Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2#include <api/fs/fs.h>
  3#include "cpumap.h"
  4#include "debug.h"
  5#include "event.h"
  6#include <assert.h>
  7#include <dirent.h>
  8#include <stdio.h>
  9#include <stdlib.h>
 10#include <linux/bitmap.h>
 11#include "asm/bug.h"
 12
 13#include <linux/ctype.h>
 14#include <linux/zalloc.h>
 15#include <internal/cpumap.h>
 16
 17static struct perf_cpu max_cpu_num;
 18static struct perf_cpu max_present_cpu_num;
 19static int max_node_num;
 20/**
 21 * The numa node X as read from /sys/devices/system/node/nodeX indexed by the
 22 * CPU number.
 23 */
 24static int *cpunode_map;
 25
 26bool perf_record_cpu_map_data__test_bit(int i,
 27					const struct perf_record_cpu_map_data *data)
 28{
 29	int bit_word32 = i / 32;
 30	__u32 bit_mask32 = 1U << (i & 31);
 31	int bit_word64 = i / 64;
 32	__u64 bit_mask64 = ((__u64)1) << (i & 63);
 33
 34	return (data->mask32_data.long_size == 4)
 35		? (bit_word32 < data->mask32_data.nr) &&
 36		(data->mask32_data.mask[bit_word32] & bit_mask32) != 0
 37		: (bit_word64 < data->mask64_data.nr) &&
 38		(data->mask64_data.mask[bit_word64] & bit_mask64) != 0;
 39}
 40
 41/* Read ith mask value from data into the given 64-bit sized bitmap */
 42static void perf_record_cpu_map_data__read_one_mask(const struct perf_record_cpu_map_data *data,
 43						    int i, unsigned long *bitmap)
 44{
 45#if __SIZEOF_LONG__ == 8
 46	if (data->mask32_data.long_size == 4)
 47		bitmap[0] = data->mask32_data.mask[i];
 48	else
 49		bitmap[0] = data->mask64_data.mask[i];
 50#else
 51	if (data->mask32_data.long_size == 4) {
 52		bitmap[0] = data->mask32_data.mask[i];
 53		bitmap[1] = 0;
 54	} else {
 55#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
 56		bitmap[0] = (unsigned long)(data->mask64_data.mask[i] >> 32);
 57		bitmap[1] = (unsigned long)data->mask64_data.mask[i];
 58#else
 59		bitmap[0] = (unsigned long)data->mask64_data.mask[i];
 60		bitmap[1] = (unsigned long)(data->mask64_data.mask[i] >> 32);
 61#endif
 62	}
 63#endif
 64}
 65static struct perf_cpu_map *cpu_map__from_entries(const struct perf_record_cpu_map_data *data)
 66{
 67	struct perf_cpu_map *map;
 68
 69	map = perf_cpu_map__empty_new(data->cpus_data.nr);
 70	if (map) {
 71		unsigned i;
 72
 73		for (i = 0; i < data->cpus_data.nr; i++) {
 74			/*
 75			 * Special treatment for -1, which is not real cpu number,
 76			 * and we need to use (int) -1 to initialize map[i],
 77			 * otherwise it would become 65535.
 78			 */
 79			if (data->cpus_data.cpu[i] == (u16) -1)
 80				map->map[i].cpu = -1;
 81			else
 82				map->map[i].cpu = (int) data->cpus_data.cpu[i];
 83		}
 84	}
 85
 86	return map;
 87}
 88
 89static struct perf_cpu_map *cpu_map__from_mask(const struct perf_record_cpu_map_data *data)
 90{
 91	DECLARE_BITMAP(local_copy, 64);
 92	int weight = 0, mask_nr = data->mask32_data.nr;
 93	struct perf_cpu_map *map;
 94
 95	for (int i = 0; i < mask_nr; i++) {
 96		perf_record_cpu_map_data__read_one_mask(data, i, local_copy);
 97		weight += bitmap_weight(local_copy, 64);
 98	}
 99
100	map = perf_cpu_map__empty_new(weight);
101	if (!map)
102		return NULL;
103
104	for (int i = 0, j = 0; i < mask_nr; i++) {
105		int cpus_per_i = (i * data->mask32_data.long_size  * BITS_PER_BYTE);
106		int cpu;
107
108		perf_record_cpu_map_data__read_one_mask(data, i, local_copy);
109		for_each_set_bit(cpu, local_copy, 64)
110			map->map[j++].cpu = cpu + cpus_per_i;
111	}
112	return map;
113
114}
115
116static struct perf_cpu_map *cpu_map__from_range(const struct perf_record_cpu_map_data *data)
117{
118	struct perf_cpu_map *map;
119	unsigned int i = 0;
120
121	map = perf_cpu_map__empty_new(data->range_cpu_data.end_cpu -
122				data->range_cpu_data.start_cpu + 1 + data->range_cpu_data.any_cpu);
123	if (!map)
124		return NULL;
125
126	if (data->range_cpu_data.any_cpu)
127		map->map[i++].cpu = -1;
128
129	for (int cpu = data->range_cpu_data.start_cpu; cpu <= data->range_cpu_data.end_cpu;
130	     i++, cpu++)
131		map->map[i].cpu = cpu;
132
133	return map;
134}
135
136struct perf_cpu_map *cpu_map__new_data(const struct perf_record_cpu_map_data *data)
137{
138	switch (data->type) {
139	case PERF_CPU_MAP__CPUS:
140		return cpu_map__from_entries(data);
141	case PERF_CPU_MAP__MASK:
142		return cpu_map__from_mask(data);
143	case PERF_CPU_MAP__RANGE_CPUS:
144		return cpu_map__from_range(data);
145	default:
146		pr_err("cpu_map__new_data unknown type %d\n", data->type);
147		return NULL;
148	}
149}
150
