Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 | // SPDX-License-Identifier: GPL-2.0 #include <api/fs/fs.h> #include "cpumap.h" #include "debug.h" #include "event.h" #include <assert.h> #include <dirent.h> #include <stdio.h> #include <stdlib.h> #include <linux/bitmap.h> #include "asm/bug.h" #include <linux/ctype.h> #include <linux/zalloc.h> #include <internal/cpumap.h> static struct perf_cpu max_cpu_num; static struct perf_cpu max_present_cpu_num; static int max_node_num; /** * The numa node X as read from /sys/devices/system/node/nodeX indexed by the * CPU number. */ static int *cpunode_map; bool perf_record_cpu_map_data__test_bit(int i, const struct perf_record_cpu_map_data *data) { int bit_word32 = i / 32; __u32 bit_mask32 = 1U << (i & 31); int bit_word64 = i / 64; __u64 bit_mask64 = ((__u64)1) << (i & 63); return (data->mask32_data.long_size == 4) ? (bit_word32 < data->mask32_data.nr) && (data->mask32_data.mask[bit_word32] & bit_mask32) != 0 : (bit_word64 < data->mask64_data.nr) && (data->mask64_data.mask[bit_word64] & bit_mask64) != 0; } /* Read ith mask value from data into the given 64-bit sized bitmap */ static void perf_record_cpu_map_data__read_one_mask(const struct perf_record_cpu_map_data *data, int i, unsigned long *bitmap) { #if __SIZEOF_LONG__ == 8 if (data->mask32_data.long_size == 4) bitmap[0] = data->mask32_data.mask[i]; else bitmap[0] = data->mask64_data.mask[i]; #else if (data->mask32_data.long_size == 4) { bitmap[0] = data->mask32_data.mask[i]; bitmap[1] = 0; } else { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ bitmap[0] = (unsigned long)(data->mask64_data.mask[i] >> 32); bitmap[1] = (unsigned long)data->mask64_data.mask[i]; #else bitmap[0] = (unsigned long)data->mask64_data.mask[i]; bitmap[1] = (unsigned long)(data->mask64_data.mask[i] >> 32); #endif } #endif } static struct perf_cpu_map *cpu_map__from_entries(const struct perf_record_cpu_map_data *data) { struct perf_cpu_map *map; map = perf_cpu_map__empty_new(data->cpus_data.nr); if (map) { unsigned i; for (i = 0; i < data->cpus_data.nr; i++) { /* * Special treatment for -1, which is not real cpu number, * and we need to use (int) -1 to initialize map[i], * otherwise it would become 65535. */ if (data->cpus_data.cpu[i] == (u16) -1) RC_CHK_ACCESS(map)->map[i].cpu = -1; else RC_CHK_ACCESS(map)->map[i].cpu = (int) data->cpus_data.cpu[i]; } } return map; } static struct perf_cpu_map *cpu_map__from_mask(const struct perf_record_cpu_map_data *data) { DECLARE_BITMAP(local_copy, 64); int weight = 0, mask_nr = data->mask32_data.nr; struct perf_cpu_map *map; for (int i = 0; i < mask_nr; i++) { perf_record_cpu_map_data__read_one_mask(data, i, local_copy); weight += bitmap_weight(local_copy, 64); } map = perf_cpu_map__empty_new(weight); if (!map) return NULL; for (int i = 0, j = 0; i < mask_nr; i++) { int cpus_per_i = (i * data->mask32_data.long_size * BITS_PER_BYTE); int cpu; perf_record_cpu_map_data__read_one_mask(data, i, local_copy); for_each_set_bit(cpu, local_copy, 64) RC_CHK_ACCESS(map)->map[j++].cpu = cpu + cpus_per_i; } return map; } static struct perf_cpu_map *cpu_map__from_range(const struct