Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/slab.h>
   7#include <linux/blkdev.h>
   8#include <linux/writeback.h>
   9#include <linux/sched/mm.h>
  10#include "messages.h"
  11#include "misc.h"
  12#include "ctree.h"
  13#include "transaction.h"
  14#include "btrfs_inode.h"
  15#include "extent_io.h"
  16#include "disk-io.h"
  17#include "compression.h"
  18#include "delalloc-space.h"
  19#include "qgroup.h"
  20#include "subpage.h"
  21#include "file.h"
  22#include "super.h"
  23
  24static struct kmem_cache *btrfs_ordered_extent_cache;
  25
  26static u64 entry_end(struct btrfs_ordered_extent *entry)
  27{
  28	if (entry->file_offset + entry->num_bytes < entry->file_offset)
  29		return (u64)-1;
  30	return entry->file_offset + entry->num_bytes;
  31}
  32
  33/* returns NULL if the insertion worked, or it returns the node it did find
  34 * in the tree
  35 */
  36static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
  37				   struct rb_node *node)
  38{
  39	struct rb_node **p = &root->rb_node;
  40	struct rb_node *parent = NULL;
  41	struct btrfs_ordered_extent *entry;
  42
  43	while (*p) {
  44		parent = *p;
  45		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
  46
  47		if (file_offset < entry->file_offset)
  48			p = &(*p)->rb_left;
  49		else if (file_offset >= entry_end(entry))
  50			p = &(*p)->rb_right;
  51		else
  52			return parent;
  53	}
  54
  55	rb_link_node(node, parent, p);
  56	rb_insert_color(node, root);
  57	return NULL;
  58}
  59
  60/*
  61 * look for a given offset in the tree, and if it can't be found return the
  62 * first lesser offset
  63 */
  64static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
  65				     struct rb_node **prev_ret)
  66{
  67	struct rb_node *n = root->rb_node;
  68	struct rb_node *prev = NULL;
  69	struct rb_node *test;
  70	struct btrfs_ordered_extent *entry;
  71	struct btrfs_ordered_extent *prev_entry = NULL;
  72
  73	while (n) {
  74		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
  75		prev = n;
  76		prev_entry = entry;
  77
  78		if (file_offset < entry->file_offset)
  79			n = n->rb_left;
  80		else if (file_offset >= entry_end(entry))
  81			n = n->rb_right;
  82		else
  83			return n;
  84	}
  85	if (!prev_ret)
  86		return NULL;
  87
  88	while (prev && file_offset >= entry_end(prev_entry)) {
  89		test = rb_next(prev);
  90		if (!test)
  91			break;
  92		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
  93				      rb_node);
  94		if (file_offset < entry_end(prev_entry))
  95			break;
  96
  97		prev = test;
  98	}
  99	if (prev)
 100		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
 101				      rb_node);
 102	while (prev && file_offset < entry_end(prev_entry)) {
 103		test = rb_prev(prev);
 104		if (!test)
 105			break;
 106		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
 107				      rb_node);
 108		prev = test;
 109	}
 110	*prev_ret = prev;
 111	return NULL;
 112}
 113
 114static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
 115			  u64 len)
 116{
 117	if (file_offset + len <= entry->file_offset ||
 118	    entry->file_offset + entry->num_bytes <= file_offset)
 119		return 0;
 120	return 1;
 121}
 122
 123/*
 124 * look find the first ordered struct that has this offset, otherwise
 125 * the first one less than this offset
 126 */
 127static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
 128					  u64 file_offset)
 129{
 130	struct rb_root *root = &tree->tree;
 131	struct rb_node *prev = NULL;
 132	struct rb_node *ret;
 133	struct btrfs_ordered_extent *entry;
 134
 135	if (tree->last) {
 136		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
 137				 rb_node);
 138		if (in_range(file_offset, entry->file_offset, entry->num_bytes))
 139			return tree->last;
 140	}
 141	ret = __tree_search(root, file_offset, &prev);
 142	if (!ret)
 143		ret = prev;
 144	if (ret)
 145		tree->last = ret;
 146	return ret;
 147}
 148
 149/*
 150 * Add an ordered extent to the per-inode tree.
 151 *
 152 * @inode:           Inode that this extent is for.
 153 * @file_offset:     Logical offset in file where the extent starts.
 154 * @num_bytes:       Logical length of extent in file.
 155 * @ram_bytes:       Full length of unencoded data.
 156 * @disk_bytenr:     Offset of extent on disk.
 157 * @disk_num_bytes:  Size of extent on disk.
 158 * @offset:          Offset into unencoded data where file data starts.
 159 * @flags:           Flags specifying type of extent (1 << BTRFS_ORDERED_*).
 160 * @compress_type:   Compression algorithm used for data.
 161 *
 162 * Most of these parameters correspond to &struct btrfs_file_extent_item. The
 163 * tree is given a single reference on the ordered extent that was inserted.
 164 *
 165 * Return: 0 or -ENOMEM.
 166 */
 167int btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
 168			     u64 num_bytes, u64 ram_bytes, u64 disk_bytenr,
 169			     u64 disk_num_bytes, u64 offset, unsigned flags,
 170			     int compress_type)
 171{
 172	struct btrfs_root *root = inode->root;
 173	struct btrfs_fs_info *fs_info = root->fs_info;
 174	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
 175	struct rb_node *node;
 176	struct btrfs_ordered_extent *entry;
 177	int ret;
 
 178
 179	if (flags &
 180	    ((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) {
 181		/* For nocow write, we can release the qgroup rsv right now */
 182		ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes);
 183		if (ret < 0)
 184			return ret;
 185		ret = 0;
 186	} else {
 187		/*
 188		 * The ordered extent has reserved qgroup space, release now
 189		 * and pass the reserved number for qgroup_record to free.
 190		 */
 191		ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes);
 192		if (ret < 0)
 193			return ret;
 194	}
 195	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
 196	if (!entry)
 197		return -ENOMEM;
 198
 199	entry->file_offset = file_offset;
 200	entry->num_bytes = num_bytes;
 201	entry->ram_bytes = ram_bytes;
 202	entry->disk_bytenr = disk_bytenr;
 203	entry->disk_num_bytes = disk_num_bytes;
 204	entry->offset = offset;
 205	entry->bytes_left = num_bytes;
 206	entry->inode = igrab(&inode->vfs_inode);
 207	entry->compress_type = compress_type;
 208	entry->truncated_len = (u64)-1;
 209	entry->qgroup_rsv = ret;
 210	entry->physical = (u64)-1;
 211
 212	ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0);
 213	entry->flags = flags;
 214
 215	percpu_counter_add_batch(&fs_info->ordered_bytes, num_bytes,
 216				 fs_info->delalloc_batch);
 217
 218	/* one ref for the tree */
 219	refcount_set(&entry->refs, 1);
 220	init_waitqueue_head(&entry->wait);
 221	INIT_LIST_HEAD(&entry->list);
 222	INIT_LIST_HEAD(&entry->log_list);
 223	INIT_LIST_HEAD(&entry->root_extent_list);
 224	INIT_LIST_HEAD(&entry->work_list);
 
 225	init_completion(&entry->completion);
 226
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 227	trace_btrfs_ordered_extent_add(inode, entry);
 228
 229	spin_lock_irq(&tree->lock);
 230	node = tree_insert(&tree->tree, file_offset,
 
 
 
 
 
 
 231			   &entry->rb_node);
 232	if (node)
 233		btrfs_panic(fs_info, -EEXIST,
 234				"inconsistency in ordered tree at offset %llu",
 235				file_offset);
 236	spin_unlock_irq(&tree->lock);
 237
 238	spin_lock(&root->ordered_extent_lock);
 239	list_add_tail(&entry->root_extent_list,
 240		      &root->ordered_extents);
 241	root->nr_ordered_extents++;
 242	if (root->nr_ordered_extents == 1) {
 243		spin_lock(&fs_info->ordered_root_lock);
 244		BUG_ON(!list_empty(&root->ordered_root));
 245		list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
 246		spin_unlock(&fs_info->ordered_root_lock);
 247	}
 248	spin_unlock(&root->ordered_extent_lock);
 
 249
 250	/*
 251	 * We don't need the count_max_extents here, we can assume that all of
 252	 * that work has been done at higher layers, so this is truly the
 253	 * smallest the extent is going to get.
 254	 */
 255	spin_lock(&inode->lock);
 256	btrfs_mod_outstanding_extents(inode, 1);
 257	spin_unlock(&inode->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 258
 259	return 0;
 
 
 
 
 
 
 
