Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/super.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  super.c contains code to handle: - mount structures
   8 *                                   - super-block tables
   9 *                                   - filesystem drivers list
  10 *                                   - mount system call
  11 *                                   - umount system call
  12 *                                   - ustat system call
  13 *
  14 * GK 2/5/95  -  Changed to support mounting the root fs via NFS
  15 *
  16 *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
  17 *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
  18 *  Added options to /proc/mounts:
  19 *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
  20 *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
  21 *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
  22 */
  23
  24#include <linux/export.h>
  25#include <linux/slab.h>
  26#include <linux/blkdev.h>
  27#include <linux/mount.h>
  28#include <linux/security.h>
  29#include <linux/writeback.h>		/* for the emergency remount stuff */
  30#include <linux/idr.h>
  31#include <linux/mutex.h>
  32#include <linux/backing-dev.h>
  33#include <linux/rculist_bl.h>
  34#include <linux/fscrypt.h>
  35#include <linux/fsnotify.h>
  36#include <linux/lockdep.h>
  37#include <linux/user_namespace.h>
  38#include <linux/fs_context.h>
  39#include <uapi/linux/mount.h>
  40#include "internal.h"
  41
  42static int thaw_super_locked(struct super_block *sb);
  43
  44static LIST_HEAD(super_blocks);
  45static DEFINE_SPINLOCK(sb_lock);
  46
  47static char *sb_writers_name[SB_FREEZE_LEVELS] = {
  48	"sb_writers",
  49	"sb_pagefaults",
  50	"sb_internal",
  51};
  52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  53/*
  54 * One thing we have to be careful of with a per-sb shrinker is that we don't
  55 * drop the last active reference to the superblock from within the shrinker.
  56 * If that happens we could trigger unregistering the shrinker from within the
  57 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
  58 * take a passive reference to the superblock to avoid this from occurring.
  59 */
  60static unsigned long super_cache_scan(struct shrinker *shrink,
  61				      struct shrink_control *sc)
  62{
  63	struct super_block *sb;
  64	long	fs_objects = 0;
  65	long	total_objects;
  66	long	freed = 0;
  67	long	dentries;
  68	long	inodes;
  69
  70	sb = container_of(shrink, struct super_block, s_shrink);
  71
  72	/*
  73	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
  74	 * to recurse into the FS that called us in clear_inode() and friends..
  75	 */
  76	if (!(sc->gfp_mask & __GFP_FS))
  77		return SHRINK_STOP;
  78
  79	if (!trylock_super(sb))
  80		return SHRINK_STOP;
  81
  82	if (sb->s_op->nr_cached_objects)
  83		fs_objects = sb->s_op->nr_cached_objects(sb, sc);
  84
  85	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
  86	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
  87	total_objects = dentries + inodes + fs_objects + 1;
  88	if (!total_objects)
  89		total_objects = 1;
  90
  91	/* proportion the scan between the caches */
  92	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
  93	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
  94	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
  95
  96	/*
  97	 * prune the dcache first as the icache is pinned by it, then
  98	 * prune the icache, followed by the filesystem specific caches
  99	 *
 100	 * Ensure that we always scan at least one object - memcg kmem
 101	 * accounting uses this to fully empty the caches.
 102	 */
 103	sc->nr_to_scan = dentries + 1;
 104	freed = prune_dcache_sb(sb, sc);
 105	sc->nr_to_scan = inodes + 1;
 106	freed += prune_icache_sb(sb, sc);
 107
 108	if (fs_objects) {
 109		sc->nr_to_scan = fs_objects + 1;
 110		freed += sb->s_op->free_cached_objects(sb, sc);
 111	}
 112
 113	up_read(&sb->s_umount);
 114	return freed;
 115}
 116
 117static unsigned long super_cache_count(struct shrinker *shrink,
 118				       struct shrink_control *sc)
 119{
 120	struct super_block *sb;
 121	long	total_objects = 0;
 122
 123	sb = container_of(shrink, struct super_block, s_shrink);
 124
 125	/*
 126	 * We don't call trylock_super() here as it is a scalability bottleneck,
 127	 * so we're exposed to partial setup state. The shrinker rwsem does not
 128	 * protect filesystem operations backing list_lru_shrink_count() or
 129	 * s_op->nr_cached_objects(). Counts can change between
 130	 * super_cache_count and super_cache_scan, so we really don't need locks
 131	 * here.
 132	 *
 133	 * However, if we are currently mounting the superblock, the underlying
 134	 * filesystem might be in a state of partial construction and hence it
 135	 * is dangerous to access it.  trylock_super() uses a SB_BORN check to
 136	 * avoid this situation, so do the same here. The memory barrier is
 137	 * matched with the one in mount_fs() as we don't hold locks here.
 138	 */
 139	if (!(sb->s_flags & SB_BORN))
 140		return 0;
 141	smp_rmb();
 142
 143	if (sb->s_op && sb->s_op->nr_cached_objects)
 144		total_objects = sb->s_op->nr_cached_objects(sb, sc);
 145
 146	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
 147	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
 148
 149	if (!total_objects)
 150		return SHRINK_EMPTY;
 151
 152	total_objects = vfs_pressure_ratio(total_objects);
 153	return total_objects;
 154}
 155
 156static void destroy_super_work(struct work_struct *work)
 157{
 158	struct super_block *s = container_of(work, struct super_block,
 159							destroy_work);
 160	int i;
 161
 162	for (i = 0; i < SB_FREEZE_LEVELS; i++)
 