151size_t cpu_map__fprintf(struct perf_cpu_map *map, FILE *fp)
152{
153#define BUFSIZE 1024
154	char buf[BUFSIZE];
155
156	cpu_map__snprint(map, buf, sizeof(buf));
157	return fprintf(fp, "%s\n", buf);
158#undef BUFSIZE
159}
160
161struct perf_cpu_map *perf_cpu_map__empty_new(int nr)
162{
163	struct perf_cpu_map *cpus = malloc(sizeof(*cpus) + sizeof(int) * nr);
164
165	if (cpus != NULL) {
166		int i;
167
168		cpus->nr = nr;
169		for (i = 0; i < nr; i++)
170			cpus->map[i].cpu = -1;
171
172		refcount_set(&cpus->refcnt, 1);
173	}
174
175	return cpus;
176}
177
178struct cpu_aggr_map *cpu_aggr_map__empty_new(int nr)
179{
180	struct cpu_aggr_map *cpus = malloc(sizeof(*cpus) + sizeof(struct aggr_cpu_id) * nr);
181
182	if (cpus != NULL) {
183		int i;
184
185		cpus->nr = nr;
186		for (i = 0; i < nr; i++)
187			cpus->map[i] = aggr_cpu_id__empty();
188
189		refcount_set(&cpus->refcnt, 1);
190	}
191
192	return cpus;
193}
194
195static int cpu__get_topology_int(int cpu, const char *name, int *value)
196{
197	char path[PATH_MAX];
198
199	snprintf(path, PATH_MAX,
200		"devices/system/cpu/cpu%d/topology/%s", cpu, name);
201
202	return sysfs__read_int(path, value);
203}
204
205int cpu__get_socket_id(struct perf_cpu cpu)
206{
207	int value, ret = cpu__get_topology_int(cpu.cpu, "physical_package_id", &value);
208	return ret ?: value;
209}
210
211struct aggr_cpu_id aggr_cpu_id__socket(struct perf_cpu cpu, void *data __maybe_unused)
212{
213	struct aggr_cpu_id id = aggr_cpu_id__empty();
214
215	id.socket = cpu__get_socket_id(cpu);
216	return id;
217}
218
219static int aggr_cpu_id__cmp(const void *a_pointer, const void *b_pointer)
220{
221	struct aggr_cpu_id *a = (struct aggr_cpu_id *)a_pointer;
222	struct aggr_cpu_id *b = (struct aggr_cpu_id *)b_pointer;
223
224	if (a->node != b->node)
225		return a->node - b->node;
226	else if (a->socket != b->socket)
227		return a->socket - b->socket;
228	else if (a->die != b->die)
229		return a->die - b->die;
 
 
 
 
 
 
230	else if (a->core != b->core)
231		return a->core - b->core;
232	else
233		return a->thread_idx - b->thread_idx;
234}
235
236struct cpu_aggr_map *cpu_aggr_map__new(const struct perf_cpu_map *cpus,
237				       aggr_cpu_id_get_t get_id,
238				       void *data, bool needs_sort)
239{
240	int idx;
241	struct perf_cpu cpu;
242	struct cpu_aggr_map *c = cpu_aggr_map__empty_new(cpus->nr);
243
244	if (!c)
245		return NULL;
246
247	/* Reset size as it may only be partially filled */
248	c->nr = 0;
249
250	perf_cpu_map__for_each_cpu(cpu, idx, cpus) {
251		bool duplicate = false;
252		struct aggr_cpu_id cpu_id = get_id(cpu, data);
253
254		for (int j = 0; j < c->nr; j++) {
255			if (aggr_cpu_id__equal(&cpu_id, &c->map[j])) {
256				duplicate = true;
257				break;
258			}
259		}
260		if (!duplicate) {
261			c->map[c->nr] = cpu_id;
262			c->nr++;
263		}
264	}
265	/* Trim. */
266	if (c->nr != cpus->nr) {
267		struct cpu_aggr_map *trimmed_c =
268			realloc(c,
269				sizeof(struct cpu_aggr_map) + sizeof(struct aggr_cpu_id) * c->nr);
270
271		if (trimmed_c)
272			c = trimmed_c;
273	}
274
275	/* ensure we process id in increasing order */
276	if (needs_sort)
277		qsort(c->map, c->nr, sizeof(struct aggr_cpu_id), aggr_cpu_id__cmp);
278
279	return c;
280
281}
282
283int cpu__get_die_id(struct perf_cpu cpu)
284{
285	int value, ret = cpu__get_topology_int(cpu.cpu, "die_id", &value);
286
287	return ret ?: value;
288}
289
290struct aggr_cpu_id aggr_cpu_id__die(struct perf_cpu cpu, void *data)
291{
292	struct aggr_cpu_id id;
293	int die;
294
295	die = cpu__get_die_id(cpu);
296	/* There is no die_id on legacy system. */
297	if (die == -1)
298		die = 0;
299
300	/*
301	 * die_id is relative to socket, so start
302	 * with the socket ID and then add die to
303	 * make a unique ID.
304	 */
305	id = aggr_cpu_id__socket(cpu, data);
306	if (aggr_cpu_id__is_empty(&id))
307		return id;
308
309	id.die = die;
310	return id;
311}
312
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
313int cpu__get_core_id(struct perf_cpu cpu)
314{
315	int value, ret = cpu__get_topology_int(cpu.cpu, "core_id", &value);
316	return ret ?: value;
317}
318
319struct aggr_cpu_id aggr_cpu_id__core(struct perf_cpu cpu, void *data)
320{
321	struct aggr_cpu_id id;
322	int core = cpu__get_core_id(cpu);
323
324	/* aggr_cpu_id__die returns a struct with socket and die set. */
325	id = aggr_cpu_id__die(cpu, data);
326	if (aggr_cpu_id__is_empty(&id))
327		return id;
328
329	/*
330	 * core_id is relative to socket and die, we need a global id.
