	/*
2909	 * Lock the AGI buffers we need to handle bumping the nlink of the
2910	 * whiteout inode off the unlinked list and to handle dropping the
2911	 * nlink of the target inode.  Per locking order rules, do this in
2912	 * increasing AG order and before directory block allocation tries to
2913	 * grab AGFs because we grab AGIs before AGFs.
2914	 *
2915	 * The (vfs) caller must ensure that if src is a directory then
2916	 * target_ip is either null or an empty directory.
2917	 */
2918	for (i = 0; i < num_inodes && inodes[i] != NULL; i++) {
2919		if (inodes[i] == wip ||
2920		    (inodes[i] == target_ip &&
2921		     (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) {
2922			struct xfs_perag	*pag;
2923			struct xfs_buf		*bp;
2924
2925			pag = xfs_perag_get(mp,
2926					XFS_INO_TO_AGNO(mp, inodes[i]->i_ino));
2927			error = xfs_read_agi(pag, tp, &bp);
2928			xfs_perag_put(pag);
2929			if (error)
2930				goto out_trans_cancel;
2931		}
2932	}
2933
2934	/*
2935	 * Directory entry creation below may acquire the AGF. Remove
2936	 * the whiteout from the unlinked list first to preserve correct
2937	 * AGI/AGF locking order. This dirties the transaction so failures
2938	 * after this point will abort and log recovery will clean up the
2939	 * mess.
2940	 *
2941	 * For whiteouts, we need to bump the link count on the whiteout
2942	 * inode. After this point, we have a real link, clear the tmpfile
2943	 * state flag from the inode so it doesn't accidentally get misused
2944	 * in future.
2945	 */
2946	if (wip) {
2947		struct xfs_perag	*pag;
2948
2949		ASSERT(VFS_I(wip)->i_nlink == 0);
2950
2951		pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, wip->i_ino));
2952		error = xfs_iunlink_remove(tp, pag, wip);
2953		xfs_perag_put(pag);
2954		if (error)
2955			goto out_trans_cancel;
2956
2957		xfs_bumplink(tp, wip);
2958		VFS_I(wip)->i_state &= ~I_LINKABLE;
2959	}
2960
2961	/*
2962	 * Set up the target.
2963	 */
2964	if (target_ip == NULL) {
2965		/*
2966		 * If target does not exist and the rename crosses
2967		 * directories, adjust the target directory link count
2968		 * to account for the ".." reference from the new entry.
2969		 */
2970		error = xfs_dir_createname(tp, target_dp, target_name,
2971					   src_ip->i_ino, spaceres);
2972		if (error)
2973			goto out_trans_cancel;
2974
2975		xfs_trans_ichgtime(tp, target_dp,
2976					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2977
2978		if (new_parent && src_is_directory) {
2979			xfs_bumplink(tp, target_dp);
2980		}
2981	} else { /* target_ip != NULL */
2982		/*
2983		 * Link the source inode under the target name.
2984		 * If the source inode is a directory and we are moving
2985		 * it across directories, its ".." entry will be
2986		 * inconsistent until we replace that down below.
2987		 *
2988		 * In case there is already an entry with the same
2989		 * name at the destination directory, remove it first.
2990		 */
2991		error = xfs_dir_replace(tp, target_dp, target_name,
2992					src_ip->i_ino, spaceres);
2993		if (error)
2994			goto out_trans_cancel;
2995
2996		xfs_trans_ichgtime(tp, target_dp,
2997					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2998
2999		/*
3000		 * Decrement the link count on the target since the target
3001		 * dir no longer points to it.
3002		 */
3003		error = xfs_droplink(tp, target_ip);
3004		if (error)
3005			goto out_trans_cancel;
3006
3007		if (src_is_directory) {
3008			/*
3009			 * Drop the link from the old "." entry.
3010			 */
3011			error = xfs_droplink(tp, target_ip);
3012			if (error)
3013				goto out_trans_cancel;
3014		}
3015	} /* target_ip != NULL */
3016
3017	/*
3018	 * Remove the source.
3019	 */
3020	if (new_parent && src_is_directory) {
3021		/*
3022		 * Rewrite the ".." entry to point to the new
3023		 * directory.
3024		 */
3025		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3026					target_dp->i_ino, spaceres);
3027		ASSERT(error != -EEXIST);
3028		if (error)
3029			goto out_trans_cancel;
3030	}
3031
3032	/*
3033	 * We always want to hit the ctime on the source inode.
3034	 *
3035	 * This isn't strictly required by the standards since the source
3036	 * inode isn't really being changed, but old unix file systems did
3037	 * it and some incremental backup programs won't work without it.
3038	 */
3039	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3040	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3041
3042	/*
3043	 * Adjust the link count on src_dp.  This is necessary when
3044	 * renaming a directory, either within one parent when
3045	 * the target existed, or across two parent directories.
3046	 */
3047	if (src_is_directory && (new_parent || target_ip != NULL)) {
3048
3049		/*
3050		 * Decrement link count on src_directory since the
3051		 * entry that's moved no longer points to it.
3052		 */
3053		error = xfs_droplink(tp, src_dp);
3054		if (error)
3055			goto out_trans_cancel;
3056	}
3057
3058	/*
3059	 * For whiteouts, we only need to update the source dirent with the
3060	 * inode number of the whiteout inode rather than removing it
3061	 * altogether.
3062	 */
3063	if (wip)
3064		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3065					spaceres);
3066	else
 
 
 
 
 
3067		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3068					   spaceres);
 
3069
3070	if (error)
3071		goto out_trans_cancel;
3072
3073	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3074	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3075	if (new_parent)
3076		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3077
3078	error = xfs_finish_rename(tp);
3079	if (wip)
3080		xfs_irele(wip);
3081	return error;
3082
3083out_trans_cancel:
3084	xfs_trans_cancel(tp);
3085out_release_wip:
3086	if (wip)
3087		xfs_irele(wip);
3088	if (error == -ENOSPC && nospace_error)
3089		error = nospace_error;
3090	return error;
3091}
3092
3093static int
3094xfs_iflush(
3095	struct xfs_inode	*ip,
3096	struct xfs_buf		*bp)
3097{
3098	struct xfs_inode_log_item *iip = ip->i_itemp;
3099	struct xfs_dinode	*dip;
3100	struct xfs_mount	*mp = ip->i_mount;
3101	int			error;
3102
3103	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3104	ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
3105	ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
3106	       ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3107	ASSERT(iip->ili_item.li_buf == bp);
3108
3109	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3110
3111	/*
3112	 * We don't flush the inode if any of the following checks fail, but we
3113	 * do still update the log item and attach to the backing buffer as if
3114	 * the flush happened. This is a formality to facilitate predictable
3115	 * error handling as the caller will shutdown and fail the buffer.
3116	 */
3117	error = -EFSCORRUPTED;
3118	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3119			       mp, XFS_ERRTAG_IFLUSH_1)) {
3120		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3121			"%s: Bad inode %llu magic number 0x%x, ptr "PTR_FMT,
3122			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3123		goto flush_out;
3124	}
3125	if (S_ISREG(VFS_I(ip)->i_mode)) {
3126		if (XFS_TEST_ERROR(
3127		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3128		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
3129		    mp, XFS_ERRTAG_IFLUSH_3)) {
3130			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3131				"%s: Bad regular inode %llu, ptr "PTR_FMT,
3132				__func__, ip->i_ino, ip);
3133			goto flush_out;
3134		}
3135	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3136		if (XFS_TEST_ERROR(
3137		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3138		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
3139		    ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
3140		    mp, XFS_ERRTAG_IFLUSH_4)) {
3141			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3142				"%s: Bad directory inode %llu, ptr "PTR_FMT,
3143				__func__, ip->i_ino, ip);
3144			goto flush_out;
3145		}
3146	}
3147	if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af) >
3148				ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3149		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3150			"%s: detected corrupt incore inode %llu, "
3151			"total extents = %llu nblocks = %lld, ptr "PTR_FMT,
3152			__func__, ip->i_ino,
3153			ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af),
3154			ip->i_nblocks, ip);
3155		goto flush_out;
3156	}
3157	if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize,
3158				mp, XFS_ERRTAG_IFLUSH_6)) {
3159		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3160			"%s: bad inode %llu, forkoff 0x%x, ptr "PTR_FMT,
3161			__func__, ip->i_ino, ip->i_forkoff, ip);
3162		goto flush_out;
3163	}
3164
3165	/*
3166	 * Inode item log recovery for v2 inodes are dependent on the flushiter
3167	 * count for correct sequencing.  We bump the flush iteration count so
3168	 * we can detect flushes which postdate a log record during recovery.
3169	 * This is redundant as we now log every change and hence this can't
3170	 * happen but we need to still do it to ensure backwards compatibility
3171	 * with old kernels that predate logging all inode changes.
3172	 */
3173	if (!xfs_has_v3inodes(mp))
3174		ip->i_flushiter++;
3175
3176	/*
3177	 * If there are inline format data / attr forks attached to this inode,
3178	 * make sure they are not corrupt.
3179	 */
3180	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
3181	    xfs_ifork_verify_local_data(ip))
3182		goto flush_out;
3183	if (xfs_inode_has_attr_fork(ip) &&
3184	    ip->i_af.if_format == XFS_DINODE_FMT_LOCAL &&
3185	    xfs_ifork_verify_local_attr(ip))
3186		goto flush_out;
3187
3188	/*
3189	 * Copy the dirty parts of the inode into the on-disk inode.  We always
3190	 * copy out the core of the inode, because if the inode is dirty at all
3191	 * the core must be.
3192	 */
3193	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3194
3195	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3196	if (!xfs_has_v3inodes(mp)) {
3197		if (ip->i_flushiter == DI_MAX_FLUSH)
3198			ip->i_flushiter = 0;
3199	}
3200
3201	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3202	if (xfs_inode_has_attr_fork(ip))
3203		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3204
3205	/*
3206	 * We've recorded everything logged in the inode, so we'd like to clear
3207	 * the ili_fields bits so we don't log and flush things unnecessarily.
3208	 * However, we can't stop logging all this information until the data
3209	 * we've copied into the disk buffer is written to disk.  If we did we
3210	 * might overwrite the copy of the inode in the log with all the data
3211	 * after re-logging only part of it, and in the face of a crash we
3212	 * wouldn't have all the data we need to recover.
3213	 *
3214	 * What we do is move the bits to the ili_last_fields field.  When
3215	 * logging the inode, these bits are moved back to the ili_fields field.
3216	 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
3217	 * we know that the information those bits represent is permanently on
3218	 * disk.  As long as the flush completes before the inode is logged
3219	 * again, then both ili_fields and ili_last_fields will be cleared.
3220	 */
3221	error = 0;
3222flush_out:
3223	spin_lock(&iip->ili_lock);
3224	iip->ili_last_fields = iip->ili_fields;
3225	iip->ili_fields = 0;
3226	iip->ili_fsync_fields = 0;
3227	spin_unlock(&iip->ili_lock);
3228
3229	/*
3230	 * Store the current LSN of the inode so that we can tell whether the
3231	 * item has moved in the AIL from xfs_buf_inode_iodone().
3232	 */
3233	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3234				&iip->ili_item.li_lsn);
3235
3236	/* generate the checksum. */
3237	xfs_dinode_calc_crc(mp, dip);
3238	return error;
3239}
3240
3241/*
3242 * Non-blocking flush of dirty inode metadata into the backing buffer.
3243 *
3244 * The caller must have a reference to the inode and hold the cluster buffer
3245 * locked. The function will walk across all the inodes on the cluster buffer it
3246 * can find and lock without blocking, and flush them to the cluster buffer.
3247 *
3248 * On successful flushing of at least one inode, the caller must write out the
3249 * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
3250 * the caller needs to release the buffer. On failure, the filesystem will be
3251 * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
3252 * will be returned.
3253 */
3254int
3255xfs_iflush_cluster(
3256	struct xfs_buf		*bp)
3257{
3258	struct xfs_mount	*mp = bp->b_mount;
3259	struct xfs_log_item	*lip, *n;
3260	struct xfs_inode	*ip;
3261	struct xfs_inode_log_item *iip;
3262	int			clcount = 0;
3263	int			error = 0;
3264
3265	/*
3266	 * We must use the safe variant here as on shutdown xfs_iflush_abort()
3267	 * will remove itself from the list.
3268	 */
3269	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
3270		iip = (struct xfs_inode_log_item *)lip;
3271		ip = iip->ili_inode;
3272
3273		/*
3274		 * Quick and dirty check to avoid locks if possible.
3275		 */
3276		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
3277			continue;
3278		if (xfs_ipincount(ip))
3279			continue;
3280
3281		/*
3282		 * The inode is still attached to the buffer, which means it is
3283		 * dirty but reclaim might try to grab it. Check carefully for
3284		 * that, and grab the ilock while still holding the i_flags_lock
3285		 * to guarantee reclaim will not be able to reclaim this inode
3286		 * once we drop the i_flags_lock.
3287		 */
3288		spin_lock(&ip->i_flags_lock);
3289		ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
3290		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
3291			spin_unlock(&ip->i_flags_lock);
3292			continue;
3293		}
3294
3295		/*
3296		 * ILOCK will pin the inode against reclaim and prevent
3297		 * concurrent transactions modifying the inode while we are
3298		 * flushing the inode. If we get the lock, set the flushing
3299		 * state before we drop the i_flags_lock.
3300		 */
3301		if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
3302			spin_unlock(&ip->i_flags_lock);
3303			continue;
3304		}
3305		__xfs_iflags_set(ip, XFS_IFLUSHING);
3306		spin_unlock(&ip->i_flags_lock);
3307
3308		/*
3309		 * Abort flushing this inode if we are shut down because the
3310		 * inode may not currently be in the AIL. This can occur when
3311		 * log I/O failure unpins the inode without inserting into the
3312		 * AIL, leaving a dirty/unpinned inode attached to the buffer
3313		 * that otherwise looks like it should be flushed.
3314		 */
3315		if (xlog_is_shutdown(mp->m_log)) {
3316			xfs_iunpin_wait(ip);
3317			xfs_iflush_abort(ip);
3318			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3319			error = -EIO;
3320			continue;
3321		}
3322
3323		/* don't block waiting on a log force to unpin dirty inodes */
3324		if (xfs_ipincount(ip)) {
3325			xfs_iflags_clear(ip, XFS_IFLUSHING);
3326			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3327			continue;
3328		}
3329
3330		if (!xfs_inode_clean(ip))
3331			error = xfs_iflush(ip, bp);
3332		else
3333			xfs_iflags_clear(ip, XFS_IFLUSHING);
3334		xfs_iunlock(ip, XFS_ILOCK_SHARED);
3335		if (error)
3336			break;
3337		clcount++;
3338	}
3339
3340	if (error) {
3341		/*
3342		 * Shutdown first so we kill the log before we release this
3343		 * buffer. If it is an INODE_ALLOC buffer and pins the tail
3344		 * of the log, failing it before the _log_ is shut down can
3345		 * result in the log tail being moved forward in the journal
3346		 * on disk because log writes can still be taking place. Hence
3347		 * unpinning the tail will allow the ICREATE intent to be
3348		 * removed from the log an recovery will fail with uninitialised
3349		 * inode cluster buffers.
3350		 */
3351		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3352		bp->b_flags |= XBF_ASYNC;
3353		xfs_buf_ioend_fail(bp);
 
3354		return error;
3355	}
3356
3357	if (!clcount)
3358		return -EAGAIN;
3359
3360	XFS_STATS_INC(mp, xs_icluster_flushcnt);
3361	XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3362	return 0;
3363
3364}
3365
3366/* Release an inode. */
3367void
3368xfs_irele(
3369	struct xfs_inode	*ip)
3370{
3371	trace_xfs_irele(ip, _RET_IP_);
3372	iput(VFS_I(ip));
3373}
3374
3375/*
3376 * Ensure all commited transactions touching the inode are written to the log.
3377 */
3378int
3379xfs_log_force_inode(
3380	struct xfs_inode	*ip)
3381{
3382	xfs_csn_t		seq = 0;
3383
3384	xfs_ilock(ip, XFS_ILOCK_SHARED);
3385	if (xfs_ipincount(ip))
3386		seq = ip->i_itemp->ili_commit_seq;
3387	xfs_iunlock(ip, XFS_ILOCK_SHARED);
3388
3389	if (!seq)
3390		return 0;
3391	return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL);
3392}
3393
3394/*
3395 * Grab the exclusive iolock for a data copy from src to dest, making sure to
3396 * abide vfs locking order (lowest pointer value goes first) and breaking the
3397 * layout leases before proceeding.  The loop is needed because we cannot call
3398 * the blocking break_layout() with the iolocks held, and therefore have to
3399 * back out both locks.
3400 */
3401static int
3402xfs_iolock_two_inodes_and_break_layout(
3403	struct inode		*src,
3404	struct inode		*dest)
3405{
3406	int			error;
3407
3408	if (src > dest)
3409		swap(src, dest);
3410
3411retry:
3412	/* Wait to break both inodes' layouts before we start locking. */
3413	error = break_layout(src, true);
3414	if (error)
3415		return error;
3416	if (src != dest) {
3417		error = break_layout(dest, true);
3418		if (error)
3419			return error;
3420	}
3421
3422	/* Lock one inode and make sure nobody got in and leased it. */
3423	inode_lock(src);
3424	error = break_layout(src, false);
3425	if (error) {
3426		inode_unlock(src);
3427		if (error == -EWOULDBLOCK)
3428			goto retry;
3429		return error;
3430	}
3431
3432	if (src == dest)
3433		return 0;
3434
3435	/* Lock the other inode and make sure nobody got in and leased it. */
3436	inode_lock_nested(dest, I_MUTEX_NONDIR2);
3437	error = break_layout(dest, false);
3438	if (error) {
3439		inode_unlock(src);
3440		inode_unlock(dest);
3441		if (error == -EWOULDBLOCK)
3442			goto retry;
3443		return error;
3444	}
3445
3446	return 0;
3447}
3448
3449static int
3450xfs_mmaplock_two_inodes_and_break_dax_layout(
3451	struct xfs_inode	*ip1,
3452	struct xfs_inode	*ip2)
3453{
3454	int			error;
3455	bool			retry;
3456	struct page		*page;
3457
3458	if (ip1->i_ino > ip2->i_ino)
3459		swap(ip1, ip2);
3460
3461again:
3462	retry = false;
3463	/* Lock the first inode */
3464	xfs_ilock(ip1, XFS_MMAPLOCK_EXCL);
3465	error = xfs_break_dax_layouts(VFS_I(ip1), &retry);
3466	if (error || retry) {
3467		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3468		if (error == 0 && retry)
3469			goto again;
3470		return error;
3471	}
3472
3473	if (ip1 == ip2)
3474		return 0;
3475
3476	/* Nested lock the second inode */
3477	xfs_ilock(ip2, xfs_lock_inumorder(XFS_MMAPLOCK_EXCL, 1));
3478	/*
3479	 * We cannot use xfs_break_dax_layouts() directly here because it may
3480	 * need to unlock & lock the XFS_MMAPLOCK_EXCL which is not suitable
3481	 * for this nested lock case.
3482	 */
3483	page = dax_layout_busy_page(VFS_I(ip2)->i_mapping);
3484	if (page && page_ref_count(page) != 1) {
3485		xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3486		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3487		goto again;
3488	}
3489
3490	return 0;
3491}
3492
3493/*
3494 * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
3495 * mmap activity.
3496 */
3497int
3498xfs_ilock2_io_mmap(
3499	struct xfs_inode	*ip1,
3500	struct xfs_inode	*ip2)
3501{
3502	int			ret;
3503
3504	ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
3505	if (ret)
3506		return ret;
3507
3508	if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
3509		ret = xfs_mmaplock_two_inodes_and_break_dax_layout(ip1, ip2);
3510		if (ret) {
3511			inode_unlock(VFS_I(ip2));
3512			if (ip1 != ip2)
3513				inode_unlock(VFS_I(ip1));
3514			return ret;
3515		}
3516	} else
3517		filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping,
3518					    VFS_I(ip2)->i_mapping);
3519
3520	return 0;
3521}
3522
3523/* Unlock both inodes to allow IO and mmap activity. */
3524void
3525xfs_iunlock2_io_mmap(
3526	struct xfs_inode	*ip1,
3527	struct xfs_inode	*ip2)
3528{
3529	if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
3530		xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3531		if (ip1 != ip2)
3532			xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3533	} else
3534		filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping,
3535					      VFS_I(ip2)->i_mapping);
3536
 
