Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Module-based API test facility for ww_mutexes
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  4 */
  5
  6#include <linux/kernel.h>
  7
  8#include <linux/completion.h>
  9#include <linux/delay.h>
 10#include <linux/kthread.h>
 11#include <linux/module.h>
 12#include <linux/random.h>
 13#include <linux/slab.h>
 14#include <linux/ww_mutex.h>
 15
 16static DEFINE_WD_CLASS(ww_class);
 17struct workqueue_struct *wq;
 18
 19#ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
 20#define ww_acquire_init_noinject(a, b) do { \
 21		ww_acquire_init((a), (b)); \
 22		(a)->deadlock_inject_countdown = ~0U; \
 23	} while (0)
 24#else
 25#define ww_acquire_init_noinject(a, b) ww_acquire_init((a), (b))
 26#endif
 27
 28struct test_mutex {
 29	struct work_struct work;
 30	struct ww_mutex mutex;
 31	struct completion ready, go, done;
 32	unsigned int flags;
 33};
 34
 35#define TEST_MTX_SPIN BIT(0)
 36#define TEST_MTX_TRY BIT(1)
 37#define TEST_MTX_CTX BIT(2)
 38#define __TEST_MTX_LAST BIT(3)
 39
 40static void test_mutex_work(struct work_struct *work)
 41{
 42	struct test_mutex *mtx = container_of(work, typeof(*mtx), work);
 43
 44	complete(&mtx->ready);
 45	wait_for_completion(&mtx->go);
 46
 47	if (mtx->flags & TEST_MTX_TRY) {
 48		while (!ww_mutex_trylock(&mtx->mutex, NULL))
 49			cond_resched();
 50	} else {
 51		ww_mutex_lock(&mtx->mutex, NULL);
 52	}
 53	complete(&mtx->done);
 54	ww_mutex_unlock(&mtx->mutex);
 55}
 56
 57static int __test_mutex(unsigned int flags)
 58{
 59#define TIMEOUT (HZ / 16)
 60	struct test_mutex mtx;
 61	struct ww_acquire_ctx ctx;
 62	int ret;
 63
 64	ww_mutex_init(&mtx.mutex, &ww_class);
 65	ww_acquire_init(&ctx, &ww_class);
 66
 67	INIT_WORK_ONSTACK(&mtx.work, test_mutex_work);
 68	init_completion(&mtx.ready);
 69	init_completion(&mtx.go);
 70	init_completion(&mtx.done);
 71	mtx.flags = flags;
 72
 73	schedule_work(&mtx.work);
 74
 75	wait_for_completion(&mtx.ready);
 76	ww_mutex_lock(&mtx.mutex, (flags & TEST_MTX_CTX) ? &ctx : NULL);
 77	complete(&mtx.go);
 78	if (flags & TEST_MTX_SPIN) {
 79		unsigned long timeout = jiffies + TIMEOUT;
 80
 81		ret = 0;
 82		do {
 83			if (completion_done(&mtx.done)) {
 84				ret = -EINVAL;
 85				break;
 86			}
 87			cond_resched();
 88		} while (time_before(jiffies, timeout));
 89	} else {
 90		ret = wait_for_completion_timeout(&mtx.done, TIMEOUT);
 91	}
 92	ww_mutex_unlock(&mtx.mutex);
 93	ww_acquire_fini(&ctx);
 94
 95	if (ret) {
 96		pr_err("%s(flags=%x): mutual exclusion failure\n",
 97		       __func__, flags);
 98		ret = -EINVAL;
 99	}
100
101	flush_work(&mtx.work);
102	destroy_work_on_stack(&mtx.work);
103	return ret;
104#undef TIMEOUT
105}
106
107static int test_mutex(void)
108{
109	int ret;
110	int i;
111
112	for (i = 0; i < __TEST_MTX_LAST; i++) {
113		ret = __test_mutex(i);
114		if (ret)
115			return ret;
116	}
117
118	return 0;
119}
120
121static int test_aa(bool trylock)
122{
123	struct ww_mutex mutex;
124	struct ww_acquire_ctx ctx;
125	int ret;
126	const char *from = trylock ? "trylock" : "lock";
127
128	ww_mutex_init(&mutex, &ww_class);
129	ww_acquire_init(&ctx, &ww_class);
130
131	if (!trylock) {
132		ret = ww_mutex_lock(&mutex, &ctx);
133		if (ret) {
134			pr_err("%s: initial lock failed!\n", __func__);
135			goto out;
136		}
137	} else {
138		ret = !ww_mutex_trylock(&mutex, &ctx);
139		if (ret) {
140			pr_err("%s: initial trylock failed!\n", __func__);
141			goto out;
142		}
143	}
144
145	if (ww_mutex_trylock(&mutex, NULL))  {
146		pr_err("%s: trylocked itself without context from %s!\n", __func__, from);
147		ww_mutex_unlock(&mutex);
148		ret = -EINVAL;
149		goto out;
150	}
151
152	if (ww_mutex_trylock(&mutex, &ctx))  {
153		pr_err("%s: trylocked itself with context from %s!\n", __func__, from);
154		ww_mutex_unlock(&mutex);
155		ret = -EINVAL;
156		goto out;
157	}
158
159	ret = ww_mutex_lock(&mutex, &ctx);
160	if (ret != -EALREADY) {
161		pr_err("%s: missed deadlock for recursing, ret=%d from %s\n",
162		       __func__, ret, from);
163		if (!ret)
164			ww_mutex_unlock(&mutex);
165		ret = -EINVAL;
166		goto out;
167	}
168
169	ww_mutex_unlock(&mutex);
170	ret = 0;
171out:
 
