Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Module-based API test facility for ww_mutexes
  4 */
  5
  6#include <linux/kernel.h>
  7
  8#include <linux/completion.h>
  9#include <linux/delay.h>
 10#include <linux/kthread.h>
 11#include <linux/module.h>
 12#include <linux/random.h>
 13#include <linux/slab.h>
 14#include <linux/ww_mutex.h>
 15
 16static DEFINE_WD_CLASS(ww_class);
 17struct workqueue_struct *wq;
 18
 19#ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
 20#define ww_acquire_init_noinject(a, b) do { \
 21		ww_acquire_init((a), (b)); \
 22		(a)->deadlock_inject_countdown = ~0U; \
 23	} while (0)
 24#else
 25#define ww_acquire_init_noinject(a, b) ww_acquire_init((a), (b))
 26#endif
 27
 28struct test_mutex {
 29	struct work_struct work;
 30	struct ww_mutex mutex;
 31	struct completion ready, go, done;
 32	unsigned int flags;
 33};
 34
 35#define TEST_MTX_SPIN BIT(0)
 36#define TEST_MTX_TRY BIT(1)
 37#define TEST_MTX_CTX BIT(2)
 38#define __TEST_MTX_LAST BIT(3)
 39
 40static void test_mutex_work(struct work_struct *work)
 41{
 42	struct test_mutex *mtx = container_of(work, typeof(*mtx), work);
 43
 44	complete(&mtx->ready);
 45	wait_for_completion(&mtx->go);
 46
 47	if (mtx->flags & TEST_MTX_TRY) {
 48		while (!ww_mutex_trylock(&mtx->mutex, NULL))
 49			cond_resched();
 50	} else {
 51		ww_mutex_lock(&mtx->mutex, NULL);
 52	}
 53	complete(&mtx->done);
 54	ww_mutex_unlock(&mtx->mutex);
 55}
 56
 57static int __test_mutex(unsigned int flags)
 58{
 59#define TIMEOUT (HZ / 16)
 60	struct test_mutex mtx;
 61	struct ww_acquire_ctx ctx;
 62	int ret;
 63
 64	ww_mutex_init(&mtx.mutex, &ww_class);
 65	ww_acquire_init(&ctx, &ww_class);
 
 66
 67	INIT_WORK_ONSTACK(&mtx.work, test_mutex_work);
 68	init_completion(&mtx.ready);
 69	init_completion(&mtx.go);
 70	init_completion(&mtx.done);
 71	mtx.flags = flags;
 72
 73	schedule_work(&mtx.work);
 74
 75	wait_for_completion(&mtx.ready);
 76	ww_mutex_lock(&mtx.mutex, (flags & TEST_MTX_CTX) ? &ctx : NULL);
 77	complete(&mtx.go);
 78	if (flags & TEST_MTX_SPIN) {
 79		unsigned long timeout = jiffies + TIMEOUT;
 80
 81		ret = 0;
 82		do {
 83			if (completion_done(&mtx.done)) {
 84				ret = -EINVAL;
 85				break;
 86			}
 87			cond_resched();
 88		} while (time_before(jiffies, timeout));
 89	} else {
 90		ret = wait_for_completion_timeout(&mtx.done, TIMEOUT);
 91	}
 92	ww_mutex_unlock(&mtx.mutex);
 93	ww_acquire_fini(&ctx);
 
