Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/slab.h>
7#include <linux/blkdev.h>
8#include <linux/writeback.h>
9#include <linux/sched/mm.h>
10#include "messages.h"
11#include "misc.h"
12#include "ctree.h"
13#include "transaction.h"
14#include "btrfs_inode.h"
15#include "extent_io.h"
16#include "disk-io.h"
17#include "compression.h"
18#include "delalloc-space.h"
19#include "qgroup.h"
20#include "subpage.h"
21#include "file.h"
22#include "super.h"
23
24static struct kmem_cache *btrfs_ordered_extent_cache;
25
26static u64 entry_end(struct btrfs_ordered_extent *entry)
27{
28 if (entry->file_offset + entry->num_bytes < entry->file_offset)
29 return (u64)-1;
30 return entry->file_offset + entry->num_bytes;
31}
32
33/* returns NULL if the insertion worked, or it returns the node it did find
34 * in the tree
35 */
36static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
37 struct rb_node *node)
38{
39 struct rb_node **p = &root->rb_node;
40 struct rb_node *parent = NULL;
41 struct btrfs_ordered_extent *entry;
42
43 while (*p) {
44 parent = *p;
45 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
46
47 if (file_offset < entry->file_offset)
48 p = &(*p)->rb_left;
49 else if (file_offset >= entry_end(entry))
50 p = &(*p)->rb_right;
51 else
52 return parent;
53 }
54
55 rb_link_node(node, parent, p);
56 rb_insert_color(node, root);
57 return NULL;
58}
59
60/*
61 * look for a given offset in the tree, and if it can't be found return the
62 * first lesser offset
63 */
64static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
65 struct rb_node **prev_ret)
66{
67 struct rb_node *n = root->rb_node;
68 struct rb_node *prev = NULL;
69 struct rb_node *test;
70 struct btrfs_ordered_extent *entry;
71 struct btrfs_ordered_extent *prev_entry = NULL;
72
73 while (n) {
74 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
75 prev = n;
76 prev_entry = entry;
77
78 if (file_offset < entry->file_offset)
79 n = n->rb_left;
80 else if (file_offset >= entry_end(entry))
81 n = n->rb_right;
82 else
83 return n;
84 }
85 if (!prev_ret)
86 return NULL;
87
88 while (prev && file_offset >= entry_end(prev_entry)) {
89 test = rb_next(prev);
90 if (!test)
91 break;
92 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
93 rb_node);
94 if (file_offset < entry_end(prev_entry))
95 break;
96
97 prev = test;
98 }
99 if (prev)
100 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
101 rb_node);
102 while (prev && file_offset < entry_end(prev_entry)) {
103 test = rb_prev(prev);
104 if (!test)
105 break;
106 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
107 rb_node);
108 prev = test;
109 }
110 *prev_ret = prev;
111 return NULL;
112}
113
114static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
115 u64 len)
116{
117 if (file_offset + len <= entry->file_offset ||
118 entry->file_offset + entry->num_bytes <= file_offset)
119 return 0;
120 return 1;
121}
122
123/*
124 * look find the first ordered struct that has this offset, otherwise
125 * the first one less than this offset
126 */
127static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
128 u64 file_offset)
129{
130 struct rb_root *root = &tree->tree;
131 struct rb_node *prev = NULL;
132 struct rb_node *ret;
133 struct btrfs_ordered_extent *entry;
134
135 if (tree->last) {
136 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
137 rb_node);
138 if (in_range(file_offset, entry->file_offset, entry->num_bytes))
139 return tree->last;
140 }
141 ret = __tree_search(root, file_offset, &prev);
142 if (!ret)
143 ret = prev;
144 if (ret)
145 tree->last = ret;
146 return ret;
147}
148
149/*
150 * Add an ordered extent to the per-inode tree.
151 *
152 * @inode: Inode that this extent is for.
153 * @file_offset: Logical offset in file where the extent starts.
154 * @num_bytes: Logical length of extent in file.
155 * @ram_bytes: Full length of unencoded data.
156 * @disk_bytenr: Offset of extent on disk.
157 * @disk_num_bytes: Size of extent on disk.
158 * @offset: Offset into unencoded data where file data starts.
159 * @flags: Flags specifying type of extent (1 << BTRFS_ORDERED_*).
160 * @compress_type: Compression algorithm used for data.
161 *
162 * Most of these parameters correspond to &struct btrfs_file_extent_item. The
163 * tree is given a single reference on the ordered extent that was inserted.
164 *
165 * Return: 0 or -ENOMEM.
166 */
167int btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
168 u64 num_bytes, u64 ram_bytes, u64 disk_bytenr,
169 u64 disk_num_bytes, u64 offset, unsigned flags,
170 int compress_type)
171{
172 struct btrfs_root *root = inode->root;
173 struct btrfs_fs_info *fs_info = root->fs_info;
174 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
175 struct rb_node *node;
176 struct btrfs_ordered_extent *entry;
177 int ret;
178
179 if (flags &
180 ((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) {
181 /* For nocow write, we can release the qgroup rsv right now */
182 ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes);
183 if (ret < 0)
184 return ret;
185 ret = 0;
186 } else {
187 /*
188 * The ordered extent has reserved qgroup space, release now
189 * and pass the reserved number for qgroup_record to free.
190 */
191 ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes);
192 if (ret < 0)
193 return ret;
194 }
195 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
196 if (!entry)
197 return -ENOMEM;
198
199 entry->file_offset = file_offset;
200 entry->num_bytes = num_bytes;
201 entry->ram_bytes = ram_bytes;
202 entry->disk_bytenr = disk_bytenr;
203 entry->disk_num_bytes = disk_num_bytes;
204 entry->offset = offset;
205 entry->bytes_left = num_bytes;
206 entry->inode = igrab(&inode->vfs_inode);
207 entry->compress_type = compress_type;
208 entry->truncated_len = (u64)-1;
209 entry->qgroup_rsv = ret;
210 entry->physical = (u64)-1;
211
212 ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0);
213 entry->flags = flags;
214
215 percpu_counter_add_batch(&fs_info->ordered_bytes, num_bytes,
216 fs_info->delalloc_batch);
217
218 /* one ref for the tree */
219 refcount_set(&entry->refs, 1);
220 init_waitqueue_head(&entry->wait);
221 INIT_LIST_HEAD(&entry->list);
222 INIT_LIST_HEAD(&entry->log_list);
223 INIT_LIST_HEAD(&entry->root_extent_list);
224 INIT_LIST_HEAD(&entry->work_list);
225 init_completion(&entry->completion);
226
227 trace_btrfs_ordered_extent_add(inode, entry);
228
229 spin_lock_irq(&tree->lock);
230 node = tree_insert(&tree->tree, file_offset,
231 &entry->rb_node);
232 if (node)
233 btrfs_panic(fs_info, -EEXIST,
234 "inconsistency in ordered tree at offset %llu",
235 file_offset);
236 spin_unlock_irq(&tree->lock);
237
238 spin_lock(&root->ordered_extent_lock);
239 list_add_tail(&entry->root_extent_list,
240 &root->ordered_extents);
241 root->nr_ordered_extents++;
242 if (root->nr_ordered_extents == 1) {
243 spin_lock(&fs_info->ordered_root_lock);
244 BUG_ON(!list_empty(&root->ordered_root));
245 list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
246 spin_unlock(&fs_info->ordered_root_lock);
247 }
248 spin_unlock(&root->ordered_extent_lock);
249
250 /*
251 * We don't need the count_max_extents here, we can assume that all of
252 * that work has been done at higher layers, so this is truly the
253 * smallest the extent is going to get.
254 */
255 spin_lock(&inode->lock);
256 btrfs_mod_outstanding_extents(inode, 1);
257 spin_unlock(&inode->lock);
258
259 return 0;
260}
261
262/*
263 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
264 * when an ordered extent is finished. If the list covers more than one
265 * ordered extent, it is split across multiples.
266 */
267void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
268 struct btrfs_ordered_sum *sum)
269{
270 struct btrfs_ordered_inode_tree *tree;
271
272 tree = &BTRFS_I(entry->inode)->ordered_tree;
273 spin_lock_irq(&tree->lock);
274 list_add_tail(&sum->list, &entry->list);
275 spin_unlock_irq(&tree->lock);
276}
277
278static void finish_ordered_fn(struct btrfs_work *work)
279{
280 struct btrfs_ordered_extent *ordered_extent;
281
282 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
283 btrfs_finish_ordered_io(ordered_extent);
284}
285
286/*
287 * Mark all ordered extents io inside the specified range finished.
288 *
289 * @page: The involved page for the operation.
290 * For uncompressed buffered IO, the page status also needs to be
291 * updated to indicate whether the pending ordered io is finished.
292 * Can be NULL for direct IO and compressed write.
293 * For these cases, callers are ensured they won't execute the
294 * endio function twice.
295 *
296 * This function is called for endio, thus the range must have ordered
297 * extent(s) covering it.