172	ww_acquire_fini(&ctx);
173	return ret;
174}
175
176struct test_abba {
177	struct work_struct work;
178	struct ww_mutex a_mutex;
179	struct ww_mutex b_mutex;
180	struct completion a_ready;
181	struct completion b_ready;
182	bool resolve, trylock;
183	int result;
184};
185
186static void test_abba_work(struct work_struct *work)
187{
188	struct test_abba *abba = container_of(work, typeof(*abba), work);
189	struct ww_acquire_ctx ctx;
190	int err;
191
192	ww_acquire_init_noinject(&ctx, &ww_class);
193	if (!abba->trylock)
194		ww_mutex_lock(&abba->b_mutex, &ctx);
195	else
196		WARN_ON(!ww_mutex_trylock(&abba->b_mutex, &ctx));
197
198	WARN_ON(READ_ONCE(abba->b_mutex.ctx) != &ctx);
199
200	complete(&abba->b_ready);
201	wait_for_completion(&abba->a_ready);
202
203	err = ww_mutex_lock(&abba->a_mutex, &ctx);
204	if (abba->resolve && err == -EDEADLK) {
205		ww_mutex_unlock(&abba->b_mutex);
206		ww_mutex_lock_slow(&abba->a_mutex, &ctx);
207		err = ww_mutex_lock(&abba->b_mutex, &ctx);
208	}
209
210	if (!err)
211		ww_mutex_unlock(&abba->a_mutex);
212	ww_mutex_unlock(&abba->b_mutex);
213	ww_acquire_fini(&ctx);
214
215	abba->result = err;
216}
217
218static int test_abba(bool trylock, bool resolve)
219{
220	struct test_abba abba;
221	struct ww_acquire_ctx ctx;
222	int err, ret;
223
224	ww_mutex_init(&abba.a_mutex, &ww_class);
225	ww_mutex_init(&abba.b_mutex, &ww_class);
226	INIT_WORK_ONSTACK(&abba.work, test_abba_work);
227	init_completion(&abba.a_ready);
228	init_completion(&abba.b_ready);
229	abba.trylock = trylock;
230	abba.resolve = resolve;
231
232	schedule_work(&abba.work);
233
234	ww_acquire_init_noinject(&ctx, &ww_class);
235	if (!trylock)
236		ww_mutex_lock(&abba.a_mutex, &ctx);
237	else
238		WARN_ON(!ww_mutex_trylock(&abba.a_mutex, &ctx));
239
240	WARN_ON(READ_ONCE(abba.a_mutex.ctx) != &ctx);
241
242	complete(&abba.a_ready);
243	wait_for_completion(&abba.b_ready);
244
245	err = ww_mutex_lock(&abba.b_mutex, &ctx);
246	if (resolve && err == -EDEADLK) {
247		ww_mutex_unlock(&abba.a_mutex);
248		ww_mutex_lock_slow(&abba.b_mutex, &ctx);
249		err = ww_mutex_lock(&abba.a_mutex, &ctx);
250	}
251
252	if (!err)
253		ww_mutex_unlock(&abba.b_mutex);
254	ww_mutex_unlock(&abba.a_mutex);
255	ww_acquire_fini(&ctx);
256
257	flush_work(&abba.work);
258	destroy_work_on_stack(&abba.work);
259
260	ret = 0;
261	if (resolve) {
262		if (err || abba.result) {
263			pr_err("%s: failed to resolve ABBA deadlock, A err=%d, B err=%d\n",
264			       __func__, err, abba.result);
265			ret = -EINVAL;
266		}
267	} else {
268		if (err != -EDEADLK && abba.result != -EDEADLK) {
269			pr_err("%s: missed ABBA deadlock, A err=%d, B err=%d\n",
270			       __func__, err, abba.result);
271			ret = -EINVAL;
272		}
273	}
274	return ret;
275}
276
277struct test_cycle {
278	struct work_struct work;
279	struct ww_mutex a_mutex;
280	struct ww_mutex *b_mutex;
281	struct completion *a_signal;
282	struct completion b_signal;
283	int result;
284};
285
286static void test_cycle_work(struct work_struct *work)
287{
288	struct test_cycle *cycle = container_of(work, typeof(*cycle), work);
289	struct ww_acquire_ctx ctx;
290	int err, erra = 0;
291
292	ww_acquire_init_noinject(&ctx, &ww_class);
293	ww_mutex_lock(&cycle->a_mutex, &ctx);
294
295	complete(cycle->a_signal);
296	wait_for_completion(&cycle->b_signal);
297
298	err = ww_mutex_lock(cycle->b_mutex, &ctx);
299	if (err == -EDEADLK) {
300		err = 0;
301		ww_mutex_unlock(&cycle->a_mutex);
302		ww_mutex_lock_slow(cycle->b_mutex, &ctx);
303		erra = ww_mutex_lock(&cycle->a_mutex, &ctx);
304	}
305
306	if (!err)
307		ww_mutex_unlock(cycle->b_mutex);
308	if (!erra)
309		ww_mutex_unlock(&cycle->a_mutex);
310	ww_acquire_fini(&ctx);
311
312	cycle->result = err ?: erra;
313}
314
315static int __test_cycle(unsigned int nthreads)
316{
317	struct test_cycle *cycles;
318	unsigned int n, last = nthreads - 1;
319	int ret;
320
321	cycles = kmalloc_array(nthreads, sizeof(*cycles), GFP_KERNEL);