 
 163		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
 164	kfree(s);
 165}
 166
 167static void destroy_super_rcu(struct rcu_head *head)
 168{
 169	struct super_block *s = container_of(head, struct super_block, rcu);
 170	INIT_WORK(&s->destroy_work, destroy_super_work);
 171	schedule_work(&s->destroy_work);
 172}
 173
 174/* Free a superblock that has never been seen by anyone */
 175static void destroy_unused_super(struct super_block *s)
 176{
 177	if (!s)
 178		return;
 179	up_write(&s->s_umount);
 180	list_lru_destroy(&s->s_dentry_lru);
 181	list_lru_destroy(&s->s_inode_lru);
 182	security_sb_free(s);
 183	put_user_ns(s->s_user_ns);
 184	kfree(s->s_subtype);
 185	free_prealloced_shrinker(&s->s_shrink);
 186	/* no delays needed */
 187	destroy_super_work(&s->destroy_work);
 188}
 189
 190/**
 191 *	alloc_super	-	create new superblock
 192 *	@type:	filesystem type superblock should belong to
 193 *	@flags: the mount flags
 194 *	@user_ns: User namespace for the super_block
 195 *
 196 *	Allocates and initializes a new &struct super_block.  alloc_super()
 197 *	returns a pointer new superblock or %NULL if allocation had failed.
 198 */
 199static struct super_block *alloc_super(struct file_system_type *type, int flags,
 200				       struct user_namespace *user_ns)
 201{
 202	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
 203	static const struct super_operations default_op;
 204	int i;
 205
 206	if (!s)
 207		return NULL;
 208
 209	INIT_LIST_HEAD(&s->s_mounts);
 210	s->s_user_ns = get_user_ns(user_ns);
 211	init_rwsem(&s->s_umount);
 212	lockdep_set_class(&s->s_umount, &type->s_umount_key);
 213	/*
 214	 * sget() can have s_umount recursion.
 215	 *
 216	 * When it cannot find a suitable sb, it allocates a new
 217	 * one (this one), and tries again to find a suitable old
 218	 * one.
 219	 *
 220	 * In case that succeeds, it will acquire the s_umount
 221	 * lock of the old one. Since these are clearly distrinct
 222	 * locks, and this object isn't exposed yet, there's no
 223	 * risk of deadlocks.
 224	 *
 225	 * Annotate this by putting this lock in a different
 226	 * subclass.
 227	 */
 228	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
 229
 230	if (security_sb_alloc(s))
 231		goto fail;
 232
 233	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
 234		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
 235					sb_writers_name[i],
 236					&type->s_writers_key[i]))
 237			goto fail;
 238	}
 239	init_waitqueue_head(&s->s_writers.wait_unfrozen);
 240	s->s_bdi = &noop_backing_dev_info;
 241	s->s_flags = flags;
 242	if (s->s_user_ns != &init_user_ns)
 243		s->s_iflags |= SB_I_NODEV;
 244	INIT_HLIST_NODE(&s->s_instances);
 245	INIT_HLIST_BL_HEAD(&s->s_roots);
 246	mutex_init(&s->s_sync_lock);
 247	INIT_LIST_HEAD(&s->s_inodes);
 248	spin_lock_init(&s->s_inode_list_lock);
 249	INIT_LIST_HEAD(&s->s_inodes_wb);
 250	spin_lock_init(&s->s_inode_wblist_lock);
 251
 252	s->s_count = 1;
 253	atomic_set(&s->s_active, 1);
 254	mutex_init(&s->s_vfs_rename_mutex);
 255	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
 256	init_rwsem(&s->s_dquot.dqio_sem);
 257	s->s_maxbytes = MAX_NON_LFS;
 258	s->s_op = &default_op;
 259	s->s_time_gran = 1000000000;
 260	s->s_time_min = TIME64_MIN;
 261	s->s_time_max = TIME64_MAX;
 262
 263	s->s_shrink.seeks = DEFAULT_SEEKS;
 264	s->s_shrink.scan_objects = super_cache_scan;
 265	s->s_shrink.count_objects = super_cache_count;
 266	s->s_shrink.batch = 1024;
 267	s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
 268	if (prealloc_shrinker(&s->s_shrink, "sb-%s", type->name))
 269		goto fail;
 270	if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink))
 
 
 
 
 