 260}
 261
 262/*
 263 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
 264 * when an ordered extent is finished.  If the list covers more than one
 265 * ordered extent, it is split across multiples.
 266 */
 267void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
 268			   struct btrfs_ordered_sum *sum)
 269{
 270	struct btrfs_ordered_inode_tree *tree;
 271
 272	tree = &BTRFS_I(entry->inode)->ordered_tree;
 273	spin_lock_irq(&tree->lock);
 274	list_add_tail(&sum->list, &entry->list);
 275	spin_unlock_irq(&tree->lock);
 276}
 277
 278static void finish_ordered_fn(struct btrfs_work *work)
 279{
 280	struct btrfs_ordered_extent *ordered_extent;
 281
 282	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
 283	btrfs_finish_ordered_io(ordered_extent);
 284}
 285
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 286/*
 287 * Mark all ordered extents io inside the specified range finished.
 288 *
 289 * @page:	 The involved page for the operation.
 290 *		 For uncompressed buffered IO, the page status also needs to be
 291 *		 updated to indicate whether the pending ordered io is finished.
 292 *		 Can be NULL for direct IO and compressed write.
 293 *		 For these cases, callers are ensured they won't execute the
 294 *		 endio function twice.
 295 *
 296 * This function is called for endio, thus the range must have ordered
 297 * extent(s) covering it.
 298 */
 299void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
 300				    struct page *page, u64 file_offset,
 301				    u64 num_bytes, bool uptodate)
 302{
 303	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
 304	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 305	struct btrfs_workqueue *wq;
 306	struct rb_node *node;
 307	struct btrfs_ordered_extent *entry = NULL;
 308	unsigned long flags;
 309	u64 cur = file_offset;
 310
 311	if (btrfs_is_free_space_inode(inode))
 312		wq = fs_info->endio_freespace_worker;
 313	else
 314		wq = fs_info->endio_write_workers;
 315
 316	if (page)
 317		ASSERT(page->mapping && page_offset(page) <= file_offset &&
 318		       file_offset + num_bytes <= page_offset(page) + PAGE_SIZE);
 319
 320	spin_lock_irqsave(&tree->lock, flags);
 321	while (cur < file_offset + num_bytes) {
 322		u64 entry_end;
 323		u64 end;
 324		u32 len;
 325
 326		node = tree_search(tree, cur);
 327		/* No ordered extents at all */
 328		if (!node)
 329			break;
 330
 331		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 332		entry_end = entry->file_offset + entry->num_bytes;
 333		/*
 334		 * |<-- OE --->|  |
 335		 *		  cur
 336		 * Go to next OE.
 337		 */
 338		if (cur >= entry_end) {
 339			node = rb_next(node);
 340			/* No more ordered extents, exit */
 341			if (!node)
 342				break;
 343			entry = rb_entry(node, struct btrfs_ordered_extent,
 344					 rb_node);
 345
 346			/* Go to next ordered extent and continue */
 347			cur = entry->file_offset;
 348			continue;
 349		}
 350		/*
 351		 * |	|<--- OE --->|
 352		 * cur
 353		 * Go to the start of OE.
 354		 */
 355		if (cur < entry->file_offset) {
 356			cur = entry->file_offset;
 357			continue;
 358		}
 359
 360		/*
 361		 * Now we are definitely inside one ordered extent.
 362		 *
 363		 * |<--- OE --->|
 364		 *	|
 365		 *	cur
 366		 */
 367		end = min(entry->file_offset + entry->num_bytes,
 368			  file_offset + num_bytes) - 1;
 369		ASSERT(end + 1 - cur < U32_MAX);
 370		len = end + 1 - cur;
 371
 372		if (page) {
 373			/*
 374			 * Ordered (Private2) bit indicates whether we still
 375			 * have pending io unfinished for the ordered extent.
 376			 *
 377			 * If there's no such bit, we need to skip to next range.
 378			 */
 379			if (!btrfs_page_test_ordered(fs_info, page, cur, len)) {
 380				cur += len;
 381				continue;
 382			}
 383			btrfs_page_clear_ordered(fs_info, page, cur, len);
 384		}
 385
 386		/* Now we're fine to update the accounting */
 387		if (unlikely(len > entry->bytes_left)) {
 388			WARN_ON(1);
 389			btrfs_crit(fs_info,
 390"bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%u left=%llu",
 391				   inode->root->root_key.objectid,
 392				   btrfs_ino(inode),
 393				   entry->file_offset,
 394				   entry->num_bytes,
 395				   len, entry->bytes_left);
 396			entry->bytes_left = 0;
 397		} else {
 398			entry->bytes_left -= len;
 399		}
 400
 401		if (!uptodate)
 402			set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
 403
 404		/*
 405		 * All the IO of the ordered extent is finished, we need to queue
 406		 * the finish_func to be executed.
 407		 */
 408		if (entry->bytes_left == 0) {
 409			set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
 410			cond_wake_up(&entry->wait);
 411			refcount_inc(&entry->refs);
 412			trace_btrfs_ordered_extent_mark_finished(inode, entry);
 413			spin_unlock_irqrestore(&tree->lock, flags);
 414			btrfs_init_work(&entry->work, finish_ordered_fn, NULL, NULL);
 415			btrfs_queue_work(wq, &entry->work);
 416			spin_lock_irqsave(&tree->lock, flags);
 417		}
 418		cur += len;
 419	}
 420	spin_unlock_irqrestore(&tree->lock, flags);
 421}
 422
 423/*
 424 * Finish IO for one ordered extent across a given range.  The range can only
 425 * contain one ordered extent.
 426 *
 427 * @cached:	 The cached ordered extent. If not NULL, we can skip the tree
 428 *               search and use the ordered extent directly.
 429 * 		 Will be also used to store the finished ordered extent.
 430 * @file_offset: File offset for the finished IO
 431 * @io_size:	 Length of the finish IO range
 432 *
 433 * Return true if the ordered extent is finished in the range, and update
 434 * @cached.
 435 * Return false otherwise.
 436 *
 437 * NOTE: The range can NOT cross multiple ordered extents.
 438 * Thus caller should ensure the range doesn't cross ordered extents.
 439 */
 440bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
 441				    struct btrfs_ordered_extent **cached,
 442				    u64 file_offset, u64 io_size)
 443{
 444	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
 445	struct rb_node *node;
 446	struct btrfs_ordered_extent *entry = NULL;
 447	unsigned long flags;
 448	bool finished = false;
 449
 450	spin_lock_irqsave(&tree->lock, flags);
 451	if (cached && *cached) {
 452		entry = *cached;
 453		goto have_entry;
 454	}
 455
 456	node = tree_search(tree, file_offset);
 457	if (!node)
 458		goto out;
 459
 460	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 461have_entry:
 462	if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
 463		goto out;
 464
 465	if (io_size > entry->bytes_left)
 466		btrfs_crit(inode->root->fs_info,
 467			   "bad ordered accounting left %llu size %llu",
 468		       entry->bytes_left, io_size);
 469
 470	entry->bytes_left -= io_size;
 471
 472	if (entry->bytes_left == 0) {
 473		/*
 474		 * Ensure only one caller can set the flag and finished_ret
 475		 * accordingly
 476		 */
 477		finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
 478		/* test_and_set_bit implies a barrier */
 479		cond_wake_up_nomb(&entry->wait);
 480	}
 481out:
 482	if (finished && cached && entry) {
 483		*cached = entry;
 484		refcount_inc(&entry->refs);
 485		trace_btrfs_ordered_extent_dec_test_pending(inode, entry);
 486	}
 487	spin_unlock_irqrestore(&tree->lock, flags);
 488	return finished;
 489}
 490
 491/*
 492 * used to drop a reference on an ordered extent.  This will free
 493 * the extent if the last reference is dropped
 494 */
 495void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
 496{
 497	struct list_head *cur;
 498	struct btrfs_ordered_sum *sum;
 499
 500	trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
 501
 502	if (refcount_dec_and_test(&entry->refs)) {
 503		ASSERT(list_empty(&entry->root_extent_list));
 504		ASSERT(list_empty(&entry->log_list));
 505		ASSERT(RB_EMPTY_NODE(&entry->rb_node));
 506		if (entry->inode)
 507			btrfs_add_delayed_iput(BTRFS_I(entry->inode));
 508		while (!list_empty(&entry->list)) {
 509			cur = entry->list.next;
 510			sum = list_entry(cur, struct btrfs_ordered_sum, list);
 511			list_del(&sum->list);
 512			kvfree(sum);
 513		}
 514		kmem_cache_free(btrfs_ordered_extent_cache, entry);
 515	}
 516}
 517
 518/*
 519 * remove an ordered extent from the tree.  No references are dropped
 520 * and waiters are woken up.
 521 */
 522void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
 523				 struct btrfs_ordered_extent *entry)
 524{
 525	struct btrfs_ordered_inode_tree *tree;
 526	struct btrfs_root *root = btrfs_inode->root;
 527	struct btrfs_fs_info *fs_info = root->fs_info;
 528	struct rb_node *node;
 529	bool pending;
 530	bool freespace_inode;
 531
 532	/*
 533	 * If this is a free space inode the thread has not acquired the ordered
 534	 * extents lockdep map.
 535	 */
 536	freespace_inode = btrfs_is_free_space_inode(btrfs_inode);
 537
 538	btrfs_lockdep_acquire(fs_info, btrfs_trans_pending_ordered);
 539	/* This is paired with btrfs_add_ordered_extent. */
 540	spin_lock(&btrfs_inode->lock);
 541	btrfs_mod_outstanding_extents(btrfs_inode, -1);
 542	spin_unlock(&btrfs_inode->lock);
 543	if (root != fs_info->tree_root) {
 544		u64 release;
 545
 546		if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags))
 547			release = entry->disk_num_bytes;
 548		else
 549			release = entry->num_bytes;
 550		btrfs_delalloc_release_metadata(btrfs_inode, release, false);
 
