Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Mar 24-27, 2025, special US time zones
Register
Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2#include <linux/ceph/ceph_debug.h>
   3
   4#include <linux/crc32c.h>
   5#include <linux/ctype.h>
   6#include <linux/highmem.h>
   7#include <linux/inet.h>
   8#include <linux/kthread.h>
   9#include <linux/net.h>
  10#include <linux/nsproxy.h>
  11#include <linux/sched/mm.h>
  12#include <linux/slab.h>
  13#include <linux/socket.h>
  14#include <linux/string.h>
  15#ifdef	CONFIG_BLOCK
  16#include <linux/bio.h>
  17#endif	/* CONFIG_BLOCK */
  18#include <linux/dns_resolver.h>
  19#include <net/tcp.h>
  20
  21#include <linux/ceph/ceph_features.h>
  22#include <linux/ceph/libceph.h>
  23#include <linux/ceph/messenger.h>
  24#include <linux/ceph/decode.h>
  25#include <linux/ceph/pagelist.h>
  26#include <linux/export.h>
  27
  28/*
  29 * Ceph uses the messenger to exchange ceph_msg messages with other
  30 * hosts in the system.  The messenger provides ordered and reliable
  31 * delivery.  We tolerate TCP disconnects by reconnecting (with
  32 * exponential backoff) in the case of a fault (disconnection, bad
  33 * crc, protocol error).  Acks allow sent messages to be discarded by
  34 * the sender.
  35 */
  36
  37/*
  38 * We track the state of the socket on a given connection using
  39 * values defined below.  The transition to a new socket state is
  40 * handled by a function which verifies we aren't coming from an
  41 * unexpected state.
  42 *
  43 *      --------
  44 *      | NEW* |  transient initial state
  45 *      --------
  46 *          | con_sock_state_init()
  47 *          v
  48 *      ----------
  49 *      | CLOSED |  initialized, but no socket (and no
  50 *      ----------  TCP connection)
  51 *       ^      \
  52 *       |       \ con_sock_state_connecting()
  53 *       |        ----------------------
  54 *       |                              \
  55 *       + con_sock_state_closed()       \
  56 *       |+---------------------------    \
  57 *       | \                          \    \
  58 *       |  -----------                \    \
  59 *       |  | CLOSING |  socket event;  \    \
  60 *       |  -----------  await close     \    \
  61 *       |       ^                        \   |
  62 *       |       |                         \  |
  63 *       |       + con_sock_state_closing() \ |
  64 *       |      / \                         | |
  65 *       |     /   ---------------          | |
  66 *       |    /                   \         v v
  67 *       |   /                    --------------
  68 *       |  /    -----------------| CONNECTING |  socket created, TCP
  69 *       |  |   /                 --------------  connect initiated
  70 *       |  |   | con_sock_state_connected()
  71 *       |  |   v
  72 *      -------------
  73 *      | CONNECTED |  TCP connection established
  74 *      -------------
  75 *
  76 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
  77 */
  78
  79#define CON_SOCK_STATE_NEW		0	/* -> CLOSED */
  80#define CON_SOCK_STATE_CLOSED		1	/* -> CONNECTING */
  81#define CON_SOCK_STATE_CONNECTING	2	/* -> CONNECTED or -> CLOSING */
  82#define CON_SOCK_STATE_CONNECTED	3	/* -> CLOSING or -> CLOSED */
  83#define CON_SOCK_STATE_CLOSING		4	/* -> CLOSED */
  84
  85static bool con_flag_valid(unsigned long con_flag)
  86{
  87	switch (con_flag) {
  88	case CEPH_CON_F_LOSSYTX:
  89	case CEPH_CON_F_KEEPALIVE_PENDING:
  90	case CEPH_CON_F_WRITE_PENDING:
  91	case CEPH_CON_F_SOCK_CLOSED:
  92	case CEPH_CON_F_BACKOFF:
  93		return true;
  94	default:
  95		return false;
  96	}
  97}
  98
  99void ceph_con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
 100{
 101	BUG_ON(!con_flag_valid(con_flag));
 102
 103	clear_bit(con_flag, &con->flags);
 104}
 105
 106void ceph_con_flag_set(struct ceph_connection *con, unsigned long con_flag)
 107{
 108	BUG_ON(!con_flag_valid(con_flag));
 109
 110	set_bit(con_flag, &con->flags);
 111}
 112
 113bool ceph_con_flag_test(struct ceph_connection *con, unsigned long con_flag)
 114{
 115	BUG_ON(!con_flag_valid(con_flag));
 116
 117	return test_bit(con_flag, &con->flags);
 118}
 119
 120bool ceph_con_flag_test_and_clear(struct ceph_connection *con,
 121				  unsigned long con_flag)
 122{
 123	BUG_ON(!con_flag_valid(con_flag));
 124
 125	return test_and_clear_bit(con_flag, &con->flags);
 126}
 127
 128bool ceph_con_flag_test_and_set(struct ceph_connection *con,
 129				unsigned long con_flag)
 130{
 131	BUG_ON(!con_flag_valid(con_flag));
 132
 133	return test_and_set_bit(con_flag, &con->flags);
 134}
 135
 136/* Slab caches for frequently-allocated structures */
 137
 138static struct kmem_cache	*ceph_msg_cache;
 139
 140#ifdef CONFIG_LOCKDEP
 141static struct lock_class_key socket_class;
 142#endif
 143
 
 144static void queue_con(struct ceph_connection *con);
 145static void cancel_con(struct ceph_connection *con);
 146static void ceph_con_workfn(struct work_struct *);
 147static void con_fault(struct ceph_connection *con);
 148
 149/*
 150 * Nicely render a sockaddr as a string.  An array of formatted
 151 * strings is used, to approximate reentrancy.
 152 */
 153#define ADDR_STR_COUNT_LOG	5	/* log2(# address strings in array) */
 154#define ADDR_STR_COUNT		(1 << ADDR_STR_COUNT_LOG)
 155#define ADDR_STR_COUNT_MASK	(ADDR_STR_COUNT - 1)
 156#define MAX_ADDR_STR_LEN	64	/* 54 is enough */
 157
 158static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
 159static atomic_t addr_str_seq = ATOMIC_INIT(0);
 160
 161struct page *ceph_zero_page;		/* used in certain error cases */
 162
 163const char *ceph_pr_addr(const struct ceph_entity_addr *addr)
 164{
 165	int i;
 166	char *s;
 167	struct sockaddr_storage ss = addr->in_addr; /* align */
 168	struct sockaddr_in *in4 = (struct sockaddr_in *)&ss;
 169	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *)&ss;
 170
 171	i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
 
 
 
 
 172	s = addr_str[i];
 173
 174	switch (ss.ss_family) {
 175	case AF_INET:
 176		snprintf(s, MAX_ADDR_STR_LEN, "(%d)%pI4:%hu",
 177			 le32_to_cpu(addr->type), &in4->sin_addr,
 178			 ntohs(in4->sin_port));
 179		break;
 180
 181	case AF_INET6:
 182		snprintf(s, MAX_ADDR_STR_LEN, "(%d)[%pI6c]:%hu",
 183			 le32_to_cpu(addr->type), &in6->sin6_addr,
 184			 ntohs(in6->sin6_port));
 185		break;
 186
 187	default:
 188		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
 189			 ss.ss_family);
 190	}
 191
 192	return s;
 193}
 194EXPORT_SYMBOL(ceph_pr_addr);
 195
 196void ceph_encode_my_addr(struct ceph_messenger *msgr)
 197{
 198	if (!ceph_msgr2(from_msgr(msgr))) {
 199		memcpy(&msgr->my_enc_addr, &msgr->inst.addr,
 200		       sizeof(msgr->my_enc_addr));
 201		ceph_encode_banner_addr(&msgr->my_enc_addr);
 202	}
 203}
 204
 205/*
 206 * work queue for all reading and writing to/from the socket.
 207 */
 208static struct workqueue_struct *ceph_msgr_wq;
 209
 210static int ceph_msgr_slab_init(void)
 211{
 212	BUG_ON(ceph_msg_cache);
 213	ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
 214	if (!ceph_msg_cache)
 215		return -ENOMEM;
 216
 217	return 0;
 218}
 219
 220static void ceph_msgr_slab_exit(void)
 221{
 222	BUG_ON(!ceph_msg_cache);
 223	kmem_cache_destroy(ceph_msg_cache);
 224	ceph_msg_cache = NULL;
 225}
 226
 227static void _ceph_msgr_exit(void)
 228{
 229	if (ceph_msgr_wq) {
 230		destroy_workqueue(ceph_msgr_wq);
 231		ceph_msgr_wq = NULL;
 232	}
 233
 234	BUG_ON(!ceph_zero_page);
 235	put_page(ceph_zero_page);
 236	ceph_zero_page = NULL;
 237
 238	ceph_msgr_slab_exit();
 239}
 240
 241int __init ceph_msgr_init(void)
 242{
 243	if (ceph_msgr_slab_init())
 244		return -ENOMEM;
 245
 246	BUG_ON(ceph_zero_page);
 247	ceph_zero_page = ZERO_PAGE(0);
 248	get_page(ceph_zero_page);
 249
 250	/*
 251	 * The number of active work items is limited by the number of
 252	 * connections, so leave @max_active at default.
 253	 */
 254	ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
 255	if (ceph_msgr_wq)
 256		return 0;
 257
 258	pr_err("msgr_init failed to create workqueue\n");
 259	_ceph_msgr_exit();
 260
 261	return -ENOMEM;
 262}
 
 263
 264void ceph_msgr_exit(void)
 265{
 266	BUG_ON(ceph_msgr_wq == NULL);
 267
 268	_ceph_msgr_exit();
 269}
 
 270
 271void ceph_msgr_flush(void)
 272{
 273	flush_workqueue(ceph_msgr_wq);
 274}
 275EXPORT_SYMBOL(ceph_msgr_flush);
 276
 277/* Connection socket state transition functions */
 278
 279static void con_sock_state_init(struct ceph_connection *con)
 280{
 281	int old_state;
 282
 283	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
 284	if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
 285		printk("%s: unexpected old state %d\n", __func__, old_state);
 286	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 287	     CON_SOCK_STATE_CLOSED);
 288}
 289
 290static void con_sock_state_connecting(struct ceph_connection *con)
 291{
 292	int old_state;
 293
 294	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
 295	if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
 296		printk("%s: unexpected old state %d\n", __func__, old_state);
 297	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 298	     CON_SOCK_STATE_CONNECTING);
 299}
 300
 301static void con_sock_state_connected(struct ceph_connection *con)
 302{
 303	int old_state;
 304
 305	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
 306	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
 307		printk("%s: unexpected old state %d\n", __func__, old_state);
 308	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 309	     CON_SOCK_STATE_CONNECTED);
 310}
 311
 312static void con_sock_state_closing(struct ceph_connection *con)
 313{
 314	int old_state;
 315
 316	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
 317	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
 318			old_state != CON_SOCK_STATE_CONNECTED &&
 319			old_state != CON_SOCK_STATE_CLOSING))
 320		printk("%s: unexpected old state %d\n", __func__, old_state);
 321	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 322	     CON_SOCK_STATE_CLOSING);
 323}
 324
 325static void con_sock_state_closed(struct ceph_connection *con)
 326{
 327	int old_state;
 328
 329	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
 330	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
 331		    old_state != CON_SOCK_STATE_CLOSING &&
 332		    old_state != CON_SOCK_STATE_CONNECTING &&
 333		    old_state != CON_SOCK_STATE_CLOSED))
 334		printk("%s: unexpected old state %d\n", __func__, old_state);
 335	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 336	     CON_SOCK_STATE_CLOSED);
 337}
 338
 339/*
 340 * socket callback functions
 341 */
 342
 343/* data available on socket, or listen socket received a connect */
 344static void ceph_sock_data_ready(struct sock *sk)
 345{
 346	struct ceph_connection *con = sk->sk_user_data;
 347	if (atomic_read(&con->msgr->stopping)) {
 348		return;
 349	}
 350
 351	if (sk->sk_state != TCP_CLOSE_WAIT) {
 352		dout("%s %p state = %d, queueing work\n", __func__,
 353		     con, con->state);
 354		queue_con(con);
 355	}
 356}
 357
 358/* socket has buffer space for writing */
 359static void ceph_sock_write_space(struct sock *sk)
 360{
 361	struct ceph_connection *con = sk->sk_user_data;
 
 362
 363	/* only queue to workqueue if there is data we want to write,
 364	 * and there is sufficient space in the socket buffer to accept
 365	 * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
 366	 * doesn't get called again until try_write() fills the socket
 367	 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
 368	 * and net/core/stream.c:sk_stream_write_space().
 369	 */
 370	if (ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING)) {
 371		if (sk_stream_is_writeable(sk)) {
 372			dout("%s %p queueing write work\n", __func__, con);
 373			clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
 374			queue_con(con);
 375		}
 376	} else {
 377		dout("%s %p nothing to write\n", __func__, con);
 378	}
 
 
 
 379}
 380
 381/* socket's state has changed */
 382static void ceph_sock_state_change(struct sock *sk)
 383{
 384	struct ceph_connection *con = sk->sk_user_data;
 
 385
 386	dout("%s %p state = %d sk_state = %u\n", __func__,
 387	     con, con->state, sk->sk_state);
 388
 
 
 
 389	switch (sk->sk_state) {
 390	case TCP_CLOSE:
 391		dout("%s TCP_CLOSE\n", __func__);
 392		fallthrough;
 393	case TCP_CLOSE_WAIT:
 394		dout("%s TCP_CLOSE_WAIT\n", __func__);
 395		con_sock_state_closing(con);
 396		ceph_con_flag_set(con, CEPH_CON_F_SOCK_CLOSED);
 397		queue_con(con);
 
 
 
 
 398		break;
 399	case TCP_ESTABLISHED:
 400		dout("%s TCP_ESTABLISHED\n", __func__);
 401		con_sock_state_connected(con);
 402		queue_con(con);
 403		break;
 404	default:	/* Everything else is uninteresting */
 405		break;
 406	}
 407}
 408
 409/*
 410 * set up socket callbacks
 411 */
 412static void set_sock_callbacks(struct socket *sock,
 413			       struct ceph_connection *con)
 414{
 415	struct sock *sk = sock->sk;
 416	sk->sk_user_data = con;
 417	sk->sk_data_ready = ceph_sock_data_ready;
 418	sk->sk_write_space = ceph_sock_write_space;
 419	sk->sk_state_change = ceph_sock_state_change;
 420}
 421
 422
 423/*
 424 * socket helpers
 425 */
 426
 427/*
 428 * initiate connection to a remote socket.
 429 */
 430int ceph_tcp_connect(struct ceph_connection *con)
 431{
 432	struct sockaddr_storage ss = con->peer_addr.in_addr; /* align */
 433	struct socket *sock;
 434	unsigned int noio_flag;
 435	int ret;
 436
 437	dout("%s con %p peer_addr %s\n", __func__, con,
 438	     ceph_pr_addr(&con->peer_addr));
 439	BUG_ON(con->sock);
 440
 441	/* sock_create_kern() allocates with GFP_KERNEL */
 442	noio_flag = memalloc_noio_save();
 443	ret = sock_create_kern(read_pnet(&con->msgr->net), ss.ss_family,
 444			       SOCK_STREAM, IPPROTO_TCP, &sock);
 445	memalloc_noio_restore(noio_flag);
 446	if (ret)
 447		return ret;
 
 448	sock->sk->sk_allocation = GFP_NOFS;
 449	sock->sk->sk_use_task_frag = false;
 450
 451#ifdef CONFIG_LOCKDEP
 452	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
 453#endif
 454
 455	set_sock_callbacks(sock, con);
 456
 457	con_sock_state_connecting(con);
 458	ret = sock->ops->connect(sock, (struct sockaddr *)&ss, sizeof(ss),
 
 459				 O_NONBLOCK);
 460	if (ret == -EINPROGRESS) {
 461		dout("connect %s EINPROGRESS sk_state = %u\n",
 462		     ceph_pr_addr(&con->peer_addr),
 463		     sock->sk->sk_state);
 464	} else if (ret < 0) {
 
 
 465		pr_err("connect %s error %d\n",
 466		       ceph_pr_addr(&con->peer_addr), ret);
 467		sock_release(sock);
 468		return ret;
 
 469	}
 470
 471	if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY))
 472		tcp_sock_set_nodelay(sock->sk);
 
 
 473
 474	con->sock = sock;
 475	return 0;
 
 
 
 
 
 
 
 
 476}
 477
 478/*
 479 * Shutdown/close the socket for the given connection.
 
 480 */
 481int ceph_con_close_socket(struct ceph_connection *con)
 
 482{
 483	int rc = 0;
 
 484
 485	dout("%s con %p sock %p\n", __func__, con, con->sock);
 486	if (con->sock) {
 487		rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
 488		sock_release(con->sock);
 489		con->sock = NULL;
 490	}
 491
 492	/*
 493	 * Forcibly clear the SOCK_CLOSED flag.  It gets set
 494	 * independent of the connection mutex, and we could have
 495	 * received a socket close event before we had the chance to
 496	 * shut the socket down.
 497	 */
 498	ceph_con_flag_clear(con, CEPH_CON_F_SOCK_CLOSED);
 499
 500	con_sock_state_closed(con);
 501	return rc;
 
 
 502}
 503
 504static void ceph_con_reset_protocol(struct ceph_connection *con)
 505{
 506	dout("%s con %p\n", __func__, con);
 507
 508	ceph_con_close_socket(con);
 509	if (con->in_msg) {
 510		WARN_ON(con->in_msg->con != con);
 511		ceph_msg_put(con->in_msg);
 512		con->in_msg = NULL;
 513	}
 514	if (con->out_msg) {
 515		WARN_ON(con->out_msg->con != con);
 516		ceph_msg_put(con->out_msg);
 517		con->out_msg = NULL;
 518	}
 519	if (con->bounce_page) {
 520		__free_page(con->bounce_page);
 521		con->bounce_page = NULL;
 522	}
 523
 524	if (ceph_msgr2(from_msgr(con->msgr)))
 525		ceph_con_v2_reset_protocol(con);
 526	else
 527		ceph_con_v1_reset_protocol(con);
 
 
 
 
 
 528}
 529
 530/*
 531 * Reset a connection.  Discard all incoming and outgoing messages
 532 * and clear *_seq state.
 533 */
 534static void ceph_msg_remove(struct ceph_msg *msg)
 535{
 536	list_del_init(&msg->list_head);
 537
 538	ceph_msg_put(msg);
 539}
 540
 541static void ceph_msg_remove_list(struct list_head *head)
 542{
 543	while (!list_empty(head)) {
 544		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
 545							list_head);
 546		ceph_msg_remove(msg);
 547	}
 548}
 549
 550void ceph_con_reset_session(struct ceph_connection *con)
 551{
 552	dout("%s con %p\n", __func__, con);
 553
 554	WARN_ON(con->in_msg);
 555	WARN_ON(con->out_msg);
 556	ceph_msg_remove_list(&con->out_queue);
 557	ceph_msg_remove_list(&con->out_sent);
 
 
 
 
 
 
 
 558	con->out_seq = 0;
 
 
 
 
 559	con->in_seq = 0;
 560	con->in_seq_acked = 0;
 561
 562	if (ceph_msgr2(from_msgr(con->msgr)))
 563		ceph_con_v2_reset_session(con);
 564	else
 565		ceph_con_v1_reset_session(con);
 566}
 567
 568/*
 569 * mark a peer down.  drop any open connections.
 570 */
 571void ceph_con_close(struct ceph_connection *con)
 572{
 
 
 
 
 
 
 
