Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * linux/fs/ext4/page-io.c
  4 *
  5 * This contains the new page_io functions for ext4
  6 *
  7 * Written by Theodore Ts'o, 2010.
  8 */
  9
 10#include <linux/fs.h>
 11#include <linux/time.h>
 12#include <linux/highuid.h>
 13#include <linux/pagemap.h>
 14#include <linux/quotaops.h>
 15#include <linux/string.h>
 16#include <linux/buffer_head.h>
 17#include <linux/writeback.h>
 18#include <linux/pagevec.h>
 19#include <linux/mpage.h>
 20#include <linux/namei.h>
 21#include <linux/uio.h>
 22#include <linux/bio.h>
 23#include <linux/workqueue.h>
 24#include <linux/kernel.h>
 25#include <linux/slab.h>
 26#include <linux/mm.h>
 27#include <linux/sched/mm.h>
 28
 29#include "ext4_jbd2.h"
 30#include "xattr.h"
 31#include "acl.h"
 32
 33static struct kmem_cache *io_end_cachep;
 34static struct kmem_cache *io_end_vec_cachep;
 35
 36int __init ext4_init_pageio(void)
 37{
 38	io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT);
 39	if (io_end_cachep == NULL)
 40		return -ENOMEM;
 41
 42	io_end_vec_cachep = KMEM_CACHE(ext4_io_end_vec, 0);
 43	if (io_end_vec_cachep == NULL) {
 44		kmem_cache_destroy(io_end_cachep);
 45		return -ENOMEM;
 46	}
 47	return 0;
 48}
 49
 50void ext4_exit_pageio(void)
 51{
 52	kmem_cache_destroy(io_end_cachep);
 53	kmem_cache_destroy(io_end_vec_cachep);
 54}
 55
 56struct ext4_io_end_vec *ext4_alloc_io_end_vec(ext4_io_end_t *io_end)
 57{
 58	struct ext4_io_end_vec *io_end_vec;
 59
 60	io_end_vec = kmem_cache_zalloc(io_end_vec_cachep, GFP_NOFS);
 61	if (!io_end_vec)
 62		return ERR_PTR(-ENOMEM);
 63	INIT_LIST_HEAD(&io_end_vec->list);
 64	list_add_tail(&io_end_vec->list, &io_end->list_vec);
 65	return io_end_vec;
 66}
 67
 68static void ext4_free_io_end_vec(ext4_io_end_t *io_end)
 69{
 70	struct ext4_io_end_vec *io_end_vec, *tmp;
 71
 72	if (list_empty(&io_end->list_vec))
 73		return;
 74	list_for_each_entry_safe(io_end_vec, tmp, &io_end->list_vec, list) {
 75		list_del(&io_end_vec->list);
 76		kmem_cache_free(io_end_vec_cachep, io_end_vec);
 77	}
 78}
 79
 80struct ext4_io_end_vec *ext4_last_io_end_vec(ext4_io_end_t *io_end)
 81{
 82	BUG_ON(list_empty(&io_end->list_vec));
 83	return list_last_entry(&io_end->list_vec, struct ext4_io_end_vec, list);
 84}
 85
 86/*
 87 * Print an buffer I/O error compatible with the fs/buffer.c.  This
 88 * provides compatibility with dmesg scrapers that look for a specific
 89 * buffer I/O error message.  We really need a unified error reporting
 90 * structure to userspace ala Digital Unix's uerf system, but it's
 91 * probably not going to happen in my lifetime, due to LKML politics...
 92 */
 93static void buffer_io_error(struct buffer_head *bh)
 94{
 95	printk_ratelimited(KERN_ERR "Buffer I/O error on device %pg, logical block %llu\n",
 96		       bh->b_bdev,
 97			(unsigned long long)bh->b_blocknr);
 98}
 99
100static void ext4_finish_bio(struct bio *bio)
101{
102	struct bio_vec *bvec;
103	struct bvec_iter_all iter_all;
104
105	bio_for_each_segment_all(bvec, bio, iter_all) {
106		struct page *page = bvec->bv_page;
107		struct page *bounce_page = NULL;
108		struct buffer_head *bh, *head;
109		unsigned bio_start = bvec->bv_offset;
110		unsigned bio_end = bio_start + bvec->bv_len;
111		unsigned under_io = 0;
112		unsigned long flags;
113
114		if (fscrypt_is_bounce_page(page)) {
115			bounce_page = page;
116			page = fscrypt_pagecache_page(bounce_page);
117		}
118
119		if (bio->bi_status) {
120			SetPageError(page);
121			mapping_set_error(page->mapping, -EIO);
 