perf_record_cpu_map_data *data) { struct perf_cpu_map *map; unsigned int i = 0; map = perf_cpu_map__empty_new(data->range_cpu_data.end_cpu - data->range_cpu_data.start_cpu + 1 + data->range_cpu_data.any_cpu); if (!map) return NULL; if (data->range_cpu_data.any_cpu) RC_CHK_ACCESS(map)->map[i++].cpu = -1; for (int cpu = data->range_cpu_data.start_cpu; cpu <= data->range_cpu_data.end_cpu; i++, cpu++) RC_CHK_ACCESS(map)->map[i].cpu = cpu; return map; } struct perf_cpu_map *cpu_map__new_data(const struct perf_record_cpu_map_data *data) { switch (data->type) { case PERF_CPU_MAP__CPUS: return cpu_map__from_entries(data); case PERF_CPU_MAP__MASK: return cpu_map__from_mask(data); case PERF_CPU_MAP__RANGE_CPUS: return cpu_map__from_range(data); default: pr_err("cpu_map__new_data unknown type %d\n", data->type); return NULL; } } size_t cpu_map__fprintf(struct perf_cpu_map *map, FILE *fp) { #define BUFSIZE 1024 char buf[BUFSIZE]; cpu_map__snprint(map, buf, sizeof(buf)); return fprintf(fp, "%s\n", buf); #undef BUFSIZE } struct perf_cpu_map *perf_cpu_map__empty_new(int nr) { struct perf_cpu_map *cpus = perf_cpu_map__alloc(nr); if (cpus != NULL) { for (int i = 0; i < nr; i++) RC_CHK_ACCESS(cpus)->map[i].cpu = -1; } return cpus; } struct cpu_aggr_map *cpu_aggr_map__empty_new(int nr) { struct cpu_aggr_map *cpus = malloc(sizeof(*cpus) + sizeof(struct aggr_cpu_id) * nr); if (cpus != NULL) { int i; cpus->nr = nr; for (i = 0; i < nr; i++) cpus->map[i] = aggr_cpu_id__empty(); refcount_set(&cpus->refcnt, 1); } return cpus; } static int cpu__get_topology_int(int cpu, const char *name, int *value) { char path[PATH_MAX]; snprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/topology/%s", cpu, name); return sysfs__read_int(path, value); } int cpu__get_socket_id(struct perf_cpu cpu) { int value, ret = cpu__get_topology_int(cpu.cpu, "physical_package_id", &value); return ret ?: value; } struct aggr_cpu_id aggr_cpu_id__socket(struct perf_cpu cpu, void *data __maybe_unused) { struct aggr_cpu_id id = aggr_cpu_id__empty(); id.socket = cpu__get_socket_id(cpu); return id; } static int aggr_cpu_id__cmp(const void *a_pointer, const void *b_pointer) { struct aggr_cpu_id *a = (struct aggr_cpu_id *)a_pointer; struct aggr_cpu_id *b = (struct aggr_cpu_id *)b_pointer; if (a->node != b->node) return a->node - b->node; else if (a->socket != b->socket) return a->socket - b->socket; else if (a->die != b->die) return a->die - b->die; else if (a->cluster != b->cluster) return a->cluster - b->cluster; else if (a->cache_lvl != b->cache_lvl) return a->cache_lvl - b->cache_lvl; else if (a->cache != b->cache) return a->cache - b->cache; else if (a->core != b->core) return a->core - b->core; else return a->thread_idx - b->thread_idx; } struct cpu_aggr_map *cpu_aggr_map__new(const struct perf_cpu_map *cpus, aggr_cpu_id_get_t get_id, void *data, bool needs_sort) { int idx; struct perf_cpu cpu; struct cpu_aggr_map *c = cpu_aggr_map__empty_new(perf_cpu_map__nr(cpus)); if (!c) return NULL; /* Reset size as it may only be partially filled */ c->nr = 0; perf_cpu_map__for_each_cpu(cpu, idx, cpus) { bool duplicate = false; struct aggr_cpu_id cpu_id = get_id(cpu, data); for (int j = 0; j < c->nr; j++) { if (aggr_cpu_id__equal(&cpu_id, &c->map[j])) { duplicate = true; break; } } if (!duplicate) { c->map[c->nr] = cpu_id; c->nr++; } } /* Trim. */ if (c->nr != perf_cpu_map__nr(cpus)) { struct cpu_aggr_map *trimmed_c = realloc(c, sizeof(struct cpu_aggr_map) + sizeof(struct aggr_cpu_id) * c->nr); if (trimmed_c) c = trimmed_c; } /* ensure we process id in increasing order */ if (needs_sort) qsort(c->map, c->nr, sizeof(struct aggr_cpu_id), aggr_cpu_id__cmp); return c; } int cpu__get_die_id(struct perf_cpu cpu) { int value, ret = cpu__get_topology_int(cpu.cpu, "die_id", &value); return ret ?: value; } struct aggr_cpu_id aggr_cpu_id__die(struct perf_cpu cpu, void *data) { struct aggr_cpu_id id; int die; die = cpu__get_die_id(cpu); /* There is no die_id on legacy system. */ if (die == -1) die = 0; /* * die_id is relative to socket, so start * with the socket ID and then add die to * make a unique ID. */ id = aggr_cpu_id__socket(cpu, data); if (aggr_cpu_id__is_empty(&id)) return id; id.die = die; return id; } int cpu__get_cluster_id(struct perf_cpu cpu) { int value, ret = cpu__get_topology_int(cpu.cpu, "cluster_id", &value); return ret ?: value; } struct aggr_cpu_id aggr_cpu_id__cluster(struct perf_cpu cpu, void *data) { int cluster = cpu__get_cluster_id(cpu); struct aggr_cpu_id id; /* There is no cluster_id on legacy system. */ if (cluster == -1) cluster = 0; id = aggr_cpu_id__die(cpu, data); if (aggr_cpu_id__is_empty(&id)) return id; id.cluster = cluster; return id; } int cpu__get_core_id(struct perf_cpu cpu) { int value, ret = cpu__get_topology_int(cpu.cpu, "core_id", &value); return ret ?: value; } struct aggr_cpu_id aggr_cpu_id__core(struct perf_cpu cpu, void *data) { struct aggr_cpu_id id; int core = cpu__get_core_id(cpu); /* aggr_cpu_id__die returns a struct with socket die, and cluster set. */ id = aggr_cpu_id__cluster(cpu, data); if (aggr_cpu_id__is_empty(&id)) return id; /* * core_id is relative to socket and die, we need a global id. * So we combine the result from cpu_map__get_die with the core id */ id.core = core; return id; } struct aggr_cpu_id aggr_cpu_id__cpu(struct perf_cpu cpu, void *data) { struct aggr_cpu_id id; /* aggr_cpu_id__core returns a struct with socket, die and core set. */ id = aggr_cpu_id__core(cpu, data); if (aggr_cpu_id__is_empty(&id)) return id; id.cpu = cpu; return id; } struct aggr_cpu_id aggr_cpu_id__node(struct perf_cpu cpu, void *data __maybe_unused) { struct aggr_cpu_id id = aggr_cpu_id__empty(); id.node = cpu__get_node(cpu); return id; } struct aggr_cpu_id aggr_cpu_id__global(struct perf_cpu cpu, void *data __maybe_unused) { struct aggr_cpu_id id = aggr_cpu_id__empty(); /* it always aggregates to the cpu 0 */ cpu.cpu = 0; id.cpu = cpu; return id; } /* setup simple routines to easily access node numbers given a cpu number */ static int get_max_num(char *path, int *max) { size_t num; char *buf; int err = 0; if (filename__read_str(path, &buf, &num)) return -1; buf[num] = '\0'; /* start on the right, to find highest node num */ while (--num) { if ((buf[num] == ',') || (buf[num] == '-')) { num++; break; } } if (sscanf(&buf[num], "%d", max) < 1) { err = -1; goto out; } /* convert from 0-based to 1-based */ (*max)++; out: free(buf); return err; } /* Determine highest possible cpu in the system for sparse allocation */ static void set_max_cpu_num(void) { const char *mnt; char path[PATH_MAX]; int ret = -1; /* set up default */ max_cpu_num.cpu = 4096; max_present_cpu_num.cpu = 4096; mnt = sysfs__mountpoint(); if (!mnt) goto out; /* get the highest possible cpu number for a sparse allocation */ ret = snprintf(path, PATH_MAX, "%s/devices/system/cpu/possible", mnt); if (ret >= PATH_MAX) { pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX); goto out; } ret = get_max_num(path, &max_cpu_num.cpu); if (ret) goto out; /* get the highest present cpu number for a sparse allocation */ ret = snprintf(path, PATH_MAX, "%s/devices/system/cpu/present", mnt); if (ret >= PATH_MAX) { pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX); goto out; } ret = get_max_num(path, &max_present_cpu_num.cpu); out: if (ret) pr_err("Failed to read max cpus, using default of %d\n", max_cpu_num.cpu); } /* Determine highest possible node in the system for sparse allocation */ static void set_max_node_num(void) { const char *mnt; char path[PATH_MAX]; int ret = -1; /* set up default */ max_node_num = 8; mnt = sysfs__mountpoint(); if (!mnt) goto out; /* get the highest possible cpu number for a sparse allocation */ ret = snprintf(path, PATH_MAX, "%s/devices/system/node/possible", mnt); if (ret >= PATH_MAX) { pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX); goto out; } ret = get_max_num(path, &max_node_num); out: if (ret) pr_err("Failed to read max nodes, using default of %d\n", max_node_num); } int cpu__max_node(void) { if (unlikely(!max_node_num)) set_max_node_num(); return max_node_num; } struct perf_cpu cpu__max_cpu(void) { if (unlikely(!max_cpu_num.cpu)) set_max_cpu_num(); return max_cpu_num; } struct perf_cpu cpu__max_present_cpu(void) { if (unlikely(!max_present_cpu_num.cpu)) set_max_cpu_num(); return max_present_cpu_num; } int cpu__get_node(struct perf_cpu cpu) { if (unlikely(cpunode_map == NULL)) { pr_debug("cpu_map not initialized\n"); return -1; } return cpunode_map[cpu.cpu]; } static int init_cpunode_map(void) { int i; set_max_cpu_num(); set_max_node_num(); cpunode_map = calloc(max_cpu_num.cpu, sizeof(int)); if (!cpunode_map) { pr_err("%s: calloc failed\n", __func__); return -1; } for (i = 0; i < max_cpu_num.cpu; i++) cpunode_map[i] = -1; return 0; } int cpu__setup_cpunode_map(void) { struct dirent *dent1, *dent2; DIR *dir1, *dir2; unsigned int cpu, mem; char buf[PATH_MAX]; char path[PATH_MAX]; const char *mnt; int n; /* initialize globals */ if (init_cpunode_map()) return -1; mnt = sysfs__mountpoint(); if (!mnt) return 0; n = snprintf(path, PATH_MAX, "%s/devices/system/node", mnt); if (n >= PATH_MAX) { pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX); return -1; } dir1 = opendir(path); if (!dir1) return 0; /* walk tree and setup map */ while ((dent1 = readdir(dir1)) != NULL) { if (dent1->d_type != DT_DIR || sscanf(dent1->d_name, "node%u", &mem) < 1) continue; n = snprintf(buf, PATH_MAX, "%s/%s", path, dent1->d_name); if (n >= PATH_MAX) { pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX); continue; } dir2 = opendir(buf); if (!dir2) continue; while ((dent2 = readdir(dir2)) != NULL) { if (dent2->d_type != DT_LNK || sscanf(dent2->d_name, "cpu%u", &cpu) < 1) continue; cpunode_map[cpu] = mem; } closedir(dir2); } closedir(dir1); return 0; } size_t cpu_map__snprint(struct perf_cpu_map *map, char *buf, size_t size) { int i, start = -1; bool first = true; size_t ret = 0; #define COMMA first ? "" : "," for (i = 0; i < perf_cpu_map__nr(map) + 1; i++) { struct perf_cpu cpu = { .cpu = INT_MAX }; bool last = i == perf_cpu_map__nr(map); if (!last) cpu = perf_cpu_map__cpu(map, i); if (start == -1) { start = i; if (last) { ret += snprintf(buf + ret, size - ret, "%s%d", COMMA, perf_cpu_map__cpu(map, i).cpu); } } else if (((i - start) != (cpu.cpu - perf_cpu_map__cpu(map, start).cpu)) || last) { int end = i - 1; if (start == end) { ret += snprintf(buf + ret, size - ret, "%s%d", COMMA, perf_cpu_map__cpu(map, start).cpu); } else { ret += snprintf(buf + ret, size - ret, "%s%d-%d", COMMA, perf_cpu_map__cpu(map, start).cpu, perf_cpu_map__cpu(map, end).cpu); } first = false; start = i; } } #undef COMMA pr_debug2("cpumask list: %s\n", buf); return ret; } static char hex_char(unsigned char val) { if (val < 10) return val + '0'; if (val < 16) return val - 10 + 'a'; return '?'; } size_t cpu_map__snprint_mask(struct perf_cpu_map *map, char *buf, size_t size) { int i, cpu; char *ptr = buf; unsigned char *bitmap; struct perf_cpu last_cpu = perf_cpu_map__cpu(map, perf_cpu_map__nr(map) - 1); if (buf == NULL) return 0; bitmap = zalloc(last_cpu.cpu / 8 + 1); if (bitmap == NULL) { buf[0] = '\0'; return 0; } for (i = 0; i < perf_cpu_map__nr(map); i++) { cpu = perf_cpu_map__cpu(map, i).cpu; bitmap[cpu / 8] |= 1 << (cpu % 8); } for (cpu = last_cpu.cpu / 4 * 4; cpu >= 0; cpu -= 4) { unsigned char bits = bitmap[cpu / 8]; if (cpu % 8) bits >>= 4; else bits &= 0xf; *ptr++ = hex_char(bits); if ((cpu % 32) == 0 && cpu > 0) *ptr++ = ','; } *ptr = '\0'; free(bitmap); buf[size - 1] = '\0'; return ptr - buf; } struct perf_cpu_map *cpu_map__online(void) /* thread unsafe */ { static struct perf_cpu_map *online; if (!online) online = perf_cpu_map__new_online_cpus(); /* from /sys/devices/system/cpu/online */ return online; } bool aggr_cpu_id__equal(const struct aggr_cpu_id *a, const struct aggr_cpu_id *b) { return a->thread_idx == b->thread_idx && a->node == b->node && a->socket == b->socket && a->die == b->die && a->cluster == b->cluster && a->cache_lvl == b->cache_lvl && a->cache == b->cache && a->core == b->core && a->cpu.cpu == b->cpu.cpu; } bool aggr_cpu_id__is_empty(const struct aggr_cpu_id *a) { return a->thread_idx == -1 && a->node == -1 && a->socket == -1 && a->die == -1 && a->cluster == -1 && a->cache_lvl == -1 && a->cache == -1 && a->core == -1 && a->cpu.cpu == -1; } struct aggr_cpu_id aggr_cpu_id__empty(void) { struct aggr_cpu_id ret = { .thread_idx = -1, .node = -1, .socket = -1, .die = -1, .cluster = -1, .cache_lvl = -1, .cache = -1, .core = -1, .cpu = (struct perf_cpu){ .cpu = -1 }, }; return ret; } |