 573	mutex_lock(&con->mutex);
 574	dout("con_close %p peer %s\n", con, ceph_pr_addr(&con->peer_addr));
 575	con->state = CEPH_CON_S_CLOSED;
 576
 577	ceph_con_flag_clear(con, CEPH_CON_F_LOSSYTX);  /* so we retry next
 578							  connect */
 579	ceph_con_flag_clear(con, CEPH_CON_F_KEEPALIVE_PENDING);
 580	ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
 581	ceph_con_flag_clear(con, CEPH_CON_F_BACKOFF);
 582
 583	ceph_con_reset_protocol(con);
 584	ceph_con_reset_session(con);
 585	cancel_con(con);
 586	mutex_unlock(&con->mutex);
 
 587}
 588EXPORT_SYMBOL(ceph_con_close);
 589
 590/*
 591 * Reopen a closed connection, with a new peer address.
 592 */
 593void ceph_con_open(struct ceph_connection *con,
 594		   __u8 entity_type, __u64 entity_num,
 595		   struct ceph_entity_addr *addr)
 596{
 597	mutex_lock(&con->mutex);
 598	dout("con_open %p %s\n", con, ceph_pr_addr(addr));
 599
 600	WARN_ON(con->state != CEPH_CON_S_CLOSED);
 601	con->state = CEPH_CON_S_PREOPEN;
 602
 603	con->peer_name.type = (__u8) entity_type;
 604	con->peer_name.num = cpu_to_le64(entity_num);
 605
 606	memcpy(&con->peer_addr, addr, sizeof(*addr));
 607	con->delay = 0;      /* reset backoff memory */
 608	mutex_unlock(&con->mutex);
 609	queue_con(con);
 610}
 611EXPORT_SYMBOL(ceph_con_open);
 612
 613/*
 614 * return true if this connection ever successfully opened
 615 */
 616bool ceph_con_opened(struct ceph_connection *con)
 617{
 618	if (ceph_msgr2(from_msgr(con->msgr)))
 619		return ceph_con_v2_opened(con);
 620
 621	return ceph_con_v1_opened(con);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 622}
 623
 624/*
 625 * initialize a new connection.
 626 */
 627void ceph_con_init(struct ceph_connection *con, void *private,
 628	const struct ceph_connection_operations *ops,
 629	struct ceph_messenger *msgr)
 630{
 631	dout("con_init %p\n", con);
 632	memset(con, 0, sizeof(*con));
 633	con->private = private;
 634	con->ops = ops;
 635	con->msgr = msgr;
 636
 637	con_sock_state_init(con);
 638
 639	mutex_init(&con->mutex);
 640	INIT_LIST_HEAD(&con->out_queue);
 641	INIT_LIST_HEAD(&con->out_sent);
 642	INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
 643
 644	con->state = CEPH_CON_S_CLOSED;
 645}
 646EXPORT_SYMBOL(ceph_con_init);
 647
 
 648/*
 649 * We maintain a global counter to order connection attempts.  Get
 650 * a unique seq greater than @gt.
 651 */
 652u32 ceph_get_global_seq(struct ceph_messenger *msgr, u32 gt)
 653{
 654	u32 ret;
 655
 656	spin_lock(&msgr->global_seq_lock);
 657	if (msgr->global_seq < gt)
 658		msgr->global_seq = gt;
 659	ret = ++msgr->global_seq;
 660	spin_unlock(&msgr->global_seq_lock);
 661	return ret;
 662}
 663
 
 664/*
 665 * Discard messages that have been acked by the server.
 
 666 */
 667void ceph_con_discard_sent(struct ceph_connection *con, u64 ack_seq)
 668{
 669	struct ceph_msg *msg;
 670	u64 seq;
 671
 672	dout("%s con %p ack_seq %llu\n", __func__, con, ack_seq);
 673	while (!list_empty(&con->out_sent)) {
 674		msg = list_first_entry(&con->out_sent, struct ceph_msg,
 675				       list_head);
 676		WARN_ON(msg->needs_out_seq);
 677		seq = le64_to_cpu(msg->hdr.seq);
 678		if (seq > ack_seq)
 679			break;
 680
 681		dout("%s con %p discarding msg %p seq %llu\n", __func__, con,
 682		     msg, seq);
 683		ceph_msg_remove(msg);
 684	}
 
 
 
 
 685}
 686
 687/*
 688 * Discard messages that have been requeued in con_fault(), up to
 689 * reconnect_seq.  This avoids gratuitously resending messages that
 690 * the server had received and handled prior to reconnect.
 691 */
 692void ceph_con_discard_requeued(struct ceph_connection *con, u64 reconnect_seq)
 693{
 694	struct ceph_msg *msg;
 695	u64 seq;
 696
 697	dout("%s con %p reconnect_seq %llu\n", __func__, con, reconnect_seq);
 698	while (!list_empty(&con->out_queue)) {
 699		msg = list_first_entry(&con->out_queue, struct ceph_msg,
 700				       list_head);
 701		if (msg->needs_out_seq)
 702			break;
 703		seq = le64_to_cpu(msg->hdr.seq);
 704		if (seq > reconnect_seq)
 705			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 706
 707		dout("%s con %p discarding msg %p seq %llu\n", __func__, con,
 708		     msg, seq);
 709		ceph_msg_remove(msg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 710	}
 711}
 712
 713#ifdef CONFIG_BLOCK
 
 714
 715/*
 716 * For a bio data item, a piece is whatever remains of the next
 717 * entry in the current bio iovec, or the first entry in the next
 718 * bio in the list.
 719 */
 720static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
 721					size_t length)
 722{
 723	struct ceph_msg_data *data = cursor->data;
 724	struct ceph_bio_iter *it = &cursor->bio_iter;
 725
 726	cursor->resid = min_t(size_t, length, data->bio_length);
 727	*it = data->bio_pos;
 728	if (cursor->resid < it->iter.bi_size)
 729		it->iter.bi_size = cursor->resid;
 730
 731	BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
 
 
 
 
 
 
 
 
 
 732}
 733
 734static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
 735						size_t *page_offset,
 736						size_t *length)
 
 737{
 738	struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio,
 739					   cursor->bio_iter.iter);
 740
 741	*page_offset = bv.bv_offset;
 742	*length = bv.bv_len;
 743	return bv.bv_page;
 
 744}
 745
 746static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
 747					size_t bytes)
 
 
 
 748{
 749	struct ceph_bio_iter *it = &cursor->bio_iter;
 750	struct page *page = bio_iter_page(it->bio, it->iter);
 
 751
 752	BUG_ON(bytes > cursor->resid);
 753	BUG_ON(bytes > bio_iter_len(it->bio, it->iter));
 754	cursor->resid -= bytes;
 755	bio_advance_iter(it->bio, &it->iter, bytes);
 
 
 
 756
 757	if (!cursor->resid)
 758		return false;   /* no more data */
 
 759
 760	if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done &&
 761		       page == bio_iter_page(it->bio, it->iter)))
 762		return false;	/* more bytes to process in this segment */
 763
 764	if (!it->iter.bi_size) {
 765		it->bio = it->bio->bi_next;
 766		it->iter = it->bio->bi_iter;
 767		if (cursor->resid < it->iter.bi_size)
 768			it->iter.bi_size = cursor->resid;
 769	}
 770
 771	BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
 772	return true;
 773}
 774#endif /* CONFIG_BLOCK */
 775
 776static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor,
 777					size_t length)
 
 
 
 778{
 779	struct ceph_msg_data *data = cursor->data;
 780	struct bio_vec *bvecs = data->bvec_pos.bvecs;
 781
 782	cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size);
 783	cursor->bvec_iter = data->bvec_pos.iter;
 784	cursor->bvec_iter.bi_size = cursor->resid;
 785
 786	BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
 
 
 
 
 787}
 788
 789static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor,
 790						size_t *page_offset,
 791						size_t *length)
 792{
 793	struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs,
 794					   cursor->bvec_iter);
 795
 796	*page_offset = bv.bv_offset;
 797	*length = bv.bv_len;
 798	return bv.bv_page;
 799}
 800
 801static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor,
 802					size_t bytes)
 803{
 804	struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs;
 805	struct page *page = bvec_iter_page(bvecs, cursor->bvec_iter);
 
 
 
 
 
 
 
 
 806
 807	BUG_ON(bytes > cursor->resid);
 808	BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter));
 809	cursor->resid -= bytes;
 810	bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes);
 811
 812	if (!cursor->resid)
 813		return false;   /* no more data */
 
 
 
 
 814
 815	if (!bytes || (cursor->bvec_iter.bi_bvec_done &&
 816		       page == bvec_iter_page(bvecs, cursor->bvec_iter)))
 817		return false;	/* more bytes to process in this segment */
 
 
 
 
 
 
 
 
 818
 819	BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
 820	return true;
 821}
 822
 
 823/*
 824 * For a page array, a piece comes from the first page in the array
 825 * that has not already been fully consumed.
 
 
 826 */
 827static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
 828					size_t length)
 829{
 830	struct ceph_msg_data *data = cursor->data;
 831	int page_count;
 832
 833	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
 834
 835	BUG_ON(!data->pages);
 836	BUG_ON(!data->length);
 837
 838	cursor->resid = min(length, data->length);
 839	page_count = calc_pages_for(data->alignment, (u64)data->length);
 840	cursor->page_offset = data->alignment & ~PAGE_MASK;
 841	cursor->page_index = 0;
 842	BUG_ON(page_count > (int)USHRT_MAX);
 843	cursor->page_count = (unsigned short)page_count;
 844	BUG_ON(length > SIZE_MAX - cursor->page_offset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 845}
 846
 847static struct page *
 848ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
 849					size_t *page_offset, size_t *length)
 850{
 851	struct ceph_msg_data *data = cursor->data;
 852
 853	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
 854
 855	BUG_ON(cursor->page_index >= cursor->page_count);
 856	BUG_ON(cursor->page_offset >= PAGE_SIZE);
 857
 858	*page_offset = cursor->page_offset;
 859	*length = min_t(size_t, cursor->resid, PAGE_SIZE - *page_offset);
 860	return data->pages[cursor->page_index];
 861}
 862
 863static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
 864						size_t bytes)
 865{
 866	BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
 867
 868	BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
 869
 870	/* Advance the cursor page offset */
 871
 872	cursor->resid -= bytes;
 873	cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
 874	if (!bytes || cursor->page_offset)
 875		return false;	/* more bytes to process in the current page */
 876
 877	if (!cursor->resid)
 878		return false;   /* no more data */
 879
 880	/* Move on to the next page; offset is already at 0 */
 881
 882	BUG_ON(cursor->page_index >= cursor->page_count);
 883	cursor->page_index++;
 884	return true;
 885}
 
 886
 887/*
 888 * For a pagelist, a piece is whatever remains to be consumed in the
 889 * first page in the list, or the front of the next page.
 890 */
 891static void
 892ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
 893					size_t length)
 894{
 895	struct ceph_msg_data *data = cursor->data;
 896	struct ceph_pagelist *pagelist;
 897	struct page *page;
 898
 899	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
 
 
 
 
 
 
 
 
 900
 901	pagelist = data->pagelist;
 902	BUG_ON(!pagelist);
 
 
 903
 904	if (!length)
 905		return;		/* pagelist can be assigned but empty */
 
 
 
 906
 907	BUG_ON(list_empty(&pagelist->head));
 908	page = list_first_entry(&pagelist->head, struct page, lru);
 909
 910	cursor->resid = min(length, pagelist->length);
 911	cursor->page = page;
 912	cursor->offset = 0;
 913}
 
 914
 915static struct page *
 916ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
 917				size_t *page_offset, size_t *length)
 918{
 919	struct ceph_msg_data *data = cursor->data;
 920	struct ceph_pagelist *pagelist;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 921
 922	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
 
 
 
 
 
 
 
 
 
 
 
 
 
 923
 924	pagelist = data->pagelist;
 925	BUG_ON(!pagelist);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 926
 927	BUG_ON(!cursor->page);
 928	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
 929
 930	/* offset of first page in pagelist is always 0 */
 931	*page_offset = cursor->offset & ~PAGE_MASK;
 932	*length = min_t(size_t, cursor->resid, PAGE_SIZE - *page_offset);
 933	return cursor->page;
 
 
 
 
 
 
 934}
 935
 936static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
 937						size_t bytes)
 
 
 938{
 939	struct ceph_msg_data *data = cursor->data;
 940	struct ceph_pagelist *pagelist;
 941
 942	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
 943
 944	pagelist = data->pagelist;
 945	BUG_ON(!pagelist);
 946
 947	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
 948	BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
 949
 950	/* Advance the cursor offset */
 951
 952	cursor->resid -= bytes;
 953	cursor->offset += bytes;
 954	/* offset of first page in pagelist is always 0 */
 955	if (!bytes || cursor->offset & ~PAGE_MASK)
 956		return false;	/* more bytes to process in the current page */
 957
 958	if (!cursor->resid)
 959		return false;   /* no more data */
 960
 961	/* Move on to the next page */
 962
 963	BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
 964	cursor->page = list_next_entry(cursor->page, lru);
 965	return true;
 
 
 
 
 
 
 
 
 
 
 
 966}
 967
 968/*
 969 * Message data is handled (sent or received) in pieces, where each
 970 * piece resides on a single page.  The network layer might not
 971 * consume an entire piece at once.  A data item's cursor keeps
 972 * track of which piece is next to process and how much remains to
 973 * be processed in that piece.  It also tracks whether the current
 974 * piece is the last one in the data item.
 975 */
 976static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
 977{
 978	size_t length = cursor->total_resid;
 979
 980	switch (cursor->data->type) {
 981	case CEPH_MSG_DATA_PAGELIST:
 982		ceph_msg_data_pagelist_cursor_init(cursor, length);
 983		break;
 984	case CEPH_MSG_DATA_PAGES:
 985		ceph_msg_data_pages_cursor_init(cursor, length);
 986		break;
 987#ifdef CONFIG_BLOCK
 988	case CEPH_MSG_DATA_BIO:
 989		ceph_msg_data_bio_cursor_init(cursor, length);
 990		break;
 991#endif /* CONFIG_BLOCK */
 992	case CEPH_MSG_DATA_BVECS:
 993		ceph_msg_data_bvecs_cursor_init(cursor, length);
 994		break;
 995	case CEPH_MSG_DATA_NONE:
 996	default:
 997		/* BUG(); */
 998		break;
 999	}
1000	cursor->need_crc = true;
1001}
1002
1003void ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor,
1004			       struct ceph_msg *msg, size_t length)
1005{
1006	BUG_ON(!length);
1007	BUG_ON(length > msg->data_length);
1008	BUG_ON(!msg->num_data_items);
1009
1010	cursor->total_resid = length;
1011	cursor->data = msg->data;
 
 
 
1012
1013	__ceph_msg_data_cursor_init(cursor);
 
 
 
 
1014}
1015
1016/*
1017 * Return the page containing the next piece to process for a given
1018 * data item, and supply the page offset and length of that piece.
1019 * Indicate whether this is the last piece in this data item.
1020 */
1021struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1022				size_t *page_offset, size_t *length)
1023{
1024	struct page *page;
1025
1026	switch (cursor->data->type) {
1027	case CEPH_MSG_DATA_PAGELIST:
1028		page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1029		break;
1030	case CEPH_MSG_DATA_PAGES:
1031		page = ceph_msg_data_pages_next(cursor, page_offset, length);
1032		break;
1033#ifdef CONFIG_BLOCK
1034	case CEPH_MSG_DATA_BIO:
1035		page = ceph_msg_data_bio_next(cursor, page_offset, length);
1036		break;
1037#endif /* CONFIG_BLOCK */
1038	case CEPH_MSG_DATA_BVECS:
1039		page = ceph_msg_data_bvecs_next(cursor, page_offset, length);
1040		break;
1041	case CEPH_MSG_DATA_NONE:
1042	default:
1043		page = NULL;
1044		break;
1045	}
1046
1047	BUG_ON(!page);
1048	BUG_ON(*page_offset + *length > PAGE_SIZE);
1049	BUG_ON(!*length);
1050	BUG_ON(*length > cursor->resid);
1051
1052	return page;
 
 
 
 
 
 
 
 
 
 
 
 
1053}
1054
 
1055/*
1056 * Returns true if the result moves the cursor on to the next piece
1057 * of the data item.
1058 */
1059void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor, size_t bytes)
1060{
1061	bool new_piece;
1062
1063	BUG_ON(bytes > cursor->resid);
1064	switch (cursor->data->type) {
1065	case CEPH_MSG_DATA_PAGELIST:
1066		new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1067		break;
1068	case CEPH_MSG_DATA_PAGES:
1069		new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1070		break;
1071#ifdef CONFIG_BLOCK
1072	case CEPH_MSG_DATA_BIO:
1073		new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1074		break;
1075#endif /* CONFIG_BLOCK */
1076	case CEPH_MSG_DATA_BVECS:
1077		new_piece = ceph_msg_data_bvecs_advance(cursor, bytes);
1078		break;
1079	case CEPH_MSG_DATA_NONE:
1080	default:
1081		BUG();
1082		break;
1083	}
1084	cursor->total_resid -= bytes;
1085
1086	if (!cursor->resid && cursor->total_resid) {
1087		cursor->data++;
1088		__ceph_msg_data_cursor_init(cursor);
1089		new_piece = true;
1090	}
1091	cursor->need_crc = new_piece;
 
 
 
 
 
 
 
 
1092}
1093
1094u32 ceph_crc32c_page(u32 crc, struct page *page, unsigned int page_offset,
1095		     unsigned int length)
1096{
1097	char *kaddr;
1098
1099	kaddr = kmap(page);
1100	BUG_ON(kaddr == NULL);
1101	crc = crc32c(crc, kaddr + page_offset, length);
1102	kunmap(page);
 
 
 
 
 
 
 
 
 
 
 
 
1103
1104	return crc;
1105}
1106
1107bool ceph_addr_is_blank(const struct ceph_entity_addr *addr)
 
 
 
1108{
1109	struct sockaddr_storage ss = addr->in_addr; /* align */
1110	struct in_addr *addr4 = &((struct sockaddr_in *)&ss)->sin_addr;
1111	struct in6_addr *addr6 = &((struct sockaddr_in6 *)&ss)->sin6_addr;
 
 
 
 
 
1112
1113	switch (ss.ss_family) {
 
 
1114	case AF_INET:
1115		return addr4->s_addr == htonl(INADDR_ANY);
1116	case AF_INET6:
1117		return ipv6_addr_any(addr6);
1118	default:
1119		return true;
 