122		}
123		bh = head = page_buffers(page);
124		/*
125		 * We check all buffers in the page under b_uptodate_lock
126		 * to avoid races with other end io clearing async_write flags
127		 */
128		spin_lock_irqsave(&head->b_uptodate_lock, flags);
129		do {
130			if (bh_offset(bh) < bio_start ||
131			    bh_offset(bh) + bh->b_size > bio_end) {
132				if (buffer_async_write(bh))
133					under_io++;
134				continue;
135			}
136			clear_buffer_async_write(bh);
137			if (bio->bi_status) {
138				set_buffer_write_io_error(bh);
139				buffer_io_error(bh);
140			}
141		} while ((bh = bh->b_this_page) != head);
142		spin_unlock_irqrestore(&head->b_uptodate_lock, flags);
143		if (!under_io) {
144			fscrypt_free_bounce_page(bounce_page);
145			end_page_writeback(page);
146		}
147	}
148}
149
150static void ext4_release_io_end(ext4_io_end_t *io_end)
151{
152	struct bio *bio, *next_bio;
153
154	BUG_ON(!list_empty(&io_end->list));
155	BUG_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
156	WARN_ON(io_end->handle);
157
158	for (bio = io_end->bio; bio; bio = next_bio) {
159		next_bio = bio->bi_private;
160		ext4_finish_bio(bio);
161		bio_put(bio);
162	}
163	ext4_free_io_end_vec(io_end);
164	kmem_cache_free(io_end_cachep, io_end);
165}
166
167/*
168 * Check a range of space and convert unwritten extents to written. Note that
169 * we are protected from truncate touching same part of extent tree by the
170 * fact that truncate code waits for all DIO to finish (thus exclusion from
171 * direct IO is achieved) and also waits for PageWriteback bits. Thus we
172 * cannot get to ext4_ext_truncate() before all IOs overlapping that range are
173 * completed (happens from ext4_free_ioend()).
174 */
175static int ext4_end_io_end(ext4_io_end_t *io_end)
176{
177	struct inode *inode = io_end->inode;
178	handle_t *handle = io_end->handle;
179	int ret = 0;
180
181	ext4_debug("ext4_end_io_nolock: io_end 0x%p from inode %lu,list->next 0x%p,"
182		   "list->prev 0x%p\n",
183		   io_end, inode->i_ino, io_end->list.next, io_end->list.prev);
184
185	io_end->handle = NULL;	/* Following call will use up the handle */
186	ret = ext4_convert_unwritten_io_end_vec(handle, io_end);
187	if (ret < 0 && !ext4_forced_shutdown(EXT4_SB(inode->i_sb))) {
188		ext4_msg(inode->i_sb, KERN_EMERG,
189			 "failed to convert unwritten extents to written "
190			 "extents -- potential data loss!  "
191			 "(inode %lu, error %d)", inode->i_ino, ret);
192	}
193	ext4_clear_io_unwritten_flag(io_end);
194	ext4_release_io_end(io_end);
195	return ret;
196}
197
198static void dump_completed_IO(struct inode *inode, struct list_head *head)
199{
200#ifdef	EXT4FS_DEBUG
201	struct list_head *cur, *before, *after;
202	ext4_io_end_t *io_end, *io_end0, *io_end1;
203
204	if (list_empty(head))
205		return;
206
207	ext4_debug("Dump inode %lu completed io list\n", inode->i_ino);
208	list_for_each_entry(io_end, head, list) {
209		cur = &io_end->list;
210		before = cur->prev;
211		io_end0 = container_of(before, ext4_io_end_t, list);
212		after = cur->next;
213		io_end1 = container_of(after, ext4_io_end_t, list);
214
215		ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
216			    io_end, inode->i_ino, io_end0, io_end1);
217	}
218#endif
219}
220
221/* Add the io_end to per-inode completed end_io list. */
222static void ext4_add_complete_io(ext4_io_end_t *io_end)
223{
224	struct ext4_inode_info *ei = EXT4_I(io_end->inode);
225	struct ext4_sb_info *sbi = EXT4_SB(io_end->inode->i_sb);
226	struct workqueue_struct *wq;
227	unsigned long flags;
228
229	/* Only reserved conversions from writeback should enter here */
230	WARN_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
231	WARN_ON(!io_end->handle && sbi->s_journal);
232	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
233	wq = sbi->rsv_conversion_wq;
234	if (list_empty(&ei->i_rsv_conversion_list))
235		queue_work(wq, &ei->i_rsv_conversion_work);
236	list_add_tail(&io_end->list, &ei->i_rsv_conversion_list);
237	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
238}
239
240static int ext4_do_flush_completed_IO(struct inode *inode,
241				      struct list_head *head)
242{
243	ext4_io_end_t *io_end;
244	struct list_head unwritten;
245	unsigned long flags;
246	struct ext4_inode_info *ei = EXT4_I(inode);
247	int err, ret = 0;
248
249	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
250	dump_completed_IO(inode, head);
251	list_replace_init(head, &unwritten);
252	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
253
254	while (!list_empty(&unwritten)) {
255		io_end = list_entry(unwritten.next, ext4_io_end_t, list);
256		BUG_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
257		list_del_init(&io_end->list);
258
259		err = ext4_end_io_end(io_end);
260		if (unlikely(!ret && err))
261			ret = err;
262	}
263	return ret;
264}
265
266/*
267 * work on completed IO, to convert unwritten extents to extents
268 */
269void ext4_end_io_rsv_work(struct work_struct *work)
270{
271	struct ext4_inode_info *ei = container_of(work, struct ext4_inode_info,
272						  i_rsv_conversion_work);
273	ext4_do_flush_completed_IO(&ei->vfs_inode, &ei->i_rsv_conversion_list);
274}
275
276ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
277{
278	ext4_io_end_t *io_end = kmem_cache_zalloc(io_end_cachep, flags);
279
280	if (io_end) {
281		io_end->inode = inode;
282		INIT_LIST_HEAD(&io_end->list);
283		INIT_LIST_HEAD(&io_end->list_vec);
284		refcount_set(&io_end->count, 1);
285	}
286	return io_end;
287}
288
289void ext4_put_io_end_defer(ext4_io_end_t *io_end)
290{
291	if (refcount_dec_and_test(&io_end->count)) {
292		if (!(io_end->flag & EXT4_IO_END_UNWRITTEN) ||
293				list_empty(&io_end->list_vec)) {
294			ext4_release_io_end(io_end);
295			return;
296		}
297		ext4_add_complete_io(io_end);
298	}
299}
300
301int ext4_put_io_end(ext4_io_end_t *io_end)
302{
303	int err = 0;
304
305	if (refcount_dec_and_test(&io_end->count)) {
306		if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
307			err = ext4_convert_unwritten_io_end_vec(io_end->handle,
308								io_end);
309			io_end->handle = NULL;
310			ext4_clear_io_unwritten_flag(io_end);
311		}
312		ext4_release_io_end(io_end);
313	}
314	return err;
315}
316
317ext4_io_end_t *ext4_get_io_end(ext4_io_end_t *io_end)
318{
319	refcount_inc(&io_end->count);
320	return io_end;
321}
322
323/* BIO completion function for page writeback */
324static void ext4_end_bio(struct bio *bio)
325{
326	ext4_io_end_t *io_end = bio->bi_private;
327	sector_t bi_sector = bio->bi_iter.bi_sector;
328
329	if (WARN_ONCE(!io_end, "io_end is NULL: %pg: sector %Lu len %u err %d\n",
330		      bio->bi_bdev,
331		      (long long) bio->bi_iter.bi_sector,
332		      (unsigned) bio_sectors(bio),
333		      bio->bi_status)) {
334		ext4_finish_bio(bio);
335		bio_put(bio);
336		return;
337	}
338	bio->bi_end_io = NULL;
339
340	if (bio->bi_status) {
341		struct inode *inode = io_end->inode;
342
343		ext4_warning(inode->i_sb, "I/O error %d writing to inode %lu "
344			     "starting block %llu)",
345			     bio->bi_status, inode->i_ino,
346			     (unsigned long long)
347			     bi_sector >> (inode->i_blkbits - 9));
348		mapping_set_error(inode->i_mapping,
349				blk_status_to_errno(bio->bi_status));
350	}
351
352	if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
353		/*
354		 * Link bio into list hanging from io_end. We have to do it
355		 * atomically as bio completions can be racing against each
356		 * other.
357		 */
358		bio->bi_private = xchg(&io_end->bio, bio);
359		ext4_put_io_end_defer(io_end);
360	} else {
361		/*
362		 * Drop io_end reference early. Inode can get freed once
363		 * we finish the bio.
364		 */
365		ext4_put_io_end_defer(io_end);
366		ext4_finish_bio(bio);
367		bio_put(bio);
368	}
369}
370
371void ext4_io_submit(struct ext4_io_submit *io)
372{
373	struct bio *bio = io->io_bio;
374
375	if (bio) {
376		if (io->io_wbc->sync_mode == WB_SYNC_ALL)
377			io->io_bio->bi_opf |= REQ_SYNC;
378		submit_bio(io->io_bio);
379	}
380	io->io_bio = NULL;
381}
382
383void ext4_io_submit_init(struct ext4_io_submit *io,
384			 struct writeback_control *wbc)
385{
386	io->io_wbc = wbc;
387	io->io_bio = NULL;
388	io->io_end = NULL;
389}
390
391static void io_submit_init_bio(struct ext4_io_submit *io,
392			       struct buffer_head *bh)
393{
394	struct bio *bio;
395
396	/*
397	 * bio_alloc will _always_ be able to allocate a bio if
398	 * __GFP_DIRECT_RECLAIM is set, see comments for bio_alloc_bioset().
399	 */
400	bio = bio_alloc(bh->b_bdev, BIO_MAX_VECS, REQ_OP_WRITE, GFP_NOIO);
401	fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
402	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
403	bio->bi_end_io = ext4_end_bio;
404	bio->bi_private = ext4_get_io_end(io->io_end);
405	io->io_bio = bio;
406	io->io_next_block = bh->b_blocknr;
407	wbc_init_bio(io->io_wbc, bio);
408}
409
410static void io_submit_add_bh(struct ext4_io_submit *io,
411			     struct inode *inode,
412			     struct page *page,
 
