Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * linux/fs/ext4/page-io.c
  4 *
  5 * This contains the new page_io functions for ext4
  6 *
  7 * Written by Theodore Ts'o, 2010.
  8 */
  9
 10#include <linux/fs.h>
 11#include <linux/time.h>
 12#include <linux/highuid.h>
 13#include <linux/pagemap.h>
 14#include <linux/quotaops.h>
 15#include <linux/string.h>
 16#include <linux/buffer_head.h>
 17#include <linux/writeback.h>
 18#include <linux/pagevec.h>
 19#include <linux/mpage.h>
 20#include <linux/namei.h>
 21#include <linux/uio.h>
 22#include <linux/bio.h>
 23#include <linux/workqueue.h>
 24#include <linux/kernel.h>
 25#include <linux/slab.h>
 26#include <linux/mm.h>
 27#include <linux/sched/mm.h>
 28
 29#include "ext4_jbd2.h"
 30#include "xattr.h"
 31#include "acl.h"
 32
 33static struct kmem_cache *io_end_cachep;
 34static struct kmem_cache *io_end_vec_cachep;
 35
 36int __init ext4_init_pageio(void)
 37{
 38	io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT);
 39	if (io_end_cachep == NULL)
 40		return -ENOMEM;
 41
 42	io_end_vec_cachep = KMEM_CACHE(ext4_io_end_vec, 0);
 43	if (io_end_vec_cachep == NULL) {
 44		kmem_cache_destroy(io_end_cachep);
 45		return -ENOMEM;
 46	}
 47	return 0;
 48}
 49
 50void ext4_exit_pageio(void)
 51{
 52	kmem_cache_destroy(io_end_cachep);
 53	kmem_cache_destroy(io_end_vec_cachep);
 54}
 55
 56struct ext4_io_end_vec *ext4_alloc_io_end_vec(ext4_io_end_t *io_end)
 57{
 58	struct ext4_io_end_vec *io_end_vec;
 59
 60	io_end_vec = kmem_cache_zalloc(io_end_vec_cachep, GFP_NOFS);
 61	if (!io_end_vec)
 62		return ERR_PTR(-ENOMEM);
 63	INIT_LIST_HEAD(&io_end_vec->list);
 64	list_add_tail(&io_end_vec->list, &io_end->list_vec);
 65	return io_end_vec;
 66}
 67
 68static void ext4_free_io_end_vec(ext4_io_end_t *io_end)
 69{
 70	struct ext4_io_end_vec *io_end_vec, *tmp;
 71
 72	if (list_empty(&io_end->list_vec))
 73		return;
 74	list_for_each_entry_safe(io_end_vec, tmp, &io_end->list_vec, list) {
 75		list_del(&io_end_vec->list);
 76		kmem_cache_free(io_end_vec_cachep, io_end_vec);
 77	}
 78}
 79
 80struct ext4_io_end_vec *ext4_last_io_end_vec(ext4_io_end_t *io_end)
 81{
 82	BUG_ON(list_empty(&io_end->list_vec));
 83	return list_last_entry(&io_end->list_vec, struct ext4_io_end_vec, list);
 84}
 85
 86/*
 87 * Print an buffer I/O error compatible with the fs/buffer.c.  This
 88 * provides compatibility with dmesg scrapers that look for a specific
 89 * buffer I/O error message.  We really need a unified error reporting
 90 * structure to userspace ala Digital Unix's uerf system, but it's
 91 * probably not going to happen in my lifetime, due to LKML politics...
 92 */
 93static void buffer_io_error(struct buffer_head *bh)
 94{
 95	printk_ratelimited(KERN_ERR "Buffer I/O error on device %pg, logical block %llu\n",
 96		       bh->b_bdev,
 97			(unsigned long long)bh->b_blocknr);
 98}
 99
100static void ext4_finish_bio(struct bio *bio)
101{
102	struct bio_vec *bvec;
103	struct bvec_iter_all iter_all;
104
105	bio_for_each_segment_all(bvec, bio, iter_all) {
106		struct page *page = bvec->bv_page;
107		struct page *bounce_page = NULL;
108		struct buffer_head *bh, *head;
109		unsigned bio_start = bvec->bv_offset;
110		unsigned bio_end = bio_start + bvec->bv_len;
111		unsigned under_io = 0;
112		unsigned long flags;
113
 
 
 
114		if (fscrypt_is_bounce_page(page)) {
115			bounce_page = page;
116			page = fscrypt_pagecache_page(bounce_page);
117		}
118
119		if (bio->bi_status) {
120			SetPageError(page);
121			mapping_set_error(page->mapping, -EIO);
122		}
123		bh = head = page_buffers(page);
124		/*
125		 * We check all buffers in the page under b_uptodate_lock
126		 * to avoid races with other end io clearing async_write flags
127		 */
128		spin_lock_irqsave(&head->b_uptodate_lock, flags);
 