331	 * So we combine the result from cpu_map__get_die with the core id
332	 */
333	id.core = core;
334	return id;
335
336}
337
338struct aggr_cpu_id aggr_cpu_id__cpu(struct perf_cpu cpu, void *data)
339{
340	struct aggr_cpu_id id;
341
342	/* aggr_cpu_id__core returns a struct with socket, die and core set. */
343	id = aggr_cpu_id__core(cpu, data);
344	if (aggr_cpu_id__is_empty(&id))
345		return id;
346
347	id.cpu = cpu;
348	return id;
349
350}
351
352struct aggr_cpu_id aggr_cpu_id__node(struct perf_cpu cpu, void *data __maybe_unused)
353{
354	struct aggr_cpu_id id = aggr_cpu_id__empty();
355
356	id.node = cpu__get_node(cpu);
357	return id;
358}
359
360struct aggr_cpu_id aggr_cpu_id__global(struct perf_cpu cpu, void *data __maybe_unused)
361{
362	struct aggr_cpu_id id = aggr_cpu_id__empty();
363
364	/* it always aggregates to the cpu 0 */
365	cpu.cpu = 0;
366	id.cpu = cpu;
367	return id;
368}
369
370/* setup simple routines to easily access node numbers given a cpu number */
371static int get_max_num(char *path, int *max)
372{
373	size_t num;
374	char *buf;
375	int err = 0;
376
377	if (filename__read_str(path, &buf, &num))
378		return -1;
379
380	buf[num] = '\0';
381
382	/* start on the right, to find highest node num */
383	while (--num) {
384		if ((buf[num] == ',') || (buf[num] == '-')) {
385			num++;
386			break;
387		}
388	}
389	if (sscanf(&buf[num], "%d", max) < 1) {
390		err = -1;
391		goto out;
392	}
393
394	/* convert from 0-based to 1-based */
395	(*max)++;
396
397out:
398	free(buf);
399	return err;
400}
401
402/* Determine highest possible cpu in the system for sparse allocation */
403static void set_max_cpu_num(void)
404{
405	const char *mnt;
406	char path[PATH_MAX];
407	int ret = -1;
408
409	/* set up default */
410	max_cpu_num.cpu = 4096;
411	max_present_cpu_num.cpu = 4096;
412
413	mnt = sysfs__mountpoint();
414	if (!mnt)
415		goto out;
416
417	/* get the highest possible cpu number for a sparse allocation */
418	ret = snprintf(path, PATH_MAX, "%s/devices/system/cpu/possible", mnt);
419	if (ret >= PATH_MAX) {
420		pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
421		goto out;
422	}
423
424	ret = get_max_num(path, &max_cpu_num.cpu);
425	if (ret)
426		goto out;
427
428	/* get the highest present cpu number for a sparse allocation */
429	ret = snprintf(path, PATH_MAX, "%s/devices/system/cpu/present", mnt);
430	if (ret >= PATH_MAX) {
431		pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
432		goto out;
433	}
434
435	ret = get_max_num(path, &max_present_cpu_num.cpu);
436
437out:
438	if (ret)
439		pr_err("Failed to read max cpus, using default of %d\n", max_cpu_num.cpu);
440}
441
442/* Determine highest possible node in the system for sparse allocation */
443static void set_max_node_num(void)
444{
445	const char *mnt;
446	char path[PATH_MAX];
447	int ret = -1;
448
449	/* set up default */
450	max_node_num = 8;
451
452	mnt = sysfs__mountpoint();
453	if (!mnt)
454		goto out;
455
456	/* get the highest possible cpu number for a sparse allocation */
457	ret = snprintf(path, PATH_MAX, "%s/devices/system/node/possible", mnt);
458	if (ret >= PATH_MAX) {
459		pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
460		goto out;
461	}
462
463	ret = get_max_num(path, &max_node_num);
464
465out:
466	if (ret)
467		pr_err("Failed to read max nodes, using default of %d\n", max_node_num);
468}
469
470int cpu__max_node(void)
471{
472	if (unlikely(!max_node_num))
473		set_max_node_num();
474
475	return max_node_num;
476}
477
478struct perf_cpu cpu__max_cpu(void)
479{
480	if (unlikely(!max_cpu_num.cpu))
481		set_max_cpu_num();
482
483	return max_cpu_num;
484}
485
486struct perf_cpu cpu__max_present_cpu(void)
487{
488	if (unlikely(!max_present_cpu_num.cpu))
489		set_max_cpu_num();
490
491	return max_present_cpu_num;
492}
493
494
495int cpu__get_node(struct perf_cpu cpu)
496{
497	if (unlikely(cpunode_map == NULL)) {
498		pr_debug("cpu_map not initialized\n");
499		return -1;
500	}
501
502	return cpunode_map[cpu.cpu];
503}
504
505static int init_cpunode_map(void)
506{
507	int i;
508
509	set_max_cpu_num();
510	set_max_node_num();
511
512	cpunode_map = calloc(max_cpu_num.cpu, sizeof(int));
513	if (!cpunode_map) {
514		pr_err("%s: calloc failed\n", __func__);
515		return -1;
516	}
517
518	for (i = 0; i < max_cpu_num.cpu; i++)
519		cpunode_map[i] = -1;
520
521	return 0;
522}
523
524int cpu__setup_cpunode_map(void)
525{
526	struct dirent *dent1, *dent2;
527	DIR *dir1, *dir2;
528	unsigned int cpu, mem;
529	char buf[PATH_MAX];
530	char path[PATH_MAX];
531	const char *mnt;
532	int n;
533
534	/* initialize globals */
535	if (init_cpunode_map())
536		return -1;
537
538	mnt = sysfs__mountpoint();
