Loading...
1// SPDX-License-Identifier: GPL-2.0
2#include <api/fs/fs.h>
3#include "cpumap.h"
4#include "debug.h"
5#include "event.h"
6#include <assert.h>
7#include <dirent.h>
8#include <stdio.h>
9#include <stdlib.h>
10#include <linux/bitmap.h>
11#include "asm/bug.h"
12
13#include <linux/ctype.h>
14#include <linux/zalloc.h>
15#include <internal/cpumap.h>
16
17static struct perf_cpu max_cpu_num;
18static struct perf_cpu max_present_cpu_num;
19static int max_node_num;
20/**
21 * The numa node X as read from /sys/devices/system/node/nodeX indexed by the
22 * CPU number.
23 */
24static int *cpunode_map;
25
26bool perf_record_cpu_map_data__test_bit(int i,
27 const struct perf_record_cpu_map_data *data)
28{
29 int bit_word32 = i / 32;
30 __u32 bit_mask32 = 1U << (i & 31);
31 int bit_word64 = i / 64;
32 __u64 bit_mask64 = ((__u64)1) << (i & 63);
33
34 return (data->mask32_data.long_size == 4)
35 ? (bit_word32 < data->mask32_data.nr) &&
36 (data->mask32_data.mask[bit_word32] & bit_mask32) != 0
37 : (bit_word64 < data->mask64_data.nr) &&
38 (data->mask64_data.mask[bit_word64] & bit_mask64) != 0;
39}
40
41/* Read ith mask value from data into the given 64-bit sized bitmap */
42static void perf_record_cpu_map_data__read_one_mask(const struct perf_record_cpu_map_data *data,
43 int i, unsigned long *bitmap)
44{
45#if __SIZEOF_LONG__ == 8
46 if (data->mask32_data.long_size == 4)
47 bitmap[0] = data->mask32_data.mask[i];
48 else
49 bitmap[0] = data->mask64_data.mask[i];
50#else
51 if (data->mask32_data.long_size == 4) {
52 bitmap[0] = data->mask32_data.mask[i];
53 bitmap[1] = 0;
54 } else {
55#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
56 bitmap[0] = (unsigned long)(data->mask64_data.mask[i] >> 32);
57 bitmap[1] = (unsigned long)data->mask64_data.mask[i];
58#else
59 bitmap[0] = (unsigned long)data->mask64_data.mask[i];
60 bitmap[1] = (unsigned long)(data->mask64_data.mask[i] >> 32);
61#endif
62 }
63#endif
64}
65static struct perf_cpu_map *cpu_map__from_entries(const struct perf_record_cpu_map_data *data)
66{
67 struct perf_cpu_map *map;
68
69 map = perf_cpu_map__empty_new(data->cpus_data.nr);
70 if (map) {
71 unsigned i;
72
73 for (i = 0; i < data->cpus_data.nr; i++) {
74 /*
75 * Special treatment for -1, which is not real cpu number,
76 * and we need to use (int) -1 to initialize map[i],
77 * otherwise it would become 65535.
78 */
79 if (data->cpus_data.cpu[i] == (u16) -1)
80 map->map[i].cpu = -1;
81 else
82 map->map[i].cpu = (int) data->cpus_data.cpu[i];
83 }
84 }
85
86 return map;
87}
88
89static struct perf_cpu_map *cpu_map__from_mask(const struct perf_record_cpu_map_data *data)
90{
91 DECLARE_BITMAP(local_copy, 64);
92 int weight = 0, mask_nr = data->mask32_data.nr;
93 struct perf_cpu_map *map;
94
95 for (int i = 0; i < mask_nr; i++) {
96 perf_record_cpu_map_data__read_one_mask(data, i, local_copy);
97 weight += bitmap_weight(local_copy, 64);
98 }
99
100 map = perf_cpu_map__empty_new(weight);
101 if (!map)
102 return NULL;
103
104 for (int i = 0, j = 0; i < mask_nr; i++) {
105 int cpus_per_i = (i * data->mask32_data.long_size * BITS_PER_BYTE);
106 int cpu;
107
108 perf_record_cpu_map_data__read_one_mask(data, i, local_copy);
109 for_each_set_bit(cpu, local_copy, 64)
110 map->map[j++].cpu = cpu + cpus_per_i;
111 }
112 return map;
113
114}
115
116static struct perf_cpu_map *cpu_map__from_range(const struct perf_record_cpu_map_data *data)
117{
118 struct perf_cpu_map *map;
119 unsigned int i = 0;
120
121 map = perf_cpu_map__empty_new(data->range_cpu_data.end_cpu -
122 data->range_cpu_data.start_cpu + 1 + data->range_cpu_data.any_cpu);
123 if (!map)
124 return NULL;
125
126 if (data->range_cpu_data.any_cpu)
127 map->map[i++].cpu = -1;
128
129 for (int cpu = data->range_cpu_data.start_cpu; cpu <= data->range_cpu_data.end_cpu;
130 i++, cpu++)
131 map->map[i].cpu = cpu;
132
133 return map;
134}
135
136struct perf_cpu_map *cpu_map__new_data(const struct perf_record_cpu_map_data *data)
137{
138 switch (data->type) {
139 case PERF_CPU_MAP__CPUS:
140 return cpu_map__from_entries(data);
141 case PERF_CPU_MAP__MASK:
142 return cpu_map__from_mask(data);
143 case PERF_CPU_MAP__RANGE_CPUS:
144 return cpu_map__from_range(data);
145 default:
146 pr_err("cpu_map__new_data unknown type %d\n", data->type);
147 return NULL;
148 }
149}
150