298 */
299void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
300 struct page *page, u64 file_offset,
301 u64 num_bytes, bool uptodate)
302{
303 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
304 struct btrfs_fs_info *fs_info = inode->root->fs_info;
305 struct btrfs_workqueue *wq;
306 struct rb_node *node;
307 struct btrfs_ordered_extent *entry = NULL;
308 unsigned long flags;
309 u64 cur = file_offset;
310
311 if (btrfs_is_free_space_inode(inode))
312 wq = fs_info->endio_freespace_worker;
313 else
314 wq = fs_info->endio_write_workers;
315
316 if (page)
317 ASSERT(page->mapping && page_offset(page) <= file_offset &&
318 file_offset + num_bytes <= page_offset(page) + PAGE_SIZE);
319
320 spin_lock_irqsave(&tree->lock, flags);
321 while (cur < file_offset + num_bytes) {
322 u64 entry_end;
323 u64 end;
324 u32 len;
325
326 node = tree_search(tree, cur);
327 /* No ordered extents at all */
328 if (!node)
329 break;
330
331 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
332 entry_end = entry->file_offset + entry->num_bytes;
333 /*
334 * |<-- OE --->| |
335 * cur
336 * Go to next OE.
337 */
338 if (cur >= entry_end) {
339 node = rb_next(node);
340 /* No more ordered extents, exit */
341 if (!node)
342 break;
343 entry = rb_entry(node, struct btrfs_ordered_extent,
344 rb_node);
345
346 /* Go to next ordered extent and continue */
347 cur = entry->file_offset;
348 continue;
349 }
350 /*
351 * | |<--- OE --->|
352 * cur
353 * Go to the start of OE.
354 */
355 if (cur < entry->file_offset) {
356 cur = entry->file_offset;
357 continue;
358 }
359
360 /*
361 * Now we are definitely inside one ordered extent.
362 *
363 * |<--- OE --->|
364 * |
365 * cur
366 */
367 end = min(entry->file_offset + entry->num_bytes,
368 file_offset + num_bytes) - 1;
369 ASSERT(end + 1 - cur < U32_MAX);
370 len = end + 1 - cur;
371
372 if (page) {
373 /*
374 * Ordered (Private2) bit indicates whether we still
375 * have pending io unfinished for the ordered extent.
376 *
377 * If there's no such bit, we need to skip to next range.
378 */
379 if (!btrfs_page_test_ordered(fs_info, page, cur, len)) {
380 cur += len;
381 continue;
382 }
383 btrfs_page_clear_ordered(fs_info, page, cur, len);
384 }
385
386 /* Now we're fine to update the accounting */
387 if (unlikely(len > entry->bytes_left)) {
388 WARN_ON(1);
389 btrfs_crit(fs_info,
390"bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%u left=%llu",
391 inode->root->root_key.objectid,
392 btrfs_ino(inode),
393 entry->file_offset,
394 entry->num_bytes,
395 len, entry->bytes_left);
396 entry->bytes_left = 0;
397 } else {
398 entry->bytes_left -= len;
399 }
400
401 if (!uptodate)
402 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
403
404 /*
405 * All the IO of the ordered extent is finished, we need to queue
406 * the finish_func to be executed.
407 */
408 if (entry->bytes_left == 0) {
409 set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
410 cond_wake_up(&entry->wait);
411 refcount_inc(&entry->refs);
412 trace_btrfs_ordered_extent_mark_finished(inode, entry);
413 spin_unlock_irqrestore(&tree->lock, flags);
414 btrfs_init_work(&entry->work, finish_ordered_fn, NULL, NULL);
415 btrfs_queue_work(wq, &entry->work);
416 spin_lock_irqsave(&tree->lock, flags);
417 }
418 cur += len;
419 }
420 spin_unlock_irqrestore(&tree->lock, flags);
421}
422
423/*
424 * Finish IO for one ordered extent across a given range. The range can only
425 * contain one ordered extent.
426 *
427 * @cached: The cached ordered extent. If not NULL, we can skip the tree
428 * search and use the ordered extent directly.
429 * Will be also used to store the finished ordered extent.
430 * @file_offset: File offset for the finished IO
431 * @io_size: Length of the finish IO range
432 *
433 * Return true if the ordered extent is finished in the range, and update
434 * @cached.
435 * Return false otherwise.
436 *
437 * NOTE: The range can NOT cross multiple ordered extents.
438 * Thus caller should ensure the range doesn't cross ordered extents.
439 */
440bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
441 struct btrfs_ordered_extent **cached,
442 u64 file_offset, u64 io_size)
443{
444 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
445 struct rb_node *node;
446 struct btrfs_ordered_extent *entry = NULL;
447 unsigned long flags;
448 bool finished = false;
449
450 spin_lock_irqsave(&tree->lock, flags);
451 if (cached && *cached) {
452 entry = *cached;
453 goto have_entry;
454 }
455
456 node = tree_search(tree, file_offset);
457 if (!node)
458 goto out;
459
460 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
461have_entry:
462 if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
463 goto out;
464
465 if (io_size > entry->bytes_left)
466 btrfs_crit(inode->root->fs_info,
467 "bad ordered accounting left %llu size %llu",
468 entry->bytes_left, io_size);
469
470 entry->bytes_left -= io_size;
471
472 if (entry->bytes_left == 0) {
473 /*
474 * Ensure only one caller can set the flag and finished_ret
475 * accordingly
476 */
477 finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
478 /* test_and_set_bit implies a barrier */
479 cond_wake_up_nomb(&entry->wait);
480 }
481out:
482 if (finished && cached && entry) {
483 *cached = entry;
484 refcount_inc(&entry->refs);
485 trace_btrfs_ordered_extent_dec_test_pending(inode, entry);
486 }
487 spin_unlock_irqrestore(&tree->lock, flags);
488 return finished;
489}
490
491/*
492 * used to drop a reference on an ordered extent. This will free
493 * the extent if the last reference is dropped
494 */
495void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
496{
497 struct list_head *cur;
498 struct btrfs_ordered_sum *sum;
499
500 trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
501
502 if (refcount_dec_and_test(&entry->refs)) {
503 ASSERT(list_empty(&entry->root_extent_list));
504 ASSERT(list_empty(&entry->log_list));
505 ASSERT(RB_EMPTY_NODE(&entry->rb_node));
506 if (entry->inode)
507 btrfs_add_delayed_iput(BTRFS_I(entry->inode));
508 while (!list_empty(&entry->list)) {
509 cur = entry->list.next;
510 sum = list_entry(cur, struct btrfs_ordered_sum, list);
511 list_del(&sum->list);
512 kvfree(sum);
513 }
514 kmem_cache_free(btrfs_ordered_extent_cache, entry);
515 }
516}
517
518/*
519 * remove an ordered extent from the tree. No references are dropped
520 * and waiters are woken up.
521 */
522void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
523 struct btrfs_ordered_extent *entry)
524{
525 struct btrfs_ordered_inode_tree *tree;
526 struct btrfs_root *root = btrfs_inode->root;
527 struct btrfs_fs_info *fs_info = root->fs_info;
528 struct rb_node *node;
529 bool pending;
530 bool freespace_inode;
531
532 /*
533 * If this is a free space inode the thread has not acquired the ordered
534 * extents lockdep map.
535 */
536 freespace_inode = btrfs_is_free_space_inode(btrfs_inode);
537
538 btrfs_lockdep_acquire(fs_info, btrfs_trans_pending_ordered);
539 /* This is paired with btrfs_add_ordered_extent. */
540 spin_lock(&btrfs_inode->lock);
541 btrfs_mod_outstanding_extents(btrfs_inode, -1);
542 spin_unlock(&btrfs_inode->lock);
543 if (root != fs_info->tree_root) {
544 u64 release;
545
546 if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags))
547 release = entry->disk_num_bytes;
548 else
549 release = entry->num_bytes;
550 btrfs_delalloc_release_metadata(btrfs_inode, release, false);
551 }
552
553 percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
554 fs_info->delalloc_batch);
555
556 tree = &btrfs_inode->ordered_tree;
557 spin_lock_irq(&tree->lock);
558 node = &entry->rb_node;
559 rb_erase(node, &tree->tree);
560 RB_CLEAR_NODE(node);
561 if (tree->last == node)
562 tree->last = NULL;
563 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
564 pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
565 spin_unlock_irq(&tree->lock);
566
567 /*
568 * The current running transaction is waiting on us, we need to let it
569 * know that we're complete and wake it up.
570 */
571 if (pending) {
572 struct btrfs_transaction *trans;
573
574 /*
575 * The checks for trans are just a formality, it should be set,
576 * but if it isn't we don't want to deref/assert under the spin
577 * lock, so be nice and check if trans is set, but ASSERT() so
578 * if it isn't set a developer will notice.