129		do {
130			if (bh_offset(bh) < bio_start ||
131			    bh_offset(bh) + bh->b_size > bio_end) {
132				if (buffer_async_write(bh))
133					under_io++;
134				continue;
135			}
136			clear_buffer_async_write(bh);
137			if (bio->bi_status) {
138				set_buffer_write_io_error(bh);
139				buffer_io_error(bh);
140			}
141		} while ((bh = bh->b_this_page) != head);
142		spin_unlock_irqrestore(&head->b_uptodate_lock, flags);
 
143		if (!under_io) {
144			fscrypt_free_bounce_page(bounce_page);
145			end_page_writeback(page);
146		}
147	}
148}
149
150static void ext4_release_io_end(ext4_io_end_t *io_end)
151{
152	struct bio *bio, *next_bio;
153
154	BUG_ON(!list_empty(&io_end->list));
155	BUG_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
156	WARN_ON(io_end->handle);
157
158	for (bio = io_end->bio; bio; bio = next_bio) {
159		next_bio = bio->bi_private;
160		ext4_finish_bio(bio);
161		bio_put(bio);
162	}
163	ext4_free_io_end_vec(io_end);
164	kmem_cache_free(io_end_cachep, io_end);
165}
166
167/*
168 * Check a range of space and convert unwritten extents to written. Note that
169 * we are protected from truncate touching same part of extent tree by the
170 * fact that truncate code waits for all DIO to finish (thus exclusion from
171 * direct IO is achieved) and also waits for PageWriteback bits. Thus we
172 * cannot get to ext4_ext_truncate() before all IOs overlapping that range are
173 * completed (happens from ext4_free_ioend()).
174 */
175static int ext4_end_io_end(ext4_io_end_t *io_end)
176{
177	struct inode *inode = io_end->inode;
178	handle_t *handle = io_end->handle;
 
 
179	int ret = 0;
180
181	ext4_debug("ext4_end_io_nolock: io_end 0x%p from inode %lu,list->next 0x%p,"
182		   "list->prev 0x%p\n",
183		   io_end, inode->i_ino, io_end->list.next, io_end->list.prev);
184
185	io_end->handle = NULL;	/* Following call will use up the handle */
186	ret = ext4_convert_unwritten_io_end_vec(handle, io_end);
187	if (ret < 0 && !ext4_forced_shutdown(EXT4_SB(inode->i_sb))) {
188		ext4_msg(inode->i_sb, KERN_EMERG,
189			 "failed to convert unwritten extents to written "
190			 "extents -- potential data loss!  "
191			 "(inode %lu, error %d)", inode->i_ino, ret);
 
192	}
193	ext4_clear_io_unwritten_flag(io_end);
194	ext4_release_io_end(io_end);
195	return ret;
196}
197
198static void dump_completed_IO(struct inode *inode, struct list_head *head)
199{
200#ifdef	EXT4FS_DEBUG
201	struct list_head *cur, *before, *after;
202	ext4_io_end_t *io_end, *io_end0, *io_end1;
203
204	if (list_empty(head))
205		return;
206
207	ext4_debug("Dump inode %lu completed io list\n", inode->i_ino);
208	list_for_each_entry(io_end, head, list) {
209		cur = &io_end->list;
210		before = cur->prev;
211		io_end0 = container_of(before, ext4_io_end_t, list);
212		after = cur->next;
213		io_end1 = container_of(after, ext4_io_end_t, list);
214
215		ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
216			    io_end, inode->i_ino, io_end0, io_end1);
217	}
218#endif
219}
220
221/* Add the io_end to per-inode completed end_io list. */
222static void ext4_add_complete_io(ext4_io_end_t *io_end)
223{
224	struct ext4_inode_info *ei = EXT4_I(io_end->inode);
225	struct ext4_sb_info *sbi = EXT4_SB(io_end->inode->i_sb);
226	struct workqueue_struct *wq;
227	unsigned long flags;
228
229	/* Only reserved conversions from writeback should enter here */
230	WARN_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
231	WARN_ON(!io_end->handle && sbi->s_journal);
232	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
233	wq = sbi->rsv_conversion_wq;
234	if (list_empty(&ei->i_rsv_conversion_list))
235		queue_work(wq, &ei->i_rsv_conversion_work);
236	list_add_tail(&io_end->list, &ei->i_rsv_conversion_list);
237	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
238}
239
240static int ext4_do_flush_completed_IO(struct inode *inode,
241				      struct list_head *head)
242{
243	ext4_io_end_t *io_end;
244	struct list_head unwritten;
245	unsigned long flags;
246	struct ext4_inode_info *ei = EXT4_I(inode);
247	int err, ret = 0;
248
249	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
250	dump_completed_IO(inode, head);
251	list_replace_init(head, &unwritten);
252	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
253
254	while (!list_empty(&unwritten)) {
255		io_end = list_entry(unwritten.next, ext4_io_end_t, list);
256		BUG_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
257		list_del_init(&io_end->list);
258
259		err = ext4_end_io_end(io_end);
260		if (unlikely(!ret && err))
261			ret = err;
262	}
263	return ret;
264}
265
266/*
267 * work on completed IO, to convert unwritten extents to extents
268 */
269void ext4_end_io_rsv_work(struct work_struct *work)
270{
271	struct ext4_inode_info *ei = container_of(work, struct ext4_inode_info,
272						  i_rsv_conversion_work);
273	ext4_do_flush_completed_IO(&ei->vfs_inode, &ei->i_rsv_conversion_list);
274}
275
276ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
277{
278	ext4_io_end_t *io_end = kmem_cache_zalloc(io_end_cachep, flags);
279
280	if (io_end) {
281		io_end->inode = inode;
282		INIT_LIST_HEAD(&io_end->list);
283		INIT_LIST_HEAD(&io_end->list_vec);
284		refcount_set(&io_end->count, 1);
285	}
286	return io_end;
287}
288
289void ext4_put_io_end_defer(ext4_io_end_t *io_end)
290{
291	if (refcount_dec_and_test(&io_end->count)) {
292		if (!(io_end->flag & EXT4_IO_END_UNWRITTEN) ||
293				list_empty(&io_end->list_vec)) {
294			ext4_release_io_end(io_end);
295			return;
296		}
297		ext4_add_complete_io(io_end);
298	}
299}
300
301int ext4_put_io_end(ext4_io_end_t *io_end)
302{
303	int err = 0;
304
305	if (refcount_dec_and_test(&io_end->count)) {
306		if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
307			err = ext4_convert_unwritten_io_end_vec(io_end->handle,
308								io_end);
 