 
 
3537	inode_unlock(VFS_I(ip2));
3538	if (ip1 != ip2)
3539		inode_unlock(VFS_I(ip1));
3540}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include <linux/iversion.h>
   7
   8#include "xfs.h"
   9#include "xfs_fs.h"
  10#include "xfs_shared.h"
  11#include "xfs_format.h"
  12#include "xfs_log_format.h"
  13#include "xfs_trans_resv.h"
  14#include "xfs_mount.h"
  15#include "xfs_defer.h"
  16#include "xfs_inode.h"
  17#include "xfs_dir2.h"
  18#include "xfs_attr.h"
  19#include "xfs_trans_space.h"
  20#include "xfs_trans.h"
  21#include "xfs_buf_item.h"
  22#include "xfs_inode_item.h"
 
  23#include "xfs_ialloc.h"
  24#include "xfs_bmap.h"
  25#include "xfs_bmap_util.h"
  26#include "xfs_errortag.h"
  27#include "xfs_error.h"
  28#include "xfs_quota.h"
  29#include "xfs_filestream.h"
  30#include "xfs_trace.h"
  31#include "xfs_icache.h"
  32#include "xfs_symlink.h"
  33#include "xfs_trans_priv.h"
  34#include "xfs_log.h"
  35#include "xfs_bmap_btree.h"
  36#include "xfs_reflink.h"
  37#include "xfs_ag.h"
 
  38
  39kmem_zone_t *xfs_inode_zone;
  40
  41/*
  42 * Used in xfs_itruncate_extents().  This is the maximum number of extents
  43 * freed from a file in a single transaction.
  44 */
  45#define	XFS_ITRUNC_MAX_EXTENTS	2
  46
  47STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
  48STATIC int xfs_iunlink_remove(struct xfs_trans *tp, struct xfs_perag *pag,
  49	struct xfs_inode *);
  50
  51/*
  52 * helper function to extract extent size hint from inode
  53 */
  54xfs_extlen_t
  55xfs_get_extsz_hint(
  56	struct xfs_inode	*ip)
  57{
  58	/*
  59	 * No point in aligning allocations if we need to COW to actually
  60	 * write to them.
  61	 */
  62	if (xfs_is_always_cow_inode(ip))
  63		return 0;
  64	if ((ip->i_diflags & XFS_DIFLAG_EXTSIZE) && ip->i_extsize)
  65		return ip->i_extsize;
  66	if (XFS_IS_REALTIME_INODE(ip))
  67		return ip->i_mount->m_sb.sb_rextsize;
  68	return 0;
  69}
  70
  71/*
  72 * Helper function to extract CoW extent size hint from inode.
  73 * Between the extent size hint and the CoW extent size hint, we
  74 * return the greater of the two.  If the value is zero (automatic),
  75 * use the default size.
  76 */
  77xfs_extlen_t
  78xfs_get_cowextsz_hint(
  79	struct xfs_inode	*ip)
  80{
  81	xfs_extlen_t		a, b;
  82
  83	a = 0;
  84	if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
  85		a = ip->i_cowextsize;
  86	b = xfs_get_extsz_hint(ip);
  87
  88	a = max(a, b);
  89	if (a == 0)
  90		return XFS_DEFAULT_COWEXTSZ_HINT;
  91	return a;
  92}
  93
  94/*
  95 * These two are wrapper routines around the xfs_ilock() routine used to
  96 * centralize some grungy code.  They are used in places that wish to lock the
  97 * inode solely for reading the extents.  The reason these places can't just
  98 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
  99 * bringing in of the extents from disk for a file in b-tree format.  If the
 100 * inode is in b-tree format, then we need to lock the inode exclusively until
 101 * the extents are read in.  Locking it exclusively all the time would limit
 102 * our parallelism unnecessarily, though.  What we do instead is check to see
 103 * if the extents have been read in yet, and only lock the inode exclusively
 104 * if they have not.
 105 *
 106 * The functions return a value which should be given to the corresponding
 107 * xfs_iunlock() call.
 108 */
 109uint
 110xfs_ilock_data_map_shared(
 111	struct xfs_inode	*ip)
 112{
 113	uint			lock_mode = XFS_ILOCK_SHARED;
 114
 115	if (xfs_need_iread_extents(&ip->i_df))
 116		lock_mode = XFS_ILOCK_EXCL;
 117	xfs_ilock(ip, lock_mode);
 118	return lock_mode;
 119}
 120
 121uint
 122xfs_ilock_attr_map_shared(
 123	struct xfs_inode	*ip)
 124{
 125	uint			lock_mode = XFS_ILOCK_SHARED;
 126
 127	if (ip->i_afp && xfs_need_iread_extents(ip->i_afp))
 128		lock_mode = XFS_ILOCK_EXCL;
 129	xfs_ilock(ip, lock_mode);
 130	return lock_mode;
 131}
 132
 133/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 134 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
 135 * multi-reader locks: i_mmap_lock and the i_lock.  This routine allows
 136 * various combinations of the locks to be obtained.
 137 *
 138 * The 3 locks should always be ordered so that the IO lock is obtained first,
 139 * the mmap lock second and the ilock last in order to prevent deadlock.
 140 *
 141 * Basic locking order:
 142 *
 143 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
 144 *
 145 * mmap_lock locking order:
 146 *
 147 * i_rwsem -> page lock -> mmap_lock
 148 * mmap_lock -> i_mmap_lock -> page_lock
 149 *
 150 * The difference in mmap_lock locking order mean that we cannot hold the
 151 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
 152 * fault in pages during copy in/out (for buffered IO) or require the mmap_lock
 153 * in get_user_pages() to map the user pages into the kernel address space for
 154 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
 155 * page faults already hold the mmap_lock.
 156 *
 157 * Hence to serialise fully against both syscall and mmap based IO, we need to
 158 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
 159 * taken in places where we need to invalidate the page cache in a race
 160 * free manner (e.g. truncate, hole punch and other extent manipulation
 161 * functions).
 162 */
 163void
 164xfs_ilock(
 165	xfs_inode_t		*ip,
 166	uint			lock_flags)
 167{
 168	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
 169
 170	/*
 171	 * You can't set both SHARED and EXCL for the same lock,
 172	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 173	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 174	 */
 175	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 176	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 177	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 178	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 179	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 180	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 181	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 182
 183	if (lock_flags & XFS_IOLOCK_EXCL) {
 184		down_write_nested(&VFS_I(ip)->i_rwsem,
 185				  XFS_IOLOCK_DEP(lock_flags));
 186	} else if (lock_flags & XFS_IOLOCK_SHARED) {
 187		down_read_nested(&VFS_I(ip)->i_rwsem,
 188				 XFS_IOLOCK_DEP(lock_flags));
 189	}
 190
 191	if (lock_flags & XFS_MMAPLOCK_EXCL)
 192		mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
 193	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 194		mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
 
 
 
 195
 196	if (lock_flags & XFS_ILOCK_EXCL)
 197		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 198	else if (lock_flags & XFS_ILOCK_SHARED)
 199		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 200}
 201
 202/*
 203 * This is just like xfs_ilock(), except that the caller
 204 * is guaranteed not to sleep.  It returns 1 if it gets
 205 * the requested locks and 0 otherwise.  If the IO lock is
 206 * obtained but the inode lock cannot be, then the IO lock
 207 * is dropped before returning.
 208 *
 209 * ip -- the inode being locked
 210 * lock_flags -- this parameter indicates the inode's locks to be
 211 *       to be locked.  See the comment for xfs_ilock() for a list
 212 *	 of valid values.
 213 */
 214int
 215xfs_ilock_nowait(
 216	xfs_inode_t		*ip,
 217	uint			lock_flags)
 218{
 219	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
 220
 221	/*
 222	 * You can't set both SHARED and EXCL for the same lock,
 223	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 224	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 225	 */
 226	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 227	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 228	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 229	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 230	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 231	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 232	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 233
 234	if (lock_flags & XFS_IOLOCK_EXCL) {
 235		if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
 236			goto out;
 237	} else if (lock_flags & XFS_IOLOCK_SHARED) {
 238		if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
 239			goto out;
 240	}
 241
 242	if (lock_flags & XFS_MMAPLOCK_EXCL) {
 243		if (!mrtryupdate(&ip->i_mmaplock))
 244			goto out_undo_iolock;
 245	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
 246		if (!mrtryaccess(&ip->i_mmaplock))
 247			goto out_undo_iolock;
 248	}
 249
 250	if (lock_flags & XFS_ILOCK_EXCL) {
 251		if (!mrtryupdate(&ip->i_lock))
 252			goto out_undo_mmaplock;
 253	} else if (lock_flags & XFS_ILOCK_SHARED) {
 254		if (!mrtryaccess(&ip->i_lock))
 255			goto out_undo_mmaplock;
 256	}
 257	return 1;
 258
 259out_undo_mmaplock:
 260	if (lock_flags & XFS_MMAPLOCK_EXCL)
 261		mrunlock_excl(&ip->i_mmaplock);
 262	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 263		mrunlock_shared(&ip->i_mmaplock);
 264out_undo_iolock:
 265	if (lock_flags & XFS_IOLOCK_EXCL)
 266		up_write(&VFS_I(ip)->i_rwsem);
 267	else if (lock_flags & XFS_IOLOCK_SHARED)
 268		up_read(&VFS_I(ip)->i_rwsem);
 269out:
 270	return 0;
 271}
 272
 273/*
 274 * xfs_iunlock() is used to drop the inode locks acquired with
 275 * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
 276 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
 277 * that we know which locks to drop.
 278 *
 279 * ip -- the inode being unlocked
 280 * lock_flags -- this parameter indicates the inode's locks to be
 281 *       to be unlocked.  See the comment for xfs_ilock() for a list
 282 *	 of valid values for this parameter.
 283 *
 284 */
 285void
 286xfs_iunlock(
 287	xfs_inode_t		*ip,
 288	uint			lock_flags)
 289{
 290	/*
 291	 * You can't set both SHARED and EXCL for the same lock,
 292	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 293	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 294	 */
 295	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 296	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 297	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 298	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 299	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 300	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 301	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 302	ASSERT(lock_flags != 0);
 303
 304	if (lock_flags & XFS_IOLOCK_EXCL)
 305		up_write(&VFS_I(ip)->i_rwsem);
 306	else if (lock_flags & XFS_IOLOCK_SHARED)
 307		up_read(&VFS_I(ip)->i_rwsem);
 308
 309	if (lock_flags & XFS_MMAPLOCK_EXCL)
 310		mrunlock_excl(&ip->i_mmaplock);
 311	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 312		mrunlock_shared(&ip->i_mmaplock);
 313
 314	if (lock_flags & XFS_ILOCK_EXCL)
 315		mrunlock_excl(&ip->i_lock);
 316	else if (lock_flags & XFS_ILOCK_SHARED)
 317		mrunlock_shared(&ip->i_lock);
 318
 319	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
 320}
 321
 322/*
 323 * give up write locks.  the i/o lock cannot be held nested
 324 * if it is being demoted.
 325 */
 326void
 327xfs_ilock_demote(
 328	xfs_inode_t		*ip,
 329	uint			lock_flags)
 330{
 331	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
 332	ASSERT((lock_flags &
 333		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
 334
 335	if (lock_flags & XFS_ILOCK_EXCL)
 336		mrdemote(&ip->i_lock);
 337	if (lock_flags & XFS_MMAPLOCK_EXCL)
 338		mrdemote(&ip->i_mmaplock);
 339	if (lock_flags & XFS_IOLOCK_EXCL)
 340		downgrade_write(&VFS_I(ip)->i_rwsem);
 341
 342	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
 343}
 344
 345#if defined(DEBUG) || defined(XFS_WARN)
 346int
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 347xfs_isilocked(
 348	xfs_inode_t		*ip,
 349	uint			lock_flags)
 350{
 351	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
 352		if (!(lock_flags & XFS_ILOCK_SHARED))
 353			return !!ip->i_lock.mr_writer;
 354		return rwsem_is_locked(&ip->i_lock.mr_lock);
 355	}
 356
 357	if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
 358		if (!(lock_flags & XFS_MMAPLOCK_SHARED))
 359			return !!ip->i_mmaplock.mr_writer;
 360		return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
 361	}
 362
 363	if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
 364		if (!(lock_flags & XFS_IOLOCK_SHARED))
 365			return !debug_locks ||
 366				lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
 367		return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
 368	}
 369
 370	ASSERT(0);
 371	return 0;
 372}
 373#endif
 374
 375/*
 376 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
 377 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
 378 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
 379 * errors and warnings.
 380 */
 381#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
 382static bool
 383xfs_lockdep_subclass_ok(
 384	int subclass)
 385{
 386	return subclass < MAX_LOCKDEP_SUBCLASSES;
 387}
 388#else
 389#define xfs_lockdep_subclass_ok(subclass)	(true)
 390#endif
 391
 392/*
 393 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
 394 * value. This can be called for any type of inode lock combination, including
 395 * parent locking. Care must be taken to ensure we don't overrun the subclass
 396 * storage fields in the class mask we build.
 397 */
 398static inline int
 399xfs_lock_inumorder(int lock_mode, int subclass)
 
 
 400{
 401	int	class = 0;
 402
 403	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
 404			      XFS_ILOCK_RTSUM)));
 405	ASSERT(xfs_lockdep_subclass_ok(subclass));
 406
 407	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
 408		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
 409		class += subclass << XFS_IOLOCK_SHIFT;
 410	}
 411
 412	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
 413		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
 414		class += subclass << XFS_MMAPLOCK_SHIFT;
 415	}
 416
 417	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
 418		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
 419		class += subclass << XFS_ILOCK_SHIFT;
 420	}
 421
 422	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
 423}
 424
 425/*
 426 * The following routine will lock n inodes in exclusive mode.  We assume the
 427 * caller calls us with the inodes in i_ino order.
 428 *
 429 * We need to detect deadlock where an inode that we lock is in the AIL and we
 430 * start waiting for another inode that is locked by a thread in a long running
 431 * transaction (such as truncate). This can result in deadlock since the long
 432 * running trans might need to wait for the inode we just locked in order to
 433 * push the tail and free space in the log.
 434 *
 435 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
 436 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
 437 * lock more than one at a time, lockdep will report false positives saying we
 438 * have violated locking orders.
 439 */
 440static void
 441xfs_lock_inodes(
 442	struct xfs_inode	**ips,
 443	int			inodes,
 444	uint			lock_mode)
 445{
 446	int			attempts = 0, i, j, try_lock;
 
 
 
 447	struct xfs_log_item	*lp;
 448
 449	/*
 450	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
 451	 * support an arbitrary depth of locking here, but absolute limits on
 452	 * inodes depend on the type of locking and the limits placed by
 453	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
 454	 * the asserts.
 455	 */
 456	ASSERT(ips && inodes >= 2 && inodes <= 5);
 457	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
 458			    XFS_ILOCK_EXCL));
 459	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
 460			      XFS_ILOCK_SHARED)));
 461	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
 462		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
 463	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
 464		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
 465
 466	if (lock_mode & XFS_IOLOCK_EXCL) {
 467		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
 468	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
 469		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
 470
 471	try_lock = 0;
 