579 */
580 spin_lock(&fs_info->trans_lock);
581 trans = fs_info->running_transaction;
582 if (trans)
583 refcount_inc(&trans->use_count);
584 spin_unlock(&fs_info->trans_lock);
585
586 ASSERT(trans);
587 if (trans) {
588 if (atomic_dec_and_test(&trans->pending_ordered))
589 wake_up(&trans->pending_wait);
590 btrfs_put_transaction(trans);
591 }
592 }
593
594 btrfs_lockdep_release(fs_info, btrfs_trans_pending_ordered);
595
596 spin_lock(&root->ordered_extent_lock);
597 list_del_init(&entry->root_extent_list);
598 root->nr_ordered_extents--;
599
600 trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
601
602 if (!root->nr_ordered_extents) {
603 spin_lock(&fs_info->ordered_root_lock);
604 BUG_ON(list_empty(&root->ordered_root));
605 list_del_init(&root->ordered_root);
606 spin_unlock(&fs_info->ordered_root_lock);
607 }
608 spin_unlock(&root->ordered_extent_lock);
609 wake_up(&entry->wait);
610 if (!freespace_inode)
611 btrfs_lockdep_release(fs_info, btrfs_ordered_extent);
612}
613
614static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
615{
616 struct btrfs_ordered_extent *ordered;
617
618 ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
619 btrfs_start_ordered_extent(ordered, 1);
620 complete(&ordered->completion);
621}
622
623/*
624 * wait for all the ordered extents in a root. This is done when balancing
625 * space between drives.
626 */
627u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
628 const u64 range_start, const u64 range_len)
629{
630 struct btrfs_fs_info *fs_info = root->fs_info;
631 LIST_HEAD(splice);
632 LIST_HEAD(skipped);
633 LIST_HEAD(works);
634 struct btrfs_ordered_extent *ordered, *next;
635 u64 count = 0;
636 const u64 range_end = range_start + range_len;
637
638 mutex_lock(&root->ordered_extent_mutex);
639 spin_lock(&root->ordered_extent_lock);
640 list_splice_init(&root->ordered_extents, &splice);
641 while (!list_empty(&splice) && nr) {
642 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
643 root_extent_list);
644
645 if (range_end <= ordered->disk_bytenr ||
646 ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
647 list_move_tail(&ordered->root_extent_list, &skipped);
648 cond_resched_lock(&root->ordered_extent_lock);
649 continue;
650 }
651
652 list_move_tail(&ordered->root_extent_list,
653 &root->ordered_extents);
654 refcount_inc(&ordered->refs);
655 spin_unlock(&root->ordered_extent_lock);
656
657 btrfs_init_work(&ordered->flush_work,
658 btrfs_run_ordered_extent_work, NULL, NULL);
659 list_add_tail(&ordered->work_list, &works);
660 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
661
662 cond_resched();
663 spin_lock(&root->ordered_extent_lock);
664 if (nr != U64_MAX)
665 nr--;
666 count++;
667 }
668 list_splice_tail(&skipped, &root->ordered_extents);
669 list_splice_tail(&splice, &root->ordered_extents);
670 spin_unlock(&root->ordered_extent_lock);
671
672 list_for_each_entry_safe(ordered, next, &works, work_list) {
673 list_del_init(&ordered->work_list);
674 wait_for_completion(&ordered->completion);
675 btrfs_put_ordered_extent(ordered);
676 cond_resched();
677 }
678 mutex_unlock(&root->ordered_extent_mutex);
679
680 return count;
681}
682
683void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
684 const u64 range_start, const u64 range_len)
685{
686 struct btrfs_root *root;
687 struct list_head splice;
688 u64 done;
689
690 INIT_LIST_HEAD(&splice);
691
692 mutex_lock(&fs_info->ordered_operations_mutex);
693 spin_lock(&fs_info->ordered_root_lock);
694 list_splice_init(&fs_info->ordered_roots, &splice);
695 while (!list_empty(&splice) && nr) {
696 root = list_first_entry(&splice, struct btrfs_root,
697 ordered_root);
698 root = btrfs_grab_root(root);
699 BUG_ON(!root);
700 list_move_tail(&root->ordered_root,
701 &fs_info->ordered_roots);
702 spin_unlock(&fs_info->ordered_root_lock);
703
704 done = btrfs_wait_ordered_extents(root, nr,
705 range_start, range_len);
706 btrfs_put_root(root);
707
708 spin_lock(&fs_info->ordered_root_lock);
709 if (nr != U64_MAX) {
710 nr -= done;
711 }
712 }
713 list_splice_tail(&splice, &fs_info->ordered_roots);
714 spin_unlock(&fs_info->ordered_root_lock);
715 mutex_unlock(&fs_info->ordered_operations_mutex);
716}
717
718/*
719 * Used to start IO or wait for a given ordered extent to finish.
720 *
721 * If wait is one, this effectively waits on page writeback for all the pages
722 * in the extent, and it waits on the io completion code to insert
723 * metadata into the btree corresponding to the extent
724 */
725void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry, int wait)
726{
727 u64 start = entry->file_offset;
728 u64 end = start + entry->num_bytes - 1;
729 struct btrfs_inode *inode = BTRFS_I(entry->inode);
730 bool freespace_inode;
731
732 trace_btrfs_ordered_extent_start(inode, entry);
733
734 /*
735 * If this is a free space inode do not take the ordered extents lockdep
736 * map.
737 */
738 freespace_inode = btrfs_is_free_space_inode(inode);
739
740 /*
741 * pages in the range can be dirty, clean or writeback. We
742 * start IO on any dirty ones so the wait doesn't stall waiting
743 * for the flusher thread to find them
744 */
745 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
746 filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
747 if (wait) {
748 if (!freespace_inode)
749 btrfs_might_wait_for_event(inode->root->fs_info, btrfs_ordered_extent);
750 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
751 &entry->flags));
752 }
753}
754
755/*
756 * Used to wait on ordered extents across a large range of bytes.
757 */
758int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
759{
760 int ret = 0;
761 int ret_wb = 0;
762 u64 end;
763 u64 orig_end;
764 struct btrfs_ordered_extent *ordered;
765
766 if (start + len < start) {
767 orig_end = OFFSET_MAX;
768 } else {
769 orig_end = start + len - 1;
770 if (orig_end > OFFSET_MAX)
771 orig_end = OFFSET_MAX;
772 }
773
774 /* start IO across the range first to instantiate any delalloc
775 * extents
776 */
777 ret = btrfs_fdatawrite_range(inode, start, orig_end);
778 if (ret)
779 return ret;
780
781 /*
782 * If we have a writeback error don't return immediately. Wait first
783 * for any ordered extents that haven't completed yet. This is to make
784 * sure no one can dirty the same page ranges and call writepages()
785 * before the ordered extents complete - to avoid failures (-EEXIST)
786 * when adding the new ordered extents to the ordered tree.
787 */
788 ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
789
790 end = orig_end;
791 while (1) {
792 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
793 if (!ordered)
794 break;
795 if (ordered->file_offset > orig_end) {
796 btrfs_put_ordered_extent(ordered);
797 break;
798 }
799 if (ordered->file_offset + ordered->num_bytes <= start) {
800 btrfs_put_ordered_extent(ordered);
801 break;
802 }
803 btrfs_start_ordered_extent(ordered, 1);
804 end = ordered->file_offset;
805 /*
806 * If the ordered extent had an error save the error but don't
807 * exit without waiting first for all other ordered extents in
808 * the range to complete.
809 */
810 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
811 ret = -EIO;
812 btrfs_put_ordered_extent(ordered);
813 if (end == 0 || end == start)
814 break;
815 end--;
816 }
817 return ret_wb ? ret_wb : ret;
818}
819
820/*
821 * find an ordered extent corresponding to file_offset. return NULL if
822 * nothing is found, otherwise take a reference on the extent and return it
823 */
824struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
825 u64 file_offset)
826{
827 struct btrfs_ordered_inode_tree *tree;
828 struct rb_node *node;
829 struct btrfs_ordered_extent *entry = NULL;
830 unsigned long flags;
831
832 tree = &inode->ordered_tree;
833 spin_lock_irqsave(&tree->lock, flags);
834 node = tree_search(tree, file_offset);
835 if (!node)
836 goto out;
837
838 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
839 if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
840 entry = NULL;
841 if (entry) {
842 refcount_inc(&entry->refs);
843 trace_btrfs_ordered_extent_lookup(inode, entry);
844 }
845out:
846 spin_unlock_irqrestore(&tree->lock, flags);
847 return entry;
848}
849
850/* Since the DIO code tries to lock a wide area we need to look for any ordered
851 * extents that exist in the range, rather than just the start of the range.
852 */
853struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
854 struct btrfs_inode *inode, u64 file_offset, u64 len)
855{
856 struct btrfs_ordered_inode_tree *tree;
857 struct rb_node *node;
858 struct btrfs_ordered_extent *entry = NULL;
859
860 tree = &inode->ordered_tree;
861 spin_lock_irq(&tree->lock);
862 node = tree_search(tree, file_offset);
863 if (!node) {
864 node = tree_search(tree, file_offset + len);
865 if (!node)
866 goto out;
867 }
868
869 while (1) {
870 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
871 if (range_overlaps(entry, file_offset, len))
872 break;
873
874 if (entry->file_offset >= file_offset + len) {
875 entry = NULL;
876 break;
877 }
878 entry = NULL;
879 node = rb_next(node);
880 if (!node)
881 break;
882 }
883out:
884 if (entry) {
885 refcount_inc(&entry->refs);
886 trace_btrfs_ordered_extent_lookup_range(inode, entry);
887 }
888 spin_unlock_irq(&tree->lock);
889 return entry;
890}
891
892/*
893 * Adds all ordered extents to the given list. The list ends up sorted by the
894 * file_offset of the ordered extents.