309			io_end->handle = NULL;
310			ext4_clear_io_unwritten_flag(io_end);
311		}
312		ext4_release_io_end(io_end);
313	}
314	return err;
315}
316
317ext4_io_end_t *ext4_get_io_end(ext4_io_end_t *io_end)
318{
319	refcount_inc(&io_end->count);
320	return io_end;
321}
322
323/* BIO completion function for page writeback */
324static void ext4_end_bio(struct bio *bio)
325{
326	ext4_io_end_t *io_end = bio->bi_private;
327	sector_t bi_sector = bio->bi_iter.bi_sector;
 
328
329	if (WARN_ONCE(!io_end, "io_end is NULL: %pg: sector %Lu len %u err %d\n",
330		      bio->bi_bdev,
331		      (long long) bio->bi_iter.bi_sector,
332		      (unsigned) bio_sectors(bio),
333		      bio->bi_status)) {
334		ext4_finish_bio(bio);
335		bio_put(bio);
336		return;
337	}
338	bio->bi_end_io = NULL;
339
340	if (bio->bi_status) {
341		struct inode *inode = io_end->inode;
342
343		ext4_warning(inode->i_sb, "I/O error %d writing to inode %lu "
344			     "starting block %llu)",
345			     bio->bi_status, inode->i_ino,
 
 
346			     (unsigned long long)
347			     bi_sector >> (inode->i_blkbits - 9));
348		mapping_set_error(inode->i_mapping,
349				blk_status_to_errno(bio->bi_status));
350	}
351
352	if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
353		/*
354		 * Link bio into list hanging from io_end. We have to do it
355		 * atomically as bio completions can be racing against each
356		 * other.
357		 */
358		bio->bi_private = xchg(&io_end->bio, bio);
359		ext4_put_io_end_defer(io_end);
360	} else {
361		/*
362		 * Drop io_end reference early. Inode can get freed once
363		 * we finish the bio.
364		 */
365		ext4_put_io_end_defer(io_end);
366		ext4_finish_bio(bio);
367		bio_put(bio);
368	}
369}
370
371void ext4_io_submit(struct ext4_io_submit *io)
372{
373	struct bio *bio = io->io_bio;
374
375	if (bio) {
376		if (io->io_wbc->sync_mode == WB_SYNC_ALL)
377			io->io_bio->bi_opf |= REQ_SYNC;
 
 
378		submit_bio(io->io_bio);
379	}
380	io->io_bio = NULL;
381}
382
383void ext4_io_submit_init(struct ext4_io_submit *io,
384			 struct writeback_control *wbc)
385{
386	io->io_wbc = wbc;
387	io->io_bio = NULL;
388	io->io_end = NULL;
389}
390
391static void io_submit_init_bio(struct ext4_io_submit *io,
392			       struct buffer_head *bh)
393{
394	struct bio *bio;
395
396	/*
397	 * bio_alloc will _always_ be able to allocate a bio if
398	 * __GFP_DIRECT_RECLAIM is set, see comments for bio_alloc_bioset().
399	 */
400	bio = bio_alloc(bh->b_bdev, BIO_MAX_VECS, REQ_OP_WRITE, GFP_NOIO);
401	fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
402	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
 
403	bio->bi_end_io = ext4_end_bio;
404	bio->bi_private = ext4_get_io_end(io->io_end);
405	io->io_bio = bio;
406	io->io_next_block = bh->b_blocknr;
407	wbc_init_bio(io->io_wbc, bio);
 