322	if (!cycles)
323		return -ENOMEM;
324
325	for (n = 0; n < nthreads; n++) {
326		struct test_cycle *cycle = &cycles[n];
327
328		ww_mutex_init(&cycle->a_mutex, &ww_class);
329		if (n == last)
330			cycle->b_mutex = &cycles[0].a_mutex;
331		else
332			cycle->b_mutex = &cycles[n + 1].a_mutex;
333
334		if (n == 0)
335			cycle->a_signal = &cycles[last].b_signal;
336		else
337			cycle->a_signal = &cycles[n - 1].b_signal;
338		init_completion(&cycle->b_signal);
339
340		INIT_WORK(&cycle->work, test_cycle_work);
341		cycle->result = 0;
342	}
343
344	for (n = 0; n < nthreads; n++)
345		queue_work(wq, &cycles[n].work);
346
347	flush_workqueue(wq);
348
349	ret = 0;
350	for (n = 0; n < nthreads; n++) {
351		struct test_cycle *cycle = &cycles[n];
352
353		if (!cycle->result)
354			continue;
355
356		pr_err("cyclic deadlock not resolved, ret[%d/%d] = %d\n",
357		       n, nthreads, cycle->result);
358		ret = -EINVAL;
359		break;
360	}
361
362	for (n = 0; n < nthreads; n++)
363		ww_mutex_destroy(&cycles[n].a_mutex);
364	kfree(cycles);
365	return ret;
366}
367
368static int test_cycle(unsigned int ncpus)
369{
370	unsigned int n;
371	int ret;
372
373	for (n = 2; n <= ncpus + 1; n++) {
374		ret = __test_cycle(n);
375		if (ret)
376			return ret;
377	}
378
379	return 0;
380}
381
382struct stress {
383	struct work_struct work;
384	struct ww_mutex *locks;
385	unsigned long timeout;
386	int nlocks;
387};
388
389static int *get_random_order(int count)
390{
391	int *order;
392	int n, r, tmp;
393
394	order = kmalloc_array(count, sizeof(*order), GFP_KERNEL);
395	if (!order)
396		return order;
397
398	for (n = 0; n < count; n++)
399		order[n] = n;
400
401	for (n = count - 1; n > 1; n--) {
402		r = get_random_u32_below(n + 1);
403		if (r != n) {
404			tmp = order[n];
405			order[n] = order[r];
406			order[r] = tmp;
407		}
408	}
409
410	return order;
411}
412
413static void dummy_load(struct stress *stress)
414{
415	usleep_range(1000, 2000);
416}
417
418static void stress_inorder_work(struct work_struct *work)
419{
420	struct stress *stress = container_of(work, typeof(*stress), work);
421	const int nlocks = stress->nlocks;
422	struct ww_mutex *locks = stress->locks;
423	struct ww_acquire_ctx ctx;
424	int *order;
425
426	order = get_random_order(nlocks);
427	if (!order)
428		return;
429
430	do {
431		int contended = -1;
432		int n, err;
433
434		ww_acquire_init(&ctx, &ww_class);
435retry:
436		err = 0;
437		for (n = 0; n < nlocks; n++) {
438			if (n == contended)
439				continue;
440
441			err = ww_mutex_lock(&locks[order[n]], &ctx);
442			if (err < 0)
443				break;
444		}
445		if (!err)
446			dummy_load(stress);
447
448		if (contended > n)
449			ww_mutex_unlock(&locks[order[contended]]);
450		contended = n;
451		while (n--)
452			ww_mutex_unlock(&locks[order[n]]);
453
454		if (err == -EDEADLK) {
455			ww_mutex_lock_slow(&locks[order[contended]], &ctx);
456			goto retry;
457		}
458
459		if (err) {
460			pr_err_once("stress (%s) failed with %d\n",
461				    __func__, err);
462			break;
463		}
464
465		ww_acquire_fini(&ctx);
466	} while (!time_after(jiffies, stress->timeout));
467
468	kfree(order);
469	kfree(stress);
470}
471
472struct reorder_lock {
473	struct list_head link;
474	struct ww_mutex *lock;
475};
476
477static void stress_reorder_work(struct work_struct *work)
478{
479	struct stress *stress = container_of(work, typeof(*stress), work);
480	LIST_HEAD(locks);
481	struct ww_acquire_ctx ctx;
482	struct reorder_lock *ll, *ln;
483	int *order;
484	int n, err;
485
486	order = get_random_order(stress->nlocks);
487	if (!order)
488		return;
489
490	for (n = 0; n < stress->nlocks; n++) {
491		ll = kmalloc(sizeof(*ll), GFP_KERNEL);
492		if (!ll)
493			goto out;
494
495		ll->lock = &stress->locks[order[n]];
496		list_add(&ll->link, &locks);
497	}
498	kfree(order);
499	order = NULL;
500
501	do {
502		ww_acquire_init(&ctx, &ww_class);
503