539	if (!mnt)
540		return 0;
541
542	n = snprintf(path, PATH_MAX, "%s/devices/system/node", mnt);
543	if (n >= PATH_MAX) {
544		pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
545		return -1;
546	}
547
548	dir1 = opendir(path);
549	if (!dir1)
550		return 0;
551
552	/* walk tree and setup map */
553	while ((dent1 = readdir(dir1)) != NULL) {
554		if (dent1->d_type != DT_DIR || sscanf(dent1->d_name, "node%u", &mem) < 1)
555			continue;
556
557		n = snprintf(buf, PATH_MAX, "%s/%s", path, dent1->d_name);
558		if (n >= PATH_MAX) {
559			pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
560			continue;
561		}
562
563		dir2 = opendir(buf);
564		if (!dir2)
565			continue;
566		while ((dent2 = readdir(dir2)) != NULL) {
567			if (dent2->d_type != DT_LNK || sscanf(dent2->d_name, "cpu%u", &cpu) < 1)
568				continue;
569			cpunode_map[cpu] = mem;
570		}
571		closedir(dir2);
572	}
573	closedir(dir1);
574	return 0;
575}
576
577size_t cpu_map__snprint(struct perf_cpu_map *map, char *buf, size_t size)
578{
579	int i, start = -1;
580	bool first = true;
581	size_t ret = 0;
582
583#define COMMA first ? "" : ","
584
585	for (i = 0; i < map->nr + 1; i++) {
586		struct perf_cpu cpu = { .cpu = INT_MAX };
587		bool last = i == map->nr;
588
589		if (!last)
590			cpu = map->map[i];
591
592		if (start == -1) {
593			start = i;
594			if (last) {
595				ret += snprintf(buf + ret, size - ret,
596						"%s%d", COMMA,
597						map->map[i].cpu);
598			}
599		} else if (((i - start) != (cpu.cpu - map->map[start].cpu)) || last) {
600			int end = i - 1;
601
602			if (start == end) {
603				ret += snprintf(buf + ret, size - ret,
604						"%s%d", COMMA,
605						map->map[start].cpu);
606			} else {
607				ret += snprintf(buf + ret, size - ret,
608						"%s%d-%d", COMMA,
609						map->map[start].cpu, map->map[end].cpu);
610			}
611			first = false;
612			start = i;
613		}
614	}
615
616#undef COMMA
617
618	pr_debug2("cpumask list: %s\n", buf);
619	return ret;
620}
621
622static char hex_char(unsigned char val)
623{
624	if (val < 10)
625		return val + '0';
626	if (val < 16)
627		return val - 10 + 'a';
628	return '?';
629}
630
631size_t cpu_map__snprint_mask(struct perf_cpu_map *map, char *buf, size_t size)
632{
633	int i, cpu;
634	char *ptr = buf;
635	unsigned char *bitmap;
636	struct perf_cpu last_cpu = perf_cpu_map__cpu(map, map->nr - 1);
637
638	if (buf == NULL)
639		return 0;
640
641	bitmap = zalloc(last_cpu.cpu / 8 + 1);
642	if (bitmap == NULL) {
643		buf[0] = '\0';
644		return 0;
645	}
646
647	for (i = 0; i < map->nr; i++) {
648		cpu = perf_cpu_map__cpu(map, i).cpu;
649		bitmap[cpu / 8] |= 1 << (cpu % 8);
650	}
651
652	for (cpu = last_cpu.cpu / 4 * 4; cpu >= 0; cpu -= 4) {
653		unsigned char bits = bitmap[cpu / 8];
654
655		if (cpu % 8)
656			bits >>= 4;
657		else
658			bits &= 0xf;
659
660		*ptr++ = hex_char(bits);
661		if ((cpu % 32) == 0 && cpu > 0)
662			*ptr++ = ',';
663	}
664	*ptr = '\0';
665	free(bitmap);
666
667	buf[size - 1] = '\0';
668	return ptr - buf;
669}
670
671const struct perf_cpu_map *cpu_map__online(void) /* thread unsafe */
672{
673	static const struct perf_cpu_map *online = NULL;
674
675	if (!online)
676		online = perf_cpu_map__new(NULL); /* from /sys/devices/system/cpu/online */
677
678	return online;
679}
680
681bool aggr_cpu_id__equal(const struct aggr_cpu_id *a, const struct aggr_cpu_id *b)
682{
683	return a->thread_idx == b->thread_idx &&
684		a->node == b->node &&
685		a->socket == b->socket &&
686		a->die == b->die &&
 
 
 
687		a->core == b->core &&
688		a->cpu.cpu == b->cpu.cpu;
689}
690
691bool aggr_cpu_id__is_empty(const struct aggr_cpu_id *a)
692{
693	return a->thread_idx == -1 &&
694		a->node == -1 &&
695		a->socket == -1 &&
696		a->die == -1 &&
 
 
 
697		a->core == -1 &&
698		a->cpu.cpu == -1;
699}
700
701struct aggr_cpu_id aggr_cpu_id__empty(void)
702{
703	struct aggr_cpu_id ret = {
704		.thread_idx = -1,
705		.node = -1,
706		.socket = -1,
707		.die = -1,
 
 
 
708		.core = -1,
709		.cpu = (struct perf_cpu){ .cpu = -1 },
710	};
711	return ret;
712}
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2#include <api/fs/fs.h>
  3#include "cpumap.h"
  4#include "debug.h"
  5#include "event.h"
  6#include <assert.h>
  7#include <dirent.h>
  8#include <stdio.h>
  9#include <stdlib.h>
 10#include <linux/bitmap.h>
 11#include "asm/bug.h"
 12
 13#include <linux/ctype.h>
 14#include <linux/zalloc.h>
 15#include <internal/cpumap.h>
 16
 17static struct perf_cpu max_cpu_num;
 18static struct perf_cpu max_present_cpu_num;
 19static int max_node_num;
 20/**
 21 * The numa node X as read from /sys/devices/system/node/nodeX indexed by the
 22 * CPU number.
