Loading...
1// SPDX-License-Identifier: GPL-2.0
2#include <linux/ceph/ceph_debug.h>
3
4#include <linux/crc32c.h>
5#include <linux/ctype.h>
6#include <linux/highmem.h>
7#include <linux/inet.h>
8#include <linux/kthread.h>
9#include <linux/net.h>
10#include <linux/nsproxy.h>
11#include <linux/sched/mm.h>
12#include <linux/slab.h>
13#include <linux/socket.h>
14#include <linux/string.h>
15#ifdef CONFIG_BLOCK
16#include <linux/bio.h>
17#endif /* CONFIG_BLOCK */
18#include <linux/dns_resolver.h>
19#include <net/tcp.h>
20
21#include <linux/ceph/ceph_features.h>
22#include <linux/ceph/libceph.h>
23#include <linux/ceph/messenger.h>
24#include <linux/ceph/decode.h>
25#include <linux/ceph/pagelist.h>
26#include <linux/export.h>
27
28/*
29 * Ceph uses the messenger to exchange ceph_msg messages with other
30 * hosts in the system. The messenger provides ordered and reliable
31 * delivery. We tolerate TCP disconnects by reconnecting (with
32 * exponential backoff) in the case of a fault (disconnection, bad
33 * crc, protocol error). Acks allow sent messages to be discarded by
34 * the sender.
35 */
36
37/*
38 * We track the state of the socket on a given connection using
39 * values defined below. The transition to a new socket state is
40 * handled by a function which verifies we aren't coming from an
41 * unexpected state.
42 *
43 * --------
44 * | NEW* | transient initial state
45 * --------
46 * | con_sock_state_init()
47 * v
48 * ----------
49 * | CLOSED | initialized, but no socket (and no
50 * ---------- TCP connection)
51 * ^ \
52 * | \ con_sock_state_connecting()
53 * | ----------------------
54 * | \
55 * + con_sock_state_closed() \
56 * |+--------------------------- \
57 * | \ \ \
58 * | ----------- \ \
59 * | | CLOSING | socket event; \ \
60 * | ----------- await close \ \
61 * | ^ \ |
62 * | | \ |
63 * | + con_sock_state_closing() \ |
64 * | / \ | |
65 * | / --------------- | |
66 * | / \ v v
67 * | / --------------
68 * | / -----------------| CONNECTING | socket created, TCP
69 * | | / -------------- connect initiated
70 * | | | con_sock_state_connected()
71 * | | v
72 * -------------
73 * | CONNECTED | TCP connection established
74 * -------------
75 *
76 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
77 */
78
79#define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
80#define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
81#define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
82#define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
83#define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
84
85static bool con_flag_valid(unsigned long con_flag)
86{
87 switch (con_flag) {
88 case CEPH_CON_F_LOSSYTX:
89 case CEPH_CON_F_KEEPALIVE_PENDING:
90 case CEPH_CON_F_WRITE_PENDING:
91 case CEPH_CON_F_SOCK_CLOSED:
92 case CEPH_CON_F_BACKOFF:
93 return true;
94 default:
95 return false;
96 }
97}
98
99void ceph_con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
100{
101 BUG_ON(!con_flag_valid(con_flag));
102
103 clear_bit(con_flag, &con->flags);
104}
105
106void ceph_con_flag_set(struct ceph_connection *con, unsigned long con_flag)
107{
108 BUG_ON(!con_flag_valid(con_flag));
109
110 set_bit(con_flag, &con->flags);
111}
112
113bool ceph_con_flag_test(struct ceph_connection *con, unsigned long con_flag)
114{
115 BUG_ON(!con_flag_valid(con_flag));
116
117 return test_bit(con_flag, &con->flags);
118}
119
120bool ceph_con_flag_test_and_clear(struct ceph_connection *con,
121 unsigned long con_flag)
122{
123 BUG_ON(!con_flag_valid(con_flag));
124
125 return test_and_clear_bit(con_flag, &con->flags);
126}
127
128bool ceph_con_flag_test_and_set(struct ceph_connection *con,
129 unsigned long con_flag)
130{
131 BUG_ON(!con_flag_valid(con_flag));
132
133 return test_and_set_bit(con_flag, &con->flags);
134}
135
136/* Slab caches for frequently-allocated structures */
137
138static struct kmem_cache *ceph_msg_cache;
139
140#ifdef CONFIG_LOCKDEP
141static struct lock_class_key socket_class;
142#endif
143
144static void queue_con(struct ceph_connection *con);
145static void cancel_con(struct ceph_connection *con);
146static void ceph_con_workfn(struct work_struct *);
147static void con_fault(struct ceph_connection *con);
148
149/*
150 * Nicely render a sockaddr as a string. An array of formatted
151 * strings is used, to approximate reentrancy.
152 */
153#define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
154#define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
155#define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
156#define MAX_ADDR_STR_LEN 64 /* 54 is enough */
157
158static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
159static atomic_t addr_str_seq = ATOMIC_INIT(0);
160
161struct page *ceph_zero_page; /* used in certain error cases */
162
163const char *ceph_pr_addr(const struct ceph_entity_addr *addr)
164{
165 int i;
166 char *s;
167 struct sockaddr_storage ss = addr->in_addr; /* align */
168 struct sockaddr_in *in4 = (struct sockaddr_in *)&ss;
169 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *)&ss;
170
171 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
172 s = addr_str[i];
173
174 switch (ss.ss_family) {
175 case AF_INET:
176 snprintf(s, MAX_ADDR_STR_LEN, "(%d)%pI4:%hu",
177 le32_to_cpu(addr->type), &in4->sin_addr,
178 ntohs(in4->sin_port));
179 break;
180
181 case AF_INET6:
182 snprintf(s, MAX_ADDR_STR_LEN, "(%d)[%pI6c]:%hu",
183 le32_to_cpu(addr->type), &in6->sin6_addr,
184 ntohs(in6->sin6_port));
185 break;
186
187 default:
188 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
189 ss.ss_family);
190 }
191
192 return s;
193}
194EXPORT_SYMBOL(ceph_pr_addr);
195
196void ceph_encode_my_addr(struct ceph_messenger *msgr)
197{
198 if (!ceph_msgr2(from_msgr(msgr))) {
199 memcpy(&msgr->my_enc_addr, &msgr->inst.addr,
200 sizeof(msgr->my_enc_addr));
201 ceph_encode_banner_addr(&msgr->my_enc_addr);
202 }
203}
204
205/*
206 * work queue for all reading and writing to/from the socket.
207 */
208static struct workqueue_struct *ceph_msgr_wq;
209
210static int ceph_msgr_slab_init(void)
211{
212 BUG_ON(ceph_msg_cache);
213 ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
214 if (!ceph_msg_cache)
215 return -ENOMEM;
216
217 return 0;
218}
219
220static void ceph_msgr_slab_exit(void)
221{
222 BUG_ON(!ceph_msg_cache);
223 kmem_cache_destroy(ceph_msg_cache);
224 ceph_msg_cache = NULL;
225}
226
227static void _ceph_msgr_exit(void)
228{
229 if (ceph_msgr_wq) {
230 destroy_workqueue(ceph_msgr_wq);
231 ceph_msgr_wq = NULL;
232 }
233
234 BUG_ON(!ceph_zero_page);
235 put_page(ceph_zero_page);
236 ceph_zero_page = NULL;
237
238 ceph_msgr_slab_exit();
239}
240
241int __init ceph_msgr_init(void)
242{
243 if (ceph_msgr_slab_init())
244 return -ENOMEM;
245
246 BUG_ON(ceph_zero_page);
247 ceph_zero_page = ZERO_PAGE(0);
248 get_page(ceph_zero_page);
249
250 /*
251 * The number of active work items is limited by the number of
252 * connections, so leave @max_active at default.
253 */
254 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
255 if (ceph_msgr_wq)
256 return 0;
257
258 pr_err("msgr_init failed to create workqueue\n");
259 _ceph_msgr_exit();
260
261 return -ENOMEM;
262}
263
264void ceph_msgr_exit(void)
265{
266 BUG_ON(ceph_msgr_wq == NULL);
267
268 _ceph_msgr_exit();
269}
270
271void ceph_msgr_flush(void)
272{
273 flush_workqueue(ceph_msgr_wq);
274}
275EXPORT_SYMBOL(ceph_msgr_flush);
276
277/* Connection socket state transition functions */
278
279static void con_sock_state_init(struct ceph_connection *con)
280{
281 int old_state;
282
283 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
284 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
285 printk("%s: unexpected old state %d\n", __func__, old_state);
286 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
287 CON_SOCK_STATE_CLOSED);
288}
289
290static void con_sock_state_connecting(struct ceph_connection *con)
291{
292 int old_state;
293
294 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
295 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
296 printk("%s: unexpected old state %d\n", __func__, old_state);
297 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
298 CON_SOCK_STATE_CONNECTING);
299}
300
301static void con_sock_state_connected(struct ceph_connection *con)
302{
303 int old_state;
304
305 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
306 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
307 printk("%s: unexpected old state %d\n", __func__, old_state);
308 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
309 CON_SOCK_STATE_CONNECTED);
310}
311
312static void con_sock_state_closing(struct ceph_connection *con)
313{
314 int old_state;
315
316 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
317 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
318 old_state != CON_SOCK_STATE_CONNECTED &&
319 old_state != CON_SOCK_STATE_CLOSING))
320 printk("%s: unexpected old state %d\n", __func__, old_state);
321 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
322 CON_SOCK_STATE_CLOSING);
323}
324
325static void con_sock_state_closed(struct ceph_connection *con)
326{
327 int old_state;
328
329 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
330 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
331 old_state != CON_SOCK_STATE_CLOSING &&
332 old_state != CON_SOCK_STATE_CONNECTING &&
333 old_state != CON_SOCK_STATE_CLOSED))
334 printk("%s: unexpected old state %d\n", __func__, old_state);
335 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
336 CON_SOCK_STATE_CLOSED);
337}
338
339/*
340 * socket callback functions
341 */
342
343/* data available on socket, or listen socket received a connect */
344static void ceph_sock_data_ready(struct sock *sk)
345{
346 struct ceph_connection *con = sk->sk_user_data;
347 if (atomic_read(&con->msgr->stopping)) {
348 return;
349 }
350
351 if (sk->sk_state != TCP_CLOSE_WAIT) {
352 dout("%s %p state = %d, queueing work\n", __func__,
353 con, con->state);
354 queue_con(con);
355 }
356}
357
358/* socket has buffer space for writing */
359static void ceph_sock_write_space(struct sock *sk)
360{
361 struct ceph_connection *con = sk->sk_user_data;
362
363 /* only queue to workqueue if there is data we want to write,
364 * and there is sufficient space in the socket buffer to accept
365 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
366 * doesn't get called again until try_write() fills the socket
367 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
368 * and net/core/stream.c:sk_stream_write_space().
369 */
370 if (ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING)) {
371 if (sk_stream_is_writeable(sk)) {
372 dout("%s %p queueing write work\n", __func__, con);
373 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
374 queue_con(con);
375 }
376 } else {
377 dout("%s %p nothing to write\n", __func__, con);
378 }
379}
380
381/* socket's state has changed */
382static void ceph_sock_state_change(struct sock *sk)
383{
384 struct ceph_connection *con = sk->sk_user_data;
385
386 dout("%s %p state = %d sk_state = %u\n", __func__,
387 con, con->state, sk->sk_state);
388
389 switch (sk->sk_state) {
390 case TCP_CLOSE:
391 dout("%s TCP_CLOSE\n", __func__);
392 fallthrough;
393 case TCP_CLOSE_WAIT:
394 dout("%s TCP_CLOSE_WAIT\n", __func__);
395 con_sock_state_closing(con);
396 ceph_con_flag_set(con, CEPH_CON_F_SOCK_CLOSED);
397 queue_con(con);
398 break;
399 case TCP_ESTABLISHED:
400 dout("%s TCP_ESTABLISHED\n", __func__);
401 con_sock_state_connected(con);
402 queue_con(con);
403 break;
404 default: /* Everything else is uninteresting */
405 break;
406 }
407}
408
409/*
410 * set up socket callbacks
411 */
412static void set_sock_callbacks(struct socket *sock,
413 struct ceph_connection *con)
414{
415 struct sock *sk = sock->sk;
416 sk->sk_user_data = con;
417 sk->sk_data_ready = ceph_sock_data_ready;
418 sk->sk_write_space = ceph_sock_write_space;
419 sk->sk_state_change = ceph_sock_state_change;
420}
421
422
423/*
424 * socket helpers
425 */
426
427/*
428 * initiate connection to a remote socket.
429 */
430int ceph_tcp_connect(struct ceph_connection *con)
431{
432 struct sockaddr_storage ss = con->peer_addr.in_addr; /* align */
433 struct socket *sock;
434 unsigned int noio_flag;
435 int ret;
436
437 dout("%s con %p peer_addr %s\n", __func__, con,
438 ceph_pr_addr(&con->peer_addr));
439 BUG_ON(con->sock);
440
441 /* sock_create_kern() allocates with GFP_KERNEL */
442 noio_flag = memalloc_noio_save();
443 ret = sock_create_kern(read_pnet(&con->msgr->net), ss.ss_family,
444 SOCK_STREAM, IPPROTO_TCP, &sock);
445 memalloc_noio_restore(noio_flag);
446 if (ret)
447 return ret;
448 sock->sk->sk_allocation = GFP_NOFS;
449 sock->sk->sk_use_task_frag = false;
450
451#ifdef CONFIG_LOCKDEP
452 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
453#endif
454
455 set_sock_callbacks(sock, con);
456
457 con_sock_state_connecting(con);
458 ret = sock->ops->connect(sock, (struct sockaddr *)&ss, sizeof(ss),
459 O_NONBLOCK);
460 if (ret == -EINPROGRESS) {
461 dout("connect %s EINPROGRESS sk_state = %u\n",
462 ceph_pr_addr(&con->peer_addr),
463 sock->sk->sk_state);
464 } else if (ret < 0) {
465 pr_err("connect %s error %d\n",
466 ceph_pr_addr(&con->peer_addr), ret);
467 sock_release(sock);
468 return ret;
469 }
470
471 if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY))
472 tcp_sock_set_nodelay(sock->sk);
473
474 con->sock = sock;
475 return 0;
476}
477
478/*
479 * Shutdown/close the socket for the given connection.
480 */
481int ceph_con_close_socket(struct ceph_connection *con)
482{
483 int rc = 0;
484
485 dout("%s con %p sock %p\n", __func__, con, con->sock);
486 if (con->sock) {
487 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
488 sock_release(con->sock);
489 con->sock = NULL;
490 }
491
492 /*
493 * Forcibly clear the SOCK_CLOSED flag. It gets set
494 * independent of the connection mutex, and we could have
495 * received a socket close event before we had the chance to
496 * shut the socket down.
497 */
498 ceph_con_flag_clear(con, CEPH_CON_F_SOCK_CLOSED);
499
500 con_sock_state_closed(con);
501 return rc;
502}
503
504static void ceph_con_reset_protocol(struct ceph_connection *con)
505{
506 dout("%s con %p\n", __func__, con);
507
508 ceph_con_close_socket(con);
509 if (con->in_msg) {
510 WARN_ON(con->in_msg->con != con);
511 ceph_msg_put(con->in_msg);
512 con->in_msg = NULL;
513 }
514 if (con->out_msg) {
515 WARN_ON(con->out_msg->con != con);
516 ceph_msg_put(con->out_msg);
517 con->out_msg = NULL;
518 }
519 if (con->bounce_page) {
520 __free_page(con->bounce_page);
521 con->bounce_page = NULL;
522 }
523
524 if (ceph_msgr2(from_msgr(con->msgr)))
525 ceph_con_v2_reset_protocol(con);
526 else
527 ceph_con_v1_reset_protocol(con);
528}
529
530/*
531 * Reset a connection. Discard all incoming and outgoing messages
532 * and clear *_seq state.
533 */
534static void ceph_msg_remove(struct ceph_msg *msg)
535{
536 list_del_init(&msg->list_head);
537
538 ceph_msg_put(msg);
539}
540
541static void ceph_msg_remove_list(struct list_head *head)
542{
543 while (!list_empty(head)) {
544 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
545 list_head);
546 ceph_msg_remove(msg);
547 }
548}
549
550void ceph_con_reset_session(struct ceph_connection *con)
551{
552 dout("%s con %p\n", __func__, con);
553
554 WARN_ON(con->in_msg);
555 WARN_ON(con->out_msg);
556 ceph_msg_remove_list(&con->out_queue);
557 ceph_msg_remove_list(&con->out_sent);
558 con->out_seq = 0;
559 con->in_seq = 0;
560 con->in_seq_acked = 0;
561
562 if (ceph_msgr2(from_msgr(con->msgr)))
563 ceph_con_v2_reset_session(con);
564 else
565 ceph_con_v1_reset_session(con);
566}
567
568/*
569 * mark a peer down. drop any open connections.
570 */
571void ceph_con_close(struct ceph_connection *con)
572{
573 mutex_lock(&con->mutex);
574 dout("con_close %p peer %s\n", con, ceph_pr_addr(&con->peer_addr));
575 con->state = CEPH_CON_S_CLOSED;
576
577 ceph_con_flag_clear(con, CEPH_CON_F_LOSSYTX); /* so we retry next
578 connect */
579 ceph_con_flag_clear(con, CEPH_CON_F_KEEPALIVE_PENDING);
580 ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
581 ceph_con_flag_clear(con, CEPH_CON_F_BACKOFF);
582
583 ceph_con_reset_protocol(con);
584 ceph_con_reset_session(con);
585 cancel_con(con);
586 mutex_unlock(&con->mutex);
587}
588EXPORT_SYMBOL(ceph_con_close);
589
590/*
591 * Reopen a closed connection, with a new peer address.