895 */
896void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
897 struct list_head *list)
898{
899 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
900 struct rb_node *n;
901
902 ASSERT(inode_is_locked(&inode->vfs_inode));
903
904 spin_lock_irq(&tree->lock);
905 for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
906 struct btrfs_ordered_extent *ordered;
907
908 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
909
910 if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
911 continue;
912
913 ASSERT(list_empty(&ordered->log_list));
914 list_add_tail(&ordered->log_list, list);
915 refcount_inc(&ordered->refs);
916 trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered);
917 }
918 spin_unlock_irq(&tree->lock);
919}
920
921/*
922 * lookup and return any extent before 'file_offset'. NULL is returned
923 * if none is found
924 */
925struct btrfs_ordered_extent *
926btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
927{
928 struct btrfs_ordered_inode_tree *tree;
929 struct rb_node *node;
930 struct btrfs_ordered_extent *entry = NULL;
931
932 tree = &inode->ordered_tree;
933 spin_lock_irq(&tree->lock);
934 node = tree_search(tree, file_offset);
935 if (!node)
936 goto out;
937
938 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
939 refcount_inc(&entry->refs);
940 trace_btrfs_ordered_extent_lookup_first(inode, entry);
941out:
942 spin_unlock_irq(&tree->lock);
943 return entry;
944}
945
946/*
947 * Lookup the first ordered extent that overlaps the range
948 * [@file_offset, @file_offset + @len).
949 *
950 * The difference between this and btrfs_lookup_first_ordered_extent() is
951 * that this one won't return any ordered extent that does not overlap the range.
952 * And the difference against btrfs_lookup_ordered_extent() is, this function
953 * ensures the first ordered extent gets returned.
954 */
955struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
956 struct btrfs_inode *inode, u64 file_offset, u64 len)
957{
958 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
959 struct rb_node *node;
960 struct rb_node *cur;
961 struct rb_node *prev;
962 struct rb_node *next;
963 struct btrfs_ordered_extent *entry = NULL;
964
965 spin_lock_irq(&tree->lock);
966 node = tree->tree.rb_node;
967 /*
968 * Here we don't want to use tree_search() which will use tree->last
969 * and screw up the search order.
970 * And __tree_search() can't return the adjacent ordered extents
971 * either, thus here we do our own search.
972 */
973 while (node) {
974 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
975
976 if (file_offset < entry->file_offset) {
977 node = node->rb_left;
978 } else if (file_offset >= entry_end(entry)) {
979 node = node->rb_right;
980 } else {
981 /*
982 * Direct hit, got an ordered extent that starts at
983 * @file_offset
984 */
985 goto out;
986 }
987 }
988 if (!entry) {
989 /* Empty tree */
990 goto out;
991 }
992
993 cur = &entry->rb_node;
994 /* We got an entry around @file_offset, check adjacent entries */
995 if (entry->file_offset < file_offset) {
996 prev = cur;
997 next = rb_next(cur);
998 } else {
999 prev = rb_prev(cur);
1000 next = cur;
1001 }
1002 if (prev) {
1003 entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
1004 if (range_overlaps(entry, file_offset, len))
1005 goto out;
1006 }
1007 if (next) {
1008 entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
1009 if (range_overlaps(entry, file_offset, len))
1010 goto out;
1011 }
1012 /* No ordered extent in the range */
1013 entry = NULL;
1014out:
1015 if (entry) {
1016 refcount_inc(&entry->refs);
1017 trace_btrfs_ordered_extent_lookup_first_range(inode, entry);
1018 }
1019
1020 spin_unlock_irq(&tree->lock);
1021 return entry;
1022}
1023
1024/*
1025 * Lock the passed range and ensures all pending ordered extents in it are run
1026 * to completion.
1027 *
1028 * @inode: Inode whose ordered tree is to be searched
1029 * @start: Beginning of range to flush
1030 * @end: Last byte of range to lock
1031 * @cached_state: If passed, will return the extent state responsible for the
1032 * locked range. It's the caller's responsibility to free the
1033 * cached state.
1034 *
1035 * Always return with the given range locked, ensuring after it's called no
1036 * order extent can be pending.
1037 */
1038void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
1039 u64 end,
1040 struct extent_state **cached_state)
1041{
1042 struct btrfs_ordered_extent *ordered;
1043 struct extent_state *cache = NULL;
1044 struct extent_state **cachedp = &cache;
1045
1046 if (cached_state)
1047 cachedp = cached_state;
1048
1049 while (1) {
1050 lock_extent(&inode->io_tree, start, end, cachedp);
1051 ordered = btrfs_lookup_ordered_range(inode, start,
1052 end - start + 1);
1053 if (!ordered) {
1054 /*
1055 * If no external cached_state has been passed then
1056 * decrement the extra ref taken for cachedp since we
1057 * aren't exposing it outside of this function
1058 */
1059 if (!cached_state)
1060 refcount_dec(&cache->refs);
1061 break;
1062 }
1063 unlock_extent(&inode->io_tree, start, end, cachedp);
1064 btrfs_start_ordered_extent(ordered, 1);
1065 btrfs_put_ordered_extent(ordered);
1066 }
1067}
1068
1069/*
1070 * Lock the passed range and ensure all pending ordered extents in it are run
1071 * to completion in nowait mode.
1072 *
1073 * Return true if btrfs_lock_ordered_range does not return any extents,
1074 * otherwise false.
1075 */
1076bool btrfs_try_lock_ordered_range(struct btrfs_inode *inode, u64 start, u64 end,
1077 struct extent_state **cached_state)
1078{
1079 struct btrfs_ordered_extent *ordered;
1080
1081 if (!try_lock_extent(&inode->io_tree, start, end, cached_state))
1082 return false;
1083
1084 ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1);
1085 if (!ordered)
1086 return true;
1087
1088 btrfs_put_ordered_extent(ordered);
1089 unlock_extent(&inode->io_tree, start, end, cached_state);
1090
1091 return false;
1092}
1093
1094
1095static int clone_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pos,
1096 u64 len)
1097{
1098 struct inode *inode = ordered->inode;
1099 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1100 u64 file_offset = ordered->file_offset + pos;
1101 u64 disk_bytenr = ordered->disk_bytenr + pos;
1102 unsigned long flags = ordered->flags & BTRFS_ORDERED_TYPE_FLAGS;
1103
1104 /*
1105 * The splitting extent is already counted and will be added again in
1106 * btrfs_add_ordered_extent_*(). Subtract len to avoid double counting.