 
 271		goto fail;
 272	if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink))
 273		goto fail;
 274	return s;
 275
 276fail:
 277	destroy_unused_super(s);
 278	return NULL;
 279}
 280
 281/* Superblock refcounting  */
 282
 283/*
 284 * Drop a superblock's refcount.  The caller must hold sb_lock.
 285 */
 286static void __put_super(struct super_block *s)
 287{
 288	if (!--s->s_count) {
 289		list_del_init(&s->s_list);
 290		WARN_ON(s->s_dentry_lru.node);
 291		WARN_ON(s->s_inode_lru.node);
 292		WARN_ON(!list_empty(&s->s_mounts));
 293		security_sb_free(s);
 294		fscrypt_destroy_keyring(s);
 295		put_user_ns(s->s_user_ns);
 296		kfree(s->s_subtype);
 297		call_rcu(&s->rcu, destroy_super_rcu);
 298	}
 299}
 300
 301/**
 302 *	put_super	-	drop a temporary reference to superblock
 303 *	@sb: superblock in question
 304 *
 305 *	Drops a temporary reference, frees superblock if there's no
 306 *	references left.
 307 */
 308void put_super(struct super_block *sb)
 309{
 310	spin_lock(&sb_lock);
 311	__put_super(sb);
 312	spin_unlock(&sb_lock);
 313}
 314
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 315
 316/**
 317 *	deactivate_locked_super	-	drop an active reference to superblock
 318 *	@s: superblock to deactivate
 319 *
 320 *	Drops an active reference to superblock, converting it into a temporary
 321 *	one if there is no other active references left.  In that case we
 322 *	tell fs driver to shut it down and drop the temporary reference we
 323 *	had just acquired.
 324 *
 325 *	Caller holds exclusive lock on superblock; that lock is released.
 326 */
 327void deactivate_locked_super(struct super_block *s)
 328{
 329	struct file_system_type *fs = s->s_type;
 330	if (atomic_dec_and_test(&s->s_active)) {
 331		unregister_shrinker(&s->s_shrink);
 332		fs->kill_sb(s);
 333
 
 
 334		/*
 335		 * Since list_lru_destroy() may sleep, we cannot call it from
 336		 * put_super(), where we hold the sb_lock. Therefore we destroy
 337		 * the lru lists right now.
 338		 */
 339		list_lru_destroy(&s->s_dentry_lru);
 340		list_lru_destroy(&s->s_inode_lru);
 341
 342		put_filesystem(fs);
 343		put_super(s);
 344	} else {
 345		up_write(&s->s_umount);
 346	}
 347}
 348
 349EXPORT_SYMBOL(deactivate_locked_super);
 350
 351/**
 352 *	deactivate_super	-	drop an active reference to superblock
 353 *	@s: superblock to deactivate
 354 *
 355 *	Variant of deactivate_locked_super(), except that superblock is *not*
 356 *	locked by caller.  If we are going to drop the final active reference,
 357 *	lock will be acquired prior to that.
 358 */
 359void deactivate_super(struct super_block *s)
 360{
 361	if (!atomic_add_unless(&s->s_active, -1, 1)) {
 362		down_write(&s->s_umount);
 363		deactivate_locked_super(s);
 364	}
 365}
 366
 367EXPORT_SYMBOL(deactivate_super);
 368
 369/**
 370 *	grab_super - acquire an active reference
 371 *	@s: reference we are trying to make active
 
 
 
 
 
 372 *
 373 *	Tries to acquire an active reference.  grab_super() is used when we
 374 * 	had just found a superblock in super_blocks or fs_type->fs_supers
 375 *	and want to turn it into a full-blown active reference.  grab_super()
 376 *	is called with sb_lock held and drops it.  Returns 1 in case of
 377 *	success, 0 if we had failed (superblock contents was already dead or
 378 *	dying when grab_super() had been called).  Note that this is only
 379 *	called for superblocks not in rundown mode (== ones still on ->fs_supers
 380 *	of their type), so increment of ->s_count is OK here.
 381 */
 382static int grab_super(struct super_block *s) __releases(sb_lock)
 383{
 384	s->s_count++;
 
 
 385	spin_unlock(&sb_lock);
 386	down_write(&s->s_umount);
 387	if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
 388		put_super(s);
 389		return 1;
 
 
 