 
 551	}
 552
 553	percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
 554				 fs_info->delalloc_batch);
 555
 556	tree = &btrfs_inode->ordered_tree;
 557	spin_lock_irq(&tree->lock);
 558	node = &entry->rb_node;
 559	rb_erase(node, &tree->tree);
 560	RB_CLEAR_NODE(node);
 561	if (tree->last == node)
 562		tree->last = NULL;
 563	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
 564	pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
 565	spin_unlock_irq(&tree->lock);
 566
 567	/*
 568	 * The current running transaction is waiting on us, we need to let it
 569	 * know that we're complete and wake it up.
 570	 */
 571	if (pending) {
 572		struct btrfs_transaction *trans;
 573
 574		/*
 575		 * The checks for trans are just a formality, it should be set,
 576		 * but if it isn't we don't want to deref/assert under the spin
 577		 * lock, so be nice and check if trans is set, but ASSERT() so
 578		 * if it isn't set a developer will notice.
 579		 */
 580		spin_lock(&fs_info->trans_lock);
 581		trans = fs_info->running_transaction;
 582		if (trans)
 583			refcount_inc(&trans->use_count);
 584		spin_unlock(&fs_info->trans_lock);
 585
 586		ASSERT(trans);
 587		if (trans) {
 588			if (atomic_dec_and_test(&trans->pending_ordered))
 589				wake_up(&trans->pending_wait);
 590			btrfs_put_transaction(trans);
 591		}
 592	}
 593
 594	btrfs_lockdep_release(fs_info, btrfs_trans_pending_ordered);
 595
 596	spin_lock(&root->ordered_extent_lock);
 597	list_del_init(&entry->root_extent_list);
 598	root->nr_ordered_extents--;
 599
 600	trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
 601
 602	if (!root->nr_ordered_extents) {
 603		spin_lock(&fs_info->ordered_root_lock);
 604		BUG_ON(list_empty(&root->ordered_root));
 605		list_del_init(&root->ordered_root);
 606		spin_unlock(&fs_info->ordered_root_lock);
 607	}
 608	spin_unlock(&root->ordered_extent_lock);
 609	wake_up(&entry->wait);
 610	if (!freespace_inode)
 611		btrfs_lockdep_release(fs_info, btrfs_ordered_extent);
 612}
 613
 614static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
 615{
 616	struct btrfs_ordered_extent *ordered;
 617
 618	ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
 619	btrfs_start_ordered_extent(ordered, 1);
 620	complete(&ordered->completion);
 621}
 622
 623/*
 624 * wait for all the ordered extents in a root.  This is done when balancing
 625 * space between drives.
 626 */
 627u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
 628			       const u64 range_start, const u64 range_len)
 629{
 630	struct btrfs_fs_info *fs_info = root->fs_info;
 631	LIST_HEAD(splice);
 632	LIST_HEAD(skipped);
 633	LIST_HEAD(works);
 634	struct btrfs_ordered_extent *ordered, *next;
 635	u64 count = 0;
 636	const u64 range_end = range_start + range_len;
 637
 638	mutex_lock(&root->ordered_extent_mutex);
 639	spin_lock(&root->ordered_extent_lock);
 640	list_splice_init(&root->ordered_extents, &splice);
 641	while (!list_empty(&splice) && nr) {
 642		ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
 643					   root_extent_list);
 644
 645		if (range_end <= ordered->disk_bytenr ||
 646		    ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
 647			list_move_tail(&ordered->root_extent_list, &skipped);
 648			cond_resched_lock(&root->ordered_extent_lock);
 649			continue;
 650		}
 651
 652		list_move_tail(&ordered->root_extent_list,
 653			       &root->ordered_extents);
 654		refcount_inc(&ordered->refs);
 655		spin_unlock(&root->ordered_extent_lock);
 656
 657		btrfs_init_work(&ordered->flush_work,
 658				btrfs_run_ordered_extent_work, NULL, NULL);
 659		list_add_tail(&ordered->work_list, &works);
 660		btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
 661
 662		cond_resched();
 663		spin_lock(&root->ordered_extent_lock);
 664		if (nr != U64_MAX)
 665			nr--;
 666		count++;
 667	}
 668	list_splice_tail(&skipped, &root->ordered_extents);
 669	list_splice_tail(&splice, &root->ordered_extents);
 670	spin_unlock(&root->ordered_extent_lock);
 671
 672	list_for_each_entry_safe(ordered, next, &works, work_list) {
 673		list_del_init(&ordered->work_list);
 674		wait_for_completion(&ordered->completion);
 675		btrfs_put_ordered_extent(ordered);
 676		cond_resched();
 677	}
 678	mutex_unlock(&root->ordered_extent_mutex);
 679
 680	return count;
 681}
 682
 683void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
 684			     const u64 range_start, const u64 range_len)
 685{
 686	struct btrfs_root *root;
 687	struct list_head splice;
 688	u64 done;
 689
 690	INIT_LIST_HEAD(&splice);
 691
 692	mutex_lock(&fs_info->ordered_operations_mutex);
 693	spin_lock(&fs_info->ordered_root_lock);
 694	list_splice_init(&fs_info->ordered_roots, &splice);
 695	while (!list_empty(&splice) && nr) {
 696		root = list_first_entry(&splice, struct btrfs_root,
 697					ordered_root);
 698		root = btrfs_grab_root(root);
 699		BUG_ON(!root);
 700		list_move_tail(&root->ordered_root,
 701			       &fs_info->ordered_roots);
 702		spin_unlock(&fs_info->ordered_root_lock);
 703
 704		done = btrfs_wait_ordered_extents(root, nr,
 705						  range_start, range_len);
 706		btrfs_put_root(root);
 707
 708		spin_lock(&fs_info->ordered_root_lock);
 709		if (nr != U64_MAX) {
 710			nr -= done;
 711		}
 712	}
 713	list_splice_tail(&splice, &fs_info->ordered_roots);
 714	spin_unlock(&fs_info->ordered_root_lock);
 715	mutex_unlock(&fs_info->ordered_operations_mutex);
 716}
 717
 718/*
 719 * Used to start IO or wait for a given ordered extent to finish.
 720 *
 721 * If wait is one, this effectively waits on page writeback for all the pages
 722 * in the extent, and it waits on the io completion code to insert
 723 * metadata into the btree corresponding to the extent
 724 */
 725void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry, int wait)
 726{
 727	u64 start = entry->file_offset;
 728	u64 end = start + entry->num_bytes - 1;
 729	struct btrfs_inode *inode = BTRFS_I(entry->inode);
 730	bool freespace_inode;
 731
 732	trace_btrfs_ordered_extent_start(inode, entry);
 733
 734	/*
 735	 * If this is a free space inode do not take the ordered extents lockdep
 736	 * map.
 737	 */
 738	freespace_inode = btrfs_is_free_space_inode(inode);
 739
 740	/*
 741	 * pages in the range can be dirty, clean or writeback.  We
 742	 * start IO on any dirty ones so the wait doesn't stall waiting
 743	 * for the flusher thread to find them
 744	 */
 745	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
 746		filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
 747	if (wait) {
 748		if (!freespace_inode)
 749			btrfs_might_wait_for_event(inode->root->fs_info, btrfs_ordered_extent);
 750		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
 751						 &entry->flags));
 752	}
 753}
 754
 755/*
 756 * Used to wait on ordered extents across a large range of bytes.
 757 */
 758int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
 759{
 760	int ret = 0;
 761	int ret_wb = 0;
 762	u64 end;
 763	u64 orig_end;
 764	struct btrfs_ordered_extent *ordered;
 765
 766	if (start + len < start) {
 767		orig_end = OFFSET_MAX;
 768	} else {
 769		orig_end = start + len - 1;
 770		if (orig_end > OFFSET_MAX)
 771			orig_end = OFFSET_MAX;
 772	}
 773
 774	/* start IO across the range first to instantiate any delalloc
 775	 * extents
 776	 */
 777	ret = btrfs_fdatawrite_range(inode, start, orig_end);
 778	if (ret)
 779		return ret;
 780
 781	/*
 782	 * If we have a writeback error don't return immediately. Wait first
 783	 * for any ordered extents that haven't completed yet. This is to make
 784	 * sure no one can dirty the same page ranges and call writepages()
 785	 * before the ordered extents complete - to avoid failures (-EEXIST)
 786	 * when adding the new ordered extents to the ordered tree.
 787	 */
 788	ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
 789
 790	end = orig_end;
 791	while (1) {
 792		ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
 793		if (!ordered)
 794			break;
 795		if (ordered->file_offset > orig_end) {
 796			btrfs_put_ordered_extent(ordered);
 797			break;
 798		}
 799		if (ordered->file_offset + ordered->num_bytes <= start) {
 800			btrfs_put_ordered_extent(ordered);
 801			break;
 802		}
 803		btrfs_start_ordered_extent(ordered, 1);
 804		end = ordered->file_offset;
 805		/*
 806		 * If the ordered extent had an error save the error but don't
 807		 * exit without waiting first for all other ordered extents in
 808		 * the range to complete.
 809		 */
 810		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
 811			ret = -EIO;
 812		btrfs_put_ordered_extent(ordered);
 813		if (end == 0 || end == start)
 814			break;
 815		end--;
 816	}
 817	return ret_wb ? ret_wb : ret;
 818}
 819
 820/*
 821 * find an ordered extent corresponding to file_offset.  return NULL if
 822 * nothing is found, otherwise take a reference on the extent and return it
 823 */
 824struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
 825							 u64 file_offset)
 826{
 827	struct btrfs_ordered_inode_tree *tree;
 828	struct rb_node *node;
 829	struct btrfs_ordered_extent *entry = NULL;
 830	unsigned long flags;
 831
 832	tree = &inode->ordered_tree;
 833	spin_lock_irqsave(&tree->lock, flags);
 834	node = tree_search(tree, file_offset);
 835	if (!node)
 836		goto out;
 837
 838	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 839	if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
 840		entry = NULL;
 841	if (entry) {
 842		refcount_inc(&entry->refs);
 843		trace_btrfs_ordered_extent_lookup(inode, entry);
 844	}
 845out:
 846	spin_unlock_irqrestore(&tree->lock, flags);
 847	return entry;
 848}
 849
 850/* Since the DIO code tries to lock a wide area we need to look for any ordered
 851 * extents that exist in the range, rather than just the start of the range.
 852 */
 853struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
 854		struct btrfs_inode *inode, u64 file_offset, u64 len)
 855{
 856	struct btrfs_ordered_inode_tree *tree;
 857	struct rb_node *node;
 858	struct btrfs_ordered_extent *entry = NULL;
 859
 860	tree = &inode->ordered_tree;
 861	spin_lock_irq(&tree->lock);
 862	node = tree_search(tree, file_offset);
 863	if (!node) {
 864		node = tree_search(tree, file_offset + len);
 865		if (!node)
 866			goto out;
 867	}
 868
 869	while (1) {
 870		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 871		if (range_overlaps(entry, file_offset, len))
 872			break;
 873
 874		if (entry->file_offset >= file_offset + len) {
 875			entry = NULL;
 876			break;
 877		}
 878		entry = NULL;
 879		node = rb_next(node);
 880		if (!node)
 881			break;
 882	}
 883out:
 884	if (entry) {
 885		refcount_inc(&entry->refs);
 886		trace_btrfs_ordered_extent_lookup_range(inode, entry);
 887	}
 888	spin_unlock_irq(&tree->lock);
 889	return entry;
 890}
 891
 892/*
 893 * Adds all ordered extents to the given list. The list ends up sorted by the
 894 * file_offset of the ordered extents.
 895 */
 896void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
 897					   struct list_head *list)
 898{
 899	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
 900	struct rb_node *n;
 901
 902	ASSERT(inode_is_locked(&inode->vfs_inode));
 903
 904	spin_lock_irq(&tree->lock);
 905	for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
 906		struct btrfs_ordered_extent *ordered;
 907
 908		ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
 909
 910		if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
 911			continue;
 912
 913		ASSERT(list_empty(&ordered->log_list));
 914		list_add_tail(&ordered->log_list, list);
 915		refcount_inc(&ordered->refs);
 916		trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered);
 917	}
 918	spin_unlock_irq(&tree->lock);
 919}
 920
 921/*
 922 * lookup and return any extent before 'file_offset'.  NULL is returned
 923 * if none is found
 924 */
 925struct btrfs_ordered_extent *
 926btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
 927{
 928	struct btrfs_ordered_inode_tree *tree;
 929	struct rb_node *node;
 930	struct btrfs_ordered_extent *entry = NULL;
 931
 932	tree = &inode->ordered_tree;
 933	spin_lock_irq(&tree->lock);
 934	node = tree_search(tree, file_offset);
 935	if (!node)
 936		goto out;
 937
 938	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 939	refcount_inc(&entry->refs);
 940	trace_btrfs_ordered_extent_lookup_first(inode, entry);
 941out:
 942	spin_unlock_irq(&tree->lock);
 943	return entry;
 944}
 945
 946/*
 947 * Lookup the first ordered extent that overlaps the range
 948 * [@file_offset, @file_offset + @len).
 949 *
 950 * The difference between this and btrfs_lookup_first_ordered_extent() is
 951 * that this one won't return any ordered extent that does not overlap the range.
 952 * And the difference against btrfs_lookup_ordered_extent() is, this function
 953 * ensures the first ordered extent gets returned.
 954 */
 955struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
 956			struct btrfs_inode *inode, u64 file_offset, u64 len)
 957{
 958	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
 959	struct rb_node *node;
 960	struct rb_node *cur;
 961	struct rb_node *prev;
 962	struct rb_node *next;
 963	struct btrfs_ordered_extent *entry = NULL;
 964
 965	spin_lock_irq(&tree->lock);
 966	node = tree->tree.rb_node;
 967	/*
 968	 * Here we don't want to use tree_search() which will use tree->last
 969	 * and screw up the search order.
 970	 * And __tree_search() can't return the adjacent ordered extents
 971	 * either, thus here we do our own search.
 972	 */
 973	while (node) {
 974		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 975
 976		if (file_offset < entry->file_offset) {
 977			node = node->rb_left;
 978		} else if (file_offset >= entry_end(entry)) {
 979			node = node->rb_right;
 980		} else {
 981			/*
 982			 * Direct hit, got an ordered extent that starts at
 983			 * @file_offset
 984			 */
 985			goto out;
 986		}
 987	}
 988	if (!entry) {
 989		/* Empty tree */
 990		goto out;
 991	}
 992
 993	cur = &entry->rb_node;
 994	/* We got an entry around @file_offset, check adjacent entries */
 995	if (entry->file_offset < file_offset) {
 996		prev = cur;
 997		next = rb_next(cur);
 998	} else {
 999		prev = rb_prev(cur);
1000		next = cur;
1001	}
1002	if (prev) {
1003		entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
1004		if (range_overlaps(entry, file_offset, len))
1005			goto out;
1006	}
1007	if (next) {
1008		entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
1009		if (range_overlaps(entry, file_offset, len))
1010			goto out;
1011	}
1012	/* No ordered extent in the range */
1013	entry = NULL;
1014out:
1015	if (entry) {
1016		refcount_inc(&entry->refs);
1017		trace_btrfs_ordered_extent_lookup_first_range(inode, entry);
1018	}
1019
1020	spin_unlock_irq(&tree->lock);
1021	return entry;
1022}
1023
1024/*
1025 * Lock the passed range and ensures all pending ordered extents in it are run
1026 * to completion.
1027 *
1028 * @inode:        Inode whose ordered tree is to be searched
1029 * @start:        Beginning of range to flush
1030 * @end:          Last byte of range to lock
1031 * @cached_state: If passed, will return the extent state responsible for the
1032 *                locked range. It's the caller's responsibility to free the
1033 *                cached state.
1034 *
1035 * Always return with the given range locked, ensuring after it's called no
1036 * order extent can be pending.
1037 */
1038void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
1039					u64 end,
1040					struct extent_state **cached_state)
1041{
1042	struct btrfs_ordered_extent *ordered;
1043	struct extent_state *cache = NULL;
1044	struct extent_state **cachedp = &cache;
1045
1046	if (cached_state)
1047		cachedp = cached_state;
1048
1049	while (1) {
1050		lock_extent(&inode->io_tree, start, end, cachedp);
1051		ordered = btrfs_lookup_ordered_range(inode, start,
1052						     end - start + 1);
1053		if (!ordered) {
1054			/*
1055			 * If no external cached_state has been passed then
1056			 * decrement the extra ref taken for cachedp since we
1057			 * aren't exposing it outside of this function
1058			 */
1059			if (!cached_state)
1060				refcount_dec(&cache->refs);
1061			break;
1062		}
1063		unlock_extent(&inode->io_tree, start, end, cachedp);
1064		btrfs_start_ordered_extent(ordered, 1);
1065		btrfs_put_ordered_extent(ordered);
1066	}
1067}
1068
1069/*
1070 * Lock the passed range and ensure all pending ordered extents in it are run
1071 * to completion in nowait mode.
1072 *
1073 * Return true if btrfs_lock_ordered_range does not return any extents,
1074 * otherwise false.
1075 */
1076bool btrfs_try_lock_ordered_range(struct btrfs_inode *inode, u64 start, u64 end,
1077				  struct extent_state **cached_state)
1078{
1079	struct btrfs_ordered_extent *ordered;
1080
1081	if (!try_lock_extent(&inode->io_tree, start, end, cached_state))
1082		return false;
1083
1084	ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1);
1085	if (!ordered)
1086		return true;
1087
1088	btrfs_put_ordered_extent(ordered);
1089	unlock_extent(&inode->io_tree, start, end, cached_state);
1090
1091	return false;
1092}
1093
1094
1095static int clone_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pos,
1096				u64 len)
1097{
1098	struct inode *inode = ordered->inode;
1099	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1100	u64 file_offset = ordered->file_offset + pos;
1101	u64 disk_bytenr = ordered->disk_bytenr + pos;
1102	unsigned long flags = ordered->flags & BTRFS_ORDERED_TYPE_FLAGS;
 