 94
 95	if (ret) {
 96		pr_err("%s(flags=%x): mutual exclusion failure\n",
 97		       __func__, flags);
 98		ret = -EINVAL;
 99	}
100
101	flush_work(&mtx.work);
102	destroy_work_on_stack(&mtx.work);
103	return ret;
104#undef TIMEOUT
105}
106
107static int test_mutex(void)
108{
109	int ret;
110	int i;
111
112	for (i = 0; i < __TEST_MTX_LAST; i++) {
113		ret = __test_mutex(i);
114		if (ret)
115			return ret;
116	}
117
118	return 0;
119}
120
121static int test_aa(bool trylock)
122{
123	struct ww_mutex mutex;
124	struct ww_acquire_ctx ctx;
125	int ret;
126	const char *from = trylock ? "trylock" : "lock";
127
128	ww_mutex_init(&mutex, &ww_class);
129	ww_acquire_init(&ctx, &ww_class);
130
131	if (!trylock) {
132		ret = ww_mutex_lock(&mutex, &ctx);
133		if (ret) {
134			pr_err("%s: initial lock failed!\n", __func__);
135			goto out;
136		}
137	} else {
138		ret = !ww_mutex_trylock(&mutex, &ctx);
139		if (ret) {
140			pr_err("%s: initial trylock failed!\n", __func__);
141			goto out;
142		}
143	}
144
145	if (ww_mutex_trylock(&mutex, NULL))  {
146		pr_err("%s: trylocked itself without context from %s!\n", __func__, from);
147		ww_mutex_unlock(&mutex);
148		ret = -EINVAL;
149		goto out;
150	}
151
152	if (ww_mutex_trylock(&mutex, &ctx))  {
153		pr_err("%s: trylocked itself with context from %s!\n", __func__, from);
154		ww_mutex_unlock(&mutex);
155		ret = -EINVAL;
156		goto out;
157	}
158
159	ret = ww_mutex_lock(&mutex, &ctx);
160	if (ret != -EALREADY) {
161		pr_err("%s: missed deadlock for recursing, ret=%d from %s\n",
162		       __func__, ret, from);
163		if (!ret)
164			ww_mutex_unlock(&mutex);
165		ret = -EINVAL;
166		goto out;
167	}
168
169	ww_mutex_unlock(&mutex);
170	ret = 0;
171out:
172	ww_acquire_fini(&ctx);
173	return ret;
174}
175
176struct test_abba {
177	struct work_struct work;
178	struct ww_mutex a_mutex;
179	struct ww_mutex b_mutex;
180	struct completion a_ready;
181	struct completion b_ready;
182	bool resolve, trylock;
183	int result;
184};
185
186static void test_abba_work(struct work_struct *work)
187{
188	struct test_abba *abba = container_of(work, typeof(*abba), work);
189	struct ww_acquire_ctx ctx;
190	int err;
191
192	ww_acquire_init_noinject(&ctx, &ww_class);
193	if (!abba->trylock)
194		ww_mutex_lock(&abba->b_mutex, &ctx);
195	else
196		WARN_ON(!ww_mutex_trylock(&abba->b_mutex, &ctx));
197
198	WARN_ON(READ_ONCE(abba->b_mutex.ctx) != &ctx);
199
200	complete(&abba->b_ready);
201	wait_for_completion(&abba->a_ready);
202
203	err = ww_mutex_lock(&abba->a_mutex, &ctx);
204	if (abba->resolve && err == -EDEADLK) {
205		ww_mutex_unlock(&abba->b_mutex);
206		ww_mutex_lock_slow(&abba->a_mutex, &ctx);
207		err = ww_mutex_lock(&abba->b_mutex, &ctx);
208	}
209
210	if (!err)
211		ww_mutex_unlock(&abba->a_mutex);
212	ww_mutex_unlock(&abba->b_mutex);
213	ww_acquire_fini(&ctx);
214
215	abba->result = err;
216}
217
218static int test_abba(bool trylock, bool resolve)
219{
220	struct test_abba abba;
221	struct ww_acquire_ctx ctx;
222	int err, ret;
223
224	ww_mutex_init(&abba.a_mutex, &ww_class);
225	ww_mutex_init(&abba.b_mutex, &ww_class);
226	INIT_WORK_ONSTACK(&abba.work, test_abba_work);
227	init_completion(&abba.a_ready);
228	init_completion(&abba.b_ready);
229	abba.trylock = trylock;
230	abba.resolve = resolve;
231
232	schedule_work(&abba.work);
233
234	ww_acquire_init_noinject(&ctx, &ww_class);
235	if (!trylock)
236		ww_mutex_lock(&abba.a_mutex, &ctx);
237	else
238		WARN_ON(!ww_mutex_trylock(&abba.a_mutex, &ctx));
239
240	WARN_ON(READ_ONCE(abba.a_mutex.ctx) != &ctx);
241
242	complete(&abba.a_ready);
243	wait_for_completion(&abba.b_ready);
244
245	err = ww_mutex_lock(&abba.b_mutex, &ctx);
246	if (resolve && err == -EDEADLK) {
247		ww_mutex_unlock(&abba.a_mutex);
248		ww_mutex_lock_slow(&abba.b_mutex, &ctx);
249		err = ww_mutex_lock(&abba.a_mutex, &ctx);
250	}
251
252	if (!err)
253		ww_mutex_unlock(&abba.b_mutex);
254	ww_mutex_unlock(&abba.a_mutex);
255	ww_acquire_fini(&ctx);
256
257	flush_work(&abba.work);
258	destroy_work_on_stack(&abba.work);
259
260	ret = 0;
261	if (resolve) {
262		if (err || abba.result) {
263			pr_err("%s: failed to resolve ABBA deadlock, A err=%d, B err=%d\n",
264			       __func__, err, abba.result);
265			ret = -EINVAL;
266		}
267	} else {
268		if (err != -EDEADLK && abba.result != -EDEADLK) {
269			pr_err("%s: missed ABBA deadlock, A err=%d, B err=%d\n",
270			       __func__, err, abba.result);
271			ret = -EINVAL;
272		}
273	}
274	return ret;
275}
276
277struct test_cycle {
278	struct work_struct work;
279	struct ww_mutex a_mutex;
280	struct ww_mutex *b_mutex;
281	struct completion *a_signal;
282	struct completion b_signal;
283	int result;
284};
285
286static void test_cycle_work(struct work_struct *work)
287{
288	struct test_cycle *cycle = container_of(work, typeof(*cycle), work);
289	struct ww_acquire_ctx ctx;
290	int err, erra = 0;
291
292	ww_acquire_init_noinject(&ctx, &ww_class);
293	ww_mutex_lock(&cycle->a_mutex, &ctx);
294
295	complete(cycle->a_signal);
296	wait_for_completion(&cycle->b_signal);
297
298	err = ww_mutex_lock(cycle->b_mutex, &ctx);
299	if (err == -EDEADLK) {
300		err = 0;
301		ww_mutex_unlock(&cycle->a_mutex);
302		ww_mutex_lock_slow(cycle->b_mutex, &ctx);
303		erra = ww_mutex_lock(&cycle->a_mutex, &ctx);
304	}
305
306	if (!err)
307		ww_mutex_unlock(cycle->b_mutex);
308	if (!erra)
309		ww_mutex_unlock(&cycle->a_mutex);
310	ww_acquire_fini(&ctx);
311
312	cycle->result = err ?: erra;
313}
314
315static int __test_cycle(unsigned int nthreads)
316{
317	struct test_cycle *cycles;
318	unsigned int n, last = nthreads - 1;
319	int ret;
320
321	cycles = kmalloc_array(nthreads, sizeof(*cycles), GFP_KERNEL);
322	if (!cycles)
323		return -ENOMEM;
324
325	for (n = 0; n < nthreads; n++) {
326		struct test_cycle *cycle = &cycles[n];
327
328		ww_mutex_init(&cycle->a_mutex, &ww_class);
329		if (n == last)
330			cycle->b_mutex = &cycles[0].a_mutex;
331		else
332			cycle->b_mutex = &cycles[n + 1].a_mutex;
333
334		if (n == 0)
335			cycle->a_signal = &cycles[last].b_signal;
336		else
337			cycle->a_signal = &cycles[n - 1].b_signal;
338		init_completion(&cycle->b_signal);
339
340		INIT_WORK(&cycle->work, test_cycle_work);
341		cycle->result = 0;
342	}
343
344	for (n = 0; n < nthreads; n++)
345		queue_work(wq, &cycles[n].work);
346
347	flush_workqueue(wq);
348
349	ret = 0;
350	for (n = 0; n < nthreads; n++) {
351		struct test_cycle *cycle = &cycles[n];
352
353		if (!cycle->result)
354			continue;
355
356		pr_err("cyclic deadlock not resolved, ret[%d/%d] = %d\n",
357		       n, nthreads, cycle->result);
358		ret = -EINVAL;
359		break;
360	}
361
362	for (n = 0; n < nthreads; n++)
363		ww_mutex_destroy(&cycles[n].a_mutex);
364	kfree(cycles);
365	return ret;
366}
367
368static int test_cycle(unsigned int ncpus)
369{
370	unsigned int n;
371	int ret;
372
373	for (n = 2; n <= ncpus + 1; n++) {
374		ret = __test_cycle(n);
375		if (ret)
376			return ret;
377	}
378
379	return 0;
380}
381
382struct stress {
383	struct work_struct work;
384	struct ww_mutex *locks;
385	unsigned long timeout;
386	int nlocks;
387};
388
 