413			     struct buffer_head *bh)
414{
415	int ret;
416
417	if (io->io_bio && (bh->b_blocknr != io->io_next_block ||
418			   !fscrypt_mergeable_bio_bh(io->io_bio, bh))) {
419submit_and_retry:
420		ext4_io_submit(io);
421	}
422	if (io->io_bio == NULL)
423		io_submit_init_bio(io, bh);
424	ret = bio_add_page(io->io_bio, page, bh->b_size, bh_offset(bh));
425	if (ret != bh->b_size)
426		goto submit_and_retry;
427	wbc_account_cgroup_owner(io->io_wbc, page, bh->b_size);
428	io->io_next_block++;
429}
430
431int ext4_bio_write_page(struct ext4_io_submit *io,
432			struct page *page,
433			int len)
434{
435	struct page *bounce_page = NULL;
436	struct inode *inode = page->mapping->host;
437	unsigned block_start;
438	struct buffer_head *bh, *head;
439	int ret = 0;
440	int nr_to_submit = 0;
441	struct writeback_control *wbc = io->io_wbc;
442	bool keep_towrite = false;
443
444	BUG_ON(!PageLocked(page));
445	BUG_ON(PageWriteback(page));
446
447	ClearPageError(page);
448
449	/*
450	 * Comments copied from block_write_full_page:
451	 *
452	 * The page straddles i_size.  It must be zeroed out on each and every
453	 * writepage invocation because it may be mmapped.  "A file is mapped
454	 * in multiples of the page size.  For a file that is not a multiple of
455	 * the page size, the remaining memory is zeroed when mapped, and
456	 * writes to that region are not written out to the file."
457	 */
458	if (len < PAGE_SIZE)
459		zero_user_segment(page, len, PAGE_SIZE);
460	/*
461	 * In the first loop we prepare and mark buffers to submit. We have to
462	 * mark all buffers in the page before submitting so that
463	 * end_page_writeback() cannot be called from ext4_end_bio() when IO
464	 * on the first buffer finishes and we are still working on submitting
465	 * the second buffer.
466	 */
467	bh = head = page_buffers(page);
468	do {
469		block_start = bh_offset(bh);
470		if (block_start >= len) {
471			clear_buffer_dirty(bh);
472			set_buffer_uptodate(bh);
473			continue;
474		}
475		if (!buffer_dirty(bh) || buffer_delay(bh) ||
476		    !buffer_mapped(bh) || buffer_unwritten(bh)) {
477			/* A hole? We can safely clear the dirty bit */
478			if (!buffer_mapped(bh))
479				clear_buffer_dirty(bh);
480			/*
481			 * Keeping dirty some buffer we cannot write? Make sure
482			 * to redirty the page and keep TOWRITE tag so that
483			 * racing WB_SYNC_ALL writeback does not skip the page.
484			 * This happens e.g. when doing writeout for
485			 * transaction commit.
 