408}
409
410static void io_submit_add_bh(struct ext4_io_submit *io,
411			     struct inode *inode,
412			     struct page *page,
413			     struct buffer_head *bh)
414{
415	int ret;
416
417	if (io->io_bio && (bh->b_blocknr != io->io_next_block ||
418			   !fscrypt_mergeable_bio_bh(io->io_bio, bh))) {
419submit_and_retry:
420		ext4_io_submit(io);
421	}
422	if (io->io_bio == NULL)
423		io_submit_init_bio(io, bh);
 
 
 
 
424	ret = bio_add_page(io->io_bio, page, bh->b_size, bh_offset(bh));
425	if (ret != bh->b_size)
426		goto submit_and_retry;
427	wbc_account_cgroup_owner(io->io_wbc, page, bh->b_size);
428	io->io_next_block++;
 
429}
430
431int ext4_bio_write_page(struct ext4_io_submit *io,
432			struct page *page,
433			int len)
 
 
434{
435	struct page *bounce_page = NULL;
436	struct inode *inode = page->mapping->host;
437	unsigned block_start;
438	struct buffer_head *bh, *head;
439	int ret = 0;
 
440	int nr_to_submit = 0;
441	struct writeback_control *wbc = io->io_wbc;
442	bool keep_towrite = false;
443
444	BUG_ON(!PageLocked(page));
445	BUG_ON(PageWriteback(page));
446
 
 
 
 
447	ClearPageError(page);
448
449	/*
450	 * Comments copied from block_write_full_page:
451	 *
452	 * The page straddles i_size.  It must be zeroed out on each and every
453	 * writepage invocation because it may be mmapped.  "A file is mapped
454	 * in multiples of the page size.  For a file that is not a multiple of
455	 * the page size, the remaining memory is zeroed when mapped, and
456	 * writes to that region are not written out to the file."
457	 */
458	if (len < PAGE_SIZE)
459		zero_user_segment(page, len, PAGE_SIZE);
460	/*
461	 * In the first loop we prepare and mark buffers to submit. We have to
462	 * mark all buffers in the page before submitting so that
463	 * end_page_writeback() cannot be called from ext4_end_bio() when IO
464	 * on the first buffer finishes and we are still working on submitting
465	 * the second buffer.
466	 */
467	bh = head = page_buffers(page);
468	do {
469		block_start = bh_offset(bh);
470		if (block_start >= len) {
471			clear_buffer_dirty(bh);
472			set_buffer_uptodate(bh);
473			continue;
474		}
475		if (!buffer_dirty(bh) || buffer_delay(bh) ||
476		    !buffer_mapped(bh) || buffer_unwritten(bh)) {
477			/* A hole? We can safely clear the dirty bit */
478			if (!buffer_mapped(bh))
479				clear_buffer_dirty(bh);
480			/*
481			 * Keeping dirty some buffer we cannot write? Make sure
482			 * to redirty the page and keep TOWRITE tag so that
483			 * racing WB_SYNC_ALL writeback does not skip the page.
484			 * This happens e.g. when doing writeout for
485			 * transaction commit.
486			 */
487			if (buffer_dirty(bh)) {
488				if (!PageDirty(page))
489					redirty_page_for_writepage(wbc, page);
490				keep_towrite = true;
491			}
492			continue;
493		}
494		if (buffer_new(bh))
495			clear_buffer_new(bh);
496		set_buffer_async_write(bh);
497		clear_buffer_dirty(bh);
498		nr_to_submit++;
499	} while ((bh = bh->b_this_page) != head);
500
501	/* Nothing to submit? Just unlock the page... */
502	if (!nr_to_submit)
503		goto unlock;
504
505	bh = head = page_buffers(page);
506
507	/*
508	 * If any blocks are being written to an encrypted file, encrypt them
509	 * into a bounce page.  For simplicity, just encrypt until the last
510	 * block which might be needed.  This may cause some unneeded blocks
511	 * (e.g. holes) to be unnecessarily encrypted, but this is rare and
512	 * can't happen in the common case of blocksize == PAGE_SIZE.
513	 */
514	if (fscrypt_inode_uses_fs_layer_crypto(inode) && nr_to_submit) {
515		gfp_t gfp_flags = GFP_NOFS;
516		unsigned int enc_bytes = round_up(len, i_blocksize(inode));
517
518		/*
519		 * Since bounce page allocation uses a mempool, we can only use
520		 * a waiting mask (i.e. request guaranteed allocation) on the
521		 * first page of the bio.  Otherwise it can deadlock.
522		 */
523		if (io->io_bio)
524			gfp_flags = GFP_NOWAIT | __GFP_NOWARN;
525	retry_encrypt:
526		bounce_page = fscrypt_encrypt_pagecache_blocks(page, enc_bytes,
527							       0, gfp_flags);
528		if (IS_ERR(bounce_page)) {
529			ret = PTR_ERR(bounce_page);
530			if (ret == -ENOMEM &&
531			    (io->io_bio || wbc->sync_mode == WB_SYNC_ALL)) {
532				gfp_t new_gfp_flags = GFP_NOFS;
533				if (io->io_bio)
534					ext4_io_submit(io);
535				else
536					new_gfp_flags |= __GFP_NOFAIL;
537				memalloc_retry_wait(gfp_flags);
538				gfp_flags = new_gfp_flags;
539				goto retry_encrypt;
540			}
541
542			printk_ratelimited(KERN_ERR "%s: ret = %d\n", __func__, ret);
543			redirty_page_for_writepage(wbc, page);
544			do {
545				if (buffer_async_write(bh)) {
546					clear_buffer_async_write(bh);
547					set_buffer_dirty(bh);
548				}
549				bh = bh->b_this_page;
550			} while (bh != head);
551			goto unlock;
552		}
553	}
554
555	if (keep_towrite)
556		set_page_writeback_keepwrite(page);
557	else
558		set_page_writeback(page);
559
560	/* Now submit buffers to write */
561	do {
562		if (!buffer_async_write(bh))
563			continue;
564		io_submit_add_bh(io, inode,
565				 bounce_page ? bounce_page : page, bh);
 