 472	i = 0;
 473again:
 474	for (; i < inodes; i++) {
 475		ASSERT(ips[i]);
 476
 477		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
 478			continue;
 479
 480		/*
 481		 * If try_lock is not set yet, make sure all locked inodes are
 482		 * not in the AIL.  If any are, set try_lock to be used later.
 483		 */
 484		if (!try_lock) {
 485			for (j = (i - 1); j >= 0 && !try_lock; j--) {
 486				lp = &ips[j]->i_itemp->ili_item;
 487				if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
 488					try_lock++;
 489			}
 490		}
 491
 492		/*
 493		 * If any of the previous locks we have locked is in the AIL,
 494		 * we must TRY to get the second and subsequent locks. If
 495		 * we can't get any, we must release all we have
 496		 * and try again.
 497		 */
 498		if (!try_lock) {
 499			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
 500			continue;
 501		}
 502
 503		/* try_lock means we have an inode locked that is in the AIL. */
 504		ASSERT(i != 0);
 505		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
 506			continue;
 507
 508		/*
 509		 * Unlock all previous guys and try again.  xfs_iunlock will try
 510		 * to push the tail if the inode is in the AIL.
 511		 */
 512		attempts++;
 513		for (j = i - 1; j >= 0; j--) {
 514			/*
 515			 * Check to see if we've already unlocked this one.  Not
 516			 * the first one going back, and the inode ptr is the
 517			 * same.
 518			 */
 519			if (j != (i - 1) && ips[j] == ips[j + 1])
 520				continue;
 521
 522			xfs_iunlock(ips[j], lock_mode);
 523		}
 524
 525		if ((attempts % 5) == 0) {
 526			delay(1); /* Don't just spin the CPU */
 527		}
 528		i = 0;
 529		try_lock = 0;
 530		goto again;
 531	}
 532}
 533
 534/*
 535 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
 536 * the mmaplock or the ilock, but not more than one type at a time. If we lock
 537 * more than one at a time, lockdep will report false positives saying we have
 538 * violated locking orders.  The iolock must be double-locked separately since
 539 * we use i_rwsem for that.  We now support taking one lock EXCL and the other
 540 * SHARED.
 541 */
 542void
 543xfs_lock_two_inodes(
 544	struct xfs_inode	*ip0,
 545	uint			ip0_mode,
 546	struct xfs_inode	*ip1,
 547	uint			ip1_mode)
 548{
 549	struct xfs_inode	*temp;
 550	uint			mode_temp;
 551	int			attempts = 0;
 552	struct xfs_log_item	*lp;
 553
 554	ASSERT(hweight32(ip0_mode) == 1);
 555	ASSERT(hweight32(ip1_mode) == 1);
 556	ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
 557	ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
 558	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
 559	       !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 560	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
 561	       !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 562	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
 563	       !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 564	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
 565	       !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 566
 567	ASSERT(ip0->i_ino != ip1->i_ino);
 568
 569	if (ip0->i_ino > ip1->i_ino) {
 570		temp = ip0;
 571		ip0 = ip1;
 572		ip1 = temp;
 573		mode_temp = ip0_mode;
 574		ip0_mode = ip1_mode;
 575		ip1_mode = mode_temp;
 576	}
 577
 578 again:
 579	xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
 580
 581	/*
 582	 * If the first lock we have locked is in the AIL, we must TRY to get
 583	 * the second lock. If we can't get it, we must release the first one
 584	 * and try again.
 585	 */
 586	lp = &ip0->i_itemp->ili_item;
 587	if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
 588		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
 589			xfs_iunlock(ip0, ip0_mode);
 590			if ((++attempts % 5) == 0)
 591				delay(1); /* Don't just spin the CPU */
 592			goto again;
 593		}
 594	} else {
 595		xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
 596	}
 597}
 598
 599uint
 600xfs_ip2xflags(
 601	struct xfs_inode	*ip)
 602{
 603	uint			flags = 0;
 604
 605	if (ip->i_diflags & XFS_DIFLAG_ANY) {
 606		if (ip->i_diflags & XFS_DIFLAG_REALTIME)
 607			flags |= FS_XFLAG_REALTIME;
 608		if (ip->i_diflags & XFS_DIFLAG_PREALLOC)
 609			flags |= FS_XFLAG_PREALLOC;
 610		if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE)
 611			flags |= FS_XFLAG_IMMUTABLE;
 612		if (ip->i_diflags & XFS_DIFLAG_APPEND)
 613			flags |= FS_XFLAG_APPEND;
 614		if (ip->i_diflags & XFS_DIFLAG_SYNC)
 615			flags |= FS_XFLAG_SYNC;
 616		if (ip->i_diflags & XFS_DIFLAG_NOATIME)
 617			flags |= FS_XFLAG_NOATIME;
 618		if (ip->i_diflags & XFS_DIFLAG_NODUMP)
 619			flags |= FS_XFLAG_NODUMP;
 620		if (ip->i_diflags & XFS_DIFLAG_RTINHERIT)
 621			flags |= FS_XFLAG_RTINHERIT;
 622		if (ip->i_diflags & XFS_DIFLAG_PROJINHERIT)
 623			flags |= FS_XFLAG_PROJINHERIT;
 624		if (ip->i_diflags & XFS_DIFLAG_NOSYMLINKS)
 625			flags |= FS_XFLAG_NOSYMLINKS;
 626		if (ip->i_diflags & XFS_DIFLAG_EXTSIZE)
 627			flags |= FS_XFLAG_EXTSIZE;
 628		if (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT)
 629			flags |= FS_XFLAG_EXTSZINHERIT;
 630		if (ip->i_diflags & XFS_DIFLAG_NODEFRAG)
 631			flags |= FS_XFLAG_NODEFRAG;
 632		if (ip->i_diflags & XFS_DIFLAG_FILESTREAM)
 633			flags |= FS_XFLAG_FILESTREAM;
 634	}
 635
 636	if (ip->i_diflags2 & XFS_DIFLAG2_ANY) {
 637		if (ip->i_diflags2 & XFS_DIFLAG2_DAX)
 638			flags |= FS_XFLAG_DAX;
 639		if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
 640			flags |= FS_XFLAG_COWEXTSIZE;
 641	}
 642
 643	if (XFS_IFORK_Q(ip))
 644		flags |= FS_XFLAG_HASATTR;
 645	return flags;
 646}
 647
 648/*
 649 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
 650 * is allowed, otherwise it has to be an exact match. If a CI match is found,
 651 * ci_name->name will point to a the actual name (caller must free) or
 652 * will be set to NULL if an exact match is found.
 653 */
 654int
 655xfs_lookup(
 656	xfs_inode_t		*dp,
 657	struct xfs_name		*name,
 658	xfs_inode_t		**ipp,
 659	struct xfs_name		*ci_name)
 660{
 661	xfs_ino_t		inum;
 662	int			error;
 663
 664	trace_xfs_lookup(dp, name);
 665
 666	if (XFS_FORCED_SHUTDOWN(dp->i_mount))
 667		return -EIO;
 668
 669	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
 670	if (error)
 671		goto out_unlock;
 672
 673	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
 674	if (error)
 675		goto out_free_name;
 676
 677	return 0;
 678
 679out_free_name:
 680	if (ci_name)
 681		kmem_free(ci_name->name);
 682out_unlock:
 683	*ipp = NULL;
 684	return error;
 685}
 686
 687/* Propagate di_flags from a parent inode to a child inode. */
 688static void
 689xfs_inode_inherit_flags(
 690	struct xfs_inode	*ip,
 691	const struct xfs_inode	*pip)
 692{
 693	unsigned int		di_flags = 0;
 694	xfs_failaddr_t		failaddr;
 695	umode_t			mode = VFS_I(ip)->i_mode;
 696
 697	if (S_ISDIR(mode)) {
 698		if (pip->i_diflags & XFS_DIFLAG_RTINHERIT)
 699			di_flags |= XFS_DIFLAG_RTINHERIT;
 700		if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
 701			di_flags |= XFS_DIFLAG_EXTSZINHERIT;
 702			ip->i_extsize = pip->i_extsize;
 703		}
 704		if (pip->i_diflags & XFS_DIFLAG_PROJINHERIT)
 705			di_flags |= XFS_DIFLAG_PROJINHERIT;
 706	} else if (S_ISREG(mode)) {
 707		if ((pip->i_diflags & XFS_DIFLAG_RTINHERIT) &&
 708		    xfs_sb_version_hasrealtime(&ip->i_mount->m_sb))
 709			di_flags |= XFS_DIFLAG_REALTIME;
 710		if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
 711			di_flags |= XFS_DIFLAG_EXTSIZE;
 712			ip->i_extsize = pip->i_extsize;
 713		}
 714	}
 715	if ((pip->i_diflags & XFS_DIFLAG_NOATIME) &&
 716	    xfs_inherit_noatime)
 717		di_flags |= XFS_DIFLAG_NOATIME;
 718	if ((pip->i_diflags & XFS_DIFLAG_NODUMP) &&
 719	    xfs_inherit_nodump)
 720		di_flags |= XFS_DIFLAG_NODUMP;
 721	if ((pip->i_diflags & XFS_DIFLAG_SYNC) &&
 722	    xfs_inherit_sync)
 723		di_flags |= XFS_DIFLAG_SYNC;
 724	if ((pip->i_diflags & XFS_DIFLAG_NOSYMLINKS) &&
 725	    xfs_inherit_nosymlinks)
 726		di_flags |= XFS_DIFLAG_NOSYMLINKS;
 727	if ((pip->i_diflags & XFS_DIFLAG_NODEFRAG) &&
 728	    xfs_inherit_nodefrag)
 729		di_flags |= XFS_DIFLAG_NODEFRAG;
 730	if (pip->i_diflags & XFS_DIFLAG_FILESTREAM)
 731		di_flags |= XFS_DIFLAG_FILESTREAM;
 732
 733	ip->i_diflags |= di_flags;
 734
 735	/*
 736	 * Inode verifiers on older kernels only check that the extent size
 737	 * hint is an integer multiple of the rt extent size on realtime files.
 738	 * They did not check the hint alignment on a directory with both
 739	 * rtinherit and extszinherit flags set.  If the misaligned hint is
 740	 * propagated from a directory into a new realtime file, new file
 741	 * allocations will fail due to math errors in the rt allocator and/or
 742	 * trip the verifiers.  Validate the hint settings in the new file so
 743	 * that we don't let broken hints propagate.
 744	 */
 745	failaddr = xfs_inode_validate_extsize(ip->i_mount, ip->i_extsize,
 746			VFS_I(ip)->i_mode, ip->i_diflags);
 747	if (failaddr) {
 748		ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE |
 749				   XFS_DIFLAG_EXTSZINHERIT);
 750		ip->i_extsize = 0;
 751	}
 752}
 753
 754/* Propagate di_flags2 from a parent inode to a child inode. */
 755static void
 756xfs_inode_inherit_flags2(
 757	struct xfs_inode	*ip,
 758	const struct xfs_inode	*pip)
 759{
 760	xfs_failaddr_t		failaddr;
 761
 762	if (pip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) {
 763		ip->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE;
 764		ip->i_cowextsize = pip->i_cowextsize;
 765	}
 766	if (pip->i_diflags2 & XFS_DIFLAG2_DAX)
 767		ip->i_diflags2 |= XFS_DIFLAG2_DAX;
 768
 769	/* Don't let invalid cowextsize hints propagate. */
 770	failaddr = xfs_inode_validate_cowextsize(ip->i_mount, ip->i_cowextsize,
 771			VFS_I(ip)->i_mode, ip->i_diflags, ip->i_diflags2);
 772	if (failaddr) {
 773		ip->i_diflags2 &= ~XFS_DIFLAG2_COWEXTSIZE;
 774		ip->i_cowextsize = 0;
 775	}
 776}
 777
 778/*
 779 * Initialise a newly allocated inode and return the in-core inode to the
 780 * caller locked exclusively.
 781 */
 782int
 783xfs_init_new_inode(
 784	struct user_namespace	*mnt_userns,
 785	struct xfs_trans	*tp,
 786	struct xfs_inode	*pip,
 787	xfs_ino_t		ino,
 788	umode_t			mode,
 789	xfs_nlink_t		nlink,
 790	dev_t			rdev,
 791	prid_t			prid,
 792	bool			init_xattrs,
 793	struct xfs_inode	**ipp)
 794{
 795	struct inode		*dir = pip ? VFS_I(pip) : NULL;
 796	struct xfs_mount	*mp = tp->t_mountp;
 797	struct xfs_inode	*ip;
 798	unsigned int		flags;
 799	int			error;
 800	struct timespec64	tv;
 801	struct inode		*inode;
 802
 803	/*
 804	 * Protect against obviously corrupt allocation btree records. Later
 805	 * xfs_iget checks will catch re-allocation of other active in-memory
 806	 * and on-disk inodes. If we don't catch reallocating the parent inode
 807	 * here we will deadlock in xfs_iget() so we have to do these checks
 808	 * first.
 809	 */
 810	if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
 811		xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
 812		return -EFSCORRUPTED;
 813	}
 814
 815	/*
 816	 * Get the in-core inode with the lock held exclusively to prevent
 817	 * others from looking at until we're done.
 818	 */
 819	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
 820	if (error)
 821		return error;
 822
 823	ASSERT(ip != NULL);
 824	inode = VFS_I(ip);
 825	set_nlink(inode, nlink);
 826	inode->i_rdev = rdev;
 827	ip->i_projid = prid;
 828
 829	if (dir && !(dir->i_mode & S_ISGID) &&
 830	    (mp->m_flags & XFS_MOUNT_GRPID)) {
 831		inode_fsuid_set(inode, mnt_userns);
 832		inode->i_gid = dir->i_gid;
 833		inode->i_mode = mode;
 834	} else {
 835		inode_init_owner(mnt_userns, inode, dir, mode);
 836	}
 837
 838	/*
 839	 * If the group ID of the new file does not match the effective group
 840	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
 841	 * (and only if the irix_sgid_inherit compatibility variable is set).
 842	 */
 843	if (irix_sgid_inherit &&
 844	    (inode->i_mode & S_ISGID) &&
 845	    !in_group_p(i_gid_into_mnt(mnt_userns, inode)))
 846		inode->i_mode &= ~S_ISGID;
 847
 848	ip->i_disk_size = 0;
 849	ip->i_df.if_nextents = 0;
 850	ASSERT(ip->i_nblocks == 0);
 851
 852	tv = current_time(inode);
 853	inode->i_mtime = tv;
 854	inode->i_atime = tv;
 855	inode->i_ctime = tv;
 856
 857	ip->i_extsize = 0;
 858	ip->i_diflags = 0;
 859
 860	if (xfs_sb_version_has_v3inode(&mp->m_sb)) {
 861		inode_set_iversion(inode, 1);
 862		ip->i_cowextsize = 0;
 863		ip->i_crtime = tv;
 864	}
 865
 866	flags = XFS_ILOG_CORE;
 867	switch (mode & S_IFMT) {
 868	case S_IFIFO:
 869	case S_IFCHR:
 870	case S_IFBLK:
 871	case S_IFSOCK:
 872		ip->i_df.if_format = XFS_DINODE_FMT_DEV;
 873		flags |= XFS_ILOG_DEV;
 874		break;
 875	case S_IFREG:
 876	case S_IFDIR:
 877		if (pip && (pip->i_diflags & XFS_DIFLAG_ANY))
 878			xfs_inode_inherit_flags(ip, pip);
 879		if (pip && (pip->i_diflags2 & XFS_DIFLAG2_ANY))
 880			xfs_inode_inherit_flags2(ip, pip);
 881		fallthrough;
 882	case S_IFLNK:
 883		ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
 884		ip->i_df.if_bytes = 0;
 885		ip->i_df.if_u1.if_root = NULL;
 886		break;
 887	default:
 888		ASSERT(0);
 889	}
 890
 891	/*
 892	 * If we need to create attributes immediately after allocating the
 893	 * inode, initialise an empty attribute fork right now. We use the
 894	 * default fork offset for attributes here as we don't know exactly what
 895	 * size or how many attributes we might be adding. We can do this
 896	 * safely here because we know the data fork is completely empty and
 897	 * this saves us from needing to run a separate transaction to set the
 898	 * fork offset in the immediate future.
 899	 */
 900	if (init_xattrs && xfs_sb_version_hasattr(&mp->m_sb)) {
 901		ip->i_forkoff = xfs_default_attroffset(ip) >> 3;
 902		ip->i_afp = xfs_ifork_alloc(XFS_DINODE_FMT_EXTENTS, 0);
 903	}
 904
 905	/*
 906	 * Log the new values stuffed into the inode.
 907	 */
 908	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 909	xfs_trans_log_inode(tp, ip, flags);
 910
 911	/* now that we have an i_mode we can setup the inode structure */
 912	xfs_setup_inode(ip);
 913
 914	*ipp = ip;
 915	return 0;
 916}
 917
 918/*
 919 * Decrement the link count on an inode & log the change.  If this causes the
 920 * link count to go to zero, move the inode to AGI unlinked list so that it can
 921 * be freed when the last active reference goes away via xfs_inactive().
 922 */
 923static int			/* error */
 924xfs_droplink(
 925	xfs_trans_t *tp,
 926	xfs_inode_t *ip)
 927{
 928	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
 929
 930	drop_nlink(VFS_I(ip));
 931	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 932
 933	if (VFS_I(ip)->i_nlink)
 934		return 0;
 935
 936	return xfs_iunlink(tp, ip);
 937}
 938
 939/*
 940 * Increment the link count on an inode & log the change.
 941 */
 942static void
 943xfs_bumplink(
 944	xfs_trans_t *tp,
 945	xfs_inode_t *ip)
 946{
 947	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
 948
 949	inc_nlink(VFS_I(ip));
 950	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 951}
 952
 953int
 954xfs_create(
 955	struct user_namespace	*mnt_userns,
 956	xfs_inode_t		*dp,
 957	struct xfs_name		*name,
 958	umode_t			mode,
 959	dev_t			rdev,
 960	bool			init_xattrs,
 961	xfs_inode_t		**ipp)
 962{
 963	int			is_dir = S_ISDIR(mode);
 964	struct xfs_mount	*mp = dp->i_mount;
 965	struct xfs_inode	*ip = NULL;
 966	struct xfs_trans	*tp = NULL;
 967	int			error;
 968	bool                    unlock_dp_on_error = false;
 969	prid_t			prid;
 970	struct xfs_dquot	*udqp = NULL;
 971	struct xfs_dquot	*gdqp = NULL;
 972	struct xfs_dquot	*pdqp = NULL;
 973	struct xfs_trans_res	*tres;
 974	uint			resblks;
 975	xfs_ino_t		ino;
 976
 977	trace_xfs_create(dp, name);
 978
 979	if (XFS_FORCED_SHUTDOWN(mp))
 980		return -EIO;
 981
 982	prid = xfs_get_initial_prid(dp);
 983
 984	/*
 985	 * Make sure that we have allocated dquot(s) on disk.
 986	 */
 987	error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns),
 988			mapped_fsgid(mnt_userns), prid,
 989			XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
 990			&udqp, &gdqp, &pdqp);
 991	if (error)
 992		return error;
 993
 994	if (is_dir) {
 995		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
 996		tres = &M_RES(mp)->tr_mkdir;
 997	} else {
 998		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
 999		tres = &M_RES(mp)->tr_create;
1000	}
1001
1002	/*
1003	 * Initially assume that the file does not exist and
1004	 * reserve the resources for that case.  If that is not
1005	 * the case we'll drop the one we have and get a more
1006	 * appropriate transaction later.
1007	 */
1008	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1009			&tp);
1010	if (error == -ENOSPC) {
1011		/* flush outstanding delalloc blocks and retry */
1012		xfs_flush_inodes(mp);
1013		error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp,
1014				resblks, &tp);
1015	}
1016	if (error)
1017		goto out_release_dquots;
1018
1019	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1020	unlock_dp_on_error = true;
1021
1022	error = xfs_iext_count_may_overflow(dp, XFS_DATA_FORK,
1023			XFS_IEXT_DIR_MANIP_CNT(mp));
1024	if (error)
1025		goto out_trans_cancel;
1026
1027	/*
1028	 * A newly created regular or special file just has one directory
1029	 * entry pointing to them, but a directory also the "." entry
1030	 * pointing to itself.
1031	 */
1032	error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1033	if (!error)
1034		error = xfs_init_new_inode(mnt_userns, tp, dp, ino, mode,
1035				is_dir ? 2 : 1, rdev, prid, init_xattrs, &ip);
1036	if (error)
1037		goto out_trans_cancel;
1038
1039	/*
1040	 * Now we join the directory inode to the transaction.  We do not do it
1041	 * earlier because xfs_dialloc might commit the previous transaction
1042	 * (and release all the locks).  An error from here on will result in
1043	 * the transaction cancel unlocking dp so don't do it explicitly in the
1044	 * error path.
1045	 */
1046	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1047	unlock_dp_on_error = false;
1048
1049	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1050					resblks - XFS_IALLOC_SPACE_RES(mp));
1051	if (error) {
1052		ASSERT(error != -ENOSPC);
1053		goto out_trans_cancel;
1054	}
1055	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1056	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1057
1058	if (is_dir) {
1059		error = xfs_dir_init(tp, ip, dp);
1060		if (error)
1061			goto out_trans_cancel;
1062
1063		xfs_bumplink(tp, dp);
1064	}
1065
1066	/*
1067	 * If this is a synchronous mount, make sure that the
1068	 * create transaction goes to disk before returning to
1069	 * the user.
1070	 */
1071	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1072		xfs_trans_set_sync(tp);
1073
1074	/*
1075	 * Attach the dquot(s) to the inodes and modify them incore.
1076	 * These ids of the inode couldn't have changed since the new
1077	 * inode has been locked ever since it was created.
1078	 */
1079	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1080
1081	error = xfs_trans_commit(tp);
1082	if (error)
1083		goto out_release_inode;
1084
1085	xfs_qm_dqrele(udqp);
1086	xfs_qm_dqrele(gdqp);
1087	xfs_qm_dqrele(pdqp);
1088
1089	*ipp = ip;
1090	return 0;
1091
1092 out_trans_cancel:
1093	xfs_trans_cancel(tp);
1094 out_release_inode:
1095	/*
1096	 * Wait until after the current transaction is aborted to finish the
1097	 * setup of the inode and release the inode.  This prevents recursive
1098	 * transactions and deadlocks from xfs_inactive.
1099	 */
1100	if (ip) {
1101		xfs_finish_inode_setup(ip);
1102		xfs_irele(ip);
1103	}
1104 out_release_dquots:
1105	xfs_qm_dqrele(udqp);
1106	xfs_qm_dqrele(gdqp);
1107	xfs_qm_dqrele(pdqp);
1108
1109	if (unlock_dp_on_error)
1110		xfs_iunlock(dp, XFS_ILOCK_EXCL);
1111	return error;
1112}
1113
1114int
1115xfs_create_tmpfile(
1116	struct user_namespace	*mnt_userns,
1117	struct xfs_inode	*dp,
1118	umode_t			mode,
1119	struct xfs_inode	**ipp)
1120{
1121	struct xfs_mount	*mp = dp->i_mount;
1122	struct xfs_inode	*ip = NULL;
1123	struct xfs_trans	*tp = NULL;
1124	int			error;
1125	prid_t                  prid;
1126	struct xfs_dquot	*udqp = NULL;
1127	struct xfs_dquot	*gdqp = NULL;
1128	struct xfs_dquot	*pdqp = NULL;
1129	struct xfs_trans_res	*tres;
1130	uint			resblks;
1131	xfs_ino_t		ino;
1132
1133	if (XFS_FORCED_SHUTDOWN(mp))
1134		return -EIO;
1135
1136	prid = xfs_get_initial_prid(dp);
1137
1138	/*
1139	 * Make sure that we have allocated dquot(s) on disk.
1140	 */
1141	error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns),
1142			mapped_fsgid(mnt_userns), prid,
1143			XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1144			&udqp, &gdqp, &pdqp);
1145	if (error)
1146		return error;
1147
1148	resblks = XFS_IALLOC_SPACE_RES(mp);
1149	tres = &M_RES(mp)->tr_create_tmpfile;
1150
1151	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1152			&tp);
1153	if (error)
1154		goto out_release_dquots;
1155
1156	error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1157	if (!error)
1158		error = xfs_init_new_inode(mnt_userns, tp, dp, ino, mode,
1159				0, 0, prid, false, &ip);
1160	if (error)
1161		goto out_trans_cancel;
1162
1163	if (mp->m_flags & XFS_MOUNT_WSYNC)
1164		xfs_trans_set_sync(tp);
1165
1166	/*
1167	 * Attach the dquot(s) to the inodes and modify them incore.
1168	 * These ids of the inode couldn't have changed since the new
1169	 * inode has been locked ever since it was created.
1170	 */
1171	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1172
1173	error = xfs_iunlink(tp, ip);
1174	if (error)
1175		goto out_trans_cancel;
1176
1177	error = xfs_trans_commit(tp);
1178	if (error)
1179		goto out_release_inode;
1180
1181	xfs_qm_dqrele(udqp);
1182	xfs_qm_dqrele(gdqp);
1183	xfs_qm_dqrele(pdqp);
1184
1185	*ipp = ip;
1186	return 0;
1187
1188 out_trans_cancel:
1189	xfs_trans_cancel(tp);
1190 out_release_inode:
1191	/*
1192	 * Wait until after the current transaction is aborted to finish the
1193	 * setup of the inode and release the inode.  This prevents recursive
1194	 * transactions and deadlocks from xfs_inactive.
1195	 */
1196	if (ip) {
1197		xfs_finish_inode_setup(ip);
1198		xfs_irele(ip);
1199	}
1200 out_release_dquots:
1201	xfs_qm_dqrele(udqp);
1202	xfs_qm_dqrele(gdqp);
1203	xfs_qm_dqrele(pdqp);
1204
1205	return error;
1206}
1207
1208int
1209xfs_link(
1210	xfs_inode_t		*tdp,
1211	xfs_inode_t		*sip,
1212	struct xfs_name		*target_name)
1213{
1214	xfs_mount_t		*mp = tdp->i_mount;
1215	xfs_trans_t		*tp;
1216	int			error;
1217	int			resblks;
1218
1219	trace_xfs_link(tdp, target_name);
1220
1221	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1222
1223	if (XFS_FORCED_SHUTDOWN(mp))
1224		return -EIO;
1225
1226	error = xfs_qm_dqattach(sip);
1227	if (error)
1228		goto std_return;
1229
1230	error = xfs_qm_dqattach(tdp);
1231	if (error)
1232		goto std_return;
1233
1234	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1235	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1236	if (error == -ENOSPC) {
1237		resblks = 0;
1238		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1239	}
1240	if (error)
1241		goto std_return;
1242
1243	xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL);
1244
1245	xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1246	xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1247
1248	error = xfs_iext_count_may_overflow(tdp, XFS_DATA_FORK,
1249			XFS_IEXT_DIR_MANIP_CNT(mp));
1250	if (error)
1251		goto error_return;
1252
1253	/*
1254	 * If we are using project inheritance, we only allow hard link
1255	 * creation in our tree when the project IDs are the same; else
1256	 * the tree quota mechanism could be circumvented.
1257	 */
1258	if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
1259		     tdp->i_projid != sip->i_projid)) {
1260		error = -EXDEV;
1261		goto error_return;
1262	}
1263
1264	if (!resblks) {
1265		error = xfs_dir_canenter(tp, tdp, target_name);
1266		if (error)
1267			goto error_return;
1268	}
1269
1270	/*
1271	 * Handle initial link state of O_TMPFILE inode
1272	 */
1273	if (VFS_I(sip)->i_nlink == 0) {
1274		struct xfs_perag	*pag;
1275
1276		pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sip->i_ino));
1277		error = xfs_iunlink_remove(tp, pag, sip);
1278		xfs_perag_put(pag);
1279		if (error)
1280			goto error_return;
1281	}
1282
1283	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1284				   resblks);
1285	if (error)
1286		goto error_return;
1287	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1288	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1289
1290	xfs_bumplink(tp, sip);
1291
1292	/*
1293	 * If this is a synchronous mount, make sure that the
1294	 * link transaction goes to disk before returning to
1295	 * the user.
1296	 */
1297	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1298		xfs_trans_set_sync(tp);
1299
1300	return xfs_trans_commit(tp);
1301
1302 error_return:
1303	xfs_trans_cancel(tp);
1304 std_return:
 