486			 */
487			if (buffer_dirty(bh)) {
488				if (!PageDirty(page))
489					redirty_page_for_writepage(wbc, page);
 
490				keep_towrite = true;
491			}
492			continue;
493		}
494		if (buffer_new(bh))
495			clear_buffer_new(bh);
496		set_buffer_async_write(bh);
497		clear_buffer_dirty(bh);
498		nr_to_submit++;
499	} while ((bh = bh->b_this_page) != head);
500
501	/* Nothing to submit? Just unlock the page... */
502	if (!nr_to_submit)
503		goto unlock;
504
505	bh = head = page_buffers(page);
506
507	/*
508	 * If any blocks are being written to an encrypted file, encrypt them
509	 * into a bounce page.  For simplicity, just encrypt until the last
510	 * block which might be needed.  This may cause some unneeded blocks
511	 * (e.g. holes) to be unnecessarily encrypted, but this is rare and
512	 * can't happen in the common case of blocksize == PAGE_SIZE.
513	 */
514	if (fscrypt_inode_uses_fs_layer_crypto(inode) && nr_to_submit) {
515		gfp_t gfp_flags = GFP_NOFS;
516		unsigned int enc_bytes = round_up(len, i_blocksize(inode));
 
517
518		/*
519		 * Since bounce page allocation uses a mempool, we can only use
520		 * a waiting mask (i.e. request guaranteed allocation) on the
521		 * first page of the bio.  Otherwise it can deadlock.
522		 */
523		if (io->io_bio)
524			gfp_flags = GFP_NOWAIT | __GFP_NOWARN;
525	retry_encrypt:
526		bounce_page = fscrypt_encrypt_pagecache_blocks(page, enc_bytes,
527							       0, gfp_flags);
528		if (IS_ERR(bounce_page)) {
529			ret = PTR_ERR(bounce_page);
530			if (ret == -ENOMEM &&
531			    (io->io_bio || wbc->sync_mode == WB_SYNC_ALL)) {
532				gfp_t new_gfp_flags = GFP_NOFS;
533				if (io->io_bio)
534					ext4_io_submit(io);
535				else
536					new_gfp_flags |= __GFP_NOFAIL;
537				memalloc_retry_wait(gfp_flags);
538				gfp_flags = new_gfp_flags;
539				goto retry_encrypt;
540			}
541
542			printk_ratelimited(KERN_ERR "%s: ret = %d\n", __func__, ret);
543			redirty_page_for_writepage(wbc, page);
544			do {
545				if (buffer_async_write(bh)) {
546					clear_buffer_async_write(bh);
547					set_buffer_dirty(bh);
548				}
549				bh = bh->b_this_page;
550			} while (bh != head);
551			goto unlock;
 