151size_t cpu_map__fprintf(struct perf_cpu_map *map, FILE *fp)
152{
153#define BUFSIZE 1024
154 char buf[BUFSIZE];
155
156 cpu_map__snprint(map, buf, sizeof(buf));
157 return fprintf(fp, "%s\n", buf);
158#undef BUFSIZE
159}
160
161struct perf_cpu_map *perf_cpu_map__empty_new(int nr)
162{
163 struct perf_cpu_map *cpus = malloc(sizeof(*cpus) + sizeof(int) * nr);
164
165 if (cpus != NULL) {
166 int i;
167
168 cpus->nr = nr;
169 for (i = 0; i < nr; i++)
170 cpus->map[i].cpu = -1;
171
172 refcount_set(&cpus->refcnt, 1);
173 }
174
175 return cpus;
176}
177
178struct cpu_aggr_map *cpu_aggr_map__empty_new(int nr)
179{
180 struct cpu_aggr_map *cpus = malloc(sizeof(*cpus) + sizeof(struct aggr_cpu_id) * nr);
181
182 if (cpus != NULL) {
183 int i;
184
185 cpus->nr = nr;
186 for (i = 0; i < nr; i++)
187 cpus->map[i] = aggr_cpu_id__empty();
188
189 refcount_set(&cpus->refcnt, 1);
190 }
191
192 return cpus;
193}
194
195static int cpu__get_topology_int(int cpu, const char *name, int *value)
196{
197 char path[PATH_MAX];
198
199 snprintf(path, PATH_MAX,
200 "devices/system/cpu/cpu%d/topology/%s", cpu, name);
201
202 return sysfs__read_int(path, value);
203}
204
205int cpu__get_socket_id(struct perf_cpu cpu)
206{
207 int value, ret = cpu__get_topology_int(cpu.cpu, "physical_package_id", &value);
208 return ret ?: value;
209}
210
211struct aggr_cpu_id aggr_cpu_id__socket(struct perf_cpu cpu, void *data __maybe_unused)
212{
213 struct aggr_cpu_id id = aggr_cpu_id__empty();
214
215 id.socket = cpu__get_socket_id(cpu);
216 return id;
217}
218
219static int aggr_cpu_id__cmp(const void *a_pointer, const void *b_pointer)
220{
221 struct aggr_cpu_id *a = (struct aggr_cpu_id *)a_pointer;
222 struct aggr_cpu_id *b = (struct aggr_cpu_id *)b_pointer;
223
224 if (a->node != b->node)
225 return a->node - b->node;
226 else if (a->socket != b->socket)
227 return a->socket - b->socket;
228 else if (a->die != b->die)
229 return a->die - b->die;
230 else if (a->core != b->core)
231 return a->core - b->core;
232 else
233 return a->thread_idx - b->thread_idx;
234}
235
236struct cpu_aggr_map *cpu_aggr_map__new(const struct perf_cpu_map *cpus,
237 aggr_cpu_id_get_t get_id,
238 void *data, bool needs_sort)
239{
240 int idx;
241 struct perf_cpu cpu;
242 struct cpu_aggr_map *c = cpu_aggr_map__empty_new(cpus->nr);
243
244 if (!c)
245 return NULL;
246
247 /* Reset size as it may only be partially filled */
248 c->nr = 0;
249
250 perf_cpu_map__for_each_cpu(cpu, idx, cpus) {
251 bool duplicate = false;
252 struct aggr_cpu_id cpu_id = get_id(cpu, data);
253
254 for (int j = 0; j < c->nr; j++) {
255 if (aggr_cpu_id__equal(&cpu_id, &c->map[j])) {
256 duplicate = true;
257 break;
258 }
259 }
260 if (!duplicate) {
261 c->map[c->nr] = cpu_id;
262 c->nr++;
263 }
264 }
265 /* Trim. */
266 if (c->nr != cpus->nr) {
267 struct cpu_aggr_map *trimmed_c =
268 realloc(c,
269 sizeof(struct cpu_aggr_map) + sizeof(struct aggr_cpu_id) * c->nr);
270
271 if (trimmed_c)
272 c = trimmed_c;
273 }
274
275 /* ensure we process id in increasing order */
276 if (needs_sort)
277 qsort(c->map, c->nr, sizeof(struct aggr_cpu_id), aggr_cpu_id__cmp);
278
279 return c;
280
281}
282
283int cpu__get_die_id(struct perf_cpu cpu)
284{
285 int value, ret = cpu__get_topology_int(cpu.cpu, "die_id", &value);
286
287 return ret ?: value;
288}
289
290struct aggr_cpu_id aggr_cpu_id__die(struct perf_cpu cpu, void *data)
291{
292 struct aggr_cpu_id id;
293 int die;
294
295 die = cpu__get_die_id(cpu);
296 /* There is no die_id on legacy system. */
297 if (die == -1)
298 die = 0;
299
300 /*
301 * die_id is relative to socket, so start
302 * with the socket ID and then add die to
303 * make a unique ID.
304 */
305 id = aggr_cpu_id__socket(cpu, data);
306 if (aggr_cpu_id__is_empty(&id))
307 return id;
308
309 id.die = die;
310 return id;
311}
312
313int cpu__get_core_id(struct perf_cpu cpu)
314{
315 int value, ret = cpu__get_topology_int(cpu.cpu, "core_id", &value);
316 return ret ?: value;
317}
318
319struct aggr_cpu_id aggr_cpu_id__core(struct perf_cpu cpu, void *data)
320{
321 struct aggr_cpu_id id;
322 int core = cpu__get_core_id(cpu);
323
324 /* aggr_cpu_id__die returns a struct with socket and die set. */
325 id = aggr_cpu_id__die(cpu, data);
326 if (aggr_cpu_id__is_empty(&id))
327 return id;
328
329 /*
330 * core_id is relative to socket and die, we need a global id.