 
1305	return error;
1306}
1307
1308/* Clear the reflink flag and the cowblocks tag if possible. */
1309static void
1310xfs_itruncate_clear_reflink_flags(
1311	struct xfs_inode	*ip)
1312{
1313	struct xfs_ifork	*dfork;
1314	struct xfs_ifork	*cfork;
1315
1316	if (!xfs_is_reflink_inode(ip))
1317		return;
1318	dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1319	cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1320	if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1321		ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1322	if (cfork->if_bytes == 0)
1323		xfs_inode_clear_cowblocks_tag(ip);
1324}
1325
1326/*
1327 * Free up the underlying blocks past new_size.  The new size must be smaller
1328 * than the current size.  This routine can be used both for the attribute and
1329 * data fork, and does not modify the inode size, which is left to the caller.
1330 *
1331 * The transaction passed to this routine must have made a permanent log
1332 * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1333 * given transaction and start new ones, so make sure everything involved in
1334 * the transaction is tidy before calling here.  Some transaction will be
1335 * returned to the caller to be committed.  The incoming transaction must
1336 * already include the inode, and both inode locks must be held exclusively.
1337 * The inode must also be "held" within the transaction.  On return the inode
1338 * will be "held" within the returned transaction.  This routine does NOT
1339 * require any disk space to be reserved for it within the transaction.
1340 *
1341 * If we get an error, we must return with the inode locked and linked into the
1342 * current transaction. This keeps things simple for the higher level code,
1343 * because it always knows that the inode is locked and held in the transaction
1344 * that returns to it whether errors occur or not.  We don't mark the inode
1345 * dirty on error so that transactions can be easily aborted if possible.
1346 */
1347int
1348xfs_itruncate_extents_flags(
1349	struct xfs_trans	**tpp,
1350	struct xfs_inode	*ip,
1351	int			whichfork,
1352	xfs_fsize_t		new_size,
1353	int			flags)
1354{
1355	struct xfs_mount	*mp = ip->i_mount;
1356	struct xfs_trans	*tp = *tpp;
1357	xfs_fileoff_t		first_unmap_block;
1358	xfs_filblks_t		unmap_len;
1359	int			error = 0;
1360
1361	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1362	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1363	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1364	ASSERT(new_size <= XFS_ISIZE(ip));
1365	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1366	ASSERT(ip->i_itemp != NULL);
1367	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1368	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1369
1370	trace_xfs_itruncate_extents_start(ip, new_size);
1371
1372	flags |= xfs_bmapi_aflag(whichfork);
1373
1374	/*
1375	 * Since it is possible for space to become allocated beyond
1376	 * the end of the file (in a crash where the space is allocated
1377	 * but the inode size is not yet updated), simply remove any
1378	 * blocks which show up between the new EOF and the maximum
1379	 * possible file size.
1380	 *
1381	 * We have to free all the blocks to the bmbt maximum offset, even if
1382	 * the page cache can't scale that far.
1383	 */
1384	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1385	if (!xfs_verify_fileoff(mp, first_unmap_block)) {
1386		WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1387		return 0;
1388	}
1389
1390	unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1;
1391	while (unmap_len > 0) {
1392		ASSERT(tp->t_firstblock == NULLFSBLOCK);
1393		error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len,
1394				flags, XFS_ITRUNC_MAX_EXTENTS);
1395		if (error)
1396			goto out;
1397
1398		/* free the just unmapped extents */
1399		error = xfs_defer_finish(&tp);
1400		if (error)
1401			goto out;
1402	}
1403
1404	if (whichfork == XFS_DATA_FORK) {
1405		/* Remove all pending CoW reservations. */
1406		error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1407				first_unmap_block, XFS_MAX_FILEOFF, true);
1408		if (error)
1409			goto out;
1410
1411		xfs_itruncate_clear_reflink_flags(ip);
1412	}
1413
1414	/*
1415	 * Always re-log the inode so that our permanent transaction can keep
1416	 * on rolling it forward in the log.
1417	 */
1418	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1419
1420	trace_xfs_itruncate_extents_end(ip, new_size);
1421
1422out:
1423	*tpp = tp;
1424	return error;
1425}
1426
1427int
1428xfs_release(
1429	xfs_inode_t	*ip)
1430{
1431	xfs_mount_t	*mp = ip->i_mount;
1432	int		error = 0;
1433
1434	if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1435		return 0;
1436
1437	/* If this is a read-only mount, don't do this (would generate I/O) */
1438	if (mp->m_flags & XFS_MOUNT_RDONLY)
1439		return 0;
1440
1441	if (!XFS_FORCED_SHUTDOWN(mp)) {
1442		int truncated;
1443
1444		/*
1445		 * If we previously truncated this file and removed old data
1446		 * in the process, we want to initiate "early" writeout on
1447		 * the last close.  This is an attempt to combat the notorious
1448		 * NULL files problem which is particularly noticeable from a
1449		 * truncate down, buffered (re-)write (delalloc), followed by
1450		 * a crash.  What we are effectively doing here is
1451		 * significantly reducing the time window where we'd otherwise
1452		 * be exposed to that problem.
1453		 */
1454		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1455		if (truncated) {
1456			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1457			if (ip->i_delayed_blks > 0) {
1458				error = filemap_flush(VFS_I(ip)->i_mapping);
1459				if (error)
1460					return error;
1461			}
1462		}
1463	}
1464
1465	if (VFS_I(ip)->i_nlink == 0)
1466		return 0;
1467
1468	/*
1469	 * If we can't get the iolock just skip truncating the blocks past EOF
1470	 * because we could deadlock with the mmap_lock otherwise. We'll get
1471	 * another chance to drop them once the last reference to the inode is
1472	 * dropped, so we'll never leak blocks permanently.
1473	 */
1474	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL))
1475		return 0;
1476
1477	if (xfs_can_free_eofblocks(ip, false)) {
1478		/*
1479		 * Check if the inode is being opened, written and closed
1480		 * frequently and we have delayed allocation blocks outstanding
1481		 * (e.g. streaming writes from the NFS server), truncating the
1482		 * blocks past EOF will cause fragmentation to occur.
1483		 *
1484		 * In this case don't do the truncation, but we have to be
1485		 * careful how we detect this case. Blocks beyond EOF show up as
1486		 * i_delayed_blks even when the inode is clean, so we need to
1487		 * truncate them away first before checking for a dirty release.
1488		 * Hence on the first dirty close we will still remove the
1489		 * speculative allocation, but after that we will leave it in
1490		 * place.
1491		 */
1492		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1493			goto out_unlock;
1494
1495		error = xfs_free_eofblocks(ip);
1496		if (error)
1497			goto out_unlock;
1498
1499		/* delalloc blocks after truncation means it really is dirty */
1500		if (ip->i_delayed_blks)
1501			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1502	}
1503
1504out_unlock:
1505	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1506	return error;
1507}
1508
1509/*
1510 * xfs_inactive_truncate
1511 *
1512 * Called to perform a truncate when an inode becomes unlinked.
1513 */
1514STATIC int
1515xfs_inactive_truncate(
1516	struct xfs_inode *ip)
1517{
1518	struct xfs_mount	*mp = ip->i_mount;
1519	struct xfs_trans	*tp;
1520	int			error;
1521
1522	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1523	if (error) {
1524		ASSERT(XFS_FORCED_SHUTDOWN(mp));
1525		return error;
1526	}
1527	xfs_ilock(ip, XFS_ILOCK_EXCL);
1528	xfs_trans_ijoin(tp, ip, 0);
1529
1530	/*
1531	 * Log the inode size first to prevent stale data exposure in the event
1532	 * of a system crash before the truncate completes. See the related
1533	 * comment in xfs_vn_setattr_size() for details.
1534	 */
1535	ip->i_disk_size = 0;
1536	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1537
1538	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1539	if (error)
1540		goto error_trans_cancel;
1541
1542	ASSERT(ip->i_df.if_nextents == 0);
1543
1544	error = xfs_trans_commit(tp);
1545	if (error)
1546		goto error_unlock;
1547
1548	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1549	return 0;
1550
1551error_trans_cancel:
1552	xfs_trans_cancel(tp);
1553error_unlock:
1554	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1555	return error;
1556}
1557
1558/*
1559 * xfs_inactive_ifree()
1560 *
1561 * Perform the inode free when an inode is unlinked.
1562 */
1563STATIC int
1564xfs_inactive_ifree(
1565	struct xfs_inode *ip)
1566{
1567	struct xfs_mount	*mp = ip->i_mount;
1568	struct xfs_trans	*tp;
1569	int			error;
1570
1571	/*
1572	 * We try to use a per-AG reservation for any block needed by the finobt
1573	 * tree, but as the finobt feature predates the per-AG reservation
1574	 * support a degraded file system might not have enough space for the
1575	 * reservation at mount time.  In that case try to dip into the reserved
1576	 * pool and pray.
1577	 *
1578	 * Send a warning if the reservation does happen to fail, as the inode
1579	 * now remains allocated and sits on the unlinked list until the fs is
1580	 * repaired.
1581	 */
1582	if (unlikely(mp->m_finobt_nores)) {
1583		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1584				XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1585				&tp);
1586	} else {
1587		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1588	}
1589	if (error) {
1590		if (error == -ENOSPC) {
1591			xfs_warn_ratelimited(mp,
1592			"Failed to remove inode(s) from unlinked list. "
1593			"Please free space, unmount and run xfs_repair.");
1594		} else {
1595			ASSERT(XFS_FORCED_SHUTDOWN(mp));
1596		}
1597		return error;
1598	}
1599
1600	/*
1601	 * We do not hold the inode locked across the entire rolling transaction
1602	 * here. We only need to hold it for the first transaction that
1603	 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1604	 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1605	 * here breaks the relationship between cluster buffer invalidation and
1606	 * stale inode invalidation on cluster buffer item journal commit
1607	 * completion, and can result in leaving dirty stale inodes hanging
1608	 * around in memory.
1609	 *
1610	 * We have no need for serialising this inode operation against other
1611	 * operations - we freed the inode and hence reallocation is required
1612	 * and that will serialise on reallocating the space the deferops need
1613	 * to free. Hence we can unlock the inode on the first commit of
1614	 * the transaction rather than roll it right through the deferops. This
1615	 * avoids relogging the XFS_ISTALE inode.
1616	 *
1617	 * We check that xfs_ifree() hasn't grown an internal transaction roll
1618	 * by asserting that the inode is still locked when it returns.
1619	 */
1620	xfs_ilock(ip, XFS_ILOCK_EXCL);
1621	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1622
1623	error = xfs_ifree(tp, ip);
1624	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1625	if (error) {
1626		/*
1627		 * If we fail to free the inode, shut down.  The cancel
1628		 * might do that, we need to make sure.  Otherwise the
1629		 * inode might be lost for a long time or forever.
1630		 */
1631		if (!XFS_FORCED_SHUTDOWN(mp)) {
1632			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1633				__func__, error);
1634			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1635		}
1636		xfs_trans_cancel(tp);
1637		return error;
1638	}
1639
1640	/*
1641	 * Credit the quota account(s). The inode is gone.
1642	 */
1643	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1644
1645	/*
1646	 * Just ignore errors at this point.  There is nothing we can do except
1647	 * to try to keep going. Make sure it's not a silent error.
1648	 */
1649	error = xfs_trans_commit(tp);
1650	if (error)
1651		xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1652			__func__, error);
1653
1654	return 0;
1655}
1656
1657/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1658 * xfs_inactive
1659 *
1660 * This is called when the vnode reference count for the vnode
1661 * goes to zero.  If the file has been unlinked, then it must
1662 * now be truncated.  Also, we clear all of the read-ahead state
1663 * kept for the inode here since the file is now closed.
1664 */
1665void
1666xfs_inactive(
1667	xfs_inode_t	*ip)
1668{
1669	struct xfs_mount	*mp;
1670	int			error;
1671	int			truncate = 0;
1672
1673	/*
1674	 * If the inode is already free, then there can be nothing
1675	 * to clean up here.
1676	 */
1677	if (VFS_I(ip)->i_mode == 0) {
1678		ASSERT(ip->i_df.if_broot_bytes == 0);
1679		goto out;
1680	}
1681
1682	mp = ip->i_mount;
1683	ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1684
1685	/* If this is a read-only mount, don't do this (would generate I/O) */
1686	if (mp->m_flags & XFS_MOUNT_RDONLY)
1687		goto out;
1688
1689	/* Metadata inodes require explicit resource cleanup. */
1690	if (xfs_is_metadata_inode(ip))
1691		goto out;
1692
1693	/* Try to clean out the cow blocks if there are any. */
1694	if (xfs_inode_has_cow_data(ip))
1695		xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1696
1697	if (VFS_I(ip)->i_nlink != 0) {
1698		/*
1699		 * force is true because we are evicting an inode from the
1700		 * cache. Post-eof blocks must be freed, lest we end up with
1701		 * broken free space accounting.
1702		 *
1703		 * Note: don't bother with iolock here since lockdep complains
1704		 * about acquiring it in reclaim context. We have the only
1705		 * reference to the inode at this point anyways.
1706		 */
1707		if (xfs_can_free_eofblocks(ip, true))
1708			xfs_free_eofblocks(ip);
1709
1710		goto out;
1711	}
1712
1713	if (S_ISREG(VFS_I(ip)->i_mode) &&
1714	    (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 ||
1715	     ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0))
1716		truncate = 1;
1717
1718	error = xfs_qm_dqattach(ip);
1719	if (error)
1720		goto out;
1721
1722	if (S_ISLNK(VFS_I(ip)->i_mode))
1723		error = xfs_inactive_symlink(ip);
1724	else if (truncate)
1725		error = xfs_inactive_truncate(ip);
1726	if (error)
1727		goto out;
1728
1729	/*
1730	 * If there are attributes associated with the file then blow them away
1731	 * now.  The code calls a routine that recursively deconstructs the
1732	 * attribute fork. If also blows away the in-core attribute fork.
1733	 */
1734	if (XFS_IFORK_Q(ip)) {
1735		error = xfs_attr_inactive(ip);
1736		if (error)
1737			goto out;
1738	}
1739
1740	ASSERT(!ip->i_afp);
1741	ASSERT(ip->i_forkoff == 0);
1742
1743	/*
1744	 * Free the inode.
1745	 */
1746	xfs_inactive_ifree(ip);
1747
1748out:
1749	/*
1750	 * We're done making metadata updates for this inode, so we can release
1751	 * the attached dquots.
1752	 */
1753	xfs_qm_dqdetach(ip);
1754}
1755
1756/*
1757 * In-Core Unlinked List Lookups
1758 * =============================
1759 *
1760 * Every inode is supposed to be reachable from some other piece of metadata
1761 * with the exception of the root directory.  Inodes with a connection to a
1762 * file descriptor but not linked from anywhere in the on-disk directory tree
1763 * are collectively known as unlinked inodes, though the filesystem itself
1764 * maintains links to these inodes so that on-disk metadata are consistent.
1765 *
1766 * XFS implements a per-AG on-disk hash table of unlinked inodes.  The AGI
1767 * header contains a number of buckets that point to an inode, and each inode
1768 * record has a pointer to the next inode in the hash chain.  This
1769 * singly-linked list causes scaling problems in the iunlink remove function
1770 * because we must walk that list to find the inode that points to the inode
1771 * being removed from the unlinked hash bucket list.
1772 *
1773 * What if we modelled the unlinked list as a collection of records capturing
1774 * "X.next_unlinked = Y" relations?  If we indexed those records on Y, we'd
1775 * have a fast way to look up unlinked list predecessors, which avoids the
1776 * slow list walk.  That's exactly what we do here (in-core) with a per-AG
1777 * rhashtable.
1778 *
1779 * Because this is a backref cache, we ignore operational failures since the
1780 * iunlink code can fall back to the slow bucket walk.  The only errors that
1781 * should bubble out are for obviously incorrect situations.
1782 *
1783 * All users of the backref cache MUST hold the AGI buffer lock to serialize
1784 * access or have otherwise provided for concurrency control.
1785 */
1786
1787/* Capture a "X.next_unlinked = Y" relationship. */
1788struct xfs_iunlink {
1789	struct rhash_head	iu_rhash_head;
1790	xfs_agino_t		iu_agino;		/* X */
1791	xfs_agino_t		iu_next_unlinked;	/* Y */
1792};
1793
1794/* Unlinked list predecessor lookup hashtable construction */
1795static int
1796xfs_iunlink_obj_cmpfn(
1797	struct rhashtable_compare_arg	*arg,
1798	const void			*obj)
1799{
1800	const xfs_agino_t		*key = arg->key;
1801	const struct xfs_iunlink	*iu = obj;
1802
1803	if (iu->iu_next_unlinked != *key)
1804		return 1;
1805	return 0;
1806}
1807
1808static const struct rhashtable_params xfs_iunlink_hash_params = {
1809	.min_size		= XFS_AGI_UNLINKED_BUCKETS,
1810	.key_len		= sizeof(xfs_agino_t),
1811	.key_offset		= offsetof(struct xfs_iunlink,
1812					   iu_next_unlinked),
1813	.head_offset		= offsetof(struct xfs_iunlink, iu_rhash_head),
1814	.automatic_shrinking	= true,
1815	.obj_cmpfn		= xfs_iunlink_obj_cmpfn,
1816};
1817
1818/*
1819 * Return X, where X.next_unlinked == @agino.  Returns NULLAGINO if no such
1820 * relation is found.
 