552		}
 
553	}
554
555	if (keep_towrite)
556		set_page_writeback_keepwrite(page);
557	else
558		set_page_writeback(page);
559
560	/* Now submit buffers to write */
561	do {
562		if (!buffer_async_write(bh))
563			continue;
564		io_submit_add_bh(io, inode,
565				 bounce_page ? bounce_page : page, bh);
566	} while ((bh = bh->b_this_page) != head);
567unlock:
568	unlock_page(page);
569	return ret;
570}
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * linux/fs/ext4/page-io.c
  4 *
  5 * This contains the new page_io functions for ext4
  6 *
  7 * Written by Theodore Ts'o, 2010.
  8 */
  9
 10#include <linux/fs.h>
 11#include <linux/time.h>
 12#include <linux/highuid.h>
 13#include <linux/pagemap.h>
 14#include <linux/quotaops.h>
 15#include <linux/string.h>
 16#include <linux/buffer_head.h>
 17#include <linux/writeback.h>
 18#include <linux/pagevec.h>
 19#include <linux/mpage.h>
 20#include <linux/namei.h>
 21#include <linux/uio.h>
 22#include <linux/bio.h>
 23#include <linux/workqueue.h>
 24#include <linux/kernel.h>
 25#include <linux/slab.h>
 26#include <linux/mm.h>
 27#include <linux/sched/mm.h>
 28
 29#include "ext4_jbd2.h"
 30#include "xattr.h"
 31#include "acl.h"
 32
 33static struct kmem_cache *io_end_cachep;
 34static struct kmem_cache *io_end_vec_cachep;
 35
 36int __init ext4_init_pageio(void)
 37{
 38	io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT);
 39	if (io_end_cachep == NULL)
 40		return -ENOMEM;
 41
 42	io_end_vec_cachep = KMEM_CACHE(ext4_io_end_vec, 0);
 43	if (io_end_vec_cachep == NULL) {
 44		kmem_cache_destroy(io_end_cachep);
 45		return -ENOMEM;
 46	}
 47	return 0;
 48}
 49
 50void ext4_exit_pageio(void)
 51{
 52	kmem_cache_destroy(io_end_cachep);
 53	kmem_cache_destroy(io_end_vec_cachep);
 54}
 55
 56struct ext4_io_end_vec *ext4_alloc_io_end_vec(ext4_io_end_t *io_end)
 57{
 58	struct ext4_io_end_vec *io_end_vec;
 59
 60	io_end_vec = kmem_cache_zalloc(io_end_vec_cachep, GFP_NOFS);
 61	if (!io_end_vec)
 62		return ERR_PTR(-ENOMEM);
 63	INIT_LIST_HEAD(&io_end_vec->list);
 64	list_add_tail(&io_end_vec->list, &io_end->list_vec);
 65	return io_end_vec;
 66}
 67
 68static void ext4_free_io_end_vec(ext4_io_end_t *io_end)
 69{
 70	struct ext4_io_end_vec *io_end_vec, *tmp;
 71
 72	if (list_empty(&io_end->list_vec))
 73		return;
 74	list_for_each_entry_safe(io_end_vec, tmp, &io_end->list_vec, list) {
 75		list_del(&io_end_vec->list);
 76		kmem_cache_free(io_end_vec_cachep, io_end_vec);
 77	}
 78}
 79
 80struct ext4_io_end_vec *ext4_last_io_end_vec(ext4_io_end_t *io_end)
 81{
 82	BUG_ON(list_empty(&io_end->list_vec));
 83	return list_last_entry(&io_end->list_vec, struct ext4_io_end_vec, list);
 84}
 85
 86/*
 87 * Print an buffer I/O error compatible with the fs/buffer.c.  This
 88 * provides compatibility with dmesg scrapers that look for a specific
 89 * buffer I/O error message.  We really need a unified error reporting
 90 * structure to userspace ala Digital Unix's uerf system, but it's
 91 * probably not going to happen in my lifetime, due to LKML politics...
 92 */
 93static void buffer_io_error(struct buffer_head *bh)
 94{
 95	printk_ratelimited(KERN_ERR "Buffer I/O error on device %pg, logical block %llu\n",
 96		       bh->b_bdev,
 97			(unsigned long long)bh->b_blocknr);
 98}
 99
100static void ext4_finish_bio(struct bio *bio)
101{
102	struct folio_iter fi;
 