504		list_for_each_entry(ll, &locks, link) {
505			err = ww_mutex_lock(ll->lock, &ctx);
506			if (!err)
507				continue;
508
509			ln = ll;
510			list_for_each_entry_continue_reverse(ln, &locks, link)
511				ww_mutex_unlock(ln->lock);
512
513			if (err != -EDEADLK) {
514				pr_err_once("stress (%s) failed with %d\n",
515					    __func__, err);
516				break;
517			}
518
519			ww_mutex_lock_slow(ll->lock, &ctx);
520			list_move(&ll->link, &locks); /* restarts iteration */
521		}
522
523		dummy_load(stress);
524		list_for_each_entry(ll, &locks, link)
525			ww_mutex_unlock(ll->lock);
526
527		ww_acquire_fini(&ctx);
528	} while (!time_after(jiffies, stress->timeout));
529
530out:
531	list_for_each_entry_safe(ll, ln, &locks, link)
532		kfree(ll);
533	kfree(order);
534	kfree(stress);
535}
536
537static void stress_one_work(struct work_struct *work)
538{
539	struct stress *stress = container_of(work, typeof(*stress), work);
540	const int nlocks = stress->nlocks;
541	struct ww_mutex *lock = stress->locks + get_random_u32_below(nlocks);
542	int err;
543
544	do {
545		err = ww_mutex_lock(lock, NULL);
546		if (!err) {
547			dummy_load(stress);
548			ww_mutex_unlock(lock);
549		} else {
550			pr_err_once("stress (%s) failed with %d\n",
551				    __func__, err);
552			break;
553		}
554	} while (!time_after(jiffies, stress->timeout));
555
556	kfree(stress);
557}
558
559#define STRESS_INORDER BIT(0)
560#define STRESS_REORDER BIT(1)
561#define STRESS_ONE BIT(2)
562#define STRESS_ALL (STRESS_INORDER | STRESS_REORDER | STRESS_ONE)
563
564static int stress(int nlocks, int nthreads, unsigned int flags)
565{
566	struct ww_mutex *locks;
567	int n;
568
569	locks = kmalloc_array(nlocks, sizeof(*locks), GFP_KERNEL);
570	if (!locks)
571		return -ENOMEM;
572
573	for (n = 0; n < nlocks; n++)
574		ww_mutex_init(&locks[n], &ww_class);
575
576	for (n = 0; nthreads; n++) {
577		struct stress *stress;
578		void (*fn)(struct work_struct *work);
579
580		fn = NULL;
581		switch (n & 3) {
582		case 0:
583			if (flags & STRESS_INORDER)
584				fn = stress_inorder_work;
585			break;
586		case 1:
587			if (flags & STRESS_REORDER)
588				fn = stress_reorder_work;
589			break;
590		case 2:
591			if (flags & STRESS_ONE)
592				fn = stress_one_work;
593			break;
594		}
595
596		if (!fn)
597			continue;
598
599		stress = kmalloc(sizeof(*stress), GFP_KERNEL);
600		if (!stress)
601			break;
602
603		INIT_WORK(&stress->work, fn);
604		stress->locks = locks;
605		stress->nlocks = nlocks;
606		stress->timeout = jiffies + 2*HZ;
607
608		queue_work(wq, &stress->work);
609		nthreads--;
610	}
611
612	flush_workqueue(wq);
613
614	for (n = 0; n < nlocks; n++)
615		ww_mutex_destroy(&locks[n]);
616	kfree(locks);
617
618	return 0;
619}
620
621static int __init test_ww_mutex_init(void)
622{
623	int ncpus = num_online_cpus();
624	int ret, i;
625
626	printk(KERN_INFO "Beginning ww mutex selftests\n");
627
628	wq = alloc_workqueue("test-ww_mutex", WQ_UNBOUND, 0);
629	if (!wq)
630		return -ENOMEM;
631
632	ret = test_mutex();
633	if (ret)
634		return ret;
635
636	ret = test_aa(false);
637	if (ret)
638		return ret;
639
640	ret = test_aa(true);
641	if (ret)
642		return ret;
643
644	for (i = 0; i < 4; i++) {
645		ret = test_abba(i & 1, i & 2);
646		if (ret)
647			return ret;
648	}
649
650	ret = test_cycle(ncpus);
651	if (ret)
652		return ret;
653
654	ret = stress(16, 2*ncpus, STRESS_INORDER);
655	if (ret)
656		return ret;
657
658	ret = stress(16, 2*ncpus, STRESS_REORDER);
659	if (ret)
660		return ret;
661
662	ret = stress(4095, hweight32(STRESS_ALL)*ncpus, STRESS_ALL);
663	if (ret)
664		return ret;
665
666	printk(KERN_INFO "All ww mutex selftests passed\n");
667	return 0;
668}
669
670static void __exit test_ww_mutex_exit(void)
671{
672	destroy_workqueue(wq);
673}
674
675module_init(test_ww_mutex_init);
676module_exit(test_ww_mutex_exit);
677
678MODULE_LICENSE("GPL");
679MODULE_AUTHOR("Intel Corporation");
v4.17
 