 
 
 
 
 
 
 
 
566	} while ((bh = bh->b_this_page) != head);
567unlock:
 
 
 
 
 
 
 
 
 
 
 
568	unlock_page(page);
 
 
 
569	return ret;
570}
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * linux/fs/ext4/page-io.c
  4 *
  5 * This contains the new page_io functions for ext4
  6 *
  7 * Written by Theodore Ts'o, 2010.
  8 */
  9
 10#include <linux/fs.h>
 11#include <linux/time.h>
 12#include <linux/highuid.h>
 13#include <linux/pagemap.h>
 14#include <linux/quotaops.h>
 15#include <linux/string.h>
 16#include <linux/buffer_head.h>
 17#include <linux/writeback.h>
 18#include <linux/pagevec.h>
 19#include <linux/mpage.h>
 20#include <linux/namei.h>
 21#include <linux/uio.h>
 22#include <linux/bio.h>
 23#include <linux/workqueue.h>
 24#include <linux/kernel.h>
 25#include <linux/slab.h>
 26#include <linux/mm.h>
 27#include <linux/backing-dev.h>
 28
 29#include "ext4_jbd2.h"
 30#include "xattr.h"
 31#include "acl.h"
 32
 33static struct kmem_cache *io_end_cachep;
 
 34
 35int __init ext4_init_pageio(void)
 36{
 37	io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT);
 38	if (io_end_cachep == NULL)
 39		return -ENOMEM;
 
 
 
 
 
 
 40	return 0;
 41}
 42
 43void ext4_exit_pageio(void)
 44{
 45	kmem_cache_destroy(io_end_cachep);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 46}
 47
 48/*
 49 * Print an buffer I/O error compatible with the fs/buffer.c.  This
 50 * provides compatibility with dmesg scrapers that look for a specific
 51 * buffer I/O error message.  We really need a unified error reporting
 52 * structure to userspace ala Digital Unix's uerf system, but it's
 53 * probably not going to happen in my lifetime, due to LKML politics...
 54 */
 55static void buffer_io_error(struct buffer_head *bh)
 56{
 57	printk_ratelimited(KERN_ERR "Buffer I/O error on device %pg, logical block %llu\n",
 58		       bh->b_bdev,
 59			(unsigned long long)bh->b_blocknr);
 60}
 61
 62static void ext4_finish_bio(struct bio *bio)
 63{
 64	struct bio_vec *bvec;
 65	struct bvec_iter_all iter_all;
 66
 67	bio_for_each_segment_all(bvec, bio, iter_all) {
 68		struct page *page = bvec->bv_page;
 69		struct page *bounce_page = NULL;
 70		struct buffer_head *bh, *head;
 71		unsigned bio_start = bvec->bv_offset;
 72		unsigned bio_end = bio_start + bvec->bv_len;
 73		unsigned under_io = 0;
 74		unsigned long flags;
 75
 76		if (!page)
 77			continue;
 78
 79		if (fscrypt_is_bounce_page(page)) {
 80			bounce_page = page;
 81			page = fscrypt_pagecache_page(bounce_page);
 82		}
 83
 84		if (bio->bi_status) {
 85			SetPageError(page);
 86			mapping_set_error(page->mapping, -EIO);
 87		}
 88		bh = head = page_buffers(page);
 89		/*
 90		 * We check all buffers in the page under BH_Uptodate_Lock
 91		 * to avoid races with other end io clearing async_write flags
 92		 */
 93		local_irq_save(flags);
 94		bit_spin_lock(BH_Uptodate_Lock, &head->b_state);
 95		do {
 96			if (bh_offset(bh) < bio_start ||
 97			    bh_offset(bh) + bh->b_size > bio_end) {
 98				if (buffer_async_write(bh))
 99					under_io++;
100				continue;
101			}
102			clear_buffer_async_write(bh);
103			if (bio->bi_status)
 
104				buffer_io_error(bh);
 