 23 */
 24static int *cpunode_map;
 25
 26bool perf_record_cpu_map_data__test_bit(int i,
 27					const struct perf_record_cpu_map_data *data)
 28{
 29	int bit_word32 = i / 32;
 30	__u32 bit_mask32 = 1U << (i & 31);
 31	int bit_word64 = i / 64;
 32	__u64 bit_mask64 = ((__u64)1) << (i & 63);
 33
 34	return (data->mask32_data.long_size == 4)
 35		? (bit_word32 < data->mask32_data.nr) &&
 36		(data->mask32_data.mask[bit_word32] & bit_mask32) != 0
 37		: (bit_word64 < data->mask64_data.nr) &&
 38		(data->mask64_data.mask[bit_word64] & bit_mask64) != 0;
 39}
 40
 41/* Read ith mask value from data into the given 64-bit sized bitmap */
 42static void perf_record_cpu_map_data__read_one_mask(const struct perf_record_cpu_map_data *data,
 43						    int i, unsigned long *bitmap)
 44{
 45#if __SIZEOF_LONG__ == 8
 46	if (data->mask32_data.long_size == 4)
 47		bitmap[0] = data->mask32_data.mask[i];
 48	else
 49		bitmap[0] = data->mask64_data.mask[i];
 50#else
 51	if (data->mask32_data.long_size == 4) {
 52		bitmap[0] = data->mask32_data.mask[i];
 53		bitmap[1] = 0;
 54	} else {
 55#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
 56		bitmap[0] = (unsigned long)(data->mask64_data.mask[i] >> 32);
 57		bitmap[1] = (unsigned long)data->mask64_data.mask[i];
 58#else
 59		bitmap[0] = (unsigned long)data->mask64_data.mask[i];
 60		bitmap[1] = (unsigned long)(data->mask64_data.mask[i] >> 32);
 61#endif
 62	}
 63#endif
 64}
 65static struct perf_cpu_map *cpu_map__from_entries(const struct perf_record_cpu_map_data *data)
 66{
 67	struct perf_cpu_map *map;
 68
 69	map = perf_cpu_map__empty_new(data->cpus_data.nr);
 70	if (map) {
 71		unsigned i;
 72
 73		for (i = 0; i < data->cpus_data.nr; i++) {
 74			/*
 75			 * Special treatment for -1, which is not real cpu number,
 76			 * and we need to use (int) -1 to initialize map[i],
 77			 * otherwise it would become 65535.
 78			 */
 79			if (data->cpus_data.cpu[i] == (u16) -1)
 80				RC_CHK_ACCESS(map)->map[i].cpu = -1;
 81			else
 82				RC_CHK_ACCESS(map)->map[i].cpu = (int) data->cpus_data.cpu[i];
 83		}
 84	}
 85
 86	return map;
 87}
 88
 89static struct perf_cpu_map *cpu_map__from_mask(const struct perf_record_cpu_map_data *data)
 90{
 91	DECLARE_BITMAP(local_copy, 64);
 92	int weight = 0, mask_nr = data->mask32_data.nr;
 93	struct perf_cpu_map *map;
 94
 95	for (int i = 0; i < mask_nr; i++) {
 96		perf_record_cpu_map_data__read_one_mask(data, i, local_copy);
 97		weight += bitmap_weight(local_copy, 64);
 98	}
 99
100	map = perf_cpu_map__empty_new(weight);
101	if (!map)
102		return NULL;
103
104	for (int i = 0, j = 0; i < mask_nr; i++) {
105		int cpus_per_i = (i * data->mask32_data.long_size  * BITS_PER_BYTE);
106		int cpu;
107
108		perf_record_cpu_map_data__read_one_mask(data, i, local_copy);
109		for_each_set_bit(cpu, local_copy, 64)
110			RC_CHK_ACCESS(map)->map[j++].cpu = cpu + cpus_per_i;
111	}
112	return map;
113
114}
115
116static struct perf_cpu_map *cpu_map__from_range(const struct perf_record_cpu_map_data *data)
117{
118	struct perf_cpu_map *map;
119	unsigned int i = 0;
120
121	map = perf_cpu_map__empty_new(data->range_cpu_data.end_cpu -
122				data->range_cpu_data.start_cpu + 1 + data->range_cpu_data.any_cpu);
123	if (!map)
124		return NULL;
125
126	if (data->range_cpu_data.any_cpu)
127		RC_CHK_ACCESS(map)->map[i++].cpu = -1;
128
129	for (int cpu = data->range_cpu_data.start_cpu; cpu <= data->range_cpu_data.end_cpu;
130	     i++, cpu++)
131		RC_CHK_ACCESS(map)->map[i].cpu = cpu;
132
133	return map;
134}
135
136struct perf_cpu_map *cpu_map__new_data(const struct perf_record_cpu_map_data *data)
137{
138	switch (data->type) {
139	case PERF_CPU_MAP__CPUS:
140		return cpu_map__from_entries(data);
141	case PERF_CPU_MAP__MASK:
142		return cpu_map__from_mask(data);
143	case PERF_CPU_MAP__RANGE_CPUS:
144		return cpu_map__from_range(data);
145	default:
146		pr_err("cpu_map__new_data unknown type %d\n", data->type);
147		return NULL;
148	}
149}
150
151size_t cpu_map__fprintf(struct perf_cpu_map *map, FILE *fp)
152{
153#define BUFSIZE 1024
154	char buf[BUFSIZE];
155
156	cpu_map__snprint(map, buf, sizeof(buf));
157	return fprintf(fp, "%s\n", buf);
158#undef BUFSIZE
159}
160
161struct perf_cpu_map *perf_cpu_map__empty_new(int nr)
162{
163	struct perf_cpu_map *cpus = perf_cpu_map__alloc(nr);
164
165	if (cpus != NULL) {
166		for (int i = 0; i < nr; i++)
167			RC_CHK_ACCESS(cpus)->map[i].cpu = -1;
 
 
 
 
 
168	}
169
170	return cpus;
171}
172
173struct cpu_aggr_map *cpu_aggr_map__empty_new(int nr)
174{
175	struct cpu_aggr_map *cpus = malloc(sizeof(*cpus) + sizeof(struct aggr_cpu_id) * nr);