 
 
 
 
 
 
 
 
1103
1104	/*
1105	 * The splitting extent is already counted and will be added again in
1106	 * btrfs_add_ordered_extent_*(). Subtract len to avoid double counting.
1107	 */
1108	percpu_counter_add_batch(&fs_info->ordered_bytes, -len,
1109				 fs_info->delalloc_batch);
1110	WARN_ON_ONCE(flags & (1 << BTRFS_ORDERED_COMPRESSED));
1111	return btrfs_add_ordered_extent(BTRFS_I(inode), file_offset, len, len,
1112					disk_bytenr, len, 0, flags,
1113					ordered->compress_type);
1114}
 
 
 
 
 
 
 
 
 
1115
1116int btrfs_split_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pre,
1117				u64 post)
1118{
1119	struct inode *inode = ordered->inode;
1120	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1121	struct rb_node *node;
1122	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1123	int ret = 0;
1124
1125	trace_btrfs_ordered_extent_split(BTRFS_I(inode), ordered);
1126
1127	spin_lock_irq(&tree->lock);
1128	/* Remove from tree once */
1129	node = &ordered->rb_node;
1130	rb_erase(node, &tree->tree);
1131	RB_CLEAR_NODE(node);
1132	if (tree->last == node)
1133		tree->last = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
1134
1135	ordered->file_offset += pre;
1136	ordered->disk_bytenr += pre;
1137	ordered->num_bytes -= (pre + post);
1138	ordered->disk_num_bytes -= (pre + post);
1139	ordered->bytes_left -= (pre + post);
 
 
 
 
 
 
 
 
 
 
1140
1141	/* Re-insert the node */
1142	node = tree_insert(&tree->tree, ordered->file_offset, &ordered->rb_node);
 
1143	if (node)
1144		btrfs_panic(fs_info, -EEXIST,
1145			"zoned: inconsistency in ordered tree at offset %llu",
1146			    ordered->file_offset);
1147
1148	spin_unlock_irq(&tree->lock);
1149
1150	if (pre)
1151		ret = clone_ordered_extent(ordered, 0, pre);
1152	if (ret == 0 && post)
1153		ret = clone_ordered_extent(ordered, pre + ordered->disk_num_bytes,
1154					   post);
1155
1156	return ret;
 
 
 
1157}
1158
1159int __init ordered_data_init(void)
1160{
1161	btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1162				     sizeof(struct btrfs_ordered_extent), 0,
1163				     SLAB_MEM_SPREAD,
1164				     NULL);
1165	if (!btrfs_ordered_extent_cache)
1166		return -ENOMEM;
1167
1168	return 0;
1169}
1170
1171void __cold ordered_data_exit(void)
1172{
1173	kmem_cache_destroy(btrfs_ordered_extent_cache);
1174}
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/slab.h>
   7#include <linux/blkdev.h>
   8#include <linux/writeback.h>
   9#include <linux/sched/mm.h>
  10#include "messages.h"
  11#include "misc.h"
  12#include "ctree.h"
  13#include "transaction.h"
  14#include "btrfs_inode.h"
  15#include "extent_io.h"
  16#include "disk-io.h"
  17#include "compression.h"
  18#include "delalloc-space.h"
  19#include "qgroup.h"
  20#include "subpage.h"
  21#include "file.h"
  22#include "super.h"
  23
  24static struct kmem_cache *btrfs_ordered_extent_cache;
  25
  26static u64 entry_end(struct btrfs_ordered_extent *entry)
  27{
  28	if (entry->file_offset + entry->num_bytes < entry->file_offset)
  29		return (u64)-1;
  30	return entry->file_offset + entry->num_bytes;
  31}
  32
  33/* returns NULL if the insertion worked, or it returns the node it did find
  34 * in the tree
  35 */
  36static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
  37				   struct rb_node *node)
  38{
  39	struct rb_node **p = &root->rb_node;
  40	struct rb_node *parent = NULL;
  41	struct btrfs_ordered_extent *entry;
  42
  43	while (*p) {
  44		parent = *p;
  45		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
  46
  47		if (file_offset < entry->file_offset)
  48			p = &(*p)->rb_left;
  49		else if (file_offset >= entry_end(entry))
  50			p = &(*p)->rb_right;
  51		else
  52			return parent;
  53	}
  54
  55	rb_link_node(node, parent, p);
  56	rb_insert_color(node, root);
  57	return NULL;
  58}
  59
  60/*
  61 * look for a given offset in the tree, and if it can't be found return the
  62 * first lesser offset
  63 */
  64static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
  65				     struct rb_node **prev_ret)
  66{
  67	struct rb_node *n = root->rb_node;
  68	struct rb_node *prev = NULL;
  69	struct rb_node *test;
  70	struct btrfs_ordered_extent *entry;
  71	struct btrfs_ordered_extent *prev_entry = NULL;
  72
  73	while (n) {
  74		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
  75		prev = n;
  76		prev_entry = entry;
  77
  78		if (file_offset < entry->file_offset)
  79			n = n->rb_left;
  80		else if (file_offset >= entry_end(entry))
  81			n = n->rb_right;
  82		else
  83			return n;
  84	}
  85	if (!prev_ret)
  86		return NULL;
  87
  88	while (prev && file_offset >= entry_end(prev_entry)) {
  89		test = rb_next(prev);
  90		if (!test)
  91			break;
  92		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
  93				      rb_node);
  94		if (file_offset < entry_end(prev_entry))
  95			break;
  96
  97		prev = test;
  98	}
  99	if (prev)
 100		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
 101				      rb_node);
 102	while (prev && file_offset < entry_end(prev_entry)) {
 103		test = rb_prev(prev);
 104		if (!test)
 105			break;
 106		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
 107				      rb_node);
 108		prev = test;
 109	}
 110	*prev_ret = prev;
 111	return NULL;
 112}
 113
 114static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
 115			  u64 len)
 116{
 117	if (file_offset + len <= entry->file_offset ||
 118	    entry->file_offset + entry->num_bytes <= file_offset)
 119		return 0;
 120	return 1;
 121}
 122
 123/*
 124 * look find the first ordered struct that has this offset, otherwise
 125 * the first one less than this offset
 126 */
 127static inline struct rb_node *ordered_tree_search(struct btrfs_inode *inode,
 128						  u64 file_offset)
 129{
 