 
 
 
 
 
 
 
 
 
 
 
 
389static int *get_random_order(int count)
390{
391	int *order;
392	int n, r, tmp;
393
394	order = kmalloc_array(count, sizeof(*order), GFP_KERNEL);
395	if (!order)
396		return order;
397
398	for (n = 0; n < count; n++)
399		order[n] = n;
400
401	for (n = count - 1; n > 1; n--) {
402		r = get_random_u32_below(n + 1);
403		if (r != n) {
404			tmp = order[n];
405			order[n] = order[r];
406			order[r] = tmp;
407		}
408	}
409
410	return order;
411}
412
413static void dummy_load(struct stress *stress)
414{
415	usleep_range(1000, 2000);
416}
417
418static void stress_inorder_work(struct work_struct *work)
419{
420	struct stress *stress = container_of(work, typeof(*stress), work);
421	const int nlocks = stress->nlocks;
422	struct ww_mutex *locks = stress->locks;
423	struct ww_acquire_ctx ctx;
424	int *order;
425
426	order = get_random_order(nlocks);
427	if (!order)
428		return;
429
430	do {
431		int contended = -1;
432		int n, err;
433
434		ww_acquire_init(&ctx, &ww_class);
435retry:
436		err = 0;
437		for (n = 0; n < nlocks; n++) {
438			if (n == contended)
439				continue;
440
441			err = ww_mutex_lock(&locks[order[n]], &ctx);
442			if (err < 0)
443				break;
444		}
445		if (!err)
446			dummy_load(stress);
447
448		if (contended > n)
449			ww_mutex_unlock(&locks[order[contended]]);
450		contended = n;
451		while (n--)
452			ww_mutex_unlock(&locks[order[n]]);
453
454		if (err == -EDEADLK) {
455			ww_mutex_lock_slow(&locks[order[contended]], &ctx);
456			goto retry;
 