592 */
593void ceph_con_open(struct ceph_connection *con,
594 __u8 entity_type, __u64 entity_num,
595 struct ceph_entity_addr *addr)
596{
597 mutex_lock(&con->mutex);
598 dout("con_open %p %s\n", con, ceph_pr_addr(addr));
599
600 WARN_ON(con->state != CEPH_CON_S_CLOSED);
601 con->state = CEPH_CON_S_PREOPEN;
602
603 con->peer_name.type = (__u8) entity_type;
604 con->peer_name.num = cpu_to_le64(entity_num);
605
606 memcpy(&con->peer_addr, addr, sizeof(*addr));
607 con->delay = 0; /* reset backoff memory */
608 mutex_unlock(&con->mutex);
609 queue_con(con);
610}
611EXPORT_SYMBOL(ceph_con_open);
612
613/*
614 * return true if this connection ever successfully opened
615 */
616bool ceph_con_opened(struct ceph_connection *con)
617{
618 if (ceph_msgr2(from_msgr(con->msgr)))
619 return ceph_con_v2_opened(con);
620
621 return ceph_con_v1_opened(con);
622}
623
624/*
625 * initialize a new connection.
626 */
627void ceph_con_init(struct ceph_connection *con, void *private,
628 const struct ceph_connection_operations *ops,
629 struct ceph_messenger *msgr)
630{
631 dout("con_init %p\n", con);
632 memset(con, 0, sizeof(*con));
633 con->private = private;
634 con->ops = ops;
635 con->msgr = msgr;
636
637 con_sock_state_init(con);
638
639 mutex_init(&con->mutex);
640 INIT_LIST_HEAD(&con->out_queue);
641 INIT_LIST_HEAD(&con->out_sent);
642 INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
643
644 con->state = CEPH_CON_S_CLOSED;
645}
646EXPORT_SYMBOL(ceph_con_init);
647
648/*
649 * We maintain a global counter to order connection attempts. Get
650 * a unique seq greater than @gt.
651 */
652u32 ceph_get_global_seq(struct ceph_messenger *msgr, u32 gt)
653{
654 u32 ret;
655
656 spin_lock(&msgr->global_seq_lock);
657 if (msgr->global_seq < gt)
658 msgr->global_seq = gt;
659 ret = ++msgr->global_seq;
660 spin_unlock(&msgr->global_seq_lock);
661 return ret;
662}
663
664/*
665 * Discard messages that have been acked by the server.
666 */
667void ceph_con_discard_sent(struct ceph_connection *con, u64 ack_seq)
668{
669 struct ceph_msg *msg;
670 u64 seq;
671
672 dout("%s con %p ack_seq %llu\n", __func__, con, ack_seq);
673 while (!list_empty(&con->out_sent)) {
674 msg = list_first_entry(&con->out_sent, struct ceph_msg,
675 list_head);
676 WARN_ON(msg->needs_out_seq);
677 seq = le64_to_cpu(msg->hdr.seq);
678 if (seq > ack_seq)
679 break;
680
681 dout("%s con %p discarding msg %p seq %llu\n", __func__, con,
682 msg, seq);
683 ceph_msg_remove(msg);
684 }
685}
686
687/*
688 * Discard messages that have been requeued in con_fault(), up to
689 * reconnect_seq. This avoids gratuitously resending messages that
690 * the server had received and handled prior to reconnect.
691 */
692void ceph_con_discard_requeued(struct ceph_connection *con, u64 reconnect_seq)
693{
694 struct ceph_msg *msg;
695 u64 seq;
696
697 dout("%s con %p reconnect_seq %llu\n", __func__, con, reconnect_seq);
698 while (!list_empty(&con->out_queue)) {
699 msg = list_first_entry(&con->out_queue, struct ceph_msg,
700 list_head);
701 if (msg->needs_out_seq)
702 break;
703 seq = le64_to_cpu(msg->hdr.seq);
704 if (seq > reconnect_seq)
705 break;
706
707 dout("%s con %p discarding msg %p seq %llu\n", __func__, con,
708 msg, seq);
709 ceph_msg_remove(msg);
710 }
711}
712
713#ifdef CONFIG_BLOCK
714
715/*
716 * For a bio data item, a piece is whatever remains of the next
717 * entry in the current bio iovec, or the first entry in the next
718 * bio in the list.
719 */
720static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
721 size_t length)
722{
723 struct ceph_msg_data *data = cursor->data;
724 struct ceph_bio_iter *it = &cursor->bio_iter;
725
726 cursor->resid = min_t(size_t, length, data->bio_length);
727 *it = data->bio_pos;
728 if (cursor->resid < it->iter.bi_size)
729 it->iter.bi_size = cursor->resid;
730
731 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
732}
733
734static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
735 size_t *page_offset,
736 size_t *length)
737{
738 struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio,
739 cursor->bio_iter.iter);
740
741 *page_offset = bv.bv_offset;
742 *length = bv.bv_len;
743 return bv.bv_page;
744}
745
746static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
747 size_t bytes)
748{
749 struct ceph_bio_iter *it = &cursor->bio_iter;
750 struct page *page = bio_iter_page(it->bio, it->iter);
751
752 BUG_ON(bytes > cursor->resid);
753 BUG_ON(bytes > bio_iter_len(it->bio, it->iter));
754 cursor->resid -= bytes;
755 bio_advance_iter(it->bio, &it->iter, bytes);
756
757 if (!cursor->resid)
758 return false; /* no more data */
759
760 if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done &&
761 page == bio_iter_page(it->bio, it->iter)))
762 return false; /* more bytes to process in this segment */
763
764 if (!it->iter.bi_size) {
765 it->bio = it->bio->bi_next;
766 it->iter = it->bio->bi_iter;
767 if (cursor->resid < it->iter.bi_size)
768 it->iter.bi_size = cursor->resid;
769 }
770
771 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
772 return true;
773}
774#endif /* CONFIG_BLOCK */
775
776static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor,
777 size_t length)
778{
779 struct ceph_msg_data *data = cursor->data;
780 struct bio_vec *bvecs = data->bvec_pos.bvecs;
781
782 cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size);
783 cursor->bvec_iter = data->bvec_pos.iter;
784 cursor->bvec_iter.bi_size = cursor->resid;
785
786 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
787}
788
789static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor,
790 size_t *page_offset,
791 size_t *length)
792{
793 struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs,
794 cursor->bvec_iter);
795
796 *page_offset = bv.bv_offset;
797 *length = bv.bv_len;
798 return bv.bv_page;
799}
800
801static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor,
802 size_t bytes)
803{
804 struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs;
805 struct page *page = bvec_iter_page(bvecs, cursor->bvec_iter);
806
807 BUG_ON(bytes > cursor->resid);
808 BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter));
809 cursor->resid -= bytes;
810 bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes);
811
812 if (!cursor->resid)
813 return false; /* no more data */
814
815 if (!bytes || (cursor->bvec_iter.bi_bvec_done &&
816 page == bvec_iter_page(bvecs, cursor->bvec_iter)))
817 return false; /* more bytes to process in this segment */
818
819 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
820 return true;
821}
822
823/*
824 * For a page array, a piece comes from the first page in the array
825 * that has not already been fully consumed.
826 */
827static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
828 size_t length)
829{
830 struct ceph_msg_data *data = cursor->data;
831 int page_count;
832
833 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
834
835 BUG_ON(!data->pages);
836 BUG_ON(!data->length);
837
838 cursor->resid = min(length, data->length);
839 page_count = calc_pages_for(data->alignment, (u64)data->length);
840 cursor->page_offset = data->alignment & ~PAGE_MASK;
841 cursor->page_index = 0;
842 BUG_ON(page_count > (int)USHRT_MAX);
843 cursor->page_count = (unsigned short)page_count;
844 BUG_ON(length > SIZE_MAX - cursor->page_offset);
845}
846
847static struct page *
848ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
849 size_t *page_offset, size_t *length)
850{
851 struct ceph_msg_data *data = cursor->data;
852
853 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
854
855 BUG_ON(cursor->page_index >= cursor->page_count);
856 BUG_ON(cursor->page_offset >= PAGE_SIZE);
857
858 *page_offset = cursor->page_offset;
859 *length = min_t(size_t, cursor->resid, PAGE_SIZE - *page_offset);
860 return data->pages[cursor->page_index];
861}
862
863static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
864 size_t bytes)
865{
866 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
867
868 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
869
870 /* Advance the cursor page offset */
871
872 cursor->resid -= bytes;
873 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
874 if (!bytes || cursor->page_offset)
875 return false; /* more bytes to process in the current page */
876
877 if (!cursor->resid)
878 return false; /* no more data */
879
880 /* Move on to the next page; offset is already at 0 */
881
882 BUG_ON(cursor->page_index >= cursor->page_count);
883 cursor->page_index++;
884 return true;
885}
886
887/*
888 * For a pagelist, a piece is whatever remains to be consumed in the
889 * first page in the list, or the front of the next page.
890 */
891static void
892ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
893 size_t length)
894{
895 struct ceph_msg_data *data = cursor->data;
896 struct ceph_pagelist *pagelist;
897 struct page *page;
898
899 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
900
901 pagelist = data->pagelist;
902 BUG_ON(!pagelist);
903
904 if (!length)
905 return; /* pagelist can be assigned but empty */
906
907 BUG_ON(list_empty(&pagelist->head));
908 page = list_first_entry(&pagelist->head, struct page, lru);
909
910 cursor->resid = min(length, pagelist->length);
911 cursor->page = page;
912 cursor->offset = 0;
913}
914
915static struct page *
916ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
917 size_t *page_offset, size_t *length)
918{
919 struct ceph_msg_data *data = cursor->data;
920 struct ceph_pagelist *pagelist;
921
922 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
923
924 pagelist = data->pagelist;
925 BUG_ON(!pagelist);
926
927 BUG_ON(!cursor->page);
928 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
929
930 /* offset of first page in pagelist is always 0 */
931 *page_offset = cursor->offset & ~PAGE_MASK;
932 *length = min_t(size_t, cursor->resid, PAGE_SIZE - *page_offset);
933 return cursor->page;
934}
935
936static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
937 size_t bytes)
938{
939 struct ceph_msg_data *data = cursor->data;
940 struct ceph_pagelist *pagelist;
941
942 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
943
944 pagelist = data->pagelist;
945 BUG_ON(!pagelist);
946
947 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
948 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
949
950 /* Advance the cursor offset */
951
952 cursor->resid -= bytes;
953 cursor->offset += bytes;
954 /* offset of first page in pagelist is always 0 */
955 if (!bytes || cursor->offset & ~PAGE_MASK)
956 return false; /* more bytes to process in the current page */
957
958 if (!cursor->resid)
959 return false; /* no more data */
960
961 /* Move on to the next page */
962
963 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
964 cursor->page = list_next_entry(cursor->page, lru);
965 return true;
966}
967
968/*
969 * Message data is handled (sent or received) in pieces, where each
970 * piece resides on a single page. The network layer might not
971 * consume an entire piece at once. A data item's cursor keeps
972 * track of which piece is next to process and how much remains to
973 * be processed in that piece. It also tracks whether the current
974 * piece is the last one in the data item.
975 */
976static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
977{
978 size_t length = cursor->total_resid;
979
980 switch (cursor->data->type) {
981 case CEPH_MSG_DATA_PAGELIST:
982 ceph_msg_data_pagelist_cursor_init(cursor, length);
983 break;
984 case CEPH_MSG_DATA_PAGES:
985 ceph_msg_data_pages_cursor_init(cursor, length);
986 break;
987#ifdef CONFIG_BLOCK
988 case CEPH_MSG_DATA_BIO:
989 ceph_msg_data_bio_cursor_init(cursor, length);
990 break;
991#endif /* CONFIG_BLOCK */
992 case CEPH_MSG_DATA_BVECS:
993 ceph_msg_data_bvecs_cursor_init(cursor, length);
994 break;
995 case CEPH_MSG_DATA_NONE:
996 default:
997 /* BUG(); */
998 break;
999 }
1000 cursor->need_crc = true;
1001}
1002
1003void ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor,
1004 struct ceph_msg *msg, size_t length)
1005{
1006 BUG_ON(!length);
1007 BUG_ON(length > msg->data_length);
1008 BUG_ON(!msg->num_data_items);
1009
1010 cursor->total_resid = length;
1011 cursor->data = msg->data;
1012
1013 __ceph_msg_data_cursor_init(cursor);
1014}
1015
1016/*
1017 * Return the page containing the next piece to process for a given
1018 * data item, and supply the page offset and length of that piece.
1019 * Indicate whether this is the last piece in this data item.
1020 */
1021struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1022 size_t *page_offset, size_t *length)
1023{
1024 struct page *page;
1025
1026 switch (cursor->data->type) {
1027 case CEPH_MSG_DATA_PAGELIST:
1028 page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1029 break;
1030 case CEPH_MSG_DATA_PAGES:
1031 page = ceph_msg_data_pages_next(cursor, page_offset, length);
1032 break;
1033#ifdef CONFIG_BLOCK
1034 case CEPH_MSG_DATA_BIO:
1035 page = ceph_msg_data_bio_next(cursor, page_offset, length);
1036 break;
1037#endif /* CONFIG_BLOCK */
1038 case CEPH_MSG_DATA_BVECS:
1039 page = ceph_msg_data_bvecs_next(cursor, page_offset, length);
1040 break;
1041 case CEPH_MSG_DATA_NONE:
1042 default:
1043 page = NULL;
1044 break;
1045 }
1046
1047 BUG_ON(!page);
1048 BUG_ON(*page_offset + *length > PAGE_SIZE);
1049 BUG_ON(!*length);
1050 BUG_ON(*length > cursor->resid);
1051
1052 return page;
1053}
1054
1055/*
1056 * Returns true if the result moves the cursor on to the next piece
1057 * of the data item.
1058 */
1059void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor, size_t bytes)
1060{
1061 bool new_piece;
1062
1063 BUG_ON(bytes > cursor->resid);
1064 switch (cursor->data->type) {
1065 case CEPH_MSG_DATA_PAGELIST:
1066 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1067 break;
1068 case CEPH_MSG_DATA_PAGES:
1069 new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1070 break;
1071#ifdef CONFIG_BLOCK
1072 case CEPH_MSG_DATA_BIO:
1073 new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1074 break;
1075#endif /* CONFIG_BLOCK */
1076 case CEPH_MSG_DATA_BVECS:
1077 new_piece = ceph_msg_data_bvecs_advance(cursor, bytes);
1078 break;
1079 case CEPH_MSG_DATA_NONE:
1080 default:
1081 BUG();
1082 break;
1083 }
1084 cursor->total_resid -= bytes;
1085
1086 if (!cursor->resid && cursor->total_resid) {
1087 cursor->data++;
1088 __ceph_msg_data_cursor_init(cursor);
1089 new_piece = true;
1090 }
1091 cursor->need_crc = new_piece;
1092}
1093
1094u32 ceph_crc32c_page(u32 crc, struct page *page, unsigned int page_offset,
1095 unsigned int length)
1096{
1097 char *kaddr;
1098
1099 kaddr = kmap(page);
1100 BUG_ON(kaddr == NULL);
1101 crc = crc32c(crc, kaddr + page_offset, length);
1102 kunmap(page);
1103
1104 return crc;
1105}
1106
1107bool ceph_addr_is_blank(const struct ceph_entity_addr *addr)
1108{
1109 struct sockaddr_storage ss = addr->in_addr; /* align */
1110 struct in_addr *addr4 = &((struct sockaddr_in *)&ss)->sin_addr;
1111 struct in6_addr *addr6 = &((struct sockaddr_in6 *)&ss)->sin6_addr;
1112
1113 switch (ss.ss_family) {
1114 case AF_INET:
1115 return addr4->s_addr == htonl(INADDR_ANY);
1116 case AF_INET6:
1117 return ipv6_addr_any(addr6);
1118 default:
1119 return true;
1120 }
1121}
1122
1123int ceph_addr_port(const struct ceph_entity_addr *addr)
1124{
1125 switch (get_unaligned(&addr->in_addr.ss_family)) {
1126 case AF_INET:
1127 return ntohs(get_unaligned(&((struct sockaddr_in *)&addr->in_addr)->sin_port));
1128 case AF_INET6:
1129 return ntohs(get_unaligned(&((struct sockaddr_in6 *)&addr->in_addr)->sin6_port));
1130 }
1131 return 0;
1132}
1133
1134void ceph_addr_set_port(struct ceph_entity_addr *addr, int p)
1135{
1136 switch (get_unaligned(&addr->in_addr.ss_family)) {
1137 case AF_INET:
1138 put_unaligned(htons(p), &((struct sockaddr_in *)&addr->in_addr)->sin_port);
1139 break;
1140 case AF_INET6:
1141 put_unaligned(htons(p), &((struct sockaddr_in6 *)&addr->in_addr)->sin6_port);
1142 break;
1143 }
1144}
1145
1146/*
1147 * Unlike other *_pton function semantics, zero indicates success.
1148 */
1149static int ceph_pton(const char *str, size_t len, struct ceph_entity_addr *addr,
1150 char delim, const char **ipend)
1151{
1152 memset(&addr->in_addr, 0, sizeof(addr->in_addr));
1153
1154 if (in4_pton(str, len, (u8 *)&((struct sockaddr_in *)&addr->in_addr)->sin_addr.s_addr, delim, ipend)) {
1155 put_unaligned(AF_INET, &addr->in_addr.ss_family);
1156 return 0;
1157 }
1158
1159 if (in6_pton(str, len, (u8 *)&((struct sockaddr_in6 *)&addr->in_addr)->sin6_addr.s6_addr, delim, ipend)) {
1160 put_unaligned(AF_INET6, &addr->in_addr.ss_family);
1161 return 0;
1162 }
1163
1164 return -EINVAL;
1165}
1166
1167/*
1168 * Extract hostname string and resolve using kernel DNS facility.
1169 */
1170#ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1171static int ceph_dns_resolve_name(const char *name, size_t namelen,
1172 struct ceph_entity_addr *addr, char delim, const char **ipend)
1173{
1174 const char *end, *delim_p;
1175 char *colon_p, *ip_addr = NULL;
1176 int ip_len, ret;
1177
1178 /*
1179 * The end of the hostname occurs immediately preceding the delimiter or
1180 * the port marker (':') where the delimiter takes precedence.