331 * So we combine the result from cpu_map__get_die with the core id
332 */
333 id.core = core;
334 return id;
335
336}
337
338struct aggr_cpu_id aggr_cpu_id__cpu(struct perf_cpu cpu, void *data)
339{
340 struct aggr_cpu_id id;
341
342 /* aggr_cpu_id__core returns a struct with socket, die and core set. */
343 id = aggr_cpu_id__core(cpu, data);
344 if (aggr_cpu_id__is_empty(&id))
345 return id;
346
347 id.cpu = cpu;
348 return id;
349
350}
351
352struct aggr_cpu_id aggr_cpu_id__node(struct perf_cpu cpu, void *data __maybe_unused)
353{
354 struct aggr_cpu_id id = aggr_cpu_id__empty();
355
356 id.node = cpu__get_node(cpu);
357 return id;
358}
359
360struct aggr_cpu_id aggr_cpu_id__global(struct perf_cpu cpu, void *data __maybe_unused)
361{
362 struct aggr_cpu_id id = aggr_cpu_id__empty();
363
364 /* it always aggregates to the cpu 0 */
365 cpu.cpu = 0;
366 id.cpu = cpu;
367 return id;
368}
369
370/* setup simple routines to easily access node numbers given a cpu number */
371static int get_max_num(char *path, int *max)
372{
373 size_t num;
374 char *buf;
375 int err = 0;
376
377 if (filename__read_str(path, &buf, &num))
378 return -1;
379
380 buf[num] = '\0';
381
382 /* start on the right, to find highest node num */
383 while (--num) {
384 if ((buf[num] == ',') || (buf[num] == '-')) {
385 num++;
386 break;
387 }
388 }
389 if (sscanf(&buf[num], "%d", max) < 1) {
390 err = -1;
391 goto out;
392 }
393
394 /* convert from 0-based to 1-based */
395 (*max)++;
396
397out:
398 free(buf);
399 return err;
400}
401
402/* Determine highest possible cpu in the system for sparse allocation */
403static void set_max_cpu_num(void)
404{
405 const char *mnt;
406 char path[PATH_MAX];
407 int ret = -1;
408
409 /* set up default */
410 max_cpu_num.cpu = 4096;
411 max_present_cpu_num.cpu = 4096;
412
413 mnt = sysfs__mountpoint();
414 if (!mnt)
415 goto out;
416
417 /* get the highest possible cpu number for a sparse allocation */
418 ret = snprintf(path, PATH_MAX, "%s/devices/system/cpu/possible", mnt);
419 if (ret >= PATH_MAX) {
420 pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
421 goto out;
422 }
423
424 ret = get_max_num(path, &max_cpu_num.cpu);
425 if (ret)
426 goto out;
427
428 /* get the highest present cpu number for a sparse allocation */
429 ret = snprintf(path, PATH_MAX, "%s/devices/system/cpu/present", mnt);
430 if (ret >= PATH_MAX) {
431 pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
432 goto out;
433 }
434
435 ret = get_max_num(path, &max_present_cpu_num.cpu);
436
437out:
438 if (ret)
439 pr_err("Failed to read max cpus, using default of %d\n", max_cpu_num.cpu);
440}
441
442/* Determine highest possible node in the system for sparse allocation */
443static void set_max_node_num(void)
444{
445 const char *mnt;
446 char path[PATH_MAX];
447 int ret = -1;
448
449 /* set up default */
450 max_node_num = 8;
451
452 mnt = sysfs__mountpoint();
453 if (!mnt)
454 goto out;
455
456 /* get the highest possible cpu number for a sparse allocation */
457 ret = snprintf(path, PATH_MAX, "%s/devices/system/node/possible", mnt);
458 if (ret >= PATH_MAX) {
459 pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
460 goto out;
461 }
462
463 ret = get_max_num(path, &max_node_num);
464
465out:
466 if (ret)
467 pr_err("Failed to read max nodes, using default of %d\n", max_node_num);
468}
469
470int cpu__max_node(void)
471{
472 if (unlikely(!max_node_num))
473 set_max_node_num();
474
475 return max_node_num;
476}
477
478struct perf_cpu cpu__max_cpu(void)
479{
480 if (unlikely(!max_cpu_num.cpu))
481 set_max_cpu_num();
482
483 return max_cpu_num;
484}
485
486struct perf_cpu cpu__max_present_cpu(void)
487{
488 if (unlikely(!max_present_cpu_num.cpu))
489 set_max_cpu_num();
490
491 return max_present_cpu_num;
492}
493
494
495int cpu__get_node(struct perf_cpu cpu)
496{
497 if (unlikely(cpunode_map == NULL)) {
498 pr_debug("cpu_map not initialized\n");
499 return -1;
500 }
501
502 return cpunode_map[cpu.cpu];
503}
504
505static int init_cpunode_map(void)
506{
507 int i;
508
509 set_max_cpu_num();
510 set_max_node_num();
511
512 cpunode_map = calloc(max_cpu_num.cpu, sizeof(int));
513 if (!cpunode_map) {
514 pr_err("%s: calloc failed\n", __func__);
515 return -1;
516 }
517
518 for (i = 0; i < max_cpu_num.cpu; i++)
519 cpunode_map[i] = -1;
520
521 return 0;
522}
523
524int cpu__setup_cpunode_map(void)
525{
526 struct dirent *dent1, *dent2;
527 DIR *dir1, *dir2;
528 unsigned int cpu, mem;
529 char buf[PATH_MAX];
530 char path[PATH_MAX];
531 const char *mnt;
532 int n;
533