 
457		}
458
 
459		if (err) {
460			pr_err_once("stress (%s) failed with %d\n",
461				    __func__, err);
462			break;
463		}
464
465		ww_acquire_fini(&ctx);
466	} while (!time_after(jiffies, stress->timeout));
467
468	kfree(order);
469	kfree(stress);
470}
471
472struct reorder_lock {
473	struct list_head link;
474	struct ww_mutex *lock;
475};
476
477static void stress_reorder_work(struct work_struct *work)
478{
479	struct stress *stress = container_of(work, typeof(*stress), work);
480	LIST_HEAD(locks);
481	struct ww_acquire_ctx ctx;
482	struct reorder_lock *ll, *ln;
483	int *order;
484	int n, err;
485
486	order = get_random_order(stress->nlocks);
487	if (!order)
488		return;
489
490	for (n = 0; n < stress->nlocks; n++) {
491		ll = kmalloc(sizeof(*ll), GFP_KERNEL);
492		if (!ll)
493			goto out;
494
495		ll->lock = &stress->locks[order[n]];
496		list_add(&ll->link, &locks);
497	}
498	kfree(order);
499	order = NULL;
500
501	do {
502		ww_acquire_init(&ctx, &ww_class);
503
504		list_for_each_entry(ll, &locks, link) {
505			err = ww_mutex_lock(ll->lock, &ctx);
506			if (!err)
507				continue;
508
509			ln = ll;
510			list_for_each_entry_continue_reverse(ln, &locks, link)
511				ww_mutex_unlock(ln->lock);
512
513			if (err != -EDEADLK) {
514				pr_err_once("stress (%s) failed with %d\n",
515					    __func__, err);
516				break;
517			}
518
519			ww_mutex_lock_slow(ll->lock, &ctx);
520			list_move(&ll->link, &locks); /* restarts iteration */
521		}
522
523		dummy_load(stress);
524		list_for_each_entry(ll, &locks, link)
525			ww_mutex_unlock(ll->lock);
526
527		ww_acquire_fini(&ctx);
528	} while (!time_after(jiffies, stress->timeout));
529
530out:
531	list_for_each_entry_safe(ll, ln, &locks, link)
532		kfree(ll);
533	kfree(order);
534	kfree(stress);
535}
536
537static void stress_one_work(struct work_struct *work)
538{
539	struct stress *stress = container_of(work, typeof(*stress), work);
540	const int nlocks = stress->nlocks;
541	struct ww_mutex *lock = stress->locks + get_random_u32_below(nlocks);
542	int err;
543
544	do {
545		err = ww_mutex_lock(lock, NULL);
546		if (!err) {
547			dummy_load(stress);
548			ww_mutex_unlock(lock);
549		} else {
550			pr_err_once("stress (%s) failed with %d\n",
551				    __func__, err);
552			break;
553		}
554	} while (!time_after(jiffies, stress->timeout));
555
556	kfree(stress);
557}
558
559#define STRESS_INORDER BIT(0)
560#define STRESS_REORDER BIT(1)
561#define STRESS_ONE BIT(2)
562#define STRESS_ALL (STRESS_INORDER | STRESS_REORDER | STRESS_ONE)
563
564static int stress(int nlocks, int nthreads, unsigned int flags)
565{
566	struct ww_mutex *locks;
567	int n;
 
568
569	locks = kmalloc_array(nlocks, sizeof(*locks), GFP_KERNEL);
570	if (!locks)
571		return -ENOMEM;
572
 
 
 
 
 
 
 
573	for (n = 0; n < nlocks; n++)
574		ww_mutex_init(&locks[n], &ww_class);
575
 
576	for (n = 0; nthreads; n++) {
577		struct stress *stress;
578		void (*fn)(struct work_struct *work);
579
580		fn = NULL;
581		switch (n & 3) {
582		case 0:
583			if (flags & STRESS_INORDER)
584				fn = stress_inorder_work;
585			break;
586		case 1:
587			if (flags & STRESS_REORDER)
588				fn = stress_reorder_work;
589			break;
590		case 2:
591			if (flags & STRESS_ONE)
592				fn = stress_one_work;
593			break;
594		}
595
596		if (!fn)
597			continue;
598
599		stress = kmalloc(sizeof(*stress), GFP_KERNEL);
600		if (!stress)
601			break;
602
603		INIT_WORK(&stress->work, fn);
604		stress->locks = locks;
605		stress->nlocks = nlocks;
606		stress->timeout = jiffies + 2*HZ;
607
608		queue_work(wq, &stress->work);
609		nthreads--;
610	}
611
612	flush_workqueue(wq);
613
614	for (n = 0; n < nlocks; n++)
615		ww_mutex_destroy(&locks[n]);
 
616	kfree(locks);
617
618	return 0;
619}
620
621static int __init test_ww_mutex_init(void)
622{
623	int ncpus = num_online_cpus();
624	int ret, i;
625
626	printk(KERN_INFO "Beginning ww mutex selftests\n");
627
 