1181 */
1182 delim_p = memchr(name, delim, namelen);
1183 colon_p = memchr(name, ':', namelen);
1184
1185 if (delim_p && colon_p)
1186 end = delim_p < colon_p ? delim_p : colon_p;
1187 else if (!delim_p && colon_p)
1188 end = colon_p;
1189 else {
1190 end = delim_p;
1191 if (!end) /* case: hostname:/ */
1192 end = name + namelen;
1193 }
1194
1195 if (end <= name)
1196 return -EINVAL;
1197
1198 /* do dns_resolve upcall */
1199 ip_len = dns_query(current->nsproxy->net_ns,
1200 NULL, name, end - name, NULL, &ip_addr, NULL, false);
1201 if (ip_len > 0)
1202 ret = ceph_pton(ip_addr, ip_len, addr, -1, NULL);
1203 else
1204 ret = -ESRCH;
1205
1206 kfree(ip_addr);
1207
1208 *ipend = end;
1209
1210 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1211 ret, ret ? "failed" : ceph_pr_addr(addr));
1212
1213 return ret;
1214}
1215#else
1216static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1217 struct ceph_entity_addr *addr, char delim, const char **ipend)
1218{
1219 return -EINVAL;
1220}
1221#endif
1222
1223/*
1224 * Parse a server name (IP or hostname). If a valid IP address is not found
1225 * then try to extract a hostname to resolve using userspace DNS upcall.
1226 */
1227static int ceph_parse_server_name(const char *name, size_t namelen,
1228 struct ceph_entity_addr *addr, char delim, const char **ipend)
1229{
1230 int ret;
1231
1232 ret = ceph_pton(name, namelen, addr, delim, ipend);
1233 if (ret)
1234 ret = ceph_dns_resolve_name(name, namelen, addr, delim, ipend);
1235
1236 return ret;
1237}
1238
1239/*
1240 * Parse an ip[:port] list into an addr array. Use the default
1241 * monitor port if a port isn't specified.
1242 */
1243int ceph_parse_ips(const char *c, const char *end,
1244 struct ceph_entity_addr *addr,
1245 int max_count, int *count, char delim)
1246{
1247 int i, ret = -EINVAL;
1248 const char *p = c;
1249
1250 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1251 for (i = 0; i < max_count; i++) {
1252 char cur_delim = delim;
1253 const char *ipend;
1254 int port;
1255
1256 if (*p == '[') {
1257 cur_delim = ']';
1258 p++;
1259 }
1260
1261 ret = ceph_parse_server_name(p, end - p, &addr[i], cur_delim,
1262 &ipend);
1263 if (ret)
1264 goto bad;
1265 ret = -EINVAL;
1266
1267 p = ipend;
1268
1269 if (cur_delim == ']') {
1270 if (*p != ']') {
1271 dout("missing matching ']'\n");
1272 goto bad;
1273 }
1274 p++;
1275 }
1276
1277 /* port? */
1278 if (p < end && *p == ':') {
1279 port = 0;
1280 p++;
1281 while (p < end && *p >= '0' && *p <= '9') {
1282 port = (port * 10) + (*p - '0');
1283 p++;
1284 }
1285 if (port == 0)
1286 port = CEPH_MON_PORT;
1287 else if (port > 65535)
1288 goto bad;
1289 } else {
1290 port = CEPH_MON_PORT;
1291 }
1292
1293 ceph_addr_set_port(&addr[i], port);
1294 /*
1295 * We want the type to be set according to ms_mode
1296 * option, but options are normally parsed after mon
1297 * addresses. Rather than complicating parsing, set
1298 * to LEGACY and override in build_initial_monmap()
1299 * for mon addresses and ceph_messenger_init() for
1300 * ip option.
1301 */
1302 addr[i].type = CEPH_ENTITY_ADDR_TYPE_LEGACY;
1303 addr[i].nonce = 0;
1304
1305 dout("%s got %s\n", __func__, ceph_pr_addr(&addr[i]));
1306
1307 if (p == end)
1308 break;
1309 if (*p != delim)
1310 goto bad;
1311 p++;
1312 }
1313
1314 if (p != end)
1315 goto bad;
1316
1317 if (count)
1318 *count = i + 1;
1319 return 0;
1320
1321bad:
1322 return ret;
1323}
1324
1325/*
1326 * Process message. This happens in the worker thread. The callback should
1327 * be careful not to do anything that waits on other incoming messages or it
1328 * may deadlock.
1329 */
1330void ceph_con_process_message(struct ceph_connection *con)
1331{
1332 struct ceph_msg *msg = con->in_msg;
1333
1334 BUG_ON(con->in_msg->con != con);
1335 con->in_msg = NULL;
1336
1337 /* if first message, set peer_name */
1338 if (con->peer_name.type == 0)
1339 con->peer_name = msg->hdr.src;
1340
1341 con->in_seq++;
1342 mutex_unlock(&con->mutex);
1343
1344 dout("===== %p %llu from %s%lld %d=%s len %d+%d+%d (%u %u %u) =====\n",
1345 msg, le64_to_cpu(msg->hdr.seq),
1346 ENTITY_NAME(msg->hdr.src),
1347 le16_to_cpu(msg->hdr.type),
1348 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1349 le32_to_cpu(msg->hdr.front_len),
1350 le32_to_cpu(msg->hdr.middle_len),
1351 le32_to_cpu(msg->hdr.data_len),
1352 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1353 con->ops->dispatch(con, msg);
1354
1355 mutex_lock(&con->mutex);
1356}
1357
1358/*
1359 * Atomically queue work on a connection after the specified delay.
1360 * Bump @con reference to avoid races with connection teardown.
1361 * Returns 0 if work was queued, or an error code otherwise.
1362 */
1363static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
1364{
1365 if (!con->ops->get(con)) {
1366 dout("%s %p ref count 0\n", __func__, con);
1367 return -ENOENT;
1368 }
1369
1370 if (delay >= HZ)
1371 delay = round_jiffies_relative(delay);
1372
1373 dout("%s %p %lu\n", __func__, con, delay);
1374 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
1375 dout("%s %p - already queued\n", __func__, con);
1376 con->ops->put(con);
1377 return -EBUSY;
1378 }
1379
1380 return 0;
1381}
1382
1383static void queue_con(struct ceph_connection *con)
1384{
1385 (void) queue_con_delay(con, 0);
1386}
1387
1388static void cancel_con(struct ceph_connection *con)
1389{
1390 if (cancel_delayed_work(&con->work)) {
1391 dout("%s %p\n", __func__, con);
1392 con->ops->put(con);
1393 }
1394}
1395
1396static bool con_sock_closed(struct ceph_connection *con)
1397{
1398 if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_SOCK_CLOSED))
1399 return false;
1400
1401#define CASE(x) \
1402 case CEPH_CON_S_ ## x: \
1403 con->error_msg = "socket closed (con state " #x ")"; \
1404 break;
1405
1406 switch (con->state) {
1407 CASE(CLOSED);
1408 CASE(PREOPEN);
1409 CASE(V1_BANNER);
1410 CASE(V1_CONNECT_MSG);
1411 CASE(V2_BANNER_PREFIX);
1412 CASE(V2_BANNER_PAYLOAD);
1413 CASE(V2_HELLO);
1414 CASE(V2_AUTH);
1415 CASE(V2_AUTH_SIGNATURE);
1416 CASE(V2_SESSION_CONNECT);
1417 CASE(V2_SESSION_RECONNECT);
1418 CASE(OPEN);
1419 CASE(STANDBY);
1420 default:
1421 BUG();
1422 }
1423#undef CASE
1424
1425 return true;
1426}
1427
1428static bool con_backoff(struct ceph_connection *con)
1429{
1430 int ret;
1431
1432 if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_BACKOFF))
1433 return false;
1434
1435 ret = queue_con_delay(con, con->delay);
1436 if (ret) {
1437 dout("%s: con %p FAILED to back off %lu\n", __func__,
1438 con, con->delay);
1439 BUG_ON(ret == -ENOENT);
1440 ceph_con_flag_set(con, CEPH_CON_F_BACKOFF);
1441 }
1442
1443 return true;
1444}
1445
1446/* Finish fault handling; con->mutex must *not* be held here */
1447
1448static void con_fault_finish(struct ceph_connection *con)
1449{
1450 dout("%s %p\n", __func__, con);
1451
1452 /*
1453 * in case we faulted due to authentication, invalidate our
1454 * current tickets so that we can get new ones.
1455 */
1456 if (con->v1.auth_retry) {
1457 dout("auth_retry %d, invalidating\n", con->v1.auth_retry);
1458 if (con->ops->invalidate_authorizer)
1459 con->ops->invalidate_authorizer(con);
1460 con->v1.auth_retry = 0;
1461 }
1462
1463 if (con->ops->fault)
1464 con->ops->fault(con);
1465}
1466
1467/*
1468 * Do some work on a connection. Drop a connection ref when we're done.
1469 */
1470static void ceph_con_workfn(struct work_struct *work)
1471{
1472 struct ceph_connection *con = container_of(work, struct ceph_connection,
1473 work.work);
1474 bool fault;
1475
1476 mutex_lock(&con->mutex);
1477 while (true) {
1478 int ret;
1479
1480 if ((fault = con_sock_closed(con))) {
1481 dout("%s: con %p SOCK_CLOSED\n", __func__, con);
1482 break;
1483 }
1484 if (con_backoff(con)) {
1485 dout("%s: con %p BACKOFF\n", __func__, con);
1486 break;
1487 }
1488 if (con->state == CEPH_CON_S_STANDBY) {
1489 dout("%s: con %p STANDBY\n", __func__, con);
1490 break;
1491 }
1492 if (con->state == CEPH_CON_S_CLOSED) {
1493 dout("%s: con %p CLOSED\n", __func__, con);
1494 BUG_ON(con->sock);
1495 break;
1496 }
1497 if (con->state == CEPH_CON_S_PREOPEN) {
1498 dout("%s: con %p PREOPEN\n", __func__, con);
1499 BUG_ON(con->sock);
1500 }
1501
1502 if (ceph_msgr2(from_msgr(con->msgr)))
1503 ret = ceph_con_v2_try_read(con);
1504 else
1505 ret = ceph_con_v1_try_read(con);
1506 if (ret < 0) {
1507 if (ret == -EAGAIN)
1508 continue;
1509 if (!con->error_msg)
1510 con->error_msg = "socket error on read";
1511 fault = true;
1512 break;
1513 }
1514
1515 if (ceph_msgr2(from_msgr(con->msgr)))
1516 ret = ceph_con_v2_try_write(con);
1517 else
1518 ret = ceph_con_v1_try_write(con);
1519 if (ret < 0) {
1520 if (ret == -EAGAIN)
1521 continue;
1522 if (!con->error_msg)
1523 con->error_msg = "socket error on write";
1524 fault = true;
1525 }
1526
1527 break; /* If we make it to here, we're done */
1528 }
1529 if (fault)
1530 con_fault(con);
1531 mutex_unlock(&con->mutex);
1532
1533 if (fault)
1534 con_fault_finish(con);
1535
1536 con->ops->put(con);
1537}
1538
1539/*
1540 * Generic error/fault handler. A retry mechanism is used with
1541 * exponential backoff
1542 */
1543static void con_fault(struct ceph_connection *con)
1544{
1545 dout("fault %p state %d to peer %s\n",
1546 con, con->state, ceph_pr_addr(&con->peer_addr));
1547
1548 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
1549 ceph_pr_addr(&con->peer_addr), con->error_msg);
1550 con->error_msg = NULL;
1551
1552 WARN_ON(con->state == CEPH_CON_S_STANDBY ||
1553 con->state == CEPH_CON_S_CLOSED);
1554
1555 ceph_con_reset_protocol(con);
1556
1557 if (ceph_con_flag_test(con, CEPH_CON_F_LOSSYTX)) {
1558 dout("fault on LOSSYTX channel, marking CLOSED\n");
1559 con->state = CEPH_CON_S_CLOSED;
1560 return;
1561 }
1562
1563 /* Requeue anything that hasn't been acked */
1564 list_splice_init(&con->out_sent, &con->out_queue);
1565
1566 /* If there are no messages queued or keepalive pending, place
1567 * the connection in a STANDBY state */
1568 if (list_empty(&con->out_queue) &&
1569 !ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING)) {
1570 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
1571 ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
1572 con->state = CEPH_CON_S_STANDBY;
1573 } else {
1574 /* retry after a delay. */
1575 con->state = CEPH_CON_S_PREOPEN;
1576 if (!con->delay) {
1577 con->delay = BASE_DELAY_INTERVAL;
1578 } else if (con->delay < MAX_DELAY_INTERVAL) {
1579 con->delay *= 2;
1580 if (con->delay > MAX_DELAY_INTERVAL)
1581 con->delay = MAX_DELAY_INTERVAL;
1582 }
1583 ceph_con_flag_set(con, CEPH_CON_F_BACKOFF);
1584 queue_con(con);
1585 }
1586}
1587
1588void ceph_messenger_reset_nonce(struct ceph_messenger *msgr)
1589{
1590 u32 nonce = le32_to_cpu(msgr->inst.addr.nonce) + 1000000;
1591 msgr->inst.addr.nonce = cpu_to_le32(nonce);
1592 ceph_encode_my_addr(msgr);
1593}
1594
1595/*
1596 * initialize a new messenger instance
1597 */
1598void ceph_messenger_init(struct ceph_messenger *msgr,
1599 struct ceph_entity_addr *myaddr)
1600{
1601 spin_lock_init(&msgr->global_seq_lock);
1602
1603 if (myaddr) {
1604 memcpy(&msgr->inst.addr.in_addr, &myaddr->in_addr,
1605 sizeof(msgr->inst.addr.in_addr));
1606 ceph_addr_set_port(&msgr->inst.addr, 0);
1607 }
1608
1609 /*
1610 * Since nautilus, clients are identified using type ANY.
1611 * For msgr1, ceph_encode_banner_addr() munges it to NONE.
1612 */
1613 msgr->inst.addr.type = CEPH_ENTITY_ADDR_TYPE_ANY;
1614
1615 /* generate a random non-zero nonce */
1616 do {
1617 get_random_bytes(&msgr->inst.addr.nonce,
1618 sizeof(msgr->inst.addr.nonce));
1619 } while (!msgr->inst.addr.nonce);
1620 ceph_encode_my_addr(msgr);
1621
1622 atomic_set(&msgr->stopping, 0);
1623 write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
1624
1625 dout("%s %p\n", __func__, msgr);
1626}
1627
1628void ceph_messenger_fini(struct ceph_messenger *msgr)
1629{
1630 put_net(read_pnet(&msgr->net));
1631}
1632
1633static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
1634{
1635 if (msg->con)
1636 msg->con->ops->put(msg->con);
1637
1638 msg->con = con ? con->ops->get(con) : NULL;
1639 BUG_ON(msg->con != con);
1640}
1641
1642static void clear_standby(struct ceph_connection *con)
1643{
1644 /* come back from STANDBY? */
1645 if (con->state == CEPH_CON_S_STANDBY) {
1646 dout("clear_standby %p and ++connect_seq\n", con);
1647 con->state = CEPH_CON_S_PREOPEN;
1648 con->v1.connect_seq++;
1649 WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING));
1650 WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING));
1651 }
1652}
1653
1654/*
1655 * Queue up an outgoing message on the given connection.
1656 *
1657 * Consumes a ref on @msg.
1658 */
1659void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
1660{
1661 /* set src+dst */
1662 msg->hdr.src = con->msgr->inst.name;
1663 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
1664 msg->needs_out_seq = true;
1665
1666 mutex_lock(&con->mutex);
1667
1668 if (con->state == CEPH_CON_S_CLOSED) {
1669 dout("con_send %p closed, dropping %p\n", con, msg);
1670 ceph_msg_put(msg);
1671 mutex_unlock(&con->mutex);
1672 return;
1673 }
1674
1675 msg_con_set(msg, con);
1676
1677 BUG_ON(!list_empty(&msg->list_head));
1678 list_add_tail(&msg->list_head, &con->out_queue);
1679 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
1680 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
1681 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1682 le32_to_cpu(msg->hdr.front_len),
1683 le32_to_cpu(msg->hdr.middle_len),
1684 le32_to_cpu(msg->hdr.data_len));
1685
1686 clear_standby(con);
1687 mutex_unlock(&con->mutex);
1688
1689 /* if there wasn't anything waiting to send before, queue
1690 * new work */
1691 if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING))
1692 queue_con(con);
1693}
1694EXPORT_SYMBOL(ceph_con_send);
1695
1696/*
1697 * Revoke a message that was previously queued for send
1698 */
1699void ceph_msg_revoke(struct ceph_msg *msg)
1700{
1701 struct ceph_connection *con = msg->con;
1702
1703 if (!con) {
1704 dout("%s msg %p null con\n", __func__, msg);
1705 return; /* Message not in our possession */
1706 }
1707
1708 mutex_lock(&con->mutex);
1709 if (list_empty(&msg->list_head)) {
1710 WARN_ON(con->out_msg == msg);
1711 dout("%s con %p msg %p not linked\n", __func__, con, msg);
1712 mutex_unlock(&con->mutex);
1713 return;
1714 }
1715
1716 dout("%s con %p msg %p was linked\n", __func__, con, msg);
1717 msg->hdr.seq = 0;
1718 ceph_msg_remove(msg);
1719
1720 if (con->out_msg == msg) {
1721 WARN_ON(con->state != CEPH_CON_S_OPEN);
1722 dout("%s con %p msg %p was sending\n", __func__, con, msg);
1723 if (ceph_msgr2(from_msgr(con->msgr)))
1724 ceph_con_v2_revoke(con);
1725 else
1726 ceph_con_v1_revoke(con);
1727 ceph_msg_put(con->out_msg);
1728 con->out_msg = NULL;
1729 } else {
1730 dout("%s con %p msg %p not current, out_msg %p\n", __func__,
1731 con, msg, con->out_msg);
1732 }
1733 mutex_unlock(&con->mutex);
1734}
1735
1736/*
1737 * Revoke a message that we may be reading data into
1738 */
1739void ceph_msg_revoke_incoming(struct ceph_msg *msg)
1740{
1741 struct ceph_connection *con = msg->con;
1742
1743 if (!con) {
1744 dout("%s msg %p null con\n", __func__, msg);
1745 return; /* Message not in our possession */
1746 }
1747
1748 mutex_lock(&con->mutex);
1749 if (con->in_msg == msg) {
1750 WARN_ON(con->state != CEPH_CON_S_OPEN);
1751 dout("%s con %p msg %p was recving\n", __func__, con, msg);
1752 if (ceph_msgr2(from_msgr(con->msgr)))
1753 ceph_con_v2_revoke_incoming(con);
1754 else
1755 ceph_con_v1_revoke_incoming(con);
1756 ceph_msg_put(con->in_msg);
1757 con->in_msg = NULL;
1758 } else {
1759 dout("%s con %p msg %p not current, in_msg %p\n", __func__,
1760 con, msg, con->in_msg);
1761 }
1762 mutex_unlock(&con->mutex);
1763}
1764
1765/*
1766 * Queue a keepalive byte to ensure the tcp connection is alive.