105		} while ((bh = bh->b_this_page) != head);
106		bit_spin_unlock(BH_Uptodate_Lock, &head->b_state);
107		local_irq_restore(flags);
108		if (!under_io) {
109			fscrypt_free_bounce_page(bounce_page);
110			end_page_writeback(page);
111		}
112	}
113}
114
115static void ext4_release_io_end(ext4_io_end_t *io_end)
116{
117	struct bio *bio, *next_bio;
118
119	BUG_ON(!list_empty(&io_end->list));
120	BUG_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
121	WARN_ON(io_end->handle);
122
123	for (bio = io_end->bio; bio; bio = next_bio) {
124		next_bio = bio->bi_private;
125		ext4_finish_bio(bio);
126		bio_put(bio);
127	}
 
128	kmem_cache_free(io_end_cachep, io_end);
129}
130
131/*
132 * Check a range of space and convert unwritten extents to written. Note that
133 * we are protected from truncate touching same part of extent tree by the
134 * fact that truncate code waits for all DIO to finish (thus exclusion from
135 * direct IO is achieved) and also waits for PageWriteback bits. Thus we
136 * cannot get to ext4_ext_truncate() before all IOs overlapping that range are
137 * completed (happens from ext4_free_ioend()).
138 */
139static int ext4_end_io(ext4_io_end_t *io)
140{
141	struct inode *inode = io->inode;
142	loff_t offset = io->offset;
143	ssize_t size = io->size;
144	handle_t *handle = io->handle;
145	int ret = 0;
146
147	ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
148		   "list->prev 0x%p\n",
149		   io, inode->i_ino, io->list.next, io->list.prev);
150
151	io->handle = NULL;	/* Following call will use up the handle */
152	ret = ext4_convert_unwritten_extents(handle, inode, offset, size);
153	if (ret < 0 && !ext4_forced_shutdown(EXT4_SB(inode->i_sb))) {
154		ext4_msg(inode->i_sb, KERN_EMERG,
155			 "failed to convert unwritten extents to written "
156			 "extents -- potential data loss!  "
157			 "(inode %lu, offset %llu, size %zd, error %d)",
158			 inode->i_ino, offset, size, ret);
159	}
160	ext4_clear_io_unwritten_flag(io);
161	ext4_release_io_end(io);
162	return ret;
163}
164
165static void dump_completed_IO(struct inode *inode, struct list_head *head)
166{
167#ifdef	EXT4FS_DEBUG
168	struct list_head *cur, *before, *after;
169	ext4_io_end_t *io, *io0, *io1;
170
171	if (list_empty(head))
172		return;
173
174	ext4_debug("Dump inode %lu completed io list\n", inode->i_ino);
175	list_for_each_entry(io, head, list) {
176		cur = &io->list;
177		before = cur->prev;
178		io0 = container_of(before, ext4_io_end_t, list);
179		after = cur->next;
180		io1 = container_of(after, ext4_io_end_t, list);
181
182		ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
183			    io, inode->i_ino, io0, io1);
184	}
185#endif
186}
187
188/* Add the io_end to per-inode completed end_io list. */
189static void ext4_add_complete_io(ext4_io_end_t *io_end)
190{
191	struct ext4_inode_info *ei = EXT4_I(io_end->inode);
192	struct ext4_sb_info *sbi = EXT4_SB(io_end->inode->i_sb);
193	struct workqueue_struct *wq;
194	unsigned long flags;
195
196	/* Only reserved conversions from writeback should enter here */
197	WARN_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
198	WARN_ON(!io_end->handle && sbi->s_journal);
199	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
200	wq = sbi->rsv_conversion_wq;
201	if (list_empty(&ei->i_rsv_conversion_list))
202		queue_work(wq, &ei->i_rsv_conversion_work);
203	list_add_tail(&io_end->list, &ei->i_rsv_conversion_list);
204	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
205}
206
207static int ext4_do_flush_completed_IO(struct inode *inode,
208				      struct list_head *head)
209{
210	ext4_io_end_t *io;
211	struct list_head unwritten;
212	unsigned long flags;
213	struct ext4_inode_info *ei = EXT4_I(inode);
214	int err, ret = 0;
215
216	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
217	dump_completed_IO(inode, head);
218	list_replace_init(head, &unwritten);
219	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
220
221	while (!list_empty(&unwritten)) {
222		io = list_entry(unwritten.next, ext4_io_end_t, list);
223		BUG_ON(!(io->flag & EXT4_IO_END_UNWRITTEN));
224		list_del_init(&io->list);
225
226		err = ext4_end_io(io);
227		if (unlikely(!ret && err))
228			ret = err;
229	}
230	return ret;
231}
232
233/*
234 * work on completed IO, to convert unwritten extents to extents
235 */
236void ext4_end_io_rsv_work(struct work_struct *work)
237{
238	struct ext4_inode_info *ei = container_of(work, struct ext4_inode_info,
239						  i_rsv_conversion_work);
240	ext4_do_flush_completed_IO(&ei->vfs_inode, &ei->i_rsv_conversion_list);
241}
242
243ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
244{
245	ext4_io_end_t *io = kmem_cache_zalloc(io_end_cachep, flags);
246	if (io) {
247		io->inode = inode;
248		INIT_LIST_HEAD(&io->list);
249		atomic_set(&io->count, 1);
 