 
1821 */
1822static xfs_agino_t
1823xfs_iunlink_lookup_backref(
1824	struct xfs_perag	*pag,
1825	xfs_agino_t		agino)
1826{
1827	struct xfs_iunlink	*iu;
1828
1829	iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1830			xfs_iunlink_hash_params);
1831	return iu ? iu->iu_agino : NULLAGINO;
1832}
1833
1834/*
1835 * Take ownership of an iunlink cache entry and insert it into the hash table.
1836 * If successful, the entry will be owned by the cache; if not, it is freed.
1837 * Either way, the caller does not own @iu after this call.
1838 */
1839static int
1840xfs_iunlink_insert_backref(
1841	struct xfs_perag	*pag,
1842	struct xfs_iunlink	*iu)
1843{
1844	int			error;
1845
1846	error = rhashtable_insert_fast(&pag->pagi_unlinked_hash,
1847			&iu->iu_rhash_head, xfs_iunlink_hash_params);
1848	/*
1849	 * Fail loudly if there already was an entry because that's a sign of
1850	 * corruption of in-memory data.  Also fail loudly if we see an error
1851	 * code we didn't anticipate from the rhashtable code.  Currently we
1852	 * only anticipate ENOMEM.
1853	 */
1854	if (error) {
1855		WARN(error != -ENOMEM, "iunlink cache insert error %d", error);
1856		kmem_free(iu);
1857	}
1858	/*
1859	 * Absorb any runtime errors that aren't a result of corruption because
1860	 * this is a cache and we can always fall back to bucket list scanning.
1861	 */
1862	if (error != 0 && error != -EEXIST)
1863		error = 0;
1864	return error;
1865}
1866
1867/* Remember that @prev_agino.next_unlinked = @this_agino. */
1868static int
1869xfs_iunlink_add_backref(
1870	struct xfs_perag	*pag,
1871	xfs_agino_t		prev_agino,
1872	xfs_agino_t		this_agino)
1873{
1874	struct xfs_iunlink	*iu;
1875
1876	if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK))
 
1877		return 0;
1878
1879	iu = kmem_zalloc(sizeof(*iu), KM_NOFS);
1880	iu->iu_agino = prev_agino;
1881	iu->iu_next_unlinked = this_agino;
1882
1883	return xfs_iunlink_insert_backref(pag, iu);
1884}
1885
1886/*
1887 * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked.
1888 * If @next_unlinked is NULLAGINO, we drop the backref and exit.  If there
1889 * wasn't any such entry then we don't bother.
1890 */
1891static int
1892xfs_iunlink_change_backref(
1893	struct xfs_perag	*pag,
1894	xfs_agino_t		agino,
1895	xfs_agino_t		next_unlinked)
1896{
1897	struct xfs_iunlink	*iu;
1898	int			error;
1899
1900	/* Look up the old entry; if there wasn't one then exit. */
1901	iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1902			xfs_iunlink_hash_params);
1903	if (!iu)
1904		return 0;
1905
1906	/*
1907	 * Remove the entry.  This shouldn't ever return an error, but if we
1908	 * couldn't remove the old entry we don't want to add it again to the
1909	 * hash table, and if the entry disappeared on us then someone's
1910	 * violated the locking rules and we need to fail loudly.  Either way
1911	 * we cannot remove the inode because internal state is or would have
1912	 * been corrupt.
1913	 */
1914	error = rhashtable_remove_fast(&pag->pagi_unlinked_hash,
1915			&iu->iu_rhash_head, xfs_iunlink_hash_params);
1916	if (error)
1917		return error;
1918
1919	/* If there is no new next entry just free our item and return. */
1920	if (next_unlinked == NULLAGINO) {
1921		kmem_free(iu);
1922		return 0;
1923	}
1924
1925	/* Update the entry and re-add it to the hash table. */
1926	iu->iu_next_unlinked = next_unlinked;
1927	return xfs_iunlink_insert_backref(pag, iu);
1928}
1929
1930/* Set up the in-core predecessor structures. */
1931int
1932xfs_iunlink_init(
1933	struct xfs_perag	*pag)
1934{
1935	return rhashtable_init(&pag->pagi_unlinked_hash,
1936			&xfs_iunlink_hash_params);
1937}
1938
1939/* Free the in-core predecessor structures. */
1940static void
1941xfs_iunlink_free_item(
1942	void			*ptr,
1943	void			*arg)
1944{
1945	struct xfs_iunlink	*iu = ptr;
1946	bool			*freed_anything = arg;
1947
1948	*freed_anything = true;
1949	kmem_free(iu);
1950}
1951
1952void
1953xfs_iunlink_destroy(
1954	struct xfs_perag	*pag)
1955{
1956	bool			freed_anything = false;
1957
1958	rhashtable_free_and_destroy(&pag->pagi_unlinked_hash,
1959			xfs_iunlink_free_item, &freed_anything);
1960
1961	ASSERT(freed_anything == false || XFS_FORCED_SHUTDOWN(pag->pag_mount));
1962}
1963
1964/*
1965 * Point the AGI unlinked bucket at an inode and log the results.  The caller
1966 * is responsible for validating the old value.
1967 */
1968STATIC int
1969xfs_iunlink_update_bucket(
1970	struct xfs_trans	*tp,
1971	struct xfs_perag	*pag,
1972	struct xfs_buf		*agibp,
1973	unsigned int		bucket_index,
1974	xfs_agino_t		new_agino)
1975{
1976	struct xfs_agi		*agi = agibp->b_addr;
1977	xfs_agino_t		old_value;
1978	int			offset;
1979
1980	ASSERT(xfs_verify_agino_or_null(tp->t_mountp, pag->pag_agno, new_agino));
1981
1982	old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1983	trace_xfs_iunlink_update_bucket(tp->t_mountp, pag->pag_agno, bucket_index,
1984			old_value, new_agino);
1985
1986	/*
1987	 * We should never find the head of the list already set to the value
1988	 * passed in because either we're adding or removing ourselves from the
1989	 * head of the list.
1990	 */
1991	if (old_value == new_agino) {
1992		xfs_buf_mark_corrupt(agibp);
1993		return -EFSCORRUPTED;
1994	}
1995
1996	agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
1997	offset = offsetof(struct xfs_agi, agi_unlinked) +
1998			(sizeof(xfs_agino_t) * bucket_index);
1999	xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
2000	return 0;
2001}
2002
2003/* Set an on-disk inode's next_unlinked pointer. */
2004STATIC void
2005xfs_iunlink_update_dinode(
2006	struct xfs_trans	*tp,
2007	struct xfs_perag	*pag,
2008	xfs_agino_t		agino,
2009	struct xfs_buf		*ibp,
2010	struct xfs_dinode	*dip,
2011	struct xfs_imap		*imap,
2012	xfs_agino_t		next_agino)
2013{
2014	struct xfs_mount	*mp = tp->t_mountp;
2015	int			offset;
2016
2017	ASSERT(xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino));
2018
2019	trace_xfs_iunlink_update_dinode(mp, pag->pag_agno, agino,
2020			be32_to_cpu(dip->di_next_unlinked), next_agino);
2021
2022	dip->di_next_unlinked = cpu_to_be32(next_agino);
2023	offset = imap->im_boffset +
2024			offsetof(struct xfs_dinode, di_next_unlinked);
2025
2026	/* need to recalc the inode CRC if appropriate */
2027	xfs_dinode_calc_crc(mp, dip);
2028	xfs_trans_inode_buf(tp, ibp);
2029	xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1);
2030}
2031
2032/* Set an in-core inode's unlinked pointer and return the old value. */
2033STATIC int
2034xfs_iunlink_update_inode(
2035	struct xfs_trans	*tp,
2036	struct xfs_inode	*ip,
2037	struct xfs_perag	*pag,
2038	xfs_agino_t		next_agino,
2039	xfs_agino_t		*old_next_agino)
2040{
2041	struct xfs_mount	*mp = tp->t_mountp;
2042	struct xfs_dinode	*dip;
2043	struct xfs_buf		*ibp;
2044	xfs_agino_t		old_value;
2045	int			error;
2046
2047	ASSERT(xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino));
 
 
 
 
 
 
 
 
 
 
2048
2049	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &ibp);
 
 
 
 
2050	if (error)
2051		return error;
2052	dip = xfs_buf_offset(ibp, ip->i_imap.im_boffset);
2053
2054	/* Make sure the old pointer isn't garbage. */
2055	old_value = be32_to_cpu(dip->di_next_unlinked);
2056	if (!xfs_verify_agino_or_null(mp, pag->pag_agno, old_value)) {
2057		xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip,
2058				sizeof(*dip), __this_address);
2059		error = -EFSCORRUPTED;
2060		goto out;
 