 390	}
 391	up_write(&s->s_umount);
 392	put_super(s);
 393	return 0;
 394}
 395
 396/*
 397 *	trylock_super - try to grab ->s_umount shared
 398 *	@sb: reference we are trying to grab
 399 *
 400 *	Try to prevent fs shutdown.  This is used in places where we
 401 *	cannot take an active reference but we need to ensure that the
 402 *	filesystem is not shut down while we are working on it. It returns
 403 *	false if we cannot acquire s_umount or if we lose the race and
 404 *	filesystem already got into shutdown, and returns true with the s_umount
 405 *	lock held in read mode in case of success. On successful return,
 406 *	the caller must drop the s_umount lock when done.
 407 *
 408 *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
 409 *	The reason why it's safe is that we are OK with doing trylock instead
 410 *	of down_read().  There's a couple of places that are OK with that, but
 411 *	it's very much not a general-purpose interface.
 412 */
 413bool trylock_super(struct super_block *sb)
 414{
 415	if (down_read_trylock(&sb->s_umount)) {
 416		if (!hlist_unhashed(&sb->s_instances) &&
 417		    sb->s_root && (sb->s_flags & SB_BORN))
 418			return true;
 419		up_read(&sb->s_umount);
 420	}
 421
 422	return false;
 423}
 424
 425/**
 426 *	retire_super	-	prevents superblock from being reused
 427 *	@sb: superblock to retire
 428 *
 429 *	The function marks superblock to be ignored in superblock test, which
 430 *	prevents it from being reused for any new mounts.  If the superblock has
 431 *	a private bdi, it also unregisters it, but doesn't reduce the refcount
 432 *	of the superblock to prevent potential races.  The refcount is reduced
 433 *	by generic_shutdown_super().  The function can not be called
 434 *	concurrently with generic_shutdown_super().  It is safe to call the
 435 *	function multiple times, subsequent calls have no effect.
 436 *
 437 *	The marker will affect the re-use only for block-device-based
 438 *	superblocks.  Other superblocks will still get marked if this function
 439 *	is used, but that will not affect their reusability.
 440 */
 441void retire_super(struct super_block *sb)
 442{
 443	WARN_ON(!sb->s_bdev);
 444	down_write(&sb->s_umount);
 445	if (sb->s_iflags & SB_I_PERSB_BDI) {
 446		bdi_unregister(sb->s_bdi);
 447		sb->s_iflags &= ~SB_I_PERSB_BDI;
 448	}
 449	sb->s_iflags |= SB_I_RETIRED;
 450	up_write(&sb->s_umount);
 451}
 452EXPORT_SYMBOL(retire_super);
 453
 454/**
 455 *	generic_shutdown_super	-	common helper for ->kill_sb()
 456 *	@sb: superblock to kill
 457 *
 458 *	generic_shutdown_super() does all fs-independent work on superblock
 459 *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
 460 *	that need destruction out of superblock, call generic_shutdown_super()
 461 *	and release aforementioned objects.  Note: dentries and inodes _are_
 462 *	taken care of and do not need specific handling.
 463 *
 464 *	Upon calling this function, the filesystem may no longer alter or
 465 *	rearrange the set of dentries belonging to this super_block, nor may it
 466 *	change the attachments of dentries to inodes.
 467 */
 468void generic_shutdown_super(struct super_block *sb)
 469{
 470	const struct super_operations *sop = sb->s_op;
 471
 472	if (sb->s_root) {
 473		shrink_dcache_for_umount(sb);
 474		sync_filesystem(sb);
 475		sb->s_flags &= ~SB_ACTIVE;
 476
 477		cgroup_writeback_umount();
 478
 479		/* evict all inodes with zero refcount */
 480		evict_inodes(sb);
 481		/* only nonzero refcount inodes can have marks */
 
 
 
 
 482		fsnotify_sb_delete(sb);
 483		fscrypt_destroy_keyring(sb);
 484		security_sb_delete(sb);
 485
 486		if (sb->s_dio_done_wq) {
 487			destroy_workqueue(sb->s_dio_done_wq);
 488			sb->s_dio_done_wq = NULL;
 489		}
 490
 491		if (sop->put_super)
 492			sop->put_super(sb);
 493
 494		if (!list_empty(&sb->s_inodes)) {
 495			printk("VFS: Busy inodes after unmount of %s. "
 496			   "Self-destruct in 5 seconds.  Have a nice day...\n",
 497			   sb->s_id);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 498		}
 499	}
 500	spin_lock(&sb_lock);
 501	/* should be initialized for __put_super_and_need_restart() */
 502	hlist_del_init(&sb->s_instances);
 503	spin_unlock(&sb_lock);
 504	up_write(&sb->s_umount);
 
 
 
 
 
 
 505	if (sb->s_bdi != &noop_backing_dev_info) {
 506		if (sb->s_iflags & SB_I_PERSB_BDI)
 507			bdi_unregister(sb->s_bdi);
 508		bdi_put(sb->s_bdi);
 509		sb->s_bdi = &noop_backing_dev_info;
 510	}
 511}
 512
 513EXPORT_SYMBOL(generic_shutdown_super);
 514
 515bool mount_capable(struct fs_context *fc)
 516{
 517	if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
 518		return capable(CAP_SYS_ADMIN);
 519	else
 520		return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
 521}
 522
 523/**
 524 * sget_fc - Find or create a superblock
 525 * @fc:	Filesystem context.
 526 * @test: Comparison callback
 527 * @set: Setup callback
 528 *
 529 * Find or create a superblock using the parameters stored in the filesystem
 530 * context and the two callback functions.
 
 
 
 
 
 
 531 *
 532 * If an extant superblock is matched, then that will be returned with an
 533 * elevated reference count that the caller must transfer or discard.
 
 
 
 
 
 534 *
 535 * If no match is made, a new superblock will be allocated and basic
 536 * initialisation will be performed (s_type, s_fs_info and s_id will be set and
 537 * the set() callback will be invoked), the superblock will be published and it
 538 * will be returned in a partially constructed state with SB_BORN and SB_ACTIVE
 539 * as yet unset.
 
 
 
 540 */
 541struct super_block *sget_fc(struct fs_context *fc,
 542			    int (*test)(struct super_block *, struct fs_context *),
 543			    int (*set)(struct super_block *, struct fs_context *))
 544{
 545	struct super_block *s = NULL;
 546	struct super_block *old;
 547	struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
 548	int err;
 549
 
 
 
 
 
 
 
 
 
 
 