  1/*
  2 * Module-based API test facility for ww_mutexes
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License as published by
  6 * the Free Software Foundation; either version 2 of the License, or
  7 * (at your option) any later version.
  8 *
  9 * This program is distributed in the hope that it will be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, you can access it online at
 16 * http://www.gnu.org/licenses/gpl-2.0.html.
 17 */
 18
 19#include <linux/kernel.h>
 20
 21#include <linux/completion.h>
 22#include <linux/delay.h>
 23#include <linux/kthread.h>
 24#include <linux/module.h>
 25#include <linux/random.h>
 26#include <linux/slab.h>
 27#include <linux/ww_mutex.h>
 28
 29static DEFINE_WW_CLASS(ww_class);
 30struct workqueue_struct *wq;
 31
 
 
 
 
 
 
 
 
 
 32struct test_mutex {
 33	struct work_struct work;
 34	struct ww_mutex mutex;
 35	struct completion ready, go, done;
 36	unsigned int flags;
 37};
 38
 39#define TEST_MTX_SPIN BIT(0)
 40#define TEST_MTX_TRY BIT(1)
 41#define TEST_MTX_CTX BIT(2)
 42#define __TEST_MTX_LAST BIT(3)
 43
 44static void test_mutex_work(struct work_struct *work)
 45{
 46	struct test_mutex *mtx = container_of(work, typeof(*mtx), work);
 47
 48	complete(&mtx->ready);
 49	wait_for_completion(&mtx->go);
 50
 51	if (mtx->flags & TEST_MTX_TRY) {
 52		while (!ww_mutex_trylock(&mtx->mutex))
 53			cond_resched();
 54	} else {
 55		ww_mutex_lock(&mtx->mutex, NULL);
 56	}
 57	complete(&mtx->done);
 58	ww_mutex_unlock(&mtx->mutex);
 59}
 60
 61static int __test_mutex(unsigned int flags)
 62{
 63#define TIMEOUT (HZ / 16)
 64	struct test_mutex mtx;
 65	struct ww_acquire_ctx ctx;
 66	int ret;
 67
 68	ww_mutex_init(&mtx.mutex, &ww_class);
 69	ww_acquire_init(&ctx, &ww_class);
 70
 71	INIT_WORK_ONSTACK(&mtx.work, test_mutex_work);
 72	init_completion(&mtx.ready);
 73	init_completion(&mtx.go);
 74	init_completion(&mtx.done);
 75	mtx.flags = flags;
 76
 77	schedule_work(&mtx.work);
 78
 79	wait_for_completion(&mtx.ready);
 80	ww_mutex_lock(&mtx.mutex, (flags & TEST_MTX_CTX) ? &ctx : NULL);
 81	complete(&mtx.go);
 82	if (flags & TEST_MTX_SPIN) {
 83		unsigned long timeout = jiffies + TIMEOUT;
 84
 85		ret = 0;
 86		do {
 87			if (completion_done(&mtx.done)) {
 88				ret = -EINVAL;
 89				break;
 90			}
 91			cond_resched();
 92		} while (time_before(jiffies, timeout));
 93	} else {
 94		ret = wait_for_completion_timeout(&mtx.done, TIMEOUT);
 95	}
 96	ww_mutex_unlock(&mtx.mutex);
 97	ww_acquire_fini(&ctx);
 98
 99	if (ret) {
100		pr_err("%s(flags=%x): mutual exclusion failure\n",
101		       __func__, flags);
102		ret = -EINVAL;
103	}
104
105	flush_work(&mtx.work);
106	destroy_work_on_stack(&mtx.work);
107	return ret;
108#undef TIMEOUT
109}
110
111static int test_mutex(void)
112{
113	int ret;
114	int i;
115
116	for (i = 0; i < __TEST_MTX_LAST; i++) {
117		ret = __test_mutex(i);
118		if (ret)
119			return ret;
120	}
121
122	return 0;
123}
124
125static int test_aa(void)
126{
127	struct ww_mutex mutex;
128	struct ww_acquire_ctx ctx;
129	int ret;
 
130
131	ww_mutex_init(&mutex, &ww_class);
132	ww_acquire_init(&ctx, &ww_class);
133
134	ww_mutex_lock(&mutex, &ctx);
 
 
 
 
 
 
 
 
 
 
 
 
135
136	if (ww_mutex_trylock(&mutex))  {
137		pr_err("%s: trylocked itself!\n", __func__);
 