176
177	if (cpus != NULL) {
178		int i;
179
180		cpus->nr = nr;
181		for (i = 0; i < nr; i++)
182			cpus->map[i] = aggr_cpu_id__empty();
 
 
183	}
184
185	return cpus;
186}
187
188static int cpu__get_topology_int(int cpu, const char *name, int *value)
189{
190	char path[PATH_MAX];
191
192	snprintf(path, PATH_MAX,
193		"devices/system/cpu/cpu%d/topology/%s", cpu, name);
194
195	return sysfs__read_int(path, value);
196}
197
198int cpu__get_socket_id(struct perf_cpu cpu)
199{
200	int value, ret = cpu__get_topology_int(cpu.cpu, "physical_package_id", &value);
201	return ret ?: value;
202}
203
204struct aggr_cpu_id aggr_cpu_id__socket(struct perf_cpu cpu, void *data __maybe_unused)
205{
206	struct aggr_cpu_id id = aggr_cpu_id__empty();
207
208	id.socket = cpu__get_socket_id(cpu);
209	return id;
210}
211
212static int aggr_cpu_id__cmp(const void *a_pointer, const void *b_pointer)
213{
214	struct aggr_cpu_id *a = (struct aggr_cpu_id *)a_pointer;
215	struct aggr_cpu_id *b = (struct aggr_cpu_id *)b_pointer;
216
217	if (a->node != b->node)
218		return a->node - b->node;
219	else if (a->socket != b->socket)
220		return a->socket - b->socket;
221	else if (a->die != b->die)
222		return a->die - b->die;
223	else if (a->cluster != b->cluster)
224		return a->cluster - b->cluster;
225	else if (a->cache_lvl != b->cache_lvl)
226		return a->cache_lvl - b->cache_lvl;
227	else if (a->cache != b->cache)
228		return a->cache - b->cache;
229	else if (a->core != b->core)
230		return a->core - b->core;
231	else
232		return a->thread_idx - b->thread_idx;
233}
234
235struct cpu_aggr_map *cpu_aggr_map__new(const struct perf_cpu_map *cpus,
236				       aggr_cpu_id_get_t get_id,
237				       void *data, bool needs_sort)
238{
239	int idx;
240	struct perf_cpu cpu;
241	struct cpu_aggr_map *c = cpu_aggr_map__empty_new(perf_cpu_map__nr(cpus));
242
243	if (!c)
244		return NULL;
245
246	/* Reset size as it may only be partially filled */
247	c->nr = 0;
248
249	perf_cpu_map__for_each_cpu(cpu, idx, cpus) {
250		bool duplicate = false;
251		struct aggr_cpu_id cpu_id = get_id(cpu, data);
252
253		for (int j = 0; j < c->nr; j++) {
254			if (aggr_cpu_id__equal(&cpu_id, &c->map[j])) {
255				duplicate = true;
256				break;
257			}
258		}
259		if (!duplicate) {
260			c->map[c->nr] = cpu_id;
261			c->nr++;
262		}
263	}
264	/* Trim. */
265	if (c->nr != perf_cpu_map__nr(cpus)) {
266		struct cpu_aggr_map *trimmed_c =
267			realloc(c,
268				sizeof(struct cpu_aggr_map) + sizeof(struct aggr_cpu_id) * c->nr);
269
270		if (trimmed_c)
271			c = trimmed_c;
272	}
273
274	/* ensure we process id in increasing order */
275	if (needs_sort)
276		qsort(c->map, c->nr, sizeof(struct aggr_cpu_id), aggr_cpu_id__cmp);
277
278	return c;
279
280}
281
282int cpu__get_die_id(struct perf_cpu cpu)
283{
284	int value, ret = cpu__get_topology_int(cpu.cpu, "die_id", &value);
285
286	return ret ?: value;
287}
288
289struct aggr_cpu_id aggr_cpu_id__die(struct perf_cpu cpu, void *data)
290{
291	struct aggr_cpu_id id;
292	int die;
293
294	die = cpu__get_die_id(cpu);
295	/* There is no die_id on legacy system. */
296	if (die == -1)
297		die = 0;
298
299	/*
300	 * die_id is relative to socket, so start
301	 * with the socket ID and then add die to
302	 * make a unique ID.
303	 */
304	id = aggr_cpu_id__socket(cpu, data);
305	if (aggr_cpu_id__is_empty(&id))
306		return id;
307
308	id.die = die;
309	return id;
310}
311
312int cpu__get_cluster_id(struct perf_cpu cpu)
313{
314	int value, ret = cpu__get_topology_int(cpu.cpu, "cluster_id", &value);
315
316	return ret ?: value;
317}
318
319struct aggr_cpu_id aggr_cpu_id__cluster(struct perf_cpu cpu, void *data)
320{
321	int cluster = cpu__get_cluster_id(cpu);
322	struct aggr_cpu_id id;
323
324	/* There is no cluster_id on legacy system. */
325	if (cluster == -1)
326		cluster = 0;
327
328	id = aggr_cpu_id__die(cpu, data);
329	if (aggr_cpu_id__is_empty(&id))
330		return id;
331
332	id.cluster = cluster;
333	return id;
334}
335
336int cpu__get_core_id(struct perf_cpu cpu)
337{
338	int value, ret = cpu__get_topology_int(cpu.cpu, "core_id", &value);
339	return ret ?: value;
340}
341
342struct aggr_cpu_id aggr_cpu_id__core(struct perf_cpu cpu, void *data)
343{
344	struct aggr_cpu_id id;
345	int core = cpu__get_core_id(cpu);
346
347	/* aggr_cpu_id__die returns a struct with socket die, and cluster set. */
348	id = aggr_cpu_id__cluster(cpu, data);
349	if (aggr_cpu_id__is_empty(&id))
350		return id;
351
352	/*
353	 * core_id is relative to socket and die, we need a global id.