534 /* initialize globals */
535 if (init_cpunode_map())
536 return -1;
537
538 mnt = sysfs__mountpoint();
539 if (!mnt)
540 return 0;
541
542 n = snprintf(path, PATH_MAX, "%s/devices/system/node", mnt);
543 if (n >= PATH_MAX) {
544 pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
545 return -1;
546 }
547
548 dir1 = opendir(path);
549 if (!dir1)
550 return 0;
551
552 /* walk tree and setup map */
553 while ((dent1 = readdir(dir1)) != NULL) {
554 if (dent1->d_type != DT_DIR || sscanf(dent1->d_name, "node%u", &mem) < 1)
555 continue;
556
557 n = snprintf(buf, PATH_MAX, "%s/%s", path, dent1->d_name);
558 if (n >= PATH_MAX) {
559 pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
560 continue;
561 }
562
563 dir2 = opendir(buf);
564 if (!dir2)
565 continue;
566 while ((dent2 = readdir(dir2)) != NULL) {
567 if (dent2->d_type != DT_LNK || sscanf(dent2->d_name, "cpu%u", &cpu) < 1)
568 continue;
569 cpunode_map[cpu] = mem;
570 }
571 closedir(dir2);
572 }
573 closedir(dir1);
574 return 0;
575}
576
577size_t cpu_map__snprint(struct perf_cpu_map *map, char *buf, size_t size)
578{
579 int i, start = -1;
580 bool first = true;
581 size_t ret = 0;
582
583#define COMMA first ? "" : ","
584
585 for (i = 0; i < map->nr + 1; i++) {
586 struct perf_cpu cpu = { .cpu = INT_MAX };
587 bool last = i == map->nr;
588
589 if (!last)
590 cpu = map->map[i];
591
592 if (start == -1) {
593 start = i;
594 if (last) {
595 ret += snprintf(buf + ret, size - ret,
596 "%s%d", COMMA,
597 map->map[i].cpu);
598 }
599 } else if (((i - start) != (cpu.cpu - map->map[start].cpu)) || last) {
600 int end = i - 1;
601
602 if (start == end) {
603 ret += snprintf(buf + ret, size - ret,
604 "%s%d", COMMA,
605 map->map[start].cpu);
606 } else {
607 ret += snprintf(buf + ret, size - ret,
608 "%s%d-%d", COMMA,
609 map->map[start].cpu, map->map[end].cpu);
610 }
611 first = false;
612 start = i;
613 }
614 }
615
616#undef COMMA
617
618 pr_debug2("cpumask list: %s\n", buf);
619 return ret;
620}
621
622static char hex_char(unsigned char val)
623{
624 if (val < 10)
625 return val + '0';
626 if (val < 16)
627 return val - 10 + 'a';
628 return '?';
629}
630
631size_t cpu_map__snprint_mask(struct perf_cpu_map *map, char *buf, size_t size)
632{
633 int i, cpu;
634 char *ptr = buf;
635 unsigned char *bitmap;
636 struct perf_cpu last_cpu = perf_cpu_map__cpu(map, map->nr - 1);
637
638 if (buf == NULL)
639 return 0;
640
641 bitmap = zalloc(last_cpu.cpu / 8 + 1);
642 if (bitmap == NULL) {
643 buf[0] = '\0';
644 return 0;
645 }
646
647 for (i = 0; i < map->nr; i++) {
648 cpu = perf_cpu_map__cpu(map, i).cpu;
649 bitmap[cpu / 8] |= 1 << (cpu % 8);
650 }
651
652 for (cpu = last_cpu.cpu / 4 * 4; cpu >= 0; cpu -= 4) {
653 unsigned char bits = bitmap[cpu / 8];
654
655 if (cpu % 8)
656 bits >>= 4;
657 else
658 bits &= 0xf;
659
660 *ptr++ = hex_char(bits);
661 if ((cpu % 32) == 0 && cpu > 0)
662 *ptr++ = ',';
663 }
664 *ptr = '\0';
665 free(bitmap);
666
667 buf[size - 1] = '\0';
668 return ptr - buf;
669}
670
671const struct perf_cpu_map *cpu_map__online(void) /* thread unsafe */
672{
673 static const struct perf_cpu_map *online = NULL;
674
675 if (!online)
676 online = perf_cpu_map__new(NULL); /* from /sys/devices/system/cpu/online */
677
678 return online;
679}
680
681bool aggr_cpu_id__equal(const struct aggr_cpu_id *a, const struct aggr_cpu_id *b)
682{
683 return a->thread_idx == b->thread_idx &&
684 a->node == b->node &&
685 a->socket == b->socket &&
686 a->die == b->die &&
687 a->core == b->core &&
688 a->cpu.cpu == b->cpu.cpu;
689}
690
691bool aggr_cpu_id__is_empty(const struct aggr_cpu_id *a)
692{
693 return a->thread_idx == -1 &&
694 a->node == -1 &&
695 a->socket == -1 &&
696 a->die == -1 &&
697 a->core == -1 &&
698 a->cpu.cpu == -1;
699}
700
701struct aggr_cpu_id aggr_cpu_id__empty(void)
702{
703 struct aggr_cpu_id ret = {
704 .thread_idx = -1,
705 .node = -1,
706 .socket = -1,
707 .die = -1,
708 .core = -1,
709 .cpu = (struct perf_cpu){ .cpu = -1 },
710 };
711 return ret;
712}
1// SPDX-License-Identifier: GPL-2.0
2#include <api/fs/fs.h>
3#include "cpumap.h"
4#include "debug.h"
5#include "event.h"
6#include <assert.h>
7#include <dirent.h>
8#include <stdio.h>
9#include <stdlib.h>
10#include <linux/bitmap.h>
11#include "asm/bug.h"
12
13#include <linux/ctype.h>
14#include <linux/zalloc.h>
15#include <internal/cpumap.h>
16
17static struct perf_cpu max_cpu_num;
18static struct perf_cpu max_present_cpu_num;
19static int max_node_num;
20/**
21 * The numa node X as read from /sys/devices/system/node/nodeX indexed by the
22 * CPU number.