1767 */
1768void ceph_con_keepalive(struct ceph_connection *con)
1769{
1770 dout("con_keepalive %p\n", con);
1771 mutex_lock(&con->mutex);
1772 clear_standby(con);
1773 ceph_con_flag_set(con, CEPH_CON_F_KEEPALIVE_PENDING);
1774 mutex_unlock(&con->mutex);
1775
1776 if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING))
1777 queue_con(con);
1778}
1779EXPORT_SYMBOL(ceph_con_keepalive);
1780
1781bool ceph_con_keepalive_expired(struct ceph_connection *con,
1782 unsigned long interval)
1783{
1784 if (interval > 0 &&
1785 (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
1786 struct timespec64 now;
1787 struct timespec64 ts;
1788 ktime_get_real_ts64(&now);
1789 jiffies_to_timespec64(interval, &ts);
1790 ts = timespec64_add(con->last_keepalive_ack, ts);
1791 return timespec64_compare(&now, &ts) >= 0;
1792 }
1793 return false;
1794}
1795
1796static struct ceph_msg_data *ceph_msg_data_add(struct ceph_msg *msg)
1797{
1798 BUG_ON(msg->num_data_items >= msg->max_data_items);
1799 return &msg->data[msg->num_data_items++];
1800}
1801
1802static void ceph_msg_data_destroy(struct ceph_msg_data *data)
1803{
1804 if (data->type == CEPH_MSG_DATA_PAGES && data->own_pages) {
1805 int num_pages = calc_pages_for(data->alignment, data->length);
1806 ceph_release_page_vector(data->pages, num_pages);
1807 } else if (data->type == CEPH_MSG_DATA_PAGELIST) {
1808 ceph_pagelist_release(data->pagelist);
1809 }
1810}
1811
1812void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
1813 size_t length, size_t alignment, bool own_pages)
1814{
1815 struct ceph_msg_data *data;
1816
1817 BUG_ON(!pages);
1818 BUG_ON(!length);
1819
1820 data = ceph_msg_data_add(msg);
1821 data->type = CEPH_MSG_DATA_PAGES;
1822 data->pages = pages;
1823 data->length = length;
1824 data->alignment = alignment & ~PAGE_MASK;
1825 data->own_pages = own_pages;
1826
1827 msg->data_length += length;
1828}
1829EXPORT_SYMBOL(ceph_msg_data_add_pages);
1830
1831void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
1832 struct ceph_pagelist *pagelist)
1833{
1834 struct ceph_msg_data *data;
1835
1836 BUG_ON(!pagelist);
1837 BUG_ON(!pagelist->length);
1838
1839 data = ceph_msg_data_add(msg);
1840 data->type = CEPH_MSG_DATA_PAGELIST;
1841 refcount_inc(&pagelist->refcnt);
1842 data->pagelist = pagelist;
1843
1844 msg->data_length += pagelist->length;
1845}
1846EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
1847
1848#ifdef CONFIG_BLOCK
1849void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos,
1850 u32 length)
1851{
1852 struct ceph_msg_data *data;
1853
1854 data = ceph_msg_data_add(msg);
1855 data->type = CEPH_MSG_DATA_BIO;
1856 data->bio_pos = *bio_pos;
1857 data->bio_length = length;
1858
1859 msg->data_length += length;
1860}
1861EXPORT_SYMBOL(ceph_msg_data_add_bio);
1862#endif /* CONFIG_BLOCK */
1863
1864void ceph_msg_data_add_bvecs(struct ceph_msg *msg,
1865 struct ceph_bvec_iter *bvec_pos)
1866{
1867 struct ceph_msg_data *data;
1868
1869 data = ceph_msg_data_add(msg);
1870 data->type = CEPH_MSG_DATA_BVECS;
1871 data->bvec_pos = *bvec_pos;
1872
1873 msg->data_length += bvec_pos->iter.bi_size;
1874}
1875EXPORT_SYMBOL(ceph_msg_data_add_bvecs);
1876
1877/*
1878 * construct a new message with given type, size
1879 * the new msg has a ref count of 1.
1880 */
1881struct ceph_msg *ceph_msg_new2(int type, int front_len, int max_data_items,
1882 gfp_t flags, bool can_fail)
1883{
1884 struct ceph_msg *m;
1885
1886 m = kmem_cache_zalloc(ceph_msg_cache, flags);
1887 if (m == NULL)
1888 goto out;
1889
1890 m->hdr.type = cpu_to_le16(type);
1891 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
1892 m->hdr.front_len = cpu_to_le32(front_len);
1893
1894 INIT_LIST_HEAD(&m->list_head);
1895 kref_init(&m->kref);
1896
1897 /* front */
1898 if (front_len) {
1899 m->front.iov_base = kvmalloc(front_len, flags);
1900 if (m->front.iov_base == NULL) {
1901 dout("ceph_msg_new can't allocate %d bytes\n",
1902 front_len);
1903 goto out2;
1904 }
1905 } else {
1906 m->front.iov_base = NULL;
1907 }
1908 m->front_alloc_len = m->front.iov_len = front_len;
1909
1910 if (max_data_items) {
1911 m->data = kmalloc_array(max_data_items, sizeof(*m->data),
1912 flags);
1913 if (!m->data)
1914 goto out2;
1915
1916 m->max_data_items = max_data_items;
1917 }
1918
1919 dout("ceph_msg_new %p front %d\n", m, front_len);
1920 return m;
1921
1922out2:
1923 ceph_msg_put(m);
1924out:
1925 if (!can_fail) {
1926 pr_err("msg_new can't create type %d front %d\n", type,
1927 front_len);
1928 WARN_ON(1);
1929 } else {
1930 dout("msg_new can't create type %d front %d\n", type,
1931 front_len);
1932 }
1933 return NULL;
1934}
1935EXPORT_SYMBOL(ceph_msg_new2);
1936
1937struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
1938 bool can_fail)
1939{
1940 return ceph_msg_new2(type, front_len, 0, flags, can_fail);
1941}
1942EXPORT_SYMBOL(ceph_msg_new);
1943
1944/*
1945 * Allocate "middle" portion of a message, if it is needed and wasn't
1946 * allocated by alloc_msg. This allows us to read a small fixed-size
1947 * per-type header in the front and then gracefully fail (i.e.,
1948 * propagate the error to the caller based on info in the front) when
1949 * the middle is too large.
1950 */
1951static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
1952{
1953 int type = le16_to_cpu(msg->hdr.type);
1954 int middle_len = le32_to_cpu(msg->hdr.middle_len);
1955
1956 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
1957 ceph_msg_type_name(type), middle_len);
1958 BUG_ON(!middle_len);
1959 BUG_ON(msg->middle);
1960
1961 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
1962 if (!msg->middle)
1963 return -ENOMEM;
1964 return 0;
1965}
1966
1967/*
1968 * Allocate a message for receiving an incoming message on a
1969 * connection, and save the result in con->in_msg. Uses the
1970 * connection's private alloc_msg op if available.
1971 *
1972 * Returns 0 on success, or a negative error code.
1973 *
1974 * On success, if we set *skip = 1:
1975 * - the next message should be skipped and ignored.
1976 * - con->in_msg == NULL
1977 * or if we set *skip = 0:
1978 * - con->in_msg is non-null.
1979 * On error (ENOMEM, EAGAIN, ...),
1980 * - con->in_msg == NULL
1981 */
1982int ceph_con_in_msg_alloc(struct ceph_connection *con,
1983 struct ceph_msg_header *hdr, int *skip)
1984{
1985 int middle_len = le32_to_cpu(hdr->middle_len);
1986 struct ceph_msg *msg;
1987 int ret = 0;
1988
1989 BUG_ON(con->in_msg != NULL);
1990 BUG_ON(!con->ops->alloc_msg);
1991
1992 mutex_unlock(&con->mutex);
1993 msg = con->ops->alloc_msg(con, hdr, skip);
1994 mutex_lock(&con->mutex);
1995 if (con->state != CEPH_CON_S_OPEN) {
1996 if (msg)
1997 ceph_msg_put(msg);
1998 return -EAGAIN;
1999 }
2000 if (msg) {
2001 BUG_ON(*skip);
2002 msg_con_set(msg, con);
2003 con->in_msg = msg;
2004 } else {
2005 /*
2006 * Null message pointer means either we should skip
2007 * this message or we couldn't allocate memory. The
2008 * former is not an error.
2009 */
2010 if (*skip)
2011 return 0;
2012
2013 con->error_msg = "error allocating memory for incoming message";
2014 return -ENOMEM;
2015 }
2016 memcpy(&con->in_msg->hdr, hdr, sizeof(*hdr));
2017
2018 if (middle_len && !con->in_msg->middle) {
2019 ret = ceph_alloc_middle(con, con->in_msg);
2020 if (ret < 0) {
2021 ceph_msg_put(con->in_msg);
2022 con->in_msg = NULL;
2023 }
2024 }
2025
2026 return ret;
2027}
2028
2029void ceph_con_get_out_msg(struct ceph_connection *con)
2030{
2031 struct ceph_msg *msg;
2032
2033 BUG_ON(list_empty(&con->out_queue));
2034 msg = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
2035 WARN_ON(msg->con != con);
2036
2037 /*
2038 * Put the message on "sent" list using a ref from ceph_con_send().
2039 * It is put when the message is acked or revoked.
2040 */
2041 list_move_tail(&msg->list_head, &con->out_sent);
2042
2043 /*
2044 * Only assign outgoing seq # if we haven't sent this message
2045 * yet. If it is requeued, resend with it's original seq.
2046 */
2047 if (msg->needs_out_seq) {
2048 msg->hdr.seq = cpu_to_le64(++con->out_seq);
2049 msg->needs_out_seq = false;
2050
2051 if (con->ops->reencode_message)
2052 con->ops->reencode_message(msg);
2053 }
2054
2055 /*
2056 * Get a ref for out_msg. It is put when we are done sending the
2057 * message or in case of a fault.
2058 */
2059 WARN_ON(con->out_msg);
2060 con->out_msg = ceph_msg_get(msg);
2061}
2062
2063/*
2064 * Free a generically kmalloc'd message.
2065 */
2066static void ceph_msg_free(struct ceph_msg *m)
2067{
2068 dout("%s %p\n", __func__, m);
2069 kvfree(m->front.iov_base);
2070 kfree(m->data);
2071 kmem_cache_free(ceph_msg_cache, m);
2072}
2073
2074static void ceph_msg_release(struct kref *kref)
2075{
2076 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2077 int i;
2078
2079 dout("%s %p\n", __func__, m);
2080 WARN_ON(!list_empty(&m->list_head));
2081
2082 msg_con_set(m, NULL);
2083
2084 /* drop middle, data, if any */
2085 if (m->middle) {
2086 ceph_buffer_put(m->middle);
2087 m->middle = NULL;
2088 }
2089
2090 for (i = 0; i < m->num_data_items; i++)
2091 ceph_msg_data_destroy(&m->data[i]);
2092
2093 if (m->pool)
2094 ceph_msgpool_put(m->pool, m);
2095 else
2096 ceph_msg_free(m);
2097}
2098
2099struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
2100{
2101 dout("%s %p (was %d)\n", __func__, msg,
2102 kref_read(&msg->kref));
2103 kref_get(&msg->kref);
2104 return msg;
2105}
2106EXPORT_SYMBOL(ceph_msg_get);
2107
2108void ceph_msg_put(struct ceph_msg *msg)
2109{
2110 dout("%s %p (was %d)\n", __func__, msg,
2111 kref_read(&msg->kref));
2112 kref_put(&msg->kref, ceph_msg_release);
2113}
2114EXPORT_SYMBOL(ceph_msg_put);
2115
2116void ceph_msg_dump(struct ceph_msg *msg)
2117{
2118 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
2119 msg->front_alloc_len, msg->data_length);
2120 print_hex_dump(KERN_DEBUG, "header: ",
2121 DUMP_PREFIX_OFFSET, 16, 1,
2122 &msg->hdr, sizeof(msg->hdr), true);
2123 print_hex_dump(KERN_DEBUG, " front: ",
2124 DUMP_PREFIX_OFFSET, 16, 1,
2125 msg->front.iov_base, msg->front.iov_len, true);
2126 if (msg->middle)
2127 print_hex_dump(KERN_DEBUG, "middle: ",
2128 DUMP_PREFIX_OFFSET, 16, 1,
2129 msg->middle->vec.iov_base,
2130 msg->middle->vec.iov_len, true);
2131 print_hex_dump(KERN_DEBUG, "footer: ",
2132 DUMP_PREFIX_OFFSET, 16, 1,
2133 &msg->footer, sizeof(msg->footer), true);
2134}
2135EXPORT_SYMBOL(ceph_msg_dump);
1#include <linux/ceph/ceph_debug.h>
2
3#include <linux/crc32c.h>
4#include <linux/ctype.h>
5#include <linux/highmem.h>
6#include <linux/inet.h>
7#include <linux/kthread.h>
8#include <linux/net.h>
9#include <linux/slab.h>
10#include <linux/socket.h>
11#include <linux/string.h>
12#include <linux/bio.h>
13#include <linux/blkdev.h>
14#include <net/tcp.h>
15
16#include <linux/ceph/libceph.h>
17#include <linux/ceph/messenger.h>
18#include <linux/ceph/decode.h>
19#include <linux/ceph/pagelist.h>
20
21/*
22 * Ceph uses the messenger to exchange ceph_msg messages with other
23 * hosts in the system. The messenger provides ordered and reliable
24 * delivery. We tolerate TCP disconnects by reconnecting (with
25 * exponential backoff) in the case of a fault (disconnection, bad
26 * crc, protocol error). Acks allow sent messages to be discarded by
27 * the sender.
28 */
29
30/* static tag bytes (protocol control messages) */
31static char tag_msg = CEPH_MSGR_TAG_MSG;
32static char tag_ack = CEPH_MSGR_TAG_ACK;
33static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
34
35#ifdef CONFIG_LOCKDEP
36static struct lock_class_key socket_class;
37#endif
38
39
40static void queue_con(struct ceph_connection *con);
41static void con_work(struct work_struct *);
42static void ceph_fault(struct ceph_connection *con);
43
44/*
45 * nicely render a sockaddr as a string.
46 */
47#define MAX_ADDR_STR 20
48#define MAX_ADDR_STR_LEN 60
49static char addr_str[MAX_ADDR_STR][MAX_ADDR_STR_LEN];
50static DEFINE_SPINLOCK(addr_str_lock);
51static int last_addr_str;
52
53const char *ceph_pr_addr(const struct sockaddr_storage *ss)
54{
55 int i;
56 char *s;
57 struct sockaddr_in *in4 = (void *)ss;
58 struct sockaddr_in6 *in6 = (void *)ss;
59
60 spin_lock(&addr_str_lock);
61 i = last_addr_str++;
62 if (last_addr_str == MAX_ADDR_STR)
63 last_addr_str = 0;
64 spin_unlock(&addr_str_lock);
65 s = addr_str[i];
66
67 switch (ss->ss_family) {
68 case AF_INET:
69 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%u", &in4->sin_addr,
70 (unsigned int)ntohs(in4->sin_port));
71 break;
72
73 case AF_INET6:
74 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%u", &in6->sin6_addr,
75 (unsigned int)ntohs(in6->sin6_port));
76 break;
77
78 default:
79 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %d)",
80 (int)ss->ss_family);
81 }
82
83 return s;
84}
85EXPORT_SYMBOL(ceph_pr_addr);
86
87static void encode_my_addr(struct ceph_messenger *msgr)
88{
89 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
90 ceph_encode_addr(&msgr->my_enc_addr);
91}
92
93/*
94 * work queue for all reading and writing to/from the socket.
95 */
96struct workqueue_struct *ceph_msgr_wq;
97
98int ceph_msgr_init(void)
99{
100 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
101 if (!ceph_msgr_wq) {
102 pr_err("msgr_init failed to create workqueue\n");
103 return -ENOMEM;
104 }
105 return 0;
106}
107EXPORT_SYMBOL(ceph_msgr_init);
108
109void ceph_msgr_exit(void)
110{
111 destroy_workqueue(ceph_msgr_wq);
112}
113EXPORT_SYMBOL(ceph_msgr_exit);
114
115void ceph_msgr_flush(void)
116{
117 flush_workqueue(ceph_msgr_wq);
118}
119EXPORT_SYMBOL(ceph_msgr_flush);
120
121
122/*
123 * socket callback functions
124 */
125
126/* data available on socket, or listen socket received a connect */
127static void ceph_data_ready(struct sock *sk, int count_unused)
128{
129 struct ceph_connection *con =
130 (struct ceph_connection *)sk->sk_user_data;
131 if (sk->sk_state != TCP_CLOSE_WAIT) {
132 dout("ceph_data_ready on %p state = %lu, queueing work\n",
133 con, con->state);
134 queue_con(con);
135 }
136}
137
138/* socket has buffer space for writing */
139static void ceph_write_space(struct sock *sk)
140{
141 struct ceph_connection *con =
142 (struct ceph_connection *)sk->sk_user_data;
143
144 /* only queue to workqueue if there is data we want to write. */
145 if (test_bit(WRITE_PENDING, &con->state)) {
146 dout("ceph_write_space %p queueing write work\n", con);
147 queue_con(con);
148 } else {
149 dout("ceph_write_space %p nothing to write\n", con);
150 }
151
152 /* since we have our own write_space, clear the SOCK_NOSPACE flag */
153 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
154}
155
156/* socket's state has changed */
157static void ceph_state_change(struct sock *sk)
158{
159 struct ceph_connection *con =
160 (struct ceph_connection *)sk->sk_user_data;
161
162 dout("ceph_state_change %p state = %lu sk_state = %u\n",
163 con, con->state, sk->sk_state);
164
165 if (test_bit(CLOSED, &con->state))
166 return;
167
168 switch (sk->sk_state) {
169 case TCP_CLOSE:
170 dout("ceph_state_change TCP_CLOSE\n");
171 case TCP_CLOSE_WAIT:
172 dout("ceph_state_change TCP_CLOSE_WAIT\n");
173 if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) {
174 if (test_bit(CONNECTING, &con->state))
175 con->error_msg = "connection failed";
176 else
177 con->error_msg = "socket closed";
178 queue_con(con);
179 }
180 break;
181 case TCP_ESTABLISHED:
182 dout("ceph_state_change TCP_ESTABLISHED\n");
183 queue_con(con);
184 break;
185 }
186}
187
188/*
189 * set up socket callbacks
190 */
191static void set_sock_callbacks(struct socket *sock,
192 struct ceph_connection *con)
193{
194 struct sock *sk = sock->sk;
195 sk->sk_user_data = (void *)con;
196 sk->sk_data_ready = ceph_data_ready;
197 sk->sk_write_space = ceph_write_space;
198 sk->sk_state_change = ceph_state_change;
199}
200
201
202/*
203 * socket helpers
204 */
205
206/*
207 * initiate connection to a remote socket.