 
1120	}
 
1121}
1122
1123int ceph_addr_port(const struct ceph_entity_addr *addr)
1124{
1125	switch (get_unaligned(&addr->in_addr.ss_family)) {
1126	case AF_INET:
1127		return ntohs(get_unaligned(&((struct sockaddr_in *)&addr->in_addr)->sin_port));
1128	case AF_INET6:
1129		return ntohs(get_unaligned(&((struct sockaddr_in6 *)&addr->in_addr)->sin6_port));
1130	}
1131	return 0;
1132}
1133
1134void ceph_addr_set_port(struct ceph_entity_addr *addr, int p)
1135{
1136	switch (get_unaligned(&addr->in_addr.ss_family)) {
1137	case AF_INET:
1138		put_unaligned(htons(p), &((struct sockaddr_in *)&addr->in_addr)->sin_port);
1139		break;
1140	case AF_INET6:
1141		put_unaligned(htons(p), &((struct sockaddr_in6 *)&addr->in_addr)->sin6_port);
1142		break;
1143	}
1144}
1145
1146/*
1147 * Unlike other *_pton function semantics, zero indicates success.
1148 */
1149static int ceph_pton(const char *str, size_t len, struct ceph_entity_addr *addr,
1150		char delim, const char **ipend)
1151{
1152	memset(&addr->in_addr, 0, sizeof(addr->in_addr));
1153
1154	if (in4_pton(str, len, (u8 *)&((struct sockaddr_in *)&addr->in_addr)->sin_addr.s_addr, delim, ipend)) {
1155		put_unaligned(AF_INET, &addr->in_addr.ss_family);
1156		return 0;
1157	}
1158
1159	if (in6_pton(str, len, (u8 *)&((struct sockaddr_in6 *)&addr->in_addr)->sin6_addr.s6_addr, delim, ipend)) {
1160		put_unaligned(AF_INET6, &addr->in_addr.ss_family);
1161		return 0;
1162	}
1163
1164	return -EINVAL;
1165}
1166
1167/*
1168 * Extract hostname string and resolve using kernel DNS facility.
1169 */
1170#ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1171static int ceph_dns_resolve_name(const char *name, size_t namelen,
1172		struct ceph_entity_addr *addr, char delim, const char **ipend)
1173{
1174	const char *end, *delim_p;
1175	char *colon_p, *ip_addr = NULL;
1176	int ip_len, ret;
1177
1178	/*
1179	 * The end of the hostname occurs immediately preceding the delimiter or
1180	 * the port marker (':') where the delimiter takes precedence.
1181	 */
1182	delim_p = memchr(name, delim, namelen);
1183	colon_p = memchr(name, ':', namelen);
1184
1185	if (delim_p && colon_p)
1186		end = delim_p < colon_p ? delim_p : colon_p;
1187	else if (!delim_p && colon_p)
1188		end = colon_p;
1189	else {
1190		end = delim_p;
1191		if (!end) /* case: hostname:/ */
1192			end = name + namelen;
1193	}
1194
1195	if (end <= name)
1196		return -EINVAL;
1197
1198	/* do dns_resolve upcall */
1199	ip_len = dns_query(current->nsproxy->net_ns,
1200			   NULL, name, end - name, NULL, &ip_addr, NULL, false);
1201	if (ip_len > 0)
1202		ret = ceph_pton(ip_addr, ip_len, addr, -1, NULL);
1203	else
1204		ret = -ESRCH;
1205
1206	kfree(ip_addr);
1207
1208	*ipend = end;
1209
1210	pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1211			ret, ret ? "failed" : ceph_pr_addr(addr));
1212
1213	return ret;
1214}
1215#else
1216static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1217		struct ceph_entity_addr *addr, char delim, const char **ipend)
1218{
1219	return -EINVAL;
1220}
1221#endif
1222
1223/*
1224 * Parse a server name (IP or hostname). If a valid IP address is not found
1225 * then try to extract a hostname to resolve using userspace DNS upcall.
1226 */
1227static int ceph_parse_server_name(const char *name, size_t namelen,
1228		struct ceph_entity_addr *addr, char delim, const char **ipend)
1229{
1230	int ret;
1231
1232	ret = ceph_pton(name, namelen, addr, delim, ipend);
1233	if (ret)
1234		ret = ceph_dns_resolve_name(name, namelen, addr, delim, ipend);
1235
1236	return ret;
1237}
1238
1239/*
1240 * Parse an ip[:port] list into an addr array.  Use the default
1241 * monitor port if a port isn't specified.
1242 */
1243int ceph_parse_ips(const char *c, const char *end,
1244		   struct ceph_entity_addr *addr,
1245		   int max_count, int *count, char delim)
1246{
1247	int i, ret = -EINVAL;
1248	const char *p = c;
1249
1250	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1251	for (i = 0; i < max_count; i++) {
1252		char cur_delim = delim;
1253		const char *ipend;
 
 
 
1254		int port;
 
1255
1256		if (*p == '[') {
1257			cur_delim = ']';
1258			p++;
1259		}
1260
1261		ret = ceph_parse_server_name(p, end - p, &addr[i], cur_delim,
1262					     &ipend);
1263		if (ret)
 
 
 
 
 
1264			goto bad;
1265		ret = -EINVAL;
1266
1267		p = ipend;
1268
1269		if (cur_delim == ']') {
1270			if (*p != ']') {
1271				dout("missing matching ']'\n");
1272				goto bad;
1273			}
1274			p++;
1275		}
1276
1277		/* port? */
1278		if (p < end && *p == ':') {
1279			port = 0;
1280			p++;
1281			while (p < end && *p >= '0' && *p <= '9') {
1282				port = (port * 10) + (*p - '0');
1283				p++;
1284			}
1285			if (port == 0)
1286				port = CEPH_MON_PORT;
1287			else if (port > 65535)
1288				goto bad;
1289		} else {
1290			port = CEPH_MON_PORT;
1291		}
1292
1293		ceph_addr_set_port(&addr[i], port);
1294		/*
1295		 * We want the type to be set according to ms_mode
1296		 * option, but options are normally parsed after mon
1297		 * addresses.  Rather than complicating parsing, set
1298		 * to LEGACY and override in build_initial_monmap()
1299		 * for mon addresses and ceph_messenger_init() for
1300		 * ip option.
1301		 */
1302		addr[i].type = CEPH_ENTITY_ADDR_TYPE_LEGACY;
1303		addr[i].nonce = 0;
1304
1305		dout("%s got %s\n", __func__, ceph_pr_addr(&addr[i]));
1306
1307		if (p == end)
1308			break;
1309		if (*p != delim)
1310			goto bad;
1311		p++;
1312	}
1313
1314	if (p != end)
1315		goto bad;
1316
1317	if (count)
1318		*count = i + 1;
1319	return 0;
1320
1321bad:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1322	return ret;
1323}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1324
1325/*
1326 * Process message.  This happens in the worker thread.  The callback should
1327 * be careful not to do anything that waits on other incoming messages or it
1328 * may deadlock.
1329 */
1330void ceph_con_process_message(struct ceph_connection *con)
1331{
1332	struct ceph_msg *msg = con->in_msg;
1333
1334	BUG_ON(con->in_msg->con != con);
1335	con->in_msg = NULL;
1336
1337	/* if first message, set peer_name */
1338	if (con->peer_name.type == 0)
1339		con->peer_name = msg->hdr.src;
1340
1341	con->in_seq++;
1342	mutex_unlock(&con->mutex);
1343
1344	dout("===== %p %llu from %s%lld %d=%s len %d+%d+%d (%u %u %u) =====\n",
1345	     msg, le64_to_cpu(msg->hdr.seq),
1346	     ENTITY_NAME(msg->hdr.src),
1347	     le16_to_cpu(msg->hdr.type),
1348	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1349	     le32_to_cpu(msg->hdr.front_len),
1350	     le32_to_cpu(msg->hdr.middle_len),
1351	     le32_to_cpu(msg->hdr.data_len),
1352	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1353	con->ops->dispatch(con, msg);
1354
1355	mutex_lock(&con->mutex);
 
1356}
1357
 
1358/*
1359 * Atomically queue work on a connection after the specified delay.
1360 * Bump @con reference to avoid races with connection teardown.
1361 * Returns 0 if work was queued, or an error code otherwise.
1362 */
1363static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
1364{
1365	if (!con->ops->get(con)) {
1366		dout("%s %p ref count 0\n", __func__, con);
1367		return -ENOENT;
1368	}
1369
1370	if (delay >= HZ)
1371		delay = round_jiffies_relative(delay);
1372
1373	dout("%s %p %lu\n", __func__, con, delay);
1374	if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
1375		dout("%s %p - already queued\n", __func__, con);
1376		con->ops->put(con);
1377		return -EBUSY;
1378	}
1379
1380	return 0;
1381}
 
 
 
 
 
1382
1383static void queue_con(struct ceph_connection *con)
1384{
1385	(void) queue_con_delay(con, 0);
1386}
 
 
 
 
 
 
 
 
1387
1388static void cancel_con(struct ceph_connection *con)
1389{
1390	if (cancel_delayed_work(&con->work)) {
1391		dout("%s %p\n", __func__, con);
1392		con->ops->put(con);
 
 
 
 
 
 
1393	}
1394}
1395
1396static bool con_sock_closed(struct ceph_connection *con)
1397{
1398	if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_SOCK_CLOSED))
1399		return false;
 
 
 
1400
1401#define CASE(x)								\
1402	case CEPH_CON_S_ ## x:						\
1403		con->error_msg = "socket closed (con state " #x ")";	\
1404		break;
 
 
 
 
 
 
 
1405
1406	switch (con->state) {
1407	CASE(CLOSED);
1408	CASE(PREOPEN);
1409	CASE(V1_BANNER);
1410	CASE(V1_CONNECT_MSG);
1411	CASE(V2_BANNER_PREFIX);
1412	CASE(V2_BANNER_PAYLOAD);
1413	CASE(V2_HELLO);
1414	CASE(V2_AUTH);
1415	CASE(V2_AUTH_SIGNATURE);
1416	CASE(V2_SESSION_CONNECT);
1417	CASE(V2_SESSION_RECONNECT);
1418	CASE(OPEN);
1419	CASE(STANDBY);
1420	default:
1421		BUG();
1422	}
1423#undef CASE
1424
1425	return true;
 
 
 
 
 
 
1426}
1427
1428static bool con_backoff(struct ceph_connection *con)
 
 
 
 
 
1429{
1430	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1431
1432	if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_BACKOFF))
1433		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1434
1435	ret = queue_con_delay(con, con->delay);
1436	if (ret) {
1437		dout("%s: con %p FAILED to back off %lu\n", __func__,
1438			con, con->delay);
1439		BUG_ON(ret == -ENOENT);
1440		ceph_con_flag_set(con, CEPH_CON_F_BACKOFF);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1441	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1442
1443	return true;
 
 
 
 
1444}
1445
1446/* Finish fault handling; con->mutex must *not* be held here */
1447
1448static void con_fault_finish(struct ceph_connection *con)
 
 
 
 
1449{
1450	dout("%s %p\n", __func__, con);
 
 
 
 
1451
1452	/*
1453	 * in case we faulted due to authentication, invalidate our
1454	 * current tickets so that we can get new ones.
1455	 */
1456	if (con->v1.auth_retry) {
1457		dout("auth_retry %d, invalidating\n", con->v1.auth_retry);
1458		if (con->ops->invalidate_authorizer)
1459			con->ops->invalidate_authorizer(con);
1460		con->v1.auth_retry = 0;
1461	}
1462
1463	if (con->ops->fault)
1464		con->ops->fault(con);
 
 
 
 
1465}
1466
1467/*
1468 * Do some work on a connection.  Drop a connection ref when we're done.
1469 */
1470static void ceph_con_workfn(struct work_struct *work)
1471{
1472	struct ceph_connection *con = container_of(work, struct ceph_connection,
1473						   work.work);
1474	bool fault;
1475
1476	mutex_lock(&con->mutex);
1477	while (true) {
1478		int ret;
1479
1480		if ((fault = con_sock_closed(con))) {
1481			dout("%s: con %p SOCK_CLOSED\n", __func__, con);
1482			break;
1483		}
1484		if (con_backoff(con)) {
1485			dout("%s: con %p BACKOFF\n", __func__, con);
1486			break;
1487		}
1488		if (con->state == CEPH_CON_S_STANDBY) {
1489			dout("%s: con %p STANDBY\n", __func__, con);
1490			break;
1491		}
1492		if (con->state == CEPH_CON_S_CLOSED) {
1493			dout("%s: con %p CLOSED\n", __func__, con);
1494			BUG_ON(con->sock);
1495			break;
1496		}
1497		if (con->state == CEPH_CON_S_PREOPEN) {
1498			dout("%s: con %p PREOPEN\n", __func__, con);
1499			BUG_ON(con->sock);
1500		}
1501
1502		if (ceph_msgr2(from_msgr(con->msgr)))
1503			ret = ceph_con_v2_try_read(con);
1504		else
1505			ret = ceph_con_v1_try_read(con);
1506		if (ret < 0) {
1507			if (ret == -EAGAIN)
1508				continue;
1509			if (!con->error_msg)
1510				con->error_msg = "socket error on read";
1511			fault = true;
1512			break;
1513		}
1514
1515		if (ceph_msgr2(from_msgr(con->msgr)))
1516			ret = ceph_con_v2_try_write(con);
1517		else
1518			ret = ceph_con_v1_try_write(con);
1519		if (ret < 0) {
1520			if (ret == -EAGAIN)
1521				continue;
1522			if (!con->error_msg)
1523				con->error_msg = "socket error on write";
1524			fault = true;
1525		}
1526
1527		break;	/* If we make it to here, we're done */
1528	}
1529	if (fault)
1530		con_fault(con);
1531	mutex_unlock(&con->mutex);
1532
1533	if (fault)
1534		con_fault_finish(con);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1535
 
 
 
1536	con->ops->put(con);
 
 
 
 
 
 
1537}
1538
 
1539/*
1540 * Generic error/fault handler.  A retry mechanism is used with
1541 * exponential backoff
1542 */
1543static void con_fault(struct ceph_connection *con)
1544{
1545	dout("fault %p state %d to peer %s\n",
1546	     con, con->state, ceph_pr_addr(&con->peer_addr));
 
 
1547
1548	pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
1549		ceph_pr_addr(&con->peer_addr), con->error_msg);
1550	con->error_msg = NULL;
 
1551
1552	WARN_ON(con->state == CEPH_CON_S_STANDBY ||
1553		con->state == CEPH_CON_S_CLOSED);
 
1554
1555	ceph_con_reset_protocol(con);
1556
1557	if (ceph_con_flag_test(con, CEPH_CON_F_LOSSYTX)) {
1558		dout("fault on LOSSYTX channel, marking CLOSED\n");
1559		con->state = CEPH_CON_S_CLOSED;
1560		return;
1561	}
1562
1563	/* Requeue anything that hasn't been acked */
1564	list_splice_init(&con->out_sent, &con->out_queue);
1565
1566	/* If there are no messages queued or keepalive pending, place
1567	 * the connection in a STANDBY state */
1568	if (list_empty(&con->out_queue) &&
1569	    !ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING)) {
1570		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
1571		ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
1572		con->state = CEPH_CON_S_STANDBY;
1573	} else {
1574		/* retry after a delay. */
1575		con->state = CEPH_CON_S_PREOPEN;
1576		if (!con->delay) {
1577			con->delay = BASE_DELAY_INTERVAL;
1578		} else if (con->delay < MAX_DELAY_INTERVAL) {
1579			con->delay *= 2;
1580			if (con->delay > MAX_DELAY_INTERVAL)
1581				con->delay = MAX_DELAY_INTERVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1582		}
1583		ceph_con_flag_set(con, CEPH_CON_F_BACKOFF);
1584		queue_con(con);
1585	}
1586}
1587
1588void ceph_messenger_reset_nonce(struct ceph_messenger *msgr)
1589{
1590	u32 nonce = le32_to_cpu(msgr->inst.addr.nonce) + 1000000;
1591	msgr->inst.addr.nonce = cpu_to_le32(nonce);
1592	ceph_encode_my_addr(msgr);
 
 
 
 
 
 
 
 
 
1593}
1594
 
 
1595/*
1596 * initialize a new messenger instance
1597 */
1598void ceph_messenger_init(struct ceph_messenger *msgr,
1599			 struct ceph_entity_addr *myaddr)
 
1600{
1601	spin_lock_init(&msgr->global_seq_lock);
1602
1603	if (myaddr) {
1604		memcpy(&msgr->inst.addr.in_addr, &myaddr->in_addr,
1605		       sizeof(msgr->inst.addr.in_addr));
1606		ceph_addr_set_port(&msgr->inst.addr, 0);
1607	}
1608
1609	/*
1610	 * Since nautilus, clients are identified using type ANY.
1611	 * For msgr1, ceph_encode_banner_addr() munges it to NONE.
1612	 */
1613	msgr->inst.addr.type = CEPH_ENTITY_ADDR_TYPE_ANY;
1614
1615	/* generate a random non-zero nonce */
1616	do {
1617		get_random_bytes(&msgr->inst.addr.nonce,
1618				 sizeof(msgr->inst.addr.nonce));
1619	} while (!msgr->inst.addr.nonce);
1620	ceph_encode_my_addr(msgr);
1621
1622	atomic_set(&msgr->stopping, 0);
1623	write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
 
 
 
 
 
 
1624
1625	dout("%s %p\n", __func__, msgr);
1626}
1627
1628void ceph_messenger_fini(struct ceph_messenger *msgr)
1629{
1630	put_net(read_pnet(&msgr->net));
 
 
 
 
1631}
 
1632
1633static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
1634{
1635	if (msg->con)
1636		msg->con->ops->put(msg->con);
1637
1638	msg->con = con ? con->ops->get(con) : NULL;
1639	BUG_ON(msg->con != con);
1640}
 
1641
1642static void clear_standby(struct ceph_connection *con)
1643{
1644	/* come back from STANDBY? */
1645	if (con->state == CEPH_CON_S_STANDBY) {
 
1646		dout("clear_standby %p and ++connect_seq\n", con);
1647		con->state = CEPH_CON_S_PREOPEN;
1648		con->v1.connect_seq++;
1649		WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING));
1650		WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING));
1651	}
1652}
1653
1654/*
1655 * Queue up an outgoing message on the given connection.
1656 *
1657 * Consumes a ref on @msg.
1658 */
1659void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
1660{
1661	/* set src+dst */
1662	msg->hdr.src = con->msgr->inst.name;
1663	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
1664	msg->needs_out_seq = true;
1665
1666	mutex_lock(&con->mutex);
1667
1668	if (con->state == CEPH_CON_S_CLOSED) {
1669		dout("con_send %p closed, dropping %p\n", con, msg);
1670		ceph_msg_put(msg);
1671		mutex_unlock(&con->mutex);
1672		return;
1673	}
1674
1675	msg_con_set(msg, con);
 
 
 
 
 
1676
 
 
1677	BUG_ON(!list_empty(&msg->list_head));
1678	list_add_tail(&msg->list_head, &con->out_queue);
1679	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
1680	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
1681	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1682	     le32_to_cpu(msg->hdr.front_len),
1683	     le32_to_cpu(msg->hdr.middle_len),
1684	     le32_to_cpu(msg->hdr.data_len));
1685
1686	clear_standby(con);
1687	mutex_unlock(&con->mutex);
1688
1689	/* if there wasn't anything waiting to send before, queue
1690	 * new work */
1691	if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING))
 
1692		queue_con(con);
1693}
1694EXPORT_SYMBOL(ceph_con_send);
1695
1696/*
1697 * Revoke a message that was previously queued for send
1698 */
1699void ceph_msg_revoke(struct ceph_msg *msg)
1700{
1701	struct ceph_connection *con = msg->con;
1702
1703	if (!con) {
1704		dout("%s msg %p null con\n", __func__, msg);
1705		return;		/* Message not in our possession */
1706	}
1707
1708	mutex_lock(&con->mutex);
1709	if (list_empty(&msg->list_head)) {
1710		WARN_ON(con->out_msg == msg);
1711		dout("%s con %p msg %p not linked\n", __func__, con, msg);
1712		mutex_unlock(&con->mutex);
1713		return;
1714	}
1715
1716	dout("%s con %p msg %p was linked\n", __func__, con, msg);
1717	msg->hdr.seq = 0;
1718	ceph_msg_remove(msg);
1719
1720	if (con->out_msg == msg) {
1721		WARN_ON(con->state != CEPH_CON_S_OPEN);
1722		dout("%s con %p msg %p was sending\n", __func__, con, msg);
1723		if (ceph_msgr2(from_msgr(con->msgr)))
1724			ceph_con_v2_revoke(con);
1725		else
1726			ceph_con_v1_revoke(con);
1727		ceph_msg_put(con->out_msg);
1728		con->out_msg = NULL;
1729	} else {
1730		dout("%s con %p msg %p not current, out_msg %p\n", __func__,
1731		     con, msg, con->out_msg);
 