23 */
24static int *cpunode_map;
25
26bool perf_record_cpu_map_data__test_bit(int i,
27 const struct perf_record_cpu_map_data *data)
28{
29 int bit_word32 = i / 32;
30 __u32 bit_mask32 = 1U << (i & 31);
31 int bit_word64 = i / 64;
32 __u64 bit_mask64 = ((__u64)1) << (i & 63);
33
34 return (data->mask32_data.long_size == 4)
35 ? (bit_word32 < data->mask32_data.nr) &&
36 (data->mask32_data.mask[bit_word32] & bit_mask32) != 0
37 : (bit_word64 < data->mask64_data.nr) &&
38 (data->mask64_data.mask[bit_word64] & bit_mask64) != 0;
39}
40
41/* Read ith mask value from data into the given 64-bit sized bitmap */
42static void perf_record_cpu_map_data__read_one_mask(const struct perf_record_cpu_map_data *data,
43 int i, unsigned long *bitmap)
44{
45#if __SIZEOF_LONG__ == 8
46 if (data->mask32_data.long_size == 4)
47 bitmap[0] = data->mask32_data.mask[i];
48 else
49 bitmap[0] = data->mask64_data.mask[i];
50#else
51 if (data->mask32_data.long_size == 4) {
52 bitmap[0] = data->mask32_data.mask[i];
53 bitmap[1] = 0;
54 } else {
55#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
56 bitmap[0] = (unsigned long)(data->mask64_data.mask[i] >> 32);
57 bitmap[1] = (unsigned long)data->mask64_data.mask[i];
58#else
59 bitmap[0] = (unsigned long)data->mask64_data.mask[i];
60 bitmap[1] = (unsigned long)(data->mask64_data.mask[i] >> 32);
61#endif
62 }
63#endif
64}
65static struct perf_cpu_map *cpu_map__from_entries(const struct perf_record_cpu_map_data *data)
66{
67 struct perf_cpu_map *map;
68
69 map = perf_cpu_map__empty_new(data->cpus_data.nr);
70 if (map) {
71 unsigned i;
72
73 for (i = 0; i < data->cpus_data.nr; i++) {
74 /*
75 * Special treatment for -1, which is not real cpu number,
76 * and we need to use (int) -1 to initialize map[i],
77 * otherwise it would become 65535.
78 */
79 if (data->cpus_data.cpu[i] == (u16) -1)
80 RC_CHK_ACCESS(map)->map[i].cpu = -1;
81 else
82 RC_CHK_ACCESS(map)->map[i].cpu = (int) data->cpus_data.cpu[i];
83 }
84 }
85
86 return map;
87}
88
89static struct perf_cpu_map *cpu_map__from_mask(const struct perf_record_cpu_map_data *data)
90{
91 DECLARE_BITMAP(local_copy, 64);
92 int weight = 0, mask_nr = data->mask32_data.nr;
93 struct perf_cpu_map *map;
94
95 for (int i = 0; i < mask_nr; i++) {
96 perf_record_cpu_map_data__read_one_mask(data, i, local_copy);
97 weight += bitmap_weight(local_copy, 64);
98 }
99
100 map = perf_cpu_map__empty_new(weight);
101 if (!map)
102 return NULL;
103
104 for (int i = 0, j = 0; i < mask_nr; i++) {
105 int cpus_per_i = (i * data->mask32_data.long_size * BITS_PER_BYTE);
106 int cpu;
107
108 perf_record_cpu_map_data__read_one_mask(data, i, local_copy);
109 for_each_set_bit(cpu, local_copy, 64)
110 RC_CHK_ACCESS(map)->map[j++].cpu = cpu + cpus_per_i;
111 }
112 return map;
113
114}
115
116static struct perf_cpu_map *cpu_map__from_range(const struct perf_record_cpu_map_data *data)
117{
118 struct perf_cpu_map *map;
119 unsigned int i = 0;
120
121 map = perf_cpu_map__empty_new(data->range_cpu_data.end_cpu -
122 data->range_cpu_data.start_cpu + 1 + data->range_cpu_data.any_cpu);
123 if (!map)
124 return NULL;
125
126 if (data->range_cpu_data.any_cpu)
127 RC_CHK_ACCESS(map)->map[i++].cpu = -1;
128
129 for (int cpu = data->range_cpu_data.start_cpu; cpu <= data->range_cpu_data.end_cpu;
130 i++, cpu++)
131 RC_CHK_ACCESS(map)->map[i].cpu = cpu;
132
133 return map;
134}
135
136struct perf_cpu_map *cpu_map__new_data(const struct perf_record_cpu_map_data *data)
137{
138 switch (data->type) {
139 case PERF_CPU_MAP__CPUS:
140 return cpu_map__from_entries(data);
141 case PERF_CPU_MAP__MASK:
142 return cpu_map__from_mask(data);
143 case PERF_CPU_MAP__RANGE_CPUS:
144 return cpu_map__from_range(data);
145 default:
146 pr_err("cpu_map__new_data unknown type %d\n", data->type);
147 return NULL;
148 }
149}
150
151size_t cpu_map__fprintf(struct perf_cpu_map *map, FILE *fp)
152{
153#define BUFSIZE 1024
154 char buf[BUFSIZE];
155
156 cpu_map__snprint(map, buf, sizeof(buf));
157 return fprintf(fp, "%s\n", buf);
158#undef BUFSIZE
159}
160
161struct perf_cpu_map *perf_cpu_map__empty_new(int nr)
162{
163 struct perf_cpu_map *cpus = perf_cpu_map__alloc(nr);
164
165 if (cpus != NULL) {
166 for (int i = 0; i < nr; i++)
167 RC_CHK_ACCESS(cpus)->map[i].cpu = -1;
168 }
169
170 return cpus;
171}
172
173struct cpu_aggr_map *cpu_aggr_map__empty_new(int nr)
174{
175 struct cpu_aggr_map *cpus = malloc(sizeof(*cpus) + sizeof(struct aggr_cpu_id) * nr);