 130	struct rb_node *prev = NULL;
 131	struct rb_node *ret;
 132	struct btrfs_ordered_extent *entry;
 133
 134	if (inode->ordered_tree_last) {
 135		entry = rb_entry(inode->ordered_tree_last, struct btrfs_ordered_extent,
 136				 rb_node);
 137		if (in_range(file_offset, entry->file_offset, entry->num_bytes))
 138			return inode->ordered_tree_last;
 139	}
 140	ret = __tree_search(&inode->ordered_tree, file_offset, &prev);
 141	if (!ret)
 142		ret = prev;
 143	if (ret)
 144		inode->ordered_tree_last = ret;
 145	return ret;
 146}
 147
 148static struct btrfs_ordered_extent *alloc_ordered_extent(
 149			struct btrfs_inode *inode, u64 file_offset, u64 num_bytes,
 150			u64 ram_bytes, u64 disk_bytenr, u64 disk_num_bytes,
 151			u64 offset, unsigned long flags, int compress_type)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 152{
 
 
 
 
 153	struct btrfs_ordered_extent *entry;
 154	int ret;
 155	u64 qgroup_rsv = 0;
 156
 157	if (flags &
 158	    ((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) {
 159		/* For nocow write, we can release the qgroup rsv right now */
 160		ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes, &qgroup_rsv);
 161		if (ret < 0)
 162			return ERR_PTR(ret);
 
 163	} else {
 164		/*
 165		 * The ordered extent has reserved qgroup space, release now
 166		 * and pass the reserved number for qgroup_record to free.
 167		 */
 168		ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes, &qgroup_rsv);
 169		if (ret < 0)
 170			return ERR_PTR(ret);
 171	}
 172	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
 173	if (!entry)
 174		return ERR_PTR(-ENOMEM);
 175
 176	entry->file_offset = file_offset;
 177	entry->num_bytes = num_bytes;
 178	entry->ram_bytes = ram_bytes;
 179	entry->disk_bytenr = disk_bytenr;
 180	entry->disk_num_bytes = disk_num_bytes;
 181	entry->offset = offset;
 182	entry->bytes_left = num_bytes;
 183	entry->inode = igrab(&inode->vfs_inode);
 184	entry->compress_type = compress_type;
 185	entry->truncated_len = (u64)-1;
 186	entry->qgroup_rsv = qgroup_rsv;
 
 
 
 187	entry->flags = flags;
 
 
 
 
 
 188	refcount_set(&entry->refs, 1);
 189	init_waitqueue_head(&entry->wait);
 190	INIT_LIST_HEAD(&entry->list);
 191	INIT_LIST_HEAD(&entry->log_list);
 192	INIT_LIST_HEAD(&entry->root_extent_list);
 193	INIT_LIST_HEAD(&entry->work_list);
 194	INIT_LIST_HEAD(&entry->bioc_list);
 195	init_completion(&entry->completion);
 196
 197	/*
 198	 * We don't need the count_max_extents here, we can assume that all of
 199	 * that work has been done at higher layers, so this is truly the
 200	 * smallest the extent is going to get.
 201	 */
 202	spin_lock(&inode->lock);
 203	btrfs_mod_outstanding_extents(inode, 1);
 204	spin_unlock(&inode->lock);
 205
 206	return entry;
 207}
 208
 209static void insert_ordered_extent(struct btrfs_ordered_extent *entry)
 210{
 211	struct btrfs_inode *inode = BTRFS_I(entry->inode);
 212	struct btrfs_root *root = inode->root;
 213	struct btrfs_fs_info *fs_info = root->fs_info;
 214	struct rb_node *node;
 215
 216	trace_btrfs_ordered_extent_add(inode, entry);
 217
 218	percpu_counter_add_batch(&fs_info->ordered_bytes, entry->num_bytes,
 219				 fs_info->delalloc_batch);
 220
 221	/* One ref for the tree. */
 222	refcount_inc(&entry->refs);
 223
 224	spin_lock_irq(&inode->ordered_tree_lock);
 225	node = tree_insert(&inode->ordered_tree, entry->file_offset,
 226			   &entry->rb_node);
 227	if (node)
 228		btrfs_panic(fs_info, -EEXIST,
 229				"inconsistency in ordered tree at offset %llu",
 230				entry->file_offset);
 231	spin_unlock_irq(&inode->ordered_tree_lock);
 232
 233	spin_lock(&root->ordered_extent_lock);
 234	list_add_tail(&entry->root_extent_list,
 235		      &root->ordered_extents);
 236	root->nr_ordered_extents++;
 237	if (root->nr_ordered_extents == 1) {
 238		spin_lock(&fs_info->ordered_root_lock);
 239		BUG_ON(!list_empty(&root->ordered_root));
 240		list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
 241		spin_unlock(&fs_info->ordered_root_lock);
 242	}
 243	spin_unlock(&root->ordered_extent_lock);
 244}
 245
 246/*
 247 * Add an ordered extent to the per-inode tree.
 248 *
 249 * @inode:           Inode that this extent is for.
 250 * @file_offset:     Logical offset in file where the extent starts.
 251 * @num_bytes:       Logical length of extent in file.
 252 * @ram_bytes:       Full length of unencoded data.
 253 * @disk_bytenr:     Offset of extent on disk.
 254 * @disk_num_bytes:  Size of extent on disk.
 255 * @offset:          Offset into unencoded data where file data starts.
 256 * @flags:           Flags specifying type of extent (1 << BTRFS_ORDERED_*).
 257 * @compress_type:   Compression algorithm used for data.
 258 *
 259 * Most of these parameters correspond to &struct btrfs_file_extent_item. The
 260 * tree is given a single reference on the ordered extent that was inserted, and
 261 * the returned pointer is given a second reference.
 262 *
 263 * Return: the new ordered extent or error pointer.
 264 */
 265struct btrfs_ordered_extent *btrfs_alloc_ordered_extent(
 266			struct btrfs_inode *inode, u64 file_offset,
 267			u64 num_bytes, u64 ram_bytes, u64 disk_bytenr,
 268			u64 disk_num_bytes, u64 offset, unsigned long flags,
 269			int compress_type)
 270{
 271	struct btrfs_ordered_extent *entry;
 272
 273	ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0);
 274
 275	entry = alloc_ordered_extent(inode, file_offset, num_bytes, ram_bytes,
 276				     disk_bytenr, disk_num_bytes, offset, flags,
 277				     compress_type);
 278	if (!IS_ERR(entry))
 279		insert_ordered_extent(entry);
 280	return entry;
 281}
 282
 283/*
 284 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
 285 * when an ordered extent is finished.  If the list covers more than one
 286 * ordered extent, it is split across multiples.
 287 */
 288void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
 289			   struct btrfs_ordered_sum *sum)
 290{
 291	struct btrfs_inode *inode = BTRFS_I(entry->inode);
 292
 293	spin_lock_irq(&inode->ordered_tree_lock);
 
 294	list_add_tail(&sum->list, &entry->list);
 295	spin_unlock_irq(&inode->ordered_tree_lock);
 296}
 297
 298static void finish_ordered_fn(struct btrfs_work *work)
 299{
 300	struct btrfs_ordered_extent *ordered_extent;
 301
 302	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
 303	btrfs_finish_ordered_io(ordered_extent);
 304}
 305
 306static bool can_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
 307				      struct page *page, u64 file_offset,
 308				      u64 len, bool uptodate)
 309{
 310	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
 311	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 312
 313	lockdep_assert_held(&inode->ordered_tree_lock);
 314
 315	if (page) {
 316		ASSERT(page->mapping);
 317		ASSERT(page_offset(page) <= file_offset);
 318		ASSERT(file_offset + len <= page_offset(page) + PAGE_SIZE);
 319
 320		/*
 321		 * Ordered (Private2) bit indicates whether we still have
 322		 * pending io unfinished for the ordered extent.
 323		 *
 324		 * If there's no such bit, we need to skip to next range.
 325		 */
 326		if (!btrfs_folio_test_ordered(fs_info, page_folio(page),
 327					      file_offset, len))
 328			return false;
 329		btrfs_folio_clear_ordered(fs_info, page_folio(page), file_offset, len);
 330	}
 331
 332	/* Now we're fine to update the accounting. */
 333	if (WARN_ON_ONCE(len > ordered->bytes_left)) {
 334		btrfs_crit(fs_info,
 335"bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%llu left=%llu",
 336			   inode->root->root_key.objectid, btrfs_ino(inode),
 337			   ordered->file_offset, ordered->num_bytes,
 338			   len, ordered->bytes_left);
 339		ordered->bytes_left = 0;
 340	} else {
 341		ordered->bytes_left -= len;
 342	}
 343
 344	if (!uptodate)
 345		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
 346
 347	if (ordered->bytes_left)
 348		return false;
 349
 350	/*
 351	 * All the IO of the ordered extent is finished, we need to queue
 352	 * the finish_func to be executed.
 353	 */
 354	set_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags);
 355	cond_wake_up(&ordered->wait);
 356	refcount_inc(&ordered->refs);
 357	trace_btrfs_ordered_extent_mark_finished(inode, ordered);
 358	return true;
 359}
 360
 361static void btrfs_queue_ordered_fn(struct btrfs_ordered_extent *ordered)
 362{
 363	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
 364	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 365	struct btrfs_workqueue *wq = btrfs_is_free_space_inode(inode) ?
 366		fs_info->endio_freespace_worker : fs_info->endio_write_workers;
 367
 368	btrfs_init_work(&ordered->work, finish_ordered_fn, NULL);
 369	btrfs_queue_work(wq, &ordered->work);
 370}
 371
 372bool btrfs_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
 373				 struct page *page, u64 file_offset, u64 len,
 374				 bool uptodate)
 375{
 376	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
 377	unsigned long flags;
 378	bool ret;
 379
 380	trace_btrfs_finish_ordered_extent(inode, file_offset, len, uptodate);
 381
 382	spin_lock_irqsave(&inode->ordered_tree_lock, flags);
 383	ret = can_finish_ordered_extent(ordered, page, file_offset, len, uptodate);
 384	spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
 385
 386	if (ret)
 387		btrfs_queue_ordered_fn(ordered);
 388	return ret;
 389}
 390
 391/*
 392 * Mark all ordered extents io inside the specified range finished.
 393 *
 394 * @page:	 The involved page for the operation.
 395 *		 For uncompressed buffered IO, the page status also needs to be
 396 *		 updated to indicate whether the pending ordered io is finished.
 397 *		 Can be NULL for direct IO and compressed write.
 398 *		 For these cases, callers are ensured they won't execute the
 399 *		 endio function twice.
 400 *
 401 * This function is called for endio, thus the range must have ordered
 402 * extent(s) covering it.
 403 */
 404void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
 405				    struct page *page, u64 file_offset,
 406				    u64 num_bytes, bool uptodate)
 407{
 