208 */
209static struct socket *ceph_tcp_connect(struct ceph_connection *con)
210{
211 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
212 struct socket *sock;
213 int ret;
214
215 BUG_ON(con->sock);
216 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
217 IPPROTO_TCP, &sock);
218 if (ret)
219 return ERR_PTR(ret);
220 con->sock = sock;
221 sock->sk->sk_allocation = GFP_NOFS;
222
223#ifdef CONFIG_LOCKDEP
224 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
225#endif
226
227 set_sock_callbacks(sock, con);
228
229 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
230
231 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
232 O_NONBLOCK);
233 if (ret == -EINPROGRESS) {
234 dout("connect %s EINPROGRESS sk_state = %u\n",
235 ceph_pr_addr(&con->peer_addr.in_addr),
236 sock->sk->sk_state);
237 ret = 0;
238 }
239 if (ret < 0) {
240 pr_err("connect %s error %d\n",
241 ceph_pr_addr(&con->peer_addr.in_addr), ret);
242 sock_release(sock);
243 con->sock = NULL;
244 con->error_msg = "connect error";
245 }
246
247 if (ret < 0)
248 return ERR_PTR(ret);
249 return sock;
250}
251
252static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
253{
254 struct kvec iov = {buf, len};
255 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
256 int r;
257
258 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
259 if (r == -EAGAIN)
260 r = 0;
261 return r;
262}
263
264/*
265 * write something. @more is true if caller will be sending more data
266 * shortly.
267 */
268static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
269 size_t kvlen, size_t len, int more)
270{
271 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
272 int r;
273
274 if (more)
275 msg.msg_flags |= MSG_MORE;
276 else
277 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
278
279 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
280 if (r == -EAGAIN)
281 r = 0;
282 return r;
283}
284
285
286/*
287 * Shutdown/close the socket for the given connection.
288 */
289static int con_close_socket(struct ceph_connection *con)
290{
291 int rc;
292
293 dout("con_close_socket on %p sock %p\n", con, con->sock);
294 if (!con->sock)
295 return 0;
296 set_bit(SOCK_CLOSED, &con->state);
297 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
298 sock_release(con->sock);
299 con->sock = NULL;
300 clear_bit(SOCK_CLOSED, &con->state);
301 return rc;
302}
303
304/*
305 * Reset a connection. Discard all incoming and outgoing messages
306 * and clear *_seq state.
307 */
308static void ceph_msg_remove(struct ceph_msg *msg)
309{
310 list_del_init(&msg->list_head);
311 ceph_msg_put(msg);
312}
313static void ceph_msg_remove_list(struct list_head *head)
314{
315 while (!list_empty(head)) {
316 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
317 list_head);
318 ceph_msg_remove(msg);
319 }
320}
321
322static void reset_connection(struct ceph_connection *con)
323{
324 /* reset connection, out_queue, msg_ and connect_seq */
325 /* discard existing out_queue and msg_seq */
326 ceph_msg_remove_list(&con->out_queue);
327 ceph_msg_remove_list(&con->out_sent);
328
329 if (con->in_msg) {
330 ceph_msg_put(con->in_msg);
331 con->in_msg = NULL;
332 }
333
334 con->connect_seq = 0;
335 con->out_seq = 0;
336 if (con->out_msg) {
337 ceph_msg_put(con->out_msg);
338 con->out_msg = NULL;
339 }
340 con->in_seq = 0;
341 con->in_seq_acked = 0;
342}
343
344/*
345 * mark a peer down. drop any open connections.
346 */
347void ceph_con_close(struct ceph_connection *con)
348{
349 dout("con_close %p peer %s\n", con,
350 ceph_pr_addr(&con->peer_addr.in_addr));
351 set_bit(CLOSED, &con->state); /* in case there's queued work */
352 clear_bit(STANDBY, &con->state); /* avoid connect_seq bump */
353 clear_bit(LOSSYTX, &con->state); /* so we retry next connect */
354 clear_bit(KEEPALIVE_PENDING, &con->state);
355 clear_bit(WRITE_PENDING, &con->state);
356 mutex_lock(&con->mutex);
357 reset_connection(con);
358 con->peer_global_seq = 0;
359 cancel_delayed_work(&con->work);
360 mutex_unlock(&con->mutex);
361 queue_con(con);
362}
363EXPORT_SYMBOL(ceph_con_close);
364
365/*
366 * Reopen a closed connection, with a new peer address.
367 */
368void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
369{
370 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
371 set_bit(OPENING, &con->state);
372 clear_bit(CLOSED, &con->state);
373 memcpy(&con->peer_addr, addr, sizeof(*addr));
374 con->delay = 0; /* reset backoff memory */
375 queue_con(con);
376}
377EXPORT_SYMBOL(ceph_con_open);
378
379/*
380 * return true if this connection ever successfully opened
381 */
382bool ceph_con_opened(struct ceph_connection *con)
383{
384 return con->connect_seq > 0;
385}
386
387/*
388 * generic get/put
389 */
390struct ceph_connection *ceph_con_get(struct ceph_connection *con)
391{
392 dout("con_get %p nref = %d -> %d\n", con,
393 atomic_read(&con->nref), atomic_read(&con->nref) + 1);
394 if (atomic_inc_not_zero(&con->nref))
395 return con;
396 return NULL;
397}
398
399void ceph_con_put(struct ceph_connection *con)
400{
401 dout("con_put %p nref = %d -> %d\n", con,
402 atomic_read(&con->nref), atomic_read(&con->nref) - 1);
403 BUG_ON(atomic_read(&con->nref) == 0);
404 if (atomic_dec_and_test(&con->nref)) {
405 BUG_ON(con->sock);
406 kfree(con);
407 }
408}
409
410/*
411 * initialize a new connection.
412 */
413void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con)
414{
415 dout("con_init %p\n", con);
416 memset(con, 0, sizeof(*con));
417 atomic_set(&con->nref, 1);
418 con->msgr = msgr;
419 mutex_init(&con->mutex);
420 INIT_LIST_HEAD(&con->out_queue);
421 INIT_LIST_HEAD(&con->out_sent);
422 INIT_DELAYED_WORK(&con->work, con_work);
423}
424EXPORT_SYMBOL(ceph_con_init);
425
426
427/*
428 * We maintain a global counter to order connection attempts. Get
429 * a unique seq greater than @gt.
430 */
431static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
432{
433 u32 ret;
434
435 spin_lock(&msgr->global_seq_lock);
436 if (msgr->global_seq < gt)
437 msgr->global_seq = gt;
438 ret = ++msgr->global_seq;
439 spin_unlock(&msgr->global_seq_lock);
440 return ret;
441}
442
443
444/*
445 * Prepare footer for currently outgoing message, and finish things
446 * off. Assumes out_kvec* are already valid.. we just add on to the end.
447 */
448static void prepare_write_message_footer(struct ceph_connection *con, int v)
449{
450 struct ceph_msg *m = con->out_msg;
451
452 dout("prepare_write_message_footer %p\n", con);
453 con->out_kvec_is_msg = true;
454 con->out_kvec[v].iov_base = &m->footer;
455 con->out_kvec[v].iov_len = sizeof(m->footer);
456 con->out_kvec_bytes += sizeof(m->footer);
457 con->out_kvec_left++;
458 con->out_more = m->more_to_follow;
459 con->out_msg_done = true;
460}
461
462/*
463 * Prepare headers for the next outgoing message.
464 */
465static void prepare_write_message(struct ceph_connection *con)
466{
467 struct ceph_msg *m;
468 int v = 0;
469
470 con->out_kvec_bytes = 0;
471 con->out_kvec_is_msg = true;
472 con->out_msg_done = false;
473
474 /* Sneak an ack in there first? If we can get it into the same
475 * TCP packet that's a good thing. */
476 if (con->in_seq > con->in_seq_acked) {
477 con->in_seq_acked = con->in_seq;
478 con->out_kvec[v].iov_base = &tag_ack;
479 con->out_kvec[v++].iov_len = 1;
480 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
481 con->out_kvec[v].iov_base = &con->out_temp_ack;
482 con->out_kvec[v++].iov_len = sizeof(con->out_temp_ack);
483 con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
484 }
485
486 m = list_first_entry(&con->out_queue,
487 struct ceph_msg, list_head);
488 con->out_msg = m;
489
490 /* put message on sent list */
491 ceph_msg_get(m);
492 list_move_tail(&m->list_head, &con->out_sent);
493
494 /*
495 * only assign outgoing seq # if we haven't sent this message
496 * yet. if it is requeued, resend with it's original seq.
497 */
498 if (m->needs_out_seq) {
499 m->hdr.seq = cpu_to_le64(++con->out_seq);
500 m->needs_out_seq = false;
501 }
502
503 dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
504 m, con->out_seq, le16_to_cpu(m->hdr.type),
505 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
506 le32_to_cpu(m->hdr.data_len),
507 m->nr_pages);
508 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
509
510 /* tag + hdr + front + middle */
511 con->out_kvec[v].iov_base = &tag_msg;
512 con->out_kvec[v++].iov_len = 1;
513 con->out_kvec[v].iov_base = &m->hdr;
514 con->out_kvec[v++].iov_len = sizeof(m->hdr);
515 con->out_kvec[v++] = m->front;
516 if (m->middle)
517 con->out_kvec[v++] = m->middle->vec;
518 con->out_kvec_left = v;
519 con->out_kvec_bytes += 1 + sizeof(m->hdr) + m->front.iov_len +
520 (m->middle ? m->middle->vec.iov_len : 0);
521 con->out_kvec_cur = con->out_kvec;
522
523 /* fill in crc (except data pages), footer */
524 con->out_msg->hdr.crc =
525 cpu_to_le32(crc32c(0, (void *)&m->hdr,
526 sizeof(m->hdr) - sizeof(m->hdr.crc)));
527 con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
528 con->out_msg->footer.front_crc =
529 cpu_to_le32(crc32c(0, m->front.iov_base, m->front.iov_len));
530 if (m->middle)
531 con->out_msg->footer.middle_crc =
532 cpu_to_le32(crc32c(0, m->middle->vec.iov_base,
533 m->middle->vec.iov_len));
534 else
535 con->out_msg->footer.middle_crc = 0;
536 con->out_msg->footer.data_crc = 0;
537 dout("prepare_write_message front_crc %u data_crc %u\n",
538 le32_to_cpu(con->out_msg->footer.front_crc),
539 le32_to_cpu(con->out_msg->footer.middle_crc));
540
541 /* is there a data payload? */
542 if (le32_to_cpu(m->hdr.data_len) > 0) {
543 /* initialize page iterator */
544 con->out_msg_pos.page = 0;
545 if (m->pages)
546 con->out_msg_pos.page_pos = m->page_alignment;
547 else
548 con->out_msg_pos.page_pos = 0;
549 con->out_msg_pos.data_pos = 0;
550 con->out_msg_pos.did_page_crc = 0;
551 con->out_more = 1; /* data + footer will follow */
552 } else {
553 /* no, queue up footer too and be done */
554 prepare_write_message_footer(con, v);
555 }
556
557 set_bit(WRITE_PENDING, &con->state);
558}
559
560/*
561 * Prepare an ack.
562 */
563static void prepare_write_ack(struct ceph_connection *con)
564{
565 dout("prepare_write_ack %p %llu -> %llu\n", con,
566 con->in_seq_acked, con->in_seq);
567 con->in_seq_acked = con->in_seq;
568
569 con->out_kvec[0].iov_base = &tag_ack;
570 con->out_kvec[0].iov_len = 1;
571 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
572 con->out_kvec[1].iov_base = &con->out_temp_ack;
573 con->out_kvec[1].iov_len = sizeof(con->out_temp_ack);
574 con->out_kvec_left = 2;
575 con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
576 con->out_kvec_cur = con->out_kvec;
577 con->out_more = 1; /* more will follow.. eventually.. */
578 set_bit(WRITE_PENDING, &con->state);
579}
580
581/*
582 * Prepare to write keepalive byte.
583 */
584static void prepare_write_keepalive(struct ceph_connection *con)
585{
586 dout("prepare_write_keepalive %p\n", con);
587 con->out_kvec[0].iov_base = &tag_keepalive;
588 con->out_kvec[0].iov_len = 1;
589 con->out_kvec_left = 1;
590 con->out_kvec_bytes = 1;
591 con->out_kvec_cur = con->out_kvec;
592 set_bit(WRITE_PENDING, &con->state);
593}
594
595/*
596 * Connection negotiation.
597 */
598
599static int prepare_connect_authorizer(struct ceph_connection *con)
600{
601 void *auth_buf;
602 int auth_len = 0;
603 int auth_protocol = 0;
604
605 mutex_unlock(&con->mutex);
606 if (con->ops->get_authorizer)
607 con->ops->get_authorizer(con, &auth_buf, &auth_len,
608 &auth_protocol, &con->auth_reply_buf,
609 &con->auth_reply_buf_len,
610 con->auth_retry);
611 mutex_lock(&con->mutex);
612
613 if (test_bit(CLOSED, &con->state) ||
614 test_bit(OPENING, &con->state))
615 return -EAGAIN;
616
617 con->out_connect.authorizer_protocol = cpu_to_le32(auth_protocol);
618 con->out_connect.authorizer_len = cpu_to_le32(auth_len);
619
620 if (auth_len) {
621 con->out_kvec[con->out_kvec_left].iov_base = auth_buf;
622 con->out_kvec[con->out_kvec_left].iov_len = auth_len;
623 con->out_kvec_left++;
624 con->out_kvec_bytes += auth_len;
625 }
626 return 0;
627}
628
629/*
630 * We connected to a peer and are saying hello.
631 */
632static void prepare_write_banner(struct ceph_messenger *msgr,
633 struct ceph_connection *con)
634{
635 int len = strlen(CEPH_BANNER);
636
637 con->out_kvec[0].iov_base = CEPH_BANNER;
638 con->out_kvec[0].iov_len = len;
639 con->out_kvec[1].iov_base = &msgr->my_enc_addr;
640 con->out_kvec[1].iov_len = sizeof(msgr->my_enc_addr);
641 con->out_kvec_left = 2;
642 con->out_kvec_bytes = len + sizeof(msgr->my_enc_addr);
643 con->out_kvec_cur = con->out_kvec;
644 con->out_more = 0;
645 set_bit(WRITE_PENDING, &con->state);
646}
647
648static int prepare_write_connect(struct ceph_messenger *msgr,
649 struct ceph_connection *con,
650 int after_banner)
651{
652 unsigned global_seq = get_global_seq(con->msgr, 0);
653 int proto;
654
655 switch (con->peer_name.type) {
656 case CEPH_ENTITY_TYPE_MON:
657 proto = CEPH_MONC_PROTOCOL;
658 break;
659 case CEPH_ENTITY_TYPE_OSD:
660 proto = CEPH_OSDC_PROTOCOL;
661 break;
662 case CEPH_ENTITY_TYPE_MDS:
663 proto = CEPH_MDSC_PROTOCOL;
664 break;
665 default:
666 BUG();
667 }
668
669 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
670 con->connect_seq, global_seq, proto);
671
672 con->out_connect.features = cpu_to_le64(msgr->supported_features);
673 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
674 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
675 con->out_connect.global_seq = cpu_to_le32(global_seq);
676 con->out_connect.protocol_version = cpu_to_le32(proto);
677 con->out_connect.flags = 0;
678
679 if (!after_banner) {
680 con->out_kvec_left = 0;
681 con->out_kvec_bytes = 0;
682 }
683 con->out_kvec[con->out_kvec_left].iov_base = &con->out_connect;
684 con->out_kvec[con->out_kvec_left].iov_len = sizeof(con->out_connect);
685 con->out_kvec_left++;
686 con->out_kvec_bytes += sizeof(con->out_connect);
687 con->out_kvec_cur = con->out_kvec;
688 con->out_more = 0;
689 set_bit(WRITE_PENDING, &con->state);
690
691 return prepare_connect_authorizer(con);
692}
693
694
695/*
696 * write as much of pending kvecs to the socket as we can.
697 * 1 -> done
698 * 0 -> socket full, but more to do
699 * <0 -> error
700 */
701static int write_partial_kvec(struct ceph_connection *con)
702{
703 int ret;
704
705 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
706 while (con->out_kvec_bytes > 0) {
707 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
708 con->out_kvec_left, con->out_kvec_bytes,
709 con->out_more);
710 if (ret <= 0)
711 goto out;
712 con->out_kvec_bytes -= ret;
713 if (con->out_kvec_bytes == 0)
714 break; /* done */
715 while (ret > 0) {
716 if (ret >= con->out_kvec_cur->iov_len) {
717 ret -= con->out_kvec_cur->iov_len;
718 con->out_kvec_cur++;
719 con->out_kvec_left--;
720 } else {
721 con->out_kvec_cur->iov_len -= ret;
722 con->out_kvec_cur->iov_base += ret;
723 ret = 0;
724 break;
725 }
726 }
727 }
728 con->out_kvec_left = 0;
729 con->out_kvec_is_msg = false;
730 ret = 1;
731out:
732 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
733 con->out_kvec_bytes, con->out_kvec_left, ret);
734 return ret; /* done! */
735}
736
737#ifdef CONFIG_BLOCK
738static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
739{
740 if (!bio) {
741 *iter = NULL;
742 *seg = 0;
743 return;
744 }
745 *iter = bio;
746 *seg = bio->bi_idx;
747}
748
749static void iter_bio_next(struct bio **bio_iter, int *seg)
750{
751 if (*bio_iter == NULL)
752 return;
753
754 BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
755
756 (*seg)++;
757 if (*seg == (*bio_iter)->bi_vcnt)
758 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
759}
760#endif
761
762/*
763 * Write as much message data payload as we can. If we finish, queue
764 * up the footer.
