Loading...
1// SPDX-License-Identifier: GPL-2.0
2#include <linux/ceph/ceph_debug.h>
3
4#include <linux/crc32c.h>
5#include <linux/ctype.h>
6#include <linux/highmem.h>
7#include <linux/inet.h>
8#include <linux/kthread.h>
9#include <linux/net.h>
10#include <linux/nsproxy.h>
11#include <linux/sched/mm.h>
12#include <linux/slab.h>
13#include <linux/socket.h>
14#include <linux/string.h>
15#ifdef CONFIG_BLOCK
16#include <linux/bio.h>
17#endif /* CONFIG_BLOCK */
18#include <linux/dns_resolver.h>
19#include <net/tcp.h>
20
21#include <linux/ceph/ceph_features.h>
22#include <linux/ceph/libceph.h>
23#include <linux/ceph/messenger.h>
24#include <linux/ceph/decode.h>
25#include <linux/ceph/pagelist.h>
26#include <linux/export.h>
27
28/*
29 * Ceph uses the messenger to exchange ceph_msg messages with other
30 * hosts in the system. The messenger provides ordered and reliable
31 * delivery. We tolerate TCP disconnects by reconnecting (with
32 * exponential backoff) in the case of a fault (disconnection, bad
33 * crc, protocol error). Acks allow sent messages to be discarded by
34 * the sender.
35 */
36
37/*
38 * We track the state of the socket on a given connection using
39 * values defined below. The transition to a new socket state is
40 * handled by a function which verifies we aren't coming from an
41 * unexpected state.
42 *
43 * --------
44 * | NEW* | transient initial state
45 * --------
46 * | con_sock_state_init()
47 * v
48 * ----------
49 * | CLOSED | initialized, but no socket (and no
50 * ---------- TCP connection)
51 * ^ \
52 * | \ con_sock_state_connecting()
53 * | ----------------------
54 * | \
55 * + con_sock_state_closed() \
56 * |+--------------------------- \
57 * | \ \ \
58 * | ----------- \ \
59 * | | CLOSING | socket event; \ \
60 * | ----------- await close \ \
61 * | ^ \ |
62 * | | \ |
63 * | + con_sock_state_closing() \ |
64 * | / \ | |
65 * | / --------------- | |
66 * | / \ v v
67 * | / --------------
68 * | / -----------------| CONNECTING | socket created, TCP
69 * | | / -------------- connect initiated
70 * | | | con_sock_state_connected()
71 * | | v
72 * -------------
73 * | CONNECTED | TCP connection established
74 * -------------
75 *
76 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
77 */
78
79#define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
80#define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
81#define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
82#define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
83#define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
84
85static bool con_flag_valid(unsigned long con_flag)
86{
87 switch (con_flag) {
88 case CEPH_CON_F_LOSSYTX:
89 case CEPH_CON_F_KEEPALIVE_PENDING:
90 case CEPH_CON_F_WRITE_PENDING:
91 case CEPH_CON_F_SOCK_CLOSED:
92 case CEPH_CON_F_BACKOFF:
93 return true;
94 default:
95 return false;
96 }
97}
98
99void ceph_con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
100{
101 BUG_ON(!con_flag_valid(con_flag));
102
103 clear_bit(con_flag, &con->flags);
104}
105
106void ceph_con_flag_set(struct ceph_connection *con, unsigned long con_flag)
107{
108 BUG_ON(!con_flag_valid(con_flag));
109
110 set_bit(con_flag, &con->flags);
111}
112
113bool ceph_con_flag_test(struct ceph_connection *con, unsigned long con_flag)
114{
115 BUG_ON(!con_flag_valid(con_flag));
116
117 return test_bit(con_flag, &con->flags);
118}
119
120bool ceph_con_flag_test_and_clear(struct ceph_connection *con,
121 unsigned long con_flag)
122{
123 BUG_ON(!con_flag_valid(con_flag));
124
125 return test_and_clear_bit(con_flag, &con->flags);
126}
127
128bool ceph_con_flag_test_and_set(struct ceph_connection *con,
129 unsigned long con_flag)
130{
131 BUG_ON(!con_flag_valid(con_flag));
132
133 return test_and_set_bit(con_flag, &con->flags);
134}
135
136/* Slab caches for frequently-allocated structures */
137
138static struct kmem_cache *ceph_msg_cache;
139
140#ifdef CONFIG_LOCKDEP
141static struct lock_class_key socket_class;
142#endif
143
144static void queue_con(struct ceph_connection *con);
145static void cancel_con(struct ceph_connection *con);
146static void ceph_con_workfn(struct work_struct *);
147static void con_fault(struct ceph_connection *con);
148
149/*
150 * Nicely render a sockaddr as a string. An array of formatted
151 * strings is used, to approximate reentrancy.
152 */
153#define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
154#define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
155#define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
156#define MAX_ADDR_STR_LEN 64 /* 54 is enough */
157
158static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
159static atomic_t addr_str_seq = ATOMIC_INIT(0);
160
161struct page *ceph_zero_page; /* used in certain error cases */
162
163const char *ceph_pr_addr(const struct ceph_entity_addr *addr)
164{
165 int i;
166 char *s;
167 struct sockaddr_storage ss = addr->in_addr; /* align */
168 struct sockaddr_in *in4 = (struct sockaddr_in *)&ss;
169 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *)&ss;
170
171 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
172 s = addr_str[i];
173
174 switch (ss.ss_family) {
175 case AF_INET:
176 snprintf(s, MAX_ADDR_STR_LEN, "(%d)%pI4:%hu",
177 le32_to_cpu(addr->type), &in4->sin_addr,
178 ntohs(in4->sin_port));
179 break;
180
181 case AF_INET6:
182 snprintf(s, MAX_ADDR_STR_LEN, "(%d)[%pI6c]:%hu",
183 le32_to_cpu(addr->type), &in6->sin6_addr,
184 ntohs(in6->sin6_port));
185 break;
186
187 default:
188 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
189 ss.ss_family);
190 }
191
192 return s;
193}
194EXPORT_SYMBOL(ceph_pr_addr);
195
196void ceph_encode_my_addr(struct ceph_messenger *msgr)
197{
198 if (!ceph_msgr2(from_msgr(msgr))) {
199 memcpy(&msgr->my_enc_addr, &msgr->inst.addr,
200 sizeof(msgr->my_enc_addr));
201 ceph_encode_banner_addr(&msgr->my_enc_addr);
202 }
203}
204
205/*
206 * work queue for all reading and writing to/from the socket.
207 */
208static struct workqueue_struct *ceph_msgr_wq;
209
210static int ceph_msgr_slab_init(void)
211{
212 BUG_ON(ceph_msg_cache);
213 ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
214 if (!ceph_msg_cache)
215 return -ENOMEM;
216
217 return 0;
218}
219
220static void ceph_msgr_slab_exit(void)
221{
222 BUG_ON(!ceph_msg_cache);
223 kmem_cache_destroy(ceph_msg_cache);
224 ceph_msg_cache = NULL;
225}
226
227static void _ceph_msgr_exit(void)
228{
229 if (ceph_msgr_wq) {
230 destroy_workqueue(ceph_msgr_wq);
231 ceph_msgr_wq = NULL;
232 }
233
234 BUG_ON(!ceph_zero_page);
235 put_page(ceph_zero_page);
236 ceph_zero_page = NULL;
237
238 ceph_msgr_slab_exit();
239}
240
241int __init ceph_msgr_init(void)
242{
243 if (ceph_msgr_slab_init())
244 return -ENOMEM;
245
246 BUG_ON(ceph_zero_page);
247 ceph_zero_page = ZERO_PAGE(0);
248 get_page(ceph_zero_page);
249
250 /*
251 * The number of active work items is limited by the number of
252 * connections, so leave @max_active at default.
253 */
254 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
255 if (ceph_msgr_wq)
256 return 0;
257
258 pr_err("msgr_init failed to create workqueue\n");
259 _ceph_msgr_exit();
260
261 return -ENOMEM;
262}
263
264void ceph_msgr_exit(void)
265{
266 BUG_ON(ceph_msgr_wq == NULL);
267
268 _ceph_msgr_exit();
269}
270
271void ceph_msgr_flush(void)
272{
273 flush_workqueue(ceph_msgr_wq);
274}
275EXPORT_SYMBOL(ceph_msgr_flush);
276
277/* Connection socket state transition functions */
278
279static void con_sock_state_init(struct ceph_connection *con)
280{
281 int old_state;
282
283 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
284 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
285 printk("%s: unexpected old state %d\n", __func__, old_state);
286 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
287 CON_SOCK_STATE_CLOSED);
288}
289
290static void con_sock_state_connecting(struct ceph_connection *con)
291{
292 int old_state;
293
294 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
295 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
296 printk("%s: unexpected old state %d\n", __func__, old_state);
297 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
298 CON_SOCK_STATE_CONNECTING);
299}
300
301static void con_sock_state_connected(struct ceph_connection *con)
302{
303 int old_state;
304
305 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
306 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
307 printk("%s: unexpected old state %d\n", __func__, old_state);
308 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
309 CON_SOCK_STATE_CONNECTED);
310}
311
312static void con_sock_state_closing(struct ceph_connection *con)
313{
314 int old_state;
315
316 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
317 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
318 old_state != CON_SOCK_STATE_CONNECTED &&
319 old_state != CON_SOCK_STATE_CLOSING))
320 printk("%s: unexpected old state %d\n", __func__, old_state);
321 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
322 CON_SOCK_STATE_CLOSING);
323}
324
325static void con_sock_state_closed(struct ceph_connection *con)
326{
327 int old_state;
328
329 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
330 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
331 old_state != CON_SOCK_STATE_CLOSING &&
332 old_state != CON_SOCK_STATE_CONNECTING &&
333 old_state != CON_SOCK_STATE_CLOSED))
334 printk("%s: unexpected old state %d\n", __func__, old_state);
335 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
336 CON_SOCK_STATE_CLOSED);
337}
338
339/*
340 * socket callback functions
341 */
342
343/* data available on socket, or listen socket received a connect */
344static void ceph_sock_data_ready(struct sock *sk)
345{
346 struct ceph_connection *con = sk->sk_user_data;
347 if (atomic_read(&con->msgr->stopping)) {
348 return;
349 }
350
351 if (sk->sk_state != TCP_CLOSE_WAIT) {
352 dout("%s %p state = %d, queueing work\n", __func__,
353 con, con->state);
354 queue_con(con);
355 }
356}
357
358/* socket has buffer space for writing */
359static void ceph_sock_write_space(struct sock *sk)
360{
361 struct ceph_connection *con = sk->sk_user_data;
362
363 /* only queue to workqueue if there is data we want to write,
364 * and there is sufficient space in the socket buffer to accept
365 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
366 * doesn't get called again until try_write() fills the socket
367 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
368 * and net/core/stream.c:sk_stream_write_space().
369 */
370 if (ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING)) {
371 if (sk_stream_is_writeable(sk)) {
372 dout("%s %p queueing write work\n", __func__, con);
373 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
374 queue_con(con);
375 }
376 } else {
377 dout("%s %p nothing to write\n", __func__, con);
378 }
379}
380
381/* socket's state has changed */
382static void ceph_sock_state_change(struct sock *sk)
383{
384 struct ceph_connection *con = sk->sk_user_data;
385
386 dout("%s %p state = %d sk_state = %u\n", __func__,
387 con, con->state, sk->sk_state);
388
389 switch (sk->sk_state) {
390 case TCP_CLOSE:
391 dout("%s TCP_CLOSE\n", __func__);
392 fallthrough;
393 case TCP_CLOSE_WAIT:
394 dout("%s TCP_CLOSE_WAIT\n", __func__);
395 con_sock_state_closing(con);
396 ceph_con_flag_set(con, CEPH_CON_F_SOCK_CLOSED);
397 queue_con(con);
398 break;
399 case TCP_ESTABLISHED:
400 dout("%s TCP_ESTABLISHED\n", __func__);
401 con_sock_state_connected(con);
402 queue_con(con);
403 break;
404 default: /* Everything else is uninteresting */
405 break;
406 }
407}
408
409/*
410 * set up socket callbacks
411 */
412static void set_sock_callbacks(struct socket *sock,
413 struct ceph_connection *con)
414{
415 struct sock *sk = sock->sk;
416 sk->sk_user_data = con;
417 sk->sk_data_ready = ceph_sock_data_ready;
418 sk->sk_write_space = ceph_sock_write_space;
419 sk->sk_state_change = ceph_sock_state_change;
420}
421
422
423/*
424 * socket helpers
425 */
426
427/*
428 * initiate connection to a remote socket.
429 */
430int ceph_tcp_connect(struct ceph_connection *con)
431{
432 struct sockaddr_storage ss = con->peer_addr.in_addr; /* align */
433 struct socket *sock;
434 unsigned int noio_flag;
435 int ret;
436
437 dout("%s con %p peer_addr %s\n", __func__, con,
438 ceph_pr_addr(&con->peer_addr));
439 BUG_ON(con->sock);
440
441 /* sock_create_kern() allocates with GFP_KERNEL */
442 noio_flag = memalloc_noio_save();
443 ret = sock_create_kern(read_pnet(&con->msgr->net), ss.ss_family,
444 SOCK_STREAM, IPPROTO_TCP, &sock);
445 memalloc_noio_restore(noio_flag);
446 if (ret)
447 return ret;
448 sock->sk->sk_allocation = GFP_NOFS;
449 sock->sk->sk_use_task_frag = false;
450
451#ifdef CONFIG_LOCKDEP
452 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
453#endif
454
455 set_sock_callbacks(sock, con);
456
457 con_sock_state_connecting(con);
458 ret = sock->ops->connect(sock, (struct sockaddr *)&ss, sizeof(ss),
459 O_NONBLOCK);
460 if (ret == -EINPROGRESS) {
461 dout("connect %s EINPROGRESS sk_state = %u\n",
462 ceph_pr_addr(&con->peer_addr),
463 sock->sk->sk_state);
464 } else if (ret < 0) {
465 pr_err("connect %s error %d\n",
466 ceph_pr_addr(&con->peer_addr), ret);
467 sock_release(sock);
468 return ret;
469 }
470
471 if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY))
472 tcp_sock_set_nodelay(sock->sk);
473
474 con->sock = sock;
475 return 0;
476}
477
478/*
479 * Shutdown/close the socket for the given connection.
480 */
481int ceph_con_close_socket(struct ceph_connection *con)
482{
483 int rc = 0;
484
485 dout("%s con %p sock %p\n", __func__, con, con->sock);
486 if (con->sock) {
487 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
488 sock_release(con->sock);
489 con->sock = NULL;
490 }
491
492 /*
493 * Forcibly clear the SOCK_CLOSED flag. It gets set
494 * independent of the connection mutex, and we could have
495 * received a socket close event before we had the chance to
496 * shut the socket down.
497 */
498 ceph_con_flag_clear(con, CEPH_CON_F_SOCK_CLOSED);
499
500 con_sock_state_closed(con);
501 return rc;
502}
503
504static void ceph_con_reset_protocol(struct ceph_connection *con)
505{
506 dout("%s con %p\n", __func__, con);
507
508 ceph_con_close_socket(con);
509 if (con->in_msg) {
510 WARN_ON(con->in_msg->con != con);
511 ceph_msg_put(con->in_msg);
512 con->in_msg = NULL;
513 }
514 if (con->out_msg) {
515 WARN_ON(con->out_msg->con != con);
516 ceph_msg_put(con->out_msg);
517 con->out_msg = NULL;
518 }
519 if (con->bounce_page) {
520 __free_page(con->bounce_page);
521 con->bounce_page = NULL;
522 }
523
524 if (ceph_msgr2(from_msgr(con->msgr)))
525 ceph_con_v2_reset_protocol(con);
526 else
527 ceph_con_v1_reset_protocol(con);
528}
529
530/*
531 * Reset a connection. Discard all incoming and outgoing messages
532 * and clear *_seq state.
533 */
534static void ceph_msg_remove(struct ceph_msg *msg)
535{
536 list_del_init(&msg->list_head);
537
538 ceph_msg_put(msg);
539}
540
541static void ceph_msg_remove_list(struct list_head *head)
542{
543 while (!list_empty(head)) {
544 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
545 list_head);
546 ceph_msg_remove(msg);
547 }
548}
549
550void ceph_con_reset_session(struct ceph_connection *con)
551{
552 dout("%s con %p\n", __func__, con);
553
554 WARN_ON(con->in_msg);
555 WARN_ON(con->out_msg);
556 ceph_msg_remove_list(&con->out_queue);
557 ceph_msg_remove_list(&con->out_sent);
558 con->out_seq = 0;
559 con->in_seq = 0;
560 con->in_seq_acked = 0;
561
562 if (ceph_msgr2(from_msgr(con->msgr)))
563 ceph_con_v2_reset_session(con);
564 else
565 ceph_con_v1_reset_session(con);
566}
567
568/*
569 * mark a peer down. drop any open connections.
570 */
571void ceph_con_close(struct ceph_connection *con)
572{
573 mutex_lock(&con->mutex);
574 dout("con_close %p peer %s\n", con, ceph_pr_addr(&con->peer_addr));
575 con->state = CEPH_CON_S_CLOSED;
576
577 ceph_con_flag_clear(con, CEPH_CON_F_LOSSYTX); /* so we retry next
578 connect */
579 ceph_con_flag_clear(con, CEPH_CON_F_KEEPALIVE_PENDING);
580 ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
581 ceph_con_flag_clear(con, CEPH_CON_F_BACKOFF);
582
583 ceph_con_reset_protocol(con);
584 ceph_con_reset_session(con);
585 cancel_con(con);
586 mutex_unlock(&con->mutex);
587}
588EXPORT_SYMBOL(ceph_con_close);
589
590/*
591 * Reopen a closed connection, with a new peer address.