1107 */
1108 percpu_counter_add_batch(&fs_info->ordered_bytes, -len,
1109 fs_info->delalloc_batch);
1110 WARN_ON_ONCE(flags & (1 << BTRFS_ORDERED_COMPRESSED));
1111 return btrfs_add_ordered_extent(BTRFS_I(inode), file_offset, len, len,
1112 disk_bytenr, len, 0, flags,
1113 ordered->compress_type);
1114}
1115
1116int btrfs_split_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pre,
1117 u64 post)
1118{
1119 struct inode *inode = ordered->inode;
1120 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1121 struct rb_node *node;
1122 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1123 int ret = 0;
1124
1125 trace_btrfs_ordered_extent_split(BTRFS_I(inode), ordered);
1126
1127 spin_lock_irq(&tree->lock);
1128 /* Remove from tree once */
1129 node = &ordered->rb_node;
1130 rb_erase(node, &tree->tree);
1131 RB_CLEAR_NODE(node);
1132 if (tree->last == node)
1133 tree->last = NULL;
1134
1135 ordered->file_offset += pre;
1136 ordered->disk_bytenr += pre;
1137 ordered->num_bytes -= (pre + post);
1138 ordered->disk_num_bytes -= (pre + post);
1139 ordered->bytes_left -= (pre + post);
1140
1141 /* Re-insert the node */
1142 node = tree_insert(&tree->tree, ordered->file_offset, &ordered->rb_node);
1143 if (node)
1144 btrfs_panic(fs_info, -EEXIST,
1145 "zoned: inconsistency in ordered tree at offset %llu",
1146 ordered->file_offset);
1147
1148 spin_unlock_irq(&tree->lock);
1149
1150 if (pre)
1151 ret = clone_ordered_extent(ordered, 0, pre);
1152 if (ret == 0 && post)
1153 ret = clone_ordered_extent(ordered, pre + ordered->disk_num_bytes,
1154 post);
1155
1156 return ret;
1157}
1158
1159int __init ordered_data_init(void)
1160{
1161 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1162 sizeof(struct btrfs_ordered_extent), 0,
1163 SLAB_MEM_SPREAD,
1164 NULL);
1165 if (!btrfs_ordered_extent_cache)
1166 return -ENOMEM;
1167
1168 return 0;
1169}
1170
1171void __cold ordered_data_exit(void)
1172{
1173 kmem_cache_destroy(btrfs_ordered_extent_cache);
1174}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/slab.h>
7#include <linux/blkdev.h>
8#include <linux/writeback.h>
9#include <linux/sched/mm.h>
10#include "misc.h"
11#include "ctree.h"
12#include "transaction.h"
13#include "btrfs_inode.h"
14#include "extent_io.h"
15#include "disk-io.h"
16#include "compression.h"
17#include "delalloc-space.h"
18#include "qgroup.h"
19#include "subpage.h"
20
21static struct kmem_cache *btrfs_ordered_extent_cache;
22
23static u64 entry_end(struct btrfs_ordered_extent *entry)
24{
25 if (entry->file_offset + entry->num_bytes < entry->file_offset)
26 return (u64)-1;
27 return entry->file_offset + entry->num_bytes;
28}
29
30/* returns NULL if the insertion worked, or it returns the node it did find
31 * in the tree
32 */
33static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
34 struct rb_node *node)
35{
36 struct rb_node **p = &root->rb_node;
37 struct rb_node *parent = NULL;
38 struct btrfs_ordered_extent *entry;
39
40 while (*p) {
41 parent = *p;
42 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
43
44 if (file_offset < entry->file_offset)
45 p = &(*p)->rb_left;
46 else if (file_offset >= entry_end(entry))
47 p = &(*p)->rb_right;
48 else
49 return parent;
50 }
51
52 rb_link_node(node, parent, p);
53 rb_insert_color(node, root);
54 return NULL;
55}
56
57/*
58 * look for a given offset in the tree, and if it can't be found return the
59 * first lesser offset
60 */
61static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
62 struct rb_node **prev_ret)
63{
64 struct rb_node *n = root->rb_node;
65 struct rb_node *prev = NULL;
66 struct rb_node *test;
67 struct btrfs_ordered_extent *entry;
68 struct btrfs_ordered_extent *prev_entry = NULL;
69
70 while (n) {
71 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
72 prev = n;
73 prev_entry = entry;
74
75 if (file_offset < entry->file_offset)
76 n = n->rb_left;
77 else if (file_offset >= entry_end(entry))
78 n = n->rb_right;
79 else
80 return n;
81 }
82 if (!prev_ret)
83 return NULL;
84
85 while (prev && file_offset >= entry_end(prev_entry)) {
86 test = rb_next(prev);
87 if (!test)
88 break;
89 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
90 rb_node);
91 if (file_offset < entry_end(prev_entry))
92 break;
93
94 prev = test;
95 }
96 if (prev)
97 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
98 rb_node);
99 while (prev && file_offset < entry_end(prev_entry)) {
100 test = rb_prev(prev);
101 if (!test)
102 break;
103 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
104 rb_node);
105 prev = test;
106 }
107 *prev_ret = prev;
108 return NULL;
109}
110
111static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
112 u64 len)
113{
114 if (file_offset + len <= entry->file_offset ||
115 entry->file_offset + entry->num_bytes <= file_offset)
116 return 0;
117 return 1;
118}
119
120/*
121 * look find the first ordered struct that has this offset, otherwise
122 * the first one less than this offset
123 */
124static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
125 u64 file_offset)
126{
127 struct rb_root *root = &tree->tree;
128 struct rb_node *prev = NULL;
129 struct rb_node *ret;
130 struct btrfs_ordered_extent *entry;
131
132 if (tree->last) {
133 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
134 rb_node);
135 if (in_range(file_offset, entry->file_offset, entry->num_bytes))
136 return tree->last;
137 }
138 ret = __tree_search(root, file_offset, &prev);
139 if (!ret)
140 ret = prev;
141 if (ret)
142 tree->last = ret;
143 return ret;
144}
145
146/*
147 * Allocate and add a new ordered_extent into the per-inode tree.
148 *
149 * The tree is given a single reference on the ordered extent that was
150 * inserted.
151 */
152static int __btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
153 u64 disk_bytenr, u64 num_bytes,
154 u64 disk_num_bytes, int type, int dio,
155 int compress_type)
156{
157 struct btrfs_root *root = inode->root;
158 struct btrfs_fs_info *fs_info = root->fs_info;
159 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
160 struct rb_node *node;
161 struct btrfs_ordered_extent *entry;
162 int ret;
163
164 if (type == BTRFS_ORDERED_NOCOW || type == BTRFS_ORDERED_PREALLOC) {
165 /* For nocow write, we can release the qgroup rsv right now */
166 ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes);
167 if (ret < 0)
168 return ret;
169 ret = 0;
170 } else {
171 /*
172 * The ordered extent has reserved qgroup space, release now
173 * and pass the reserved number for qgroup_record to free.
174 */
175 ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes);
176 if (ret < 0)
177 return ret;
178 }
179 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
180 if (!entry)
181 return -ENOMEM;
182
183 entry->file_offset = file_offset;
184 entry->disk_bytenr = disk_bytenr;
185 entry->num_bytes = num_bytes;
186 entry->disk_num_bytes = disk_num_bytes;
187 entry->bytes_left = num_bytes;
188 entry->inode = igrab(&inode->vfs_inode);
189 entry->compress_type = compress_type;
190 entry->truncated_len = (u64)-1;
191 entry->qgroup_rsv = ret;
192 entry->physical = (u64)-1;
193
194 ASSERT(type == BTRFS_ORDERED_REGULAR ||
195 type == BTRFS_ORDERED_NOCOW ||
196 type == BTRFS_ORDERED_PREALLOC ||
197 type == BTRFS_ORDERED_COMPRESSED);
198 set_bit(type, &entry->flags);
199
200 percpu_counter_add_batch(&fs_info->ordered_bytes, num_bytes,
201 fs_info->delalloc_batch);
202
203 if (dio)
204 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
205
206 /* one ref for the tree */
207 refcount_set(&entry->refs, 1);
208 init_waitqueue_head(&entry->wait);
209 INIT_LIST_HEAD(&entry->list);
210 INIT_LIST_HEAD(&entry->log_list);
211 INIT_LIST_HEAD(&entry->root_extent_list);
212 INIT_LIST_HEAD(&entry->work_list);
213 init_completion(&entry->completion);
214
215 trace_btrfs_ordered_extent_add(inode, entry);
216
217 spin_lock_irq(&tree->lock);
218 node = tree_insert(&tree->tree, file_offset,
219 &entry->rb_node);
220 if (node)
221 btrfs_panic(fs_info, -EEXIST,
222 "inconsistency in ordered tree at offset %llu",
223 file_offset);
224 spin_unlock_irq(&tree->lock);
225
226 spin_lock(&root->ordered_extent_lock);
227 list_add_tail(&entry->root_extent_list,
228 &root->ordered_extents);
229 root->nr_ordered_extents++;
230 if (root->nr_ordered_extents == 1) {
231 spin_lock(&fs_info->ordered_root_lock);
232 BUG_ON(!list_empty(&root->ordered_root));
233 list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
234 spin_unlock(&fs_info->ordered_root_lock);
235 }
236 spin_unlock(&root->ordered_extent_lock);
237
238 /*
239 * We don't need the count_max_extents here, we can assume that all of
240 * that work has been done at higher layers, so this is truly the
241 * smallest the extent is going to get.
242 */
243 spin_lock(&inode->lock);
244 btrfs_mod_outstanding_extents(inode, 1);
245 spin_unlock(&inode->lock);
246
247 return 0;
248}
249
250int btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
251 u64 disk_bytenr, u64 num_bytes, u64 disk_num_bytes,
252 int type)
253{
254 ASSERT(type == BTRFS_ORDERED_REGULAR ||
255 type == BTRFS_ORDERED_NOCOW ||
256 type == BTRFS_ORDERED_PREALLOC);
257 return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
258 num_bytes, disk_num_bytes, type, 0,
259 BTRFS_COMPRESS_NONE);
260}
261
262int btrfs_add_ordered_extent_dio(struct btrfs_inode *inode, u64 file_offset,
263 u64 disk_bytenr, u64 num_bytes,
264 u64 disk_num_bytes, int type)
265{
266 ASSERT(type == BTRFS_ORDERED_REGULAR ||
267 type == BTRFS_ORDERED_NOCOW ||
268 type == BTRFS_ORDERED_PREALLOC);
269 return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
270 num_bytes, disk_num_bytes, type, 1,
271 BTRFS_COMPRESS_NONE);
272}
273
274int btrfs_add_ordered_extent_compress(struct btrfs_inode *inode, u64 file_offset,
275 u64 disk_bytenr, u64 num_bytes,
276 u64 disk_num_bytes, int compress_type)
277{
278 ASSERT(compress_type != BTRFS_COMPRESS_NONE);
279 return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
280 num_bytes, disk_num_bytes,
281 BTRFS_ORDERED_COMPRESSED, 0,
282 compress_type);
283}
284
285/*
286 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
287 * when an ordered extent is finished. If the list covers more than one
288 * ordered extent, it is split across multiples.