354	 * So we combine the result from cpu_map__get_die with the core id
355	 */
356	id.core = core;
357	return id;
358
359}
360
361struct aggr_cpu_id aggr_cpu_id__cpu(struct perf_cpu cpu, void *data)
362{
363	struct aggr_cpu_id id;
364
365	/* aggr_cpu_id__core returns a struct with socket, die and core set. */
366	id = aggr_cpu_id__core(cpu, data);
367	if (aggr_cpu_id__is_empty(&id))
368		return id;
369
370	id.cpu = cpu;
371	return id;
372
373}
374
375struct aggr_cpu_id aggr_cpu_id__node(struct perf_cpu cpu, void *data __maybe_unused)
376{
377	struct aggr_cpu_id id = aggr_cpu_id__empty();
378
379	id.node = cpu__get_node(cpu);
380	return id;
381}
382
383struct aggr_cpu_id aggr_cpu_id__global(struct perf_cpu cpu, void *data __maybe_unused)
384{
385	struct aggr_cpu_id id = aggr_cpu_id__empty();
386
387	/* it always aggregates to the cpu 0 */
388	cpu.cpu = 0;
389	id.cpu = cpu;
390	return id;
391}
392
393/* setup simple routines to easily access node numbers given a cpu number */
394static int get_max_num(char *path, int *max)
395{
396	size_t num;
397	char *buf;
398	int err = 0;
399
400	if (filename__read_str(path, &buf, &num))
401		return -1;
402
403	buf[num] = '\0';
404
405	/* start on the right, to find highest node num */
406	while (--num) {
407		if ((buf[num] == ',') || (buf[num] == '-')) {
408			num++;
409			break;
410		}
411	}
412	if (sscanf(&buf[num], "%d", max) < 1) {
413		err = -1;
414		goto out;
415	}
416
417	/* convert from 0-based to 1-based */
418	(*max)++;
419
420out:
421	free(buf);
422	return err;
423}
424
425/* Determine highest possible cpu in the system for sparse allocation */
426static void set_max_cpu_num(void)
427{
428	const char *mnt;
429	char path[PATH_MAX];
430	int ret = -1;
431
432	/* set up default */
433	max_cpu_num.cpu = 4096;
434	max_present_cpu_num.cpu = 4096;
435
436	mnt = sysfs__mountpoint();
437	if (!mnt)
438		goto out;
439
440	/* get the highest possible cpu number for a sparse allocation */
441	ret = snprintf(path, PATH_MAX, "%s/devices/system/cpu/possible", mnt);
442	if (ret >= PATH_MAX) {
443		pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
444		goto out;
445	}
446
447	ret = get_max_num(path, &max_cpu_num.cpu);
448	if (ret)
449		goto out;
450
451	/* get the highest present cpu number for a sparse allocation */
452	ret = snprintf(path, PATH_MAX, "%s/devices/system/cpu/present", mnt);
453	if (ret >= PATH_MAX) {
454		pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
455		goto out;
456	}
457
458	ret = get_max_num(path, &max_present_cpu_num.cpu);
459
460out:
461	if (ret)
462		pr_err("Failed to read max cpus, using default of %d\n", max_cpu_num.cpu);
463}
464
465/* Determine highest possible node in the system for sparse allocation */
466static void set_max_node_num(void)
467{
468	const char *mnt;
469	char path[PATH_MAX];
470	int ret = -1;
471
472	/* set up default */
473	max_node_num = 8;
474
475	mnt = sysfs__mountpoint();
476	if (!mnt)
477		goto out;
478
479	/* get the highest possible cpu number for a sparse allocation */
480	ret = snprintf(path, PATH_MAX, "%s/devices/system/node/possible", mnt);
481	if (ret >= PATH_MAX) {
482		pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
483		goto out;
484	}
485
486	ret = get_max_num(path, &max_node_num);
487
488out:
489	if (ret)
490		pr_err("Failed to read max nodes, using default of %d\n", max_node_num);
491}
492
493int cpu__max_node(void)
494{
495	if (unlikely(!max_node_num))
496		set_max_node_num();
497
498	return max_node_num;
499}
500
501struct perf_cpu cpu__max_cpu(void)
502{
503	if (unlikely(!max_cpu_num.cpu))
504		set_max_cpu_num();
505
506	return max_cpu_num;
507}
508
509struct perf_cpu cpu__max_present_cpu(void)
510{
511	if (unlikely(!max_present_cpu_num.cpu))
512		set_max_cpu_num();
513
514	return max_present_cpu_num;
515}
516
517
518int cpu__get_node(struct perf_cpu cpu)
519{
520	if (unlikely(cpunode_map == NULL)) {
521		pr_debug("cpu_map not initialized\n");
522		return -1;
523	}
524
525	return cpunode_map[cpu.cpu];
526}
527
528static int init_cpunode_map(void)
529{
530	int i;
531
532	set_max_cpu_num();
533	set_max_node_num();
534
535	cpunode_map = calloc(max_cpu_num.cpu, sizeof(int));
536	if (!cpunode_map) {
537		pr_err("%s: calloc failed\n", __func__);
538		return -1;
539	}
540
541	for (i = 0; i < max_cpu_num.cpu; i++)
542		cpunode_map[i] = -1;
543
544	return 0;
545}
546
547int cpu__setup_cpunode_map(void)
548{
549	struct dirent *dent1, *dent2;
550	DIR *dir1, *dir2;
551	unsigned int cpu, mem;
552	char buf[PATH_MAX];