 
2061	}
2062
2063	/*
2064	 * Since we're updating a linked list, we should never find that the
2065	 * current pointer is the same as the new value, unless we're
2066	 * terminating the list.
2067	 */
2068	*old_next_agino = old_value;
2069	if (old_value == next_agino) {
2070		if (next_agino != NULLAGINO) {
2071			xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__,
2072					dip, sizeof(*dip), __this_address);
2073			error = -EFSCORRUPTED;
2074		}
2075		goto out;
2076	}
2077
2078	/* Ok, update the new pointer. */
2079	xfs_iunlink_update_dinode(tp, pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
2080			ibp, dip, &ip->i_imap, next_agino);
2081	return 0;
2082out:
2083	xfs_trans_brelse(tp, ibp);
2084	return error;
2085}
2086
2087/*
2088 * This is called when the inode's link count has gone to 0 or we are creating
2089 * a tmpfile via O_TMPFILE.  The inode @ip must have nlink == 0.
2090 *
2091 * We place the on-disk inode on a list in the AGI.  It will be pulled from this
2092 * list when the inode is freed.
2093 */
2094STATIC int
2095xfs_iunlink(
2096	struct xfs_trans	*tp,
2097	struct xfs_inode	*ip)
2098{
2099	struct xfs_mount	*mp = tp->t_mountp;
2100	struct xfs_perag	*pag;
2101	struct xfs_agi		*agi;
2102	struct xfs_buf		*agibp;
2103	xfs_agino_t		next_agino;
2104	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2105	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2106	int			error;
2107
2108	ASSERT(VFS_I(ip)->i_nlink == 0);
2109	ASSERT(VFS_I(ip)->i_mode != 0);
2110	trace_xfs_iunlink(ip);
2111
2112	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2113
2114	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2115	error = xfs_read_agi(mp, tp, pag->pag_agno, &agibp);
2116	if (error)
2117		goto out;
2118	agi = agibp->b_addr;
2119
2120	/*
2121	 * Get the index into the agi hash table for the list this inode will
2122	 * go on.  Make sure the pointer isn't garbage and that this inode
2123	 * isn't already on the list.
2124	 */
2125	next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2126	if (next_agino == agino ||
2127	    !xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino)) {
2128		xfs_buf_mark_corrupt(agibp);
2129		error = -EFSCORRUPTED;
2130		goto out;
2131	}
2132
2133	if (next_agino != NULLAGINO) {
2134		xfs_agino_t		old_agino;
2135
2136		/*
2137		 * There is already another inode in the bucket, so point this
2138		 * inode to the current head of the list.
2139		 */
2140		error = xfs_iunlink_update_inode(tp, ip, pag, next_agino,
2141				&old_agino);
2142		if (error)
2143			goto out;
2144		ASSERT(old_agino == NULLAGINO);
2145
2146		/*
2147		 * agino has been unlinked, add a backref from the next inode
2148		 * back to agino.
2149		 */
2150		error = xfs_iunlink_add_backref(pag, agino, next_agino);
2151		if (error)
2152			goto out;
2153	}
2154
2155	/* Point the head of the list to point to this inode. */
2156	error = xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, agino);
2157out:
2158	xfs_perag_put(pag);
2159	return error;
2160}
2161
2162/* Return the imap, dinode pointer, and buffer for an inode. */
2163STATIC int
2164xfs_iunlink_map_ino(
2165	struct xfs_trans	*tp,
2166	xfs_agnumber_t		agno,
2167	xfs_agino_t		agino,
2168	struct xfs_imap		*imap,
2169	struct xfs_dinode	**dipp,
2170	struct xfs_buf		**bpp)
2171{
2172	struct xfs_mount	*mp = tp->t_mountp;
2173	int			error;
2174
2175	imap->im_blkno = 0;
2176	error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0);
2177	if (error) {
2178		xfs_warn(mp, "%s: xfs_imap returned error %d.",
2179				__func__, error);
2180		return error;
2181	}
2182
2183	error = xfs_imap_to_bp(mp, tp, imap, bpp);
2184	if (error) {
2185		xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2186				__func__, error);
2187		return error;
2188	}
2189
2190	*dipp = xfs_buf_offset(*bpp, imap->im_boffset);
2191	return 0;
2192}
2193
2194/*
2195 * Walk the unlinked chain from @head_agino until we find the inode that
2196 * points to @target_agino.  Return the inode number, map, dinode pointer,
2197 * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp.
2198 *
2199 * @tp, @pag, @head_agino, and @target_agino are input parameters.
2200 * @agino, @imap, @dipp, and @bpp are all output parameters.
2201 *
2202 * Do not call this function if @target_agino is the head of the list.
2203 */
2204STATIC int
2205xfs_iunlink_map_prev(
2206	struct xfs_trans	*tp,
2207	struct xfs_perag	*pag,
2208	xfs_agino_t		head_agino,
2209	xfs_agino_t		target_agino,
2210	xfs_agino_t		*agino,
2211	struct xfs_imap		*imap,
2212	struct xfs_dinode	**dipp,
2213	struct xfs_buf		**bpp)
2214{
2215	struct xfs_mount	*mp = tp->t_mountp;
2216	xfs_agino_t		next_agino;
2217	int			error;
2218
2219	ASSERT(head_agino != target_agino);
2220	*bpp = NULL;
2221
2222	/* See if our backref cache can find it faster. */
2223	*agino = xfs_iunlink_lookup_backref(pag, target_agino);
2224	if (*agino != NULLAGINO) {
2225		error = xfs_iunlink_map_ino(tp, pag->pag_agno, *agino, imap,
2226				dipp, bpp);
2227		if (error)
2228			return error;
2229
2230		if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino)
2231			return 0;
2232
2233		/*
2234		 * If we get here the cache contents were corrupt, so drop the
2235		 * buffer and fall back to walking the bucket list.
2236		 */
2237		xfs_trans_brelse(tp, *bpp);
2238		*bpp = NULL;
2239		WARN_ON_ONCE(1);
2240	}
2241
2242	trace_xfs_iunlink_map_prev_fallback(mp, pag->pag_agno);
2243
2244	/* Otherwise, walk the entire bucket until we find it. */
2245	next_agino = head_agino;
2246	while (next_agino != target_agino) {
2247		xfs_agino_t	unlinked_agino;
2248
2249		if (*bpp)
2250			xfs_trans_brelse(tp, *bpp);
2251
2252		*agino = next_agino;
2253		error = xfs_iunlink_map_ino(tp, pag->pag_agno, next_agino, imap,
2254				dipp, bpp);
2255		if (error)
2256			return error;
2257
2258		unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked);
2259		/*
2260		 * Make sure this pointer is valid and isn't an obvious
2261		 * infinite loop.
2262		 */
2263		if (!xfs_verify_agino(mp, pag->pag_agno, unlinked_agino) ||
2264		    next_agino == unlinked_agino) {
2265			XFS_CORRUPTION_ERROR(__func__,
2266					XFS_ERRLEVEL_LOW, mp,
2267					*dipp, sizeof(**dipp));
2268			error = -EFSCORRUPTED;
2269			return error;
2270		}
2271		next_agino = unlinked_agino;
2272	}
2273
2274	return 0;
2275}
2276
2277/*
2278 * Pull the on-disk inode from the AGI unlinked list.
2279 */
2280STATIC int
2281xfs_iunlink_remove(
2282	struct xfs_trans	*tp,
2283	struct xfs_perag	*pag,
 
2284	struct xfs_inode	*ip)
2285{
2286	struct xfs_mount	*mp = tp->t_mountp;
2287	struct xfs_agi		*agi;
2288	struct xfs_buf		*agibp;
2289	struct xfs_buf		*last_ibp;
2290	struct xfs_dinode	*last_dip = NULL;
2291	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2292	xfs_agino_t		next_agino;
2293	xfs_agino_t		head_agino;
2294	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2295	int			error;
2296
2297	trace_xfs_iunlink_remove(ip);
2298
2299	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2300	error = xfs_read_agi(mp, tp, pag->pag_agno, &agibp);
2301	if (error)
2302		return error;
2303	agi = agibp->b_addr;
2304
2305	/*
2306	 * Get the index into the agi hash table for the list this inode will
2307	 * go on.  Make sure the head pointer isn't garbage.
2308	 */
2309	head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2310	if (!xfs_verify_agino(mp, pag->pag_agno, head_agino)) {
2311		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2312				agi, sizeof(*agi));
2313		return -EFSCORRUPTED;
2314	}
2315
2316	/*
2317	 * Set our inode's next_unlinked pointer to NULL and then return
2318	 * the old pointer value so that we can update whatever was previous
2319	 * to us in the list to point to whatever was next in the list.
2320	 */
2321	error = xfs_iunlink_update_inode(tp, ip, pag, NULLAGINO, &next_agino);
2322	if (error)
2323		return error;
2324
2325	/*
2326	 * If there was a backref pointing from the next inode back to this
2327	 * one, remove it because we've removed this inode from the list.
2328	 *
2329	 * Later, if this inode was in the middle of the list we'll update
2330	 * this inode's backref to point from the next inode.
2331	 */
2332	if (next_agino != NULLAGINO) {
2333		error = xfs_iunlink_change_backref(pag, next_agino, NULLAGINO);
2334		if (error)
2335			return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2336	}
2337
2338	if (head_agino != agino) {
2339		struct xfs_imap	imap;
2340		xfs_agino_t	prev_agino;
 
2341
2342		/* We need to search the list for the inode being freed. */
2343		error = xfs_iunlink_map_prev(tp, pag, head_agino, agino,
2344				&prev_agino, &imap, &last_dip, &last_ibp);
2345		if (error)
2346			return error;
 
 
 
 
 
 
2347
2348		/* Point the previous inode on the list to the next inode. */
2349		xfs_iunlink_update_dinode(tp, pag, prev_agino, last_ibp,
2350				last_dip, &imap, next_agino);
2351
2352		/*
2353		 * Now we deal with the backref for this inode.  If this inode
2354		 * pointed at a real inode, change the backref that pointed to
2355		 * us to point to our old next.  If this inode was the end of
2356		 * the list, delete the backref that pointed to us.  Note that
2357		 * change_backref takes care of deleting the backref if
2358		 * next_agino is NULLAGINO.
2359		 */
2360		return xfs_iunlink_change_backref(agibp->b_pag, agino,
2361				next_agino);
2362	}
2363
2364	/* Point the head of the list to the next unlinked inode. */
2365	return xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index,
2366			next_agino);
2367}
2368
2369/*
2370 * Look up the inode number specified and if it is not already marked XFS_ISTALE
2371 * mark it stale. We should only find clean inodes in this lookup that aren't
2372 * already stale.
2373 */
2374static void
2375xfs_ifree_mark_inode_stale(
2376	struct xfs_perag	*pag,
2377	struct xfs_inode	*free_ip,
2378	xfs_ino_t		inum)
2379{
2380	struct xfs_mount	*mp = pag->pag_mount;
2381	struct xfs_inode_log_item *iip;
2382	struct xfs_inode	*ip;
2383
2384retry:
2385	rcu_read_lock();
2386	ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
2387
2388	/* Inode not in memory, nothing to do */
2389	if (!ip) {
2390		rcu_read_unlock();
2391		return;
2392	}
2393
2394	/*
2395	 * because this is an RCU protected lookup, we could find a recently
2396	 * freed or even reallocated inode during the lookup. We need to check
2397	 * under the i_flags_lock for a valid inode here. Skip it if it is not
2398	 * valid, the wrong inode or stale.
2399	 */
2400	spin_lock(&ip->i_flags_lock);
2401	if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
2402		goto out_iflags_unlock;
2403
2404	/*
2405	 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
2406	 * other inodes that we did not find in the list attached to the buffer
2407	 * and are not already marked stale. If we can't lock it, back off and
2408	 * retry.
2409	 */
2410	if (ip != free_ip) {
2411		if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2412			spin_unlock(&ip->i_flags_lock);
2413			rcu_read_unlock();
2414			delay(1);
2415			goto retry;
2416		}
2417	}
2418	ip->i_flags |= XFS_ISTALE;
2419
2420	/*
2421	 * If the inode is flushing, it is already attached to the buffer.  All
2422	 * we needed to do here is mark the inode stale so buffer IO completion
2423	 * will remove it from the AIL.
2424	 */
2425	iip = ip->i_itemp;
2426	if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
2427		ASSERT(!list_empty(&iip->ili_item.li_bio_list));
2428		ASSERT(iip->ili_last_fields);
2429		goto out_iunlock;
2430	}
2431
2432	/*
2433	 * Inodes not attached to the buffer can be released immediately.
2434	 * Everything else has to go through xfs_iflush_abort() on journal
2435	 * commit as the flock synchronises removal of the inode from the
2436	 * cluster buffer against inode reclaim.
2437	 */
2438	if (!iip || list_empty(&iip->ili_item.li_bio_list))
2439		goto out_iunlock;
2440
2441	__xfs_iflags_set(ip, XFS_IFLUSHING);
2442	spin_unlock(&ip->i_flags_lock);
2443	rcu_read_unlock();
2444
2445	/* we have a dirty inode in memory that has not yet been flushed. */
2446	spin_lock(&iip->ili_lock);
2447	iip->ili_last_fields = iip->ili_fields;
2448	iip->ili_fields = 0;
2449	iip->ili_fsync_fields = 0;
2450	spin_unlock(&iip->ili_lock);
2451	ASSERT(iip->ili_last_fields);
2452
2453	if (ip != free_ip)
2454		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2455	return;
2456
2457out_iunlock:
2458	if (ip != free_ip)
2459		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2460out_iflags_unlock:
2461	spin_unlock(&ip->i_flags_lock);
2462	rcu_read_unlock();
2463}
2464
2465/*
2466 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2467 * inodes that are in memory - they all must be marked stale and attached to
2468 * the cluster buffer.
2469 */
2470static int
2471xfs_ifree_cluster(
2472	struct xfs_trans	*tp,
2473	struct xfs_perag	*pag,
2474	struct xfs_inode	*free_ip,
2475	struct xfs_icluster	*xic)
2476{
2477	struct xfs_mount	*mp = free_ip->i_mount;
2478	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2479	struct xfs_buf		*bp;
2480	xfs_daddr_t		blkno;
2481	xfs_ino_t		inum = xic->first_ino;
2482	int			nbufs;
2483	int			i, j;
2484	int			ioffset;
2485	int			error;
2486
2487	nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
2488
2489	for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
2490		/*
2491		 * The allocation bitmap tells us which inodes of the chunk were
2492		 * physically allocated. Skip the cluster if an inode falls into
2493		 * a sparse region.
2494		 */
2495		ioffset = inum - xic->first_ino;
2496		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2497			ASSERT(ioffset % igeo->inodes_per_cluster == 0);
2498			continue;
2499		}
2500
2501		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2502					 XFS_INO_TO_AGBNO(mp, inum));
2503
2504		/*
2505		 * We obtain and lock the backing buffer first in the process
2506		 * here to ensure dirty inodes attached to the buffer remain in
2507		 * the flushing state while we mark them stale.
2508		 *
2509		 * If we scan the in-memory inodes first, then buffer IO can
2510		 * complete before we get a lock on it, and hence we may fail
2511		 * to mark all the active inodes on the buffer stale.
2512		 */
2513		error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2514				mp->m_bsize * igeo->blocks_per_cluster,
2515				XBF_UNMAPPED, &bp);
2516		if (error)
2517			return error;
2518
2519		/*
2520		 * This buffer may not have been correctly initialised as we
2521		 * didn't read it from disk. That's not important because we are
2522		 * only using to mark the buffer as stale in the log, and to
2523		 * attach stale cached inodes on it. That means it will never be
2524		 * dispatched for IO. If it is, we want to know about it, and we
2525		 * want it to fail. We can acheive this by adding a write
2526		 * verifier to the buffer.
2527		 */
2528		bp->b_ops = &xfs_inode_buf_ops;
2529
2530		/*
2531		 * Now we need to set all the cached clean inodes as XFS_ISTALE,
2532		 * too. This requires lookups, and will skip inodes that we've
2533		 * already marked XFS_ISTALE.
2534		 */
2535		for (i = 0; i < igeo->inodes_per_cluster; i++)
2536			xfs_ifree_mark_inode_stale(pag, free_ip, inum + i);
2537
2538		xfs_trans_stale_inode_buf(tp, bp);
2539		xfs_trans_binval(tp, bp);
2540	}
2541	return 0;
2542}
2543
2544/*
2545 * This is called to return an inode to the inode free list.
2546 * The inode should already be truncated to 0 length and have
2547 * no pages associated with it.  This routine also assumes that
2548 * the inode is already a part of the transaction.
2549 *
2550 * The on-disk copy of the inode will have been added to the list
2551 * of unlinked inodes in the AGI. We need to remove the inode from
2552 * that list atomically with respect to freeing it here.
2553 */
2554int
2555xfs_ifree(
2556	struct xfs_trans	*tp,
2557	struct xfs_inode	*ip)
2558{
2559	struct xfs_mount	*mp = ip->i_mount;
2560	struct xfs_perag	*pag;
2561	struct xfs_icluster	xic = { 0 };
2562	struct xfs_inode_log_item *iip = ip->i_itemp;
2563	int			error;
2564
2565	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2566	ASSERT(VFS_I(ip)->i_nlink == 0);
2567	ASSERT(ip->i_df.if_nextents == 0);
2568	ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2569	ASSERT(ip->i_nblocks == 0);
2570
2571	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2572
2573	/*
2574	 * Pull the on-disk inode from the AGI unlinked list.
 