289 */
290void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
291 struct btrfs_ordered_sum *sum)
292{
293 struct btrfs_ordered_inode_tree *tree;
294
295 tree = &BTRFS_I(entry->inode)->ordered_tree;
296 spin_lock_irq(&tree->lock);
297 list_add_tail(&sum->list, &entry->list);
298 spin_unlock_irq(&tree->lock);
299}
300
301/*
302 * Mark all ordered extents io inside the specified range finished.
303 *
304 * @page: The invovled page for the opeartion.
305 * For uncompressed buffered IO, the page status also needs to be
306 * updated to indicate whether the pending ordered io is finished.
307 * Can be NULL for direct IO and compressed write.
308 * For these cases, callers are ensured they won't execute the
309 * endio function twice.
310 * @finish_func: The function to be executed when all the IO of an ordered
311 * extent are finished.
312 *
313 * This function is called for endio, thus the range must have ordered
314 * extent(s) coveri it.
315 */
316void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
317 struct page *page, u64 file_offset,
318 u64 num_bytes, btrfs_func_t finish_func,
319 bool uptodate)
320{
321 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
322 struct btrfs_fs_info *fs_info = inode->root->fs_info;
323 struct btrfs_workqueue *wq;
324 struct rb_node *node;
325 struct btrfs_ordered_extent *entry = NULL;
326 unsigned long flags;
327 u64 cur = file_offset;
328
329 if (btrfs_is_free_space_inode(inode))
330 wq = fs_info->endio_freespace_worker;
331 else
332 wq = fs_info->endio_write_workers;
333
334 if (page)
335 ASSERT(page->mapping && page_offset(page) <= file_offset &&
336 file_offset + num_bytes <= page_offset(page) + PAGE_SIZE);
337
338 spin_lock_irqsave(&tree->lock, flags);
339 while (cur < file_offset + num_bytes) {
340 u64 entry_end;
341 u64 end;
342 u32 len;
343
344 node = tree_search(tree, cur);
345 /* No ordered extents at all */
346 if (!node)
347 break;
348
349 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
350 entry_end = entry->file_offset + entry->num_bytes;
351 /*
352 * |<-- OE --->| |
353 * cur
354 * Go to next OE.
355 */
356 if (cur >= entry_end) {
357 node = rb_next(node);
358 /* No more ordered extents, exit */
359 if (!node)
360 break;
361 entry = rb_entry(node, struct btrfs_ordered_extent,
362 rb_node);
363
364 /* Go to next ordered extent and continue */
365 cur = entry->file_offset;
366 continue;
367 }
368 /*
369 * | |<--- OE --->|
370 * cur
371 * Go to the start of OE.
372 */
373 if (cur < entry->file_offset) {
374 cur = entry->file_offset;
375 continue;
376 }
377
378 /*
379 * Now we are definitely inside one ordered extent.
380 *
381 * |<--- OE --->|
382 * |
383 * cur
384 */
385 end = min(entry->file_offset + entry->num_bytes,
386 file_offset + num_bytes) - 1;
387 ASSERT(end + 1 - cur < U32_MAX);
388 len = end + 1 - cur;
389
390 if (page) {
391 /*
392 * Ordered (Private2) bit indicates whether we still
393 * have pending io unfinished for the ordered extent.
394 *
395 * If there's no such bit, we need to skip to next range.
396 */
397 if (!btrfs_page_test_ordered(fs_info, page, cur, len)) {
398 cur += len;
399 continue;
400 }
401 btrfs_page_clear_ordered(fs_info, page, cur, len);
402 }
403
404 /* Now we're fine to update the accounting */
405 if (unlikely(len > entry->bytes_left)) {
406 WARN_ON(1);
407 btrfs_crit(fs_info,
408"bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%u left=%llu",
409 inode->root->root_key.objectid,
410 btrfs_ino(inode),
411 entry->file_offset,
412 entry->num_bytes,
413 len, entry->bytes_left);
414 entry->bytes_left = 0;
415 } else {
416 entry->bytes_left -= len;
417 }
418
419 if (!uptodate)
420 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
421
422 /*
423 * All the IO of the ordered extent is finished, we need to queue
424 * the finish_func to be executed.
425 */
426 if (entry->bytes_left == 0) {
427 set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
428 cond_wake_up(&entry->wait);
429 refcount_inc(&entry->refs);
430 spin_unlock_irqrestore(&tree->lock, flags);
431 btrfs_init_work(&entry->work, finish_func, NULL, NULL);
432 btrfs_queue_work(wq, &entry->work);
433 spin_lock_irqsave(&tree->lock, flags);
434 }
435 cur += len;
436 }
437 spin_unlock_irqrestore(&tree->lock, flags);
438}
439
440/*
441 * Finish IO for one ordered extent across a given range. The range can only
442 * contain one ordered extent.
443 *
444 * @cached: The cached ordered extent. If not NULL, we can skip the tree
445 * search and use the ordered extent directly.
446 * Will be also used to store the finished ordered extent.
447 * @file_offset: File offset for the finished IO
448 * @io_size: Length of the finish IO range
449 * @uptodate: If the IO finishes without problem
450 *
451 * Return true if the ordered extent is finished in the range, and update
452 * @cached.
453 * Return false otherwise.
454 *
455 * NOTE: The range can NOT cross multiple ordered extents.
456 * Thus caller should ensure the range doesn't cross ordered extents.
457 */
458bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
459 struct btrfs_ordered_extent **cached,
460 u64 file_offset, u64 io_size, int uptodate)
461{
462 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
463 struct rb_node *node;
464 struct btrfs_ordered_extent *entry = NULL;
465 unsigned long flags;
466 bool finished = false;
467
468 spin_lock_irqsave(&tree->lock, flags);
469 if (cached && *cached) {
470 entry = *cached;
471 goto have_entry;
472 }
473
474 node = tree_search(tree, file_offset);
475 if (!node)
476 goto out;
477
478 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
479have_entry:
480 if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
481 goto out;
482
483 if (io_size > entry->bytes_left)
484 btrfs_crit(inode->root->fs_info,
485 "bad ordered accounting left %llu size %llu",
486 entry->bytes_left, io_size);
487
488 entry->bytes_left -= io_size;
489 if (!uptodate)
490 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
491
492 if (entry->bytes_left == 0) {
493 /*
494 * Ensure only one caller can set the flag and finished_ret
495 * accordingly
496 */
497 finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
498 /* test_and_set_bit implies a barrier */
499 cond_wake_up_nomb(&entry->wait);
500 }
501out:
502 if (finished && cached && entry) {
503 *cached = entry;
504 refcount_inc(&entry->refs);
505 }
506 spin_unlock_irqrestore(&tree->lock, flags);
507 return finished;
508}
509
510/*
511 * used to drop a reference on an ordered extent. This will free
512 * the extent if the last reference is dropped
513 */
514void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
515{
516 struct list_head *cur;
517 struct btrfs_ordered_sum *sum;
518
519 trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
520
521 if (refcount_dec_and_test(&entry->refs)) {
522 ASSERT(list_empty(&entry->root_extent_list));
523 ASSERT(list_empty(&entry->log_list));
524 ASSERT(RB_EMPTY_NODE(&entry->rb_node));
525 if (entry->inode)
526 btrfs_add_delayed_iput(entry->inode);
527 while (!list_empty(&entry->list)) {
528 cur = entry->list.next;
529 sum = list_entry(cur, struct btrfs_ordered_sum, list);
530 list_del(&sum->list);
531 kvfree(sum);
532 }
533 kmem_cache_free(btrfs_ordered_extent_cache, entry);
534 }
535}
536
537/*
538 * remove an ordered extent from the tree. No references are dropped
539 * and waiters are woken up.
540 */
541void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
542 struct btrfs_ordered_extent *entry)
543{
544 struct btrfs_ordered_inode_tree *tree;
545 struct btrfs_root *root = btrfs_inode->root;
546 struct btrfs_fs_info *fs_info = root->fs_info;
547 struct rb_node *node;
548 bool pending;
549
550 /* This is paired with btrfs_add_ordered_extent. */
551 spin_lock(&btrfs_inode->lock);
552 btrfs_mod_outstanding_extents(btrfs_inode, -1);
553 spin_unlock(&btrfs_inode->lock);
554 if (root != fs_info->tree_root)
555 btrfs_delalloc_release_metadata(btrfs_inode, entry->num_bytes,
556 false);
557
558 percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
559 fs_info->delalloc_batch);
560
561 tree = &btrfs_inode->ordered_tree;
562 spin_lock_irq(&tree->lock);
563 node = &entry->rb_node;
564 rb_erase(node, &tree->tree);
565 RB_CLEAR_NODE(node);
566 if (tree->last == node)
567 tree->last = NULL;
568 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
569 pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
570 spin_unlock_irq(&tree->lock);
571
572 /*
573 * The current running transaction is waiting on us, we need to let it
574 * know that we're complete and wake it up.