 
 
1732	}
1733	mutex_unlock(&con->mutex);
1734}
1735
1736/*
1737 * Revoke a message that we may be reading data into
1738 */
1739void ceph_msg_revoke_incoming(struct ceph_msg *msg)
1740{
1741	struct ceph_connection *con = msg->con;
1742
1743	if (!con) {
1744		dout("%s msg %p null con\n", __func__, msg);
1745		return;		/* Message not in our possession */
1746	}
1747
1748	mutex_lock(&con->mutex);
1749	if (con->in_msg == msg) {
1750		WARN_ON(con->state != CEPH_CON_S_OPEN);
1751		dout("%s con %p msg %p was recving\n", __func__, con, msg);
1752		if (ceph_msgr2(from_msgr(con->msgr)))
1753			ceph_con_v2_revoke_incoming(con);
1754		else
1755			ceph_con_v1_revoke_incoming(con);
 
 
 
 
 
 
1756		ceph_msg_put(con->in_msg);
1757		con->in_msg = NULL;
 
 
1758	} else {
1759		dout("%s con %p msg %p not current, in_msg %p\n", __func__,
1760		     con, msg, con->in_msg);
1761	}
1762	mutex_unlock(&con->mutex);
1763}
1764
1765/*
1766 * Queue a keepalive byte to ensure the tcp connection is alive.
1767 */
1768void ceph_con_keepalive(struct ceph_connection *con)
1769{
1770	dout("con_keepalive %p\n", con);
1771	mutex_lock(&con->mutex);
1772	clear_standby(con);
1773	ceph_con_flag_set(con, CEPH_CON_F_KEEPALIVE_PENDING);
1774	mutex_unlock(&con->mutex);
1775
1776	if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING))
1777		queue_con(con);
1778}
1779EXPORT_SYMBOL(ceph_con_keepalive);
1780
1781bool ceph_con_keepalive_expired(struct ceph_connection *con,
1782			       unsigned long interval)
1783{
1784	if (interval > 0 &&
1785	    (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
1786		struct timespec64 now;
1787		struct timespec64 ts;
1788		ktime_get_real_ts64(&now);
1789		jiffies_to_timespec64(interval, &ts);
1790		ts = timespec64_add(con->last_keepalive_ack, ts);
1791		return timespec64_compare(&now, &ts) >= 0;
1792	}
1793	return false;
1794}
1795
1796static struct ceph_msg_data *ceph_msg_data_add(struct ceph_msg *msg)
1797{
1798	BUG_ON(msg->num_data_items >= msg->max_data_items);
1799	return &msg->data[msg->num_data_items++];
1800}
1801
1802static void ceph_msg_data_destroy(struct ceph_msg_data *data)
1803{
1804	if (data->type == CEPH_MSG_DATA_PAGES && data->own_pages) {
1805		int num_pages = calc_pages_for(data->alignment, data->length);
1806		ceph_release_page_vector(data->pages, num_pages);
1807	} else if (data->type == CEPH_MSG_DATA_PAGELIST) {
1808		ceph_pagelist_release(data->pagelist);
1809	}
1810}
1811
1812void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
1813			     size_t length, size_t alignment, bool own_pages)
1814{
1815	struct ceph_msg_data *data;
1816
1817	BUG_ON(!pages);
1818	BUG_ON(!length);
1819
1820	data = ceph_msg_data_add(msg);
1821	data->type = CEPH_MSG_DATA_PAGES;
1822	data->pages = pages;
1823	data->length = length;
1824	data->alignment = alignment & ~PAGE_MASK;
1825	data->own_pages = own_pages;
1826
1827	msg->data_length += length;
1828}
1829EXPORT_SYMBOL(ceph_msg_data_add_pages);
1830
1831void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
1832				struct ceph_pagelist *pagelist)
1833{
1834	struct ceph_msg_data *data;
1835
1836	BUG_ON(!pagelist);
1837	BUG_ON(!pagelist->length);
1838
1839	data = ceph_msg_data_add(msg);
1840	data->type = CEPH_MSG_DATA_PAGELIST;
1841	refcount_inc(&pagelist->refcnt);
1842	data->pagelist = pagelist;
1843
1844	msg->data_length += pagelist->length;
1845}
1846EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
1847
1848#ifdef	CONFIG_BLOCK
1849void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos,
1850			   u32 length)
1851{
1852	struct ceph_msg_data *data;
1853
1854	data = ceph_msg_data_add(msg);
1855	data->type = CEPH_MSG_DATA_BIO;
1856	data->bio_pos = *bio_pos;
1857	data->bio_length = length;
1858
1859	msg->data_length += length;
1860}
1861EXPORT_SYMBOL(ceph_msg_data_add_bio);
1862#endif	/* CONFIG_BLOCK */
1863
1864void ceph_msg_data_add_bvecs(struct ceph_msg *msg,
1865			     struct ceph_bvec_iter *bvec_pos)
1866{
1867	struct ceph_msg_data *data;
1868
1869	data = ceph_msg_data_add(msg);
1870	data->type = CEPH_MSG_DATA_BVECS;
1871	data->bvec_pos = *bvec_pos;
1872
1873	msg->data_length += bvec_pos->iter.bi_size;
1874}
1875EXPORT_SYMBOL(ceph_msg_data_add_bvecs);
1876
1877/*
1878 * construct a new message with given type, size
1879 * the new msg has a ref count of 1.
1880 */
1881struct ceph_msg *ceph_msg_new2(int type, int front_len, int max_data_items,
1882			       gfp_t flags, bool can_fail)
1883{
1884	struct ceph_msg *m;
1885
1886	m = kmem_cache_zalloc(ceph_msg_cache, flags);
1887	if (m == NULL)
1888		goto out;
 
 
1889
 
1890	m->hdr.type = cpu_to_le16(type);
1891	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
 
1892	m->hdr.front_len = cpu_to_le32(front_len);
1893
1894	INIT_LIST_HEAD(&m->list_head);
1895	kref_init(&m->kref);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1896
1897	/* front */
1898	if (front_len) {
1899		m->front.iov_base = kvmalloc(front_len, flags);
 
 
 
 
 
 
1900		if (m->front.iov_base == NULL) {
1901			dout("ceph_msg_new can't allocate %d bytes\n",
1902			     front_len);
1903			goto out2;
1904		}
1905	} else {
1906		m->front.iov_base = NULL;
1907	}
1908	m->front_alloc_len = m->front.iov_len = front_len;
1909
1910	if (max_data_items) {
1911		m->data = kmalloc_array(max_data_items, sizeof(*m->data),
1912					flags);
1913		if (!m->data)
1914			goto out2;
1915
1916		m->max_data_items = max_data_items;
1917	}
1918
1919	dout("ceph_msg_new %p front %d\n", m, front_len);
1920	return m;
1921
1922out2:
1923	ceph_msg_put(m);
1924out:
1925	if (!can_fail) {
1926		pr_err("msg_new can't create type %d front %d\n", type,
1927		       front_len);
1928		WARN_ON(1);
1929	} else {
1930		dout("msg_new can't create type %d front %d\n", type,
1931		     front_len);
1932	}
1933	return NULL;
1934}
1935EXPORT_SYMBOL(ceph_msg_new2);
1936
1937struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
1938			      bool can_fail)
1939{
1940	return ceph_msg_new2(type, front_len, 0, flags, can_fail);
1941}
1942EXPORT_SYMBOL(ceph_msg_new);
1943
1944/*
1945 * Allocate "middle" portion of a message, if it is needed and wasn't
1946 * allocated by alloc_msg.  This allows us to read a small fixed-size
1947 * per-type header in the front and then gracefully fail (i.e.,
1948 * propagate the error to the caller based on info in the front) when
1949 * the middle is too large.
1950 */
1951static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
1952{
1953	int type = le16_to_cpu(msg->hdr.type);
1954	int middle_len = le32_to_cpu(msg->hdr.middle_len);
1955
1956	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
1957	     ceph_msg_type_name(type), middle_len);
1958	BUG_ON(!middle_len);
1959	BUG_ON(msg->middle);
1960
1961	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
1962	if (!msg->middle)
1963		return -ENOMEM;
1964	return 0;
1965}
1966
1967/*
1968 * Allocate a message for receiving an incoming message on a
1969 * connection, and save the result in con->in_msg.  Uses the
1970 * connection's private alloc_msg op if available.
1971 *
1972 * Returns 0 on success, or a negative error code.
1973 *
1974 * On success, if we set *skip = 1:
1975 *  - the next message should be skipped and ignored.
1976 *  - con->in_msg == NULL
1977 * or if we set *skip = 0:
1978 *  - con->in_msg is non-null.
1979 * On error (ENOMEM, EAGAIN, ...),
1980 *  - con->in_msg == NULL
1981 */
1982int ceph_con_in_msg_alloc(struct ceph_connection *con,
1983			  struct ceph_msg_header *hdr, int *skip)
 
1984{
 
 
1985	int middle_len = le32_to_cpu(hdr->middle_len);
1986	struct ceph_msg *msg;
1987	int ret = 0;
1988
1989	BUG_ON(con->in_msg != NULL);
1990	BUG_ON(!con->ops->alloc_msg);
1991
1992	mutex_unlock(&con->mutex);
1993	msg = con->ops->alloc_msg(con, hdr, skip);
1994	mutex_lock(&con->mutex);
1995	if (con->state != CEPH_CON_S_OPEN) {
1996		if (msg)
1997			ceph_msg_put(msg);
1998		return -EAGAIN;
1999	}
2000	if (msg) {
2001		BUG_ON(*skip);
2002		msg_con_set(msg, con);
2003		con->in_msg = msg;
2004	} else {
2005		/*
2006		 * Null message pointer means either we should skip
2007		 * this message or we couldn't allocate memory.  The
2008		 * former is not an error.
2009		 */
2010		if (*skip)
2011			return 0;
2012
2013		con->error_msg = "error allocating memory for incoming message";
2014		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2015	}
2016	memcpy(&con->in_msg->hdr, hdr, sizeof(*hdr));
2017
2018	if (middle_len && !con->in_msg->middle) {
2019		ret = ceph_alloc_middle(con, con->in_msg);
2020		if (ret < 0) {
2021			ceph_msg_put(con->in_msg);
2022			con->in_msg = NULL;
2023		}
2024	}
2025
2026	return ret;
2027}
2028
2029void ceph_con_get_out_msg(struct ceph_connection *con)
2030{
2031	struct ceph_msg *msg;
2032
2033	BUG_ON(list_empty(&con->out_queue));
2034	msg = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
2035	WARN_ON(msg->con != con);
2036
2037	/*
2038	 * Put the message on "sent" list using a ref from ceph_con_send().
2039	 * It is put when the message is acked or revoked.
2040	 */
2041	list_move_tail(&msg->list_head, &con->out_sent);
2042
2043	/*
2044	 * Only assign outgoing seq # if we haven't sent this message
2045	 * yet.  If it is requeued, resend with it's original seq.
2046	 */
2047	if (msg->needs_out_seq) {
2048		msg->hdr.seq = cpu_to_le64(++con->out_seq);
2049		msg->needs_out_seq = false;
2050
2051		if (con->ops->reencode_message)
2052			con->ops->reencode_message(msg);
2053	}
2054
2055	/*
2056	 * Get a ref for out_msg.  It is put when we are done sending the
2057	 * message or in case of a fault.
2058	 */
2059	WARN_ON(con->out_msg);
2060	con->out_msg = ceph_msg_get(msg);
2061}
2062
2063/*
2064 * Free a generically kmalloc'd message.
2065 */
2066static void ceph_msg_free(struct ceph_msg *m)
2067{
2068	dout("%s %p\n", __func__, m);
2069	kvfree(m->front.iov_base);
2070	kfree(m->data);
2071	kmem_cache_free(ceph_msg_cache, m);
 
 
2072}
2073
2074static void ceph_msg_release(struct kref *kref)
 
 
 
2075{
2076	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2077	int i;
2078
2079	dout("%s %p\n", __func__, m);
2080	WARN_ON(!list_empty(&m->list_head));
2081
2082	msg_con_set(m, NULL);
2083
2084	/* drop middle, data, if any */
2085	if (m->middle) {
2086		ceph_buffer_put(m->middle);
2087		m->middle = NULL;
2088	}
 
 
2089
2090	for (i = 0; i < m->num_data_items; i++)
2091		ceph_msg_data_destroy(&m->data[i]);
 
 
 
 
 
2092
2093	if (m->pool)
2094		ceph_msgpool_put(m->pool, m);
2095	else
2096		ceph_msg_free(m);
2097}
2098
2099struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
2100{
2101	dout("%s %p (was %d)\n", __func__, msg,
2102	     kref_read(&msg->kref));
2103	kref_get(&msg->kref);
2104	return msg;
2105}
2106EXPORT_SYMBOL(ceph_msg_get);
2107
2108void ceph_msg_put(struct ceph_msg *msg)
2109{
2110	dout("%s %p (was %d)\n", __func__, msg,
2111	     kref_read(&msg->kref));
2112	kref_put(&msg->kref, ceph_msg_release);
2113}
2114EXPORT_SYMBOL(ceph_msg_put);
2115
2116void ceph_msg_dump(struct ceph_msg *msg)
2117{
2118	pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
2119		 msg->front_alloc_len, msg->data_length);
2120	print_hex_dump(KERN_DEBUG, "header: ",
2121		       DUMP_PREFIX_OFFSET, 16, 1,
2122		       &msg->hdr, sizeof(msg->hdr), true);
2123	print_hex_dump(KERN_DEBUG, " front: ",
2124		       DUMP_PREFIX_OFFSET, 16, 1,
2125		       msg->front.iov_base, msg->front.iov_len, true);
2126	if (msg->middle)
2127		print_hex_dump(KERN_DEBUG, "middle: ",
2128			       DUMP_PREFIX_OFFSET, 16, 1,
2129			       msg->middle->vec.iov_base,
2130			       msg->middle->vec.iov_len, true);
2131	print_hex_dump(KERN_DEBUG, "footer: ",
2132		       DUMP_PREFIX_OFFSET, 16, 1,
2133		       &msg->footer, sizeof(msg->footer), true);
2134}
2135EXPORT_SYMBOL(ceph_msg_dump);
v3.1
 
   1#include <linux/ceph/ceph_debug.h>
   2
   3#include <linux/crc32c.h>
   4#include <linux/ctype.h>
   5#include <linux/highmem.h>
   6#include <linux/inet.h>
   7#include <linux/kthread.h>
   8#include <linux/net.h>
 
 
   9#include <linux/slab.h>
  10#include <linux/socket.h>
  11#include <linux/string.h>
 
  12#include <linux/bio.h>
  13#include <linux/blkdev.h>
 
  14#include <net/tcp.h>
  15
 
  16#include <linux/ceph/libceph.h>
  17#include <linux/ceph/messenger.h>
  18#include <linux/ceph/decode.h>
  19#include <linux/ceph/pagelist.h>
 
  20
  21/*
  22 * Ceph uses the messenger to exchange ceph_msg messages with other
  23 * hosts in the system.  The messenger provides ordered and reliable
  24 * delivery.  We tolerate TCP disconnects by reconnecting (with
  25 * exponential backoff) in the case of a fault (disconnection, bad
  26 * crc, protocol error).  Acks allow sent messages to be discarded by
  27 * the sender.
  28 */
  29
  30/* static tag bytes (protocol control messages) */
  31static char tag_msg = CEPH_MSGR_TAG_MSG;
  32static char tag_ack = CEPH_MSGR_TAG_ACK;
  33static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  34
  35#ifdef CONFIG_LOCKDEP
  36static struct lock_class_key socket_class;
  37#endif
  38
  39
  40static void queue_con(struct ceph_connection *con);
  41static void con_work(struct work_struct *);
  42static void ceph_fault(struct ceph_connection *con);
 
  43
  44/*
  45 * nicely render a sockaddr as a string.
 
  46 */
  47#define MAX_ADDR_STR 20
  48#define MAX_ADDR_STR_LEN 60
  49static char addr_str[MAX_ADDR_STR][MAX_ADDR_STR_LEN];
  50static DEFINE_SPINLOCK(addr_str_lock);
  51static int last_addr_str;
 
 
  52
  53const char *ceph_pr_addr(const struct sockaddr_storage *ss)
 
 
  54{
  55	int i;
  56	char *s;
  57	struct sockaddr_in *in4 = (void *)ss;
  58	struct sockaddr_in6 *in6 = (void *)ss;
 
  59
  60	spin_lock(&addr_str_lock);
  61	i = last_addr_str++;
  62	if (last_addr_str == MAX_ADDR_STR)
  63		last_addr_str = 0;
  64	spin_unlock(&addr_str_lock);
  65	s = addr_str[i];
  66
  67	switch (ss->ss_family) {
  68	case AF_INET:
  69		snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%u", &in4->sin_addr,
  70			 (unsigned int)ntohs(in4->sin_port));
 
  71		break;
  72
  73	case AF_INET6:
  74		snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%u", &in6->sin6_addr,
  75			 (unsigned int)ntohs(in6->sin6_port));
 
  76		break;
  77
  78	default:
  79		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %d)",
  80			 (int)ss->ss_family);
  81	}
  82
  83	return s;
  84}
  85EXPORT_SYMBOL(ceph_pr_addr);
  86
  87static void encode_my_addr(struct ceph_messenger *msgr)
  88{
  89	memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
  90	ceph_encode_addr(&msgr->my_enc_addr);
 
 
 
  91}
  92
  93/*
  94 * work queue for all reading and writing to/from the socket.
  95 */
  96struct workqueue_struct *ceph_msgr_wq;
  97
  98int ceph_msgr_init(void)
  99{
 100	ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
 101	if (!ceph_msgr_wq) {
 102		pr_err("msgr_init failed to create workqueue\n");
 103		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 104	}
 105	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 106}
 107EXPORT_SYMBOL(ceph_msgr_init);
 108
 109void ceph_msgr_exit(void)
 110{
 111	destroy_workqueue(ceph_msgr_wq);
 
 
 112}
 113EXPORT_SYMBOL(ceph_msgr_exit);
 114
 115void ceph_msgr_flush(void)
 116{
 117	flush_workqueue(ceph_msgr_wq);
 118}
 119EXPORT_SYMBOL(ceph_msgr_flush);
 120
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 121
 122/*
 123 * socket callback functions
 124 */
 125
 126/* data available on socket, or listen socket received a connect */
 127static void ceph_data_ready(struct sock *sk, int count_unused)
 128{
 129	struct ceph_connection *con =
 130		(struct ceph_connection *)sk->sk_user_data;
 
 
 
 131	if (sk->sk_state != TCP_CLOSE_WAIT) {
 132		dout("ceph_data_ready on %p state = %lu, queueing work\n",
 133		     con, con->state);
 134		queue_con(con);
 135	}
 136}
 137
 138/* socket has buffer space for writing */
 139static void ceph_write_space(struct sock *sk)
 140{
 141	struct ceph_connection *con =
 142		(struct ceph_connection *)sk->sk_user_data;
 143
 144	/* only queue to workqueue if there is data we want to write. */
 145	if (test_bit(WRITE_PENDING, &con->state)) {
 146		dout("ceph_write_space %p queueing write work\n", con);
 147		queue_con(con);
 
 
 
 
 
 
 
 
 