176
177 if (cpus != NULL) {
178 int i;
179
180 cpus->nr = nr;
181 for (i = 0; i < nr; i++)
182 cpus->map[i] = aggr_cpu_id__empty();
183 }
184
185 return cpus;
186}
187
188static int cpu__get_topology_int(int cpu, const char *name, int *value)
189{
190 char path[PATH_MAX];
191
192 snprintf(path, PATH_MAX,
193 "devices/system/cpu/cpu%d/topology/%s", cpu, name);
194
195 return sysfs__read_int(path, value);
196}
197
198int cpu__get_socket_id(struct perf_cpu cpu)
199{
200 int value, ret = cpu__get_topology_int(cpu.cpu, "physical_package_id", &value);
201 return ret ?: value;
202}
203
204struct aggr_cpu_id aggr_cpu_id__socket(struct perf_cpu cpu, void *data __maybe_unused)
205{
206 struct aggr_cpu_id id = aggr_cpu_id__empty();
207
208 id.socket = cpu__get_socket_id(cpu);
209 return id;
210}
211
212static int aggr_cpu_id__cmp(const void *a_pointer, const void *b_pointer)
213{
214 struct aggr_cpu_id *a = (struct aggr_cpu_id *)a_pointer;
215 struct aggr_cpu_id *b = (struct aggr_cpu_id *)b_pointer;
216
217 if (a->node != b->node)
218 return a->node - b->node;
219 else if (a->socket != b->socket)
220 return a->socket - b->socket;
221 else if (a->die != b->die)
222 return a->die - b->die;
223 else if (a->cluster != b->cluster)
224 return a->cluster - b->cluster;
225 else if (a->cache_lvl != b->cache_lvl)
226 return a->cache_lvl - b->cache_lvl;
227 else if (a->cache != b->cache)
228 return a->cache - b->cache;
229 else if (a->core != b->core)
230 return a->core - b->core;
231 else
232 return a->thread_idx - b->thread_idx;
233}
234
235struct cpu_aggr_map *cpu_aggr_map__new(const struct perf_cpu_map *cpus,
236 aggr_cpu_id_get_t get_id,
237 void *data, bool needs_sort)
238{
239 int idx;
240 struct perf_cpu cpu;
241 struct cpu_aggr_map *c = cpu_aggr_map__empty_new(perf_cpu_map__nr(cpus));
242
243 if (!c)
244 return NULL;
245
246 /* Reset size as it may only be partially filled */
247 c->nr = 0;
248
249 perf_cpu_map__for_each_cpu(cpu, idx, cpus) {
250 bool duplicate = false;
251 struct aggr_cpu_id cpu_id = get_id(cpu, data);
252
253 for (int j = 0; j < c->nr; j++) {
254 if (aggr_cpu_id__equal(&cpu_id, &c->map[j])) {
255 duplicate = true;
256 break;
257 }
258 }
259 if (!duplicate) {
260 c->map[c->nr] = cpu_id;
261 c->nr++;
262 }
263 }
264 /* Trim. */
265 if (c->nr != perf_cpu_map__nr(cpus)) {
266 struct cpu_aggr_map *trimmed_c =
267 realloc(c,
268 sizeof(struct cpu_aggr_map) + sizeof(struct aggr_cpu_id) * c->nr);
269
270 if (trimmed_c)
271 c = trimmed_c;
272 }
273
274 /* ensure we process id in increasing order */
275 if (needs_sort)
276 qsort(c->map, c->nr, sizeof(struct aggr_cpu_id), aggr_cpu_id__cmp);
277
278 return c;
279
280}
281
282int cpu__get_die_id(struct perf_cpu cpu)
283{
284 int value, ret = cpu__get_topology_int(cpu.cpu, "die_id", &value);
285
286 return ret ?: value;
287}
288
289struct aggr_cpu_id aggr_cpu_id__die(struct perf_cpu cpu, void *data)
290{
291 struct aggr_cpu_id id;
292 int die;
293
294 die = cpu__get_die_id(cpu);
295 /* There is no die_id on legacy system. */
296 if (die == -1)
297 die = 0;
298
299 /*
300 * die_id is relative to socket, so start
301 * with the socket ID and then add die to
302 * make a unique ID.
303 */
304 id = aggr_cpu_id__socket(cpu, data);
305 if (aggr_cpu_id__is_empty(&id))
306 return id;
307
308 id.die = die;
309 return id;
310}
311
312int cpu__get_cluster_id(struct perf_cpu cpu)
313{
314 int value, ret = cpu__get_topology_int(cpu.cpu, "cluster_id", &value);
315
316 return ret ?: value;
317}
318
319struct aggr_cpu_id aggr_cpu_id__cluster(struct perf_cpu cpu, void *data)
320{
321 int cluster = cpu__get_cluster_id(cpu);
322 struct aggr_cpu_id id;
323
324 /* There is no cluster_id on legacy system. */
325 if (cluster == -1)
326 cluster = 0;
327
328 id = aggr_cpu_id__die(cpu, data);
329 if (aggr_cpu_id__is_empty(&id))
330 return id;
331
332 id.cluster = cluster;
333 return id;
334}
335
336int cpu__get_core_id(struct perf_cpu cpu)
337{
338 int value, ret = cpu__get_topology_int(cpu.cpu, "core_id", &value);
339 return ret ?: value;
340}
341
342struct aggr_cpu_id aggr_cpu_id__core(struct perf_cpu cpu, void *data)
343{
344 struct aggr_cpu_id id;
345 int core = cpu__get_core_id(cpu);
346
347 /* aggr_cpu_id__die returns a struct with socket die, and cluster set. */
348 id = aggr_cpu_id__cluster(cpu, data);
349 if (aggr_cpu_id__is_empty(&id))
350 return id;
351
352 /*
353 * core_id is relative to socket and die, we need a global id.