765 * 1 -> done, footer is now queued in out_kvec[].
766 * 0 -> socket full, but more to do
767 * <0 -> error
768 */
769static int write_partial_msg_pages(struct ceph_connection *con)
770{
771 struct ceph_msg *msg = con->out_msg;
772 unsigned data_len = le32_to_cpu(msg->hdr.data_len);
773 size_t len;
774 int crc = con->msgr->nocrc;
775 int ret;
776 int total_max_write;
777 int in_trail = 0;
778 size_t trail_len = (msg->trail ? msg->trail->length : 0);
779
780 dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
781 con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
782 con->out_msg_pos.page_pos);
783
784#ifdef CONFIG_BLOCK
785 if (msg->bio && !msg->bio_iter)
786 init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
787#endif
788
789 while (data_len > con->out_msg_pos.data_pos) {
790 struct page *page = NULL;
791 void *kaddr = NULL;
792 int max_write = PAGE_SIZE;
793 int page_shift = 0;
794
795 total_max_write = data_len - trail_len -
796 con->out_msg_pos.data_pos;
797
798 /*
799 * if we are calculating the data crc (the default), we need
800 * to map the page. if our pages[] has been revoked, use the
801 * zero page.
802 */
803
804 /* have we reached the trail part of the data? */
805 if (con->out_msg_pos.data_pos >= data_len - trail_len) {
806 in_trail = 1;
807
808 total_max_write = data_len - con->out_msg_pos.data_pos;
809
810 page = list_first_entry(&msg->trail->head,
811 struct page, lru);
812 if (crc)
813 kaddr = kmap(page);
814 max_write = PAGE_SIZE;
815 } else if (msg->pages) {
816 page = msg->pages[con->out_msg_pos.page];
817 if (crc)
818 kaddr = kmap(page);
819 } else if (msg->pagelist) {
820 page = list_first_entry(&msg->pagelist->head,
821 struct page, lru);
822 if (crc)
823 kaddr = kmap(page);
824#ifdef CONFIG_BLOCK
825 } else if (msg->bio) {
826 struct bio_vec *bv;
827
828 bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
829 page = bv->bv_page;
830 page_shift = bv->bv_offset;
831 if (crc)
832 kaddr = kmap(page) + page_shift;
833 max_write = bv->bv_len;
834#endif
835 } else {
836 page = con->msgr->zero_page;
837 if (crc)
838 kaddr = page_address(con->msgr->zero_page);
839 }
840 len = min_t(int, max_write - con->out_msg_pos.page_pos,
841 total_max_write);
842
843 if (crc && !con->out_msg_pos.did_page_crc) {
844 void *base = kaddr + con->out_msg_pos.page_pos;
845 u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
846
847 BUG_ON(kaddr == NULL);
848 con->out_msg->footer.data_crc =
849 cpu_to_le32(crc32c(tmpcrc, base, len));
850 con->out_msg_pos.did_page_crc = 1;
851 }
852 ret = kernel_sendpage(con->sock, page,
853 con->out_msg_pos.page_pos + page_shift,
854 len,
855 MSG_DONTWAIT | MSG_NOSIGNAL |
856 MSG_MORE);
857
858 if (crc &&
859 (msg->pages || msg->pagelist || msg->bio || in_trail))
860 kunmap(page);
861
862 if (ret == -EAGAIN)
863 ret = 0;
864 if (ret <= 0)
865 goto out;
866
867 con->out_msg_pos.data_pos += ret;
868 con->out_msg_pos.page_pos += ret;
869 if (ret == len) {
870 con->out_msg_pos.page_pos = 0;
871 con->out_msg_pos.page++;
872 con->out_msg_pos.did_page_crc = 0;
873 if (in_trail)
874 list_move_tail(&page->lru,
875 &msg->trail->head);
876 else if (msg->pagelist)
877 list_move_tail(&page->lru,
878 &msg->pagelist->head);
879#ifdef CONFIG_BLOCK
880 else if (msg->bio)
881 iter_bio_next(&msg->bio_iter, &msg->bio_seg);
882#endif
883 }
884 }
885
886 dout("write_partial_msg_pages %p msg %p done\n", con, msg);
887
888 /* prepare and queue up footer, too */
889 if (!crc)
890 con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
891 con->out_kvec_bytes = 0;
892 con->out_kvec_left = 0;
893 con->out_kvec_cur = con->out_kvec;
894 prepare_write_message_footer(con, 0);
895 ret = 1;
896out:
897 return ret;
898}
899
900/*
901 * write some zeros
902 */
903static int write_partial_skip(struct ceph_connection *con)
904{
905 int ret;
906
907 while (con->out_skip > 0) {
908 struct kvec iov = {
909 .iov_base = page_address(con->msgr->zero_page),
910 .iov_len = min(con->out_skip, (int)PAGE_CACHE_SIZE)
911 };
912
913 ret = ceph_tcp_sendmsg(con->sock, &iov, 1, iov.iov_len, 1);
914 if (ret <= 0)
915 goto out;
916 con->out_skip -= ret;
917 }
918 ret = 1;
919out:
920 return ret;
921}
922
923/*
924 * Prepare to read connection handshake, or an ack.
925 */
926static void prepare_read_banner(struct ceph_connection *con)
927{
928 dout("prepare_read_banner %p\n", con);
929 con->in_base_pos = 0;
930}
931
932static void prepare_read_connect(struct ceph_connection *con)
933{
934 dout("prepare_read_connect %p\n", con);
935 con->in_base_pos = 0;
936}
937
938static void prepare_read_ack(struct ceph_connection *con)
939{
940 dout("prepare_read_ack %p\n", con);
941 con->in_base_pos = 0;
942}
943
944static void prepare_read_tag(struct ceph_connection *con)
945{
946 dout("prepare_read_tag %p\n", con);
947 con->in_base_pos = 0;
948 con->in_tag = CEPH_MSGR_TAG_READY;
949}
950
951/*
952 * Prepare to read a message.
953 */
954static int prepare_read_message(struct ceph_connection *con)
955{
956 dout("prepare_read_message %p\n", con);
957 BUG_ON(con->in_msg != NULL);
958 con->in_base_pos = 0;
959 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
960 return 0;
961}
962
963
964static int read_partial(struct ceph_connection *con,
965 int *to, int size, void *object)
966{
967 *to += size;
968 while (con->in_base_pos < *to) {
969 int left = *to - con->in_base_pos;
970 int have = size - left;
971 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
972 if (ret <= 0)
973 return ret;
974 con->in_base_pos += ret;
975 }
976 return 1;
977}
978
979
980/*
981 * Read all or part of the connect-side handshake on a new connection
982 */
983static int read_partial_banner(struct ceph_connection *con)
984{
985 int ret, to = 0;
986
987 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
988
989 /* peer's banner */
990 ret = read_partial(con, &to, strlen(CEPH_BANNER), con->in_banner);
991 if (ret <= 0)
992 goto out;
993 ret = read_partial(con, &to, sizeof(con->actual_peer_addr),
994 &con->actual_peer_addr);
995 if (ret <= 0)
996 goto out;
997 ret = read_partial(con, &to, sizeof(con->peer_addr_for_me),
998 &con->peer_addr_for_me);
999 if (ret <= 0)
1000 goto out;
1001out:
1002 return ret;
1003}
1004
1005static int read_partial_connect(struct ceph_connection *con)
1006{
1007 int ret, to = 0;
1008
1009 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1010
1011 ret = read_partial(con, &to, sizeof(con->in_reply), &con->in_reply);
1012 if (ret <= 0)
1013 goto out;
1014 ret = read_partial(con, &to, le32_to_cpu(con->in_reply.authorizer_len),
1015 con->auth_reply_buf);
1016 if (ret <= 0)
1017 goto out;
1018
1019 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1020 con, (int)con->in_reply.tag,
1021 le32_to_cpu(con->in_reply.connect_seq),
1022 le32_to_cpu(con->in_reply.global_seq));
1023out:
1024 return ret;
1025
1026}
1027
1028/*
1029 * Verify the hello banner looks okay.
1030 */
1031static int verify_hello(struct ceph_connection *con)
1032{
1033 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1034 pr_err("connect to %s got bad banner\n",
1035 ceph_pr_addr(&con->peer_addr.in_addr));
1036 con->error_msg = "protocol error, bad banner";
1037 return -1;
1038 }
1039 return 0;
1040}
1041
1042static bool addr_is_blank(struct sockaddr_storage *ss)
1043{
1044 switch (ss->ss_family) {
1045 case AF_INET:
1046 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1047 case AF_INET6:
1048 return
1049 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1050 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1051 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1052 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1053 }
1054 return false;
1055}
1056
1057static int addr_port(struct sockaddr_storage *ss)
1058{
1059 switch (ss->ss_family) {
1060 case AF_INET:
1061 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1062 case AF_INET6:
1063 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1064 }
1065 return 0;
1066}
1067
1068static void addr_set_port(struct sockaddr_storage *ss, int p)
1069{
1070 switch (ss->ss_family) {
1071 case AF_INET:
1072 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1073 break;
1074 case AF_INET6:
1075 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1076 break;
1077 }
1078}
1079
1080/*
1081 * Parse an ip[:port] list into an addr array. Use the default
1082 * monitor port if a port isn't specified.
1083 */
1084int ceph_parse_ips(const char *c, const char *end,
1085 struct ceph_entity_addr *addr,
1086 int max_count, int *count)
1087{
1088 int i;
1089 const char *p = c;
1090
1091 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1092 for (i = 0; i < max_count; i++) {
1093 const char *ipend;
1094 struct sockaddr_storage *ss = &addr[i].in_addr;
1095 struct sockaddr_in *in4 = (void *)ss;
1096 struct sockaddr_in6 *in6 = (void *)ss;
1097 int port;
1098 char delim = ',';
1099
1100 if (*p == '[') {
1101 delim = ']';
1102 p++;
1103 }
1104
1105 memset(ss, 0, sizeof(*ss));
1106 if (in4_pton(p, end - p, (u8 *)&in4->sin_addr.s_addr,
1107 delim, &ipend))
1108 ss->ss_family = AF_INET;
1109 else if (in6_pton(p, end - p, (u8 *)&in6->sin6_addr.s6_addr,
1110 delim, &ipend))
1111 ss->ss_family = AF_INET6;
1112 else
1113 goto bad;
1114 p = ipend;
1115
1116 if (delim == ']') {
1117 if (*p != ']') {
1118 dout("missing matching ']'\n");
1119 goto bad;
1120 }
1121 p++;
1122 }
1123
1124 /* port? */
1125 if (p < end && *p == ':') {
1126 port = 0;
1127 p++;
1128 while (p < end && *p >= '0' && *p <= '9') {
1129 port = (port * 10) + (*p - '0');
1130 p++;
1131 }
1132 if (port > 65535 || port == 0)
1133 goto bad;
1134 } else {
1135 port = CEPH_MON_PORT;
1136 }
1137
1138 addr_set_port(ss, port);
1139
1140 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1141
1142 if (p == end)
1143 break;
1144 if (*p != ',')
1145 goto bad;
1146 p++;
1147 }
1148
1149 if (p != end)
1150 goto bad;
1151
1152 if (count)
1153 *count = i + 1;
1154 return 0;
1155
1156bad:
1157 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1158 return -EINVAL;
1159}
1160EXPORT_SYMBOL(ceph_parse_ips);
1161
1162static int process_banner(struct ceph_connection *con)
1163{
1164 dout("process_banner on %p\n", con);
1165
1166 if (verify_hello(con) < 0)
1167 return -1;
1168
1169 ceph_decode_addr(&con->actual_peer_addr);
1170 ceph_decode_addr(&con->peer_addr_for_me);
1171
1172 /*
1173 * Make sure the other end is who we wanted. note that the other
1174 * end may not yet know their ip address, so if it's 0.0.0.0, give
1175 * them the benefit of the doubt.
1176 */
1177 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1178 sizeof(con->peer_addr)) != 0 &&
1179 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1180 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1181 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1182 ceph_pr_addr(&con->peer_addr.in_addr),
1183 (int)le32_to_cpu(con->peer_addr.nonce),
1184 ceph_pr_addr(&con->actual_peer_addr.in_addr),
1185 (int)le32_to_cpu(con->actual_peer_addr.nonce));
1186 con->error_msg = "wrong peer at address";
1187 return -1;
1188 }
1189
1190 /*
1191 * did we learn our address?
1192 */
1193 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1194 int port = addr_port(&con->msgr->inst.addr.in_addr);
1195
1196 memcpy(&con->msgr->inst.addr.in_addr,
1197 &con->peer_addr_for_me.in_addr,
1198 sizeof(con->peer_addr_for_me.in_addr));
1199 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1200 encode_my_addr(con->msgr);
1201 dout("process_banner learned my addr is %s\n",
1202 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1203 }
1204
1205 set_bit(NEGOTIATING, &con->state);
1206 prepare_read_connect(con);
1207 return 0;
1208}
1209
1210static void fail_protocol(struct ceph_connection *con)
1211{
1212 reset_connection(con);
1213 set_bit(CLOSED, &con->state); /* in case there's queued work */
1214
1215 mutex_unlock(&con->mutex);
1216 if (con->ops->bad_proto)
1217 con->ops->bad_proto(con);
1218 mutex_lock(&con->mutex);
1219}
1220
1221static int process_connect(struct ceph_connection *con)
1222{
1223 u64 sup_feat = con->msgr->supported_features;
1224 u64 req_feat = con->msgr->required_features;
1225 u64 server_feat = le64_to_cpu(con->in_reply.features);
1226 int ret;
1227
1228 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1229
1230 switch (con->in_reply.tag) {
1231 case CEPH_MSGR_TAG_FEATURES:
1232 pr_err("%s%lld %s feature set mismatch,"
1233 " my %llx < server's %llx, missing %llx\n",
1234 ENTITY_NAME(con->peer_name),
1235 ceph_pr_addr(&con->peer_addr.in_addr),
1236 sup_feat, server_feat, server_feat & ~sup_feat);
1237 con->error_msg = "missing required protocol features";
1238 fail_protocol(con);
1239 return -1;
1240
1241 case CEPH_MSGR_TAG_BADPROTOVER:
1242 pr_err("%s%lld %s protocol version mismatch,"
1243 " my %d != server's %d\n",
1244 ENTITY_NAME(con->peer_name),
1245 ceph_pr_addr(&con->peer_addr.in_addr),
1246 le32_to_cpu(con->out_connect.protocol_version),
1247 le32_to_cpu(con->in_reply.protocol_version));
1248 con->error_msg = "protocol version mismatch";
1249 fail_protocol(con);
1250 return -1;
1251
1252 case CEPH_MSGR_TAG_BADAUTHORIZER:
1253 con->auth_retry++;
1254 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1255 con->auth_retry);
1256 if (con->auth_retry == 2) {
1257 con->error_msg = "connect authorization failure";
1258 return -1;
1259 }
1260 con->auth_retry = 1;
1261 ret = prepare_write_connect(con->msgr, con, 0);
1262 if (ret < 0)
1263 return ret;
1264 prepare_read_connect(con);
1265 break;
1266
1267 case CEPH_MSGR_TAG_RESETSESSION:
1268 /*
1269 * If we connected with a large connect_seq but the peer
1270 * has no record of a session with us (no connection, or
1271 * connect_seq == 0), they will send RESETSESION to indicate
1272 * that they must have reset their session, and may have
1273 * dropped messages.
1274 */
1275 dout("process_connect got RESET peer seq %u\n",
1276 le32_to_cpu(con->in_connect.connect_seq));
1277 pr_err("%s%lld %s connection reset\n",
1278 ENTITY_NAME(con->peer_name),
1279 ceph_pr_addr(&con->peer_addr.in_addr));
1280 reset_connection(con);
1281 prepare_write_connect(con->msgr, con, 0);
1282 prepare_read_connect(con);
1283
1284 /* Tell ceph about it. */
1285 mutex_unlock(&con->mutex);
1286 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1287 if (con->ops->peer_reset)
1288 con->ops->peer_reset(con);
1289 mutex_lock(&con->mutex);
1290 if (test_bit(CLOSED, &con->state) ||
1291 test_bit(OPENING, &con->state))
1292 return -EAGAIN;
1293 break;
1294
1295 case CEPH_MSGR_TAG_RETRY_SESSION:
1296 /*
1297 * If we sent a smaller connect_seq than the peer has, try
1298 * again with a larger value.
1299 */
1300 dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
1301 le32_to_cpu(con->out_connect.connect_seq),
1302 le32_to_cpu(con->in_connect.connect_seq));
1303 con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
1304 prepare_write_connect(con->msgr, con, 0);
1305 prepare_read_connect(con);
1306 break;
1307
1308 case CEPH_MSGR_TAG_RETRY_GLOBAL:
1309 /*
1310 * If we sent a smaller global_seq than the peer has, try
1311 * again with a larger value.
1312 */
1313 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1314 con->peer_global_seq,
1315 le32_to_cpu(con->in_connect.global_seq));
1316 get_global_seq(con->msgr,
1317 le32_to_cpu(con->in_connect.global_seq));
1318 prepare_write_connect(con->msgr, con, 0);
1319 prepare_read_connect(con);
1320 break;
1321
1322 case CEPH_MSGR_TAG_READY:
1323 if (req_feat & ~server_feat) {
1324 pr_err("%s%lld %s protocol feature mismatch,"
1325 " my required %llx > server's %llx, need %llx\n",
1326 ENTITY_NAME(con->peer_name),
1327 ceph_pr_addr(&con->peer_addr.in_addr),
1328 req_feat, server_feat, req_feat & ~server_feat);
1329 con->error_msg = "missing required protocol features";
1330 fail_protocol(con);
1331 return -1;
1332 }
1333 clear_bit(CONNECTING, &con->state);
1334 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1335 con->connect_seq++;
1336 con->peer_features = server_feat;
1337 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1338 con->peer_global_seq,
1339 le32_to_cpu(con->in_reply.connect_seq),
1340 con->connect_seq);
1341 WARN_ON(con->connect_seq !=
1342 le32_to_cpu(con->in_reply.connect_seq));
1343
1344 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1345 set_bit(LOSSYTX, &con->state);
1346
1347 prepare_read_tag(con);
1348 break;
1349
1350 case CEPH_MSGR_TAG_WAIT:
1351 /*
1352 * If there is a connection race (we are opening
1353 * connections to each other), one of us may just have
1354 * to WAIT. This shouldn't happen if we are the
1355 * client.