 148	} else {
 149		dout("ceph_write_space %p nothing to write\n", con);
 150	}
 151
 152	/* since we have our own write_space, clear the SOCK_NOSPACE flag */
 153	clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
 154}
 155
 156/* socket's state has changed */
 157static void ceph_state_change(struct sock *sk)
 158{
 159	struct ceph_connection *con =
 160		(struct ceph_connection *)sk->sk_user_data;
 161
 162	dout("ceph_state_change %p state = %lu sk_state = %u\n",
 163	     con, con->state, sk->sk_state);
 164
 165	if (test_bit(CLOSED, &con->state))
 166		return;
 167
 168	switch (sk->sk_state) {
 169	case TCP_CLOSE:
 170		dout("ceph_state_change TCP_CLOSE\n");
 
 171	case TCP_CLOSE_WAIT:
 172		dout("ceph_state_change TCP_CLOSE_WAIT\n");
 173		if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) {
 174			if (test_bit(CONNECTING, &con->state))
 175				con->error_msg = "connection failed";
 176			else
 177				con->error_msg = "socket closed";
 178			queue_con(con);
 179		}
 180		break;
 181	case TCP_ESTABLISHED:
 182		dout("ceph_state_change TCP_ESTABLISHED\n");
 
 183		queue_con(con);
 184		break;
 
 
 185	}
 186}
 187
 188/*
 189 * set up socket callbacks
 190 */
 191static void set_sock_callbacks(struct socket *sock,
 192			       struct ceph_connection *con)
 193{
 194	struct sock *sk = sock->sk;
 195	sk->sk_user_data = (void *)con;
 196	sk->sk_data_ready = ceph_data_ready;
 197	sk->sk_write_space = ceph_write_space;
 198	sk->sk_state_change = ceph_state_change;
 199}
 200
 201
 202/*
 203 * socket helpers
 204 */
 205
 206/*
 207 * initiate connection to a remote socket.
 208 */
 209static struct socket *ceph_tcp_connect(struct ceph_connection *con)
 210{
 211	struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
 212	struct socket *sock;
 
 213	int ret;
 214
 
 
 215	BUG_ON(con->sock);
 216	ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
 217			       IPPROTO_TCP, &sock);
 
 
 
 
 218	if (ret)
 219		return ERR_PTR(ret);
 220	con->sock = sock;
 221	sock->sk->sk_allocation = GFP_NOFS;
 
 222
 223#ifdef CONFIG_LOCKDEP
 224	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
 225#endif
 226
 227	set_sock_callbacks(sock, con);
 228
 229	dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
 230
 231	ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
 232				 O_NONBLOCK);
 233	if (ret == -EINPROGRESS) {
 234		dout("connect %s EINPROGRESS sk_state = %u\n",
 235		     ceph_pr_addr(&con->peer_addr.in_addr),
 236		     sock->sk->sk_state);
 237		ret = 0;
 238	}
 239	if (ret < 0) {
 240		pr_err("connect %s error %d\n",
 241		       ceph_pr_addr(&con->peer_addr.in_addr), ret);
 242		sock_release(sock);
 243		con->sock = NULL;
 244		con->error_msg = "connect error";
 245	}
 246
 247	if (ret < 0)
 248		return ERR_PTR(ret);
 249	return sock;
 250}
 251
 252static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
 253{
 254	struct kvec iov = {buf, len};
 255	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
 256	int r;
 257
 258	r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
 259	if (r == -EAGAIN)
 260		r = 0;
 261	return r;
 262}
 263
 264/*
 265 * write something.  @more is true if caller will be sending more data
 266 * shortly.
 267 */
 268static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
 269		     size_t kvlen, size_t len, int more)
 270{
 271	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
 272	int r;
 273
 274	if (more)
 275		msg.msg_flags |= MSG_MORE;
 276	else
 277		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
 
 
 
 
 
 
 
 
 
 
 278
 279	r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
 280	if (r == -EAGAIN)
 281		r = 0;
 282	return r;
 283}
 284
 
 
 
 285
 286/*
 287 * Shutdown/close the socket for the given connection.
 288 */
 289static int con_close_socket(struct ceph_connection *con)
 290{
 291	int rc;
 
 
 
 
 
 
 
 
 
 292
 293	dout("con_close_socket on %p sock %p\n", con, con->sock);
 294	if (!con->sock)
 295		return 0;
 296	set_bit(SOCK_CLOSED, &con->state);
 297	rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
 298	sock_release(con->sock);
 299	con->sock = NULL;
 300	clear_bit(SOCK_CLOSED, &con->state);
 301	return rc;
 302}
 303
 304/*
 305 * Reset a connection.  Discard all incoming and outgoing messages
 306 * and clear *_seq state.
 307 */
 308static void ceph_msg_remove(struct ceph_msg *msg)
 309{
 310	list_del_init(&msg->list_head);
 
 311	ceph_msg_put(msg);
 312}
 
 313static void ceph_msg_remove_list(struct list_head *head)
 314{
 315	while (!list_empty(head)) {
 316		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
 317							list_head);
 318		ceph_msg_remove(msg);
 319	}
 320}
 321
 322static void reset_connection(struct ceph_connection *con)
 323{
 324	/* reset connection, out_queue, msg_ and connect_seq */
 325	/* discard existing out_queue and msg_seq */
 
 
 326	ceph_msg_remove_list(&con->out_queue);
 327	ceph_msg_remove_list(&con->out_sent);
 328
 329	if (con->in_msg) {
 330		ceph_msg_put(con->in_msg);
 331		con->in_msg = NULL;
 332	}
 333
 334	con->connect_seq = 0;
 335	con->out_seq = 0;
 336	if (con->out_msg) {
 337		ceph_msg_put(con->out_msg);
 338		con->out_msg = NULL;
 339	}
 340	con->in_seq = 0;
 341	con->in_seq_acked = 0;
 
 
 
 
 
 342}
 343
 344/*
 345 * mark a peer down.  drop any open connections.
 346 */
 347void ceph_con_close(struct ceph_connection *con)
 348{
 349	dout("con_close %p peer %s\n", con,
 350	     ceph_pr_addr(&con->peer_addr.in_addr));
 351	set_bit(CLOSED, &con->state);  /* in case there's queued work */
 352	clear_bit(STANDBY, &con->state);  /* avoid connect_seq bump */
 353	clear_bit(LOSSYTX, &con->state);  /* so we retry next connect */
 354	clear_bit(KEEPALIVE_PENDING, &con->state);
 355	clear_bit(WRITE_PENDING, &con->state);
 356	mutex_lock(&con->mutex);
 357	reset_connection(con);
 358	con->peer_global_seq = 0;
 359	cancel_delayed_work(&con->work);
 
 
 
 
 
 
 
 
 
 360	mutex_unlock(&con->mutex);
 361	queue_con(con);
 362}
 363EXPORT_SYMBOL(ceph_con_close);
 364
 365/*
 366 * Reopen a closed connection, with a new peer address.
 367 */
 368void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
 
 
 369{
 370	dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
 371	set_bit(OPENING, &con->state);
 372	clear_bit(CLOSED, &con->state);
 
 
 
 
 
 
 373	memcpy(&con->peer_addr, addr, sizeof(*addr));
 374	con->delay = 0;      /* reset backoff memory */
 
 375	queue_con(con);
 376}
 377EXPORT_SYMBOL(ceph_con_open);
 378
 379/*
 380 * return true if this connection ever successfully opened
 381 */
 382bool ceph_con_opened(struct ceph_connection *con)
 383{
 384	return con->connect_seq > 0;
 385}
 386
 387/*
 388 * generic get/put
 389 */
 390struct ceph_connection *ceph_con_get(struct ceph_connection *con)
 391{
 392	dout("con_get %p nref = %d -> %d\n", con,
 393	     atomic_read(&con->nref), atomic_read(&con->nref) + 1);
 394	if (atomic_inc_not_zero(&con->nref))
 395		return con;
 396	return NULL;
 397}
 398
 399void ceph_con_put(struct ceph_connection *con)
 400{
 401	dout("con_put %p nref = %d -> %d\n", con,
 402	     atomic_read(&con->nref), atomic_read(&con->nref) - 1);
 403	BUG_ON(atomic_read(&con->nref) == 0);
 404	if (atomic_dec_and_test(&con->nref)) {
 405		BUG_ON(con->sock);
 406		kfree(con);
 407	}
 408}
 409
 410/*
 411 * initialize a new connection.
 412 */
 413void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con)
 
 
 414{
 415	dout("con_init %p\n", con);
 416	memset(con, 0, sizeof(*con));
 417	atomic_set(&con->nref, 1);
 
 418	con->msgr = msgr;
 
 
 
 419	mutex_init(&con->mutex);
 420	INIT_LIST_HEAD(&con->out_queue);
 421	INIT_LIST_HEAD(&con->out_sent);
 422	INIT_DELAYED_WORK(&con->work, con_work);
 
 
 423}
 424EXPORT_SYMBOL(ceph_con_init);
 425
 426
 427/*
 428 * We maintain a global counter to order connection attempts.  Get
 429 * a unique seq greater than @gt.
 430 */
 431static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
 432{
 433	u32 ret;
 434
 435	spin_lock(&msgr->global_seq_lock);
 436	if (msgr->global_seq < gt)
 437		msgr->global_seq = gt;
 438	ret = ++msgr->global_seq;
 439	spin_unlock(&msgr->global_seq_lock);
 440	return ret;
 441}
 442
 443
 444/*
 445 * Prepare footer for currently outgoing message, and finish things
 446 * off.  Assumes out_kvec* are already valid.. we just add on to the end.
 447 */
 448static void prepare_write_message_footer(struct ceph_connection *con, int v)
 449{
 450	struct ceph_msg *m = con->out_msg;
 
 
 
 
 
 
 
 
 
 
 451
 452	dout("prepare_write_message_footer %p\n", con);
 453	con->out_kvec_is_msg = true;
 454	con->out_kvec[v].iov_base = &m->footer;
 455	con->out_kvec[v].iov_len = sizeof(m->footer);
 456	con->out_kvec_bytes += sizeof(m->footer);
 457	con->out_kvec_left++;
 458	con->out_more = m->more_to_follow;
 459	con->out_msg_done = true;
 460}
 461
 462/*
 463 * Prepare headers for the next outgoing message.
 
 
 464 */
 465static void prepare_write_message(struct ceph_connection *con)
 466{
 467	struct ceph_msg *m;
 468	int v = 0;
 469
 470	con->out_kvec_bytes = 0;
 471	con->out_kvec_is_msg = true;
 472	con->out_msg_done = false;
 473
 474	/* Sneak an ack in there first?  If we can get it into the same
 475	 * TCP packet that's a good thing. */
 476	if (con->in_seq > con->in_seq_acked) {
 477		con->in_seq_acked = con->in_seq;
 478		con->out_kvec[v].iov_base = &tag_ack;
 479		con->out_kvec[v++].iov_len = 1;
 480		con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
 481		con->out_kvec[v].iov_base = &con->out_temp_ack;
 482		con->out_kvec[v++].iov_len = sizeof(con->out_temp_ack);
 483		con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
 484	}
 485
 486	m = list_first_entry(&con->out_queue,
 487		       struct ceph_msg, list_head);
 488	con->out_msg = m;
 489
 490	/* put message on sent list */
 491	ceph_msg_get(m);
 492	list_move_tail(&m->list_head, &con->out_sent);
 493
 494	/*
 495	 * only assign outgoing seq # if we haven't sent this message
 496	 * yet.  if it is requeued, resend with it's original seq.
 497	 */
 498	if (m->needs_out_seq) {
 499		m->hdr.seq = cpu_to_le64(++con->out_seq);
 500		m->needs_out_seq = false;
 501	}
 502
 503	dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
 504	     m, con->out_seq, le16_to_cpu(m->hdr.type),
 505	     le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
 506	     le32_to_cpu(m->hdr.data_len),
 507	     m->nr_pages);
 508	BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
 509
 510	/* tag + hdr + front + middle */
 511	con->out_kvec[v].iov_base = &tag_msg;
 512	con->out_kvec[v++].iov_len = 1;
 513	con->out_kvec[v].iov_base = &m->hdr;
 514	con->out_kvec[v++].iov_len = sizeof(m->hdr);
 515	con->out_kvec[v++] = m->front;
 516	if (m->middle)
 517		con->out_kvec[v++] = m->middle->vec;
 518	con->out_kvec_left = v;
 519	con->out_kvec_bytes += 1 + sizeof(m->hdr) + m->front.iov_len +
 520		(m->middle ? m->middle->vec.iov_len : 0);
 521	con->out_kvec_cur = con->out_kvec;
 522
 523	/* fill in crc (except data pages), footer */
 524	con->out_msg->hdr.crc =
 525		cpu_to_le32(crc32c(0, (void *)&m->hdr,
 526				      sizeof(m->hdr) - sizeof(m->hdr.crc)));
 527	con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
 528	con->out_msg->footer.front_crc =
 529		cpu_to_le32(crc32c(0, m->front.iov_base, m->front.iov_len));
 530	if (m->middle)
 531		con->out_msg->footer.middle_crc =
 532			cpu_to_le32(crc32c(0, m->middle->vec.iov_base,
 533					   m->middle->vec.iov_len));
 534	else
 535		con->out_msg->footer.middle_crc = 0;
 536	con->out_msg->footer.data_crc = 0;
 537	dout("prepare_write_message front_crc %u data_crc %u\n",
 538	     le32_to_cpu(con->out_msg->footer.front_crc),
 539	     le32_to_cpu(con->out_msg->footer.middle_crc));
 540
 541	/* is there a data payload? */
 542	if (le32_to_cpu(m->hdr.data_len) > 0) {
 543		/* initialize page iterator */
 544		con->out_msg_pos.page = 0;
 545		if (m->pages)
 546			con->out_msg_pos.page_pos = m->page_alignment;
 547		else
 548			con->out_msg_pos.page_pos = 0;
 549		con->out_msg_pos.data_pos = 0;
 550		con->out_msg_pos.did_page_crc = 0;
 551		con->out_more = 1;  /* data + footer will follow */
 552	} else {
 553		/* no, queue up footer too and be done */
 554		prepare_write_message_footer(con, v);
 555	}
 
 556
 557	set_bit(WRITE_PENDING, &con->state);
 558}
 559
 560/*
 561 * Prepare an ack.
 
 
 562 */
 563static void prepare_write_ack(struct ceph_connection *con)
 
 564{
 565	dout("prepare_write_ack %p %llu -> %llu\n", con,
 566	     con->in_seq_acked, con->in_seq);
 567	con->in_seq_acked = con->in_seq;
 
 
 
 
 568
 569	con->out_kvec[0].iov_base = &tag_ack;
 570	con->out_kvec[0].iov_len = 1;
 571	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
 572	con->out_kvec[1].iov_base = &con->out_temp_ack;
 573	con->out_kvec[1].iov_len = sizeof(con->out_temp_ack);
 574	con->out_kvec_left = 2;
 575	con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
 576	con->out_kvec_cur = con->out_kvec;
 577	con->out_more = 1;  /* more will follow.. eventually.. */
 578	set_bit(WRITE_PENDING, &con->state);
 579}
 580
 581/*
 582 * Prepare to write keepalive byte.
 583 */
 584static void prepare_write_keepalive(struct ceph_connection *con)
 585{
 586	dout("prepare_write_keepalive %p\n", con);
 587	con->out_kvec[0].iov_base = &tag_keepalive;
 588	con->out_kvec[0].iov_len = 1;
 589	con->out_kvec_left = 1;
 590	con->out_kvec_bytes = 1;
 591	con->out_kvec_cur = con->out_kvec;
 592	set_bit(WRITE_PENDING, &con->state);
 593}
 594
 595/*
 596 * Connection negotiation.
 597 */
 598
 599static int prepare_connect_authorizer(struct ceph_connection *con)
 600{
 601	void *auth_buf;
 602	int auth_len = 0;
 603	int auth_protocol = 0;
 604
 605	mutex_unlock(&con->mutex);
 606	if (con->ops->get_authorizer)
 607		con->ops->get_authorizer(con, &auth_buf, &auth_len,
 608					 &auth_protocol, &con->auth_reply_buf,
 609					 &con->auth_reply_buf_len,
 610					 con->auth_retry);
 611	mutex_lock(&con->mutex);
 612
 613	if (test_bit(CLOSED, &con->state) ||
 614	    test_bit(OPENING, &con->state))
 615		return -EAGAIN;
 616
 617	con->out_connect.authorizer_protocol = cpu_to_le32(auth_protocol);
 618	con->out_connect.authorizer_len = cpu_to_le32(auth_len);
 
 619
 620	if (auth_len) {
 621		con->out_kvec[con->out_kvec_left].iov_base = auth_buf;
 622		con->out_kvec[con->out_kvec_left].iov_len = auth_len;
 623		con->out_kvec_left++;
 624		con->out_kvec_bytes += auth_len;
 625	}
 626	return 0;
 
 
 627}
 
 628
 629/*
 630 * We connected to a peer and are saying hello.
 631 */
 632static void prepare_write_banner(struct ceph_messenger *msgr,
 633				 struct ceph_connection *con)
 634{
 635	int len = strlen(CEPH_BANNER);
 
 636
 637	con->out_kvec[0].iov_base = CEPH_BANNER;
 638	con->out_kvec[0].iov_len = len;
 639	con->out_kvec[1].iov_base = &msgr->my_enc_addr;
 640	con->out_kvec[1].iov_len = sizeof(msgr->my_enc_addr);
 641	con->out_kvec_left = 2;
 642	con->out_kvec_bytes = len + sizeof(msgr->my_enc_addr);
 643	con->out_kvec_cur = con->out_kvec;
 644	con->out_more = 0;
 645	set_bit(WRITE_PENDING, &con->state);
 646}
 647
 648static int prepare_write_connect(struct ceph_messenger *msgr,
 649				 struct ceph_connection *con,
 650				 int after_banner)
 651{
 652	unsigned global_seq = get_global_seq(con->msgr, 0);
 653	int proto;
 
 
 
 
 
 654
 655	switch (con->peer_name.type) {
 656	case CEPH_ENTITY_TYPE_MON:
 657		proto = CEPH_MONC_PROTOCOL;
 658		break;
 659	case CEPH_ENTITY_TYPE_OSD:
 660		proto = CEPH_OSDC_PROTOCOL;
 661		break;
 662	case CEPH_ENTITY_TYPE_MDS:
 663		proto = CEPH_MDSC_PROTOCOL;
 664		break;
 665	default:
 666		BUG();
 667	}
 668
 669	dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
 670	     con->connect_seq, global_seq, proto);
 
 
 671
 672	con->out_connect.features = cpu_to_le64(msgr->supported_features);
 673	con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
 674	con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
 675	con->out_connect.global_seq = cpu_to_le32(global_seq);
 676	con->out_connect.protocol_version = cpu_to_le32(proto);
 677	con->out_connect.flags = 0;
 678
 679	if (!after_banner) {
 680		con->out_kvec_left = 0;
 681		con->out_kvec_bytes = 0;
 682	}
 683	con->out_kvec[con->out_kvec_left].iov_base = &con->out_connect;
 684	con->out_kvec[con->out_kvec_left].iov_len = sizeof(con->out_connect);
 685	con->out_kvec_left++;
 686	con->out_kvec_bytes += sizeof(con->out_connect);
 687	con->out_kvec_cur = con->out_kvec;
 688	con->out_more = 0;
 689	set_bit(WRITE_PENDING, &con->state);
 690
 691	return prepare_connect_authorizer(con);
 
 692}
 693
 694
 695/*
 696 * write as much of pending kvecs to the socket as we can.
 697 *  1 -> done
 698 *  0 -> socket full, but more to do
 699 * <0 -> error
 700 */
 701static int write_partial_kvec(struct ceph_connection *con)
 
 702{
 703	int ret;
 
 
 
 
 