 
 
 
 
 
 
138		ww_mutex_unlock(&mutex);
139		ret = -EINVAL;
140		goto out;
141	}
142
143	ret = ww_mutex_lock(&mutex, &ctx);
144	if (ret != -EALREADY) {
145		pr_err("%s: missed deadlock for recursing, ret=%d\n",
146		       __func__, ret);
147		if (!ret)
148			ww_mutex_unlock(&mutex);
149		ret = -EINVAL;
150		goto out;
151	}
152
 
153	ret = 0;
154out:
155	ww_mutex_unlock(&mutex);
156	ww_acquire_fini(&ctx);
157	return ret;
158}
159
160struct test_abba {
161	struct work_struct work;
162	struct ww_mutex a_mutex;
163	struct ww_mutex b_mutex;
164	struct completion a_ready;
165	struct completion b_ready;
166	bool resolve;
167	int result;
168};
169
170static void test_abba_work(struct work_struct *work)
171{
172	struct test_abba *abba = container_of(work, typeof(*abba), work);
173	struct ww_acquire_ctx ctx;
174	int err;
175
176	ww_acquire_init(&ctx, &ww_class);
177	ww_mutex_lock(&abba->b_mutex, &ctx);
 
 
 
 
 
178
179	complete(&abba->b_ready);
180	wait_for_completion(&abba->a_ready);
181
182	err = ww_mutex_lock(&abba->a_mutex, &ctx);
183	if (abba->resolve && err == -EDEADLK) {
184		ww_mutex_unlock(&abba->b_mutex);
185		ww_mutex_lock_slow(&abba->a_mutex, &ctx);
186		err = ww_mutex_lock(&abba->b_mutex, &ctx);
187	}
188
189	if (!err)
190		ww_mutex_unlock(&abba->a_mutex);
191	ww_mutex_unlock(&abba->b_mutex);
192	ww_acquire_fini(&ctx);
193
194	abba->result = err;
195}
196
197static int test_abba(bool resolve)
198{
199	struct test_abba abba;
200	struct ww_acquire_ctx ctx;
201	int err, ret;
202
203	ww_mutex_init(&abba.a_mutex, &ww_class);
204	ww_mutex_init(&abba.b_mutex, &ww_class);
205	INIT_WORK_ONSTACK(&abba.work, test_abba_work);
206	init_completion(&abba.a_ready);
207	init_completion(&abba.b_ready);
 
208	abba.resolve = resolve;
209
210	schedule_work(&abba.work);
211
212	ww_acquire_init(&ctx, &ww_class);
213	ww_mutex_lock(&abba.a_mutex, &ctx);
 
 
 
 
 
214
215	complete(&abba.a_ready);
216	wait_for_completion(&abba.b_ready);
217
218	err = ww_mutex_lock(&abba.b_mutex, &ctx);
219	if (resolve && err == -EDEADLK) {
220		ww_mutex_unlock(&abba.a_mutex);
221		ww_mutex_lock_slow(&abba.b_mutex, &ctx);
222		err = ww_mutex_lock(&abba.a_mutex, &ctx);
223	}
224
225	if (!err)
226		ww_mutex_unlock(&abba.b_mutex);
227	ww_mutex_unlock(&abba.a_mutex);
228	ww_acquire_fini(&ctx);
229
230	flush_work(&abba.work);
231	destroy_work_on_stack(&abba.work);
232
233	ret = 0;
234	if (resolve) {
235		if (err || abba.result) {
236			pr_err("%s: failed to resolve ABBA deadlock, A err=%d, B err=%d\n",
237			       __func__, err, abba.result);
238			ret = -EINVAL;
239		}
240	} else {
241		if (err != -EDEADLK && abba.result != -EDEADLK) {
242			pr_err("%s: missed ABBA deadlock, A err=%d, B err=%d\n",
243			       __func__, err, abba.result);
244			ret = -EINVAL;
245		}
246	}
247	return ret;
248}
249
250struct test_cycle {
251	struct work_struct work;
252	struct ww_mutex a_mutex;
253	struct ww_mutex *b_mutex;
254	struct completion *a_signal;
255	struct completion b_signal;
256	int result;
257};
258
259static void test_cycle_work(struct work_struct *work)
260{
261	struct test_cycle *cycle = container_of(work, typeof(*cycle), work);
262	struct ww_acquire_ctx ctx;
263	int err;
264
265	ww_acquire_init(&ctx, &ww_class);
266	ww_mutex_lock(&cycle->a_mutex, &ctx);
267
268	complete(cycle->a_signal);
269	wait_for_completion(&cycle->b_signal);
270
271	err = ww_mutex_lock(cycle->b_mutex, &ctx);
272	if (err == -EDEADLK) {
 
273		ww_mutex_unlock(&cycle->a_mutex);
274		ww_mutex_lock_slow(cycle->b_mutex, &ctx);
275		err = ww_mutex_lock(&cycle->a_mutex, &ctx);
276	}
277
278	if (!err)
279		ww_mutex_unlock(cycle->b_mutex);
280	ww_mutex_unlock(&cycle->a_mutex);
 