553	char path[PATH_MAX];
554	const char *mnt;
555	int n;
556
557	/* initialize globals */
558	if (init_cpunode_map())
559		return -1;
560
561	mnt = sysfs__mountpoint();
562	if (!mnt)
563		return 0;
564
565	n = snprintf(path, PATH_MAX, "%s/devices/system/node", mnt);
566	if (n >= PATH_MAX) {
567		pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
568		return -1;
569	}
570
571	dir1 = opendir(path);
572	if (!dir1)
573		return 0;
574
575	/* walk tree and setup map */
576	while ((dent1 = readdir(dir1)) != NULL) {
577		if (dent1->d_type != DT_DIR || sscanf(dent1->d_name, "node%u", &mem) < 1)
578			continue;
579
580		n = snprintf(buf, PATH_MAX, "%s/%s", path, dent1->d_name);
581		if (n >= PATH_MAX) {
582			pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
583			continue;
584		}
585
586		dir2 = opendir(buf);
587		if (!dir2)
588			continue;
589		while ((dent2 = readdir(dir2)) != NULL) {
590			if (dent2->d_type != DT_LNK || sscanf(dent2->d_name, "cpu%u", &cpu) < 1)
591				continue;
592			cpunode_map[cpu] = mem;
593		}
594		closedir(dir2);
595	}
596	closedir(dir1);
597	return 0;
598}
599
600size_t cpu_map__snprint(struct perf_cpu_map *map, char *buf, size_t size)
601{
602	int i, start = -1;
603	bool first = true;
604	size_t ret = 0;
605
606#define COMMA first ? "" : ","
607
608	for (i = 0; i < perf_cpu_map__nr(map) + 1; i++) {
609		struct perf_cpu cpu = { .cpu = INT_MAX };
610		bool last = i == perf_cpu_map__nr(map);
611
612		if (!last)
613			cpu = perf_cpu_map__cpu(map, i);
614
615		if (start == -1) {
616			start = i;
617			if (last) {
618				ret += snprintf(buf + ret, size - ret,
619						"%s%d", COMMA,
620						perf_cpu_map__cpu(map, i).cpu);
621			}
622		} else if (((i - start) != (cpu.cpu - perf_cpu_map__cpu(map, start).cpu)) || last) {
623			int end = i - 1;
624
625			if (start == end) {
626				ret += snprintf(buf + ret, size - ret,
627						"%s%d", COMMA,
628						perf_cpu_map__cpu(map, start).cpu);
629			} else {
630				ret += snprintf(buf + ret, size - ret,
631						"%s%d-%d", COMMA,
632						perf_cpu_map__cpu(map, start).cpu, perf_cpu_map__cpu(map, end).cpu);
633			}
634			first = false;
635			start = i;
636		}
637	}
638
639#undef COMMA
640
641	pr_debug2("cpumask list: %s\n", buf);
642	return ret;
643}
644
645static char hex_char(unsigned char val)
646{
647	if (val < 10)
648		return val + '0';
649	if (val < 16)
650		return val - 10 + 'a';
651	return '?';
652}
653
654size_t cpu_map__snprint_mask(struct perf_cpu_map *map, char *buf, size_t size)
655{
656	int idx;
657	char *ptr = buf;
658	unsigned char *bitmap;
659	struct perf_cpu c, last_cpu = perf_cpu_map__max(map);
660
661	if (buf == NULL)
662		return 0;
663
664	bitmap = zalloc(last_cpu.cpu / 8 + 1);
665	if (bitmap == NULL) {
666		buf[0] = '\0';
667		return 0;
668	}
669
670	perf_cpu_map__for_each_cpu(c, idx, map)
671		bitmap[c.cpu / 8] |= 1 << (c.cpu % 8);
 
 
672
673	for (int cpu = last_cpu.cpu / 4 * 4; cpu >= 0; cpu -= 4) {
674		unsigned char bits = bitmap[cpu / 8];
675
676		if (cpu % 8)
677			bits >>= 4;
678		else
679			bits &= 0xf;
680
681		*ptr++ = hex_char(bits);
682		if ((cpu % 32) == 0 && cpu > 0)
683			*ptr++ = ',';
684	}
685	*ptr = '\0';
686	free(bitmap);
687
688	buf[size - 1] = '\0';
689	return ptr - buf;
690}
691
692struct perf_cpu_map *cpu_map__online(void) /* thread unsafe */
693{
694	static struct perf_cpu_map *online;
695
696	if (!online)
697		online = perf_cpu_map__new_online_cpus(); /* from /sys/devices/system/cpu/online */
698
699	return online;
700}
701
702bool aggr_cpu_id__equal(const struct aggr_cpu_id *a, const struct aggr_cpu_id *b)
703{
704	return a->thread_idx == b->thread_idx &&
705		a->node == b->node &&
706		a->socket == b->socket &&
707		a->die == b->die &&
708		a->cluster == b->cluster &&
709		a->cache_lvl == b->cache_lvl &&
710		a->cache == b->cache &&
711		a->core == b->core &&
712		a->cpu.cpu == b->cpu.cpu;
713}
714
715bool aggr_cpu_id__is_empty(const struct aggr_cpu_id *a)
716{
717	return a->thread_idx == -1 &&
718		a->node == -1 &&
719		a->socket == -1 &&
720		a->die == -1 &&
721		a->cluster == -1 &&
722		a->cache_lvl == -1 &&
723		a->cache == -1 &&
724		a->core == -1 &&
725		a->cpu.cpu == -1;
726}
727
728struct aggr_cpu_id aggr_cpu_id__empty(void)
729{
730	struct aggr_cpu_id ret = {
731		.thread_idx = -1,
732		.node = -1,
733		.socket = -1,
734		.die = -1,
735		.cluster = -1,
736		.cache_lvl = -1,
737		.cache = -1,
738		.core = -1,
739		.cpu = (struct perf_cpu){ .cpu = -1 },
740	};
741	return ret;
742}