592 */
593void ceph_con_open(struct ceph_connection *con,
594 __u8 entity_type, __u64 entity_num,
595 struct ceph_entity_addr *addr)
596{
597 mutex_lock(&con->mutex);
598 dout("con_open %p %s\n", con, ceph_pr_addr(addr));
599
600 WARN_ON(con->state != CEPH_CON_S_CLOSED);
601 con->state = CEPH_CON_S_PREOPEN;
602
603 con->peer_name.type = (__u8) entity_type;
604 con->peer_name.num = cpu_to_le64(entity_num);
605
606 memcpy(&con->peer_addr, addr, sizeof(*addr));
607 con->delay = 0; /* reset backoff memory */
608 mutex_unlock(&con->mutex);
609 queue_con(con);
610}
611EXPORT_SYMBOL(ceph_con_open);
612
613/*
614 * return true if this connection ever successfully opened
615 */
616bool ceph_con_opened(struct ceph_connection *con)
617{
618 if (ceph_msgr2(from_msgr(con->msgr)))
619 return ceph_con_v2_opened(con);
620
621 return ceph_con_v1_opened(con);
622}
623
624/*
625 * initialize a new connection.
626 */
627void ceph_con_init(struct ceph_connection *con, void *private,
628 const struct ceph_connection_operations *ops,
629 struct ceph_messenger *msgr)
630{
631 dout("con_init %p\n", con);
632 memset(con, 0, sizeof(*con));
633 con->private = private;
634 con->ops = ops;
635 con->msgr = msgr;
636
637 con_sock_state_init(con);
638
639 mutex_init(&con->mutex);
640 INIT_LIST_HEAD(&con->out_queue);
641 INIT_LIST_HEAD(&con->out_sent);
642 INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
643
644 con->state = CEPH_CON_S_CLOSED;
645}
646EXPORT_SYMBOL(ceph_con_init);
647
648/*
649 * We maintain a global counter to order connection attempts. Get
650 * a unique seq greater than @gt.
651 */
652u32 ceph_get_global_seq(struct ceph_messenger *msgr, u32 gt)
653{
654 u32 ret;
655
656 spin_lock(&msgr->global_seq_lock);
657 if (msgr->global_seq < gt)
658 msgr->global_seq = gt;
659 ret = ++msgr->global_seq;
660 spin_unlock(&msgr->global_seq_lock);
661 return ret;
662}
663
664/*
665 * Discard messages that have been acked by the server.
666 */
667void ceph_con_discard_sent(struct ceph_connection *con, u64 ack_seq)
668{
669 struct ceph_msg *msg;
670 u64 seq;
671
672 dout("%s con %p ack_seq %llu\n", __func__, con, ack_seq);
673 while (!list_empty(&con->out_sent)) {
674 msg = list_first_entry(&con->out_sent, struct ceph_msg,
675 list_head);
676 WARN_ON(msg->needs_out_seq);
677 seq = le64_to_cpu(msg->hdr.seq);
678 if (seq > ack_seq)
679 break;
680
681 dout("%s con %p discarding msg %p seq %llu\n", __func__, con,
682 msg, seq);
683 ceph_msg_remove(msg);
684 }
685}
686
687/*
688 * Discard messages that have been requeued in con_fault(), up to
689 * reconnect_seq. This avoids gratuitously resending messages that
690 * the server had received and handled prior to reconnect.
691 */
692void ceph_con_discard_requeued(struct ceph_connection *con, u64 reconnect_seq)
693{
694 struct ceph_msg *msg;
695 u64 seq;
696
697 dout("%s con %p reconnect_seq %llu\n", __func__, con, reconnect_seq);
698 while (!list_empty(&con->out_queue)) {
699 msg = list_first_entry(&con->out_queue, struct ceph_msg,
700 list_head);
701 if (msg->needs_out_seq)
702 break;
703 seq = le64_to_cpu(msg->hdr.seq);
704 if (seq > reconnect_seq)
705 break;
706
707 dout("%s con %p discarding msg %p seq %llu\n", __func__, con,
708 msg, seq);
709 ceph_msg_remove(msg);
710 }
711}
712
713#ifdef CONFIG_BLOCK
714
715/*
716 * For a bio data item, a piece is whatever remains of the next
717 * entry in the current bio iovec, or the first entry in the next
718 * bio in the list.
719 */
720static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
721 size_t length)
722{
723 struct ceph_msg_data *data = cursor->data;
724 struct ceph_bio_iter *it = &cursor->bio_iter;
725
726 cursor->resid = min_t(size_t, length, data->bio_length);
727 *it = data->bio_pos;
728 if (cursor->resid < it->iter.bi_size)
729 it->iter.bi_size = cursor->resid;
730
731 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
732}
733
734static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
735 size_t *page_offset,
736 size_t *length)
737{
738 struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio,
739 cursor->bio_iter.iter);
740
741 *page_offset = bv.bv_offset;
742 *length = bv.bv_len;
743 return bv.bv_page;
744}
745
746static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
747 size_t bytes)
748{
749 struct ceph_bio_iter *it = &cursor->bio_iter;
750 struct page *page = bio_iter_page(it->bio, it->iter);
751
752 BUG_ON(bytes > cursor->resid);
753 BUG_ON(bytes > bio_iter_len(it->bio, it->iter));
754 cursor->resid -= bytes;
755 bio_advance_iter(it->bio, &it->iter, bytes);
756
757 if (!cursor->resid)
758 return false; /* no more data */
759
760 if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done &&
761 page == bio_iter_page(it->bio, it->iter)))
762 return false; /* more bytes to process in this segment */
763
764 if (!it->iter.bi_size) {
765 it->bio = it->bio->bi_next;
766 it->iter = it->bio->bi_iter;
767 if (cursor->resid < it->iter.bi_size)
768 it->iter.bi_size = cursor->resid;
769 }
770
771 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
772 return true;
773}
774#endif /* CONFIG_BLOCK */
775
776static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor,
777 size_t length)
778{
779 struct ceph_msg_data *data = cursor->data;
780 struct bio_vec *bvecs = data->bvec_pos.bvecs;
781
782 cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size);
783 cursor->bvec_iter = data->bvec_pos.iter;
784 cursor->bvec_iter.bi_size = cursor->resid;
785
786 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
787}
788
789static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor,
790 size_t *page_offset,
791 size_t *length)
792{
793 struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs,
794 cursor->bvec_iter);
795
796 *page_offset = bv.bv_offset;
797 *length = bv.bv_len;
798 return bv.bv_page;
799}
800
801static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor,
802 size_t bytes)
803{
804 struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs;
805 struct page *page = bvec_iter_page(bvecs, cursor->bvec_iter);
806
807 BUG_ON(bytes > cursor->resid);
808 BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter));
809 cursor->resid -= bytes;
810 bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes);
811
812 if (!cursor->resid)
813 return false; /* no more data */
814
815 if (!bytes || (cursor->bvec_iter.bi_bvec_done &&
816 page == bvec_iter_page(bvecs, cursor->bvec_iter)))
817 return false; /* more bytes to process in this segment */
818
819 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
820 return true;
821}
822
823/*
824 * For a page array, a piece comes from the first page in the array
825 * that has not already been fully consumed.
826 */
827static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
828 size_t length)
829{
830 struct ceph_msg_data *data = cursor->data;
831 int page_count;
832
833 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
834
835 BUG_ON(!data->pages);
836 BUG_ON(!data->length);
837
838 cursor->resid = min(length, data->length);
839 page_count = calc_pages_for(data->alignment, (u64)data->length);
840 cursor->page_offset = data->alignment & ~PAGE_MASK;
841 cursor->page_index = 0;
842 BUG_ON(page_count > (int)USHRT_MAX);
843 cursor->page_count = (unsigned short)page_count;
844 BUG_ON(length > SIZE_MAX - cursor->page_offset);
845}
846
847static struct page *
848ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
849 size_t *page_offset, size_t *length)
850{
851 struct ceph_msg_data *data = cursor->data;
852
853 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
854
855 BUG_ON(cursor->page_index >= cursor->page_count);
856 BUG_ON(cursor->page_offset >= PAGE_SIZE);
857
858 *page_offset = cursor->page_offset;
859 *length = min_t(size_t, cursor->resid, PAGE_SIZE - *page_offset);
860 return data->pages[cursor->page_index];
861}
862
863static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
864 size_t bytes)
865{
866 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
867
868 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
869
870 /* Advance the cursor page offset */
871
872 cursor->resid -= bytes;
873 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
874 if (!bytes || cursor->page_offset)
875 return false; /* more bytes to process in the current page */
876
877 if (!cursor->resid)
878 return false; /* no more data */
879
880 /* Move on to the next page; offset is already at 0 */
881
882 BUG_ON(cursor->page_index >= cursor->page_count);
883 cursor->page_index++;
884 return true;
885}
886
887/*
888 * For a pagelist, a piece is whatever remains to be consumed in the
889 * first page in the list, or the front of the next page.
890 */
891static void
892ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
893 size_t length)
894{
895 struct ceph_msg_data *data = cursor->data;
896 struct ceph_pagelist *pagelist;
897 struct page *page;
898
899 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
900
901 pagelist = data->pagelist;
902 BUG_ON(!pagelist);
903
904 if (!length)
905 return; /* pagelist can be assigned but empty */
906
907 BUG_ON(list_empty(&pagelist->head));
908 page = list_first_entry(&pagelist->head, struct page, lru);
909
910 cursor->resid = min(length, pagelist->length);
911 cursor->page = page;
912 cursor->offset = 0;
913}
914
915static struct page *
916ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
917 size_t *page_offset, size_t *length)
918{
919 struct ceph_msg_data *data = cursor->data;
920 struct ceph_pagelist *pagelist;
921
922 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
923
924 pagelist = data->pagelist;
925 BUG_ON(!pagelist);
926
927 BUG_ON(!cursor->page);
928 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
929
930 /* offset of first page in pagelist is always 0 */
931 *page_offset = cursor->offset & ~PAGE_MASK;
932 *length = min_t(size_t, cursor->resid, PAGE_SIZE - *page_offset);
933 return cursor->page;
934}
935
936static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
937 size_t bytes)
938{
939 struct ceph_msg_data *data = cursor->data;
940 struct ceph_pagelist *pagelist;
941
942 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
943
944 pagelist = data->pagelist;
945 BUG_ON(!pagelist);
946
947 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
948 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
949
950 /* Advance the cursor offset */
951
952 cursor->resid -= bytes;
953 cursor->offset += bytes;
954 /* offset of first page in pagelist is always 0 */
955 if (!bytes || cursor->offset & ~PAGE_MASK)
956 return false; /* more bytes to process in the current page */
957
958 if (!cursor->resid)
959 return false; /* no more data */
960
961 /* Move on to the next page */
962
963 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
964 cursor->page = list_next_entry(cursor->page, lru);
965 return true;
966}
967
968/*
969 * Message data is handled (sent or received) in pieces, where each
970 * piece resides on a single page. The network layer might not
971 * consume an entire piece at once. A data item's cursor keeps
972 * track of which piece is next to process and how much remains to
973 * be processed in that piece. It also tracks whether the current
974 * piece is the last one in the data item.
975 */
976static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
977{
978 size_t length = cursor->total_resid;
979
980 switch (cursor->data->type) {
981 case CEPH_MSG_DATA_PAGELIST:
982 ceph_msg_data_pagelist_cursor_init(cursor, length);
983 break;
984 case CEPH_MSG_DATA_PAGES:
985 ceph_msg_data_pages_cursor_init(cursor, length);
986 break;
987#ifdef CONFIG_BLOCK
988 case CEPH_MSG_DATA_BIO:
989 ceph_msg_data_bio_cursor_init(cursor, length);
990 break;
991#endif /* CONFIG_BLOCK */
992 case CEPH_MSG_DATA_BVECS:
993 ceph_msg_data_bvecs_cursor_init(cursor, length);
994 break;
995 case CEPH_MSG_DATA_NONE:
996 default:
997 /* BUG(); */
998 break;
999 }
1000 cursor->need_crc = true;
1001}
1002
1003void ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor,
1004 struct ceph_msg *msg, size_t length)
1005{
1006 BUG_ON(!length);
1007 BUG_ON(length > msg->data_length);
1008 BUG_ON(!msg->num_data_items);
1009
1010 cursor->total_resid = length;
1011 cursor->data = msg->data;
1012
1013 __ceph_msg_data_cursor_init(cursor);
1014}
1015
1016/*
1017 * Return the page containing the next piece to process for a given
1018 * data item, and supply the page offset and length of that piece.
1019 * Indicate whether this is the last piece in this data item.
1020 */
1021struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1022 size_t *page_offset, size_t *length)
1023{
1024 struct page *page;
1025
1026 switch (cursor->data->type) {
1027 case CEPH_MSG_DATA_PAGELIST:
1028 page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1029 break;
1030 case CEPH_MSG_DATA_PAGES:
1031 page = ceph_msg_data_pages_next(cursor, page_offset, length);
1032 break;
1033#ifdef CONFIG_BLOCK
1034 case CEPH_MSG_DATA_BIO:
1035 page = ceph_msg_data_bio_next(cursor, page_offset, length);
1036 break;
1037#endif /* CONFIG_BLOCK */
1038 case CEPH_MSG_DATA_BVECS:
1039 page = ceph_msg_data_bvecs_next(cursor, page_offset, length);
1040 break;
1041 case CEPH_MSG_DATA_NONE:
1042 default:
1043 page = NULL;
1044 break;
1045 }
1046
1047 BUG_ON(!page);
1048 BUG_ON(*page_offset + *length > PAGE_SIZE);
1049 BUG_ON(!*length);
1050 BUG_ON(*length > cursor->resid);
1051
1052 return page;
1053}
1054
1055/*
1056 * Returns true if the result moves the cursor on to the next piece
1057 * of the data item.
1058 */
1059void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor, size_t bytes)
1060{
1061 bool new_piece;
1062
1063 BUG_ON(bytes > cursor->resid);
1064 switch (cursor->data->type) {
1065 case CEPH_MSG_DATA_PAGELIST:
1066 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1067 break;
1068 case CEPH_MSG_DATA_PAGES:
1069 new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1070 break;
1071#ifdef CONFIG_BLOCK
1072 case CEPH_MSG_DATA_BIO:
1073 new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1074 break;
1075#endif /* CONFIG_BLOCK */
1076 case CEPH_MSG_DATA_BVECS:
1077 new_piece = ceph_msg_data_bvecs_advance(cursor, bytes);
1078 break;
1079 case CEPH_MSG_DATA_NONE:
1080 default:
1081 BUG();
1082 break;
1083 }
1084 cursor->total_resid -= bytes;
1085
1086 if (!cursor->resid && cursor->total_resid) {
1087 cursor->data++;
1088 __ceph_msg_data_cursor_init(cursor);
1089 new_piece = true;
1090 }
1091 cursor->need_crc = new_piece;
1092}
1093
1094u32 ceph_crc32c_page(u32 crc, struct page *page, unsigned int page_offset,
1095 unsigned int length)
1096{
1097 char *kaddr;
1098
1099 kaddr = kmap(page);
1100 BUG_ON(kaddr == NULL);
1101 crc = crc32c(crc, kaddr + page_offset, length);
1102 kunmap(page);
1103
1104 return crc;
1105}
1106
1107bool ceph_addr_is_blank(const struct ceph_entity_addr *addr)
1108{
1109 struct sockaddr_storage ss = addr->in_addr; /* align */
1110 struct in_addr *addr4 = &((struct sockaddr_in *)&ss)->sin_addr;
1111 struct in6_addr *addr6 = &((struct sockaddr_in6 *)&ss)->sin6_addr;
1112
1113 switch (ss.ss_family) {
1114 case AF_INET:
1115 return addr4->s_addr == htonl(INADDR_ANY);
1116 case AF_INET6:
1117 return ipv6_addr_any(addr6);
1118 default:
1119 return true;
1120 }
1121}
1122
1123int ceph_addr_port(const struct ceph_entity_addr *addr)
1124{
1125 switch (get_unaligned(&addr->in_addr.ss_family)) {
1126 case AF_INET:
1127 return ntohs(get_unaligned(&((struct sockaddr_in *)&addr->in_addr)->sin_port));
1128 case AF_INET6:
1129 return ntohs(get_unaligned(&((struct sockaddr_in6 *)&addr->in_addr)->sin6_port));
1130 }
1131 return 0;
1132}
1133
1134void ceph_addr_set_port(struct ceph_entity_addr *addr, int p)
1135{
1136 switch (get_unaligned(&addr->in_addr.ss_family)) {
1137 case AF_INET:
1138 put_unaligned(htons(p), &((struct sockaddr_in *)&addr->in_addr)->sin_port);
1139 break;
1140 case AF_INET6:
1141 put_unaligned(htons(p), &((struct sockaddr_in6 *)&addr->in_addr)->sin6_port);
1142 break;
1143 }
1144}
1145
1146/*
1147 * Unlike other *_pton function semantics, zero indicates success.