103
104	bio_for_each_folio_all(fi, bio) {
105		struct folio *folio = fi.folio;
106		struct folio *io_folio = NULL;
107		struct buffer_head *bh, *head;
108		size_t bio_start = fi.offset;
109		size_t bio_end = bio_start + fi.length;
110		unsigned under_io = 0;
111		unsigned long flags;
112
113		if (fscrypt_is_bounce_folio(folio)) {
114			io_folio = folio;
115			folio = fscrypt_pagecache_folio(folio);
116		}
117
118		if (bio->bi_status) {
119			int err = blk_status_to_errno(bio->bi_status);
120			folio_set_error(folio);
121			mapping_set_error(folio->mapping, err);
122		}
123		bh = head = folio_buffers(folio);
124		/*
125		 * We check all buffers in the folio under b_uptodate_lock
126		 * to avoid races with other end io clearing async_write flags
127		 */
128		spin_lock_irqsave(&head->b_uptodate_lock, flags);
129		do {
130			if (bh_offset(bh) < bio_start ||
131			    bh_offset(bh) + bh->b_size > bio_end) {
132				if (buffer_async_write(bh))
133					under_io++;
134				continue;
135			}
136			clear_buffer_async_write(bh);
137			if (bio->bi_status) {
138				set_buffer_write_io_error(bh);
139				buffer_io_error(bh);
140			}
141		} while ((bh = bh->b_this_page) != head);
142		spin_unlock_irqrestore(&head->b_uptodate_lock, flags);
143		if (!under_io) {
144			fscrypt_free_bounce_page(&io_folio->page);
145			folio_end_writeback(folio);
146		}
147	}
148}
149
150static void ext4_release_io_end(ext4_io_end_t *io_end)
151{
152	struct bio *bio, *next_bio;
153
154	BUG_ON(!list_empty(&io_end->list));
155	BUG_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
156	WARN_ON(io_end->handle);
157
158	for (bio = io_end->bio; bio; bio = next_bio) {
159		next_bio = bio->bi_private;
160		ext4_finish_bio(bio);
161		bio_put(bio);
162	}
163	ext4_free_io_end_vec(io_end);
164	kmem_cache_free(io_end_cachep, io_end);
165}
166
167/*
168 * Check a range of space and convert unwritten extents to written. Note that
169 * we are protected from truncate touching same part of extent tree by the
170 * fact that truncate code waits for all DIO to finish (thus exclusion from
171 * direct IO is achieved) and also waits for PageWriteback bits. Thus we
172 * cannot get to ext4_ext_truncate() before all IOs overlapping that range are
173 * completed (happens from ext4_free_ioend()).
174 */
175static int ext4_end_io_end(ext4_io_end_t *io_end)
176{
177	struct inode *inode = io_end->inode;
178	handle_t *handle = io_end->handle;
179	int ret = 0;
180
181	ext4_debug("ext4_end_io_nolock: io_end 0x%p from inode %lu,list->next 0x%p,"
182		   "list->prev 0x%p\n",
183		   io_end, inode->i_ino, io_end->list.next, io_end->list.prev);
184
185	io_end->handle = NULL;	/* Following call will use up the handle */
186	ret = ext4_convert_unwritten_io_end_vec(handle, io_end);
187	if (ret < 0 && !ext4_forced_shutdown(inode->i_sb)) {
188		ext4_msg(inode->i_sb, KERN_EMERG,
189			 "failed to convert unwritten extents to written "
190			 "extents -- potential data loss!  "
191			 "(inode %lu, error %d)", inode->i_ino, ret);
192	}
193	ext4_clear_io_unwritten_flag(io_end);
194	ext4_release_io_end(io_end);
195	return ret;
196}
197
198static void dump_completed_IO(struct inode *inode, struct list_head *head)
199{
200#ifdef	EXT4FS_DEBUG
201	struct list_head *cur, *before, *after;
202	ext4_io_end_t *io_end, *io_end0, *io_end1;
203
204	if (list_empty(head))
205		return;
206
207	ext4_debug("Dump inode %lu completed io list\n", inode->i_ino);
208	list_for_each_entry(io_end, head, list) {
209		cur = &io_end->list;
210		before = cur->prev;
211		io_end0 = container_of(before, ext4_io_end_t, list);
212		after = cur->next;
213		io_end1 = container_of(after, ext4_io_end_t, list);
214
215		ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
216			    io_end, inode->i_ino, io_end0, io_end1);
217	}
218#endif
219}
220
221/* Add the io_end to per-inode completed end_io list. */
222static void ext4_add_complete_io(ext4_io_end_t *io_end)
223{
224	struct ext4_inode_info *ei = EXT4_I(io_end->inode);
225	struct ext4_sb_info *sbi = EXT4_SB(io_end->inode->i_sb);
226	struct workqueue_struct *wq;
227	unsigned long flags;
228
229	/* Only reserved conversions from writeback should enter here */
230	WARN_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
231	WARN_ON(!io_end->handle && sbi->s_journal);
232	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
233	wq = sbi->rsv_conversion_wq;
234	if (list_empty(&ei->i_rsv_conversion_list))
235		queue_work(wq, &ei->i_rsv_conversion_work);
236	list_add_tail(&io_end->list, &ei->i_rsv_conversion_list);
237	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
238}
239
240static int ext4_do_flush_completed_IO(struct inode *inode,
241				      struct list_head *head)
242{
243	ext4_io_end_t *io_end;
244	struct list_head unwritten;
245	unsigned long flags;