 
 704
 705	dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
 706	while (con->out_kvec_bytes > 0) {
 707		ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
 708				       con->out_kvec_left, con->out_kvec_bytes,
 709				       con->out_more);
 710		if (ret <= 0)
 711			goto out;
 712		con->out_kvec_bytes -= ret;
 713		if (con->out_kvec_bytes == 0)
 714			break;            /* done */
 715		while (ret > 0) {
 716			if (ret >= con->out_kvec_cur->iov_len) {
 717				ret -= con->out_kvec_cur->iov_len;
 718				con->out_kvec_cur++;
 719				con->out_kvec_left--;
 720			} else {
 721				con->out_kvec_cur->iov_len -= ret;
 722				con->out_kvec_cur->iov_base += ret;
 723				ret = 0;
 724				break;
 725			}
 726		}
 727	}
 728	con->out_kvec_left = 0;
 729	con->out_kvec_is_msg = false;
 730	ret = 1;
 731out:
 732	dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
 733	     con->out_kvec_bytes, con->out_kvec_left, ret);
 734	return ret;  /* done! */
 735}
 736
 737#ifdef CONFIG_BLOCK
 738static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
 
 739{
 740	if (!bio) {
 741		*iter = NULL;
 742		*seg = 0;
 743		return;
 744	}
 745	*iter = bio;
 746	*seg = bio->bi_idx;
 
 
 
 747}
 748
 749static void iter_bio_next(struct bio **bio_iter, int *seg)
 
 750{
 751	if (*bio_iter == NULL)
 752		return;
 
 
 
 
 
 
 
 
 
 
 
 753
 754	BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
 755
 756	(*seg)++;
 757	if (*seg == (*bio_iter)->bi_vcnt)
 758		init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
 759}
 760#endif
 761
 762/*
 763 * Write as much message data payload as we can.  If we finish, queue
 764 * up the footer.
 765 *  1 -> done, footer is now queued in out_kvec[].
 766 *  0 -> socket full, but more to do
 767 * <0 -> error
 768 */
 769static int write_partial_msg_pages(struct ceph_connection *con)
 770{
 771	struct ceph_msg *msg = con->out_msg;
 772	unsigned data_len = le32_to_cpu(msg->hdr.data_len);
 773	size_t len;
 774	int crc = con->msgr->nocrc;
 775	int ret;
 776	int total_max_write;
 777	int in_trail = 0;
 778	size_t trail_len = (msg->trail ? msg->trail->length : 0);
 779
 780	dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
 781	     con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
 782	     con->out_msg_pos.page_pos);
 783
 784#ifdef CONFIG_BLOCK
 785	if (msg->bio && !msg->bio_iter)
 786		init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
 787#endif
 788
 789	while (data_len > con->out_msg_pos.data_pos) {
 790		struct page *page = NULL;
 791		void *kaddr = NULL;
 792		int max_write = PAGE_SIZE;
 793		int page_shift = 0;
 794
 795		total_max_write = data_len - trail_len -
 796			con->out_msg_pos.data_pos;
 797
 798		/*
 799		 * if we are calculating the data crc (the default), we need
 800		 * to map the page.  if our pages[] has been revoked, use the
 801		 * zero page.
 802		 */
 803
 804		/* have we reached the trail part of the data? */
 805		if (con->out_msg_pos.data_pos >= data_len - trail_len) {
 806			in_trail = 1;
 807
 808			total_max_write = data_len - con->out_msg_pos.data_pos;
 809
 810			page = list_first_entry(&msg->trail->head,
 811						struct page, lru);
 812			if (crc)
 813				kaddr = kmap(page);
 814			max_write = PAGE_SIZE;
 815		} else if (msg->pages) {
 816			page = msg->pages[con->out_msg_pos.page];
 817			if (crc)
 818				kaddr = kmap(page);
 819		} else if (msg->pagelist) {
 820			page = list_first_entry(&msg->pagelist->head,
 821						struct page, lru);
 822			if (crc)
 823				kaddr = kmap(page);
 824#ifdef CONFIG_BLOCK
 825		} else if (msg->bio) {
 826			struct bio_vec *bv;
 827
 828			bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
 829			page = bv->bv_page;
 830			page_shift = bv->bv_offset;
 831			if (crc)
 832				kaddr = kmap(page) + page_shift;
 833			max_write = bv->bv_len;
 834#endif
 835		} else {
 836			page = con->msgr->zero_page;
 837			if (crc)
 838				kaddr = page_address(con->msgr->zero_page);
 839		}
 840		len = min_t(int, max_write - con->out_msg_pos.page_pos,
 841			    total_max_write);
 842
 843		if (crc && !con->out_msg_pos.did_page_crc) {
 844			void *base = kaddr + con->out_msg_pos.page_pos;
 845			u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
 846
 847			BUG_ON(kaddr == NULL);
 848			con->out_msg->footer.data_crc =
 849				cpu_to_le32(crc32c(tmpcrc, base, len));
 850			con->out_msg_pos.did_page_crc = 1;
 851		}
 852		ret = kernel_sendpage(con->sock, page,
 853				      con->out_msg_pos.page_pos + page_shift,
 854				      len,
 855				      MSG_DONTWAIT | MSG_NOSIGNAL |
 856				      MSG_MORE);
 857
 858		if (crc &&
 859		    (msg->pages || msg->pagelist || msg->bio || in_trail))
 860			kunmap(page);
 861
 862		if (ret == -EAGAIN)
 863			ret = 0;
 864		if (ret <= 0)
 865			goto out;
 866
 867		con->out_msg_pos.data_pos += ret;
 868		con->out_msg_pos.page_pos += ret;
 869		if (ret == len) {
 870			con->out_msg_pos.page_pos = 0;
 871			con->out_msg_pos.page++;
 872			con->out_msg_pos.did_page_crc = 0;
 873			if (in_trail)
 874				list_move_tail(&page->lru,
 875					       &msg->trail->head);
 876			else if (msg->pagelist)
 877				list_move_tail(&page->lru,
 878					       &msg->pagelist->head);
 879#ifdef CONFIG_BLOCK
 880			else if (msg->bio)
 881				iter_bio_next(&msg->bio_iter, &msg->bio_seg);
 882#endif
 883		}
 884	}
 885
 886	dout("write_partial_msg_pages %p msg %p done\n", con, msg);
 
 887
 888	/* prepare and queue up footer, too */
 889	if (!crc)
 890		con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
 891	con->out_kvec_bytes = 0;
 892	con->out_kvec_left = 0;
 893	con->out_kvec_cur = con->out_kvec;
 894	prepare_write_message_footer(con, 0);
 895	ret = 1;
 896out:
 897	return ret;
 898}
 899
 900/*
 901 * write some zeros
 902 */
 903static int write_partial_skip(struct ceph_connection *con)
 904{
 905	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 906
 907	while (con->out_skip > 0) {
 908		struct kvec iov = {
 909			.iov_base = page_address(con->msgr->zero_page),
 910			.iov_len = min(con->out_skip, (int)PAGE_CACHE_SIZE)
 911		};
 912
 913		ret = ceph_tcp_sendmsg(con->sock, &iov, 1, iov.iov_len, 1);
 914		if (ret <= 0)
 915			goto out;
 916		con->out_skip -= ret;
 917	}
 918	ret = 1;
 919out:
 920	return ret;
 921}
 922
 923/*
 924 * Prepare to read connection handshake, or an ack.
 
 
 
 
 
 925 */
 926static void prepare_read_banner(struct ceph_connection *con)
 927{
 928	dout("prepare_read_banner %p\n", con);
 929	con->in_base_pos = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 930}
 931
 932static void prepare_read_connect(struct ceph_connection *con)
 
 933{
 934	dout("prepare_read_connect %p\n", con);
 935	con->in_base_pos = 0;
 936}
 937
 938static void prepare_read_ack(struct ceph_connection *con)
 939{
 940	dout("prepare_read_ack %p\n", con);
 941	con->in_base_pos = 0;
 942}
 943
 944static void prepare_read_tag(struct ceph_connection *con)
 945{
 946	dout("prepare_read_tag %p\n", con);
 947	con->in_base_pos = 0;
 948	con->in_tag = CEPH_MSGR_TAG_READY;
 949}
 950
 951/*
 952 * Prepare to read a message.
 
 
 953 */
 954static int prepare_read_message(struct ceph_connection *con)
 
 955{
 956	dout("prepare_read_message %p\n", con);
 957	BUG_ON(con->in_msg != NULL);
 958	con->in_base_pos = 0;
 959	con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
 960	return 0;
 961}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 962
 
 
 
 
 963
 964static int read_partial(struct ceph_connection *con,
 965			int *to, int size, void *object)
 966{
 967	*to += size;
 968	while (con->in_base_pos < *to) {
 969		int left = *to - con->in_base_pos;
 970		int have = size - left;
 971		int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
 972		if (ret <= 0)
 973			return ret;
 974		con->in_base_pos += ret;
 975	}
 976	return 1;
 977}
 978
 979
 980/*
 981 * Read all or part of the connect-side handshake on a new connection
 
 982 */
 983static int read_partial_banner(struct ceph_connection *con)
 984{
 985	int ret, to = 0;
 986
 987	dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 988
 989	/* peer's banner */
 990	ret = read_partial(con, &to, strlen(CEPH_BANNER), con->in_banner);
 991	if (ret <= 0)
 992		goto out;
 993	ret = read_partial(con, &to, sizeof(con->actual_peer_addr),
 994			   &con->actual_peer_addr);
 995	if (ret <= 0)
 996		goto out;
 997	ret = read_partial(con, &to, sizeof(con->peer_addr_for_me),
 998			   &con->peer_addr_for_me);
 999	if (ret <= 0)
1000		goto out;
1001out:
1002	return ret;
1003}
1004
1005static int read_partial_connect(struct ceph_connection *con)
 
1006{
1007	int ret, to = 0;
1008
1009	dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1010
1011	ret = read_partial(con, &to, sizeof(con->in_reply), &con->in_reply);
1012	if (ret <= 0)
1013		goto out;
1014	ret = read_partial(con, &to, le32_to_cpu(con->in_reply.authorizer_len),
1015			   con->auth_reply_buf);
1016	if (ret <= 0)
1017		goto out;
1018
1019	dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1020	     con, (int)con->in_reply.tag,
1021	     le32_to_cpu(con->in_reply.connect_seq),
1022	     le32_to_cpu(con->in_reply.global_seq));
1023out:
1024	return ret;
1025
 
1026}
1027
1028/*
1029 * Verify the hello banner looks okay.
1030 */
1031static int verify_hello(struct ceph_connection *con)
1032{
1033	if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1034		pr_err("connect to %s got bad banner\n",
1035		       ceph_pr_addr(&con->peer_addr.in_addr));
1036		con->error_msg = "protocol error, bad banner";
1037		return -1;
1038	}
1039	return 0;
1040}
1041
1042static bool addr_is_blank(struct sockaddr_storage *ss)
1043{
1044	switch (ss->ss_family) {
1045	case AF_INET:
1046		return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1047	case AF_INET6:
1048		return
1049		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1050		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1051		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1052		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1053	}
1054	return false;
1055}
1056
1057static int addr_port(struct sockaddr_storage *ss)
1058{
1059	switch (ss->ss_family) {
1060	case AF_INET:
1061		return ntohs(((struct sockaddr_in *)ss)->sin_port);
1062	case AF_INET6:
1063		return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1064	}
1065	return 0;
1066}
1067
1068static void addr_set_port(struct sockaddr_storage *ss, int p)
1069{
1070	switch (ss->ss_family) {
1071	case AF_INET:
1072		((struct sockaddr_in *)ss)->sin_port = htons(p);
1073		break;
1074	case AF_INET6:
1075		((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1076		break;
1077	}
1078}
1079
1080/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1081 * Parse an ip[:port] list into an addr array.  Use the default
1082 * monitor port if a port isn't specified.
1083 */
1084int ceph_parse_ips(const char *c, const char *end,
1085		   struct ceph_entity_addr *addr,
1086		   int max_count, int *count)
1087{
1088	int i;
1089	const char *p = c;
1090
1091	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1092	for (i = 0; i < max_count; i++) {
 
1093		const char *ipend;
1094		struct sockaddr_storage *ss = &addr[i].in_addr;
1095		struct sockaddr_in *in4 = (void *)ss;
1096		struct sockaddr_in6 *in6 = (void *)ss;
1097		int port;
1098		char delim = ',';
1099
1100		if (*p == '[') {
1101			delim = ']';
1102			p++;
1103		}
1104
1105		memset(ss, 0, sizeof(*ss));
1106		if (in4_pton(p, end - p, (u8 *)&in4->sin_addr.s_addr,
1107			     delim, &ipend))
1108			ss->ss_family = AF_INET;
1109		else if (in6_pton(p, end - p, (u8 *)&in6->sin6_addr.s6_addr,
1110				  delim, &ipend))
1111			ss->ss_family = AF_INET6;
1112		else
1113			goto bad;
 
 
1114		p = ipend;
1115
1116		if (delim == ']') {
1117			if (*p != ']') {
1118				dout("missing matching ']'\n");
1119				goto bad;
1120			}
1121			p++;
1122		}
1123
1124		/* port? */
1125		if (p < end && *p == ':') {
1126			port = 0;
1127			p++;
1128			while (p < end && *p >= '0' && *p <= '9') {
1129				port = (port * 10) + (*p - '0');
1130				p++;
1131			}
1132			if (port > 65535 || port == 0)
 
 
1133				goto bad;
1134		} else {
1135			port = CEPH_MON_PORT;
1136		}
1137
1138		addr_set_port(ss, port);
 
 
 
 
 
 
 
 
 