 
628	wq = alloc_workqueue("test-ww_mutex", WQ_UNBOUND, 0);
629	if (!wq)
630		return -ENOMEM;
631
632	ret = test_mutex();
633	if (ret)
634		return ret;
635
636	ret = test_aa(false);
637	if (ret)
638		return ret;
639
640	ret = test_aa(true);
641	if (ret)
642		return ret;
643
644	for (i = 0; i < 4; i++) {
645		ret = test_abba(i & 1, i & 2);
646		if (ret)
647			return ret;
648	}
649
650	ret = test_cycle(ncpus);
651	if (ret)
652		return ret;
653
654	ret = stress(16, 2*ncpus, STRESS_INORDER);
655	if (ret)
656		return ret;
657
658	ret = stress(16, 2*ncpus, STRESS_REORDER);
659	if (ret)
660		return ret;
661
662	ret = stress(4095, hweight32(STRESS_ALL)*ncpus, STRESS_ALL);
663	if (ret)
664		return ret;
665
666	printk(KERN_INFO "All ww mutex selftests passed\n");
667	return 0;
668}
669
670static void __exit test_ww_mutex_exit(void)
671{
672	destroy_workqueue(wq);
673}
674
675module_init(test_ww_mutex_init);
676module_exit(test_ww_mutex_exit);
677
678MODULE_LICENSE("GPL");
679MODULE_AUTHOR("Intel Corporation");
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Module-based API test facility for ww_mutexes
  4 */
  5
  6#include <linux/kernel.h>
  7
  8#include <linux/completion.h>
  9#include <linux/delay.h>
 10#include <linux/kthread.h>
 11#include <linux/module.h>
 12#include <linux/prandom.h>
 13#include <linux/slab.h>
 14#include <linux/ww_mutex.h>
 15
 16static DEFINE_WD_CLASS(ww_class);
 17struct workqueue_struct *wq;
 18
 19#ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
 20#define ww_acquire_init_noinject(a, b) do { \
 21		ww_acquire_init((a), (b)); \
 22		(a)->deadlock_inject_countdown = ~0U; \
 23	} while (0)
 24#else
 25#define ww_acquire_init_noinject(a, b) ww_acquire_init((a), (b))
 26#endif
 27
 28struct test_mutex {
 29	struct work_struct work;
 30	struct ww_mutex mutex;
 31	struct completion ready, go, done;
 32	unsigned int flags;
 33};
 34
 35#define TEST_MTX_SPIN BIT(0)
 36#define TEST_MTX_TRY BIT(1)
 37#define TEST_MTX_CTX BIT(2)
 38#define __TEST_MTX_LAST BIT(3)
 39
 40static void test_mutex_work(struct work_struct *work)
 41{
 42	struct test_mutex *mtx = container_of(work, typeof(*mtx), work);
 43
 44	complete(&mtx->ready);
 45	wait_for_completion(&mtx->go);
 46
 47	if (mtx->flags & TEST_MTX_TRY) {
 48		while (!ww_mutex_trylock(&mtx->mutex, NULL))
 49			cond_resched();
 50	} else {
 51		ww_mutex_lock(&mtx->mutex, NULL);
 52	}
 53	complete(&mtx->done);
 54	ww_mutex_unlock(&mtx->mutex);
 55}
 56
 57static int __test_mutex(unsigned int flags)
 58{
 59#define TIMEOUT (HZ / 16)
 60	struct test_mutex mtx;
 61	struct ww_acquire_ctx ctx;
 62	int ret;
 63
 64	ww_mutex_init(&mtx.mutex, &ww_class);
 65	if (flags & TEST_MTX_CTX)
 66		ww_acquire_init(&ctx, &ww_class);
 67
 68	INIT_WORK_ONSTACK(&mtx.work, test_mutex_work);
 69	init_completion(&mtx.ready);
 70	init_completion(&mtx.go);
 71	init_completion(&mtx.done);
 72	mtx.flags = flags;
 73
 74	schedule_work(&mtx.work);
 75
 76	wait_for_completion(&mtx.ready);
 77	ww_mutex_lock(&mtx.mutex, (flags & TEST_MTX_CTX) ? &ctx : NULL);
 78	complete(&mtx.go);
 79	if (flags & TEST_MTX_SPIN) {
 80		unsigned long timeout = jiffies + TIMEOUT;
 81
 82		ret = 0;
 83		do {
 84			if (completion_done(&mtx.done)) {
 85				ret = -EINVAL;
 86				break;
 87			}
 88			cond_resched();
 89		} while (time_before(jiffies, timeout));
 90	} else {
 91		ret = wait_for_completion_timeout(&mtx.done, TIMEOUT);
 92	}
 93	ww_mutex_unlock(&mtx.mutex);
 94	if (flags & TEST_MTX_CTX)
 95		ww_acquire_fini(&ctx);
 96
 97	if (ret) {
 98		pr_err("%s(flags=%x): mutual exclusion failure\n",
 99		       __func__, flags);
100		ret = -EINVAL;
101	}
102
103	flush_work(&mtx.work);
104	destroy_work_on_stack(&mtx.work);
105	return ret;
106#undef TIMEOUT
107}
108
109static int test_mutex(void)
110{
111	int ret;
112	int i;
113
114	for (i = 0; i < __TEST_MTX_LAST; i++) {
115		ret = __test_mutex(i);
116		if (ret)
117			return ret;
118	}
119
120	return 0;
121}
122
123static int test_aa(bool trylock)
124{
125	struct ww_mutex mutex;
126	struct ww_acquire_ctx ctx;
127	int ret;
128	const char *from = trylock ? "trylock" : "lock";
129
130	ww_mutex_init(&mutex, &ww_class);
131	ww_acquire_init(&ctx, &ww_class);
132
133	if (!trylock) {
134		ret = ww_mutex_lock(&mutex, &ctx);
135		if (ret) {
136			pr_err("%s: initial lock failed!\n", __func__);
137			goto out;
138		}
139	} else {
140		ret = !ww_mutex_trylock(&mutex, &ctx);
141		if (ret) {
142			pr_err("%s: initial trylock failed!\n", __func__);
143			goto out;
144		}
145	}
146
147	if (ww_mutex_trylock(&mutex, NULL))  {
148		pr_err("%s: trylocked itself without context from %s!\n", __func__, from);
149		ww_mutex_unlock(&mutex);
150		ret = -EINVAL;
151		goto out;
152	}
153
154	if (ww_mutex_trylock(&mutex, &ctx))  {
155		pr_err("%s: trylocked itself with context from %s!\n", __func__, from);
156		ww_mutex_unlock(&mutex);
157		ret = -EINVAL;
158		goto out;
159	}
160
161	ret = ww_mutex_lock(&mutex, &ctx);
162	if (ret != -EALREADY) {
163		pr_err("%s: missed deadlock for recursing, ret=%d from %s\n",
164		       __func__, ret, from);
165		if (!ret)
166			ww_mutex_unlock(&mutex);
167		ret = -EINVAL;
168		goto out;
169	}
170
171	ww_mutex_unlock(&mutex);
172	ret = 0;
173out:
174	ww_acquire_fini(&ctx);
175	return ret;
176}
177
178struct test_abba {
179	struct work_struct work;
180	struct ww_mutex a_mutex;
181	struct ww_mutex b_mutex;
182	struct completion a_ready;
183	struct completion b_ready;
184	bool resolve, trylock;
185	int result;
186};
187
188static void test_abba_work(struct work_struct *work)
189{
190	struct test_abba *abba = container_of(work, typeof(*abba), work);