1148 */
1149static int ceph_pton(const char *str, size_t len, struct ceph_entity_addr *addr,
1150 char delim, const char **ipend)
1151{
1152 memset(&addr->in_addr, 0, sizeof(addr->in_addr));
1153
1154 if (in4_pton(str, len, (u8 *)&((struct sockaddr_in *)&addr->in_addr)->sin_addr.s_addr, delim, ipend)) {
1155 put_unaligned(AF_INET, &addr->in_addr.ss_family);
1156 return 0;
1157 }
1158
1159 if (in6_pton(str, len, (u8 *)&((struct sockaddr_in6 *)&addr->in_addr)->sin6_addr.s6_addr, delim, ipend)) {
1160 put_unaligned(AF_INET6, &addr->in_addr.ss_family);
1161 return 0;
1162 }
1163
1164 return -EINVAL;
1165}
1166
1167/*
1168 * Extract hostname string and resolve using kernel DNS facility.
1169 */
1170#ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1171static int ceph_dns_resolve_name(const char *name, size_t namelen,
1172 struct ceph_entity_addr *addr, char delim, const char **ipend)
1173{
1174 const char *end, *delim_p;
1175 char *colon_p, *ip_addr = NULL;
1176 int ip_len, ret;
1177
1178 /*
1179 * The end of the hostname occurs immediately preceding the delimiter or
1180 * the port marker (':') where the delimiter takes precedence.
1181 */
1182 delim_p = memchr(name, delim, namelen);
1183 colon_p = memchr(name, ':', namelen);
1184
1185 if (delim_p && colon_p)
1186 end = delim_p < colon_p ? delim_p : colon_p;
1187 else if (!delim_p && colon_p)
1188 end = colon_p;
1189 else {
1190 end = delim_p;
1191 if (!end) /* case: hostname:/ */
1192 end = name + namelen;
1193 }
1194
1195 if (end <= name)
1196 return -EINVAL;
1197
1198 /* do dns_resolve upcall */
1199 ip_len = dns_query(current->nsproxy->net_ns,
1200 NULL, name, end - name, NULL, &ip_addr, NULL, false);
1201 if (ip_len > 0)
1202 ret = ceph_pton(ip_addr, ip_len, addr, -1, NULL);
1203 else
1204 ret = -ESRCH;
1205
1206 kfree(ip_addr);
1207
1208 *ipend = end;
1209
1210 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1211 ret, ret ? "failed" : ceph_pr_addr(addr));
1212
1213 return ret;
1214}
1215#else
1216static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1217 struct ceph_entity_addr *addr, char delim, const char **ipend)
1218{
1219 return -EINVAL;
1220}
1221#endif
1222
1223/*
1224 * Parse a server name (IP or hostname). If a valid IP address is not found
1225 * then try to extract a hostname to resolve using userspace DNS upcall.
1226 */
1227static int ceph_parse_server_name(const char *name, size_t namelen,
1228 struct ceph_entity_addr *addr, char delim, const char **ipend)
1229{
1230 int ret;
1231
1232 ret = ceph_pton(name, namelen, addr, delim, ipend);
1233 if (ret)
1234 ret = ceph_dns_resolve_name(name, namelen, addr, delim, ipend);
1235
1236 return ret;
1237}
1238
1239/*
1240 * Parse an ip[:port] list into an addr array. Use the default
1241 * monitor port if a port isn't specified.
1242 */
1243int ceph_parse_ips(const char *c, const char *end,
1244 struct ceph_entity_addr *addr,
1245 int max_count, int *count, char delim)
1246{
1247 int i, ret = -EINVAL;
1248 const char *p = c;
1249
1250 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1251 for (i = 0; i < max_count; i++) {
1252 char cur_delim = delim;
1253 const char *ipend;
1254 int port;
1255
1256 if (*p == '[') {
1257 cur_delim = ']';
1258 p++;
1259 }
1260
1261 ret = ceph_parse_server_name(p, end - p, &addr[i], cur_delim,
1262 &ipend);
1263 if (ret)
1264 goto bad;
1265 ret = -EINVAL;
1266
1267 p = ipend;
1268
1269 if (cur_delim == ']') {
1270 if (*p != ']') {
1271 dout("missing matching ']'\n");
1272 goto bad;
1273 }
1274 p++;
1275 }
1276
1277 /* port? */
1278 if (p < end && *p == ':') {
1279 port = 0;
1280 p++;
1281 while (p < end && *p >= '0' && *p <= '9') {
1282 port = (port * 10) + (*p - '0');
1283 p++;
1284 }
1285 if (port == 0)
1286 port = CEPH_MON_PORT;
1287 else if (port > 65535)
1288 goto bad;
1289 } else {
1290 port = CEPH_MON_PORT;
1291 }
1292
1293 ceph_addr_set_port(&addr[i], port);
1294 /*
1295 * We want the type to be set according to ms_mode
1296 * option, but options are normally parsed after mon
1297 * addresses. Rather than complicating parsing, set
1298 * to LEGACY and override in build_initial_monmap()
1299 * for mon addresses and ceph_messenger_init() for
1300 * ip option.
1301 */
1302 addr[i].type = CEPH_ENTITY_ADDR_TYPE_LEGACY;
1303 addr[i].nonce = 0;
1304
1305 dout("%s got %s\n", __func__, ceph_pr_addr(&addr[i]));
1306
1307 if (p == end)
1308 break;
1309 if (*p != delim)
1310 goto bad;
1311 p++;
1312 }
1313
1314 if (p != end)
1315 goto bad;
1316
1317 if (count)
1318 *count = i + 1;
1319 return 0;
1320
1321bad:
1322 return ret;
1323}
1324
1325/*
1326 * Process message. This happens in the worker thread. The callback should
1327 * be careful not to do anything that waits on other incoming messages or it
1328 * may deadlock.
1329 */
1330void ceph_con_process_message(struct ceph_connection *con)
1331{
1332 struct ceph_msg *msg = con->in_msg;
1333
1334 BUG_ON(con->in_msg->con != con);
1335 con->in_msg = NULL;
1336
1337 /* if first message, set peer_name */
1338 if (con->peer_name.type == 0)
1339 con->peer_name = msg->hdr.src;
1340
1341 con->in_seq++;
1342 mutex_unlock(&con->mutex);
1343
1344 dout("===== %p %llu from %s%lld %d=%s len %d+%d+%d (%u %u %u) =====\n",
1345 msg, le64_to_cpu(msg->hdr.seq),
1346 ENTITY_NAME(msg->hdr.src),
1347 le16_to_cpu(msg->hdr.type),
1348 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1349 le32_to_cpu(msg->hdr.front_len),
1350 le32_to_cpu(msg->hdr.middle_len),
1351 le32_to_cpu(msg->hdr.data_len),
1352 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1353 con->ops->dispatch(con, msg);
1354
1355 mutex_lock(&con->mutex);
1356}
1357
1358/*
1359 * Atomically queue work on a connection after the specified delay.
1360 * Bump @con reference to avoid races with connection teardown.
1361 * Returns 0 if work was queued, or an error code otherwise.
1362 */
1363static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
1364{
1365 if (!con->ops->get(con)) {
1366 dout("%s %p ref count 0\n", __func__, con);
1367 return -ENOENT;
1368 }
1369
1370 if (delay >= HZ)
1371 delay = round_jiffies_relative(delay);
1372
1373 dout("%s %p %lu\n", __func__, con, delay);
1374 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
1375 dout("%s %p - already queued\n", __func__, con);
1376 con->ops->put(con);
1377 return -EBUSY;
1378 }
1379
1380 return 0;
1381}
1382
1383static void queue_con(struct ceph_connection *con)
1384{
1385 (void) queue_con_delay(con, 0);
1386}
1387
1388static void cancel_con(struct ceph_connection *con)
1389{
1390 if (cancel_delayed_work(&con->work)) {
1391 dout("%s %p\n", __func__, con);
1392 con->ops->put(con);
1393 }
1394}
1395
1396static bool con_sock_closed(struct ceph_connection *con)
1397{
1398 if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_SOCK_CLOSED))
1399 return false;
1400
1401#define CASE(x) \
1402 case CEPH_CON_S_ ## x: \
1403 con->error_msg = "socket closed (con state " #x ")"; \
1404 break;
1405
1406 switch (con->state) {
1407 CASE(CLOSED);
1408 CASE(PREOPEN);
1409 CASE(V1_BANNER);
1410 CASE(V1_CONNECT_MSG);
1411 CASE(V2_BANNER_PREFIX);
1412 CASE(V2_BANNER_PAYLOAD);
1413 CASE(V2_HELLO);
1414 CASE(V2_AUTH);
1415 CASE(V2_AUTH_SIGNATURE);
1416 CASE(V2_SESSION_CONNECT);
1417 CASE(V2_SESSION_RECONNECT);
1418 CASE(OPEN);
1419 CASE(STANDBY);
1420 default:
1421 BUG();
1422 }
1423#undef CASE
1424
1425 return true;
1426}
1427
1428static bool con_backoff(struct ceph_connection *con)
1429{
1430 int ret;
1431
1432 if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_BACKOFF))
1433 return false;
1434
1435 ret = queue_con_delay(con, con->delay);
1436 if (ret) {
1437 dout("%s: con %p FAILED to back off %lu\n", __func__,
1438 con, con->delay);
1439 BUG_ON(ret == -ENOENT);
1440 ceph_con_flag_set(con, CEPH_CON_F_BACKOFF);
1441 }
1442
1443 return true;
1444}
1445
1446/* Finish fault handling; con->mutex must *not* be held here */
1447
1448static void con_fault_finish(struct ceph_connection *con)
1449{
1450 dout("%s %p\n", __func__, con);
1451
1452 /*
1453 * in case we faulted due to authentication, invalidate our
1454 * current tickets so that we can get new ones.
1455 */
1456 if (con->v1.auth_retry) {
1457 dout("auth_retry %d, invalidating\n", con->v1.auth_retry);
1458 if (con->ops->invalidate_authorizer)
1459 con->ops->invalidate_authorizer(con);
1460 con->v1.auth_retry = 0;
1461 }
1462
1463 if (con->ops->fault)
1464 con->ops->fault(con);
1465}
1466
1467/*
1468 * Do some work on a connection. Drop a connection ref when we're done.
1469 */
1470static void ceph_con_workfn(struct work_struct *work)
1471{
1472 struct ceph_connection *con = container_of(work, struct ceph_connection,
1473 work.work);
1474 bool fault;
1475
1476 mutex_lock(&con->mutex);
1477 while (true) {
1478 int ret;
1479
1480 if ((fault = con_sock_closed(con))) {
1481 dout("%s: con %p SOCK_CLOSED\n", __func__, con);
1482 break;
1483 }
1484 if (con_backoff(con)) {
1485 dout("%s: con %p BACKOFF\n", __func__, con);
1486 break;
1487 }
1488 if (con->state == CEPH_CON_S_STANDBY) {
1489 dout("%s: con %p STANDBY\n", __func__, con);
1490 break;
1491 }
1492 if (con->state == CEPH_CON_S_CLOSED) {
1493 dout("%s: con %p CLOSED\n", __func__, con);
1494 BUG_ON(con->sock);
1495 break;
1496 }
1497 if (con->state == CEPH_CON_S_PREOPEN) {
1498 dout("%s: con %p PREOPEN\n", __func__, con);
1499 BUG_ON(con->sock);
1500 }
1501
1502 if (ceph_msgr2(from_msgr(con->msgr)))
1503 ret = ceph_con_v2_try_read(con);
1504 else
1505 ret = ceph_con_v1_try_read(con);
1506 if (ret < 0) {
1507 if (ret == -EAGAIN)
1508 continue;
1509 if (!con->error_msg)
1510 con->error_msg = "socket error on read";
1511 fault = true;
1512 break;
1513 }
1514
1515 if (ceph_msgr2(from_msgr(con->msgr)))
1516 ret = ceph_con_v2_try_write(con);
1517 else
1518 ret = ceph_con_v1_try_write(con);
1519 if (ret < 0) {
1520 if (ret == -EAGAIN)
1521 continue;
1522 if (!con->error_msg)
1523 con->error_msg = "socket error on write";
1524 fault = true;
1525 }
1526
1527 break; /* If we make it to here, we're done */
1528 }
1529 if (fault)
1530 con_fault(con);
1531 mutex_unlock(&con->mutex);
1532
1533 if (fault)
1534 con_fault_finish(con);
1535
1536 con->ops->put(con);
1537}
1538
1539/*
1540 * Generic error/fault handler. A retry mechanism is used with
1541 * exponential backoff
1542 */
1543static void con_fault(struct ceph_connection *con)
1544{
1545 dout("fault %p state %d to peer %s\n",
1546 con, con->state, ceph_pr_addr(&con->peer_addr));
1547
1548 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
1549 ceph_pr_addr(&con->peer_addr), con->error_msg);
1550 con->error_msg = NULL;
1551
1552 WARN_ON(con->state == CEPH_CON_S_STANDBY ||
1553 con->state == CEPH_CON_S_CLOSED);
1554
1555 ceph_con_reset_protocol(con);
1556
1557 if (ceph_con_flag_test(con, CEPH_CON_F_LOSSYTX)) {
1558 dout("fault on LOSSYTX channel, marking CLOSED\n");
1559 con->state = CEPH_CON_S_CLOSED;
1560 return;
1561 }
1562
1563 /* Requeue anything that hasn't been acked */
1564 list_splice_init(&con->out_sent, &con->out_queue);
1565
1566 /* If there are no messages queued or keepalive pending, place
1567 * the connection in a STANDBY state */
1568 if (list_empty(&con->out_queue) &&
1569 !ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING)) {
1570 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
1571 ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
1572 con->state = CEPH_CON_S_STANDBY;
1573 } else {
1574 /* retry after a delay. */
1575 con->state = CEPH_CON_S_PREOPEN;
1576 if (!con->delay) {
1577 con->delay = BASE_DELAY_INTERVAL;
1578 } else if (con->delay < MAX_DELAY_INTERVAL) {
1579 con->delay *= 2;
1580 if (con->delay > MAX_DELAY_INTERVAL)
1581 con->delay = MAX_DELAY_INTERVAL;
1582 }
1583 ceph_con_flag_set(con, CEPH_CON_F_BACKOFF);
1584 queue_con(con);
1585 }
1586}
1587
1588void ceph_messenger_reset_nonce(struct ceph_messenger *msgr)
1589{
1590 u32 nonce = le32_to_cpu(msgr->inst.addr.nonce) + 1000000;
1591 msgr->inst.addr.nonce = cpu_to_le32(nonce);
1592 ceph_encode_my_addr(msgr);
1593}
1594
1595/*
1596 * initialize a new messenger instance
1597 */
1598void ceph_messenger_init(struct ceph_messenger *msgr,
1599 struct ceph_entity_addr *myaddr)
1600{
1601 spin_lock_init(&msgr->global_seq_lock);
1602
1603 if (myaddr) {
1604 memcpy(&msgr->inst.addr.in_addr, &myaddr->in_addr,
1605 sizeof(msgr->inst.addr.in_addr));
1606 ceph_addr_set_port(&msgr->inst.addr, 0);
1607 }
1608
1609 /*
1610 * Since nautilus, clients are identified using type ANY.
1611 * For msgr1, ceph_encode_banner_addr() munges it to NONE.
1612 */
1613 msgr->inst.addr.type = CEPH_ENTITY_ADDR_TYPE_ANY;
1614
1615 /* generate a random non-zero nonce */
1616 do {
1617 get_random_bytes(&msgr->inst.addr.nonce,
1618 sizeof(msgr->inst.addr.nonce));
1619 } while (!msgr->inst.addr.nonce);
1620 ceph_encode_my_addr(msgr);
1621
1622 atomic_set(&msgr->stopping, 0);
1623 write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
1624
1625 dout("%s %p\n", __func__, msgr);
1626}
1627
1628void ceph_messenger_fini(struct ceph_messenger *msgr)
1629{
1630 put_net(read_pnet(&msgr->net));
1631}
1632
1633static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
1634{
1635 if (msg->con)
1636 msg->con->ops->put(msg->con);
1637
1638 msg->con = con ? con->ops->get(con) : NULL;
1639 BUG_ON(msg->con != con);
1640}
1641
1642static void clear_standby(struct ceph_connection *con)
1643{
1644 /* come back from STANDBY? */
1645 if (con->state == CEPH_CON_S_STANDBY) {
1646 dout("clear_standby %p and ++connect_seq\n", con);
1647 con->state = CEPH_CON_S_PREOPEN;
1648 con->v1.connect_seq++;
1649 WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING));
1650 WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING));
1651 }
1652}
1653
1654/*
1655 * Queue up an outgoing message on the given connection.
1656 *
1657 * Consumes a ref on @msg.