575 */
576 if (pending) {
577 struct btrfs_transaction *trans;
578
579 /*
580 * The checks for trans are just a formality, it should be set,
581 * but if it isn't we don't want to deref/assert under the spin
582 * lock, so be nice and check if trans is set, but ASSERT() so
583 * if it isn't set a developer will notice.
584 */
585 spin_lock(&fs_info->trans_lock);
586 trans = fs_info->running_transaction;
587 if (trans)
588 refcount_inc(&trans->use_count);
589 spin_unlock(&fs_info->trans_lock);
590
591 ASSERT(trans);
592 if (trans) {
593 if (atomic_dec_and_test(&trans->pending_ordered))
594 wake_up(&trans->pending_wait);
595 btrfs_put_transaction(trans);
596 }
597 }
598
599 spin_lock(&root->ordered_extent_lock);
600 list_del_init(&entry->root_extent_list);
601 root->nr_ordered_extents--;
602
603 trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
604
605 if (!root->nr_ordered_extents) {
606 spin_lock(&fs_info->ordered_root_lock);
607 BUG_ON(list_empty(&root->ordered_root));
608 list_del_init(&root->ordered_root);
609 spin_unlock(&fs_info->ordered_root_lock);
610 }
611 spin_unlock(&root->ordered_extent_lock);
612 wake_up(&entry->wait);
613}
614
615static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
616{
617 struct btrfs_ordered_extent *ordered;
618
619 ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
620 btrfs_start_ordered_extent(ordered, 1);
621 complete(&ordered->completion);
622}
623
624/*
625 * wait for all the ordered extents in a root. This is done when balancing
626 * space between drives.
627 */
628u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
629 const u64 range_start, const u64 range_len)
630{
631 struct btrfs_fs_info *fs_info = root->fs_info;
632 LIST_HEAD(splice);
633 LIST_HEAD(skipped);
634 LIST_HEAD(works);
635 struct btrfs_ordered_extent *ordered, *next;
636 u64 count = 0;
637 const u64 range_end = range_start + range_len;
638
639 mutex_lock(&root->ordered_extent_mutex);
640 spin_lock(&root->ordered_extent_lock);
641 list_splice_init(&root->ordered_extents, &splice);
642 while (!list_empty(&splice) && nr) {
643 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
644 root_extent_list);
645
646 if (range_end <= ordered->disk_bytenr ||
647 ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
648 list_move_tail(&ordered->root_extent_list, &skipped);
649 cond_resched_lock(&root->ordered_extent_lock);
650 continue;
651 }
652
653 list_move_tail(&ordered->root_extent_list,
654 &root->ordered_extents);
655 refcount_inc(&ordered->refs);
656 spin_unlock(&root->ordered_extent_lock);
657
658 btrfs_init_work(&ordered->flush_work,
659 btrfs_run_ordered_extent_work, NULL, NULL);
660 list_add_tail(&ordered->work_list, &works);
661 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
662
663 cond_resched();
664 spin_lock(&root->ordered_extent_lock);
665 if (nr != U64_MAX)
666 nr--;
667 count++;
668 }
669 list_splice_tail(&skipped, &root->ordered_extents);
670 list_splice_tail(&splice, &root->ordered_extents);
671 spin_unlock(&root->ordered_extent_lock);
672
673 list_for_each_entry_safe(ordered, next, &works, work_list) {
674 list_del_init(&ordered->work_list);
675 wait_for_completion(&ordered->completion);
676 btrfs_put_ordered_extent(ordered);
677 cond_resched();
678 }
679 mutex_unlock(&root->ordered_extent_mutex);
680
681 return count;
682}
683
684void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
685 const u64 range_start, const u64 range_len)
686{
687 struct btrfs_root *root;
688 struct list_head splice;
689 u64 done;
690
691 INIT_LIST_HEAD(&splice);
692
693 mutex_lock(&fs_info->ordered_operations_mutex);
694 spin_lock(&fs_info->ordered_root_lock);
695 list_splice_init(&fs_info->ordered_roots, &splice);
696 while (!list_empty(&splice) && nr) {
697 root = list_first_entry(&splice, struct btrfs_root,
698 ordered_root);
699 root = btrfs_grab_root(root);
700 BUG_ON(!root);
701 list_move_tail(&root->ordered_root,
702 &fs_info->ordered_roots);
703 spin_unlock(&fs_info->ordered_root_lock);
704
705 done = btrfs_wait_ordered_extents(root, nr,
706 range_start, range_len);
707 btrfs_put_root(root);
708
709 spin_lock(&fs_info->ordered_root_lock);
710 if (nr != U64_MAX) {
711 nr -= done;
712 }
713 }
714 list_splice_tail(&splice, &fs_info->ordered_roots);
715 spin_unlock(&fs_info->ordered_root_lock);
716 mutex_unlock(&fs_info->ordered_operations_mutex);
717}
718
719/*
720 * Used to start IO or wait for a given ordered extent to finish.
721 *
722 * If wait is one, this effectively waits on page writeback for all the pages
723 * in the extent, and it waits on the io completion code to insert
724 * metadata into the btree corresponding to the extent
725 */
726void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry, int wait)
727{
728 u64 start = entry->file_offset;
729 u64 end = start + entry->num_bytes - 1;
730 struct btrfs_inode *inode = BTRFS_I(entry->inode);
731
732 trace_btrfs_ordered_extent_start(inode, entry);
733
734 /*
735 * pages in the range can be dirty, clean or writeback. We
736 * start IO on any dirty ones so the wait doesn't stall waiting
737 * for the flusher thread to find them
738 */
739 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
740 filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
741 if (wait) {
742 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
743 &entry->flags));
744 }
745}
746
747/*
748 * Used to wait on ordered extents across a large range of bytes.
749 */
750int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
751{
752 int ret = 0;
753 int ret_wb = 0;
754 u64 end;
755 u64 orig_end;
756 struct btrfs_ordered_extent *ordered;
757
758 if (start + len < start) {
759 orig_end = INT_LIMIT(loff_t);
760 } else {
761 orig_end = start + len - 1;
762 if (orig_end > INT_LIMIT(loff_t))
763 orig_end = INT_LIMIT(loff_t);
764 }
765
766 /* start IO across the range first to instantiate any delalloc
767 * extents
768 */
769 ret = btrfs_fdatawrite_range(inode, start, orig_end);
770 if (ret)
771 return ret;
772
773 /*
774 * If we have a writeback error don't return immediately. Wait first
775 * for any ordered extents that haven't completed yet. This is to make
776 * sure no one can dirty the same page ranges and call writepages()
777 * before the ordered extents complete - to avoid failures (-EEXIST)
778 * when adding the new ordered extents to the ordered tree.
779 */
780 ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
781
782 end = orig_end;
783 while (1) {
784 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
785 if (!ordered)
786 break;
787 if (ordered->file_offset > orig_end) {
788 btrfs_put_ordered_extent(ordered);
789 break;
790 }
791 if (ordered->file_offset + ordered->num_bytes <= start) {
792 btrfs_put_ordered_extent(ordered);
793 break;
794 }
795 btrfs_start_ordered_extent(ordered, 1);
796 end = ordered->file_offset;
797 /*
798 * If the ordered extent had an error save the error but don't
799 * exit without waiting first for all other ordered extents in
800 * the range to complete.
801 */
802 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
803 ret = -EIO;
804 btrfs_put_ordered_extent(ordered);
805 if (end == 0 || end == start)
806 break;
807 end--;
808 }
809 return ret_wb ? ret_wb : ret;
810}
811
812/*
813 * find an ordered extent corresponding to file_offset. return NULL if
814 * nothing is found, otherwise take a reference on the extent and return it
815 */
816struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
817 u64 file_offset)
818{
819 struct btrfs_ordered_inode_tree *tree;
820 struct rb_node *node;
821 struct btrfs_ordered_extent *entry = NULL;
822 unsigned long flags;
823
824 tree = &inode->ordered_tree;
825 spin_lock_irqsave(&tree->lock, flags);
826 node = tree_search(tree, file_offset);
827 if (!node)
828 goto out;
829
830 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
831 if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
832 entry = NULL;
833 if (entry)
834 refcount_inc(&entry->refs);
835out:
836 spin_unlock_irqrestore(&tree->lock, flags);
837 return entry;
838}
839
840/* Since the DIO code tries to lock a wide area we need to look for any ordered
841 * extents that exist in the range, rather than just the start of the range.
842 */
843struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
844 struct btrfs_inode *inode, u64 file_offset, u64 len)
845{
846 struct btrfs_ordered_inode_tree *tree;
847 struct rb_node *node;
848 struct btrfs_ordered_extent *entry = NULL;
849
850 tree = &inode->ordered_tree;
851 spin_lock_irq(&tree->lock);
852 node = tree_search(tree, file_offset);
853 if (!node) {
854 node = tree_search(tree, file_offset + len);
855 if (!node)
856 goto out;
857 }
858
859 while (1) {
860 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
861 if (range_overlaps(entry, file_offset, len))
862 break;
863
864 if (entry->file_offset >= file_offset + len) {
865 entry = NULL;
866 break;
867 }
868 entry = NULL;
869 node = rb_next(node);
870 if (!node)
871 break;
872 }
873out:
874 if (entry)
875 refcount_inc(&entry->refs);
876 spin_unlock_irq(&tree->lock);
877 return entry;
878}
879
880/*
881 * Adds all ordered extents to the given list. The list ends up sorted by the
882 * file_offset of the ordered extents.