 550retry:
 551	spin_lock(&sb_lock);
 552	if (test) {
 553		hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
 554			if (test(old, fc))
 555				goto share_extant_sb;
 556		}
 557	}
 558	if (!s) {
 559		spin_unlock(&sb_lock);
 560		s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
 561		if (!s)
 562			return ERR_PTR(-ENOMEM);
 563		goto retry;
 564	}
 565
 566	s->s_fs_info = fc->s_fs_info;
 567	err = set(s, fc);
 568	if (err) {
 569		s->s_fs_info = NULL;
 570		spin_unlock(&sb_lock);
 571		destroy_unused_super(s);
 572		return ERR_PTR(err);
 573	}
 574	fc->s_fs_info = NULL;
 575	s->s_type = fc->fs_type;
 576	s->s_iflags |= fc->s_iflags;
 577	strlcpy(s->s_id, s->s_type->name, sizeof(s->s_id));
 
 
 
 
 
 578	list_add_tail(&s->s_list, &super_blocks);
 579	hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
 580	spin_unlock(&sb_lock);
 581	get_filesystem(s->s_type);
 582	register_shrinker_prepared(&s->s_shrink);
 583	return s;
 584
 585share_extant_sb:
 586	if (user_ns != old->s_user_ns) {
 587		spin_unlock(&sb_lock);
 588		destroy_unused_super(s);
 
 
 
 
 589		return ERR_PTR(-EBUSY);
 590	}
 591	if (!grab_super(old))
 592		goto retry;
 593	destroy_unused_super(s);
 594	return old;
 595}
 596EXPORT_SYMBOL(sget_fc);
 597
 598/**
 599 *	sget	-	find or create a superblock
 600 *	@type:	  filesystem type superblock should belong to
 601 *	@test:	  comparison callback
 602 *	@set:	  setup callback
 603 *	@flags:	  mount flags
 604 *	@data:	  argument to each of them
 605 */
 606struct super_block *sget(struct file_system_type *type,
 607			int (*test)(struct super_block *,void *),
 608			int (*set)(struct super_block *,void *),
 609			int flags,
 610			void *data)
 611{
 612	struct user_namespace *user_ns = current_user_ns();
 613	struct super_block *s = NULL;
 614	struct super_block *old;
 615	int err;
 616
 617	/* We don't yet pass the user namespace of the parent
 618	 * mount through to here so always use &init_user_ns
 619	 * until that changes.
 620	 */
 621	if (flags & SB_SUBMOUNT)
 622		user_ns = &init_user_ns;
 623
 624retry:
 625	spin_lock(&sb_lock);
 626	if (test) {
 627		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
 628			if (!test(old, data))
 629				continue;
 630			if (user_ns != old->s_user_ns) {
 631				spin_unlock(&sb_lock);
 632				destroy_unused_super(s);
 633				return ERR_PTR(-EBUSY);
 634			}
 635			if (!grab_super(old))
 636				goto retry;
 637			destroy_unused_super(s);
 638			return old;
 639		}
 640	}
 641	if (!s) {
 642		spin_unlock(&sb_lock);
 643		s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
 644		if (!s)
 645			return ERR_PTR(-ENOMEM);
 646		goto retry;
 647	}
 648
 649	err = set(s, data);
 650	if (err) {
 651		spin_unlock(&sb_lock);
 652		destroy_unused_super(s);
 653		return ERR_PTR(err);
 654	}
 655	s->s_type = type;
 656	strlcpy(s->s_id, type->name, sizeof(s->s_id));
 657	list_add_tail(&s->s_list, &super_blocks);
 658	hlist_add_head(&s->s_instances, &type->fs_supers);
 659	spin_unlock(&sb_lock);
 660	get_filesystem(type);
 661	register_shrinker_prepared(&s->s_shrink);
 662	return s;
 663}
 664EXPORT_SYMBOL(sget);
 665
 666void drop_super(struct super_block *sb)
 667{
 668	up_read(&sb->s_umount);
 669	put_super(sb);
 670}
 671
 672EXPORT_SYMBOL(drop_super);
 673
 674void drop_super_exclusive(struct super_block *sb)
 675{
 676	up_write(&sb->s_umount);
 677	put_super(sb);
 678}
 679EXPORT_SYMBOL(drop_super_exclusive);
 680
 681static void __iterate_supers(void (*f)(struct super_block *))
 682{
 683	struct super_block *sb, *p = NULL;
 684
 685	spin_lock(&sb_lock);
 686	list_for_each_entry(sb, &super_blocks, s_list) {
 687		if (hlist_unhashed(&sb->s_instances))
 688			continue;
 689		sb->s_count++;
 690		spin_unlock(&sb_lock);
 691
 692		f(sb);
 693
 694		spin_lock(&sb_lock);
 695		if (p)
 696			__put_super(p);
 697		p = sb;
 698	}
 699	if (p)
 700		__put_super(p);
 701	spin_unlock(&sb_lock);
 702}
 703/**
 704 *	iterate_supers - call function for all active superblocks
 705 *	@f: function to call
 706 *	@arg: argument to pass to it
 707 *
 708 *	Scans the superblock list and calls given function, passing it
 709 *	locked superblock and given argument.
 710 */
 711void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
 712{
 713	struct super_block *sb, *p = NULL;
 714
 715	spin_lock(&sb_lock);
 716	list_for_each_entry(sb, &super_blocks, s_list) {
 717		if (hlist_unhashed(&sb->s_instances))
 718			continue;
 719		sb->s_count++;
 720		spin_unlock(&sb_lock);
 721
 722		down_read(&sb->s_umount);
 723		if (sb->s_root && (sb->s_flags & SB_BORN))
 724			f(sb, arg);
 725		up_read(&sb->s_umount);
 