191	struct ww_acquire_ctx ctx;
192	int err;
193
194	ww_acquire_init_noinject(&ctx, &ww_class);
195	if (!abba->trylock)
196		ww_mutex_lock(&abba->b_mutex, &ctx);
197	else
198		WARN_ON(!ww_mutex_trylock(&abba->b_mutex, &ctx));
199
200	WARN_ON(READ_ONCE(abba->b_mutex.ctx) != &ctx);
201
202	complete(&abba->b_ready);
203	wait_for_completion(&abba->a_ready);
204
205	err = ww_mutex_lock(&abba->a_mutex, &ctx);
206	if (abba->resolve && err == -EDEADLK) {
207		ww_mutex_unlock(&abba->b_mutex);
208		ww_mutex_lock_slow(&abba->a_mutex, &ctx);
209		err = ww_mutex_lock(&abba->b_mutex, &ctx);
210	}
211
212	if (!err)
213		ww_mutex_unlock(&abba->a_mutex);
214	ww_mutex_unlock(&abba->b_mutex);
215	ww_acquire_fini(&ctx);
216
217	abba->result = err;
218}
219
220static int test_abba(bool trylock, bool resolve)
221{
222	struct test_abba abba;
223	struct ww_acquire_ctx ctx;
224	int err, ret;
225
226	ww_mutex_init(&abba.a_mutex, &ww_class);
227	ww_mutex_init(&abba.b_mutex, &ww_class);
228	INIT_WORK_ONSTACK(&abba.work, test_abba_work);
229	init_completion(&abba.a_ready);
230	init_completion(&abba.b_ready);
231	abba.trylock = trylock;
232	abba.resolve = resolve;
233
234	schedule_work(&abba.work);
235
236	ww_acquire_init_noinject(&ctx, &ww_class);
237	if (!trylock)
238		ww_mutex_lock(&abba.a_mutex, &ctx);
239	else
240		WARN_ON(!ww_mutex_trylock(&abba.a_mutex, &ctx));
241
242	WARN_ON(READ_ONCE(abba.a_mutex.ctx) != &ctx);
243
244	complete(&abba.a_ready);
245	wait_for_completion(&abba.b_ready);
246
247	err = ww_mutex_lock(&abba.b_mutex, &ctx);
248	if (resolve && err == -EDEADLK) {
249		ww_mutex_unlock(&abba.a_mutex);
250		ww_mutex_lock_slow(&abba.b_mutex, &ctx);
251		err = ww_mutex_lock(&abba.a_mutex, &ctx);
252	}
253
254	if (!err)
255		ww_mutex_unlock(&abba.b_mutex);
256	ww_mutex_unlock(&abba.a_mutex);
257	ww_acquire_fini(&ctx);
258
259	flush_work(&abba.work);
260	destroy_work_on_stack(&abba.work);
261
262	ret = 0;
263	if (resolve) {
264		if (err || abba.result) {
265			pr_err("%s: failed to resolve ABBA deadlock, A err=%d, B err=%d\n",
266			       __func__, err, abba.result);
267			ret = -EINVAL;
268		}
269	} else {
270		if (err != -EDEADLK && abba.result != -EDEADLK) {
271			pr_err("%s: missed ABBA deadlock, A err=%d, B err=%d\n",
272			       __func__, err, abba.result);
273			ret = -EINVAL;
274		}
275	}
276	return ret;
277}
278
279struct test_cycle {
280	struct work_struct work;
281	struct ww_mutex a_mutex;
282	struct ww_mutex *b_mutex;
283	struct completion *a_signal;
284	struct completion b_signal;
285	int result;
286};
287
288static void test_cycle_work(struct work_struct *work)
289{
290	struct test_cycle *cycle = container_of(work, typeof(*cycle), work);
291	struct ww_acquire_ctx ctx;
292	int err, erra = 0;
293
294	ww_acquire_init_noinject(&ctx, &ww_class);
295	ww_mutex_lock(&cycle->a_mutex, &ctx);
296
297	complete(cycle->a_signal);
298	wait_for_completion(&cycle->b_signal);
299
300	err = ww_mutex_lock(cycle->b_mutex, &ctx);
301	if (err == -EDEADLK) {
302		err = 0;
303		ww_mutex_unlock(&cycle->a_mutex);
304		ww_mutex_lock_slow(cycle->b_mutex, &ctx);
305		erra = ww_mutex_lock(&cycle->a_mutex, &ctx);
306	}
307
308	if (!err)
309		ww_mutex_unlock(cycle->b_mutex);
310	if (!erra)
311		ww_mutex_unlock(&cycle->a_mutex);
312	ww_acquire_fini(&ctx);
313
314	cycle->result = err ?: erra;
315}
316
317static int __test_cycle(unsigned int nthreads)
318{
319	struct test_cycle *cycles;
320	unsigned int n, last = nthreads - 1;
321	int ret;
322
323	cycles = kmalloc_array(nthreads, sizeof(*cycles), GFP_KERNEL);
324	if (!cycles)
325		return -ENOMEM;
326
327	for (n = 0; n < nthreads; n++) {
328		struct test_cycle *cycle = &cycles[n];
329
330		ww_mutex_init(&cycle->a_mutex, &ww_class);
331		if (n == last)
332			cycle->b_mutex = &cycles[0].a_mutex;
333		else
334			cycle->b_mutex = &cycles[n + 1].a_mutex;
335
336		if (n == 0)
337			cycle->a_signal = &cycles[last].b_signal;
338		else
339			cycle->a_signal = &cycles[n - 1].b_signal;
340		init_completion(&cycle->b_signal);
341
342		INIT_WORK(&cycle->work, test_cycle_work);
343		cycle->result = 0;
344	}
345
346	for (n = 0; n < nthreads; n++)
347		queue_work(wq, &cycles[n].work);
348
349	flush_workqueue(wq);
350
351	ret = 0;
352	for (n = 0; n < nthreads; n++) {
353		struct test_cycle *cycle = &cycles[n];
354
355		if (!cycle->result)
356			continue;
357
358		pr_err("cyclic deadlock not resolved, ret[%d/%d] = %d\n",
359		       n, nthreads, cycle->result);
360		ret = -EINVAL;
361		break;
362	}
363
364	for (n = 0; n < nthreads; n++)
365		ww_mutex_destroy(&cycles[n].a_mutex);
366	kfree(cycles);
367	return ret;
368}
369
370static int test_cycle(unsigned int ncpus)
371{
372	unsigned int n;
373	int ret;
374
375	for (n = 2; n <= ncpus + 1; n++) {
376		ret = __test_cycle(n);
377		if (ret)
378			return ret;
379	}
380
381	return 0;
382}
383
384struct stress {
385	struct work_struct work;
386	struct ww_mutex *locks;
387	unsigned long timeout;
388	int nlocks;
389};
390
391struct rnd_state rng;
392DEFINE_SPINLOCK(rng_lock);
393
394static inline u32 prandom_u32_below(u32 ceil)
395{
396	u32 ret;
397
398	spin_lock(&rng_lock);
399	ret = prandom_u32_state(&rng) % ceil;
400	spin_unlock(&rng_lock);
401	return ret;
402}
403
404static int *get_random_order(int count)
405{
406	int *order;
407	int n, r;
408
409	order = kmalloc_array(count, sizeof(*order), GFP_KERNEL);
410	if (!order)
411		return order;
412
413	for (n = 0; n < count; n++)
414		order[n] = n;
415
416	for (n = count - 1; n > 1; n--) {
417		r = prandom_u32_below(n + 1);
418		if (r != n)
419			swap(order[n], order[r]);
 