1658 */
1659void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
1660{
1661 /* set src+dst */
1662 msg->hdr.src = con->msgr->inst.name;
1663 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
1664 msg->needs_out_seq = true;
1665
1666 mutex_lock(&con->mutex);
1667
1668 if (con->state == CEPH_CON_S_CLOSED) {
1669 dout("con_send %p closed, dropping %p\n", con, msg);
1670 ceph_msg_put(msg);
1671 mutex_unlock(&con->mutex);
1672 return;
1673 }
1674
1675 msg_con_set(msg, con);
1676
1677 BUG_ON(!list_empty(&msg->list_head));
1678 list_add_tail(&msg->list_head, &con->out_queue);
1679 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
1680 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
1681 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1682 le32_to_cpu(msg->hdr.front_len),
1683 le32_to_cpu(msg->hdr.middle_len),
1684 le32_to_cpu(msg->hdr.data_len));
1685
1686 clear_standby(con);
1687 mutex_unlock(&con->mutex);
1688
1689 /* if there wasn't anything waiting to send before, queue
1690 * new work */
1691 if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING))
1692 queue_con(con);
1693}
1694EXPORT_SYMBOL(ceph_con_send);
1695
1696/*
1697 * Revoke a message that was previously queued for send
1698 */
1699void ceph_msg_revoke(struct ceph_msg *msg)
1700{
1701 struct ceph_connection *con = msg->con;
1702
1703 if (!con) {
1704 dout("%s msg %p null con\n", __func__, msg);
1705 return; /* Message not in our possession */
1706 }
1707
1708 mutex_lock(&con->mutex);
1709 if (list_empty(&msg->list_head)) {
1710 WARN_ON(con->out_msg == msg);
1711 dout("%s con %p msg %p not linked\n", __func__, con, msg);
1712 mutex_unlock(&con->mutex);
1713 return;
1714 }
1715
1716 dout("%s con %p msg %p was linked\n", __func__, con, msg);
1717 msg->hdr.seq = 0;
1718 ceph_msg_remove(msg);
1719
1720 if (con->out_msg == msg) {
1721 WARN_ON(con->state != CEPH_CON_S_OPEN);
1722 dout("%s con %p msg %p was sending\n", __func__, con, msg);
1723 if (ceph_msgr2(from_msgr(con->msgr)))
1724 ceph_con_v2_revoke(con);
1725 else
1726 ceph_con_v1_revoke(con);
1727 ceph_msg_put(con->out_msg);
1728 con->out_msg = NULL;
1729 } else {
1730 dout("%s con %p msg %p not current, out_msg %p\n", __func__,
1731 con, msg, con->out_msg);
1732 }
1733 mutex_unlock(&con->mutex);
1734}
1735
1736/*
1737 * Revoke a message that we may be reading data into
1738 */
1739void ceph_msg_revoke_incoming(struct ceph_msg *msg)
1740{
1741 struct ceph_connection *con = msg->con;
1742
1743 if (!con) {
1744 dout("%s msg %p null con\n", __func__, msg);
1745 return; /* Message not in our possession */
1746 }
1747
1748 mutex_lock(&con->mutex);
1749 if (con->in_msg == msg) {
1750 WARN_ON(con->state != CEPH_CON_S_OPEN);
1751 dout("%s con %p msg %p was recving\n", __func__, con, msg);
1752 if (ceph_msgr2(from_msgr(con->msgr)))
1753 ceph_con_v2_revoke_incoming(con);
1754 else
1755 ceph_con_v1_revoke_incoming(con);
1756 ceph_msg_put(con->in_msg);
1757 con->in_msg = NULL;
1758 } else {
1759 dout("%s con %p msg %p not current, in_msg %p\n", __func__,
1760 con, msg, con->in_msg);
1761 }
1762 mutex_unlock(&con->mutex);
1763}
1764
1765/*
1766 * Queue a keepalive byte to ensure the tcp connection is alive.
1767 */
1768void ceph_con_keepalive(struct ceph_connection *con)
1769{
1770 dout("con_keepalive %p\n", con);
1771 mutex_lock(&con->mutex);
1772 clear_standby(con);
1773 ceph_con_flag_set(con, CEPH_CON_F_KEEPALIVE_PENDING);
1774 mutex_unlock(&con->mutex);
1775
1776 if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING))
1777 queue_con(con);
1778}
1779EXPORT_SYMBOL(ceph_con_keepalive);
1780
1781bool ceph_con_keepalive_expired(struct ceph_connection *con,
1782 unsigned long interval)
1783{
1784 if (interval > 0 &&
1785 (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
1786 struct timespec64 now;
1787 struct timespec64 ts;
1788 ktime_get_real_ts64(&now);
1789 jiffies_to_timespec64(interval, &ts);
1790 ts = timespec64_add(con->last_keepalive_ack, ts);
1791 return timespec64_compare(&now, &ts) >= 0;
1792 }
1793 return false;
1794}
1795
1796static struct ceph_msg_data *ceph_msg_data_add(struct ceph_msg *msg)
1797{
1798 BUG_ON(msg->num_data_items >= msg->max_data_items);
1799 return &msg->data[msg->num_data_items++];
1800}
1801
1802static void ceph_msg_data_destroy(struct ceph_msg_data *data)
1803{
1804 if (data->type == CEPH_MSG_DATA_PAGES && data->own_pages) {
1805 int num_pages = calc_pages_for(data->alignment, data->length);
1806 ceph_release_page_vector(data->pages, num_pages);
1807 } else if (data->type == CEPH_MSG_DATA_PAGELIST) {
1808 ceph_pagelist_release(data->pagelist);
1809 }
1810}
1811
1812void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
1813 size_t length, size_t alignment, bool own_pages)
1814{
1815 struct ceph_msg_data *data;
1816
1817 BUG_ON(!pages);
1818 BUG_ON(!length);
1819
1820 data = ceph_msg_data_add(msg);
1821 data->type = CEPH_MSG_DATA_PAGES;
1822 data->pages = pages;
1823 data->length = length;
1824 data->alignment = alignment & ~PAGE_MASK;
1825 data->own_pages = own_pages;
1826
1827 msg->data_length += length;
1828}
1829EXPORT_SYMBOL(ceph_msg_data_add_pages);
1830
1831void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
1832 struct ceph_pagelist *pagelist)
1833{
1834 struct ceph_msg_data *data;
1835
1836 BUG_ON(!pagelist);
1837 BUG_ON(!pagelist->length);
1838
1839 data = ceph_msg_data_add(msg);
1840 data->type = CEPH_MSG_DATA_PAGELIST;
1841 refcount_inc(&pagelist->refcnt);
1842 data->pagelist = pagelist;
1843
1844 msg->data_length += pagelist->length;
1845}
1846EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
1847
1848#ifdef CONFIG_BLOCK
1849void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos,
1850 u32 length)
1851{
1852 struct ceph_msg_data *data;
1853
1854 data = ceph_msg_data_add(msg);
1855 data->type = CEPH_MSG_DATA_BIO;
1856 data->bio_pos = *bio_pos;
1857 data->bio_length = length;
1858
1859 msg->data_length += length;
1860}
1861EXPORT_SYMBOL(ceph_msg_data_add_bio);
1862#endif /* CONFIG_BLOCK */
1863
1864void ceph_msg_data_add_bvecs(struct ceph_msg *msg,
1865 struct ceph_bvec_iter *bvec_pos)
1866{
1867 struct ceph_msg_data *data;
1868
1869 data = ceph_msg_data_add(msg);
1870 data->type = CEPH_MSG_DATA_BVECS;
1871 data->bvec_pos = *bvec_pos;
1872
1873 msg->data_length += bvec_pos->iter.bi_size;
1874}
1875EXPORT_SYMBOL(ceph_msg_data_add_bvecs);
1876
1877/*
1878 * construct a new message with given type, size
1879 * the new msg has a ref count of 1.
1880 */
1881struct ceph_msg *ceph_msg_new2(int type, int front_len, int max_data_items,
1882 gfp_t flags, bool can_fail)
1883{
1884 struct ceph_msg *m;
1885
1886 m = kmem_cache_zalloc(ceph_msg_cache, flags);
1887 if (m == NULL)
1888 goto out;
1889
1890 m->hdr.type = cpu_to_le16(type);
1891 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
1892 m->hdr.front_len = cpu_to_le32(front_len);
1893
1894 INIT_LIST_HEAD(&m->list_head);
1895 kref_init(&m->kref);
1896
1897 /* front */
1898 if (front_len) {
1899 m->front.iov_base = kvmalloc(front_len, flags);
1900 if (m->front.iov_base == NULL) {
1901 dout("ceph_msg_new can't allocate %d bytes\n",
1902 front_len);
1903 goto out2;
1904 }
1905 } else {
1906 m->front.iov_base = NULL;
1907 }
1908 m->front_alloc_len = m->front.iov_len = front_len;
1909
1910 if (max_data_items) {
1911 m->data = kmalloc_array(max_data_items, sizeof(*m->data),
1912 flags);
1913 if (!m->data)
1914 goto out2;
1915
1916 m->max_data_items = max_data_items;
1917 }
1918
1919 dout("ceph_msg_new %p front %d\n", m, front_len);
1920 return m;
1921
1922out2:
1923 ceph_msg_put(m);
1924out:
1925 if (!can_fail) {
1926 pr_err("msg_new can't create type %d front %d\n", type,
1927 front_len);
1928 WARN_ON(1);
1929 } else {
1930 dout("msg_new can't create type %d front %d\n", type,
1931 front_len);
1932 }
1933 return NULL;
1934}
1935EXPORT_SYMBOL(ceph_msg_new2);
1936
1937struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
1938 bool can_fail)
1939{
1940 return ceph_msg_new2(type, front_len, 0, flags, can_fail);
1941}
1942EXPORT_SYMBOL(ceph_msg_new);
1943
1944/*
1945 * Allocate "middle" portion of a message, if it is needed and wasn't
1946 * allocated by alloc_msg. This allows us to read a small fixed-size
1947 * per-type header in the front and then gracefully fail (i.e.,
1948 * propagate the error to the caller based on info in the front) when
1949 * the middle is too large.
1950 */
1951static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
1952{
1953 int type = le16_to_cpu(msg->hdr.type);
1954 int middle_len = le32_to_cpu(msg->hdr.middle_len);
1955
1956 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
1957 ceph_msg_type_name(type), middle_len);
1958 BUG_ON(!middle_len);
1959 BUG_ON(msg->middle);
1960
1961 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
1962 if (!msg->middle)
1963 return -ENOMEM;
1964 return 0;
1965}
1966
1967/*
1968 * Allocate a message for receiving an incoming message on a
1969 * connection, and save the result in con->in_msg. Uses the
1970 * connection's private alloc_msg op if available.
1971 *
1972 * Returns 0 on success, or a negative error code.
1973 *
1974 * On success, if we set *skip = 1:
1975 * - the next message should be skipped and ignored.
1976 * - con->in_msg == NULL
1977 * or if we set *skip = 0:
1978 * - con->in_msg is non-null.
1979 * On error (ENOMEM, EAGAIN, ...),
1980 * - con->in_msg == NULL
1981 */
1982int ceph_con_in_msg_alloc(struct ceph_connection *con,
1983 struct ceph_msg_header *hdr, int *skip)
1984{
1985 int middle_len = le32_to_cpu(hdr->middle_len);
1986 struct ceph_msg *msg;
1987 int ret = 0;
1988
1989 BUG_ON(con->in_msg != NULL);
1990 BUG_ON(!con->ops->alloc_msg);
1991
1992 mutex_unlock(&con->mutex);
1993 msg = con->ops->alloc_msg(con, hdr, skip);
1994 mutex_lock(&con->mutex);
1995 if (con->state != CEPH_CON_S_OPEN) {
1996 if (msg)
1997 ceph_msg_put(msg);
1998 return -EAGAIN;
1999 }
2000 if (msg) {
2001 BUG_ON(*skip);
2002 msg_con_set(msg, con);
2003 con->in_msg = msg;
2004 } else {
2005 /*
2006 * Null message pointer means either we should skip
2007 * this message or we couldn't allocate memory. The
2008 * former is not an error.
2009 */
2010 if (*skip)
2011 return 0;
2012
2013 con->error_msg = "error allocating memory for incoming message";
2014 return -ENOMEM;
2015 }
2016 memcpy(&con->in_msg->hdr, hdr, sizeof(*hdr));
2017
2018 if (middle_len && !con->in_msg->middle) {
2019 ret = ceph_alloc_middle(con, con->in_msg);
2020 if (ret < 0) {
2021 ceph_msg_put(con->in_msg);
2022 con->in_msg = NULL;
2023 }
2024 }
2025
2026 return ret;
2027}
2028
2029void ceph_con_get_out_msg(struct ceph_connection *con)
2030{
2031 struct ceph_msg *msg;
2032
2033 BUG_ON(list_empty(&con->out_queue));
2034 msg = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
2035 WARN_ON(msg->con != con);
2036
2037 /*
2038 * Put the message on "sent" list using a ref from ceph_con_send().
2039 * It is put when the message is acked or revoked.
2040 */
2041 list_move_tail(&msg->list_head, &con->out_sent);
2042
2043 /*
2044 * Only assign outgoing seq # if we haven't sent this message
2045 * yet. If it is requeued, resend with it's original seq.
2046 */
2047 if (msg->needs_out_seq) {
2048 msg->hdr.seq = cpu_to_le64(++con->out_seq);
2049 msg->needs_out_seq = false;
2050
2051 if (con->ops->reencode_message)
2052 con->ops->reencode_message(msg);
2053 }
2054
2055 /*
2056 * Get a ref for out_msg. It is put when we are done sending the
2057 * message or in case of a fault.
2058 */
2059 WARN_ON(con->out_msg);
2060 con->out_msg = ceph_msg_get(msg);
2061}
2062
2063/*
2064 * Free a generically kmalloc'd message.
2065 */
2066static void ceph_msg_free(struct ceph_msg *m)
2067{
2068 dout("%s %p\n", __func__, m);
2069 kvfree(m->front.iov_base);
2070 kfree(m->data);
2071 kmem_cache_free(ceph_msg_cache, m);
2072}
2073
2074static void ceph_msg_release(struct kref *kref)
2075{
2076 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2077 int i;
2078
2079 dout("%s %p\n", __func__, m);
2080 WARN_ON(!list_empty(&m->list_head));
2081
2082 msg_con_set(m, NULL);
2083
2084 /* drop middle, data, if any */
2085 if (m->middle) {
2086 ceph_buffer_put(m->middle);
2087 m->middle = NULL;
2088 }
2089
2090 for (i = 0; i < m->num_data_items; i++)
2091 ceph_msg_data_destroy(&m->data[i]);
2092
2093 if (m->pool)
2094 ceph_msgpool_put(m->pool, m);
2095 else
2096 ceph_msg_free(m);
2097}
2098
2099struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
2100{
2101 dout("%s %p (was %d)\n", __func__, msg,
2102 kref_read(&msg->kref));
2103 kref_get(&msg->kref);
2104 return msg;
2105}
2106EXPORT_SYMBOL(ceph_msg_get);
2107
2108void ceph_msg_put(struct ceph_msg *msg)
2109{
2110 dout("%s %p (was %d)\n", __func__, msg,
2111 kref_read(&msg->kref));
2112 kref_put(&msg->kref, ceph_msg_release);
2113}
2114EXPORT_SYMBOL(ceph_msg_put);
2115
2116void ceph_msg_dump(struct ceph_msg *msg)
2117{
2118 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
2119 msg->front_alloc_len, msg->data_length);
2120 print_hex_dump(KERN_DEBUG, "header: ",
2121 DUMP_PREFIX_OFFSET, 16, 1,
2122 &msg->hdr, sizeof(msg->hdr), true);
2123 print_hex_dump(KERN_DEBUG, " front: ",
2124 DUMP_PREFIX_OFFSET, 16, 1,
2125 msg->front.iov_base, msg->front.iov_len, true);
2126 if (msg->middle)
2127 print_hex_dump(KERN_DEBUG, "middle: ",
2128 DUMP_PREFIX_OFFSET, 16, 1,
2129 msg->middle->vec.iov_base,
2130 msg->middle->vec.iov_len, true);
2131 print_hex_dump(KERN_DEBUG, "footer: ",
2132 DUMP_PREFIX_OFFSET, 16, 1,
2133 &msg->footer, sizeof(msg->footer), true);
2134}
2135EXPORT_SYMBOL(ceph_msg_dump);
1// SPDX-License-Identifier: GPL-2.0
2#include <linux/ceph/ceph_debug.h>
3
4#include <linux/crc32c.h>
5#include <linux/ctype.h>
6#include <linux/highmem.h>
7#include <linux/inet.h>
8#include <linux/kthread.h>
9#include <linux/net.h>
10#include <linux/nsproxy.h>
11#include <linux/sched/mm.h>
12#include <linux/slab.h>
13#include <linux/socket.h>
14#include <linux/string.h>
15#ifdef CONFIG_BLOCK
16#include <linux/bio.h>
17#endif /* CONFIG_BLOCK */
18#include <linux/dns_resolver.h>
19#include <net/tcp.h>
20#include <trace/events/sock.h>
21
22#include <linux/ceph/ceph_features.h>
23#include <linux/ceph/libceph.h>
24#include <linux/ceph/messenger.h>
25#include <linux/ceph/decode.h>
26#include <linux/ceph/pagelist.h>
27#include <linux/export.h>
28
29/*
30 * Ceph uses the messenger to exchange ceph_msg messages with other
31 * hosts in the system. The messenger provides ordered and reliable
32 * delivery. We tolerate TCP disconnects by reconnecting (with
33 * exponential backoff) in the case of a fault (disconnection, bad
34 * crc, protocol error). Acks allow sent messages to be discarded by
35 * the sender.
36 */
37
38/*
39 * We track the state of the socket on a given connection using
40 * values defined below. The transition to a new socket state is
41 * handled by a function which verifies we aren't coming from an
42 * unexpected state.