883 */
884void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
885 struct list_head *list)
886{
887 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
888 struct rb_node *n;
889
890 ASSERT(inode_is_locked(&inode->vfs_inode));
891
892 spin_lock_irq(&tree->lock);
893 for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
894 struct btrfs_ordered_extent *ordered;
895
896 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
897
898 if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
899 continue;
900
901 ASSERT(list_empty(&ordered->log_list));
902 list_add_tail(&ordered->log_list, list);
903 refcount_inc(&ordered->refs);
904 }
905 spin_unlock_irq(&tree->lock);
906}
907
908/*
909 * lookup and return any extent before 'file_offset'. NULL is returned
910 * if none is found
911 */
912struct btrfs_ordered_extent *
913btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
914{
915 struct btrfs_ordered_inode_tree *tree;
916 struct rb_node *node;
917 struct btrfs_ordered_extent *entry = NULL;
918
919 tree = &inode->ordered_tree;
920 spin_lock_irq(&tree->lock);
921 node = tree_search(tree, file_offset);
922 if (!node)
923 goto out;
924
925 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
926 refcount_inc(&entry->refs);
927out:
928 spin_unlock_irq(&tree->lock);
929 return entry;
930}
931
932/*
933 * Lookup the first ordered extent that overlaps the range
934 * [@file_offset, @file_offset + @len).
935 *
936 * The difference between this and btrfs_lookup_first_ordered_extent() is
937 * that this one won't return any ordered extent that does not overlap the range.
938 * And the difference against btrfs_lookup_ordered_extent() is, this function
939 * ensures the first ordered extent gets returned.
940 */
941struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
942 struct btrfs_inode *inode, u64 file_offset, u64 len)
943{
944 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
945 struct rb_node *node;
946 struct rb_node *cur;
947 struct rb_node *prev;
948 struct rb_node *next;
949 struct btrfs_ordered_extent *entry = NULL;
950
951 spin_lock_irq(&tree->lock);
952 node = tree->tree.rb_node;
953 /*
954 * Here we don't want to use tree_search() which will use tree->last
955 * and screw up the search order.
956 * And __tree_search() can't return the adjacent ordered extents
957 * either, thus here we do our own search.
958 */
959 while (node) {
960 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
961
962 if (file_offset < entry->file_offset) {
963 node = node->rb_left;
964 } else if (file_offset >= entry_end(entry)) {
965 node = node->rb_right;
966 } else {
967 /*
968 * Direct hit, got an ordered extent that starts at
969 * @file_offset
970 */
971 goto out;
972 }
973 }
974 if (!entry) {
975 /* Empty tree */
976 goto out;
977 }
978
979 cur = &entry->rb_node;
980 /* We got an entry around @file_offset, check adjacent entries */
981 if (entry->file_offset < file_offset) {
982 prev = cur;
983 next = rb_next(cur);
984 } else {
985 prev = rb_prev(cur);
986 next = cur;
987 }
988 if (prev) {
989 entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
990 if (range_overlaps(entry, file_offset, len))
991 goto out;
992 }
993 if (next) {
994 entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
995 if (range_overlaps(entry, file_offset, len))
996 goto out;
997 }
998 /* No ordered extent in the range */
999 entry = NULL;
1000out:
1001 if (entry)
1002 refcount_inc(&entry->refs);
1003 spin_unlock_irq(&tree->lock);
1004 return entry;
1005}
1006
1007/*
1008 * btrfs_flush_ordered_range - Lock the passed range and ensures all pending
1009 * ordered extents in it are run to completion.
1010 *
1011 * @inode: Inode whose ordered tree is to be searched
1012 * @start: Beginning of range to flush
1013 * @end: Last byte of range to lock
1014 * @cached_state: If passed, will return the extent state responsible for the
1015 * locked range. It's the caller's responsibility to free the cached state.
1016 *
1017 * This function always returns with the given range locked, ensuring after it's
1018 * called no order extent can be pending.
1019 */
1020void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
1021 u64 end,
1022 struct extent_state **cached_state)
1023{
1024 struct btrfs_ordered_extent *ordered;
1025 struct extent_state *cache = NULL;
1026 struct extent_state **cachedp = &cache;
1027
1028 if (cached_state)
1029 cachedp = cached_state;
1030
1031 while (1) {
1032 lock_extent_bits(&inode->io_tree, start, end, cachedp);
1033 ordered = btrfs_lookup_ordered_range(inode, start,
1034 end - start + 1);
1035 if (!ordered) {
1036 /*
1037 * If no external cached_state has been passed then
1038 * decrement the extra ref taken for cachedp since we
1039 * aren't exposing it outside of this function
1040 */
1041 if (!cached_state)
1042 refcount_dec(&cache->refs);
1043 break;
1044 }
1045 unlock_extent_cached(&inode->io_tree, start, end, cachedp);
1046 btrfs_start_ordered_extent(ordered, 1);
1047 btrfs_put_ordered_extent(ordered);
1048 }
1049}
1050
1051static int clone_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pos,
1052 u64 len)
1053{
1054 struct inode *inode = ordered->inode;
1055 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1056 u64 file_offset = ordered->file_offset + pos;
1057 u64 disk_bytenr = ordered->disk_bytenr + pos;
1058 u64 num_bytes = len;
1059 u64 disk_num_bytes = len;
1060 int type;
1061 unsigned long flags_masked = ordered->flags & ~(1 << BTRFS_ORDERED_DIRECT);
1062 int compress_type = ordered->compress_type;
1063 unsigned long weight;
1064 int ret;
1065
1066 weight = hweight_long(flags_masked);
1067 WARN_ON_ONCE(weight > 1);
1068 if (!weight)
1069 type = 0;
1070 else
1071 type = __ffs(flags_masked);
1072
1073 /*
1074 * The splitting extent is already counted and will be added again
1075 * in btrfs_add_ordered_extent_*(). Subtract num_bytes to avoid
1076 * double counting.
1077 */
1078 percpu_counter_add_batch(&fs_info->ordered_bytes, -num_bytes,
1079 fs_info->delalloc_batch);
1080 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered->flags)) {
1081 WARN_ON_ONCE(1);
1082 ret = btrfs_add_ordered_extent_compress(BTRFS_I(inode),
1083 file_offset, disk_bytenr, num_bytes,
1084 disk_num_bytes, compress_type);
1085 } else if (test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
1086 ret = btrfs_add_ordered_extent_dio(BTRFS_I(inode), file_offset,
1087 disk_bytenr, num_bytes, disk_num_bytes, type);
1088 } else {
1089 ret = btrfs_add_ordered_extent(BTRFS_I(inode), file_offset,
1090 disk_bytenr, num_bytes, disk_num_bytes, type);
1091 }
1092
1093 return ret;
1094}
1095
1096int btrfs_split_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pre,
1097 u64 post)
1098{
1099 struct inode *inode = ordered->inode;
1100 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1101 struct rb_node *node;
1102 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1103 int ret = 0;
1104
1105 spin_lock_irq(&tree->lock);
1106 /* Remove from tree once */
1107 node = &ordered->rb_node;
1108 rb_erase(node, &tree->tree);
1109 RB_CLEAR_NODE(node);
1110 if (tree->last == node)
1111 tree->last = NULL;
1112
1113 ordered->file_offset += pre;
1114 ordered->disk_bytenr += pre;
1115 ordered->num_bytes -= (pre + post);
1116 ordered->disk_num_bytes -= (pre + post);
1117 ordered->bytes_left -= (pre + post);
1118
1119 /* Re-insert the node */
1120 node = tree_insert(&tree->tree, ordered->file_offset, &ordered->rb_node);
1121 if (node)
1122 btrfs_panic(fs_info, -EEXIST,
1123 "zoned: inconsistency in ordered tree at offset %llu",
1124 ordered->file_offset);
1125
1126 spin_unlock_irq(&tree->lock);
1127
1128 if (pre)
1129 ret = clone_ordered_extent(ordered, 0, pre);
1130 if (ret == 0 && post)
1131 ret = clone_ordered_extent(ordered, pre + ordered->disk_num_bytes,
1132 post);
1133
1134 return ret;
1135}
1136
1137int __init ordered_data_init(void)
1138{
1139 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1140 sizeof(struct btrfs_ordered_extent), 0,
1141 SLAB_MEM_SPREAD,
1142 NULL);
1143 if (!btrfs_ordered_extent_cache)
1144 return -ENOMEM;
1145
1146 return 0;
1147}
1148
1149void __cold ordered_data_exit(void)
1150{
1151 kmem_cache_destroy(btrfs_ordered_extent_cache);
1152}