 
 
2575	 */
2576	error = xfs_iunlink_remove(tp, pag, ip);
2577	if (error)
2578		goto out;
2579
2580	error = xfs_difree(tp, pag, ip->i_ino, &xic);
2581	if (error)
2582		goto out;
2583
2584	/*
2585	 * Free any local-format data sitting around before we reset the
2586	 * data fork to extents format.  Note that the attr fork data has
2587	 * already been freed by xfs_attr_inactive.
2588	 */
2589	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) {
2590		kmem_free(ip->i_df.if_u1.if_data);
2591		ip->i_df.if_u1.if_data = NULL;
2592		ip->i_df.if_bytes = 0;
2593	}
2594
2595	VFS_I(ip)->i_mode = 0;		/* mark incore inode as free */
2596	ip->i_diflags = 0;
2597	ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
2598	ip->i_forkoff = 0;		/* mark the attr fork not in use */
2599	ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
2600	if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS))
2601		xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS);
2602
2603	/* Don't attempt to replay owner changes for a deleted inode */
2604	spin_lock(&iip->ili_lock);
2605	iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
2606	spin_unlock(&iip->ili_lock);
2607
2608	/*
2609	 * Bump the generation count so no one will be confused
2610	 * by reincarnations of this inode.
2611	 */
2612	VFS_I(ip)->i_generation++;
2613	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2614
2615	if (xic.deleted)
2616		error = xfs_ifree_cluster(tp, pag, ip, &xic);
2617out:
2618	xfs_perag_put(pag);
2619	return error;
2620}
2621
2622/*
2623 * This is called to unpin an inode.  The caller must have the inode locked
2624 * in at least shared mode so that the buffer cannot be subsequently pinned
2625 * once someone is waiting for it to be unpinned.
2626 */
2627static void
2628xfs_iunpin(
2629	struct xfs_inode	*ip)
2630{
2631	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2632
2633	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2634
2635	/* Give the log a push to start the unpinning I/O */
2636	xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL);
2637
2638}
2639
2640static void
2641__xfs_iunpin_wait(
2642	struct xfs_inode	*ip)
2643{
2644	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2645	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2646
2647	xfs_iunpin(ip);
2648
2649	do {
2650		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2651		if (xfs_ipincount(ip))
2652			io_schedule();
2653	} while (xfs_ipincount(ip));
2654	finish_wait(wq, &wait.wq_entry);
2655}
2656
2657void
2658xfs_iunpin_wait(
2659	struct xfs_inode	*ip)
2660{
2661	if (xfs_ipincount(ip))
2662		__xfs_iunpin_wait(ip);
2663}
2664
2665/*
2666 * Removing an inode from the namespace involves removing the directory entry
2667 * and dropping the link count on the inode. Removing the directory entry can
2668 * result in locking an AGF (directory blocks were freed) and removing a link
2669 * count can result in placing the inode on an unlinked list which results in
2670 * locking an AGI.
2671 *
2672 * The big problem here is that we have an ordering constraint on AGF and AGI
2673 * locking - inode allocation locks the AGI, then can allocate a new extent for
2674 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2675 * removes the inode from the unlinked list, requiring that we lock the AGI
2676 * first, and then freeing the inode can result in an inode chunk being freed
2677 * and hence freeing disk space requiring that we lock an AGF.
2678 *
2679 * Hence the ordering that is imposed by other parts of the code is AGI before
2680 * AGF. This means we cannot remove the directory entry before we drop the inode
2681 * reference count and put it on the unlinked list as this results in a lock
2682 * order of AGF then AGI, and this can deadlock against inode allocation and
2683 * freeing. Therefore we must drop the link counts before we remove the
2684 * directory entry.
2685 *
2686 * This is still safe from a transactional point of view - it is not until we
2687 * get to xfs_defer_finish() that we have the possibility of multiple
2688 * transactions in this operation. Hence as long as we remove the directory
2689 * entry and drop the link count in the first transaction of the remove
2690 * operation, there are no transactional constraints on the ordering here.
2691 */
2692int
2693xfs_remove(
2694	xfs_inode_t             *dp,
2695	struct xfs_name		*name,
2696	xfs_inode_t		*ip)
2697{
2698	xfs_mount_t		*mp = dp->i_mount;
2699	xfs_trans_t             *tp = NULL;
2700	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
 
2701	int                     error = 0;
2702	uint			resblks;
2703
2704	trace_xfs_remove(dp, name);
2705
2706	if (XFS_FORCED_SHUTDOWN(mp))
2707		return -EIO;
2708
2709	error = xfs_qm_dqattach(dp);
2710	if (error)
2711		goto std_return;
2712
2713	error = xfs_qm_dqattach(ip);
2714	if (error)
2715		goto std_return;
2716
2717	/*
2718	 * We try to get the real space reservation first,
2719	 * allowing for directory btree deletion(s) implying
2720	 * possible bmap insert(s).  If we can't get the space
2721	 * reservation then we use 0 instead, and avoid the bmap
2722	 * btree insert(s) in the directory code by, if the bmap
2723	 * insert tries to happen, instead trimming the LAST
2724	 * block from the directory.
 
 
2725	 */
2726	resblks = XFS_REMOVE_SPACE_RES(mp);
2727	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2728	if (error == -ENOSPC) {
2729		resblks = 0;
2730		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2731				&tp);
2732	}
2733	if (error) {
2734		ASSERT(error != -ENOSPC);
2735		goto std_return;
2736	}
2737
2738	xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
2739
2740	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2741	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2742
2743	/*
2744	 * If we're removing a directory perform some additional validation.
2745	 */
2746	if (is_dir) {
2747		ASSERT(VFS_I(ip)->i_nlink >= 2);
2748		if (VFS_I(ip)->i_nlink != 2) {
2749			error = -ENOTEMPTY;
2750			goto out_trans_cancel;
2751		}
2752		if (!xfs_dir_isempty(ip)) {
2753			error = -ENOTEMPTY;
2754			goto out_trans_cancel;
2755		}
2756
2757		/* Drop the link from ip's "..".  */
2758		error = xfs_droplink(tp, dp);
2759		if (error)
2760			goto out_trans_cancel;
2761
2762		/* Drop the "." link from ip to self.  */
2763		error = xfs_droplink(tp, ip);
2764		if (error)
2765			goto out_trans_cancel;
2766
2767		/*
2768		 * Point the unlinked child directory's ".." entry to the root
2769		 * directory to eliminate back-references to inodes that may
2770		 * get freed before the child directory is closed.  If the fs
2771		 * gets shrunk, this can lead to dirent inode validation errors.
2772		 */
2773		if (dp->i_ino != tp->t_mountp->m_sb.sb_rootino) {
2774			error = xfs_dir_replace(tp, ip, &xfs_name_dotdot,
2775					tp->t_mountp->m_sb.sb_rootino, 0);
2776			if (error)
2777				return error;
2778		}
2779	} else {
2780		/*
2781		 * When removing a non-directory we need to log the parent
2782		 * inode here.  For a directory this is done implicitly
2783		 * by the xfs_droplink call for the ".." entry.
2784		 */
2785		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2786	}
2787	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2788
2789	/* Drop the link from dp to ip. */
2790	error = xfs_droplink(tp, ip);
2791	if (error)
2792		goto out_trans_cancel;
2793
2794	error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
2795	if (error) {
2796		ASSERT(error != -ENOENT);
2797		goto out_trans_cancel;
2798	}
2799
2800	/*
2801	 * If this is a synchronous mount, make sure that the
2802	 * remove transaction goes to disk before returning to
2803	 * the user.
2804	 */
2805	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2806		xfs_trans_set_sync(tp);
2807
2808	error = xfs_trans_commit(tp);
2809	if (error)
2810		goto std_return;
2811
2812	if (is_dir && xfs_inode_is_filestream(ip))
2813		xfs_filestream_deassociate(ip);
2814
2815	return 0;
2816
2817 out_trans_cancel:
2818	xfs_trans_cancel(tp);
2819 std_return:
2820	return error;
2821}
2822
2823/*
2824 * Enter all inodes for a rename transaction into a sorted array.
2825 */
2826#define __XFS_SORT_INODES	5
2827STATIC void
2828xfs_sort_for_rename(
2829	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2830	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2831	struct xfs_inode	*ip1,	/* in: inode of old entry */
2832	struct xfs_inode	*ip2,	/* in: inode of new entry */
2833	struct xfs_inode	*wip,	/* in: whiteout inode */
2834	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2835	int			*num_inodes)  /* in/out: inodes in array */
2836{
2837	int			i, j;
2838
2839	ASSERT(*num_inodes == __XFS_SORT_INODES);
2840	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2841
2842	/*
2843	 * i_tab contains a list of pointers to inodes.  We initialize
2844	 * the table here & we'll sort it.  We will then use it to
2845	 * order the acquisition of the inode locks.
2846	 *
2847	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2848	 */
2849	i = 0;
2850	i_tab[i++] = dp1;
2851	i_tab[i++] = dp2;
2852	i_tab[i++] = ip1;
2853	if (ip2)
2854		i_tab[i++] = ip2;
2855	if (wip)
2856		i_tab[i++] = wip;
2857	*num_inodes = i;
2858
2859	/*
2860	 * Sort the elements via bubble sort.  (Remember, there are at
2861	 * most 5 elements to sort, so this is adequate.)
2862	 */
2863	for (i = 0; i < *num_inodes; i++) {
2864		for (j = 1; j < *num_inodes; j++) {
2865			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2866				struct xfs_inode *temp = i_tab[j];
2867				i_tab[j] = i_tab[j-1];
2868				i_tab[j-1] = temp;
2869			}
2870		}
2871	}
2872}
2873
2874static int
2875xfs_finish_rename(
2876	struct xfs_trans	*tp)
2877{
2878	/*
2879	 * If this is a synchronous mount, make sure that the rename transaction
2880	 * goes to disk before returning to the user.
2881	 */
2882	if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2883		xfs_trans_set_sync(tp);
2884
2885	return xfs_trans_commit(tp);
2886}
2887
2888/*
2889 * xfs_cross_rename()
2890 *
2891 * responsible for handling RENAME_EXCHANGE flag in renameat2() syscall
2892 */
2893STATIC int
2894xfs_cross_rename(
2895	struct xfs_trans	*tp,
2896	struct xfs_inode	*dp1,
2897	struct xfs_name		*name1,
2898	struct xfs_inode	*ip1,
2899	struct xfs_inode	*dp2,
2900	struct xfs_name		*name2,
2901	struct xfs_inode	*ip2,
2902	int			spaceres)
2903{
2904	int		error = 0;
2905	int		ip1_flags = 0;
2906	int		ip2_flags = 0;
2907	int		dp2_flags = 0;
2908
2909	/* Swap inode number for dirent in first parent */
2910	error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
2911	if (error)
2912		goto out_trans_abort;
2913
2914	/* Swap inode number for dirent in second parent */
2915	error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
2916	if (error)
2917		goto out_trans_abort;
2918
2919	/*
2920	 * If we're renaming one or more directories across different parents,
2921	 * update the respective ".." entries (and link counts) to match the new
2922	 * parents.
2923	 */
2924	if (dp1 != dp2) {
2925		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2926
2927		if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2928			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2929						dp1->i_ino, spaceres);
2930			if (error)
2931				goto out_trans_abort;
2932
2933			/* transfer ip2 ".." reference to dp1 */
2934			if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2935				error = xfs_droplink(tp, dp2);
2936				if (error)
2937					goto out_trans_abort;
2938				xfs_bumplink(tp, dp1);
2939			}
2940
2941			/*
2942			 * Although ip1 isn't changed here, userspace needs
2943			 * to be warned about the change, so that applications
2944			 * relying on it (like backup ones), will properly
2945			 * notify the change
2946			 */
2947			ip1_flags |= XFS_ICHGTIME_CHG;
2948			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2949		}
2950
2951		if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2952			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2953						dp2->i_ino, spaceres);
2954			if (error)
2955				goto out_trans_abort;
2956
2957			/* transfer ip1 ".." reference to dp2 */
2958			if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2959				error = xfs_droplink(tp, dp1);
2960				if (error)
2961					goto out_trans_abort;
2962				xfs_bumplink(tp, dp2);
2963			}
2964
2965			/*
2966			 * Although ip2 isn't changed here, userspace needs
2967			 * to be warned about the change, so that applications
2968			 * relying on it (like backup ones), will properly
2969			 * notify the change
2970			 */
2971			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2972			ip2_flags |= XFS_ICHGTIME_CHG;
2973		}
2974	}
2975
2976	if (ip1_flags) {
2977		xfs_trans_ichgtime(tp, ip1, ip1_flags);
2978		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2979	}
2980	if (ip2_flags) {
2981		xfs_trans_ichgtime(tp, ip2, ip2_flags);
2982		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2983	}
2984	if (dp2_flags) {
2985		xfs_trans_ichgtime(tp, dp2, dp2_flags);
2986		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2987	}
2988	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2989	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2990	return xfs_finish_rename(tp);
2991
2992out_trans_abort:
2993	xfs_trans_cancel(tp);
2994	return error;
2995}
2996
2997/*
2998 * xfs_rename_alloc_whiteout()
2999 *
3000 * Return a referenced, unlinked, unlocked inode that can be used as a
3001 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
3002 * crash between allocating the inode and linking it into the rename transaction
3003 * recovery will free the inode and we won't leak it.
3004 */
3005static int
3006xfs_rename_alloc_whiteout(
3007	struct user_namespace	*mnt_userns,
 
3008	struct xfs_inode	*dp,
3009	struct xfs_inode	**wip)
3010{
3011	struct xfs_inode	*tmpfile;
 
3012	int			error;
3013
3014	error = xfs_create_tmpfile(mnt_userns, dp, S_IFCHR | WHITEOUT_MODE,
3015				   &tmpfile);
3016	if (error)
3017		return error;
3018
 
 
 
 
 
 
 
 
 
3019	/*
3020	 * Prepare the tmpfile inode as if it were created through the VFS.
3021	 * Complete the inode setup and flag it as linkable.  nlink is already
3022	 * zero, so we can skip the drop_nlink.
3023	 */
3024	xfs_setup_iops(tmpfile);
3025	xfs_finish_inode_setup(tmpfile);
3026	VFS_I(tmpfile)->i_state |= I_LINKABLE;
3027
3028	*wip = tmpfile;
3029	return 0;
3030}
3031
3032/*
3033 * xfs_rename
3034 */
3035int
3036xfs_rename(
3037	struct user_namespace	*mnt_userns,
3038	struct xfs_inode	*src_dp,
3039	struct xfs_name		*src_name,
3040	struct xfs_inode	*src_ip,
3041	struct xfs_inode	*target_dp,
3042	struct xfs_name		*target_name,
3043	struct xfs_inode	*target_ip,
3044	unsigned int		flags)
3045{
3046	struct xfs_mount	*mp = src_dp->i_mount;
3047	struct xfs_trans	*tp;
3048	struct xfs_inode	*wip = NULL;		/* whiteout inode */
3049	struct xfs_inode	*inodes[__XFS_SORT_INODES];
3050	int			i;
3051	int			num_inodes = __XFS_SORT_INODES;
3052	bool			new_parent = (src_dp != target_dp);
3053	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
3054	int			spaceres;
3055	int			error;
 
3056
3057	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
3058
3059	if ((flags & RENAME_EXCHANGE) && !target_ip)
3060		return -EINVAL;
3061
3062	/*
3063	 * If we are doing a whiteout operation, allocate the whiteout inode
3064	 * we will be placing at the target and ensure the type is set
3065	 * appropriately.
3066	 */
3067	if (flags & RENAME_WHITEOUT) {
3068		ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
3069		error = xfs_rename_alloc_whiteout(mnt_userns, target_dp, &wip);
3070		if (error)
3071			return error;
3072
3073		/* setup target dirent info as whiteout */
3074		src_name->type = XFS_DIR3_FT_CHRDEV;
3075	}
3076
3077	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
3078				inodes, &num_inodes);
3079
 
 
3080	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
3081	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
3082	if (error == -ENOSPC) {
 
3083		spaceres = 0;
3084		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
3085				&tp);
3086	}
3087	if (error)
3088		goto out_release_wip;
3089
3090	/*
3091	 * Attach the dquots to the inodes
3092	 */
3093	error = xfs_qm_vop_rename_dqattach(inodes);
3094	if (error)
3095		goto out_trans_cancel;
3096
3097	/*
3098	 * Lock all the participating inodes. Depending upon whether
3099	 * the target_name exists in the target directory, and
3100	 * whether the target directory is the same as the source
3101	 * directory, we can lock from 2 to 4 inodes.
3102	 */
3103	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
3104
3105	/*
3106	 * Join all the inodes to the transaction. From this point on,
3107	 * we can rely on either trans_commit or trans_cancel to unlock
3108	 * them.
3109	 */
3110	xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
3111	if (new_parent)
3112		xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
3113	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3114	if (target_ip)
3115		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
3116	if (wip)
3117		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
3118
3119	/*
3120	 * If we are using project inheritance, we only allow renames
3121	 * into our tree when the project IDs are the same; else the
3122	 * tree quota mechanism would be circumvented.
3123	 */
3124	if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
3125		     target_dp->i_projid != src_ip->i_projid)) {
3126		error = -EXDEV;
3127		goto out_trans_cancel;
3128	}
3129
3130	/* RENAME_EXCHANGE is unique from here on. */
3131	if (flags & RENAME_EXCHANGE)
3132		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3133					target_dp, target_name, target_ip,
3134					spaceres);
3135
3136	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3137	 * Check for expected errors before we dirty the transaction
3138	 * so we can return an error without a transaction abort.
3139	 *
3140	 * Extent count overflow check:
3141	 *
3142	 * From the perspective of src_dp, a rename operation is essentially a
3143	 * directory entry remove operation. Hence the only place where we check
3144	 * for extent count overflow for src_dp is in
3145	 * xfs_bmap_del_extent_real(). xfs_bmap_del_extent_real() returns
3146	 * -ENOSPC when it detects a possible extent count overflow and in
3147	 * response, the higher layers of directory handling code do the
3148	 * following:
3149	 * 1. Data/Free blocks: XFS lets these blocks linger until a
3150	 *    future remove operation removes them.
3151	 * 2. Dabtree blocks: XFS swaps the blocks with the last block in the
3152	 *    Leaf space and unmaps the last block.
3153	 *
3154	 * For target_dp, there are two cases depending on whether the
3155	 * destination directory entry exists or not.
3156	 *
3157	 * When destination directory entry does not exist (i.e. target_ip ==
3158	 * NULL), extent count overflow check is performed only when transaction
3159	 * has a non-zero sized space reservation associated with it.  With a
3160	 * zero-sized space reservation, XFS allows a rename operation to
3161	 * continue only when the directory has sufficient free space in its
3162	 * data/leaf/free space blocks to hold the new entry.
3163	 *
3164	 * When destination directory entry exists (i.e. target_ip != NULL), all
3165	 * we need to do is change the inode number associated with the already
3166	 * existing entry. Hence there is no need to perform an extent count
3167	 * overflow check.
3168	 */
3169	if (target_ip == NULL) {
3170		/*
3171		 * If there's no space reservation, check the entry will
3172		 * fit before actually inserting it.
3173		 */
3174		if (!spaceres) {
3175			error = xfs_dir_canenter(tp, target_dp, target_name);
3176			if (error)
3177				goto out_trans_cancel;
3178		} else {
3179			error = xfs_iext_count_may_overflow(target_dp,
3180					XFS_DATA_FORK,
3181					XFS_IEXT_DIR_MANIP_CNT(mp));
3182			if (error)
3183				goto out_trans_cancel;
3184		}
3185	} else {
3186		/*
3187		 * If target exists and it's a directory, check that whether
3188		 * it can be destroyed.
3189		 */
3190		if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
3191		    (!xfs_dir_isempty(target_ip) ||
3192		     (VFS_I(target_ip)->i_nlink > 2))) {
3193			error = -EEXIST;
3194			goto out_trans_cancel;
3195		}
3196	}
3197
3198	/*
3199	 * Lock the AGI buffers we need to handle bumping the nlink of the
3200	 * whiteout inode off the unlinked list and to handle dropping the
3201	 * nlink of the target inode.  Per locking order rules, do this in
3202	 * increasing AG order and before directory block allocation tries to
3203	 * grab AGFs because we grab AGIs before AGFs.
3204	 *
3205	 * The (vfs) caller must ensure that if src is a directory then
3206	 * target_ip is either null or an empty directory.
3207	 */
3208	for (i = 0; i < num_inodes && inodes[i] != NULL; i++) {
3209		if (inodes[i] == wip ||
3210		    (inodes[i] == target_ip &&
3211		     (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) {
3212			struct xfs_buf	*bp;
3213			xfs_agnumber_t	agno;
3214
3215			agno = XFS_INO_TO_AGNO(mp, inodes[i]->i_ino);
3216			error = xfs_read_agi(mp, tp, agno, &bp);
 