 
 726
 727		spin_lock(&sb_lock);
 728		if (p)
 729			__put_super(p);
 730		p = sb;
 731	}
 732	if (p)
 733		__put_super(p);
 734	spin_unlock(&sb_lock);
 735}
 736
 737/**
 738 *	iterate_supers_type - call function for superblocks of given type
 739 *	@type: fs type
 740 *	@f: function to call
 741 *	@arg: argument to pass to it
 742 *
 743 *	Scans the superblock list and calls given function, passing it
 744 *	locked superblock and given argument.
 745 */
 746void iterate_supers_type(struct file_system_type *type,
 747	void (*f)(struct super_block *, void *), void *arg)
 748{
 749	struct super_block *sb, *p = NULL;
 750
 751	spin_lock(&sb_lock);
 752	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
 
 
 753		sb->s_count++;
 754		spin_unlock(&sb_lock);
 755
 756		down_read(&sb->s_umount);
 757		if (sb->s_root && (sb->s_flags & SB_BORN))
 758			f(sb, arg);
 759		up_read(&sb->s_umount);
 
 
 760
 761		spin_lock(&sb_lock);
 762		if (p)
 763			__put_super(p);
 764		p = sb;
 765	}
 766	if (p)
 767		__put_super(p);
 768	spin_unlock(&sb_lock);
 769}
 770
 771EXPORT_SYMBOL(iterate_supers_type);
 772
 773/**
 774 * get_super - get the superblock of a device
 775 * @bdev: device to get the superblock for
 776 *
 777 * Scans the superblock list and finds the superblock of the file system
 778 * mounted on the device given. %NULL is returned if no match is found.
 779 */
 780struct super_block *get_super(struct block_device *bdev)
 781{
 782	struct super_block *sb;
 783
 784	if (!bdev)
 785		return NULL;
 786
 787	spin_lock(&sb_lock);
 788rescan:
 789	list_for_each_entry(sb, &super_blocks, s_list) {
 790		if (hlist_unhashed(&sb->s_instances))
 791			continue;
 792		if (sb->s_bdev == bdev) {
 793			sb->s_count++;
 794			spin_unlock(&sb_lock);
 795			down_read(&sb->s_umount);
 796			/* still alive? */
 797			if (sb->s_root && (sb->s_flags & SB_BORN))
 798				return sb;
 799			up_read(&sb->s_umount);
 800			/* nope, got unmounted */
 801			spin_lock(&sb_lock);
 802			__put_super(sb);
 803			goto rescan;
 804		}
 805	}
 806	spin_unlock(&sb_lock);
 807	return NULL;
 808}
 809
 810/**
 811 * get_active_super - get an active reference to the superblock of a device
 812 * @bdev: device to get the superblock for
 813 *
 814 * Scans the superblock list and finds the superblock of the file system
 815 * mounted on the device given.  Returns the superblock with an active
 816 * reference or %NULL if none was found.
 817 */
 818struct super_block *get_active_super(struct block_device *bdev)
 819{
 820	struct super_block *sb;
 821
 822	if (!bdev)
 823		return NULL;
 824
 825restart:
 826	spin_lock(&sb_lock);
 827	list_for_each_entry(sb, &super_blocks, s_list) {
 828		if (hlist_unhashed(&sb->s_instances))
 829			continue;
 830		if (sb->s_bdev == bdev) {
 831			if (!grab_super(sb))
 832				goto restart;
 833			up_write(&sb->s_umount);
 834			return sb;
 835		}
 836	}
 837	spin_unlock(&sb_lock);
 838	return NULL;
 839}
 840
 841struct super_block *user_get_super(dev_t dev, bool excl)
 842{
 843	struct super_block *sb;
 844
 845	spin_lock(&sb_lock);
 846rescan:
 847	list_for_each_entry(sb, &super_blocks, s_list) {
 848		if (hlist_unhashed(&sb->s_instances))
 849			continue;
 850		if (sb->s_dev ==  dev) {
 
 
 851			sb->s_count++;
 852			spin_unlock(&sb_lock);
 853			if (excl)
 854				down_write(&sb->s_umount);
 855			else
 856				down_read(&sb->s_umount);
 857			/* still alive? */
 858			if (sb->s_root && (sb->s_flags & SB_BORN))
 859				return sb;
 860			if (excl)
 861				up_write(&sb->s_umount);
 862			else
 863				up_read(&sb->s_umount);
 864			/* nope, got unmounted */
 865			spin_lock(&sb_lock);
 866			__put_super(sb);
 867			goto rescan;
 868		}
 869	}
 870	spin_unlock(&sb_lock);
 871	return NULL;
 872}
 873
 874/**
 875 * reconfigure_super - asks filesystem to change superblock parameters
 876 * @fc: The superblock and configuration
 877 *
 878 * Alters the configuration parameters of a live superblock.
 879 */
 880int reconfigure_super(struct fs_context *fc)
 881{
 882	struct super_block *sb = fc->root->d_sb;
 883	int retval;
 884	bool remount_ro = false;
 