43 *
44 * --------
45 * | NEW* | transient initial state
46 * --------
47 * | con_sock_state_init()
48 * v
49 * ----------
50 * | CLOSED | initialized, but no socket (and no
51 * ---------- TCP connection)
52 * ^ \
53 * | \ con_sock_state_connecting()
54 * | ----------------------
55 * | \
56 * + con_sock_state_closed() \
57 * |+--------------------------- \
58 * | \ \ \
59 * | ----------- \ \
60 * | | CLOSING | socket event; \ \
61 * | ----------- await close \ \
62 * | ^ \ |
63 * | | \ |
64 * | + con_sock_state_closing() \ |
65 * | / \ | |
66 * | / --------------- | |
67 * | / \ v v
68 * | / --------------
69 * | / -----------------| CONNECTING | socket created, TCP
70 * | | / -------------- connect initiated
71 * | | | con_sock_state_connected()
72 * | | v
73 * -------------
74 * | CONNECTED | TCP connection established
75 * -------------
76 *
77 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
78 */
79
80#define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
81#define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
82#define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
83#define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
84#define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
85
86static bool con_flag_valid(unsigned long con_flag)
87{
88 switch (con_flag) {
89 case CEPH_CON_F_LOSSYTX:
90 case CEPH_CON_F_KEEPALIVE_PENDING:
91 case CEPH_CON_F_WRITE_PENDING:
92 case CEPH_CON_F_SOCK_CLOSED:
93 case CEPH_CON_F_BACKOFF:
94 return true;
95 default:
96 return false;
97 }
98}
99
100void ceph_con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
101{
102 BUG_ON(!con_flag_valid(con_flag));
103
104 clear_bit(con_flag, &con->flags);
105}
106
107void ceph_con_flag_set(struct ceph_connection *con, unsigned long con_flag)
108{
109 BUG_ON(!con_flag_valid(con_flag));
110
111 set_bit(con_flag, &con->flags);
112}
113
114bool ceph_con_flag_test(struct ceph_connection *con, unsigned long con_flag)
115{
116 BUG_ON(!con_flag_valid(con_flag));
117
118 return test_bit(con_flag, &con->flags);
119}
120
121bool ceph_con_flag_test_and_clear(struct ceph_connection *con,
122 unsigned long con_flag)
123{
124 BUG_ON(!con_flag_valid(con_flag));
125
126 return test_and_clear_bit(con_flag, &con->flags);
127}
128
129bool ceph_con_flag_test_and_set(struct ceph_connection *con,
130 unsigned long con_flag)
131{
132 BUG_ON(!con_flag_valid(con_flag));
133
134 return test_and_set_bit(con_flag, &con->flags);
135}
136
137/* Slab caches for frequently-allocated structures */
138
139static struct kmem_cache *ceph_msg_cache;
140
141#ifdef CONFIG_LOCKDEP
142static struct lock_class_key socket_class;
143#endif
144
145static void queue_con(struct ceph_connection *con);
146static void cancel_con(struct ceph_connection *con);
147static void ceph_con_workfn(struct work_struct *);
148static void con_fault(struct ceph_connection *con);
149
150/*
151 * Nicely render a sockaddr as a string. An array of formatted
152 * strings is used, to approximate reentrancy.
153 */
154#define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
155#define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
156#define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
157#define MAX_ADDR_STR_LEN 64 /* 54 is enough */
158
159static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
160static atomic_t addr_str_seq = ATOMIC_INIT(0);
161
162struct page *ceph_zero_page; /* used in certain error cases */
163
164const char *ceph_pr_addr(const struct ceph_entity_addr *addr)
165{
166 int i;
167 char *s;
168 struct sockaddr_storage ss = addr->in_addr; /* align */
169 struct sockaddr_in *in4 = (struct sockaddr_in *)&ss;
170 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *)&ss;
171
172 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
173 s = addr_str[i];
174
175 switch (ss.ss_family) {
176 case AF_INET:
177 snprintf(s, MAX_ADDR_STR_LEN, "(%d)%pI4:%hu",
178 le32_to_cpu(addr->type), &in4->sin_addr,
179 ntohs(in4->sin_port));
180 break;
181
182 case AF_INET6:
183 snprintf(s, MAX_ADDR_STR_LEN, "(%d)[%pI6c]:%hu",
184 le32_to_cpu(addr->type), &in6->sin6_addr,
185 ntohs(in6->sin6_port));
186 break;
187
188 default:
189 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
190 ss.ss_family);
191 }
192
193 return s;
194}
195EXPORT_SYMBOL(ceph_pr_addr);
196
197void ceph_encode_my_addr(struct ceph_messenger *msgr)
198{
199 if (!ceph_msgr2(from_msgr(msgr))) {
200 memcpy(&msgr->my_enc_addr, &msgr->inst.addr,
201 sizeof(msgr->my_enc_addr));
202 ceph_encode_banner_addr(&msgr->my_enc_addr);
203 }
204}
205
206/*
207 * work queue for all reading and writing to/from the socket.
208 */
209static struct workqueue_struct *ceph_msgr_wq;
210
211static int ceph_msgr_slab_init(void)
212{
213 BUG_ON(ceph_msg_cache);
214 ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
215 if (!ceph_msg_cache)
216 return -ENOMEM;
217
218 return 0;
219}
220
221static void ceph_msgr_slab_exit(void)
222{
223 BUG_ON(!ceph_msg_cache);
224 kmem_cache_destroy(ceph_msg_cache);
225 ceph_msg_cache = NULL;
226}
227
228static void _ceph_msgr_exit(void)
229{
230 if (ceph_msgr_wq) {
231 destroy_workqueue(ceph_msgr_wq);
232 ceph_msgr_wq = NULL;
233 }
234
235 BUG_ON(!ceph_zero_page);
236 put_page(ceph_zero_page);
237 ceph_zero_page = NULL;
238
239 ceph_msgr_slab_exit();
240}
241
242int __init ceph_msgr_init(void)
243{
244 if (ceph_msgr_slab_init())
245 return -ENOMEM;
246
247 BUG_ON(ceph_zero_page);
248 ceph_zero_page = ZERO_PAGE(0);
249 get_page(ceph_zero_page);
250
251 /*
252 * The number of active work items is limited by the number of
253 * connections, so leave @max_active at default.
254 */
255 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
256 if (ceph_msgr_wq)
257 return 0;
258
259 pr_err("msgr_init failed to create workqueue\n");
260 _ceph_msgr_exit();
261
262 return -ENOMEM;
263}
264
265void ceph_msgr_exit(void)
266{
267 BUG_ON(ceph_msgr_wq == NULL);
268
269 _ceph_msgr_exit();
270}
271
272void ceph_msgr_flush(void)
273{
274 flush_workqueue(ceph_msgr_wq);
275}
276EXPORT_SYMBOL(ceph_msgr_flush);
277
278/* Connection socket state transition functions */
279
280static void con_sock_state_init(struct ceph_connection *con)
281{
282 int old_state;
283
284 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
285 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
286 printk("%s: unexpected old state %d\n", __func__, old_state);
287 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
288 CON_SOCK_STATE_CLOSED);
289}
290
291static void con_sock_state_connecting(struct ceph_connection *con)
292{
293 int old_state;
294
295 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
296 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
297 printk("%s: unexpected old state %d\n", __func__, old_state);
298 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
299 CON_SOCK_STATE_CONNECTING);
300}
301
302static void con_sock_state_connected(struct ceph_connection *con)
303{
304 int old_state;
305
306 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
307 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
308 printk("%s: unexpected old state %d\n", __func__, old_state);
309 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
310 CON_SOCK_STATE_CONNECTED);
311}
312
313static void con_sock_state_closing(struct ceph_connection *con)
314{
315 int old_state;
316
317 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
318 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
319 old_state != CON_SOCK_STATE_CONNECTED &&
320 old_state != CON_SOCK_STATE_CLOSING))
321 printk("%s: unexpected old state %d\n", __func__, old_state);
322 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
323 CON_SOCK_STATE_CLOSING);
324}
325
326static void con_sock_state_closed(struct ceph_connection *con)
327{
328 int old_state;
329
330 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
331 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
332 old_state != CON_SOCK_STATE_CLOSING &&
333 old_state != CON_SOCK_STATE_CONNECTING &&
334 old_state != CON_SOCK_STATE_CLOSED))
335 printk("%s: unexpected old state %d\n", __func__, old_state);
336 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
337 CON_SOCK_STATE_CLOSED);
338}
339
340/*
341 * socket callback functions
342 */
343
344/* data available on socket, or listen socket received a connect */
345static void ceph_sock_data_ready(struct sock *sk)
346{
347 struct ceph_connection *con = sk->sk_user_data;
348
349 trace_sk_data_ready(sk);
350
351 if (atomic_read(&con->msgr->stopping)) {
352 return;
353 }
354
355 if (sk->sk_state != TCP_CLOSE_WAIT) {
356 dout("%s %p state = %d, queueing work\n", __func__,
357 con, con->state);
358 queue_con(con);
359 }
360}
361
362/* socket has buffer space for writing */
363static void ceph_sock_write_space(struct sock *sk)
364{
365 struct ceph_connection *con = sk->sk_user_data;
366
367 /* only queue to workqueue if there is data we want to write,
368 * and there is sufficient space in the socket buffer to accept
369 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
370 * doesn't get called again until try_write() fills the socket
371 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
372 * and net/core/stream.c:sk_stream_write_space().
373 */
374 if (ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING)) {
375 if (sk_stream_is_writeable(sk)) {
376 dout("%s %p queueing write work\n", __func__, con);
377 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
378 queue_con(con);
379 }
380 } else {
381 dout("%s %p nothing to write\n", __func__, con);
382 }
383}
384
385/* socket's state has changed */
386static void ceph_sock_state_change(struct sock *sk)
387{
388 struct ceph_connection *con = sk->sk_user_data;
389
390 dout("%s %p state = %d sk_state = %u\n", __func__,
391 con, con->state, sk->sk_state);
392
393 switch (sk->sk_state) {
394 case TCP_CLOSE:
395 dout("%s TCP_CLOSE\n", __func__);
396 fallthrough;
397 case TCP_CLOSE_WAIT:
398 dout("%s TCP_CLOSE_WAIT\n", __func__);
399 con_sock_state_closing(con);
400 ceph_con_flag_set(con, CEPH_CON_F_SOCK_CLOSED);
401 queue_con(con);
402 break;
403 case TCP_ESTABLISHED:
404 dout("%s TCP_ESTABLISHED\n", __func__);
405 con_sock_state_connected(con);
406 queue_con(con);
407 break;
408 default: /* Everything else is uninteresting */
409 break;
410 }
411}
412
413/*
414 * set up socket callbacks
415 */
416static void set_sock_callbacks(struct socket *sock,
417 struct ceph_connection *con)
418{
419 struct sock *sk = sock->sk;
420 sk->sk_user_data = con;
421 sk->sk_data_ready = ceph_sock_data_ready;
422 sk->sk_write_space = ceph_sock_write_space;
423 sk->sk_state_change = ceph_sock_state_change;
424}
425
426
427/*
428 * socket helpers
429 */
430
431/*
432 * initiate connection to a remote socket.
433 */
434int ceph_tcp_connect(struct ceph_connection *con)
435{
436 struct sockaddr_storage ss = con->peer_addr.in_addr; /* align */
437 struct socket *sock;
438 unsigned int noio_flag;
439 int ret;
440
441 dout("%s con %p peer_addr %s\n", __func__, con,
442 ceph_pr_addr(&con->peer_addr));
443 BUG_ON(con->sock);
444
445 /* sock_create_kern() allocates with GFP_KERNEL */
446 noio_flag = memalloc_noio_save();
447 ret = sock_create_kern(read_pnet(&con->msgr->net), ss.ss_family,
448 SOCK_STREAM, IPPROTO_TCP, &sock);
449 memalloc_noio_restore(noio_flag);
450 if (ret)
451 return ret;
452 sock->sk->sk_allocation = GFP_NOFS;
453 sock->sk->sk_use_task_frag = false;
454
455#ifdef CONFIG_LOCKDEP
456 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
457#endif
458
459 set_sock_callbacks(sock, con);
460
461 con_sock_state_connecting(con);
462 ret = kernel_connect(sock, (struct sockaddr *)&ss, sizeof(ss),
463 O_NONBLOCK);
464 if (ret == -EINPROGRESS) {
465 dout("connect %s EINPROGRESS sk_state = %u\n",
466 ceph_pr_addr(&con->peer_addr),
467 sock->sk->sk_state);
468 } else if (ret < 0) {
469 pr_err("connect %s error %d\n",
470 ceph_pr_addr(&con->peer_addr), ret);
471 sock_release(sock);
472 return ret;
473 }
474
475 if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY))
476 tcp_sock_set_nodelay(sock->sk);
477
478 con->sock = sock;
479 return 0;
480}
481
482/*
483 * Shutdown/close the socket for the given connection.
484 */
485int ceph_con_close_socket(struct ceph_connection *con)
486{
487 int rc = 0;
488
489 dout("%s con %p sock %p\n", __func__, con, con->sock);
490 if (con->sock) {
491 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
492 sock_release(con->sock);
493 con->sock = NULL;
494 }
495
496 /*
497 * Forcibly clear the SOCK_CLOSED flag. It gets set
498 * independent of the connection mutex, and we could have
499 * received a socket close event before we had the chance to
500 * shut the socket down.
501 */
502 ceph_con_flag_clear(con, CEPH_CON_F_SOCK_CLOSED);
503
504 con_sock_state_closed(con);
505 return rc;
506}
507
508static void ceph_con_reset_protocol(struct ceph_connection *con)
509{
510 dout("%s con %p\n", __func__, con);
511
512 ceph_con_close_socket(con);
513 if (con->in_msg) {
514 WARN_ON(con->in_msg->con != con);
515 ceph_msg_put(con->in_msg);
516 con->in_msg = NULL;
517 }
518 if (con->out_msg) {
519 WARN_ON(con->out_msg->con != con);
520 ceph_msg_put(con->out_msg);
521 con->out_msg = NULL;
522 }
523 if (con->bounce_page) {
524 __free_page(con->bounce_page);
525 con->bounce_page = NULL;
526 }
527
528 if (ceph_msgr2(from_msgr(con->msgr)))
529 ceph_con_v2_reset_protocol(con);
530 else
531 ceph_con_v1_reset_protocol(con);
532}
533
534/*
535 * Reset a connection. Discard all incoming and outgoing messages
536 * and clear *_seq state.
537 */
538static void ceph_msg_remove(struct ceph_msg *msg)
539{
540 list_del_init(&msg->list_head);
541
542 ceph_msg_put(msg);
543}
544
545static void ceph_msg_remove_list(struct list_head *head)
546{
547 while (!list_empty(head)) {
548 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
549 list_head);
550 ceph_msg_remove(msg);
551 }
552}
553
554void ceph_con_reset_session(struct ceph_connection *con)
555{
556 dout("%s con %p\n", __func__, con);
557
558 WARN_ON(con->in_msg);
559 WARN_ON(con->out_msg);
560 ceph_msg_remove_list(&con->out_queue);
561 ceph_msg_remove_list(&con->out_sent);
562 con->out_seq = 0;
563 con->in_seq = 0;
564 con->in_seq_acked = 0;
565
566 if (ceph_msgr2(from_msgr(con->msgr)))
567 ceph_con_v2_reset_session(con);
568 else
569 ceph_con_v1_reset_session(con);
570}
571
572/*
573 * mark a peer down. drop any open connections.
574 */
575void ceph_con_close(struct ceph_connection *con)
576{
577 mutex_lock(&con->mutex);
578 dout("con_close %p peer %s\n", con, ceph_pr_addr(&con->peer_addr));
579 con->state = CEPH_CON_S_CLOSED;
580
581 ceph_con_flag_clear(con, CEPH_CON_F_LOSSYTX); /* so we retry next
582 connect */
583 ceph_con_flag_clear(con, CEPH_CON_F_KEEPALIVE_PENDING);
584 ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
585 ceph_con_flag_clear(con, CEPH_CON_F_BACKOFF);
586
587 ceph_con_reset_protocol(con);
588 ceph_con_reset_session(con);
589 cancel_con(con);
590 mutex_unlock(&con->mutex);
591}
592EXPORT_SYMBOL(ceph_con_close);
593
594/*
595 * Reopen a closed connection, with a new peer address.
596 */
597void ceph_con_open(struct ceph_connection *con,
598 __u8 entity_type, __u64 entity_num,
599 struct ceph_entity_addr *addr)
600{
601 mutex_lock(&con->mutex);
602 dout("con_open %p %s\n", con, ceph_pr_addr(addr));
603
604 WARN_ON(con->state != CEPH_CON_S_CLOSED);
605 con->state = CEPH_CON_S_PREOPEN;
606
607 con->peer_name.type = (__u8) entity_type;
608 con->peer_name.num = cpu_to_le64(entity_num);
609
610 memcpy(&con->peer_addr, addr, sizeof(*addr));
611 con->delay = 0; /* reset backoff memory */
612 mutex_unlock(&con->mutex);
613 queue_con(con);
614}
615EXPORT_SYMBOL(ceph_con_open);
616
617/*
618 * return true if this connection ever successfully opened
619 */
620bool ceph_con_opened(struct ceph_connection *con)
621{
622 if (ceph_msgr2(from_msgr(con->msgr)))
623 return ceph_con_v2_opened(con);
624
625 return ceph_con_v1_opened(con);
626}
627
628/*
629 * initialize a new connection.