354 * So we combine the result from cpu_map__get_die with the core id
355 */
356 id.core = core;
357 return id;
358
359}
360
361struct aggr_cpu_id aggr_cpu_id__cpu(struct perf_cpu cpu, void *data)
362{
363 struct aggr_cpu_id id;
364
365 /* aggr_cpu_id__core returns a struct with socket, die and core set. */
366 id = aggr_cpu_id__core(cpu, data);
367 if (aggr_cpu_id__is_empty(&id))
368 return id;
369
370 id.cpu = cpu;
371 return id;
372
373}
374
375struct aggr_cpu_id aggr_cpu_id__node(struct perf_cpu cpu, void *data __maybe_unused)
376{
377 struct aggr_cpu_id id = aggr_cpu_id__empty();
378
379 id.node = cpu__get_node(cpu);
380 return id;
381}
382
383struct aggr_cpu_id aggr_cpu_id__global(struct perf_cpu cpu, void *data __maybe_unused)
384{
385 struct aggr_cpu_id id = aggr_cpu_id__empty();
386
387 /* it always aggregates to the cpu 0 */
388 cpu.cpu = 0;
389 id.cpu = cpu;
390 return id;
391}
392
393/* setup simple routines to easily access node numbers given a cpu number */
394static int get_max_num(char *path, int *max)
395{
396 size_t num;
397 char *buf;
398 int err = 0;
399
400 if (filename__read_str(path, &buf, &num))
401 return -1;
402
403 buf[num] = '\0';
404
405 /* start on the right, to find highest node num */
406 while (--num) {
407 if ((buf[num] == ',') || (buf[num] == '-')) {
408 num++;
409 break;
410 }
411 }
412 if (sscanf(&buf[num], "%d", max) < 1) {
413 err = -1;
414 goto out;
415 }
416
417 /* convert from 0-based to 1-based */
418 (*max)++;
419
420out:
421 free(buf);
422 return err;
423}
424
425/* Determine highest possible cpu in the system for sparse allocation */
426static void set_max_cpu_num(void)
427{
428 const char *mnt;
429 char path[PATH_MAX];
430 int ret = -1;
431
432 /* set up default */
433 max_cpu_num.cpu = 4096;
434 max_present_cpu_num.cpu = 4096;
435
436 mnt = sysfs__mountpoint();
437 if (!mnt)
438 goto out;
439
440 /* get the highest possible cpu number for a sparse allocation */
441 ret = snprintf(path, PATH_MAX, "%s/devices/system/cpu/possible", mnt);
442 if (ret >= PATH_MAX) {
443 pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
444 goto out;
445 }
446
447 ret = get_max_num(path, &max_cpu_num.cpu);
448 if (ret)
449 goto out;
450
451 /* get the highest present cpu number for a sparse allocation */
452 ret = snprintf(path, PATH_MAX, "%s/devices/system/cpu/present", mnt);
453 if (ret >= PATH_MAX) {
454 pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
455 goto out;
456 }
457
458 ret = get_max_num(path, &max_present_cpu_num.cpu);
459
460out:
461 if (ret)
462 pr_err("Failed to read max cpus, using default of %d\n", max_cpu_num.cpu);
463}
464
465/* Determine highest possible node in the system for sparse allocation */
466static void set_max_node_num(void)
467{
468 const char *mnt;
469 char path[PATH_MAX];
470 int ret = -1;
471
472 /* set up default */
473 max_node_num = 8;
474
475 mnt = sysfs__mountpoint();
476 if (!mnt)
477 goto out;
478
479 /* get the highest possible cpu number for a sparse allocation */
480 ret = snprintf(path, PATH_MAX, "%s/devices/system/node/possible", mnt);
481 if (ret >= PATH_MAX) {
482 pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
483 goto out;
484 }
485
486 ret = get_max_num(path, &max_node_num);
487
488out:
489 if (ret)
490 pr_err("Failed to read max nodes, using default of %d\n", max_node_num);
491}
492
493int cpu__max_node(void)
494{
495 if (unlikely(!max_node_num))
496 set_max_node_num();
497
498 return max_node_num;
499}
500
501struct perf_cpu cpu__max_cpu(void)
502{
503 if (unlikely(!max_cpu_num.cpu))
504 set_max_cpu_num();
505
506 return max_cpu_num;
507}
508
509struct perf_cpu cpu__max_present_cpu(void)
510{
511 if (unlikely(!max_present_cpu_num.cpu))
512 set_max_cpu_num();
513
514 return max_present_cpu_num;
515}
516
517
518int cpu__get_node(struct perf_cpu cpu)
519{
520 if (unlikely(cpunode_map == NULL)) {
521 pr_debug("cpu_map not initialized\n");
522 return -1;
523 }
524
525 return cpunode_map[cpu.cpu];
526}
527
528static int init_cpunode_map(void)
529{
530 int i;
531
532 set_max_cpu_num();
533 set_max_node_num();
534
535 cpunode_map = calloc(max_cpu_num.cpu, sizeof(int));
536 if (!cpunode_map) {
537 pr_err("%s: calloc failed\n", __func__);
538 return -1;
539 }
540
541 for (i = 0; i < max_cpu_num.cpu; i++)
542 cpunode_map[i] = -1;
543
544 return 0;
545}
546
547int cpu__setup_cpunode_map(void)
548{
549 struct dirent *dent1, *dent2;