246	struct ext4_inode_info *ei = EXT4_I(inode);
247	int err, ret = 0;
248
249	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
250	dump_completed_IO(inode, head);
251	list_replace_init(head, &unwritten);
252	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
253
254	while (!list_empty(&unwritten)) {
255		io_end = list_entry(unwritten.next, ext4_io_end_t, list);
256		BUG_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
257		list_del_init(&io_end->list);
258
259		err = ext4_end_io_end(io_end);
260		if (unlikely(!ret && err))
261			ret = err;
262	}
263	return ret;
264}
265
266/*
267 * work on completed IO, to convert unwritten extents to extents
268 */
269void ext4_end_io_rsv_work(struct work_struct *work)
270{
271	struct ext4_inode_info *ei = container_of(work, struct ext4_inode_info,
272						  i_rsv_conversion_work);
273	ext4_do_flush_completed_IO(&ei->vfs_inode, &ei->i_rsv_conversion_list);
274}
275
276ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
277{
278	ext4_io_end_t *io_end = kmem_cache_zalloc(io_end_cachep, flags);
279
280	if (io_end) {
281		io_end->inode = inode;
282		INIT_LIST_HEAD(&io_end->list);
283		INIT_LIST_HEAD(&io_end->list_vec);
284		refcount_set(&io_end->count, 1);
285	}
286	return io_end;
287}
288
289void ext4_put_io_end_defer(ext4_io_end_t *io_end)
290{
291	if (refcount_dec_and_test(&io_end->count)) {
292		if (!(io_end->flag & EXT4_IO_END_UNWRITTEN) ||
293				list_empty(&io_end->list_vec)) {
294			ext4_release_io_end(io_end);
295			return;
296		}
297		ext4_add_complete_io(io_end);
298	}
299}
300
301int ext4_put_io_end(ext4_io_end_t *io_end)
302{
303	int err = 0;
304
305	if (refcount_dec_and_test(&io_end->count)) {
306		if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
307			err = ext4_convert_unwritten_io_end_vec(io_end->handle,
308								io_end);
309			io_end->handle = NULL;
310			ext4_clear_io_unwritten_flag(io_end);
311		}
312		ext4_release_io_end(io_end);
313	}
314	return err;
315}
316
317ext4_io_end_t *ext4_get_io_end(ext4_io_end_t *io_end)
318{
319	refcount_inc(&io_end->count);
320	return io_end;
321}
322
323/* BIO completion function for page writeback */
324static void ext4_end_bio(struct bio *bio)
325{
326	ext4_io_end_t *io_end = bio->bi_private;
327	sector_t bi_sector = bio->bi_iter.bi_sector;
328
329	if (WARN_ONCE(!io_end, "io_end is NULL: %pg: sector %Lu len %u err %d\n",
330		      bio->bi_bdev,
331		      (long long) bio->bi_iter.bi_sector,
332		      (unsigned) bio_sectors(bio),
333		      bio->bi_status)) {
334		ext4_finish_bio(bio);
335		bio_put(bio);
336		return;
337	}
338	bio->bi_end_io = NULL;
339
340	if (bio->bi_status) {
341		struct inode *inode = io_end->inode;
342
343		ext4_warning(inode->i_sb, "I/O error %d writing to inode %lu "
344			     "starting block %llu)",
345			     bio->bi_status, inode->i_ino,
346			     (unsigned long long)
347			     bi_sector >> (inode->i_blkbits - 9));
348		mapping_set_error(inode->i_mapping,
349				blk_status_to_errno(bio->bi_status));
350	}
351
352	if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
353		/*
354		 * Link bio into list hanging from io_end. We have to do it
355		 * atomically as bio completions can be racing against each
356		 * other.
357		 */
358		bio->bi_private = xchg(&io_end->bio, bio);
359		ext4_put_io_end_defer(io_end);
360	} else {
361		/*
362		 * Drop io_end reference early. Inode can get freed once
363		 * we finish the bio.
364		 */
365		ext4_put_io_end_defer(io_end);
366		ext4_finish_bio(bio);
367		bio_put(bio);
368	}
369}
370
371void ext4_io_submit(struct ext4_io_submit *io)
372{
373	struct bio *bio = io->io_bio;
374
375	if (bio) {
376		if (io->io_wbc->sync_mode == WB_SYNC_ALL)
377			io->io_bio->bi_opf |= REQ_SYNC;
378		submit_bio(io->io_bio);
379	}
380	io->io_bio = NULL;
381}
382
383void ext4_io_submit_init(struct ext4_io_submit *io,
384			 struct writeback_control *wbc)
385{
386	io->io_wbc = wbc;
387	io->io_bio = NULL;
388	io->io_end = NULL;
389}
390
391static void io_submit_init_bio(struct ext4_io_submit *io,
392			       struct buffer_head *bh)
393{
394	struct bio *bio;
395
396	/*
397	 * bio_alloc will _always_ be able to allocate a bio if
398	 * __GFP_DIRECT_RECLAIM is set, see comments for bio_alloc_bioset().
399	 */
400	bio = bio_alloc(bh->b_bdev, BIO_MAX_VECS, REQ_OP_WRITE, GFP_NOIO);
401	fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
402	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
403	bio->bi_end_io = ext4_end_bio;
404	bio->bi_private = ext4_get_io_end(io->io_end);
405	io->io_bio = bio;
406	io->io_next_block = bh->b_blocknr;
407	wbc_init_bio(io->io_wbc, bio);
408}
409
410static void io_submit_add_bh(struct ext4_io_submit *io,
411			     struct inode *inode,
412			     struct folio *folio,
413			     struct folio *io_folio,
414			     struct buffer_head *bh)
415{
 