281	ww_acquire_fini(&ctx);
282
283	cycle->result = err;
284}
285
286static int __test_cycle(unsigned int nthreads)
287{
288	struct test_cycle *cycles;
289	unsigned int n, last = nthreads - 1;
290	int ret;
291
292	cycles = kmalloc_array(nthreads, sizeof(*cycles), GFP_KERNEL);
293	if (!cycles)
294		return -ENOMEM;
295
296	for (n = 0; n < nthreads; n++) {
297		struct test_cycle *cycle = &cycles[n];
298
299		ww_mutex_init(&cycle->a_mutex, &ww_class);
300		if (n == last)
301			cycle->b_mutex = &cycles[0].a_mutex;
302		else
303			cycle->b_mutex = &cycles[n + 1].a_mutex;
304
305		if (n == 0)
306			cycle->a_signal = &cycles[last].b_signal;
307		else
308			cycle->a_signal = &cycles[n - 1].b_signal;
309		init_completion(&cycle->b_signal);
310
311		INIT_WORK(&cycle->work, test_cycle_work);
312		cycle->result = 0;
313	}
314
315	for (n = 0; n < nthreads; n++)
316		queue_work(wq, &cycles[n].work);
317
318	flush_workqueue(wq);
319
320	ret = 0;
321	for (n = 0; n < nthreads; n++) {
322		struct test_cycle *cycle = &cycles[n];
323
324		if (!cycle->result)
325			continue;
326
327		pr_err("cylic deadlock not resolved, ret[%d/%d] = %d\n",
328		       n, nthreads, cycle->result);
329		ret = -EINVAL;
330		break;
331	}
332
333	for (n = 0; n < nthreads; n++)
334		ww_mutex_destroy(&cycles[n].a_mutex);
335	kfree(cycles);
336	return ret;
337}
338
339static int test_cycle(unsigned int ncpus)
340{
341	unsigned int n;
342	int ret;
343
344	for (n = 2; n <= ncpus + 1; n++) {
345		ret = __test_cycle(n);
346		if (ret)
347			return ret;
348	}
349
350	return 0;
351}
352
353struct stress {
354	struct work_struct work;
355	struct ww_mutex *locks;
356	unsigned long timeout;
357	int nlocks;
358};
359
360static int *get_random_order(int count)
361{
362	int *order;
363	int n, r, tmp;
364
365	order = kmalloc_array(count, sizeof(*order), GFP_KERNEL);
366	if (!order)
367		return order;
368
369	for (n = 0; n < count; n++)
370		order[n] = n;
371
372	for (n = count - 1; n > 1; n--) {
373		r = get_random_int() % (n + 1);
374		if (r != n) {
375			tmp = order[n];
376			order[n] = order[r];
377			order[r] = tmp;
378		}
379	}
380
381	return order;
382}
383
384static void dummy_load(struct stress *stress)
385{
386	usleep_range(1000, 2000);
387}
388
389static void stress_inorder_work(struct work_struct *work)
390{
391	struct stress *stress = container_of(work, typeof(*stress), work);
392	const int nlocks = stress->nlocks;
393	struct ww_mutex *locks = stress->locks;
394	struct ww_acquire_ctx ctx;
395	int *order;
396
397	order = get_random_order(nlocks);
398	if (!order)
399		return;
400
401	do {
402		int contended = -1;
403		int n, err;
404
405		ww_acquire_init(&ctx, &ww_class);
406retry:
407		err = 0;
408		for (n = 0; n < nlocks; n++) {
409			if (n == contended)
410				continue;
411
412			err = ww_mutex_lock(&locks[order[n]], &ctx);
413			if (err < 0)
414				break;
415		}
416		if (!err)
417			dummy_load(stress);
418
419		if (contended > n)
420			ww_mutex_unlock(&locks[order[contended]]);
421		contended = n;
422		while (n--)
423			ww_mutex_unlock(&locks[order[n]]);
424
425		if (err == -EDEADLK) {
426			ww_mutex_lock_slow(&locks[order[contended]], &ctx);
427			goto retry;
428		}
429
430		if (err) {
431			pr_err_once("stress (%s) failed with %d\n",
432				    __func__, err);
433			break;
434		}
435
436		ww_acquire_fini(&ctx);
437	} while (!time_after(jiffies, stress->timeout));
438
439	kfree(order);
440	kfree(stress);
441}
442
443struct reorder_lock {
444	struct list_head link;
445	struct ww_mutex *lock;
446};
447
448static void stress_reorder_work(struct work_struct *work)
449{
450	struct stress *stress = container_of(work, typeof(*stress), work);
451	LIST_HEAD(locks);
452	struct ww_acquire_ctx ctx;
453	struct reorder_lock *ll, *ln;
454	int *order;
455	int n, err;
456
457	order = get_random_order(stress->nlocks);
458	if (!order)
459		return;
460
461	for (n = 0; n < stress->nlocks; n++) {
462		ll = kmalloc(sizeof(*ll), GFP_KERNEL);