 
3217			if (error)
3218				goto out_trans_cancel;
3219		}
3220	}
3221
3222	/*
3223	 * Directory entry creation below may acquire the AGF. Remove
3224	 * the whiteout from the unlinked list first to preserve correct
3225	 * AGI/AGF locking order. This dirties the transaction so failures
3226	 * after this point will abort and log recovery will clean up the
3227	 * mess.
3228	 *
3229	 * For whiteouts, we need to bump the link count on the whiteout
3230	 * inode. After this point, we have a real link, clear the tmpfile
3231	 * state flag from the inode so it doesn't accidentally get misused
3232	 * in future.
3233	 */
3234	if (wip) {
3235		struct xfs_perag	*pag;
3236
3237		ASSERT(VFS_I(wip)->i_nlink == 0);
3238
3239		pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, wip->i_ino));
3240		error = xfs_iunlink_remove(tp, pag, wip);
3241		xfs_perag_put(pag);
3242		if (error)
3243			goto out_trans_cancel;
3244
3245		xfs_bumplink(tp, wip);
3246		VFS_I(wip)->i_state &= ~I_LINKABLE;
3247	}
3248
3249	/*
3250	 * Set up the target.
3251	 */
3252	if (target_ip == NULL) {
3253		/*
3254		 * If target does not exist and the rename crosses
3255		 * directories, adjust the target directory link count
3256		 * to account for the ".." reference from the new entry.
3257		 */
3258		error = xfs_dir_createname(tp, target_dp, target_name,
3259					   src_ip->i_ino, spaceres);
3260		if (error)
3261			goto out_trans_cancel;
3262
3263		xfs_trans_ichgtime(tp, target_dp,
3264					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3265
3266		if (new_parent && src_is_directory) {
3267			xfs_bumplink(tp, target_dp);
3268		}
3269	} else { /* target_ip != NULL */
3270		/*
3271		 * Link the source inode under the target name.
3272		 * If the source inode is a directory and we are moving
3273		 * it across directories, its ".." entry will be
3274		 * inconsistent until we replace that down below.
3275		 *
3276		 * In case there is already an entry with the same
3277		 * name at the destination directory, remove it first.
3278		 */
3279		error = xfs_dir_replace(tp, target_dp, target_name,
3280					src_ip->i_ino, spaceres);
3281		if (error)
3282			goto out_trans_cancel;
3283
3284		xfs_trans_ichgtime(tp, target_dp,
3285					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3286
3287		/*
3288		 * Decrement the link count on the target since the target
3289		 * dir no longer points to it.
3290		 */
3291		error = xfs_droplink(tp, target_ip);
3292		if (error)
3293			goto out_trans_cancel;
3294
3295		if (src_is_directory) {
3296			/*
3297			 * Drop the link from the old "." entry.
3298			 */
3299			error = xfs_droplink(tp, target_ip);
3300			if (error)
3301				goto out_trans_cancel;
3302		}
3303	} /* target_ip != NULL */
3304
3305	/*
3306	 * Remove the source.
3307	 */
3308	if (new_parent && src_is_directory) {
3309		/*
3310		 * Rewrite the ".." entry to point to the new
3311		 * directory.
3312		 */
3313		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3314					target_dp->i_ino, spaceres);
3315		ASSERT(error != -EEXIST);
3316		if (error)
3317			goto out_trans_cancel;
3318	}
3319
3320	/*
3321	 * We always want to hit the ctime on the source inode.
3322	 *
3323	 * This isn't strictly required by the standards since the source
3324	 * inode isn't really being changed, but old unix file systems did
3325	 * it and some incremental backup programs won't work without it.
3326	 */
3327	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3328	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3329
3330	/*
3331	 * Adjust the link count on src_dp.  This is necessary when
3332	 * renaming a directory, either within one parent when
3333	 * the target existed, or across two parent directories.
3334	 */
3335	if (src_is_directory && (new_parent || target_ip != NULL)) {
3336
3337		/*
3338		 * Decrement link count on src_directory since the
3339		 * entry that's moved no longer points to it.
3340		 */
3341		error = xfs_droplink(tp, src_dp);
3342		if (error)
3343			goto out_trans_cancel;
3344	}
3345
3346	/*
3347	 * For whiteouts, we only need to update the source dirent with the
3348	 * inode number of the whiteout inode rather than removing it
3349	 * altogether.
3350	 */
3351	if (wip) {
3352		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3353					spaceres);
3354	} else {
3355		/*
3356		 * NOTE: We don't need to check for extent count overflow here
3357		 * because the dir remove name code will leave the dir block in
3358		 * place if the extent count would overflow.
3359		 */
3360		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3361					   spaceres);
3362	}
3363
3364	if (error)
3365		goto out_trans_cancel;
3366
3367	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3368	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3369	if (new_parent)
3370		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3371
3372	error = xfs_finish_rename(tp);
3373	if (wip)
3374		xfs_irele(wip);
3375	return error;
3376
3377out_trans_cancel:
3378	xfs_trans_cancel(tp);
3379out_release_wip:
3380	if (wip)
3381		xfs_irele(wip);
 
 
3382	return error;
3383}
3384
3385static int
3386xfs_iflush(
3387	struct xfs_inode	*ip,
3388	struct xfs_buf		*bp)
3389{
3390	struct xfs_inode_log_item *iip = ip->i_itemp;
3391	struct xfs_dinode	*dip;
3392	struct xfs_mount	*mp = ip->i_mount;
3393	int			error;
3394
3395	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3396	ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
3397	ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
3398	       ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3399	ASSERT(iip->ili_item.li_buf == bp);
3400
3401	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3402
3403	/*
3404	 * We don't flush the inode if any of the following checks fail, but we
3405	 * do still update the log item and attach to the backing buffer as if
3406	 * the flush happened. This is a formality to facilitate predictable
3407	 * error handling as the caller will shutdown and fail the buffer.
3408	 */
3409	error = -EFSCORRUPTED;
3410	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3411			       mp, XFS_ERRTAG_IFLUSH_1)) {
3412		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3413			"%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
3414			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3415		goto flush_out;
3416	}
3417	if (S_ISREG(VFS_I(ip)->i_mode)) {
3418		if (XFS_TEST_ERROR(
3419		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3420		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
3421		    mp, XFS_ERRTAG_IFLUSH_3)) {
3422			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3423				"%s: Bad regular inode %Lu, ptr "PTR_FMT,
3424				__func__, ip->i_ino, ip);
3425			goto flush_out;
3426		}
3427	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3428		if (XFS_TEST_ERROR(
3429		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3430		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
3431		    ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
3432		    mp, XFS_ERRTAG_IFLUSH_4)) {
3433			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3434				"%s: Bad directory inode %Lu, ptr "PTR_FMT,
3435				__func__, ip->i_ino, ip);
3436			goto flush_out;
3437		}
3438	}
3439	if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp) >
3440				ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3441		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3442			"%s: detected corrupt incore inode %Lu, "
3443			"total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
3444			__func__, ip->i_ino,
3445			ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp),
3446			ip->i_nblocks, ip);
3447		goto flush_out;
3448	}
3449	if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize,
3450				mp, XFS_ERRTAG_IFLUSH_6)) {
3451		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3452			"%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
3453			__func__, ip->i_ino, ip->i_forkoff, ip);
3454		goto flush_out;
3455	}
3456
3457	/*
3458	 * Inode item log recovery for v2 inodes are dependent on the flushiter
3459	 * count for correct sequencing.  We bump the flush iteration count so
3460	 * we can detect flushes which postdate a log record during recovery.
3461	 * This is redundant as we now log every change and hence this can't
3462	 * happen but we need to still do it to ensure backwards compatibility
3463	 * with old kernels that predate logging all inode changes.
3464	 */
3465	if (!xfs_sb_version_has_v3inode(&mp->m_sb))
3466		ip->i_flushiter++;
3467
3468	/*
3469	 * If there are inline format data / attr forks attached to this inode,
3470	 * make sure they are not corrupt.
3471	 */
3472	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
3473	    xfs_ifork_verify_local_data(ip))
3474		goto flush_out;
3475	if (ip->i_afp && ip->i_afp->if_format == XFS_DINODE_FMT_LOCAL &&
 
3476	    xfs_ifork_verify_local_attr(ip))
3477		goto flush_out;
3478
3479	/*
3480	 * Copy the dirty parts of the inode into the on-disk inode.  We always
3481	 * copy out the core of the inode, because if the inode is dirty at all
3482	 * the core must be.
3483	 */
3484	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3485
3486	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3487	if (!xfs_sb_version_has_v3inode(&mp->m_sb)) {
3488		if (ip->i_flushiter == DI_MAX_FLUSH)
3489			ip->i_flushiter = 0;
3490	}
3491
3492	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3493	if (XFS_IFORK_Q(ip))
3494		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3495
3496	/*
3497	 * We've recorded everything logged in the inode, so we'd like to clear
3498	 * the ili_fields bits so we don't log and flush things unnecessarily.
3499	 * However, we can't stop logging all this information until the data
3500	 * we've copied into the disk buffer is written to disk.  If we did we
3501	 * might overwrite the copy of the inode in the log with all the data
3502	 * after re-logging only part of it, and in the face of a crash we
3503	 * wouldn't have all the data we need to recover.
3504	 *
3505	 * What we do is move the bits to the ili_last_fields field.  When
3506	 * logging the inode, these bits are moved back to the ili_fields field.
3507	 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
3508	 * we know that the information those bits represent is permanently on
3509	 * disk.  As long as the flush completes before the inode is logged
3510	 * again, then both ili_fields and ili_last_fields will be cleared.
3511	 */
3512	error = 0;
3513flush_out:
3514	spin_lock(&iip->ili_lock);
3515	iip->ili_last_fields = iip->ili_fields;
3516	iip->ili_fields = 0;
3517	iip->ili_fsync_fields = 0;
3518	spin_unlock(&iip->ili_lock);
3519
3520	/*
3521	 * Store the current LSN of the inode so that we can tell whether the
3522	 * item has moved in the AIL from xfs_buf_inode_iodone().
3523	 */
3524	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3525				&iip->ili_item.li_lsn);
3526
3527	/* generate the checksum. */
3528	xfs_dinode_calc_crc(mp, dip);
3529	return error;
3530}
3531
3532/*
3533 * Non-blocking flush of dirty inode metadata into the backing buffer.
3534 *
3535 * The caller must have a reference to the inode and hold the cluster buffer
3536 * locked. The function will walk across all the inodes on the cluster buffer it
3537 * can find and lock without blocking, and flush them to the cluster buffer.
3538 *
3539 * On successful flushing of at least one inode, the caller must write out the
3540 * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
3541 * the caller needs to release the buffer. On failure, the filesystem will be
3542 * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
3543 * will be returned.
3544 */
3545int
3546xfs_iflush_cluster(
3547	struct xfs_buf		*bp)
3548{
3549	struct xfs_mount	*mp = bp->b_mount;
3550	struct xfs_log_item	*lip, *n;
3551	struct xfs_inode	*ip;
3552	struct xfs_inode_log_item *iip;
3553	int			clcount = 0;
3554	int			error = 0;
3555
3556	/*
3557	 * We must use the safe variant here as on shutdown xfs_iflush_abort()
3558	 * can remove itself from the list.
3559	 */
3560	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
3561		iip = (struct xfs_inode_log_item *)lip;
3562		ip = iip->ili_inode;
3563
3564		/*
3565		 * Quick and dirty check to avoid locks if possible.
3566		 */
3567		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
3568			continue;
3569		if (xfs_ipincount(ip))
3570			continue;
3571
3572		/*
3573		 * The inode is still attached to the buffer, which means it is
3574		 * dirty but reclaim might try to grab it. Check carefully for
3575		 * that, and grab the ilock while still holding the i_flags_lock
3576		 * to guarantee reclaim will not be able to reclaim this inode
3577		 * once we drop the i_flags_lock.
3578		 */
3579		spin_lock(&ip->i_flags_lock);
3580		ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
3581		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
3582			spin_unlock(&ip->i_flags_lock);
3583			continue;
3584		}
3585
3586		/*
3587		 * ILOCK will pin the inode against reclaim and prevent
3588		 * concurrent transactions modifying the inode while we are
3589		 * flushing the inode. If we get the lock, set the flushing
3590		 * state before we drop the i_flags_lock.
3591		 */
3592		if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
3593			spin_unlock(&ip->i_flags_lock);
3594			continue;
3595		}
3596		__xfs_iflags_set(ip, XFS_IFLUSHING);
3597		spin_unlock(&ip->i_flags_lock);
3598
3599		/*
3600		 * Abort flushing this inode if we are shut down because the
3601		 * inode may not currently be in the AIL. This can occur when
3602		 * log I/O failure unpins the inode without inserting into the
3603		 * AIL, leaving a dirty/unpinned inode attached to the buffer
3604		 * that otherwise looks like it should be flushed.
3605		 */
3606		if (XFS_FORCED_SHUTDOWN(mp)) {
3607			xfs_iunpin_wait(ip);
3608			xfs_iflush_abort(ip);
3609			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3610			error = -EIO;
3611			continue;
3612		}
3613
3614		/* don't block waiting on a log force to unpin dirty inodes */
3615		if (xfs_ipincount(ip)) {
3616			xfs_iflags_clear(ip, XFS_IFLUSHING);
3617			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3618			continue;
3619		}
3620
3621		if (!xfs_inode_clean(ip))
3622			error = xfs_iflush(ip, bp);
3623		else
3624			xfs_iflags_clear(ip, XFS_IFLUSHING);
3625		xfs_iunlock(ip, XFS_ILOCK_SHARED);
3626		if (error)
3627			break;
3628		clcount++;
3629	}
3630
3631	if (error) {
 
 
 
 
 
 
 
 
 
 
 
3632		bp->b_flags |= XBF_ASYNC;
3633		xfs_buf_ioend_fail(bp);
3634		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3635		return error;
3636	}
3637
3638	if (!clcount)
3639		return -EAGAIN;
3640
3641	XFS_STATS_INC(mp, xs_icluster_flushcnt);
3642	XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3643	return 0;
3644
3645}
3646
3647/* Release an inode. */
3648void
3649xfs_irele(
3650	struct xfs_inode	*ip)
3651{
3652	trace_xfs_irele(ip, _RET_IP_);
3653	iput(VFS_I(ip));
3654}
3655
3656/*
3657 * Ensure all commited transactions touching the inode are written to the log.
3658 */
3659int
3660xfs_log_force_inode(
3661	struct xfs_inode	*ip)
3662{
3663	xfs_csn_t		seq = 0;
3664
3665	xfs_ilock(ip, XFS_ILOCK_SHARED);
3666	if (xfs_ipincount(ip))
3667		seq = ip->i_itemp->ili_commit_seq;
3668	xfs_iunlock(ip, XFS_ILOCK_SHARED);
3669
3670	if (!seq)
3671		return 0;
3672	return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL);
3673}
3674
3675/*
3676 * Grab the exclusive iolock for a data copy from src to dest, making sure to
3677 * abide vfs locking order (lowest pointer value goes first) and breaking the
3678 * layout leases before proceeding.  The loop is needed because we cannot call
3679 * the blocking break_layout() with the iolocks held, and therefore have to
3680 * back out both locks.
3681 */
3682static int
3683xfs_iolock_two_inodes_and_break_layout(
3684	struct inode		*src,
3685	struct inode		*dest)
3686{
3687	int			error;
3688
3689	if (src > dest)
3690		swap(src, dest);
3691
3692retry:
3693	/* Wait to break both inodes' layouts before we start locking. */
3694	error = break_layout(src, true);
3695	if (error)
3696		return error;
3697	if (src != dest) {
3698		error = break_layout(dest, true);
3699		if (error)
3700			return error;
3701	}
3702
3703	/* Lock one inode and make sure nobody got in and leased it. */
3704	inode_lock(src);
3705	error = break_layout(src, false);
3706	if (error) {
3707		inode_unlock(src);
3708		if (error == -EWOULDBLOCK)
3709			goto retry;
3710		return error;
3711	}
3712
3713	if (src == dest)
3714		return 0;
3715
3716	/* Lock the other inode and make sure nobody got in and leased it. */
3717	inode_lock_nested(dest, I_MUTEX_NONDIR2);
3718	error = break_layout(dest, false);
3719	if (error) {
3720		inode_unlock(src);
3721		inode_unlock(dest);
3722		if (error == -EWOULDBLOCK)
3723			goto retry;
3724		return error;
3725	}
3726
3727	return 0;
3728}
3729
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3730/*
3731 * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
3732 * mmap activity.
3733 */
3734int
3735xfs_ilock2_io_mmap(
3736	struct xfs_inode	*ip1,
3737	struct xfs_inode	*ip2)
3738{
3739	int			ret;
3740
3741	ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
3742	if (ret)
3743		return ret;
3744	if (ip1 == ip2)
3745		xfs_ilock(ip1, XFS_MMAPLOCK_EXCL);
3746	else
3747		xfs_lock_two_inodes(ip1, XFS_MMAPLOCK_EXCL,
3748				    ip2, XFS_MMAPLOCK_EXCL);
 
 
 
 
 
 
 
 
3749	return 0;
3750}
3751
3752/* Unlock both inodes to allow IO and mmap activity. */
3753void
3754xfs_iunlock2_io_mmap(
3755	struct xfs_inode	*ip1,
3756	struct xfs_inode	*ip2)
3757{
3758	bool			same_inode = (ip1 == ip2);
 
 
 
 
 
 
3759
3760	xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3761	if (!same_inode)
3762		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3763	inode_unlock(VFS_I(ip2));
3764	if (!same_inode)
3765		inode_unlock(VFS_I(ip1));
3766}