 
416	if (io->io_bio && (bh->b_blocknr != io->io_next_block ||
417			   !fscrypt_mergeable_bio_bh(io->io_bio, bh))) {
418submit_and_retry:
419		ext4_io_submit(io);
420	}
421	if (io->io_bio == NULL)
422		io_submit_init_bio(io, bh);
423	if (!bio_add_folio(io->io_bio, io_folio, bh->b_size, bh_offset(bh)))
 
424		goto submit_and_retry;
425	wbc_account_cgroup_owner(io->io_wbc, &folio->page, bh->b_size);
426	io->io_next_block++;
427}
428
429int ext4_bio_write_folio(struct ext4_io_submit *io, struct folio *folio,
430		size_t len)
 
431{
432	struct folio *io_folio = folio;
433	struct inode *inode = folio->mapping->host;
434	unsigned block_start;
435	struct buffer_head *bh, *head;
436	int ret = 0;
437	int nr_to_submit = 0;
438	struct writeback_control *wbc = io->io_wbc;
439	bool keep_towrite = false;
440
441	BUG_ON(!folio_test_locked(folio));
442	BUG_ON(folio_test_writeback(folio));
443
444	folio_clear_error(folio);
445
446	/*
447	 * Comments copied from block_write_full_folio:
448	 *
449	 * The folio straddles i_size.  It must be zeroed out on each and every
450	 * writepage invocation because it may be mmapped.  "A file is mapped
451	 * in multiples of the page size.  For a file that is not a multiple of
452	 * the page size, the remaining memory is zeroed when mapped, and
453	 * writes to that region are not written out to the file."
454	 */
455	if (len < folio_size(folio))
456		folio_zero_segment(folio, len, folio_size(folio));
457	/*
458	 * In the first loop we prepare and mark buffers to submit. We have to
459	 * mark all buffers in the folio before submitting so that
460	 * folio_end_writeback() cannot be called from ext4_end_bio() when IO
461	 * on the first buffer finishes and we are still working on submitting
462	 * the second buffer.
463	 */
464	bh = head = folio_buffers(folio);
465	do {
466		block_start = bh_offset(bh);
467		if (block_start >= len) {
468			clear_buffer_dirty(bh);
469			set_buffer_uptodate(bh);
470			continue;
471		}
472		if (!buffer_dirty(bh) || buffer_delay(bh) ||
473		    !buffer_mapped(bh) || buffer_unwritten(bh)) {
474			/* A hole? We can safely clear the dirty bit */
475			if (!buffer_mapped(bh))
476				clear_buffer_dirty(bh);
477			/*
478			 * Keeping dirty some buffer we cannot write? Make sure
479			 * to redirty the folio and keep TOWRITE tag so that
480			 * racing WB_SYNC_ALL writeback does not skip the folio.
481			 * This happens e.g. when doing writeout for
482			 * transaction commit or when journalled data is not
483			 * yet committed.
484			 */
485			if (buffer_dirty(bh) ||
486			    (buffer_jbd(bh) && buffer_jbddirty(bh))) {
487				if (!folio_test_dirty(folio))
488					folio_redirty_for_writepage(wbc, folio);
489				keep_towrite = true;
490			}
491			continue;
492		}
493		if (buffer_new(bh))
494			clear_buffer_new(bh);
495		set_buffer_async_write(bh);
496		clear_buffer_dirty(bh);
497		nr_to_submit++;
498	} while ((bh = bh->b_this_page) != head);
499
500	/* Nothing to submit? Just unlock the folio... */
501	if (!nr_to_submit)
502		return 0;
503
504	bh = head = folio_buffers(folio);
505
506	/*
507	 * If any blocks are being written to an encrypted file, encrypt them
508	 * into a bounce page.  For simplicity, just encrypt until the last
509	 * block which might be needed.  This may cause some unneeded blocks
510	 * (e.g. holes) to be unnecessarily encrypted, but this is rare and
511	 * can't happen in the common case of blocksize == PAGE_SIZE.
512	 */
513	if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
514		gfp_t gfp_flags = GFP_NOFS;
515		unsigned int enc_bytes = round_up(len, i_blocksize(inode));
516		struct page *bounce_page;
517
518		/*
519		 * Since bounce page allocation uses a mempool, we can only use
520		 * a waiting mask (i.e. request guaranteed allocation) on the
521		 * first page of the bio.  Otherwise it can deadlock.
522		 */
523		if (io->io_bio)
524			gfp_flags = GFP_NOWAIT | __GFP_NOWARN;
525	retry_encrypt:
526		bounce_page = fscrypt_encrypt_pagecache_blocks(&folio->page,
527					enc_bytes, 0, gfp_flags);
528		if (IS_ERR(bounce_page)) {
529			ret = PTR_ERR(bounce_page);
530			if (ret == -ENOMEM &&
531			    (io->io_bio || wbc->sync_mode == WB_SYNC_ALL)) {
532				gfp_t new_gfp_flags = GFP_NOFS;
533				if (io->io_bio)
534					ext4_io_submit(io);
535				else
536					new_gfp_flags |= __GFP_NOFAIL;
537				memalloc_retry_wait(gfp_flags);
538				gfp_flags = new_gfp_flags;
539				goto retry_encrypt;
540			}
541
542			printk_ratelimited(KERN_ERR "%s: ret = %d\n", __func__, ret);
543			folio_redirty_for_writepage(wbc, folio);
544			do {
545				if (buffer_async_write(bh)) {
546					clear_buffer_async_write(bh);
547					set_buffer_dirty(bh);
548				}
549				bh = bh->b_this_page;
550			} while (bh != head);
551
552			return ret;
553		}
554		io_folio = page_folio(bounce_page);
555	}
556
557	__folio_start_writeback(folio, keep_towrite);
 
 
 
558
559	/* Now submit buffers to write */
560	do {
561		if (!buffer_async_write(bh))
562			continue;
563		io_submit_add_bh(io, inode, folio, io_folio, bh);
 
564	} while ((bh = bh->b_this_page) != head);
565
566	return 0;
 
567}