630 */
631void ceph_con_init(struct ceph_connection *con, void *private,
632 const struct ceph_connection_operations *ops,
633 struct ceph_messenger *msgr)
634{
635 dout("con_init %p\n", con);
636 memset(con, 0, sizeof(*con));
637 con->private = private;
638 con->ops = ops;
639 con->msgr = msgr;
640
641 con_sock_state_init(con);
642
643 mutex_init(&con->mutex);
644 INIT_LIST_HEAD(&con->out_queue);
645 INIT_LIST_HEAD(&con->out_sent);
646 INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
647
648 con->state = CEPH_CON_S_CLOSED;
649}
650EXPORT_SYMBOL(ceph_con_init);
651
652/*
653 * We maintain a global counter to order connection attempts. Get
654 * a unique seq greater than @gt.
655 */
656u32 ceph_get_global_seq(struct ceph_messenger *msgr, u32 gt)
657{
658 u32 ret;
659
660 spin_lock(&msgr->global_seq_lock);
661 if (msgr->global_seq < gt)
662 msgr->global_seq = gt;
663 ret = ++msgr->global_seq;
664 spin_unlock(&msgr->global_seq_lock);
665 return ret;
666}
667
668/*
669 * Discard messages that have been acked by the server.
670 */
671void ceph_con_discard_sent(struct ceph_connection *con, u64 ack_seq)
672{
673 struct ceph_msg *msg;
674 u64 seq;
675
676 dout("%s con %p ack_seq %llu\n", __func__, con, ack_seq);
677 while (!list_empty(&con->out_sent)) {
678 msg = list_first_entry(&con->out_sent, struct ceph_msg,
679 list_head);
680 WARN_ON(msg->needs_out_seq);
681 seq = le64_to_cpu(msg->hdr.seq);
682 if (seq > ack_seq)
683 break;
684
685 dout("%s con %p discarding msg %p seq %llu\n", __func__, con,
686 msg, seq);
687 ceph_msg_remove(msg);
688 }
689}
690
691/*
692 * Discard messages that have been requeued in con_fault(), up to
693 * reconnect_seq. This avoids gratuitously resending messages that
694 * the server had received and handled prior to reconnect.
695 */
696void ceph_con_discard_requeued(struct ceph_connection *con, u64 reconnect_seq)
697{
698 struct ceph_msg *msg;
699 u64 seq;
700
701 dout("%s con %p reconnect_seq %llu\n", __func__, con, reconnect_seq);
702 while (!list_empty(&con->out_queue)) {
703 msg = list_first_entry(&con->out_queue, struct ceph_msg,
704 list_head);
705 if (msg->needs_out_seq)
706 break;
707 seq = le64_to_cpu(msg->hdr.seq);
708 if (seq > reconnect_seq)
709 break;
710
711 dout("%s con %p discarding msg %p seq %llu\n", __func__, con,
712 msg, seq);
713 ceph_msg_remove(msg);
714 }
715}
716
717#ifdef CONFIG_BLOCK
718
719/*
720 * For a bio data item, a piece is whatever remains of the next
721 * entry in the current bio iovec, or the first entry in the next
722 * bio in the list.
723 */
724static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
725 size_t length)
726{
727 struct ceph_msg_data *data = cursor->data;
728 struct ceph_bio_iter *it = &cursor->bio_iter;
729
730 cursor->resid = min_t(size_t, length, data->bio_length);
731 *it = data->bio_pos;
732 if (cursor->resid < it->iter.bi_size)
733 it->iter.bi_size = cursor->resid;
734
735 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
736}
737
738static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
739 size_t *page_offset,
740 size_t *length)
741{
742 struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio,
743 cursor->bio_iter.iter);
744
745 *page_offset = bv.bv_offset;
746 *length = bv.bv_len;
747 return bv.bv_page;
748}
749
750static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
751 size_t bytes)
752{
753 struct ceph_bio_iter *it = &cursor->bio_iter;
754 struct page *page = bio_iter_page(it->bio, it->iter);
755
756 BUG_ON(bytes > cursor->resid);
757 BUG_ON(bytes > bio_iter_len(it->bio, it->iter));
758 cursor->resid -= bytes;
759 bio_advance_iter(it->bio, &it->iter, bytes);
760
761 if (!cursor->resid)
762 return false; /* no more data */
763
764 if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done &&
765 page == bio_iter_page(it->bio, it->iter)))
766 return false; /* more bytes to process in this segment */
767
768 if (!it->iter.bi_size) {
769 it->bio = it->bio->bi_next;
770 it->iter = it->bio->bi_iter;
771 if (cursor->resid < it->iter.bi_size)
772 it->iter.bi_size = cursor->resid;
773 }
774
775 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
776 return true;
777}
778#endif /* CONFIG_BLOCK */
779
780static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor,
781 size_t length)
782{
783 struct ceph_msg_data *data = cursor->data;
784 struct bio_vec *bvecs = data->bvec_pos.bvecs;
785
786 cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size);
787 cursor->bvec_iter = data->bvec_pos.iter;
788 cursor->bvec_iter.bi_size = cursor->resid;
789
790 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
791}
792
793static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor,
794 size_t *page_offset,
795 size_t *length)
796{
797 struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs,
798 cursor->bvec_iter);
799
800 *page_offset = bv.bv_offset;
801 *length = bv.bv_len;
802 return bv.bv_page;
803}
804
805static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor,
806 size_t bytes)
807{
808 struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs;
809 struct page *page = bvec_iter_page(bvecs, cursor->bvec_iter);
810
811 BUG_ON(bytes > cursor->resid);
812 BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter));
813 cursor->resid -= bytes;
814 bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes);
815
816 if (!cursor->resid)
817 return false; /* no more data */
818
819 if (!bytes || (cursor->bvec_iter.bi_bvec_done &&
820 page == bvec_iter_page(bvecs, cursor->bvec_iter)))
821 return false; /* more bytes to process in this segment */
822
823 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
824 return true;
825}
826
827/*
828 * For a page array, a piece comes from the first page in the array
829 * that has not already been fully consumed.
830 */
831static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
832 size_t length)
833{
834 struct ceph_msg_data *data = cursor->data;
835 int page_count;
836
837 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
838
839 BUG_ON(!data->pages);
840 BUG_ON(!data->length);
841
842 cursor->resid = min(length, data->length);
843 page_count = calc_pages_for(data->alignment, (u64)data->length);
844 cursor->page_offset = data->alignment & ~PAGE_MASK;
845 cursor->page_index = 0;
846 BUG_ON(page_count > (int)USHRT_MAX);
847 cursor->page_count = (unsigned short)page_count;
848 BUG_ON(length > SIZE_MAX - cursor->page_offset);
849}
850
851static struct page *
852ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
853 size_t *page_offset, size_t *length)
854{
855 struct ceph_msg_data *data = cursor->data;
856
857 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
858
859 BUG_ON(cursor->page_index >= cursor->page_count);
860 BUG_ON(cursor->page_offset >= PAGE_SIZE);
861
862 *page_offset = cursor->page_offset;
863 *length = min_t(size_t, cursor->resid, PAGE_SIZE - *page_offset);
864 return data->pages[cursor->page_index];
865}
866
867static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
868 size_t bytes)
869{
870 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
871
872 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
873
874 /* Advance the cursor page offset */
875
876 cursor->resid -= bytes;
877 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
878 if (!bytes || cursor->page_offset)
879 return false; /* more bytes to process in the current page */
880
881 if (!cursor->resid)
882 return false; /* no more data */
883
884 /* Move on to the next page; offset is already at 0 */
885
886 BUG_ON(cursor->page_index >= cursor->page_count);
887 cursor->page_index++;
888 return true;
889}
890
891/*
892 * For a pagelist, a piece is whatever remains to be consumed in the
893 * first page in the list, or the front of the next page.
894 */
895static void
896ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
897 size_t length)
898{
899 struct ceph_msg_data *data = cursor->data;
900 struct ceph_pagelist *pagelist;
901 struct page *page;
902
903 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
904
905 pagelist = data->pagelist;
906 BUG_ON(!pagelist);
907
908 if (!length)
909 return; /* pagelist can be assigned but empty */
910
911 BUG_ON(list_empty(&pagelist->head));
912 page = list_first_entry(&pagelist->head, struct page, lru);
913
914 cursor->resid = min(length, pagelist->length);
915 cursor->page = page;
916 cursor->offset = 0;
917}
918
919static struct page *
920ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
921 size_t *page_offset, size_t *length)
922{
923 struct ceph_msg_data *data = cursor->data;
924 struct ceph_pagelist *pagelist;
925
926 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
927
928 pagelist = data->pagelist;
929 BUG_ON(!pagelist);
930
931 BUG_ON(!cursor->page);
932 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
933
934 /* offset of first page in pagelist is always 0 */
935 *page_offset = cursor->offset & ~PAGE_MASK;
936 *length = min_t(size_t, cursor->resid, PAGE_SIZE - *page_offset);
937 return cursor->page;
938}
939
940static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
941 size_t bytes)
942{
943 struct ceph_msg_data *data = cursor->data;
944 struct ceph_pagelist *pagelist;
945
946 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
947
948 pagelist = data->pagelist;
949 BUG_ON(!pagelist);
950
951 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
952 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
953
954 /* Advance the cursor offset */
955
956 cursor->resid -= bytes;
957 cursor->offset += bytes;
958 /* offset of first page in pagelist is always 0 */
959 if (!bytes || cursor->offset & ~PAGE_MASK)
960 return false; /* more bytes to process in the current page */
961
962 if (!cursor->resid)
963 return false; /* no more data */
964
965 /* Move on to the next page */
966
967 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
968 cursor->page = list_next_entry(cursor->page, lru);
969 return true;
970}
971
972static void ceph_msg_data_iter_cursor_init(struct ceph_msg_data_cursor *cursor,
973 size_t length)
974{
975 struct ceph_msg_data *data = cursor->data;
976
977 cursor->iov_iter = data->iter;
978 cursor->lastlen = 0;
979 iov_iter_truncate(&cursor->iov_iter, length);
980 cursor->resid = iov_iter_count(&cursor->iov_iter);
981}
982
983static struct page *ceph_msg_data_iter_next(struct ceph_msg_data_cursor *cursor,
984 size_t *page_offset, size_t *length)
985{
986 struct page *page;
987 ssize_t len;
988
989 if (cursor->lastlen)
990 iov_iter_revert(&cursor->iov_iter, cursor->lastlen);
991
992 len = iov_iter_get_pages2(&cursor->iov_iter, &page, PAGE_SIZE,
993 1, page_offset);
994 BUG_ON(len < 0);
995
996 cursor->lastlen = len;
997
998 /*
999 * FIXME: The assumption is that the pages represented by the iov_iter
1000 * are pinned, with the references held by the upper-level
1001 * callers, or by virtue of being under writeback. Eventually,
1002 * we'll get an iov_iter_get_pages2 variant that doesn't take
1003 * page refs. Until then, just put the page ref.
1004 */
1005 VM_BUG_ON_PAGE(!PageWriteback(page) && page_count(page) < 2, page);
1006 put_page(page);
1007
1008 *length = min_t(size_t, len, cursor->resid);
1009 return page;
1010}
1011
1012static bool ceph_msg_data_iter_advance(struct ceph_msg_data_cursor *cursor,
1013 size_t bytes)
1014{
1015 BUG_ON(bytes > cursor->resid);
1016 cursor->resid -= bytes;
1017
1018 if (bytes < cursor->lastlen) {
1019 cursor->lastlen -= bytes;
1020 } else {
1021 iov_iter_advance(&cursor->iov_iter, bytes - cursor->lastlen);
1022 cursor->lastlen = 0;
1023 }
1024
1025 return cursor->resid;
1026}
1027
1028/*
1029 * Message data is handled (sent or received) in pieces, where each
1030 * piece resides on a single page. The network layer might not
1031 * consume an entire piece at once. A data item's cursor keeps
1032 * track of which piece is next to process and how much remains to
1033 * be processed in that piece. It also tracks whether the current
1034 * piece is the last one in the data item.
1035 */
1036static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1037{
1038 size_t length = cursor->total_resid;
1039
1040 switch (cursor->data->type) {
1041 case CEPH_MSG_DATA_PAGELIST:
1042 ceph_msg_data_pagelist_cursor_init(cursor, length);
1043 break;
1044 case CEPH_MSG_DATA_PAGES:
1045 ceph_msg_data_pages_cursor_init(cursor, length);
1046 break;
1047#ifdef CONFIG_BLOCK
1048 case CEPH_MSG_DATA_BIO:
1049 ceph_msg_data_bio_cursor_init(cursor, length);
1050 break;
1051#endif /* CONFIG_BLOCK */
1052 case CEPH_MSG_DATA_BVECS:
1053 ceph_msg_data_bvecs_cursor_init(cursor, length);
1054 break;
1055 case CEPH_MSG_DATA_ITER:
1056 ceph_msg_data_iter_cursor_init(cursor, length);
1057 break;
1058 case CEPH_MSG_DATA_NONE:
1059 default:
1060 /* BUG(); */
1061 break;
1062 }
1063 cursor->need_crc = true;
1064}
1065
1066void ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor,
1067 struct ceph_msg *msg, size_t length)
1068{
1069 BUG_ON(!length);
1070 BUG_ON(length > msg->data_length);
1071 BUG_ON(!msg->num_data_items);
1072
1073 cursor->total_resid = length;
1074 cursor->data = msg->data;
1075 cursor->sr_resid = 0;
1076
1077 __ceph_msg_data_cursor_init(cursor);
1078}
1079
1080/*
1081 * Return the page containing the next piece to process for a given
1082 * data item, and supply the page offset and length of that piece.
1083 * Indicate whether this is the last piece in this data item.
1084 */
1085struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1086 size_t *page_offset, size_t *length)
1087{
1088 struct page *page;
1089
1090 switch (cursor->data->type) {
1091 case CEPH_MSG_DATA_PAGELIST:
1092 page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1093 break;
1094 case CEPH_MSG_DATA_PAGES:
1095 page = ceph_msg_data_pages_next(cursor, page_offset, length);
1096 break;
1097#ifdef CONFIG_BLOCK
1098 case CEPH_MSG_DATA_BIO:
1099 page = ceph_msg_data_bio_next(cursor, page_offset, length);
1100 break;
1101#endif /* CONFIG_BLOCK */
1102 case CEPH_MSG_DATA_BVECS:
1103 page = ceph_msg_data_bvecs_next(cursor, page_offset, length);
1104 break;
1105 case CEPH_MSG_DATA_ITER:
1106 page = ceph_msg_data_iter_next(cursor, page_offset, length);
1107 break;
1108 case CEPH_MSG_DATA_NONE:
1109 default:
1110 page = NULL;
1111 break;
1112 }
1113
1114 BUG_ON(!page);
1115 BUG_ON(*page_offset + *length > PAGE_SIZE);
1116 BUG_ON(!*length);
1117 BUG_ON(*length > cursor->resid);
1118
1119 return page;
1120}
1121
1122/*
1123 * Returns true if the result moves the cursor on to the next piece
1124 * of the data item.
1125 */
1126void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor, size_t bytes)
1127{
1128 bool new_piece;
1129
1130 BUG_ON(bytes > cursor->resid);
1131 switch (cursor->data->type) {
1132 case CEPH_MSG_DATA_PAGELIST:
1133 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1134 break;
1135 case CEPH_MSG_DATA_PAGES:
1136 new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1137 break;
1138#ifdef CONFIG_BLOCK
1139 case CEPH_MSG_DATA_BIO:
1140 new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1141 break;
1142#endif /* CONFIG_BLOCK */
1143 case CEPH_MSG_DATA_BVECS:
1144 new_piece = ceph_msg_data_bvecs_advance(cursor, bytes);
1145 break;
1146 case CEPH_MSG_DATA_ITER:
1147 new_piece = ceph_msg_data_iter_advance(cursor, bytes);
1148 break;
1149 case CEPH_MSG_DATA_NONE:
1150 default:
1151 BUG();
1152 break;
1153 }
1154 cursor->total_resid -= bytes;
1155
1156 if (!cursor->resid && cursor->total_resid) {
1157 cursor->data++;
1158 __ceph_msg_data_cursor_init(cursor);
1159 new_piece = true;
1160 }
1161 cursor->need_crc = new_piece;
1162}
1163
1164u32 ceph_crc32c_page(u32 crc, struct page *page, unsigned int page_offset,
1165 unsigned int length)
1166{
1167 char *kaddr;
1168
1169 kaddr = kmap(page);
1170 BUG_ON(kaddr == NULL);
1171 crc = crc32c(crc, kaddr + page_offset, length);
1172 kunmap(page);
1173
1174 return crc;
1175}
1176
1177bool ceph_addr_is_blank(const struct ceph_entity_addr *addr)
1178{
1179 struct sockaddr_storage ss = addr->in_addr; /* align */
1180 struct in_addr *addr4 = &((struct sockaddr_in *)&ss)->sin_addr;
1181 struct in6_addr *addr6 = &((struct sockaddr_in6 *)&ss)->sin6_addr;
1182
1183 switch (ss.ss_family) {
1184 case AF_INET:
1185 return addr4->s_addr == htonl(INADDR_ANY);
1186 case AF_INET6:
1187 return ipv6_addr_any(addr6);
1188 default:
1189 return true;
1190 }
1191}
1192EXPORT_SYMBOL(ceph_addr_is_blank);
1193
1194int ceph_addr_port(const struct ceph_entity_addr *addr)
1195{
1196 switch (get_unaligned(&addr->in_addr.ss_family)) {
1197 case AF_INET:
1198 return ntohs(get_unaligned(&((struct sockaddr_in *)&addr->in_addr)->sin_port));
1199 case AF_INET6:
1200 return ntohs(get_unaligned(&((struct sockaddr_in6 *)&addr->in_addr)->sin6_port));
1201 }
1202 return 0;
1203}
1204
1205void ceph_addr_set_port(struct ceph_entity_addr *addr, int p)
1206{
1207 switch (get_unaligned(&addr->in_addr.ss_family)) {
1208 case AF_INET:
1209 put_unaligned(htons(p), &((struct sockaddr_in *)&addr->in_addr)->sin_port);
1210 break;
1211 case AF_INET6:
1212 put_unaligned(htons(p), &((struct sockaddr_in6 *)&addr->in_addr)->sin6_port);
1213 break;
1214 }
1215}
1216
1217/*
1218 * Unlike other *_pton function semantics, zero indicates success.