 
 
 408	struct rb_node *node;
 409	struct btrfs_ordered_extent *entry = NULL;
 410	unsigned long flags;
 411	u64 cur = file_offset;
 412
 413	trace_btrfs_writepage_end_io_hook(inode, file_offset,
 414					  file_offset + num_bytes - 1,
 415					  uptodate);
 
 
 
 
 
 416
 417	spin_lock_irqsave(&inode->ordered_tree_lock, flags);
 418	while (cur < file_offset + num_bytes) {
 419		u64 entry_end;
 420		u64 end;
 421		u32 len;
 422
 423		node = ordered_tree_search(inode, cur);
 424		/* No ordered extents at all */
 425		if (!node)
 426			break;
 427
 428		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 429		entry_end = entry->file_offset + entry->num_bytes;
 430		/*
 431		 * |<-- OE --->|  |
 432		 *		  cur
 433		 * Go to next OE.
 434		 */
 435		if (cur >= entry_end) {
 436			node = rb_next(node);
 437			/* No more ordered extents, exit */
 438			if (!node)
 439				break;
 440			entry = rb_entry(node, struct btrfs_ordered_extent,
 441					 rb_node);
 442
 443			/* Go to next ordered extent and continue */
 444			cur = entry->file_offset;
 445			continue;
 446		}
 447		/*
 448		 * |	|<--- OE --->|
 449		 * cur
 450		 * Go to the start of OE.
 451		 */
 452		if (cur < entry->file_offset) {
 453			cur = entry->file_offset;
 454			continue;
 455		}
 456
 457		/*
 458		 * Now we are definitely inside one ordered extent.
 459		 *
 460		 * |<--- OE --->|
 461		 *	|
 462		 *	cur
 463		 */
 464		end = min(entry->file_offset + entry->num_bytes,
 465			  file_offset + num_bytes) - 1;
 466		ASSERT(end + 1 - cur < U32_MAX);
 467		len = end + 1 - cur;
 468
 469		if (can_finish_ordered_extent(entry, page, cur, len, uptodate)) {
 470			spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
 471			btrfs_queue_ordered_fn(entry);
 472			spin_lock_irqsave(&inode->ordered_tree_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 473		}
 474		cur += len;
 475	}
 476	spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
 477}
 478
 479/*
 480 * Finish IO for one ordered extent across a given range.  The range can only
 481 * contain one ordered extent.
 482 *
 483 * @cached:	 The cached ordered extent. If not NULL, we can skip the tree
 484 *               search and use the ordered extent directly.
 485 * 		 Will be also used to store the finished ordered extent.
 486 * @file_offset: File offset for the finished IO
 487 * @io_size:	 Length of the finish IO range
 488 *
 489 * Return true if the ordered extent is finished in the range, and update
 490 * @cached.
 491 * Return false otherwise.
 492 *
 493 * NOTE: The range can NOT cross multiple ordered extents.
 494 * Thus caller should ensure the range doesn't cross ordered extents.
 495 */
 496bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
 497				    struct btrfs_ordered_extent **cached,
 498				    u64 file_offset, u64 io_size)
 499{
 
 500	struct rb_node *node;
 501	struct btrfs_ordered_extent *entry = NULL;
 502	unsigned long flags;
 503	bool finished = false;
 504
 505	spin_lock_irqsave(&inode->ordered_tree_lock, flags);
 506	if (cached && *cached) {
 507		entry = *cached;
 508		goto have_entry;
 509	}
 510
 511	node = ordered_tree_search(inode, file_offset);
 512	if (!node)
 513		goto out;
 514
 515	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 516have_entry:
 517	if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
 518		goto out;
 519
 520	if (io_size > entry->bytes_left)
 521		btrfs_crit(inode->root->fs_info,
 522			   "bad ordered accounting left %llu size %llu",
 523		       entry->bytes_left, io_size);
 524
 525	entry->bytes_left -= io_size;
 526
 527	if (entry->bytes_left == 0) {
 528		/*
 529		 * Ensure only one caller can set the flag and finished_ret
 530		 * accordingly
 531		 */
 532		finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
 533		/* test_and_set_bit implies a barrier */
 534		cond_wake_up_nomb(&entry->wait);
 535	}
 536out:
 537	if (finished && cached && entry) {
 538		*cached = entry;
 539		refcount_inc(&entry->refs);
 540		trace_btrfs_ordered_extent_dec_test_pending(inode, entry);
 541	}
 542	spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
 543	return finished;
 544}
 545
 546/*
 547 * used to drop a reference on an ordered extent.  This will free
 548 * the extent if the last reference is dropped
 549 */
 550void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
 551{
 552	struct list_head *cur;
 553	struct btrfs_ordered_sum *sum;
 554
 555	trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
 556
 557	if (refcount_dec_and_test(&entry->refs)) {
 558		ASSERT(list_empty(&entry->root_extent_list));
 559		ASSERT(list_empty(&entry->log_list));
 560		ASSERT(RB_EMPTY_NODE(&entry->rb_node));
 561		if (entry->inode)
 562			btrfs_add_delayed_iput(BTRFS_I(entry->inode));
 563		while (!list_empty(&entry->list)) {
 564			cur = entry->list.next;
 565			sum = list_entry(cur, struct btrfs_ordered_sum, list);
 566			list_del(&sum->list);
 567			kvfree(sum);
 568		}
 569		kmem_cache_free(btrfs_ordered_extent_cache, entry);
 570	}
 571}
 572
 573/*
 574 * remove an ordered extent from the tree.  No references are dropped
 575 * and waiters are woken up.
 576 */
 577void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
 578				 struct btrfs_ordered_extent *entry)
 579{
 
 580	struct btrfs_root *root = btrfs_inode->root;
 581	struct btrfs_fs_info *fs_info = root->fs_info;
 582	struct rb_node *node;
 583	bool pending;
 584	bool freespace_inode;
 585
 586	/*
 587	 * If this is a free space inode the thread has not acquired the ordered
 588	 * extents lockdep map.
 589	 */
 590	freespace_inode = btrfs_is_free_space_inode(btrfs_inode);
 591
 592	btrfs_lockdep_acquire(fs_info, btrfs_trans_pending_ordered);
 593	/* This is paired with btrfs_alloc_ordered_extent. */
 594	spin_lock(&btrfs_inode->lock);
 595	btrfs_mod_outstanding_extents(btrfs_inode, -1);
 596	spin_unlock(&btrfs_inode->lock);
 597	if (root != fs_info->tree_root) {
 598		u64 release;
 599
 600		if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags))
 601			release = entry->disk_num_bytes;
 602		else
 603			release = entry->num_bytes;
 604		btrfs_delalloc_release_metadata(btrfs_inode, release,
 605						test_bit(BTRFS_ORDERED_IOERR,
 606							 &entry->flags));
 607	}
 608
 609	percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
 610				 fs_info->delalloc_batch);
 611
 612	spin_lock_irq(&btrfs_inode->ordered_tree_lock);
 