 885	bool force = fc->sb_flags & SB_FORCE;
 886
 887	if (fc->sb_flags_mask & ~MS_RMT_MASK)
 888		return -EINVAL;
 889	if (sb->s_writers.frozen != SB_UNFROZEN)
 890		return -EBUSY;
 891
 892	retval = security_sb_remount(sb, fc->security);
 893	if (retval)
 894		return retval;
 895
 896	if (fc->sb_flags_mask & SB_RDONLY) {
 897#ifdef CONFIG_BLOCK
 898		if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev &&
 899		    bdev_read_only(sb->s_bdev))
 900			return -EACCES;
 901#endif
 902
 903		remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
 904	}
 905
 906	if (remount_ro) {
 907		if (!hlist_empty(&sb->s_pins)) {
 908			up_write(&sb->s_umount);
 909			group_pin_kill(&sb->s_pins);
 910			down_write(&sb->s_umount);
 911			if (!sb->s_root)
 912				return 0;
 913			if (sb->s_writers.frozen != SB_UNFROZEN)
 914				return -EBUSY;
 915			remount_ro = !sb_rdonly(sb);
 916		}
 917	}
 918	shrink_dcache_sb(sb);
 919
 920	/* If we are reconfiguring to RDONLY and current sb is read/write,
 921	 * make sure there are no files open for writing.
 922	 */
 923	if (remount_ro) {
 924		if (force) {
 925			sb->s_readonly_remount = 1;
 926			smp_wmb();
 927		} else {
 928			retval = sb_prepare_remount_readonly(sb);
 929			if (retval)
 930				return retval;
 931		}
 
 
 
 
 
 
 932	}
 933
 934	if (fc->ops->reconfigure) {
 935		retval = fc->ops->reconfigure(fc);
 936		if (retval) {
 937			if (!force)
 938				goto cancel_readonly;
 939			/* If forced remount, go ahead despite any errors */
 940			WARN(1, "forced remount of a %s fs returned %i\n",
 941			     sb->s_type->name, retval);
 942		}
 943	}
 944
 945	WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
 946				 (fc->sb_flags & fc->sb_flags_mask)));
 947	/* Needs to be ordered wrt mnt_is_readonly() */
 948	smp_wmb();
 949	sb->s_readonly_remount = 0;
 950
 951	/*
 952	 * Some filesystems modify their metadata via some other path than the
 953	 * bdev buffer cache (eg. use a private mapping, or directories in
 954	 * pagecache, etc). Also file data modifications go via their own
 955	 * mappings. So If we try to mount readonly then copy the filesystem
 956	 * from bdev, we could get stale data, so invalidate it to give a best
 957	 * effort at coherency.
 958	 */
 959	if (remount_ro && sb->s_bdev)
 960		invalidate_bdev(sb->s_bdev);
 961	return 0;
 962
 963cancel_readonly:
 964	sb->s_readonly_remount = 0;
 965	return retval;
 966}
 967
 968static void do_emergency_remount_callback(struct super_block *sb)
 969{
 970	down_write(&sb->s_umount);
 971	if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
 972	    !sb_rdonly(sb)) {
 973		struct fs_context *fc;
 974
 975		fc = fs_context_for_reconfigure(sb->s_root,
 976					SB_RDONLY | SB_FORCE, SB_RDONLY);
 977		if (!IS_ERR(fc)) {
 978			if (parse_monolithic_mount_data(fc, NULL) == 0)
 979				(void)reconfigure_super(fc);
 980			put_fs_context(fc);
 981		}
 982	}
 983	up_write(&sb->s_umount);
 
 984}
 985
 986static void do_emergency_remount(struct work_struct *work)
 987{
 988	__iterate_supers(do_emergency_remount_callback);
 989	kfree(work);
 990	printk("Emergency Remount complete\n");
 991}
 992
 993void emergency_remount(void)
 994{
 995	struct work_struct *work;
 996
 997	work = kmalloc(sizeof(*work), GFP_ATOMIC);
 998	if (work) {
 999		INIT_WORK(work, do_emergency_remount);
1000		schedule_work(work);
1001	}
1002}
1003
1004static void do_thaw_all_callback(struct super_block *sb)
1005{
1006	down_write(&sb->s_umount);
1007	if (sb->s_root && sb->s_flags & SB_BORN) {
1008		emergency_thaw_bdev(sb);
1009		thaw_super_locked(sb);
1010	} else {
1011		up_write(&sb->s_umount);
 