1219 */
1220static int ceph_pton(const char *str, size_t len, struct ceph_entity_addr *addr,
1221 char delim, const char **ipend)
1222{
1223 memset(&addr->in_addr, 0, sizeof(addr->in_addr));
1224
1225 if (in4_pton(str, len, (u8 *)&((struct sockaddr_in *)&addr->in_addr)->sin_addr.s_addr, delim, ipend)) {
1226 put_unaligned(AF_INET, &addr->in_addr.ss_family);
1227 return 0;
1228 }
1229
1230 if (in6_pton(str, len, (u8 *)&((struct sockaddr_in6 *)&addr->in_addr)->sin6_addr.s6_addr, delim, ipend)) {
1231 put_unaligned(AF_INET6, &addr->in_addr.ss_family);
1232 return 0;
1233 }
1234
1235 return -EINVAL;
1236}
1237
1238/*
1239 * Extract hostname string and resolve using kernel DNS facility.
1240 */
1241#ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1242static int ceph_dns_resolve_name(const char *name, size_t namelen,
1243 struct ceph_entity_addr *addr, char delim, const char **ipend)
1244{
1245 const char *end, *delim_p;
1246 char *colon_p, *ip_addr = NULL;
1247 int ip_len, ret;
1248
1249 /*
1250 * The end of the hostname occurs immediately preceding the delimiter or
1251 * the port marker (':') where the delimiter takes precedence.
1252 */
1253 delim_p = memchr(name, delim, namelen);
1254 colon_p = memchr(name, ':', namelen);
1255
1256 if (delim_p && colon_p)
1257 end = min(delim_p, colon_p);
1258 else if (!delim_p && colon_p)
1259 end = colon_p;
1260 else {
1261 end = delim_p;
1262 if (!end) /* case: hostname:/ */
1263 end = name + namelen;
1264 }
1265
1266 if (end <= name)
1267 return -EINVAL;
1268
1269 /* do dns_resolve upcall */
1270 ip_len = dns_query(current->nsproxy->net_ns,
1271 NULL, name, end - name, NULL, &ip_addr, NULL, false);
1272 if (ip_len > 0)
1273 ret = ceph_pton(ip_addr, ip_len, addr, -1, NULL);
1274 else
1275 ret = -ESRCH;
1276
1277 kfree(ip_addr);
1278
1279 *ipend = end;
1280
1281 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1282 ret, ret ? "failed" : ceph_pr_addr(addr));
1283
1284 return ret;
1285}
1286#else
1287static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1288 struct ceph_entity_addr *addr, char delim, const char **ipend)
1289{
1290 return -EINVAL;
1291}
1292#endif
1293
1294/*
1295 * Parse a server name (IP or hostname). If a valid IP address is not found
1296 * then try to extract a hostname to resolve using userspace DNS upcall.
1297 */
1298static int ceph_parse_server_name(const char *name, size_t namelen,
1299 struct ceph_entity_addr *addr, char delim, const char **ipend)
1300{
1301 int ret;
1302
1303 ret = ceph_pton(name, namelen, addr, delim, ipend);
1304 if (ret)
1305 ret = ceph_dns_resolve_name(name, namelen, addr, delim, ipend);
1306
1307 return ret;
1308}
1309
1310/*
1311 * Parse an ip[:port] list into an addr array. Use the default
1312 * monitor port if a port isn't specified.
1313 */
1314int ceph_parse_ips(const char *c, const char *end,
1315 struct ceph_entity_addr *addr,
1316 int max_count, int *count, char delim)
1317{
1318 int i, ret = -EINVAL;
1319 const char *p = c;
1320
1321 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1322 for (i = 0; i < max_count; i++) {
1323 char cur_delim = delim;
1324 const char *ipend;
1325 int port;
1326
1327 if (*p == '[') {
1328 cur_delim = ']';
1329 p++;
1330 }
1331
1332 ret = ceph_parse_server_name(p, end - p, &addr[i], cur_delim,
1333 &ipend);
1334 if (ret)
1335 goto bad;
1336 ret = -EINVAL;
1337
1338 p = ipend;
1339
1340 if (cur_delim == ']') {
1341 if (*p != ']') {
1342 dout("missing matching ']'\n");
1343 goto bad;
1344 }
1345 p++;
1346 }
1347
1348 /* port? */
1349 if (p < end && *p == ':') {
1350 port = 0;
1351 p++;
1352 while (p < end && *p >= '0' && *p <= '9') {
1353 port = (port * 10) + (*p - '0');
1354 p++;
1355 }
1356 if (port == 0)
1357 port = CEPH_MON_PORT;
1358 else if (port > 65535)
1359 goto bad;
1360 } else {
1361 port = CEPH_MON_PORT;
1362 }
1363
1364 ceph_addr_set_port(&addr[i], port);
1365 /*
1366 * We want the type to be set according to ms_mode
1367 * option, but options are normally parsed after mon
1368 * addresses. Rather than complicating parsing, set
1369 * to LEGACY and override in build_initial_monmap()
1370 * for mon addresses and ceph_messenger_init() for
1371 * ip option.
1372 */
1373 addr[i].type = CEPH_ENTITY_ADDR_TYPE_LEGACY;
1374 addr[i].nonce = 0;
1375
1376 dout("%s got %s\n", __func__, ceph_pr_addr(&addr[i]));
1377
1378 if (p == end)
1379 break;
1380 if (*p != delim)
1381 goto bad;
1382 p++;
1383 }
1384
1385 if (p != end)
1386 goto bad;
1387
1388 if (count)
1389 *count = i + 1;
1390 return 0;
1391
1392bad:
1393 return ret;
1394}
1395
1396/*
1397 * Process message. This happens in the worker thread. The callback should
1398 * be careful not to do anything that waits on other incoming messages or it
1399 * may deadlock.
1400 */
1401void ceph_con_process_message(struct ceph_connection *con)
1402{
1403 struct ceph_msg *msg = con->in_msg;
1404
1405 BUG_ON(con->in_msg->con != con);
1406 con->in_msg = NULL;
1407
1408 /* if first message, set peer_name */
1409 if (con->peer_name.type == 0)
1410 con->peer_name = msg->hdr.src;
1411
1412 con->in_seq++;
1413 mutex_unlock(&con->mutex);
1414
1415 dout("===== %p %llu from %s%lld %d=%s len %d+%d+%d (%u %u %u) =====\n",
1416 msg, le64_to_cpu(msg->hdr.seq),
1417 ENTITY_NAME(msg->hdr.src),
1418 le16_to_cpu(msg->hdr.type),
1419 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1420 le32_to_cpu(msg->hdr.front_len),
1421 le32_to_cpu(msg->hdr.middle_len),
1422 le32_to_cpu(msg->hdr.data_len),
1423 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1424 con->ops->dispatch(con, msg);
1425
1426 mutex_lock(&con->mutex);
1427}
1428
1429/*
1430 * Atomically queue work on a connection after the specified delay.
1431 * Bump @con reference to avoid races with connection teardown.
1432 * Returns 0 if work was queued, or an error code otherwise.
1433 */
1434static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
1435{
1436 if (!con->ops->get(con)) {
1437 dout("%s %p ref count 0\n", __func__, con);
1438 return -ENOENT;
1439 }
1440
1441 if (delay >= HZ)
1442 delay = round_jiffies_relative(delay);
1443
1444 dout("%s %p %lu\n", __func__, con, delay);
1445 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
1446 dout("%s %p - already queued\n", __func__, con);
1447 con->ops->put(con);
1448 return -EBUSY;
1449 }
1450
1451 return 0;
1452}
1453
1454static void queue_con(struct ceph_connection *con)
1455{
1456 (void) queue_con_delay(con, 0);
1457}
1458
1459static void cancel_con(struct ceph_connection *con)
1460{
1461 if (cancel_delayed_work(&con->work)) {
1462 dout("%s %p\n", __func__, con);
1463 con->ops->put(con);
1464 }
1465}
1466
1467static bool con_sock_closed(struct ceph_connection *con)
1468{
1469 if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_SOCK_CLOSED))
1470 return false;
1471
1472#define CASE(x) \
1473 case CEPH_CON_S_ ## x: \
1474 con->error_msg = "socket closed (con state " #x ")"; \
1475 break;
1476
1477 switch (con->state) {
1478 CASE(CLOSED);
1479 CASE(PREOPEN);
1480 CASE(V1_BANNER);
1481 CASE(V1_CONNECT_MSG);
1482 CASE(V2_BANNER_PREFIX);
1483 CASE(V2_BANNER_PAYLOAD);
1484 CASE(V2_HELLO);
1485 CASE(V2_AUTH);
1486 CASE(V2_AUTH_SIGNATURE);
1487 CASE(V2_SESSION_CONNECT);
1488 CASE(V2_SESSION_RECONNECT);
1489 CASE(OPEN);
1490 CASE(STANDBY);
1491 default:
1492 BUG();
1493 }
1494#undef CASE
1495
1496 return true;
1497}
1498
1499static bool con_backoff(struct ceph_connection *con)
1500{
1501 int ret;
1502
1503 if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_BACKOFF))
1504 return false;
1505
1506 ret = queue_con_delay(con, con->delay);
1507 if (ret) {
1508 dout("%s: con %p FAILED to back off %lu\n", __func__,
1509 con, con->delay);
1510 BUG_ON(ret == -ENOENT);
1511 ceph_con_flag_set(con, CEPH_CON_F_BACKOFF);
1512 }
1513
1514 return true;
1515}
1516
1517/* Finish fault handling; con->mutex must *not* be held here */
1518
1519static void con_fault_finish(struct ceph_connection *con)
1520{
1521 dout("%s %p\n", __func__, con);
1522
1523 /*
1524 * in case we faulted due to authentication, invalidate our
1525 * current tickets so that we can get new ones.
1526 */
1527 if (con->v1.auth_retry) {
1528 dout("auth_retry %d, invalidating\n", con->v1.auth_retry);
1529 if (con->ops->invalidate_authorizer)
1530 con->ops->invalidate_authorizer(con);
1531 con->v1.auth_retry = 0;
1532 }
1533
1534 if (con->ops->fault)
1535 con->ops->fault(con);
1536}
1537
1538/*
1539 * Do some work on a connection. Drop a connection ref when we're done.
1540 */
1541static void ceph_con_workfn(struct work_struct *work)
1542{
1543 struct ceph_connection *con = container_of(work, struct ceph_connection,
1544 work.work);
1545 bool fault;
1546
1547 mutex_lock(&con->mutex);
1548 while (true) {
1549 int ret;
1550
1551 if ((fault = con_sock_closed(con))) {
1552 dout("%s: con %p SOCK_CLOSED\n", __func__, con);
1553 break;
1554 }
1555 if (con_backoff(con)) {
1556 dout("%s: con %p BACKOFF\n", __func__, con);
1557 break;
1558 }
1559 if (con->state == CEPH_CON_S_STANDBY) {
1560 dout("%s: con %p STANDBY\n", __func__, con);
1561 break;
1562 }
1563 if (con->state == CEPH_CON_S_CLOSED) {
1564 dout("%s: con %p CLOSED\n", __func__, con);
1565 BUG_ON(con->sock);
1566 break;
1567 }
1568 if (con->state == CEPH_CON_S_PREOPEN) {
1569 dout("%s: con %p PREOPEN\n", __func__, con);
1570 BUG_ON(con->sock);
1571 }
1572
1573 if (ceph_msgr2(from_msgr(con->msgr)))
1574 ret = ceph_con_v2_try_read(con);
1575 else
1576 ret = ceph_con_v1_try_read(con);
1577 if (ret < 0) {
1578 if (ret == -EAGAIN)
1579 continue;
1580 if (!con->error_msg)
1581 con->error_msg = "socket error on read";
1582 fault = true;
1583 break;
1584 }
1585
1586 if (ceph_msgr2(from_msgr(con->msgr)))
1587 ret = ceph_con_v2_try_write(con);
1588 else
1589 ret = ceph_con_v1_try_write(con);
1590 if (ret < 0) {
1591 if (ret == -EAGAIN)
1592 continue;
1593 if (!con->error_msg)
1594 con->error_msg = "socket error on write";
1595 fault = true;
1596 }
1597
1598 break; /* If we make it to here, we're done */
1599 }
1600 if (fault)
1601 con_fault(con);
1602 mutex_unlock(&con->mutex);
1603
1604 if (fault)
1605 con_fault_finish(con);
1606
1607 con->ops->put(con);
1608}
1609
1610/*
1611 * Generic error/fault handler. A retry mechanism is used with
1612 * exponential backoff
1613 */
1614static void con_fault(struct ceph_connection *con)
1615{
1616 dout("fault %p state %d to peer %s\n",
1617 con, con->state, ceph_pr_addr(&con->peer_addr));
1618
1619 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
1620 ceph_pr_addr(&con->peer_addr), con->error_msg);
1621 con->error_msg = NULL;
1622
1623 WARN_ON(con->state == CEPH_CON_S_STANDBY ||
1624 con->state == CEPH_CON_S_CLOSED);
1625
1626 ceph_con_reset_protocol(con);
1627
1628 if (ceph_con_flag_test(con, CEPH_CON_F_LOSSYTX)) {
1629 dout("fault on LOSSYTX channel, marking CLOSED\n");
1630 con->state = CEPH_CON_S_CLOSED;
1631 return;
1632 }
1633
1634 /* Requeue anything that hasn't been acked */
1635 list_splice_init(&con->out_sent, &con->out_queue);
1636
1637 /* If there are no messages queued or keepalive pending, place
1638 * the connection in a STANDBY state */
1639 if (list_empty(&con->out_queue) &&
1640 !ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING)) {
1641 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
1642 ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
1643 con->state = CEPH_CON_S_STANDBY;
1644 } else {
1645 /* retry after a delay. */
1646 con->state = CEPH_CON_S_PREOPEN;
1647 if (!con->delay) {
1648 con->delay = BASE_DELAY_INTERVAL;
1649 } else if (con->delay < MAX_DELAY_INTERVAL) {
1650 con->delay *= 2;
1651 if (con->delay > MAX_DELAY_INTERVAL)
1652 con->delay = MAX_DELAY_INTERVAL;
1653 }
1654 ceph_con_flag_set(con, CEPH_CON_F_BACKOFF);
1655 queue_con(con);
1656 }
1657}
1658
1659void ceph_messenger_reset_nonce(struct ceph_messenger *msgr)
1660{
1661 u32 nonce = le32_to_cpu(msgr->inst.addr.nonce) + 1000000;
1662 msgr->inst.addr.nonce = cpu_to_le32(nonce);
1663 ceph_encode_my_addr(msgr);
1664}
1665
1666/*
1667 * initialize a new messenger instance
1668 */
1669void ceph_messenger_init(struct ceph_messenger *msgr,
1670 struct ceph_entity_addr *myaddr)
1671{
1672 spin_lock_init(&msgr->global_seq_lock);
1673
1674 if (myaddr) {
1675 memcpy(&msgr->inst.addr.in_addr, &myaddr->in_addr,
1676 sizeof(msgr->inst.addr.in_addr));
1677 ceph_addr_set_port(&msgr->inst.addr, 0);
1678 }
1679
1680 /*
1681 * Since nautilus, clients are identified using type ANY.
1682 * For msgr1, ceph_encode_banner_addr() munges it to NONE.
1683 */
1684 msgr->inst.addr.type = CEPH_ENTITY_ADDR_TYPE_ANY;
1685
1686 /* generate a random non-zero nonce */
1687 do {
1688 get_random_bytes(&msgr->inst.addr.nonce,
1689 sizeof(msgr->inst.addr.nonce));
1690 } while (!msgr->inst.addr.nonce);
1691 ceph_encode_my_addr(msgr);
1692
1693 atomic_set(&msgr->stopping, 0);
1694 write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
1695
1696 dout("%s %p\n", __func__, msgr);
1697}
1698
1699void ceph_messenger_fini(struct ceph_messenger *msgr)
1700{
1701 put_net(read_pnet(&msgr->net));
1702}
1703
1704static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
1705{
1706 if (msg->con)
1707 msg->con->ops->put(msg->con);
1708
1709 msg->con = con ? con->ops->get(con) : NULL;
1710 BUG_ON(msg->con != con);
1711}
1712
1713static void clear_standby(struct ceph_connection *con)
1714{
1715 /* come back from STANDBY? */
1716 if (con->state == CEPH_CON_S_STANDBY) {
1717 dout("clear_standby %p and ++connect_seq\n", con);
1718 con->state = CEPH_CON_S_PREOPEN;
1719 con->v1.connect_seq++;
1720 WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING));
1721 WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING));
1722 }
1723}
1724
1725/*
1726 * Queue up an outgoing message on the given connection.