 
250	}
251	return io;
252}
253
254void ext4_put_io_end_defer(ext4_io_end_t *io_end)
255{
256	if (atomic_dec_and_test(&io_end->count)) {
257		if (!(io_end->flag & EXT4_IO_END_UNWRITTEN) || !io_end->size) {
 
258			ext4_release_io_end(io_end);
259			return;
260		}
261		ext4_add_complete_io(io_end);
262	}
263}
264
265int ext4_put_io_end(ext4_io_end_t *io_end)
266{
267	int err = 0;
268
269	if (atomic_dec_and_test(&io_end->count)) {
270		if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
271			err = ext4_convert_unwritten_extents(io_end->handle,
272						io_end->inode, io_end->offset,
273						io_end->size);
274			io_end->handle = NULL;
275			ext4_clear_io_unwritten_flag(io_end);
276		}
277		ext4_release_io_end(io_end);
278	}
279	return err;
280}
281
282ext4_io_end_t *ext4_get_io_end(ext4_io_end_t *io_end)
283{
284	atomic_inc(&io_end->count);
285	return io_end;
286}
287
288/* BIO completion function for page writeback */
289static void ext4_end_bio(struct bio *bio)
290{
291	ext4_io_end_t *io_end = bio->bi_private;
292	sector_t bi_sector = bio->bi_iter.bi_sector;
293	char b[BDEVNAME_SIZE];
294
295	if (WARN_ONCE(!io_end, "io_end is NULL: %s: sector %Lu len %u err %d\n",
296		      bio_devname(bio, b),
297		      (long long) bio->bi_iter.bi_sector,
298		      (unsigned) bio_sectors(bio),
299		      bio->bi_status)) {
300		ext4_finish_bio(bio);
301		bio_put(bio);
302		return;
303	}
304	bio->bi_end_io = NULL;
305
306	if (bio->bi_status) {
307		struct inode *inode = io_end->inode;
308
309		ext4_warning(inode->i_sb, "I/O error %d writing to inode %lu "
310			     "(offset %llu size %ld starting block %llu)",
311			     bio->bi_status, inode->i_ino,
312			     (unsigned long long) io_end->offset,
313			     (long) io_end->size,
314			     (unsigned long long)
315			     bi_sector >> (inode->i_blkbits - 9));
316		mapping_set_error(inode->i_mapping,
317				blk_status_to_errno(bio->bi_status));
318	}
319
320	if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
321		/*
322		 * Link bio into list hanging from io_end. We have to do it
323		 * atomically as bio completions can be racing against each
324		 * other.
325		 */
326		bio->bi_private = xchg(&io_end->bio, bio);
327		ext4_put_io_end_defer(io_end);
328	} else {
329		/*
330		 * Drop io_end reference early. Inode can get freed once
331		 * we finish the bio.
332		 */
333		ext4_put_io_end_defer(io_end);
334		ext4_finish_bio(bio);
335		bio_put(bio);
336	}
337}
338
339void ext4_io_submit(struct ext4_io_submit *io)
340{
341	struct bio *bio = io->io_bio;
342
343	if (bio) {
344		int io_op_flags = io->io_wbc->sync_mode == WB_SYNC_ALL ?
345				  REQ_SYNC : 0;
346		io->io_bio->bi_write_hint = io->io_end->inode->i_write_hint;
347		bio_set_op_attrs(io->io_bio, REQ_OP_WRITE, io_op_flags);
348		submit_bio(io->io_bio);
349	}
350	io->io_bio = NULL;
351}
352
353void ext4_io_submit_init(struct ext4_io_submit *io,
354			 struct writeback_control *wbc)
355{
356	io->io_wbc = wbc;
357	io->io_bio = NULL;
358	io->io_end = NULL;
359}
360
361static int io_submit_init_bio(struct ext4_io_submit *io,
362			      struct buffer_head *bh)
363{
364	struct bio *bio;
365
366	bio = bio_alloc(GFP_NOIO, BIO_MAX_PAGES);
367	if (!bio)
368		return -ENOMEM;
 
 
 
369	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
370	bio_set_dev(bio, bh->b_bdev);
371	bio->bi_end_io = ext4_end_bio;
372	bio->bi_private = ext4_get_io_end(io->io_end);
373	io->io_bio = bio;
374	io->io_next_block = bh->b_blocknr;
375	wbc_init_bio(io->io_wbc, bio);
376	return 0;
377}
378
379static int io_submit_add_bh(struct ext4_io_submit *io,
380			    struct inode *inode,
381			    struct page *page,
382			    struct buffer_head *bh)
383{
384	int ret;
385
386	if (io->io_bio && bh->b_blocknr != io->io_next_block) {
 