463		if (!ll)
464			goto out;
465
466		ll->lock = &stress->locks[order[n]];
467		list_add(&ll->link, &locks);
468	}
469	kfree(order);
470	order = NULL;
471
472	do {
473		ww_acquire_init(&ctx, &ww_class);
474
475		list_for_each_entry(ll, &locks, link) {
476			err = ww_mutex_lock(ll->lock, &ctx);
477			if (!err)
478				continue;
479
480			ln = ll;
481			list_for_each_entry_continue_reverse(ln, &locks, link)
482				ww_mutex_unlock(ln->lock);
483
484			if (err != -EDEADLK) {
485				pr_err_once("stress (%s) failed with %d\n",
486					    __func__, err);
487				break;
488			}
489
490			ww_mutex_lock_slow(ll->lock, &ctx);
491			list_move(&ll->link, &locks); /* restarts iteration */
492		}
493
494		dummy_load(stress);
495		list_for_each_entry(ll, &locks, link)
496			ww_mutex_unlock(ll->lock);
497
498		ww_acquire_fini(&ctx);
499	} while (!time_after(jiffies, stress->timeout));
500
501out:
502	list_for_each_entry_safe(ll, ln, &locks, link)
503		kfree(ll);
504	kfree(order);
505	kfree(stress);
506}
507
508static void stress_one_work(struct work_struct *work)
509{
510	struct stress *stress = container_of(work, typeof(*stress), work);
511	const int nlocks = stress->nlocks;
512	struct ww_mutex *lock = stress->locks + (get_random_int() % nlocks);
513	int err;
514
515	do {
516		err = ww_mutex_lock(lock, NULL);
517		if (!err) {
518			dummy_load(stress);
519			ww_mutex_unlock(lock);
520		} else {
521			pr_err_once("stress (%s) failed with %d\n",
522				    __func__, err);
523			break;
524		}
525	} while (!time_after(jiffies, stress->timeout));
526
527	kfree(stress);
528}
529
530#define STRESS_INORDER BIT(0)
531#define STRESS_REORDER BIT(1)
532#define STRESS_ONE BIT(2)
533#define STRESS_ALL (STRESS_INORDER | STRESS_REORDER | STRESS_ONE)
534
535static int stress(int nlocks, int nthreads, unsigned int flags)
536{
537	struct ww_mutex *locks;
538	int n;
539
540	locks = kmalloc_array(nlocks, sizeof(*locks), GFP_KERNEL);
541	if (!locks)
542		return -ENOMEM;
543
544	for (n = 0; n < nlocks; n++)
545		ww_mutex_init(&locks[n], &ww_class);
546
547	for (n = 0; nthreads; n++) {
548		struct stress *stress;
549		void (*fn)(struct work_struct *work);
550
551		fn = NULL;
552		switch (n & 3) {
553		case 0:
554			if (flags & STRESS_INORDER)
555				fn = stress_inorder_work;
556			break;
557		case 1:
558			if (flags & STRESS_REORDER)
559				fn = stress_reorder_work;
560			break;
561		case 2:
562			if (flags & STRESS_ONE)
563				fn = stress_one_work;
564			break;
565		}
566
567		if (!fn)
568			continue;
569
570		stress = kmalloc(sizeof(*stress), GFP_KERNEL);
571		if (!stress)
572			break;
573
574		INIT_WORK(&stress->work, fn);
575		stress->locks = locks;
576		stress->nlocks = nlocks;
577		stress->timeout = jiffies + 2*HZ;
578
579		queue_work(wq, &stress->work);
580		nthreads--;
581	}
582
583	flush_workqueue(wq);
584
585	for (n = 0; n < nlocks; n++)
586		ww_mutex_destroy(&locks[n]);
587	kfree(locks);
588
589	return 0;
590}
591
592static int __init test_ww_mutex_init(void)
593{
594	int ncpus = num_online_cpus();
595	int ret;
 
 
596
597	wq = alloc_workqueue("test-ww_mutex", WQ_UNBOUND, 0);
598	if (!wq)
599		return -ENOMEM;
600
601	ret = test_mutex();
602	if (ret)
603		return ret;
604
605	ret = test_aa();
606	if (ret)
607		return ret;
608
609	ret = test_abba(false);
610	if (ret)
611		return ret;
612
613	ret = test_abba(true);
614	if (ret)
615		return ret;
 
 
616
617	ret = test_cycle(ncpus);
618	if (ret)
619		return ret;
620
621	ret = stress(16, 2*ncpus, STRESS_INORDER);
622	if (ret)
623		return ret;
624
625	ret = stress(16, 2*ncpus, STRESS_REORDER);
626	if (ret)
627		return ret;
628
629	ret = stress(4095, hweight32(STRESS_ALL)*ncpus, STRESS_ALL);
630	if (ret)
631		return ret;
632
 
633	return 0;
634}
635
636static void __exit test_ww_mutex_exit(void)
637{
638	destroy_workqueue(wq);
639}
640
641module_init(test_ww_mutex_init);
642module_exit(test_ww_mutex_exit);
643
644MODULE_LICENSE("GPL");
645MODULE_AUTHOR("Intel Corporation");