1727 *
1728 * Consumes a ref on @msg.
1729 */
1730void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
1731{
1732 /* set src+dst */
1733 msg->hdr.src = con->msgr->inst.name;
1734 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
1735 msg->needs_out_seq = true;
1736
1737 mutex_lock(&con->mutex);
1738
1739 if (con->state == CEPH_CON_S_CLOSED) {
1740 dout("con_send %p closed, dropping %p\n", con, msg);
1741 ceph_msg_put(msg);
1742 mutex_unlock(&con->mutex);
1743 return;
1744 }
1745
1746 msg_con_set(msg, con);
1747
1748 BUG_ON(!list_empty(&msg->list_head));
1749 list_add_tail(&msg->list_head, &con->out_queue);
1750 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
1751 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
1752 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1753 le32_to_cpu(msg->hdr.front_len),
1754 le32_to_cpu(msg->hdr.middle_len),
1755 le32_to_cpu(msg->hdr.data_len));
1756
1757 clear_standby(con);
1758 mutex_unlock(&con->mutex);
1759
1760 /* if there wasn't anything waiting to send before, queue
1761 * new work */
1762 if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING))
1763 queue_con(con);
1764}
1765EXPORT_SYMBOL(ceph_con_send);
1766
1767/*
1768 * Revoke a message that was previously queued for send
1769 */
1770void ceph_msg_revoke(struct ceph_msg *msg)
1771{
1772 struct ceph_connection *con = msg->con;
1773
1774 if (!con) {
1775 dout("%s msg %p null con\n", __func__, msg);
1776 return; /* Message not in our possession */
1777 }
1778
1779 mutex_lock(&con->mutex);
1780 if (list_empty(&msg->list_head)) {
1781 WARN_ON(con->out_msg == msg);
1782 dout("%s con %p msg %p not linked\n", __func__, con, msg);
1783 mutex_unlock(&con->mutex);
1784 return;
1785 }
1786
1787 dout("%s con %p msg %p was linked\n", __func__, con, msg);
1788 msg->hdr.seq = 0;
1789 ceph_msg_remove(msg);
1790
1791 if (con->out_msg == msg) {
1792 WARN_ON(con->state != CEPH_CON_S_OPEN);
1793 dout("%s con %p msg %p was sending\n", __func__, con, msg);
1794 if (ceph_msgr2(from_msgr(con->msgr)))
1795 ceph_con_v2_revoke(con);
1796 else
1797 ceph_con_v1_revoke(con);
1798 ceph_msg_put(con->out_msg);
1799 con->out_msg = NULL;
1800 } else {
1801 dout("%s con %p msg %p not current, out_msg %p\n", __func__,
1802 con, msg, con->out_msg);
1803 }
1804 mutex_unlock(&con->mutex);
1805}
1806
1807/*
1808 * Revoke a message that we may be reading data into
1809 */
1810void ceph_msg_revoke_incoming(struct ceph_msg *msg)
1811{
1812 struct ceph_connection *con = msg->con;
1813
1814 if (!con) {
1815 dout("%s msg %p null con\n", __func__, msg);
1816 return; /* Message not in our possession */
1817 }
1818
1819 mutex_lock(&con->mutex);
1820 if (con->in_msg == msg) {
1821 WARN_ON(con->state != CEPH_CON_S_OPEN);
1822 dout("%s con %p msg %p was recving\n", __func__, con, msg);
1823 if (ceph_msgr2(from_msgr(con->msgr)))
1824 ceph_con_v2_revoke_incoming(con);
1825 else
1826 ceph_con_v1_revoke_incoming(con);
1827 ceph_msg_put(con->in_msg);
1828 con->in_msg = NULL;
1829 } else {
1830 dout("%s con %p msg %p not current, in_msg %p\n", __func__,
1831 con, msg, con->in_msg);
1832 }
1833 mutex_unlock(&con->mutex);
1834}
1835
1836/*
1837 * Queue a keepalive byte to ensure the tcp connection is alive.
1838 */
1839void ceph_con_keepalive(struct ceph_connection *con)
1840{
1841 dout("con_keepalive %p\n", con);
1842 mutex_lock(&con->mutex);
1843 clear_standby(con);
1844 ceph_con_flag_set(con, CEPH_CON_F_KEEPALIVE_PENDING);
1845 mutex_unlock(&con->mutex);
1846
1847 if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING))
1848 queue_con(con);
1849}
1850EXPORT_SYMBOL(ceph_con_keepalive);
1851
1852bool ceph_con_keepalive_expired(struct ceph_connection *con,
1853 unsigned long interval)
1854{
1855 if (interval > 0 &&
1856 (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
1857 struct timespec64 now;
1858 struct timespec64 ts;
1859 ktime_get_real_ts64(&now);
1860 jiffies_to_timespec64(interval, &ts);
1861 ts = timespec64_add(con->last_keepalive_ack, ts);
1862 return timespec64_compare(&now, &ts) >= 0;
1863 }
1864 return false;
1865}
1866
1867static struct ceph_msg_data *ceph_msg_data_add(struct ceph_msg *msg)
1868{
1869 BUG_ON(msg->num_data_items >= msg->max_data_items);
1870 return &msg->data[msg->num_data_items++];
1871}
1872
1873static void ceph_msg_data_destroy(struct ceph_msg_data *data)
1874{
1875 if (data->type == CEPH_MSG_DATA_PAGES && data->own_pages) {
1876 int num_pages = calc_pages_for(data->alignment, data->length);
1877 ceph_release_page_vector(data->pages, num_pages);
1878 } else if (data->type == CEPH_MSG_DATA_PAGELIST) {
1879 ceph_pagelist_release(data->pagelist);
1880 }
1881}
1882
1883void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
1884 size_t length, size_t alignment, bool own_pages)
1885{
1886 struct ceph_msg_data *data;
1887
1888 BUG_ON(!pages);
1889 BUG_ON(!length);
1890
1891 data = ceph_msg_data_add(msg);
1892 data->type = CEPH_MSG_DATA_PAGES;
1893 data->pages = pages;
1894 data->length = length;
1895 data->alignment = alignment & ~PAGE_MASK;
1896 data->own_pages = own_pages;
1897
1898 msg->data_length += length;
1899}
1900EXPORT_SYMBOL(ceph_msg_data_add_pages);
1901
1902void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
1903 struct ceph_pagelist *pagelist)
1904{
1905 struct ceph_msg_data *data;
1906
1907 BUG_ON(!pagelist);
1908 BUG_ON(!pagelist->length);
1909
1910 data = ceph_msg_data_add(msg);
1911 data->type = CEPH_MSG_DATA_PAGELIST;
1912 refcount_inc(&pagelist->refcnt);
1913 data->pagelist = pagelist;
1914
1915 msg->data_length += pagelist->length;
1916}
1917EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
1918
1919#ifdef CONFIG_BLOCK
1920void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos,
1921 u32 length)
1922{
1923 struct ceph_msg_data *data;
1924
1925 data = ceph_msg_data_add(msg);
1926 data->type = CEPH_MSG_DATA_BIO;
1927 data->bio_pos = *bio_pos;
1928 data->bio_length = length;
1929
1930 msg->data_length += length;
1931}
1932EXPORT_SYMBOL(ceph_msg_data_add_bio);
1933#endif /* CONFIG_BLOCK */
1934
1935void ceph_msg_data_add_bvecs(struct ceph_msg *msg,
1936 struct ceph_bvec_iter *bvec_pos)
1937{
1938 struct ceph_msg_data *data;
1939
1940 data = ceph_msg_data_add(msg);
1941 data->type = CEPH_MSG_DATA_BVECS;
1942 data->bvec_pos = *bvec_pos;
1943
1944 msg->data_length += bvec_pos->iter.bi_size;
1945}
1946EXPORT_SYMBOL(ceph_msg_data_add_bvecs);
1947
1948void ceph_msg_data_add_iter(struct ceph_msg *msg,
1949 struct iov_iter *iter)
1950{
1951 struct ceph_msg_data *data;
1952
1953 data = ceph_msg_data_add(msg);
1954 data->type = CEPH_MSG_DATA_ITER;
1955 data->iter = *iter;
1956
1957 msg->data_length += iov_iter_count(&data->iter);
1958}
1959
1960/*
1961 * construct a new message with given type, size
1962 * the new msg has a ref count of 1.
1963 */
1964struct ceph_msg *ceph_msg_new2(int type, int front_len, int max_data_items,
1965 gfp_t flags, bool can_fail)
1966{
1967 struct ceph_msg *m;
1968
1969 m = kmem_cache_zalloc(ceph_msg_cache, flags);
1970 if (m == NULL)
1971 goto out;
1972
1973 m->hdr.type = cpu_to_le16(type);
1974 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
1975 m->hdr.front_len = cpu_to_le32(front_len);
1976
1977 INIT_LIST_HEAD(&m->list_head);
1978 kref_init(&m->kref);
1979
1980 /* front */
1981 if (front_len) {
1982 m->front.iov_base = kvmalloc(front_len, flags);
1983 if (m->front.iov_base == NULL) {
1984 dout("ceph_msg_new can't allocate %d bytes\n",
1985 front_len);
1986 goto out2;
1987 }
1988 } else {
1989 m->front.iov_base = NULL;
1990 }
1991 m->front_alloc_len = m->front.iov_len = front_len;
1992
1993 if (max_data_items) {
1994 m->data = kmalloc_array(max_data_items, sizeof(*m->data),
1995 flags);
1996 if (!m->data)
1997 goto out2;
1998
1999 m->max_data_items = max_data_items;
2000 }
2001
2002 dout("ceph_msg_new %p front %d\n", m, front_len);
2003 return m;
2004
2005out2:
2006 ceph_msg_put(m);
2007out:
2008 if (!can_fail) {
2009 pr_err("msg_new can't create type %d front %d\n", type,
2010 front_len);
2011 WARN_ON(1);
2012 } else {
2013 dout("msg_new can't create type %d front %d\n", type,
2014 front_len);
2015 }
2016 return NULL;
2017}
2018EXPORT_SYMBOL(ceph_msg_new2);
2019
2020struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2021 bool can_fail)
2022{
2023 return ceph_msg_new2(type, front_len, 0, flags, can_fail);
2024}
2025EXPORT_SYMBOL(ceph_msg_new);
2026
2027/*
2028 * Allocate "middle" portion of a message, if it is needed and wasn't
2029 * allocated by alloc_msg. This allows us to read a small fixed-size
2030 * per-type header in the front and then gracefully fail (i.e.,
2031 * propagate the error to the caller based on info in the front) when
2032 * the middle is too large.
2033 */
2034static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2035{
2036 int type = le16_to_cpu(msg->hdr.type);
2037 int middle_len = le32_to_cpu(msg->hdr.middle_len);
2038
2039 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2040 ceph_msg_type_name(type), middle_len);
2041 BUG_ON(!middle_len);
2042 BUG_ON(msg->middle);
2043
2044 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2045 if (!msg->middle)
2046 return -ENOMEM;
2047 return 0;
2048}
2049
2050/*
2051 * Allocate a message for receiving an incoming message on a
2052 * connection, and save the result in con->in_msg. Uses the
2053 * connection's private alloc_msg op if available.
2054 *
2055 * Returns 0 on success, or a negative error code.
2056 *
2057 * On success, if we set *skip = 1:
2058 * - the next message should be skipped and ignored.
2059 * - con->in_msg == NULL
2060 * or if we set *skip = 0:
2061 * - con->in_msg is non-null.
2062 * On error (ENOMEM, EAGAIN, ...),
2063 * - con->in_msg == NULL
2064 */
2065int ceph_con_in_msg_alloc(struct ceph_connection *con,
2066 struct ceph_msg_header *hdr, int *skip)
2067{
2068 int middle_len = le32_to_cpu(hdr->middle_len);
2069 struct ceph_msg *msg;
2070 int ret = 0;
2071
2072 BUG_ON(con->in_msg != NULL);
2073 BUG_ON(!con->ops->alloc_msg);
2074
2075 mutex_unlock(&con->mutex);
2076 msg = con->ops->alloc_msg(con, hdr, skip);
2077 mutex_lock(&con->mutex);
2078 if (con->state != CEPH_CON_S_OPEN) {
2079 if (msg)
2080 ceph_msg_put(msg);
2081 return -EAGAIN;
2082 }
2083 if (msg) {
2084 BUG_ON(*skip);
2085 msg_con_set(msg, con);
2086 con->in_msg = msg;
2087 } else {
2088 /*
2089 * Null message pointer means either we should skip
2090 * this message or we couldn't allocate memory. The
2091 * former is not an error.
2092 */
2093 if (*skip)
2094 return 0;
2095
2096 con->error_msg = "error allocating memory for incoming message";
2097 return -ENOMEM;
2098 }
2099 memcpy(&con->in_msg->hdr, hdr, sizeof(*hdr));
2100
2101 if (middle_len && !con->in_msg->middle) {
2102 ret = ceph_alloc_middle(con, con->in_msg);
2103 if (ret < 0) {
2104 ceph_msg_put(con->in_msg);
2105 con->in_msg = NULL;
2106 }
2107 }
2108
2109 return ret;
2110}
2111
2112void ceph_con_get_out_msg(struct ceph_connection *con)
2113{
2114 struct ceph_msg *msg;
2115
2116 BUG_ON(list_empty(&con->out_queue));
2117 msg = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
2118 WARN_ON(msg->con != con);
2119
2120 /*
2121 * Put the message on "sent" list using a ref from ceph_con_send().
2122 * It is put when the message is acked or revoked.
2123 */
2124 list_move_tail(&msg->list_head, &con->out_sent);
2125
2126 /*
2127 * Only assign outgoing seq # if we haven't sent this message
2128 * yet. If it is requeued, resend with it's original seq.
2129 */
2130 if (msg->needs_out_seq) {
2131 msg->hdr.seq = cpu_to_le64(++con->out_seq);
2132 msg->needs_out_seq = false;
2133
2134 if (con->ops->reencode_message)
2135 con->ops->reencode_message(msg);
2136 }
2137
2138 /*
2139 * Get a ref for out_msg. It is put when we are done sending the
2140 * message or in case of a fault.
2141 */
2142 WARN_ON(con->out_msg);
2143 con->out_msg = ceph_msg_get(msg);
2144}
2145
2146/*
2147 * Free a generically kmalloc'd message.
2148 */
2149static void ceph_msg_free(struct ceph_msg *m)
2150{
2151 dout("%s %p\n", __func__, m);
2152 kvfree(m->front.iov_base);
2153 kfree(m->data);
2154 kmem_cache_free(ceph_msg_cache, m);
2155}
2156
2157static void ceph_msg_release(struct kref *kref)
2158{
2159 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2160 int i;
2161
2162 dout("%s %p\n", __func__, m);
2163 WARN_ON(!list_empty(&m->list_head));
2164
2165 msg_con_set(m, NULL);
2166
2167 /* drop middle, data, if any */
2168 if (m->middle) {
2169 ceph_buffer_put(m->middle);
2170 m->middle = NULL;
2171 }
2172
2173 for (i = 0; i < m->num_data_items; i++)
2174 ceph_msg_data_destroy(&m->data[i]);
2175
2176 if (m->pool)
2177 ceph_msgpool_put(m->pool, m);
2178 else
2179 ceph_msg_free(m);
2180}
2181
2182struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
2183{
2184 dout("%s %p (was %d)\n", __func__, msg,
2185 kref_read(&msg->kref));
2186 kref_get(&msg->kref);
2187 return msg;
2188}
2189EXPORT_SYMBOL(ceph_msg_get);
2190
2191void ceph_msg_put(struct ceph_msg *msg)
2192{
2193 dout("%s %p (was %d)\n", __func__, msg,
2194 kref_read(&msg->kref));
2195 kref_put(&msg->kref, ceph_msg_release);
2196}
2197EXPORT_SYMBOL(ceph_msg_put);
2198
2199void ceph_msg_dump(struct ceph_msg *msg)
2200{
2201 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
2202 msg->front_alloc_len, msg->data_length);
2203 print_hex_dump(KERN_DEBUG, "header: ",
2204 DUMP_PREFIX_OFFSET, 16, 1,
2205 &msg->hdr, sizeof(msg->hdr), true);
2206 print_hex_dump(KERN_DEBUG, " front: ",
2207 DUMP_PREFIX_OFFSET, 16, 1,
2208 msg->front.iov_base, msg->front.iov_len, true);
2209 if (msg->middle)
2210 print_hex_dump(KERN_DEBUG, "middle: ",
2211 DUMP_PREFIX_OFFSET, 16, 1,
2212 msg->middle->vec.iov_base,
2213 msg->middle->vec.iov_len, true);
2214 print_hex_dump(KERN_DEBUG, "footer: ",
2215 DUMP_PREFIX_OFFSET, 16, 1,
2216 &msg->footer, sizeof(msg->footer), true);
2217}
2218EXPORT_SYMBOL(ceph_msg_dump);