 
 
420	}
421
422	return order;
423}
424
425static void dummy_load(struct stress *stress)
426{
427	usleep_range(1000, 2000);
428}
429
430static void stress_inorder_work(struct work_struct *work)
431{
432	struct stress *stress = container_of(work, typeof(*stress), work);
433	const int nlocks = stress->nlocks;
434	struct ww_mutex *locks = stress->locks;
435	struct ww_acquire_ctx ctx;
436	int *order;
437
438	order = get_random_order(nlocks);
439	if (!order)
440		return;
441
442	do {
443		int contended = -1;
444		int n, err;
445
446		ww_acquire_init(&ctx, &ww_class);
447retry:
448		err = 0;
449		for (n = 0; n < nlocks; n++) {
450			if (n == contended)
451				continue;
452
453			err = ww_mutex_lock(&locks[order[n]], &ctx);
454			if (err < 0)
455				break;
456		}
457		if (!err)
458			dummy_load(stress);
459
460		if (contended > n)
461			ww_mutex_unlock(&locks[order[contended]]);
462		contended = n;
463		while (n--)
464			ww_mutex_unlock(&locks[order[n]]);
465
466		if (err == -EDEADLK) {
467			if (!time_after(jiffies, stress->timeout)) {
468				ww_mutex_lock_slow(&locks[order[contended]], &ctx);
469				goto retry;
470			}
471		}
472
473		ww_acquire_fini(&ctx);
474		if (err) {
475			pr_err_once("stress (%s) failed with %d\n",
476				    __func__, err);
477			break;
478		}
 
 
479	} while (!time_after(jiffies, stress->timeout));
480
481	kfree(order);
 
482}
483
484struct reorder_lock {
485	struct list_head link;
486	struct ww_mutex *lock;
487};
488
489static void stress_reorder_work(struct work_struct *work)
490{
491	struct stress *stress = container_of(work, typeof(*stress), work);
492	LIST_HEAD(locks);
493	struct ww_acquire_ctx ctx;
494	struct reorder_lock *ll, *ln;
495	int *order;
496	int n, err;
497
498	order = get_random_order(stress->nlocks);
499	if (!order)
500		return;
501
502	for (n = 0; n < stress->nlocks; n++) {
503		ll = kmalloc(sizeof(*ll), GFP_KERNEL);
504		if (!ll)
505			goto out;
506
507		ll->lock = &stress->locks[order[n]];
508		list_add(&ll->link, &locks);
509	}
510	kfree(order);
511	order = NULL;
512
513	do {
514		ww_acquire_init(&ctx, &ww_class);
515
516		list_for_each_entry(ll, &locks, link) {
517			err = ww_mutex_lock(ll->lock, &ctx);
518			if (!err)
519				continue;
520
521			ln = ll;
522			list_for_each_entry_continue_reverse(ln, &locks, link)
523				ww_mutex_unlock(ln->lock);
524
525			if (err != -EDEADLK) {
526				pr_err_once("stress (%s) failed with %d\n",
527					    __func__, err);
528				break;
529			}
530
531			ww_mutex_lock_slow(ll->lock, &ctx);
532			list_move(&ll->link, &locks); /* restarts iteration */
533		}
534
535		dummy_load(stress);
536		list_for_each_entry(ll, &locks, link)
537			ww_mutex_unlock(ll->lock);
538
539		ww_acquire_fini(&ctx);
540	} while (!time_after(jiffies, stress->timeout));
541
542out:
543	list_for_each_entry_safe(ll, ln, &locks, link)
544		kfree(ll);
545	kfree(order);
 