1356 */
1357 pr_err("process_connect got WAIT as client\n");
1358 con->error_msg = "protocol error, got WAIT as client";
1359 return -1;
1360
1361 default:
1362 pr_err("connect protocol error, will retry\n");
1363 con->error_msg = "protocol error, garbage tag during connect";
1364 return -1;
1365 }
1366 return 0;
1367}
1368
1369
1370/*
1371 * read (part of) an ack
1372 */
1373static int read_partial_ack(struct ceph_connection *con)
1374{
1375 int to = 0;
1376
1377 return read_partial(con, &to, sizeof(con->in_temp_ack),
1378 &con->in_temp_ack);
1379}
1380
1381
1382/*
1383 * We can finally discard anything that's been acked.
1384 */
1385static void process_ack(struct ceph_connection *con)
1386{
1387 struct ceph_msg *m;
1388 u64 ack = le64_to_cpu(con->in_temp_ack);
1389 u64 seq;
1390
1391 while (!list_empty(&con->out_sent)) {
1392 m = list_first_entry(&con->out_sent, struct ceph_msg,
1393 list_head);
1394 seq = le64_to_cpu(m->hdr.seq);
1395 if (seq > ack)
1396 break;
1397 dout("got ack for seq %llu type %d at %p\n", seq,
1398 le16_to_cpu(m->hdr.type), m);
1399 m->ack_stamp = jiffies;
1400 ceph_msg_remove(m);
1401 }
1402 prepare_read_tag(con);
1403}
1404
1405
1406
1407
1408static int read_partial_message_section(struct ceph_connection *con,
1409 struct kvec *section,
1410 unsigned int sec_len, u32 *crc)
1411{
1412 int ret, left;
1413
1414 BUG_ON(!section);
1415
1416 while (section->iov_len < sec_len) {
1417 BUG_ON(section->iov_base == NULL);
1418 left = sec_len - section->iov_len;
1419 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1420 section->iov_len, left);
1421 if (ret <= 0)
1422 return ret;
1423 section->iov_len += ret;
1424 if (section->iov_len == sec_len)
1425 *crc = crc32c(0, section->iov_base,
1426 section->iov_len);
1427 }
1428
1429 return 1;
1430}
1431
1432static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
1433 struct ceph_msg_header *hdr,
1434 int *skip);
1435
1436
1437static int read_partial_message_pages(struct ceph_connection *con,
1438 struct page **pages,
1439 unsigned data_len, int datacrc)
1440{
1441 void *p;
1442 int ret;
1443 int left;
1444
1445 left = min((int)(data_len - con->in_msg_pos.data_pos),
1446 (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1447 /* (page) data */
1448 BUG_ON(pages == NULL);
1449 p = kmap(pages[con->in_msg_pos.page]);
1450 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1451 left);
1452 if (ret > 0 && datacrc)
1453 con->in_data_crc =
1454 crc32c(con->in_data_crc,
1455 p + con->in_msg_pos.page_pos, ret);
1456 kunmap(pages[con->in_msg_pos.page]);
1457 if (ret <= 0)
1458 return ret;
1459 con->in_msg_pos.data_pos += ret;
1460 con->in_msg_pos.page_pos += ret;
1461 if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1462 con->in_msg_pos.page_pos = 0;
1463 con->in_msg_pos.page++;
1464 }
1465
1466 return ret;
1467}
1468
1469#ifdef CONFIG_BLOCK
1470static int read_partial_message_bio(struct ceph_connection *con,
1471 struct bio **bio_iter, int *bio_seg,
1472 unsigned data_len, int datacrc)
1473{
1474 struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1475 void *p;
1476 int ret, left;
1477
1478 if (IS_ERR(bv))
1479 return PTR_ERR(bv);
1480
1481 left = min((int)(data_len - con->in_msg_pos.data_pos),
1482 (int)(bv->bv_len - con->in_msg_pos.page_pos));
1483
1484 p = kmap(bv->bv_page) + bv->bv_offset;
1485
1486 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1487 left);
1488 if (ret > 0 && datacrc)
1489 con->in_data_crc =
1490 crc32c(con->in_data_crc,
1491 p + con->in_msg_pos.page_pos, ret);
1492 kunmap(bv->bv_page);
1493 if (ret <= 0)
1494 return ret;
1495 con->in_msg_pos.data_pos += ret;
1496 con->in_msg_pos.page_pos += ret;
1497 if (con->in_msg_pos.page_pos == bv->bv_len) {
1498 con->in_msg_pos.page_pos = 0;
1499 iter_bio_next(bio_iter, bio_seg);
1500 }
1501
1502 return ret;
1503}
1504#endif
1505
1506/*
1507 * read (part of) a message.
1508 */
1509static int read_partial_message(struct ceph_connection *con)
1510{
1511 struct ceph_msg *m = con->in_msg;
1512 int ret;
1513 int to, left;
1514 unsigned front_len, middle_len, data_len;
1515 int datacrc = con->msgr->nocrc;
1516 int skip;
1517 u64 seq;
1518
1519 dout("read_partial_message con %p msg %p\n", con, m);
1520
1521 /* header */
1522 while (con->in_base_pos < sizeof(con->in_hdr)) {
1523 left = sizeof(con->in_hdr) - con->in_base_pos;
1524 ret = ceph_tcp_recvmsg(con->sock,
1525 (char *)&con->in_hdr + con->in_base_pos,
1526 left);
1527 if (ret <= 0)
1528 return ret;
1529 con->in_base_pos += ret;
1530 if (con->in_base_pos == sizeof(con->in_hdr)) {
1531 u32 crc = crc32c(0, (void *)&con->in_hdr,
1532 sizeof(con->in_hdr) - sizeof(con->in_hdr.crc));
1533 if (crc != le32_to_cpu(con->in_hdr.crc)) {
1534 pr_err("read_partial_message bad hdr "
1535 " crc %u != expected %u\n",
1536 crc, con->in_hdr.crc);
1537 return -EBADMSG;
1538 }
1539 }
1540 }
1541 front_len = le32_to_cpu(con->in_hdr.front_len);
1542 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1543 return -EIO;
1544 middle_len = le32_to_cpu(con->in_hdr.middle_len);
1545 if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1546 return -EIO;
1547 data_len = le32_to_cpu(con->in_hdr.data_len);
1548 if (data_len > CEPH_MSG_MAX_DATA_LEN)
1549 return -EIO;
1550
1551 /* verify seq# */
1552 seq = le64_to_cpu(con->in_hdr.seq);
1553 if ((s64)seq - (s64)con->in_seq < 1) {
1554 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1555 ENTITY_NAME(con->peer_name),
1556 ceph_pr_addr(&con->peer_addr.in_addr),
1557 seq, con->in_seq + 1);
1558 con->in_base_pos = -front_len - middle_len - data_len -
1559 sizeof(m->footer);
1560 con->in_tag = CEPH_MSGR_TAG_READY;
1561 return 0;
1562 } else if ((s64)seq - (s64)con->in_seq > 1) {
1563 pr_err("read_partial_message bad seq %lld expected %lld\n",
1564 seq, con->in_seq + 1);
1565 con->error_msg = "bad message sequence # for incoming message";
1566 return -EBADMSG;
1567 }
1568
1569 /* allocate message? */
1570 if (!con->in_msg) {
1571 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1572 con->in_hdr.front_len, con->in_hdr.data_len);
1573 skip = 0;
1574 con->in_msg = ceph_alloc_msg(con, &con->in_hdr, &skip);
1575 if (skip) {
1576 /* skip this message */
1577 dout("alloc_msg said skip message\n");
1578 BUG_ON(con->in_msg);
1579 con->in_base_pos = -front_len - middle_len - data_len -
1580 sizeof(m->footer);
1581 con->in_tag = CEPH_MSGR_TAG_READY;
1582 con->in_seq++;
1583 return 0;
1584 }
1585 if (!con->in_msg) {
1586 con->error_msg =
1587 "error allocating memory for incoming message";
1588 return -ENOMEM;
1589 }
1590 m = con->in_msg;
1591 m->front.iov_len = 0; /* haven't read it yet */
1592 if (m->middle)
1593 m->middle->vec.iov_len = 0;
1594
1595 con->in_msg_pos.page = 0;
1596 if (m->pages)
1597 con->in_msg_pos.page_pos = m->page_alignment;
1598 else
1599 con->in_msg_pos.page_pos = 0;
1600 con->in_msg_pos.data_pos = 0;
1601 }
1602
1603 /* front */
1604 ret = read_partial_message_section(con, &m->front, front_len,
1605 &con->in_front_crc);
1606 if (ret <= 0)
1607 return ret;
1608
1609 /* middle */
1610 if (m->middle) {
1611 ret = read_partial_message_section(con, &m->middle->vec,
1612 middle_len,
1613 &con->in_middle_crc);
1614 if (ret <= 0)
1615 return ret;
1616 }
1617#ifdef CONFIG_BLOCK
1618 if (m->bio && !m->bio_iter)
1619 init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1620#endif
1621
1622 /* (page) data */
1623 while (con->in_msg_pos.data_pos < data_len) {
1624 if (m->pages) {
1625 ret = read_partial_message_pages(con, m->pages,
1626 data_len, datacrc);
1627 if (ret <= 0)
1628 return ret;
1629#ifdef CONFIG_BLOCK
1630 } else if (m->bio) {
1631
1632 ret = read_partial_message_bio(con,
1633 &m->bio_iter, &m->bio_seg,
1634 data_len, datacrc);
1635 if (ret <= 0)
1636 return ret;
1637#endif
1638 } else {
1639 BUG_ON(1);
1640 }
1641 }
1642
1643 /* footer */
1644 to = sizeof(m->hdr) + sizeof(m->footer);
1645 while (con->in_base_pos < to) {
1646 left = to - con->in_base_pos;
1647 ret = ceph_tcp_recvmsg(con->sock, (char *)&m->footer +
1648 (con->in_base_pos - sizeof(m->hdr)),
1649 left);
1650 if (ret <= 0)
1651 return ret;
1652 con->in_base_pos += ret;
1653 }
1654 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1655 m, front_len, m->footer.front_crc, middle_len,
1656 m->footer.middle_crc, data_len, m->footer.data_crc);
1657
1658 /* crc ok? */
1659 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1660 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1661 m, con->in_front_crc, m->footer.front_crc);
1662 return -EBADMSG;
1663 }
1664 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1665 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1666 m, con->in_middle_crc, m->footer.middle_crc);
1667 return -EBADMSG;
1668 }
1669 if (datacrc &&
1670 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1671 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1672 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1673 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1674 return -EBADMSG;
1675 }
1676
1677 return 1; /* done! */
1678}
1679
1680/*
1681 * Process message. This happens in the worker thread. The callback should
1682 * be careful not to do anything that waits on other incoming messages or it
1683 * may deadlock.
1684 */
1685static void process_message(struct ceph_connection *con)
1686{
1687 struct ceph_msg *msg;
1688
1689 msg = con->in_msg;
1690 con->in_msg = NULL;
1691
1692 /* if first message, set peer_name */
1693 if (con->peer_name.type == 0)
1694 con->peer_name = msg->hdr.src;
1695
1696 con->in_seq++;
1697 mutex_unlock(&con->mutex);
1698
1699 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1700 msg, le64_to_cpu(msg->hdr.seq),
1701 ENTITY_NAME(msg->hdr.src),
1702 le16_to_cpu(msg->hdr.type),
1703 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1704 le32_to_cpu(msg->hdr.front_len),
1705 le32_to_cpu(msg->hdr.data_len),
1706 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1707 con->ops->dispatch(con, msg);
1708
1709 mutex_lock(&con->mutex);
1710 prepare_read_tag(con);
1711}
1712
1713
1714/*
1715 * Write something to the socket. Called in a worker thread when the
1716 * socket appears to be writeable and we have something ready to send.
1717 */
1718static int try_write(struct ceph_connection *con)
1719{
1720 struct ceph_messenger *msgr = con->msgr;
1721 int ret = 1;
1722
1723 dout("try_write start %p state %lu nref %d\n", con, con->state,
1724 atomic_read(&con->nref));
1725
1726more:
1727 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
1728
1729 /* open the socket first? */
1730 if (con->sock == NULL) {
1731 prepare_write_banner(msgr, con);
1732 prepare_write_connect(msgr, con, 1);
1733 prepare_read_banner(con);
1734 set_bit(CONNECTING, &con->state);
1735 clear_bit(NEGOTIATING, &con->state);
1736
1737 BUG_ON(con->in_msg);
1738 con->in_tag = CEPH_MSGR_TAG_READY;
1739 dout("try_write initiating connect on %p new state %lu\n",
1740 con, con->state);
1741 con->sock = ceph_tcp_connect(con);
1742 if (IS_ERR(con->sock)) {
1743 con->sock = NULL;
1744 con->error_msg = "connect error";
1745 ret = -1;
1746 goto out;
1747 }
1748 }
1749
1750more_kvec:
1751 /* kvec data queued? */
1752 if (con->out_skip) {
1753 ret = write_partial_skip(con);
1754 if (ret <= 0)
1755 goto out;
1756 }
1757 if (con->out_kvec_left) {
1758 ret = write_partial_kvec(con);
1759 if (ret <= 0)
1760 goto out;
1761 }
1762
1763 /* msg pages? */
1764 if (con->out_msg) {
1765 if (con->out_msg_done) {
1766 ceph_msg_put(con->out_msg);
1767 con->out_msg = NULL; /* we're done with this one */
1768 goto do_next;
1769 }
1770
1771 ret = write_partial_msg_pages(con);
1772 if (ret == 1)
1773 goto more_kvec; /* we need to send the footer, too! */
1774 if (ret == 0)
1775 goto out;
1776 if (ret < 0) {
1777 dout("try_write write_partial_msg_pages err %d\n",
1778 ret);
1779 goto out;
1780 }
1781 }
1782
1783do_next:
1784 if (!test_bit(CONNECTING, &con->state)) {
1785 /* is anything else pending? */
1786 if (!list_empty(&con->out_queue)) {
1787 prepare_write_message(con);
1788 goto more;
1789 }
1790 if (con->in_seq > con->in_seq_acked) {
1791 prepare_write_ack(con);
1792 goto more;
1793 }
1794 if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) {
1795 prepare_write_keepalive(con);
1796 goto more;
1797 }
1798 }
1799
1800 /* Nothing to do! */
1801 clear_bit(WRITE_PENDING, &con->state);
1802 dout("try_write nothing else to write.\n");
1803 ret = 0;
1804out:
1805 dout("try_write done on %p ret %d\n", con, ret);
1806 return ret;
1807}
1808
1809
1810
1811/*
1812 * Read what we can from the socket.
1813 */
1814static int try_read(struct ceph_connection *con)
1815{
1816 int ret = -1;
1817
1818 if (!con->sock)
1819 return 0;
1820
1821 if (test_bit(STANDBY, &con->state))
1822 return 0;
1823
1824 dout("try_read start on %p\n", con);
1825
1826more:
1827 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
1828 con->in_base_pos);
1829
1830 /*
1831 * process_connect and process_message drop and re-take
1832 * con->mutex. make sure we handle a racing close or reopen.
1833 */
1834 if (test_bit(CLOSED, &con->state) ||
1835 test_bit(OPENING, &con->state)) {
1836 ret = -EAGAIN;
1837 goto out;
1838 }
1839
1840 if (test_bit(CONNECTING, &con->state)) {
1841 if (!test_bit(NEGOTIATING, &con->state)) {
1842 dout("try_read connecting\n");
1843 ret = read_partial_banner(con);
1844 if (ret <= 0)
1845 goto out;
1846 ret = process_banner(con);
1847 if (ret < 0)
1848 goto out;
1849 }
1850 ret = read_partial_connect(con);
1851 if (ret <= 0)
1852 goto out;
1853 ret = process_connect(con);
1854 if (ret < 0)
1855 goto out;
1856 goto more;
1857 }
1858
1859 if (con->in_base_pos < 0) {
1860 /*
1861 * skipping + discarding content.
1862 *
1863 * FIXME: there must be a better way to do this!
1864 */
1865 static char buf[1024];
1866 int skip = min(1024, -con->in_base_pos);
1867 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
1868 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
1869 if (ret <= 0)
1870 goto out;
1871 con->in_base_pos += ret;
1872 if (con->in_base_pos)
1873 goto more;
1874 }
1875 if (con->in_tag == CEPH_MSGR_TAG_READY) {
1876 /*
1877 * what's next?
1878 */
1879 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
1880 if (ret <= 0)
1881 goto out;
1882 dout("try_read got tag %d\n", (int)con->in_tag);
1883 switch (con->in_tag) {
1884 case CEPH_MSGR_TAG_MSG:
1885 prepare_read_message(con);
1886 break;
1887 case CEPH_MSGR_TAG_ACK:
1888 prepare_read_ack(con);
1889 break;
1890 case CEPH_MSGR_TAG_CLOSE:
1891 set_bit(CLOSED, &con->state); /* fixme */
1892 goto out;
1893 default:
1894 goto bad_tag;
1895 }
1896 }
1897 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
1898 ret = read_partial_message(con);
1899 if (ret <= 0) {
1900 switch (ret) {
1901 case -EBADMSG:
1902 con->error_msg = "bad crc";
1903 ret = -EIO;
1904 break;
1905 case -EIO:
1906 con->error_msg = "io error";
1907 break;
1908 }
1909 goto out;
1910 }
1911 if (con->in_tag == CEPH_MSGR_TAG_READY)
1912 goto more;
1913 process_message(con);
1914 goto more;
1915 }
1916 if (con->in_tag == CEPH_MSGR_TAG_ACK) {
1917 ret = read_partial_ack(con);
1918 if (ret <= 0)
1919 goto out;
1920 process_ack(con);
1921 goto more;
1922 }
1923
1924out:
1925 dout("try_read done on %p ret %d\n", con, ret);
1926 return ret;
1927
1928bad_tag:
1929 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
1930 con->error_msg = "protocol error, garbage tag";
1931 ret = -1;
1932 goto out;
1933}
1934
1935
1936/*
1937 * Atomically queue work on a connection. Bump @con reference to
1938 * avoid races with connection teardown.