 
1139
1140		dout("parse_ips got %s\n", ceph_pr_addr(ss));
1141
1142		if (p == end)
1143			break;
1144		if (*p != ',')
1145			goto bad;
1146		p++;
1147	}
1148
1149	if (p != end)
1150		goto bad;
1151
1152	if (count)
1153		*count = i + 1;
1154	return 0;
1155
1156bad:
1157	pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1158	return -EINVAL;
1159}
1160EXPORT_SYMBOL(ceph_parse_ips);
1161
1162static int process_banner(struct ceph_connection *con)
1163{
1164	dout("process_banner on %p\n", con);
1165
1166	if (verify_hello(con) < 0)
1167		return -1;
1168
1169	ceph_decode_addr(&con->actual_peer_addr);
1170	ceph_decode_addr(&con->peer_addr_for_me);
1171
1172	/*
1173	 * Make sure the other end is who we wanted.  note that the other
1174	 * end may not yet know their ip address, so if it's 0.0.0.0, give
1175	 * them the benefit of the doubt.
1176	 */
1177	if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1178		   sizeof(con->peer_addr)) != 0 &&
1179	    !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1180	      con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1181		pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1182			   ceph_pr_addr(&con->peer_addr.in_addr),
1183			   (int)le32_to_cpu(con->peer_addr.nonce),
1184			   ceph_pr_addr(&con->actual_peer_addr.in_addr),
1185			   (int)le32_to_cpu(con->actual_peer_addr.nonce));
1186		con->error_msg = "wrong peer at address";
1187		return -1;
1188	}
1189
1190	/*
1191	 * did we learn our address?
1192	 */
1193	if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1194		int port = addr_port(&con->msgr->inst.addr.in_addr);
1195
1196		memcpy(&con->msgr->inst.addr.in_addr,
1197		       &con->peer_addr_for_me.in_addr,
1198		       sizeof(con->peer_addr_for_me.in_addr));
1199		addr_set_port(&con->msgr->inst.addr.in_addr, port);
1200		encode_my_addr(con->msgr);
1201		dout("process_banner learned my addr is %s\n",
1202		     ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1203	}
1204
1205	set_bit(NEGOTIATING, &con->state);
1206	prepare_read_connect(con);
1207	return 0;
1208}
1209
1210static void fail_protocol(struct ceph_connection *con)
1211{
1212	reset_connection(con);
1213	set_bit(CLOSED, &con->state);  /* in case there's queued work */
1214
1215	mutex_unlock(&con->mutex);
1216	if (con->ops->bad_proto)
1217		con->ops->bad_proto(con);
1218	mutex_lock(&con->mutex);
1219}
1220
1221static int process_connect(struct ceph_connection *con)
1222{
1223	u64 sup_feat = con->msgr->supported_features;
1224	u64 req_feat = con->msgr->required_features;
1225	u64 server_feat = le64_to_cpu(con->in_reply.features);
1226	int ret;
1227
1228	dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1229
1230	switch (con->in_reply.tag) {
1231	case CEPH_MSGR_TAG_FEATURES:
1232		pr_err("%s%lld %s feature set mismatch,"
1233		       " my %llx < server's %llx, missing %llx\n",
1234		       ENTITY_NAME(con->peer_name),
1235		       ceph_pr_addr(&con->peer_addr.in_addr),
1236		       sup_feat, server_feat, server_feat & ~sup_feat);
1237		con->error_msg = "missing required protocol features";
1238		fail_protocol(con);
1239		return -1;
1240
1241	case CEPH_MSGR_TAG_BADPROTOVER:
1242		pr_err("%s%lld %s protocol version mismatch,"
1243		       " my %d != server's %d\n",
1244		       ENTITY_NAME(con->peer_name),
1245		       ceph_pr_addr(&con->peer_addr.in_addr),
1246		       le32_to_cpu(con->out_connect.protocol_version),
1247		       le32_to_cpu(con->in_reply.protocol_version));
1248		con->error_msg = "protocol version mismatch";
1249		fail_protocol(con);
1250		return -1;
1251
1252	case CEPH_MSGR_TAG_BADAUTHORIZER:
1253		con->auth_retry++;
1254		dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1255		     con->auth_retry);
1256		if (con->auth_retry == 2) {
1257			con->error_msg = "connect authorization failure";
1258			return -1;
1259		}
1260		con->auth_retry = 1;
1261		ret = prepare_write_connect(con->msgr, con, 0);
1262		if (ret < 0)
1263			return ret;
1264		prepare_read_connect(con);
1265		break;
1266
1267	case CEPH_MSGR_TAG_RESETSESSION:
1268		/*
1269		 * If we connected with a large connect_seq but the peer
1270		 * has no record of a session with us (no connection, or
1271		 * connect_seq == 0), they will send RESETSESION to indicate
1272		 * that they must have reset their session, and may have
1273		 * dropped messages.
1274		 */
1275		dout("process_connect got RESET peer seq %u\n",
1276		     le32_to_cpu(con->in_connect.connect_seq));
1277		pr_err("%s%lld %s connection reset\n",
1278		       ENTITY_NAME(con->peer_name),
1279		       ceph_pr_addr(&con->peer_addr.in_addr));
1280		reset_connection(con);
1281		prepare_write_connect(con->msgr, con, 0);
1282		prepare_read_connect(con);
1283
1284		/* Tell ceph about it. */
1285		mutex_unlock(&con->mutex);
1286		pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1287		if (con->ops->peer_reset)
1288			con->ops->peer_reset(con);
1289		mutex_lock(&con->mutex);
1290		if (test_bit(CLOSED, &con->state) ||
1291		    test_bit(OPENING, &con->state))
1292			return -EAGAIN;
1293		break;
1294
1295	case CEPH_MSGR_TAG_RETRY_SESSION:
1296		/*
1297		 * If we sent a smaller connect_seq than the peer has, try
1298		 * again with a larger value.
1299		 */
1300		dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
1301		     le32_to_cpu(con->out_connect.connect_seq),
1302		     le32_to_cpu(con->in_connect.connect_seq));
1303		con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
1304		prepare_write_connect(con->msgr, con, 0);
1305		prepare_read_connect(con);
1306		break;
1307
1308	case CEPH_MSGR_TAG_RETRY_GLOBAL:
1309		/*
1310		 * If we sent a smaller global_seq than the peer has, try
1311		 * again with a larger value.
1312		 */
1313		dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1314		     con->peer_global_seq,
1315		     le32_to_cpu(con->in_connect.global_seq));
1316		get_global_seq(con->msgr,
1317			       le32_to_cpu(con->in_connect.global_seq));
1318		prepare_write_connect(con->msgr, con, 0);
1319		prepare_read_connect(con);
1320		break;
1321
1322	case CEPH_MSGR_TAG_READY:
1323		if (req_feat & ~server_feat) {
1324			pr_err("%s%lld %s protocol feature mismatch,"
1325			       " my required %llx > server's %llx, need %llx\n",
1326			       ENTITY_NAME(con->peer_name),
1327			       ceph_pr_addr(&con->peer_addr.in_addr),
1328			       req_feat, server_feat, req_feat & ~server_feat);
1329			con->error_msg = "missing required protocol features";
1330			fail_protocol(con);
1331			return -1;
1332		}
1333		clear_bit(CONNECTING, &con->state);
1334		con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1335		con->connect_seq++;
1336		con->peer_features = server_feat;
1337		dout("process_connect got READY gseq %d cseq %d (%d)\n",
1338		     con->peer_global_seq,
1339		     le32_to_cpu(con->in_reply.connect_seq),
1340		     con->connect_seq);
1341		WARN_ON(con->connect_seq !=
1342			le32_to_cpu(con->in_reply.connect_seq));
1343
1344		if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1345			set_bit(LOSSYTX, &con->state);
1346
1347		prepare_read_tag(con);
1348		break;
1349
1350	case CEPH_MSGR_TAG_WAIT:
1351		/*
1352		 * If there is a connection race (we are opening
1353		 * connections to each other), one of us may just have
1354		 * to WAIT.  This shouldn't happen if we are the
1355		 * client.
1356		 */
1357		pr_err("process_connect got WAIT as client\n");
1358		con->error_msg = "protocol error, got WAIT as client";
1359		return -1;
1360
1361	default:
1362		pr_err("connect protocol error, will retry\n");
1363		con->error_msg = "protocol error, garbage tag during connect";
1364		return -1;
1365	}
1366	return 0;
1367}
1368
1369
1370/*
1371 * read (part of) an ack
1372 */
1373static int read_partial_ack(struct ceph_connection *con)
1374{
1375	int to = 0;
1376
1377	return read_partial(con, &to, sizeof(con->in_temp_ack),
1378			    &con->in_temp_ack);
1379}
1380
1381
1382/*
1383 * We can finally discard anything that's been acked.
1384 */
1385static void process_ack(struct ceph_connection *con)
1386{
1387	struct ceph_msg *m;
1388	u64 ack = le64_to_cpu(con->in_temp_ack);
1389	u64 seq;
1390
1391	while (!list_empty(&con->out_sent)) {
1392		m = list_first_entry(&con->out_sent, struct ceph_msg,
1393				     list_head);
1394		seq = le64_to_cpu(m->hdr.seq);
1395		if (seq > ack)
1396			break;
1397		dout("got ack for seq %llu type %d at %p\n", seq,
1398		     le16_to_cpu(m->hdr.type), m);
1399		m->ack_stamp = jiffies;
1400		ceph_msg_remove(m);
1401	}
1402	prepare_read_tag(con);
1403}
1404
1405
1406
1407
1408static int read_partial_message_section(struct ceph_connection *con,
1409					struct kvec *section,
1410					unsigned int sec_len, u32 *crc)
1411{
1412	int ret, left;
1413
1414	BUG_ON(!section);
1415
1416	while (section->iov_len < sec_len) {
1417		BUG_ON(section->iov_base == NULL);
1418		left = sec_len - section->iov_len;
1419		ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1420				       section->iov_len, left);
1421		if (ret <= 0)
1422			return ret;
1423		section->iov_len += ret;
1424		if (section->iov_len == sec_len)
1425			*crc = crc32c(0, section->iov_base,
1426				      section->iov_len);
1427	}
1428
1429	return 1;
1430}
1431
1432static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
1433				struct ceph_msg_header *hdr,
1434				int *skip);
1435
1436
1437static int read_partial_message_pages(struct ceph_connection *con,
1438				      struct page **pages,
1439				      unsigned data_len, int datacrc)
1440{
1441	void *p;
1442	int ret;
1443	int left;
1444
1445	left = min((int)(data_len - con->in_msg_pos.data_pos),
1446		   (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1447	/* (page) data */
1448	BUG_ON(pages == NULL);
1449	p = kmap(pages[con->in_msg_pos.page]);
1450	ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1451			       left);
1452	if (ret > 0 && datacrc)
1453		con->in_data_crc =
1454			crc32c(con->in_data_crc,
1455				  p + con->in_msg_pos.page_pos, ret);
1456	kunmap(pages[con->in_msg_pos.page]);
1457	if (ret <= 0)
1458		return ret;
1459	con->in_msg_pos.data_pos += ret;
1460	con->in_msg_pos.page_pos += ret;
1461	if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1462		con->in_msg_pos.page_pos = 0;
1463		con->in_msg_pos.page++;
1464	}
1465
1466	return ret;
1467}
1468
1469#ifdef CONFIG_BLOCK
1470static int read_partial_message_bio(struct ceph_connection *con,
1471				    struct bio **bio_iter, int *bio_seg,
1472				    unsigned data_len, int datacrc)
1473{
1474	struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1475	void *p;
1476	int ret, left;
1477
1478	if (IS_ERR(bv))
1479		return PTR_ERR(bv);
1480
1481	left = min((int)(data_len - con->in_msg_pos.data_pos),
1482		   (int)(bv->bv_len - con->in_msg_pos.page_pos));
1483
1484	p = kmap(bv->bv_page) + bv->bv_offset;
1485
1486	ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1487			       left);
1488	if (ret > 0 && datacrc)
1489		con->in_data_crc =
1490			crc32c(con->in_data_crc,
1491				  p + con->in_msg_pos.page_pos, ret);
1492	kunmap(bv->bv_page);
1493	if (ret <= 0)
1494		return ret;
1495	con->in_msg_pos.data_pos += ret;
1496	con->in_msg_pos.page_pos += ret;
1497	if (con->in_msg_pos.page_pos == bv->bv_len) {
1498		con->in_msg_pos.page_pos = 0;
1499		iter_bio_next(bio_iter, bio_seg);
1500	}
1501
1502	return ret;
1503}
1504#endif
1505
1506/*
1507 * read (part of) a message.
1508 */
1509static int read_partial_message(struct ceph_connection *con)
1510{
1511	struct ceph_msg *m = con->in_msg;
1512	int ret;
1513	int to, left;
1514	unsigned front_len, middle_len, data_len;
1515	int datacrc = con->msgr->nocrc;
1516	int skip;
1517	u64 seq;
1518
1519	dout("read_partial_message con %p msg %p\n", con, m);
1520
1521	/* header */
1522	while (con->in_base_pos < sizeof(con->in_hdr)) {
1523		left = sizeof(con->in_hdr) - con->in_base_pos;
1524		ret = ceph_tcp_recvmsg(con->sock,
1525				       (char *)&con->in_hdr + con->in_base_pos,
1526				       left);
1527		if (ret <= 0)
1528			return ret;
1529		con->in_base_pos += ret;
1530		if (con->in_base_pos == sizeof(con->in_hdr)) {
1531			u32 crc = crc32c(0, (void *)&con->in_hdr,
1532				 sizeof(con->in_hdr) - sizeof(con->in_hdr.crc));
1533			if (crc != le32_to_cpu(con->in_hdr.crc)) {
1534				pr_err("read_partial_message bad hdr "
1535				       " crc %u != expected %u\n",
1536				       crc, con->in_hdr.crc);
1537				return -EBADMSG;
1538			}
1539		}
1540	}
1541	front_len = le32_to_cpu(con->in_hdr.front_len);
1542	if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1543		return -EIO;
1544	middle_len = le32_to_cpu(con->in_hdr.middle_len);
1545	if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1546		return -EIO;
1547	data_len = le32_to_cpu(con->in_hdr.data_len);
1548	if (data_len > CEPH_MSG_MAX_DATA_LEN)
1549		return -EIO;
1550
1551	/* verify seq# */
1552	seq = le64_to_cpu(con->in_hdr.seq);
1553	if ((s64)seq - (s64)con->in_seq < 1) {
1554		pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1555			ENTITY_NAME(con->peer_name),
1556			ceph_pr_addr(&con->peer_addr.in_addr),
1557			seq, con->in_seq + 1);
1558		con->in_base_pos = -front_len - middle_len - data_len -
1559			sizeof(m->footer);
1560		con->in_tag = CEPH_MSGR_TAG_READY;
1561		return 0;
1562	} else if ((s64)seq - (s64)con->in_seq > 1) {
1563		pr_err("read_partial_message bad seq %lld expected %lld\n",
1564		       seq, con->in_seq + 1);
1565		con->error_msg = "bad message sequence # for incoming message";
1566		return -EBADMSG;
1567	}
1568
1569	/* allocate message? */
1570	if (!con->in_msg) {
1571		dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1572		     con->in_hdr.front_len, con->in_hdr.data_len);
1573		skip = 0;
1574		con->in_msg = ceph_alloc_msg(con, &con->in_hdr, &skip);
1575		if (skip) {
1576			/* skip this message */
1577			dout("alloc_msg said skip message\n");
1578			BUG_ON(con->in_msg);
1579			con->in_base_pos = -front_len - middle_len - data_len -
1580				sizeof(m->footer);
1581			con->in_tag = CEPH_MSGR_TAG_READY;
1582			con->in_seq++;
1583			return 0;
1584		}
1585		if (!con->in_msg) {
1586			con->error_msg =
1587				"error allocating memory for incoming message";
1588			return -ENOMEM;
1589		}
1590		m = con->in_msg;
1591		m->front.iov_len = 0;    /* haven't read it yet */
1592		if (m->middle)
1593			m->middle->vec.iov_len = 0;
1594
1595		con->in_msg_pos.page = 0;
1596		if (m->pages)
1597			con->in_msg_pos.page_pos = m->page_alignment;
1598		else
1599			con->in_msg_pos.page_pos = 0;
1600		con->in_msg_pos.data_pos = 0;
1601	}
1602
1603	/* front */
1604	ret = read_partial_message_section(con, &m->front, front_len,
1605					   &con->in_front_crc);
1606	if (ret <= 0)
1607		return ret;
1608
1609	/* middle */
1610	if (m->middle) {
1611		ret = read_partial_message_section(con, &m->middle->vec,
1612						   middle_len,
1613						   &con->in_middle_crc);
1614		if (ret <= 0)
1615			return ret;
1616	}
1617#ifdef CONFIG_BLOCK
1618	if (m->bio && !m->bio_iter)
1619		init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1620#endif
1621
1622	/* (page) data */
1623	while (con->in_msg_pos.data_pos < data_len) {
1624		if (m->pages) {
1625			ret = read_partial_message_pages(con, m->pages,
1626						 data_len, datacrc);
1627			if (ret <= 0)
1628				return ret;
1629#ifdef CONFIG_BLOCK
1630		} else if (m->bio) {
1631
1632			ret = read_partial_message_bio(con,
1633						 &m->bio_iter, &m->bio_seg,
1634						 data_len, datacrc);
1635			if (ret <= 0)
1636				return ret;
1637#endif
1638		} else {
1639			BUG_ON(1);
1640		}
1641	}
1642
1643	/* footer */
1644	to = sizeof(m->hdr) + sizeof(m->footer);
1645	while (con->in_base_pos < to) {
1646		left = to - con->in_base_pos;
1647		ret = ceph_tcp_recvmsg(con->sock, (char *)&m->footer +
1648				       (con->in_base_pos - sizeof(m->hdr)),
1649				       left);
1650		if (ret <= 0)
1651			return ret;
1652		con->in_base_pos += ret;
1653	}
1654	dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1655	     m, front_len, m->footer.front_crc, middle_len,
1656	     m->footer.middle_crc, data_len, m->footer.data_crc);
1657
1658	/* crc ok? */
1659	if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1660		pr_err("read_partial_message %p front crc %u != exp. %u\n",
1661		       m, con->in_front_crc, m->footer.front_crc);
1662		return -EBADMSG;
1663	}
1664	if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1665		pr_err("read_partial_message %p middle crc %u != exp %u\n",
1666		       m, con->in_middle_crc, m->footer.middle_crc);
1667		return -EBADMSG;
1668	}
1669	if (datacrc &&
1670	    (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1671	    con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1672		pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1673		       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1674		return -EBADMSG;
1675	}
1676
1677	return 1; /* done! */
1678}
1679
1680/*
1681 * Process message.  This happens in the worker thread.  The callback should
1682 * be careful not to do anything that waits on other incoming messages or it
1683 * may deadlock.
1684 */
1685static void process_message(struct ceph_connection *con)
1686{
1687	struct ceph_msg *msg;
1688
1689	msg = con->in_msg;
1690	con->in_msg = NULL;
1691
1692	/* if first message, set peer_name */
1693	if (con->peer_name.type == 0)
1694		con->peer_name = msg->hdr.src;
1695
1696	con->in_seq++;
1697	mutex_unlock(&con->mutex);
1698
1699	dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1700	     msg, le64_to_cpu(msg->hdr.seq),
1701	     ENTITY_NAME(msg->hdr.src),
1702	     le16_to_cpu(msg->hdr.type),
1703	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1704	     le32_to_cpu(msg->hdr.front_len),
 
1705	     le32_to_cpu(msg->hdr.data_len),
1706	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1707	con->ops->dispatch(con, msg);
1708
1709	mutex_lock(&con->mutex);
1710	prepare_read_tag(con);
1711}
1712
1713
1714/*
1715 * Write something to the socket.  Called in a worker thread when the
1716 * socket appears to be writeable and we have something ready to send.
 
1717 */
1718static int try_write(struct ceph_connection *con)
1719{
1720	struct ceph_messenger *msgr = con->msgr;
1721	int ret = 1;
 
 
1722
1723	dout("try_write start %p state %lu nref %d\n", con, con->state,
1724	     atomic_read(&con->nref));
1725
1726more:
1727	dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
 
 
 
 
1728
1729	/* open the socket first? */
1730	if (con->sock == NULL) {
1731		prepare_write_banner(msgr, con);
1732		prepare_write_connect(msgr, con, 1);
1733		prepare_read_banner(con);
1734		set_bit(CONNECTING, &con->state);
1735		clear_bit(NEGOTIATING, &con->state);
1736
1737		BUG_ON(con->in_msg);
1738		con->in_tag = CEPH_MSGR_TAG_READY;
1739		dout("try_write initiating connect on %p new state %lu\n",
1740		     con, con->state);
1741		con->sock = ceph_tcp_connect(con);
1742		if (IS_ERR(con->sock)) {
1743			con->sock = NULL;
1744			con->error_msg = "connect error";
1745			ret = -1;
1746			goto out;
1747		}
1748	}
1749
1750more_kvec:
1751	/* kvec data queued? */
1752	if (con->out_skip) {
1753		ret = write_partial_skip(con);
1754		if (ret <= 0)
1755			goto out;
1756	}
1757	if (con->out_kvec_left) {
1758		ret = write_partial_kvec(con);
1759		if (ret <= 0)
1760			goto out;
1761	}
 
1762
1763	/* msg pages? */
1764	if (con->out_msg) {
1765		if (con->out_msg_done) {
1766			ceph_msg_put(con->out_msg);
1767			con->out_msg = NULL;   /* we're done with this one */
1768			goto do_next;
1769		}
1770
1771		ret = write_partial_msg_pages(con);
1772		if (ret == 1)
1773			goto more_kvec;  /* we need to send the footer, too! */
1774		if (ret == 0)
1775			goto out;
1776		if (ret < 0) {
1777			dout("try_write write_partial_msg_pages err %d\n",
1778			     ret);
1779			goto out;
1780		}
1781	}
1782
1783do_next:
1784	if (!test_bit(CONNECTING, &con->state)) {
1785		/* is anything else pending? */
1786		if (!list_empty(&con->out_queue)) {
1787			prepare_write_message(con);
1788			goto more;
1789		}
1790		if (con->in_seq > con->in_seq_acked) {
1791			prepare_write_ack(con);
1792			goto more;
1793		}
1794		if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) {
1795			prepare_write_keepalive(con);
1796			goto more;
1797		}
 
1798	}
 
1799
1800	/* Nothing to do! */
1801	clear_bit(WRITE_PENDING, &con->state);
1802	dout("try_write nothing else to write.\n");
1803	ret = 0;
1804out:
1805	dout("try_write done on %p ret %d\n", con, ret);
1806	return ret;
1807}
1808
1809
1810
1811/*
1812 * Read what we can from the socket.
1813 */
1814static int try_read(struct ceph_connection *con)
1815{
1816	int ret = -1;
1817
1818	if (!con->sock)
1819		return 0;
1820
1821	if (test_bit(STANDBY, &con->state))
1822		return 0;
1823
1824	dout("try_read start on %p\n", con);
1825
1826more:
1827	dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
1828	     con->in_base_pos);
1829
1830	/*
1831	 * process_connect and process_message drop and re-take
1832	 * con->mutex.  make sure we handle a racing close or reopen.
1833	 */
1834	if (test_bit(CLOSED, &con->state) ||
1835	    test_bit(OPENING, &con->state)) {
1836		ret = -EAGAIN;
1837		goto out;
1838	}
1839
1840	if (test_bit(CONNECTING, &con->state)) {
1841		if (!test_bit(NEGOTIATING, &con->state)) {
1842			dout("try_read connecting\n");
1843			ret = read_partial_banner(con);
1844			if (ret <= 0)
1845				goto out;
1846			ret = process_banner(con);
1847			if (ret < 0)
1848				goto out;
1849		}
1850		ret = read_partial_connect(con);
1851		if (ret <= 0)
1852			goto out;
1853		ret = process_connect(con);
1854		if (ret < 0)
1855			goto out;
1856		goto more;
1857	}
1858
1859	if (con->in_base_pos < 0) {
1860		/*
1861		 * skipping + discarding content.
1862		 *
1863		 * FIXME: there must be a better way to do this!
1864		 */
1865		static char buf[1024];
1866		int skip = min(1024, -con->in_base_pos);
1867		dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
1868		ret = ceph_tcp_recvmsg(con->sock, buf, skip);
1869		if (ret <= 0)
1870			goto out;
1871		con->in_base_pos += ret;
1872		if (con->in_base_pos)
1873			goto more;
1874	}
1875	if (con->in_tag == CEPH_MSGR_TAG_READY) {
1876		/*
1877		 * what's next?
1878		 */
1879		ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
1880		if (ret <= 0)
1881			goto out;
1882		dout("try_read got tag %d\n", (int)con->in_tag);
1883		switch (con->in_tag) {
1884		case CEPH_MSGR_TAG_MSG:
1885			prepare_read_message(con);
1886			break;
1887		case CEPH_MSGR_TAG_ACK:
1888			prepare_read_ack(con);
1889			break;
1890		case CEPH_MSGR_TAG_CLOSE:
1891			set_bit(CLOSED, &con->state);   /* fixme */
1892			goto out;
1893		default:
1894			goto bad_tag;
1895		}
1896	}
1897	if (con->in_tag == CEPH_MSGR_TAG_MSG) {
1898		ret = read_partial_message(con);
1899		if (ret <= 0) {
1900			switch (ret) {
1901			case -EBADMSG:
1902				con->error_msg = "bad crc";
1903				ret = -EIO;
1904				break;
1905			case -EIO:
1906				con->error_msg = "io error";
1907				break;
1908			}
1909			goto out;
1910		}
1911		if (con->in_tag == CEPH_MSGR_TAG_READY)
1912			goto more;
1913		process_message(con);
1914		goto more;
1915	}
1916	if (con->in_tag == CEPH_MSGR_TAG_ACK) {
1917		ret = read_partial_ack(con);
1918		if (ret <= 0)
1919			goto out;
1920		process_ack(con);
1921		goto more;
1922	}
1923
1924out:
1925	dout("try_read done on %p ret %d\n", con, ret);
1926	return ret;
1927
1928bad_tag:
1929	pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
1930	con->error_msg = "protocol error, garbage tag";
1931	ret = -1;
1932	goto out;
1933}
1934
 