546}
547
548static void stress_one_work(struct work_struct *work)
549{
550	struct stress *stress = container_of(work, typeof(*stress), work);
551	const int nlocks = stress->nlocks;
552	struct ww_mutex *lock = stress->locks + get_random_u32_below(nlocks);
553	int err;
554
555	do {
556		err = ww_mutex_lock(lock, NULL);
557		if (!err) {
558			dummy_load(stress);
559			ww_mutex_unlock(lock);
560		} else {
561			pr_err_once("stress (%s) failed with %d\n",
562				    __func__, err);
563			break;
564		}
565	} while (!time_after(jiffies, stress->timeout));
 
 
566}
567
568#define STRESS_INORDER BIT(0)
569#define STRESS_REORDER BIT(1)
570#define STRESS_ONE BIT(2)
571#define STRESS_ALL (STRESS_INORDER | STRESS_REORDER | STRESS_ONE)
572
573static int stress(int nlocks, int nthreads, unsigned int flags)
574{
575	struct ww_mutex *locks;
576	struct stress *stress_array;
577	int n, count;
578
579	locks = kmalloc_array(nlocks, sizeof(*locks), GFP_KERNEL);
580	if (!locks)
581		return -ENOMEM;
582
583	stress_array = kmalloc_array(nthreads, sizeof(*stress_array),
584				     GFP_KERNEL);
585	if (!stress_array) {
586		kfree(locks);
587		return -ENOMEM;
588	}
589
590	for (n = 0; n < nlocks; n++)
591		ww_mutex_init(&locks[n], &ww_class);
592
593	count = 0;
594	for (n = 0; nthreads; n++) {
595		struct stress *stress;
596		void (*fn)(struct work_struct *work);
597
598		fn = NULL;
599		switch (n & 3) {
600		case 0:
601			if (flags & STRESS_INORDER)
602				fn = stress_inorder_work;
603			break;
604		case 1:
605			if (flags & STRESS_REORDER)
606				fn = stress_reorder_work;
607			break;
608		case 2:
609			if (flags & STRESS_ONE)
610				fn = stress_one_work;
611			break;
612		}
613
614		if (!fn)
615			continue;
616
617		stress = &stress_array[count++];
 
 
618
619		INIT_WORK(&stress->work, fn);
620		stress->locks = locks;
621		stress->nlocks = nlocks;
622		stress->timeout = jiffies + 2*HZ;
623
624		queue_work(wq, &stress->work);
625		nthreads--;
626	}
627
628	flush_workqueue(wq);
629
630	for (n = 0; n < nlocks; n++)
631		ww_mutex_destroy(&locks[n]);
632	kfree(stress_array);
633	kfree(locks);
634
635	return 0;
636}
637
638static int __init test_ww_mutex_init(void)
639{
640	int ncpus = num_online_cpus();
641	int ret, i;
642
643	printk(KERN_INFO "Beginning ww mutex selftests\n");
644
645	prandom_seed_state(&rng, get_random_u64());
646
647	wq = alloc_workqueue("test-ww_mutex", WQ_UNBOUND, 0);
648	if (!wq)
649		return -ENOMEM;
650
651	ret = test_mutex();
652	if (ret)
653		return ret;
654
655	ret = test_aa(false);
656	if (ret)
657		return ret;
658
659	ret = test_aa(true);
660	if (ret)
661		return ret;
662
663	for (i = 0; i < 4; i++) {
664		ret = test_abba(i & 1, i & 2);
665		if (ret)
666			return ret;
667	}
668
669	ret = test_cycle(ncpus);
670	if (ret)
671		return ret;
672
673	ret = stress(16, 2*ncpus, STRESS_INORDER);
674	if (ret)
675		return ret;
676
677	ret = stress(16, 2*ncpus, STRESS_REORDER);
678	if (ret)
679		return ret;
680
681	ret = stress(2046, hweight32(STRESS_ALL)*ncpus, STRESS_ALL);
682	if (ret)
683		return ret;
684
685	printk(KERN_INFO "All ww mutex selftests passed\n");
686	return 0;
687}
688
689static void __exit test_ww_mutex_exit(void)
690{
691	destroy_workqueue(wq);
692}
693
694module_init(test_ww_mutex_init);
695module_exit(test_ww_mutex_exit);
696
697MODULE_LICENSE("GPL");
698MODULE_AUTHOR("Intel Corporation");
699MODULE_DESCRIPTION("API test facility for ww_mutexes");