387submit_and_retry:
388		ext4_io_submit(io);
389	}
390	if (io->io_bio == NULL) {
391		ret = io_submit_init_bio(io, bh);
392		if (ret)
393			return ret;
394		io->io_bio->bi_write_hint = inode->i_write_hint;
395	}
396	ret = bio_add_page(io->io_bio, page, bh->b_size, bh_offset(bh));
397	if (ret != bh->b_size)
398		goto submit_and_retry;
399	wbc_account_cgroup_owner(io->io_wbc, page, bh->b_size);
400	io->io_next_block++;
401	return 0;
402}
403
404int ext4_bio_write_page(struct ext4_io_submit *io,
405			struct page *page,
406			int len,
407			struct writeback_control *wbc,
408			bool keep_towrite)
409{
410	struct page *bounce_page = NULL;
411	struct inode *inode = page->mapping->host;
412	unsigned block_start;
413	struct buffer_head *bh, *head;
414	int ret = 0;
415	int nr_submitted = 0;
416	int nr_to_submit = 0;
 
 
417
418	BUG_ON(!PageLocked(page));
419	BUG_ON(PageWriteback(page));
420
421	if (keep_towrite)
422		set_page_writeback_keepwrite(page);
423	else
424		set_page_writeback(page);
425	ClearPageError(page);
426
427	/*
428	 * Comments copied from block_write_full_page:
429	 *
430	 * The page straddles i_size.  It must be zeroed out on each and every
431	 * writepage invocation because it may be mmapped.  "A file is mapped
432	 * in multiples of the page size.  For a file that is not a multiple of
433	 * the page size, the remaining memory is zeroed when mapped, and
434	 * writes to that region are not written out to the file."
435	 */
436	if (len < PAGE_SIZE)
437		zero_user_segment(page, len, PAGE_SIZE);
438	/*
439	 * In the first loop we prepare and mark buffers to submit. We have to
440	 * mark all buffers in the page before submitting so that
441	 * end_page_writeback() cannot be called from ext4_bio_end_io() when IO
442	 * on the first buffer finishes and we are still working on submitting
443	 * the second buffer.
444	 */
445	bh = head = page_buffers(page);
446	do {
447		block_start = bh_offset(bh);
448		if (block_start >= len) {
449			clear_buffer_dirty(bh);
450			set_buffer_uptodate(bh);
451			continue;
452		}
453		if (!buffer_dirty(bh) || buffer_delay(bh) ||
454		    !buffer_mapped(bh) || buffer_unwritten(bh)) {
455			/* A hole? We can safely clear the dirty bit */
456			if (!buffer_mapped(bh))
457				clear_buffer_dirty(bh);
458			if (io->io_bio)
459				ext4_io_submit(io);
 
 
 
 
 
 
 
 
 
 
460			continue;
461		}
462		if (buffer_new(bh))
463			clear_buffer_new(bh);
464		set_buffer_async_write(bh);
 
465		nr_to_submit++;
466	} while ((bh = bh->b_this_page) != head);
467
 
 
 
 
468	bh = head = page_buffers(page);
469
470	/*
471	 * If any blocks are being written to an encrypted file, encrypt them
472	 * into a bounce page.  For simplicity, just encrypt until the last
473	 * block which might be needed.  This may cause some unneeded blocks
474	 * (e.g. holes) to be unnecessarily encrypted, but this is rare and
475	 * can't happen in the common case of blocksize == PAGE_SIZE.
476	 */
477	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode) && nr_to_submit) {
478		gfp_t gfp_flags = GFP_NOFS;
479		unsigned int enc_bytes = round_up(len, i_blocksize(inode));
480
 
 
 
 
 
 
 
481	retry_encrypt:
482		bounce_page = fscrypt_encrypt_pagecache_blocks(page, enc_bytes,
483							       0, gfp_flags);
484		if (IS_ERR(bounce_page)) {
485			ret = PTR_ERR(bounce_page);
486			if (ret == -ENOMEM && wbc->sync_mode == WB_SYNC_ALL) {
487				if (io->io_bio) {
 
 
488					ext4_io_submit(io);
489					congestion_wait(BLK_RW_ASYNC, HZ/50);
490				}
491				gfp_flags |= __GFP_NOFAIL;
 
492				goto retry_encrypt;
493			}
494			bounce_page = NULL;
495			goto out;
 
 
 
 
 
 
 
 
 
496		}
497	}
498
 
 
 
 
 
499	/* Now submit buffers to write */
500	do {
501		if (!buffer_async_write(bh))
502			continue;
503		ret = io_submit_add_bh(io, inode, bounce_page ?: page, bh);
504		if (ret) {
505			/*
506			 * We only get here on ENOMEM.  Not much else
507			 * we can do but mark the page as dirty, and
508			 * better luck next time.
509			 */
510			break;
511		}
512		nr_submitted++;
513		clear_buffer_dirty(bh);
514	} while ((bh = bh->b_this_page) != head);
515
516	/* Error stopped previous loop? Clean up buffers... */
517	if (ret) {
518	out:
519		fscrypt_free_bounce_page(bounce_page);
520		printk_ratelimited(KERN_ERR "%s: ret = %d\n", __func__, ret);
521		redirty_page_for_writepage(wbc, page);
522		do {
523			clear_buffer_async_write(bh);
524			bh = bh->b_this_page;
525		} while (bh != head);
526	}
527	unlock_page(page);
528	/* Nothing submitted - we have to end page writeback */
529	if (!nr_submitted)
530		end_page_writeback(page);
531	return ret;
532}