 613	node = &entry->rb_node;
 614	rb_erase(node, &btrfs_inode->ordered_tree);
 615	RB_CLEAR_NODE(node);
 616	if (btrfs_inode->ordered_tree_last == node)
 617		btrfs_inode->ordered_tree_last = NULL;
 618	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
 619	pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
 620	spin_unlock_irq(&btrfs_inode->ordered_tree_lock);
 621
 622	/*
 623	 * The current running transaction is waiting on us, we need to let it
 624	 * know that we're complete and wake it up.
 625	 */
 626	if (pending) {
 627		struct btrfs_transaction *trans;
 628
 629		/*
 630		 * The checks for trans are just a formality, it should be set,
 631		 * but if it isn't we don't want to deref/assert under the spin
 632		 * lock, so be nice and check if trans is set, but ASSERT() so
 633		 * if it isn't set a developer will notice.
 634		 */
 635		spin_lock(&fs_info->trans_lock);
 636		trans = fs_info->running_transaction;
 637		if (trans)
 638			refcount_inc(&trans->use_count);
 639		spin_unlock(&fs_info->trans_lock);
 640
 641		ASSERT(trans || BTRFS_FS_ERROR(fs_info));
 642		if (trans) {
 643			if (atomic_dec_and_test(&trans->pending_ordered))
 644				wake_up(&trans->pending_wait);
 645			btrfs_put_transaction(trans);
 646		}
 647	}
 648
 649	btrfs_lockdep_release(fs_info, btrfs_trans_pending_ordered);
 650
 651	spin_lock(&root->ordered_extent_lock);
 652	list_del_init(&entry->root_extent_list);
 653	root->nr_ordered_extents--;
 654
 655	trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
 656
 657	if (!root->nr_ordered_extents) {
 658		spin_lock(&fs_info->ordered_root_lock);
 659		BUG_ON(list_empty(&root->ordered_root));
 660		list_del_init(&root->ordered_root);
 661		spin_unlock(&fs_info->ordered_root_lock);
 662	}
 663	spin_unlock(&root->ordered_extent_lock);
 664	wake_up(&entry->wait);
 665	if (!freespace_inode)
 666		btrfs_lockdep_release(fs_info, btrfs_ordered_extent);
 667}
 668
 669static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
 670{
 671	struct btrfs_ordered_extent *ordered;
 672
 673	ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
 674	btrfs_start_ordered_extent(ordered);
 675	complete(&ordered->completion);
 676}
 677
 678/*
 679 * wait for all the ordered extents in a root.  This is done when balancing
 680 * space between drives.
 681 */
 682u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
 683			       const u64 range_start, const u64 range_len)
 684{
 685	struct btrfs_fs_info *fs_info = root->fs_info;
 686	LIST_HEAD(splice);
 687	LIST_HEAD(skipped);
 688	LIST_HEAD(works);
 689	struct btrfs_ordered_extent *ordered, *next;
 690	u64 count = 0;
 691	const u64 range_end = range_start + range_len;
 692
 693	mutex_lock(&root->ordered_extent_mutex);
 694	spin_lock(&root->ordered_extent_lock);
 695	list_splice_init(&root->ordered_extents, &splice);
 696	while (!list_empty(&splice) && nr) {
 697		ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
 698					   root_extent_list);
 699
 700		if (range_end <= ordered->disk_bytenr ||
 701		    ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
 702			list_move_tail(&ordered->root_extent_list, &skipped);
 703			cond_resched_lock(&root->ordered_extent_lock);
 704			continue;
 705		}
 706
 707		list_move_tail(&ordered->root_extent_list,
 708			       &root->ordered_extents);
 709		refcount_inc(&ordered->refs);
 710		spin_unlock(&root->ordered_extent_lock);
 711
 712		btrfs_init_work(&ordered->flush_work,
 713				btrfs_run_ordered_extent_work, NULL);
 714		list_add_tail(&ordered->work_list, &works);
 715		btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
 716
 717		cond_resched();
 718		spin_lock(&root->ordered_extent_lock);
 719		if (nr != U64_MAX)
 720			nr--;
 721		count++;
 722	}
 723	list_splice_tail(&skipped, &root->ordered_extents);
 724	list_splice_tail(&splice, &root->ordered_extents);
 725	spin_unlock(&root->ordered_extent_lock);
 726
 727	list_for_each_entry_safe(ordered, next, &works, work_list) {
 728		list_del_init(&ordered->work_list);
 729		wait_for_completion(&ordered->completion);
 730		btrfs_put_ordered_extent(ordered);
 731		cond_resched();
 732	}
 733	mutex_unlock(&root->ordered_extent_mutex);
 734
 735	return count;
 736}
 737
 738void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
 739			     const u64 range_start, const u64 range_len)
 740{
 741	struct btrfs_root *root;
 742	LIST_HEAD(splice);
 743	u64 done;
 744
 
 
 745	mutex_lock(&fs_info->ordered_operations_mutex);
 746	spin_lock(&fs_info->ordered_root_lock);
 747	list_splice_init(&fs_info->ordered_roots, &splice);
 748	while (!list_empty(&splice) && nr) {
 749		root = list_first_entry(&splice, struct btrfs_root,
 750					ordered_root);
 751		root = btrfs_grab_root(root);
 752		BUG_ON(!root);
 753		list_move_tail(&root->ordered_root,
 754			       &fs_info->ordered_roots);
 755		spin_unlock(&fs_info->ordered_root_lock);
 756
 757		done = btrfs_wait_ordered_extents(root, nr,
 758						  range_start, range_len);
 759		btrfs_put_root(root);
 760
 761		spin_lock(&fs_info->ordered_root_lock);
 762		if (nr != U64_MAX) {
 763			nr -= done;
 764		}
 765	}
 766	list_splice_tail(&splice, &fs_info->ordered_roots);
 767	spin_unlock(&fs_info->ordered_root_lock);
 768	mutex_unlock(&fs_info->ordered_operations_mutex);
 769}
 770
 771/*
 772 * Start IO and wait for a given ordered extent to finish.
 773 *
 774 * Wait on page writeback for all the pages in the extent and the IO completion
 775 * code to insert metadata into the btree corresponding to the extent.
 
 776 */
 777void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry)
 778{
 779	u64 start = entry->file_offset;
 780	u64 end = start + entry->num_bytes - 1;
 781	struct btrfs_inode *inode = BTRFS_I(entry->inode);
 782	bool freespace_inode;
 783
 784	trace_btrfs_ordered_extent_start(inode, entry);
 785
 786	/*
 787	 * If this is a free space inode do not take the ordered extents lockdep
 788	 * map.
 789	 */
 790	freespace_inode = btrfs_is_free_space_inode(inode);
 791
 792	/*
 793	 * pages in the range can be dirty, clean or writeback.  We
 794	 * start IO on any dirty ones so the wait doesn't stall waiting
 795	 * for the flusher thread to find them
 796	 */
 797	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
 798		filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
 799
 800	if (!freespace_inode)
 801		btrfs_might_wait_for_event(inode->root->fs_info, btrfs_ordered_extent);
 802	wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, &entry->flags));
 
 
 803}
 804
 805/*
 806 * Used to wait on ordered extents across a large range of bytes.
 807 */
 808int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
 809{
 810	int ret = 0;
 811	int ret_wb = 0;
 812	u64 end;
 813	u64 orig_end;
 814	struct btrfs_ordered_extent *ordered;
 815
 816	if (start + len < start) {
 817		orig_end = OFFSET_MAX;
 818	} else {
 819		orig_end = start + len - 1;
 820		if (orig_end > OFFSET_MAX)
 821			orig_end = OFFSET_MAX;
 822	}
 823
 824	/* start IO across the range first to instantiate any delalloc
 825	 * extents
 826	 */
 827	ret = btrfs_fdatawrite_range(inode, start, orig_end);
 828	if (ret)
 829		return ret;
 830
 831	/*
 832	 * If we have a writeback error don't return immediately. Wait first
 833	 * for any ordered extents that haven't completed yet. This is to make
 834	 * sure no one can dirty the same page ranges and call writepages()
 835	 * before the ordered extents complete - to avoid failures (-EEXIST)
 836	 * when adding the new ordered extents to the ordered tree.
 837	 */
 838	ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
 839
 840	end = orig_end;
 841	while (1) {
 842		ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
 843		if (!ordered)
 844			break;
 845		if (ordered->file_offset > orig_end) {
 846			btrfs_put_ordered_extent(ordered);
 847			break;
 848		}
 849		if (ordered->file_offset + ordered->num_bytes <= start) {
 850			btrfs_put_ordered_extent(ordered);
 851			break;
 852		}
 853		btrfs_start_ordered_extent(ordered);
 854		end = ordered->file_offset;
 855		/*
 856		 * If the ordered extent had an error save the error but don't
 857		 * exit without waiting first for all other ordered extents in
 858		 * the range to complete.
 859		 */
 860		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
 861			ret = -EIO;
 862		btrfs_put_ordered_extent(ordered);
 863		if (end == 0 || end == start)
 864			break;
 865		end--;
 866	}
 867	return ret_wb ? ret_wb : ret;
 868}
 869
 870/*
 871 * find an ordered extent corresponding to file_offset.  return NULL if
 872 * nothing is found, otherwise take a reference on the extent and return it
 873 */
 874struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
 875							 u64 file_offset)
 876{
 
 877	struct rb_node *node;
 878	struct btrfs_ordered_extent *entry = NULL;
 879	unsigned long flags;
 880
 881	spin_lock_irqsave(&inode->ordered_tree_lock, flags);
 882	node = ordered_tree_search(inode, file_offset);
 
 883	if (!node)
 884		goto out;
 885
 886	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 887	if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
 888		entry = NULL;
 889	if (entry) {
 890		refcount_inc(&entry->refs);
 891		trace_btrfs_ordered_extent_lookup(inode, entry);
 892	}
 893out:
 894	spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
 895	return entry;
 896}
 897
 898/* Since the DIO code tries to lock a wide area we need to look for any ordered
 899 * extents that exist in the range, rather than just the start of the range.
 900 */
 901struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
 902		struct btrfs_inode *inode, u64 file_offset, u64 len)
 903{
 
 904	struct rb_node *node;
 905	struct btrfs_ordered_extent *entry = NULL;
 906
 907	spin_lock_irq(&inode->ordered_tree_lock);
 908	node = ordered_tree_search(inode, file_offset);
 
 909	if (!node) {
 910		node = ordered_tree_search(inode, file_offset + len);
 911		if (!node)
 912			goto out;
 913	}
 914
 915	while (1) {
 916		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 917		if (range_overlaps(entry, file_offset, len))
 918			break;
 919
 920		if (entry->file_offset >= file_offset + len) {
 921			entry = NULL;
 922			break;
 923		}
 924		entry = NULL;
 925		node = rb_next(node);
 926		if (!node)
 927			break;
 928	}
 929out:
 930	if (entry) {
 931		refcount_inc(&entry->refs);
 932		trace_btrfs_ordered_extent_lookup_range(inode, entry);
 933	}
 934	spin_unlock_irq(&inode->ordered_tree_lock);
 935	return entry;
 936}
 937
 938/*
 939 * Adds all ordered extents to the given list. The list ends up sorted by the
 940 * file_offset of the ordered extents.
 941 */
 942void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
 943					   struct list_head *list)
 944{
 