550 DIR *dir1, *dir2;
551 unsigned int cpu, mem;
552 char buf[PATH_MAX];
553 char path[PATH_MAX];
554 const char *mnt;
555 int n;
556
557 /* initialize globals */
558 if (init_cpunode_map())
559 return -1;
560
561 mnt = sysfs__mountpoint();
562 if (!mnt)
563 return 0;
564
565 n = snprintf(path, PATH_MAX, "%s/devices/system/node", mnt);
566 if (n >= PATH_MAX) {
567 pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
568 return -1;
569 }
570
571 dir1 = opendir(path);
572 if (!dir1)
573 return 0;
574
575 /* walk tree and setup map */
576 while ((dent1 = readdir(dir1)) != NULL) {
577 if (dent1->d_type != DT_DIR || sscanf(dent1->d_name, "node%u", &mem) < 1)
578 continue;
579
580 n = snprintf(buf, PATH_MAX, "%s/%s", path, dent1->d_name);
581 if (n >= PATH_MAX) {
582 pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
583 continue;
584 }
585
586 dir2 = opendir(buf);
587 if (!dir2)
588 continue;
589 while ((dent2 = readdir(dir2)) != NULL) {
590 if (dent2->d_type != DT_LNK || sscanf(dent2->d_name, "cpu%u", &cpu) < 1)
591 continue;
592 cpunode_map[cpu] = mem;
593 }
594 closedir(dir2);
595 }
596 closedir(dir1);
597 return 0;
598}
599
600size_t cpu_map__snprint(struct perf_cpu_map *map, char *buf, size_t size)
601{
602 int i, start = -1;
603 bool first = true;
604 size_t ret = 0;
605
606#define COMMA first ? "" : ","
607
608 for (i = 0; i < perf_cpu_map__nr(map) + 1; i++) {
609 struct perf_cpu cpu = { .cpu = INT_MAX };
610 bool last = i == perf_cpu_map__nr(map);
611
612 if (!last)
613 cpu = perf_cpu_map__cpu(map, i);
614
615 if (start == -1) {
616 start = i;
617 if (last) {
618 ret += snprintf(buf + ret, size - ret,
619 "%s%d", COMMA,
620 perf_cpu_map__cpu(map, i).cpu);
621 }
622 } else if (((i - start) != (cpu.cpu - perf_cpu_map__cpu(map, start).cpu)) || last) {
623 int end = i - 1;
624
625 if (start == end) {
626 ret += snprintf(buf + ret, size - ret,
627 "%s%d", COMMA,
628 perf_cpu_map__cpu(map, start).cpu);
629 } else {
630 ret += snprintf(buf + ret, size - ret,
631 "%s%d-%d", COMMA,
632 perf_cpu_map__cpu(map, start).cpu, perf_cpu_map__cpu(map, end).cpu);
633 }
634 first = false;
635 start = i;
636 }
637 }
638
639#undef COMMA
640
641 pr_debug2("cpumask list: %s\n", buf);
642 return ret;
643}
644
645static char hex_char(unsigned char val)
646{
647 if (val < 10)
648 return val + '0';
649 if (val < 16)
650 return val - 10 + 'a';
651 return '?';
652}
653
654size_t cpu_map__snprint_mask(struct perf_cpu_map *map, char *buf, size_t size)
655{
656 int idx;
657 char *ptr = buf;
658 unsigned char *bitmap;
659 struct perf_cpu c, last_cpu = perf_cpu_map__max(map);
660
661 if (buf == NULL)
662 return 0;
663
664 bitmap = zalloc(last_cpu.cpu / 8 + 1);
665 if (bitmap == NULL) {
666 buf[0] = '\0';
667 return 0;
668 }
669
670 perf_cpu_map__for_each_cpu(c, idx, map)
671 bitmap[c.cpu / 8] |= 1 << (c.cpu % 8);
672
673 for (int cpu = last_cpu.cpu / 4 * 4; cpu >= 0; cpu -= 4) {
674 unsigned char bits = bitmap[cpu / 8];
675
676 if (cpu % 8)
677 bits >>= 4;
678 else
679 bits &= 0xf;
680
681 *ptr++ = hex_char(bits);
682 if ((cpu % 32) == 0 && cpu > 0)
683 *ptr++ = ',';
684 }
685 *ptr = '\0';
686 free(bitmap);
687
688 buf[size - 1] = '\0';
689 return ptr - buf;
690}
691
692struct perf_cpu_map *cpu_map__online(void) /* thread unsafe */
693{
694 static struct perf_cpu_map *online;
695
696 if (!online)
697 online = perf_cpu_map__new_online_cpus(); /* from /sys/devices/system/cpu/online */
698
699 return online;
700}
701
702bool aggr_cpu_id__equal(const struct aggr_cpu_id *a, const struct aggr_cpu_id *b)
703{
704 return a->thread_idx == b->thread_idx &&
705 a->node == b->node &&
706 a->socket == b->socket &&
707 a->die == b->die &&
708 a->cluster == b->cluster &&
709 a->cache_lvl == b->cache_lvl &&
710 a->cache == b->cache &&
711 a->core == b->core &&
712 a->cpu.cpu == b->cpu.cpu;
713}
714
715bool aggr_cpu_id__is_empty(const struct aggr_cpu_id *a)
716{
717 return a->thread_idx == -1 &&
718 a->node == -1 &&
719 a->socket == -1 &&
720 a->die == -1 &&
721 a->cluster == -1 &&
722 a->cache_lvl == -1 &&
723 a->cache == -1 &&
724 a->core == -1 &&
725 a->cpu.cpu == -1;
726}
727
728struct aggr_cpu_id aggr_cpu_id__empty(void)
729{
730 struct aggr_cpu_id ret = {
731 .thread_idx = -1,
732 .node = -1,
733 .socket = -1,
734 .die = -1,
735 .cluster = -1,
736 .cache_lvl = -1,
737 .cache = -1,
738 .core = -1,
739 .cpu = (struct perf_cpu){ .cpu = -1 },
740 };
741 return ret;
742}