1935
1936/*
1937 * Atomically queue work on a connection.  Bump @con reference to
1938 * avoid races with connection teardown.
1939 */
1940static void queue_con(struct ceph_connection *con)
1941{
1942	if (test_bit(DEAD, &con->state)) {
1943		dout("queue_con %p ignoring: DEAD\n",
1944		     con);
1945		return;
1946	}
1947
1948	if (!con->ops->get(con)) {
1949		dout("queue_con %p ref count 0\n", con);
1950		return;
 
 
 
 
 
 
1951	}
1952
1953	if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
1954		dout("queue_con %p - already queued\n", con);
1955		con->ops->put(con);
1956	} else {
1957		dout("queue_con %p\n", con);
1958	}
1959}
1960
1961/*
1962 * Do some work on a connection.  Drop a connection ref when we're done.
1963 */
1964static void con_work(struct work_struct *work)
1965{
1966	struct ceph_connection *con = container_of(work, struct ceph_connection,
1967						   work.work);
1968	int ret;
1969
1970	mutex_lock(&con->mutex);
1971restart:
1972	if (test_and_clear_bit(BACKOFF, &con->state)) {
1973		dout("con_work %p backing off\n", con);
1974		if (queue_delayed_work(ceph_msgr_wq, &con->work,
1975				       round_jiffies_relative(con->delay))) {
1976			dout("con_work %p backoff %lu\n", con, con->delay);
1977			mutex_unlock(&con->mutex);
1978			return;
1979		} else {
1980			con->ops->put(con);
1981			dout("con_work %p FAILED to back off %lu\n", con,
1982			     con->delay);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1983		}
 
 
1984	}
 
 
 
1985
1986	if (test_bit(STANDBY, &con->state)) {
1987		dout("con_work %p STANDBY\n", con);
1988		goto done;
1989	}
1990	if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
1991		dout("con_work CLOSED\n");
1992		con_close_socket(con);
1993		goto done;
1994	}
1995	if (test_and_clear_bit(OPENING, &con->state)) {
1996		/* reopen w/ new peer */
1997		dout("con_work OPENING\n");
1998		con_close_socket(con);
1999	}
2000
2001	if (test_and_clear_bit(SOCK_CLOSED, &con->state))
2002		goto fault;
2003
2004	ret = try_read(con);
2005	if (ret == -EAGAIN)
2006		goto restart;
2007	if (ret < 0)
2008		goto fault;
2009
2010	ret = try_write(con);
2011	if (ret == -EAGAIN)
2012		goto restart;
2013	if (ret < 0)
2014		goto fault;
2015
2016done:
2017	mutex_unlock(&con->mutex);
2018done_unlocked:
2019	con->ops->put(con);
2020	return;
2021
2022fault:
2023	mutex_unlock(&con->mutex);
2024	ceph_fault(con);     /* error/fault path */
2025	goto done_unlocked;
2026}
2027
2028
2029/*
2030 * Generic error/fault handler.  A retry mechanism is used with
2031 * exponential backoff
2032 */
2033static void ceph_fault(struct ceph_connection *con)
2034{
2035	pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2036	       ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2037	dout("fault %p state %lu to peer %s\n",
2038	     con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2039
2040	if (test_bit(LOSSYTX, &con->state)) {
2041		dout("fault on LOSSYTX channel\n");
2042		goto out;
2043	}
2044
2045	mutex_lock(&con->mutex);
2046	if (test_bit(CLOSED, &con->state))
2047		goto out_unlock;
2048
2049	con_close_socket(con);
2050
2051	if (con->in_msg) {
2052		ceph_msg_put(con->in_msg);
2053		con->in_msg = NULL;
 
2054	}
2055
2056	/* Requeue anything that hasn't been acked */
2057	list_splice_init(&con->out_sent, &con->out_queue);
2058
2059	/* If there are no messages queued or keepalive pending, place
2060	 * the connection in a STANDBY state */
2061	if (list_empty(&con->out_queue) &&
2062	    !test_bit(KEEPALIVE_PENDING, &con->state)) {
2063		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2064		clear_bit(WRITE_PENDING, &con->state);
2065		set_bit(STANDBY, &con->state);
2066	} else {
2067		/* retry after a delay. */
2068		if (con->delay == 0)
 
2069			con->delay = BASE_DELAY_INTERVAL;
2070		else if (con->delay < MAX_DELAY_INTERVAL)
2071			con->delay *= 2;
2072		con->ops->get(con);
2073		if (queue_delayed_work(ceph_msgr_wq, &con->work,
2074				       round_jiffies_relative(con->delay))) {
2075			dout("fault queued %p delay %lu\n", con, con->delay);
2076		} else {
2077			con->ops->put(con);
2078			dout("fault failed to queue %p delay %lu, backoff\n",
2079			     con, con->delay);
2080			/*
2081			 * In many cases we see a socket state change
2082			 * while con_work is running and end up
2083			 * queuing (non-delayed) work, such that we
2084			 * can't backoff with a delay.  Set a flag so
2085			 * that when con_work restarts we schedule the
2086			 * delay then.
2087			 */
2088			set_bit(BACKOFF, &con->state);
2089		}
 
 
2090	}
 
2091
2092out_unlock:
2093	mutex_unlock(&con->mutex);
2094out:
2095	/*
2096	 * in case we faulted due to authentication, invalidate our
2097	 * current tickets so that we can get new ones.
2098	 */
2099	if (con->auth_retry && con->ops->invalidate_authorizer) {
2100		dout("calling invalidate_authorizer()\n");
2101		con->ops->invalidate_authorizer(con);
2102	}
2103
2104	if (con->ops->fault)
2105		con->ops->fault(con);
2106}
2107
2108
2109
2110/*
2111 * create a new messenger instance
2112 */
2113struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr,
2114					     u32 supported_features,
2115					     u32 required_features)
2116{
2117	struct ceph_messenger *msgr;
2118
2119	msgr = kzalloc(sizeof(*msgr), GFP_KERNEL);
2120	if (msgr == NULL)
2121		return ERR_PTR(-ENOMEM);
 
 
2122
2123	msgr->supported_features = supported_features;
2124	msgr->required_features = required_features;
 
 
 
2125
2126	spin_lock_init(&msgr->global_seq_lock);
 
 
 
 
 
2127
2128	/* the zero page is needed if a request is "canceled" while the message
2129	 * is being written over the socket */
2130	msgr->zero_page = __page_cache_alloc(GFP_KERNEL | __GFP_ZERO);
2131	if (!msgr->zero_page) {
2132		kfree(msgr);
2133		return ERR_PTR(-ENOMEM);
2134	}
2135	kmap(msgr->zero_page);
2136
2137	if (myaddr)
2138		msgr->inst.addr = *myaddr;
2139
2140	/* select a random nonce */
2141	msgr->inst.addr.type = 0;
2142	get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2143	encode_my_addr(msgr);
2144
2145	dout("messenger_create %p\n", msgr);
2146	return msgr;
2147}
2148EXPORT_SYMBOL(ceph_messenger_create);
2149
2150void ceph_messenger_destroy(struct ceph_messenger *msgr)
2151{
2152	dout("destroy %p\n", msgr);
2153	kunmap(msgr->zero_page);
2154	__free_page(msgr->zero_page);
2155	kfree(msgr);
2156	dout("destroyed messenger %p\n", msgr);
2157}
2158EXPORT_SYMBOL(ceph_messenger_destroy);
2159
2160static void clear_standby(struct ceph_connection *con)
2161{
2162	/* come back from STANDBY? */
2163	if (test_and_clear_bit(STANDBY, &con->state)) {
2164		mutex_lock(&con->mutex);
2165		dout("clear_standby %p and ++connect_seq\n", con);
2166		con->connect_seq++;
2167		WARN_ON(test_bit(WRITE_PENDING, &con->state));
2168		WARN_ON(test_bit(KEEPALIVE_PENDING, &con->state));
2169		mutex_unlock(&con->mutex);
2170	}
2171}
2172
2173/*
2174 * Queue up an outgoing message on the given connection.
 
 
2175 */
2176void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2177{
2178	if (test_bit(CLOSED, &con->state)) {
 
 
 
 
 
 
 
2179		dout("con_send %p closed, dropping %p\n", con, msg);
2180		ceph_msg_put(msg);
 
2181		return;
2182	}
2183
2184	/* set src+dst */
2185	msg->hdr.src = con->msgr->inst.name;
2186
2187	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2188
2189	msg->needs_out_seq = true;
2190
2191	/* queue */
2192	mutex_lock(&con->mutex);
2193	BUG_ON(!list_empty(&msg->list_head));
2194	list_add_tail(&msg->list_head, &con->out_queue);
2195	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2196	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2197	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2198	     le32_to_cpu(msg->hdr.front_len),
2199	     le32_to_cpu(msg->hdr.middle_len),
2200	     le32_to_cpu(msg->hdr.data_len));
 
 
2201	mutex_unlock(&con->mutex);
2202
2203	/* if there wasn't anything waiting to send before, queue
2204	 * new work */
2205	clear_standby(con);
2206	if (test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2207		queue_con(con);
2208}
2209EXPORT_SYMBOL(ceph_con_send);
2210
2211/*
2212 * Revoke a message that was previously queued for send
2213 */
2214void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
2215{
 
 
 
 
 
 
 
2216	mutex_lock(&con->mutex);
2217	if (!list_empty(&msg->list_head)) {
2218		dout("con_revoke %p msg %p - was on queue\n", con, msg);
2219		list_del_init(&msg->list_head);
2220		ceph_msg_put(msg);
2221		msg->hdr.seq = 0;
2222	}
 
 
 
 
 
2223	if (con->out_msg == msg) {
2224		dout("con_revoke %p msg %p - was sending\n", con, msg);
 
 
 
 
 
 
2225		con->out_msg = NULL;
2226		if (con->out_kvec_is_msg) {
2227			con->out_skip = con->out_kvec_bytes;
2228			con->out_kvec_is_msg = false;
2229		}
2230		ceph_msg_put(msg);
2231		msg->hdr.seq = 0;
2232	}
2233	mutex_unlock(&con->mutex);
2234}
2235
2236/*
2237 * Revoke a message that we may be reading data into
2238 */
2239void ceph_con_revoke_message(struct ceph_connection *con, struct ceph_msg *msg)
2240{
 
 
 
 
 
 
 
2241	mutex_lock(&con->mutex);
2242	if (con->in_msg && con->in_msg == msg) {
2243		unsigned front_len = le32_to_cpu(con->in_hdr.front_len);
2244		unsigned middle_len = le32_to_cpu(con->in_hdr.middle_len);
2245		unsigned data_len = le32_to_cpu(con->in_hdr.data_len);
2246
2247		/* skip rest of message */
2248		dout("con_revoke_pages %p msg %p revoked\n", con, msg);
2249			con->in_base_pos = con->in_base_pos -
2250				sizeof(struct ceph_msg_header) -
2251				front_len -
2252				middle_len -
2253				data_len -
2254				sizeof(struct ceph_msg_footer);
2255		ceph_msg_put(con->in_msg);
2256		con->in_msg = NULL;
2257		con->in_tag = CEPH_MSGR_TAG_READY;
2258		con->in_seq++;
2259	} else {
2260		dout("con_revoke_pages %p msg %p pages %p no-op\n",
2261		     con, con->in_msg, msg);
2262	}
2263	mutex_unlock(&con->mutex);
2264}
2265
2266/*
2267 * Queue a keepalive byte to ensure the tcp connection is alive.
2268 */
2269void ceph_con_keepalive(struct ceph_connection *con)
2270{
2271	dout("con_keepalive %p\n", con);
 
2272	clear_standby(con);
2273	if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 &&
2274	    test_and_set_bit(WRITE_PENDING, &con->state) == 0)
 
 
2275		queue_con(con);
2276}
2277EXPORT_SYMBOL(ceph_con_keepalive);
2278
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2279
2280/*
2281 * construct a new message with given type, size
2282 * the new msg has a ref count of 1.
2283 */
2284struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags)
 
2285{
2286	struct ceph_msg *m;
2287
2288	m = kmalloc(sizeof(*m), flags);
2289	if (m == NULL)
2290		goto out;
2291	kref_init(&m->kref);
2292	INIT_LIST_HEAD(&m->list_head);
2293
2294	m->hdr.tid = 0;
2295	m->hdr.type = cpu_to_le16(type);
2296	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2297	m->hdr.version = 0;
2298	m->hdr.front_len = cpu_to_le32(front_len);
2299	m->hdr.middle_len = 0;
2300	m->hdr.data_len = 0;
2301	m->hdr.data_off = 0;
2302	m->hdr.reserved = 0;
2303	m->footer.front_crc = 0;
2304	m->footer.middle_crc = 0;
2305	m->footer.data_crc = 0;
2306	m->footer.flags = 0;
2307	m->front_max = front_len;
2308	m->front_is_vmalloc = false;
2309	m->more_to_follow = false;
2310	m->ack_stamp = 0;
2311	m->pool = NULL;
2312
2313	/* middle */
2314	m->middle = NULL;
2315
2316	/* data */
2317	m->nr_pages = 0;
2318	m->page_alignment = 0;
2319	m->pages = NULL;
2320	m->pagelist = NULL;
2321	m->bio = NULL;
2322	m->bio_iter = NULL;
2323	m->bio_seg = 0;
2324	m->trail = NULL;
2325
2326	/* front */
2327	if (front_len) {
2328		if (front_len > PAGE_CACHE_SIZE) {
2329			m->front.iov_base = __vmalloc(front_len, flags,
2330						      PAGE_KERNEL);
2331			m->front_is_vmalloc = true;
2332		} else {
2333			m->front.iov_base = kmalloc(front_len, flags);
2334		}
2335		if (m->front.iov_base == NULL) {
2336			pr_err("msg_new can't allocate %d bytes\n",
2337			     front_len);
2338			goto out2;
2339		}
2340	} else {
2341		m->front.iov_base = NULL;
2342	}
2343	m->front.iov_len = front_len;
 
 
 
 
 
 
 
 
 
2344
2345	dout("ceph_msg_new %p front %d\n", m, front_len);
2346	return m;
2347
2348out2:
2349	ceph_msg_put(m);
2350out:
2351	pr_err("msg_new can't create type %d front %d\n", type, front_len);
 
 
 
 
 
 
 
2352	return NULL;
2353}
 
 
 
 
 
 
 
2354EXPORT_SYMBOL(ceph_msg_new);
2355
2356/*
2357 * Allocate "middle" portion of a message, if it is needed and wasn't
2358 * allocated by alloc_msg.  This allows us to read a small fixed-size
2359 * per-type header in the front and then gracefully fail (i.e.,
2360 * propagate the error to the caller based on info in the front) when
2361 * the middle is too large.
2362 */
2363static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2364{
2365	int type = le16_to_cpu(msg->hdr.type);
2366	int middle_len = le32_to_cpu(msg->hdr.middle_len);
2367
2368	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2369	     ceph_msg_type_name(type), middle_len);
2370	BUG_ON(!middle_len);
2371	BUG_ON(msg->middle);
2372
2373	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2374	if (!msg->middle)
2375		return -ENOMEM;
2376	return 0;
2377}
2378
2379/*
2380 * Generic message allocator, for incoming messages.
 
 
 
 
 
 
 
 
 
 
 
 
2381 */
2382static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
2383				struct ceph_msg_header *hdr,
2384				int *skip)
2385{
2386	int type = le16_to_cpu(hdr->type);
2387	int front_len = le32_to_cpu(hdr->front_len);
2388	int middle_len = le32_to_cpu(hdr->middle_len);
2389	struct ceph_msg *msg = NULL;
2390	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2391
2392	if (con->ops->alloc_msg) {
2393		mutex_unlock(&con->mutex);
2394		msg = con->ops->alloc_msg(con, hdr, skip);
2395		mutex_lock(&con->mutex);
2396		if (!msg || *skip)
2397			return NULL;
2398	}
2399	if (!msg) {
2400		*skip = 0;
2401		msg = ceph_msg_new(type, front_len, GFP_NOFS);
2402		if (!msg) {
2403			pr_err("unable to allocate msg type %d len %d\n",
2404			       type, front_len);
2405			return NULL;
2406		}
2407		msg->page_alignment = le16_to_cpu(hdr->data_off);
2408	}
2409	memcpy(&msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2410
2411	if (middle_len && !msg->middle) {
2412		ret = ceph_alloc_middle(con, msg);
2413		if (ret < 0) {
2414			ceph_msg_put(msg);
2415			return NULL;
2416		}
2417	}
2418
2419	return msg;
2420}
2421
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2422
2423/*
2424 * Free a generically kmalloc'd message.
2425 */
2426void ceph_msg_kfree(struct ceph_msg *m)
2427{
2428	dout("msg_kfree %p\n", m);
2429	if (m->front_is_vmalloc)
2430		vfree(m->front.iov_base);
2431	else
2432		kfree(m->front.iov_base);
2433	kfree(m);
2434}
2435
2436/*
2437 * Drop a msg ref.  Destroy as needed.
2438 */
2439void ceph_msg_last_put(struct kref *kref)
2440{
2441	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
 
2442
2443	dout("ceph_msg_put last one on %p\n", m);
2444	WARN_ON(!list_empty(&m->list_head));
2445
 
 
2446	/* drop middle, data, if any */
2447	if (m->middle) {
2448		ceph_buffer_put(m->middle);
2449		m->middle = NULL;
2450	}
2451	m->nr_pages = 0;
2452	m->pages = NULL;
2453
2454	if (m->pagelist) {
2455		ceph_pagelist_release(m->pagelist);
2456		kfree(m->pagelist);
2457		m->pagelist = NULL;
2458	}
2459
2460	m->trail = NULL;
2461
2462	if (m->pool)
2463		ceph_msgpool_put(m->pool, m);
2464	else
2465		ceph_msg_kfree(m);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2466}
2467EXPORT_SYMBOL(ceph_msg_last_put);
2468
2469void ceph_msg_dump(struct ceph_msg *msg)
2470{
2471	pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2472		 msg->front_max, msg->nr_pages);
2473	print_hex_dump(KERN_DEBUG, "header: ",
2474		       DUMP_PREFIX_OFFSET, 16, 1,
2475		       &msg->hdr, sizeof(msg->hdr), true);
2476	print_hex_dump(KERN_DEBUG, " front: ",
2477		       DUMP_PREFIX_OFFSET, 16, 1,
2478		       msg->front.iov_base, msg->front.iov_len, true);
2479	if (msg->middle)
2480		print_hex_dump(KERN_DEBUG, "middle: ",
2481			       DUMP_PREFIX_OFFSET, 16, 1,
2482			       msg->middle->vec.iov_base,
2483			       msg->middle->vec.iov_len, true);
2484	print_hex_dump(KERN_DEBUG, "footer: ",
2485		       DUMP_PREFIX_OFFSET, 16, 1,
2486		       &msg->footer, sizeof(msg->footer), true);
2487}
2488EXPORT_SYMBOL(ceph_msg_dump);