1939 */
1940static void queue_con(struct ceph_connection *con)
1941{
1942 if (test_bit(DEAD, &con->state)) {
1943 dout("queue_con %p ignoring: DEAD\n",
1944 con);
1945 return;
1946 }
1947
1948 if (!con->ops->get(con)) {
1949 dout("queue_con %p ref count 0\n", con);
1950 return;
1951 }
1952
1953 if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
1954 dout("queue_con %p - already queued\n", con);
1955 con->ops->put(con);
1956 } else {
1957 dout("queue_con %p\n", con);
1958 }
1959}
1960
1961/*
1962 * Do some work on a connection. Drop a connection ref when we're done.
1963 */
1964static void con_work(struct work_struct *work)
1965{
1966 struct ceph_connection *con = container_of(work, struct ceph_connection,
1967 work.work);
1968 int ret;
1969
1970 mutex_lock(&con->mutex);
1971restart:
1972 if (test_and_clear_bit(BACKOFF, &con->state)) {
1973 dout("con_work %p backing off\n", con);
1974 if (queue_delayed_work(ceph_msgr_wq, &con->work,
1975 round_jiffies_relative(con->delay))) {
1976 dout("con_work %p backoff %lu\n", con, con->delay);
1977 mutex_unlock(&con->mutex);
1978 return;
1979 } else {
1980 con->ops->put(con);
1981 dout("con_work %p FAILED to back off %lu\n", con,
1982 con->delay);
1983 }
1984 }
1985
1986 if (test_bit(STANDBY, &con->state)) {
1987 dout("con_work %p STANDBY\n", con);
1988 goto done;
1989 }
1990 if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
1991 dout("con_work CLOSED\n");
1992 con_close_socket(con);
1993 goto done;
1994 }
1995 if (test_and_clear_bit(OPENING, &con->state)) {
1996 /* reopen w/ new peer */
1997 dout("con_work OPENING\n");
1998 con_close_socket(con);
1999 }
2000
2001 if (test_and_clear_bit(SOCK_CLOSED, &con->state))
2002 goto fault;
2003
2004 ret = try_read(con);
2005 if (ret == -EAGAIN)
2006 goto restart;
2007 if (ret < 0)
2008 goto fault;
2009
2010 ret = try_write(con);
2011 if (ret == -EAGAIN)
2012 goto restart;
2013 if (ret < 0)
2014 goto fault;
2015
2016done:
2017 mutex_unlock(&con->mutex);
2018done_unlocked:
2019 con->ops->put(con);
2020 return;
2021
2022fault:
2023 mutex_unlock(&con->mutex);
2024 ceph_fault(con); /* error/fault path */
2025 goto done_unlocked;
2026}
2027
2028
2029/*
2030 * Generic error/fault handler. A retry mechanism is used with
2031 * exponential backoff
2032 */
2033static void ceph_fault(struct ceph_connection *con)
2034{
2035 pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2036 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2037 dout("fault %p state %lu to peer %s\n",
2038 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2039
2040 if (test_bit(LOSSYTX, &con->state)) {
2041 dout("fault on LOSSYTX channel\n");
2042 goto out;
2043 }
2044
2045 mutex_lock(&con->mutex);
2046 if (test_bit(CLOSED, &con->state))
2047 goto out_unlock;
2048
2049 con_close_socket(con);
2050
2051 if (con->in_msg) {
2052 ceph_msg_put(con->in_msg);
2053 con->in_msg = NULL;
2054 }
2055
2056 /* Requeue anything that hasn't been acked */
2057 list_splice_init(&con->out_sent, &con->out_queue);
2058
2059 /* If there are no messages queued or keepalive pending, place
2060 * the connection in a STANDBY state */
2061 if (list_empty(&con->out_queue) &&
2062 !test_bit(KEEPALIVE_PENDING, &con->state)) {
2063 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2064 clear_bit(WRITE_PENDING, &con->state);
2065 set_bit(STANDBY, &con->state);
2066 } else {
2067 /* retry after a delay. */
2068 if (con->delay == 0)
2069 con->delay = BASE_DELAY_INTERVAL;
2070 else if (con->delay < MAX_DELAY_INTERVAL)
2071 con->delay *= 2;
2072 con->ops->get(con);
2073 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2074 round_jiffies_relative(con->delay))) {
2075 dout("fault queued %p delay %lu\n", con, con->delay);
2076 } else {
2077 con->ops->put(con);
2078 dout("fault failed to queue %p delay %lu, backoff\n",
2079 con, con->delay);
2080 /*
2081 * In many cases we see a socket state change
2082 * while con_work is running and end up
2083 * queuing (non-delayed) work, such that we
2084 * can't backoff with a delay. Set a flag so
2085 * that when con_work restarts we schedule the
2086 * delay then.
2087 */
2088 set_bit(BACKOFF, &con->state);
2089 }
2090 }
2091
2092out_unlock:
2093 mutex_unlock(&con->mutex);
2094out:
2095 /*
2096 * in case we faulted due to authentication, invalidate our
2097 * current tickets so that we can get new ones.
2098 */
2099 if (con->auth_retry && con->ops->invalidate_authorizer) {
2100 dout("calling invalidate_authorizer()\n");
2101 con->ops->invalidate_authorizer(con);
2102 }
2103
2104 if (con->ops->fault)
2105 con->ops->fault(con);
2106}
2107
2108
2109
2110/*
2111 * create a new messenger instance
2112 */
2113struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr,
2114 u32 supported_features,
2115 u32 required_features)
2116{
2117 struct ceph_messenger *msgr;
2118
2119 msgr = kzalloc(sizeof(*msgr), GFP_KERNEL);
2120 if (msgr == NULL)
2121 return ERR_PTR(-ENOMEM);
2122
2123 msgr->supported_features = supported_features;
2124 msgr->required_features = required_features;
2125
2126 spin_lock_init(&msgr->global_seq_lock);
2127
2128 /* the zero page is needed if a request is "canceled" while the message
2129 * is being written over the socket */
2130 msgr->zero_page = __page_cache_alloc(GFP_KERNEL | __GFP_ZERO);
2131 if (!msgr->zero_page) {
2132 kfree(msgr);
2133 return ERR_PTR(-ENOMEM);
2134 }
2135 kmap(msgr->zero_page);
2136
2137 if (myaddr)
2138 msgr->inst.addr = *myaddr;
2139
2140 /* select a random nonce */
2141 msgr->inst.addr.type = 0;
2142 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2143 encode_my_addr(msgr);
2144
2145 dout("messenger_create %p\n", msgr);
2146 return msgr;
2147}
2148EXPORT_SYMBOL(ceph_messenger_create);
2149
2150void ceph_messenger_destroy(struct ceph_messenger *msgr)
2151{
2152 dout("destroy %p\n", msgr);
2153 kunmap(msgr->zero_page);
2154 __free_page(msgr->zero_page);
2155 kfree(msgr);
2156 dout("destroyed messenger %p\n", msgr);
2157}
2158EXPORT_SYMBOL(ceph_messenger_destroy);
2159
2160static void clear_standby(struct ceph_connection *con)
2161{
2162 /* come back from STANDBY? */
2163 if (test_and_clear_bit(STANDBY, &con->state)) {
2164 mutex_lock(&con->mutex);
2165 dout("clear_standby %p and ++connect_seq\n", con);
2166 con->connect_seq++;
2167 WARN_ON(test_bit(WRITE_PENDING, &con->state));
2168 WARN_ON(test_bit(KEEPALIVE_PENDING, &con->state));
2169 mutex_unlock(&con->mutex);
2170 }
2171}
2172
2173/*
2174 * Queue up an outgoing message on the given connection.
2175 */
2176void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2177{
2178 if (test_bit(CLOSED, &con->state)) {
2179 dout("con_send %p closed, dropping %p\n", con, msg);
2180 ceph_msg_put(msg);
2181 return;
2182 }
2183
2184 /* set src+dst */
2185 msg->hdr.src = con->msgr->inst.name;
2186
2187 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2188
2189 msg->needs_out_seq = true;
2190
2191 /* queue */
2192 mutex_lock(&con->mutex);
2193 BUG_ON(!list_empty(&msg->list_head));
2194 list_add_tail(&msg->list_head, &con->out_queue);
2195 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2196 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2197 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2198 le32_to_cpu(msg->hdr.front_len),
2199 le32_to_cpu(msg->hdr.middle_len),
2200 le32_to_cpu(msg->hdr.data_len));
2201 mutex_unlock(&con->mutex);
2202
2203 /* if there wasn't anything waiting to send before, queue
2204 * new work */
2205 clear_standby(con);
2206 if (test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2207 queue_con(con);
2208}
2209EXPORT_SYMBOL(ceph_con_send);
2210
2211/*
2212 * Revoke a message that was previously queued for send
2213 */
2214void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
2215{
2216 mutex_lock(&con->mutex);
2217 if (!list_empty(&msg->list_head)) {
2218 dout("con_revoke %p msg %p - was on queue\n", con, msg);
2219 list_del_init(&msg->list_head);
2220 ceph_msg_put(msg);
2221 msg->hdr.seq = 0;
2222 }
2223 if (con->out_msg == msg) {
2224 dout("con_revoke %p msg %p - was sending\n", con, msg);
2225 con->out_msg = NULL;
2226 if (con->out_kvec_is_msg) {
2227 con->out_skip = con->out_kvec_bytes;
2228 con->out_kvec_is_msg = false;
2229 }
2230 ceph_msg_put(msg);
2231 msg->hdr.seq = 0;
2232 }
2233 mutex_unlock(&con->mutex);
2234}
2235
2236/*
2237 * Revoke a message that we may be reading data into
2238 */
2239void ceph_con_revoke_message(struct ceph_connection *con, struct ceph_msg *msg)
2240{
2241 mutex_lock(&con->mutex);
2242 if (con->in_msg && con->in_msg == msg) {
2243 unsigned front_len = le32_to_cpu(con->in_hdr.front_len);
2244 unsigned middle_len = le32_to_cpu(con->in_hdr.middle_len);
2245 unsigned data_len = le32_to_cpu(con->in_hdr.data_len);
2246
2247 /* skip rest of message */
2248 dout("con_revoke_pages %p msg %p revoked\n", con, msg);
2249 con->in_base_pos = con->in_base_pos -
2250 sizeof(struct ceph_msg_header) -
2251 front_len -
2252 middle_len -
2253 data_len -
2254 sizeof(struct ceph_msg_footer);
2255 ceph_msg_put(con->in_msg);
2256 con->in_msg = NULL;
2257 con->in_tag = CEPH_MSGR_TAG_READY;
2258 con->in_seq++;
2259 } else {
2260 dout("con_revoke_pages %p msg %p pages %p no-op\n",
2261 con, con->in_msg, msg);
2262 }
2263 mutex_unlock(&con->mutex);
2264}
2265
2266/*
2267 * Queue a keepalive byte to ensure the tcp connection is alive.
2268 */
2269void ceph_con_keepalive(struct ceph_connection *con)
2270{
2271 dout("con_keepalive %p\n", con);
2272 clear_standby(con);
2273 if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 &&
2274 test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2275 queue_con(con);
2276}
2277EXPORT_SYMBOL(ceph_con_keepalive);
2278
2279
2280/*
2281 * construct a new message with given type, size
2282 * the new msg has a ref count of 1.
2283 */
2284struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags)
2285{
2286 struct ceph_msg *m;
2287
2288 m = kmalloc(sizeof(*m), flags);
2289 if (m == NULL)
2290 goto out;
2291 kref_init(&m->kref);
2292 INIT_LIST_HEAD(&m->list_head);
2293
2294 m->hdr.tid = 0;
2295 m->hdr.type = cpu_to_le16(type);
2296 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2297 m->hdr.version = 0;
2298 m->hdr.front_len = cpu_to_le32(front_len);
2299 m->hdr.middle_len = 0;
2300 m->hdr.data_len = 0;
2301 m->hdr.data_off = 0;
2302 m->hdr.reserved = 0;
2303 m->footer.front_crc = 0;
2304 m->footer.middle_crc = 0;
2305 m->footer.data_crc = 0;
2306 m->footer.flags = 0;
2307 m->front_max = front_len;
2308 m->front_is_vmalloc = false;
2309 m->more_to_follow = false;
2310 m->ack_stamp = 0;
2311 m->pool = NULL;
2312
2313 /* middle */
2314 m->middle = NULL;
2315
2316 /* data */
2317 m->nr_pages = 0;
2318 m->page_alignment = 0;
2319 m->pages = NULL;
2320 m->pagelist = NULL;
2321 m->bio = NULL;
2322 m->bio_iter = NULL;
2323 m->bio_seg = 0;
2324 m->trail = NULL;
2325
2326 /* front */
2327 if (front_len) {
2328 if (front_len > PAGE_CACHE_SIZE) {
2329 m->front.iov_base = __vmalloc(front_len, flags,
2330 PAGE_KERNEL);
2331 m->front_is_vmalloc = true;
2332 } else {
2333 m->front.iov_base = kmalloc(front_len, flags);
2334 }
2335 if (m->front.iov_base == NULL) {
2336 pr_err("msg_new can't allocate %d bytes\n",
2337 front_len);
2338 goto out2;
2339 }
2340 } else {
2341 m->front.iov_base = NULL;
2342 }
2343 m->front.iov_len = front_len;
2344
2345 dout("ceph_msg_new %p front %d\n", m, front_len);
2346 return m;
2347
2348out2:
2349 ceph_msg_put(m);
2350out:
2351 pr_err("msg_new can't create type %d front %d\n", type, front_len);
2352 return NULL;
2353}
2354EXPORT_SYMBOL(ceph_msg_new);
2355
2356/*
2357 * Allocate "middle" portion of a message, if it is needed and wasn't
2358 * allocated by alloc_msg. This allows us to read a small fixed-size
2359 * per-type header in the front and then gracefully fail (i.e.,
2360 * propagate the error to the caller based on info in the front) when
2361 * the middle is too large.
2362 */
2363static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2364{
2365 int type = le16_to_cpu(msg->hdr.type);
2366 int middle_len = le32_to_cpu(msg->hdr.middle_len);
2367
2368 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2369 ceph_msg_type_name(type), middle_len);
2370 BUG_ON(!middle_len);
2371 BUG_ON(msg->middle);
2372
2373 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2374 if (!msg->middle)
2375 return -ENOMEM;
2376 return 0;
2377}
2378
2379/*
2380 * Generic message allocator, for incoming messages.
2381 */
2382static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
2383 struct ceph_msg_header *hdr,
2384 int *skip)
2385{
2386 int type = le16_to_cpu(hdr->type);
2387 int front_len = le32_to_cpu(hdr->front_len);
2388 int middle_len = le32_to_cpu(hdr->middle_len);
2389 struct ceph_msg *msg = NULL;
2390 int ret;
2391
2392 if (con->ops->alloc_msg) {
2393 mutex_unlock(&con->mutex);
2394 msg = con->ops->alloc_msg(con, hdr, skip);
2395 mutex_lock(&con->mutex);
2396 if (!msg || *skip)
2397 return NULL;
2398 }
2399 if (!msg) {
2400 *skip = 0;
2401 msg = ceph_msg_new(type, front_len, GFP_NOFS);
2402 if (!msg) {
2403 pr_err("unable to allocate msg type %d len %d\n",
2404 type, front_len);
2405 return NULL;
2406 }
2407 msg->page_alignment = le16_to_cpu(hdr->data_off);
2408 }
2409 memcpy(&msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2410
2411 if (middle_len && !msg->middle) {
2412 ret = ceph_alloc_middle(con, msg);
2413 if (ret < 0) {
2414 ceph_msg_put(msg);
2415 return NULL;
2416 }
2417 }
2418
2419 return msg;
2420}
2421
2422
2423/*
2424 * Free a generically kmalloc'd message.
2425 */
2426void ceph_msg_kfree(struct ceph_msg *m)
2427{
2428 dout("msg_kfree %p\n", m);
2429 if (m->front_is_vmalloc)
2430 vfree(m->front.iov_base);
2431 else
2432 kfree(m->front.iov_base);
2433 kfree(m);
2434}
2435
2436/*
2437 * Drop a msg ref. Destroy as needed.
2438 */
2439void ceph_msg_last_put(struct kref *kref)
2440{
2441 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2442
2443 dout("ceph_msg_put last one on %p\n", m);
2444 WARN_ON(!list_empty(&m->list_head));
2445
2446 /* drop middle, data, if any */
2447 if (m->middle) {
2448 ceph_buffer_put(m->middle);
2449 m->middle = NULL;
2450 }
2451 m->nr_pages = 0;
2452 m->pages = NULL;
2453
2454 if (m->pagelist) {
2455 ceph_pagelist_release(m->pagelist);
2456 kfree(m->pagelist);
2457 m->pagelist = NULL;
2458 }
2459
2460 m->trail = NULL;
2461
2462 if (m->pool)
2463 ceph_msgpool_put(m->pool, m);
2464 else
2465 ceph_msg_kfree(m);
2466}
2467EXPORT_SYMBOL(ceph_msg_last_put);
2468
2469void ceph_msg_dump(struct ceph_msg *msg)
2470{
2471 pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2472 msg->front_max, msg->nr_pages);
2473 print_hex_dump(KERN_DEBUG, "header: ",
2474 DUMP_PREFIX_OFFSET, 16, 1,
2475 &msg->hdr, sizeof(msg->hdr), true);
2476 print_hex_dump(KERN_DEBUG, " front: ",
2477 DUMP_PREFIX_OFFSET, 16, 1,
2478 msg->front.iov_base, msg->front.iov_len, true);
2479 if (msg->middle)
2480 print_hex_dump(KERN_DEBUG, "middle: ",
2481 DUMP_PREFIX_OFFSET, 16, 1,
2482 msg->middle->vec.iov_base,
2483 msg->middle->vec.iov_len, true);
2484 print_hex_dump(KERN_DEBUG, "footer: ",
2485 DUMP_PREFIX_OFFSET, 16, 1,
2486 &msg->footer, sizeof(msg->footer), true);
2487}
2488EXPORT_SYMBOL(ceph_msg_dump);