 945	struct rb_node *n;
 946
 947	ASSERT(inode_is_locked(&inode->vfs_inode));
 948
 949	spin_lock_irq(&inode->ordered_tree_lock);
 950	for (n = rb_first(&inode->ordered_tree); n; n = rb_next(n)) {
 951		struct btrfs_ordered_extent *ordered;
 952
 953		ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
 954
 955		if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
 956			continue;
 957
 958		ASSERT(list_empty(&ordered->log_list));
 959		list_add_tail(&ordered->log_list, list);
 960		refcount_inc(&ordered->refs);
 961		trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered);
 962	}
 963	spin_unlock_irq(&inode->ordered_tree_lock);
 964}
 965
 966/*
 967 * lookup and return any extent before 'file_offset'.  NULL is returned
 968 * if none is found
 969 */
 970struct btrfs_ordered_extent *
 971btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
 972{
 
 973	struct rb_node *node;
 974	struct btrfs_ordered_extent *entry = NULL;
 975
 976	spin_lock_irq(&inode->ordered_tree_lock);
 977	node = ordered_tree_search(inode, file_offset);
 
 978	if (!node)
 979		goto out;
 980
 981	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 982	refcount_inc(&entry->refs);
 983	trace_btrfs_ordered_extent_lookup_first(inode, entry);
 984out:
 985	spin_unlock_irq(&inode->ordered_tree_lock);
 986	return entry;
 987}
 988
 989/*
 990 * Lookup the first ordered extent that overlaps the range
 991 * [@file_offset, @file_offset + @len).
 992 *
 993 * The difference between this and btrfs_lookup_first_ordered_extent() is
 994 * that this one won't return any ordered extent that does not overlap the range.
 995 * And the difference against btrfs_lookup_ordered_extent() is, this function
 996 * ensures the first ordered extent gets returned.
 997 */
 998struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
 999			struct btrfs_inode *inode, u64 file_offset, u64 len)
1000{
 
1001	struct rb_node *node;
1002	struct rb_node *cur;
1003	struct rb_node *prev;
1004	struct rb_node *next;
1005	struct btrfs_ordered_extent *entry = NULL;
1006
1007	spin_lock_irq(&inode->ordered_tree_lock);
1008	node = inode->ordered_tree.rb_node;
1009	/*
1010	 * Here we don't want to use tree_search() which will use tree->last
1011	 * and screw up the search order.
1012	 * And __tree_search() can't return the adjacent ordered extents
1013	 * either, thus here we do our own search.
1014	 */
1015	while (node) {
1016		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1017
1018		if (file_offset < entry->file_offset) {
1019			node = node->rb_left;
1020		} else if (file_offset >= entry_end(entry)) {
1021			node = node->rb_right;
1022		} else {
1023			/*
1024			 * Direct hit, got an ordered extent that starts at
1025			 * @file_offset
1026			 */
1027			goto out;
1028		}
1029	}
1030	if (!entry) {
1031		/* Empty tree */
1032		goto out;
1033	}
1034
1035	cur = &entry->rb_node;
1036	/* We got an entry around @file_offset, check adjacent entries */
1037	if (entry->file_offset < file_offset) {
1038		prev = cur;
1039		next = rb_next(cur);
1040	} else {
1041		prev = rb_prev(cur);
1042		next = cur;
1043	}
1044	if (prev) {
1045		entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
1046		if (range_overlaps(entry, file_offset, len))
1047			goto out;
1048	}
1049	if (next) {
1050		entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
1051		if (range_overlaps(entry, file_offset, len))
1052			goto out;
1053	}
1054	/* No ordered extent in the range */
1055	entry = NULL;
1056out:
1057	if (entry) {
1058		refcount_inc(&entry->refs);
1059		trace_btrfs_ordered_extent_lookup_first_range(inode, entry);
1060	}
1061
1062	spin_unlock_irq(&inode->ordered_tree_lock);
1063	return entry;
1064}
1065
1066/*
1067 * Lock the passed range and ensures all pending ordered extents in it are run
1068 * to completion.
1069 *
1070 * @inode:        Inode whose ordered tree is to be searched
1071 * @start:        Beginning of range to flush
1072 * @end:          Last byte of range to lock
1073 * @cached_state: If passed, will return the extent state responsible for the
1074 *                locked range. It's the caller's responsibility to free the
1075 *                cached state.
1076 *
1077 * Always return with the given range locked, ensuring after it's called no
1078 * order extent can be pending.
1079 */
1080void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
1081					u64 end,
1082					struct extent_state **cached_state)
1083{
1084	struct btrfs_ordered_extent *ordered;
1085	struct extent_state *cache = NULL;
1086	struct extent_state **cachedp = &cache;
1087
1088	if (cached_state)
1089		cachedp = cached_state;
1090
1091	while (1) {
1092		lock_extent(&inode->io_tree, start, end, cachedp);
1093		ordered = btrfs_lookup_ordered_range(inode, start,
1094						     end - start + 1);
1095		if (!ordered) {
1096			/*
1097			 * If no external cached_state has been passed then
1098			 * decrement the extra ref taken for cachedp since we
1099			 * aren't exposing it outside of this function
1100			 */
1101			if (!cached_state)
1102				refcount_dec(&cache->refs);
1103			break;
1104		}
1105		unlock_extent(&inode->io_tree, start, end, cachedp);
1106		btrfs_start_ordered_extent(ordered);
1107		btrfs_put_ordered_extent(ordered);
1108	}
1109}
1110
1111/*
1112 * Lock the passed range and ensure all pending ordered extents in it are run
1113 * to completion in nowait mode.
1114 *
1115 * Return true if btrfs_lock_ordered_range does not return any extents,
1116 * otherwise false.
1117 */
1118bool btrfs_try_lock_ordered_range(struct btrfs_inode *inode, u64 start, u64 end,
1119				  struct extent_state **cached_state)
1120{
1121	struct btrfs_ordered_extent *ordered;
1122
1123	if (!try_lock_extent(&inode->io_tree, start, end, cached_state))
1124		return false;
1125
1126	ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1);
1127	if (!ordered)
1128		return true;
1129
1130	btrfs_put_ordered_extent(ordered);
1131	unlock_extent(&inode->io_tree, start, end, cached_state);
1132
1133	return false;
1134}
1135
1136/* Split out a new ordered extent for this first @len bytes of @ordered. */
1137struct btrfs_ordered_extent *btrfs_split_ordered_extent(
1138			struct btrfs_ordered_extent *ordered, u64 len)
1139{
1140	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1141	struct btrfs_root *root = inode->root;
1142	struct btrfs_fs_info *fs_info = root->fs_info;
1143	u64 file_offset = ordered->file_offset;
1144	u64 disk_bytenr = ordered->disk_bytenr;
1145	unsigned long flags = ordered->flags;
1146	struct btrfs_ordered_sum *sum, *tmpsum;
1147	struct btrfs_ordered_extent *new;
1148	struct rb_node *node;
1149	u64 offset = 0;
1150
1151	trace_btrfs_ordered_extent_split(inode, ordered);
1152
1153	ASSERT(!(flags & (1U << BTRFS_ORDERED_COMPRESSED)));
1154
1155	/*
1156	 * The entire bio must be covered by the ordered extent, but we can't
1157	 * reduce the original extent to a zero length either.
1158	 */
1159	if (WARN_ON_ONCE(len >= ordered->num_bytes))
1160		return ERR_PTR(-EINVAL);
1161	/* We cannot split partially completed ordered extents. */
1162	if (ordered->bytes_left) {
1163		ASSERT(!(flags & ~BTRFS_ORDERED_TYPE_FLAGS));
1164		if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes))
1165			return ERR_PTR(-EINVAL);
1166	}
1167	/* We cannot split a compressed ordered extent. */
1168	if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes))
1169		return ERR_PTR(-EINVAL);
1170
1171	new = alloc_ordered_extent(inode, file_offset, len, len, disk_bytenr,
1172				   len, 0, flags, ordered->compress_type);
1173	if (IS_ERR(new))
1174		return new;
1175
1176	/* One ref for the tree. */
1177	refcount_inc(&new->refs);
 
 
 
 
 
 
1178
1179	spin_lock_irq(&root->ordered_extent_lock);
1180	spin_lock(&inode->ordered_tree_lock);
 
1181	/* Remove from tree once */
1182	node = &ordered->rb_node;
1183	rb_erase(node, &inode->ordered_tree);
1184	RB_CLEAR_NODE(node);
1185	if (inode->ordered_tree_last == node)
1186		inode->ordered_tree_last = NULL;
1187
1188	ordered->file_offset += len;
1189	ordered->disk_bytenr += len;
1190	ordered->num_bytes -= len;
1191	ordered->disk_num_bytes -= len;
1192
1193	if (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags)) {
1194		ASSERT(ordered->bytes_left == 0);
1195		new->bytes_left = 0;
1196	} else {
1197		ordered->bytes_left -= len;
1198	}
1199
1200	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) {
1201		if (ordered->truncated_len > len) {
1202			ordered->truncated_len -= len;
1203		} else {
1204			new->truncated_len = ordered->truncated_len;
1205			ordered->truncated_len = 0;
1206		}
1207	}
1208
1209	list_for_each_entry_safe(sum, tmpsum, &ordered->list, list) {
1210		if (offset == len)
1211			break;
1212		list_move_tail(&sum->list, &new->list);
1213		offset += sum->len;
1214	}
1215
1216	/* Re-insert the node */
1217	node = tree_insert(&inode->ordered_tree, ordered->file_offset,
1218			   &ordered->rb_node);
1219	if (node)
1220		btrfs_panic(fs_info, -EEXIST,
1221			"zoned: inconsistency in ordered tree at offset %llu",
1222			ordered->file_offset);
1223
1224	node = tree_insert(&inode->ordered_tree, new->file_offset, &new->rb_node);
1225	if (node)
1226		btrfs_panic(fs_info, -EEXIST,
1227			"zoned: inconsistency in ordered tree at offset %llu",
1228			new->file_offset);
1229	spin_unlock(&inode->ordered_tree_lock);
 
1230
1231	list_add_tail(&new->root_extent_list, &root->ordered_extents);
1232	root->nr_ordered_extents++;
1233	spin_unlock_irq(&root->ordered_extent_lock);
1234	return new;
1235}
1236
1237int __init ordered_data_init(void)
1238{
1239	btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1240				     sizeof(struct btrfs_ordered_extent), 0,
1241				     SLAB_MEM_SPREAD,
1242				     NULL);
1243	if (!btrfs_ordered_extent_cache)
1244		return -ENOMEM;
1245
1246	return 0;
1247}
1248
1249void __cold ordered_data_exit(void)
1250{
1251	kmem_cache_destroy(btrfs_ordered_extent_cache);
1252}