 
1012	}
 
 
1013}
1014
1015static void do_thaw_all(struct work_struct *work)
1016{
1017	__iterate_supers(do_thaw_all_callback);
1018	kfree(work);
1019	printk(KERN_WARNING "Emergency Thaw complete\n");
1020}
1021
1022/**
1023 * emergency_thaw_all -- forcibly thaw every frozen filesystem
1024 *
1025 * Used for emergency unfreeze of all filesystems via SysRq
1026 */
1027void emergency_thaw_all(void)
1028{
1029	struct work_struct *work;
1030
1031	work = kmalloc(sizeof(*work), GFP_ATOMIC);
1032	if (work) {
1033		INIT_WORK(work, do_thaw_all);
1034		schedule_work(work);
1035	}
1036}
1037
1038static DEFINE_IDA(unnamed_dev_ida);
1039
1040/**
1041 * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1042 * @p: Pointer to a dev_t.
1043 *
1044 * Filesystems which don't use real block devices can call this function
1045 * to allocate a virtual block device.
1046 *
1047 * Context: Any context.  Frequently called while holding sb_lock.
1048 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1049 * or -ENOMEM if memory allocation failed.
1050 */
1051int get_anon_bdev(dev_t *p)
1052{
1053	int dev;
1054
1055	/*
1056	 * Many userspace utilities consider an FSID of 0 invalid.
1057	 * Always return at least 1 from get_anon_bdev.
1058	 */
1059	dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1060			GFP_ATOMIC);
1061	if (dev == -ENOSPC)
1062		dev = -EMFILE;
1063	if (dev < 0)
1064		return dev;
1065
1066	*p = MKDEV(0, dev);
1067	return 0;
1068}
1069EXPORT_SYMBOL(get_anon_bdev);
1070
1071void free_anon_bdev(dev_t dev)
1072{
1073	ida_free(&unnamed_dev_ida, MINOR(dev));
1074}
1075EXPORT_SYMBOL(free_anon_bdev);
1076
1077int set_anon_super(struct super_block *s, void *data)
1078{
1079	return get_anon_bdev(&s->s_dev);
1080}
1081EXPORT_SYMBOL(set_anon_super);
1082
1083void kill_anon_super(struct super_block *sb)
1084{
1085	dev_t dev = sb->s_dev;
1086	generic_shutdown_super(sb);
 
1087	free_anon_bdev(dev);
1088}
1089EXPORT_SYMBOL(kill_anon_super);
1090
1091void kill_litter_super(struct super_block *sb)
1092{
1093	if (sb->s_root)
1094		d_genocide(sb->s_root);
1095	kill_anon_super(sb);
1096}
1097EXPORT_SYMBOL(kill_litter_super);
1098
1099int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
1100{
1101	return set_anon_super(sb, NULL);
1102}
1103EXPORT_SYMBOL(set_anon_super_fc);
1104
1105static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
1106{
1107	return sb->s_fs_info == fc->s_fs_info;
1108}
1109
1110static int test_single_super(struct super_block *s, struct fs_context *fc)
1111{
1112	return 1;
1113}
1114
1115static int vfs_get_super(struct fs_context *fc, bool reconf,
1116		int (*test)(struct super_block *, struct fs_context *),
1117		int (*fill_super)(struct super_block *sb,
1118				  struct fs_context *fc))
1119{
1120	struct super_block *sb;
1121	int err;
1122
1123	sb = sget_fc(fc, test, set_anon_super_fc);
1124	if (IS_ERR(sb))
1125		return PTR_ERR(sb);
1126
1127	if (!sb->s_root) {
1128		err = fill_super(sb, fc);
1129		if (err)
1130			goto error;
1131
1132		sb->s_flags |= SB_ACTIVE;
1133		fc->root = dget(sb->s_root);
1134	} else {
1135		fc->root = dget(sb->s_root);
1136		if (reconf) {
1137			err = reconfigure_super(fc);
1138			if (err < 0) {
1139				dput(fc->root);
1140				fc->root = NULL;
1141				goto error;
1142			}
1143		}
1144	}
1145
 
1146	return 0;
1147
1148error:
1149	deactivate_locked_super(sb);
1150	return err;
1151}
1152
1153int get_tree_nodev(struct fs_context *fc,
1154		  int (*fill_super)(struct super_block *sb,
1155				    struct fs_context *fc))
1156{
1157	return vfs_get_super(fc, false, NULL, fill_super);
1158}
1159EXPORT_SYMBOL(get_tree_nodev);
1160
1161int get_tree_single(struct fs_context *fc,
1162		  int (*fill_super)(struct super_block *sb,
1163				    struct fs_context *fc))
1164{
1165	return vfs_get_super(fc, false, test_single_super, fill_super);
1166}
1167EXPORT_SYMBOL(get_tree_single);
1168
1169int get_tree_single_reconf(struct fs_context *fc,
1170		  int (*fill_super)(struct super_block *sb,
1171				    struct fs_context *fc))
1172{
1173	return vfs_get_super(fc, true, test_single_super, fill_super);
1174}
1175EXPORT_SYMBOL(get_tree_single_reconf);
1176
1177int get_tree_keyed(struct fs_context *fc,
1178		  int (*fill_super)(struct super_block *sb,
1179				    struct fs_context *fc),
1180		void *key)
1181{
1182	fc->s_fs_info = key;
1183	return vfs_get_super(fc, false, test_keyed_super, fill_super);
1184}
1185EXPORT_SYMBOL(get_tree_keyed);
1186
1187#ifdef CONFIG_BLOCK
1188
1189static int set_bdev_super(struct super_block *s, void *data)
1190{
1191	s->s_bdev = data;
1192	s->s_dev = s->s_bdev->bd_dev;
1193	s->s_bdi = bdi_get(s->s_bdev->bd_disk->bdi);
1194
1195	if (bdev_stable_writes(s->s_bdev))
1196		s->s_iflags |= SB_I_STABLE_WRITES;
1197	return 0;
1198}
1199
1200static int set_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1201{
1202	return set_bdev_super(s, fc->sget_key);
1203}
1204
1205static int test_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1206{
1207	return !(s->s_iflags & SB_I_RETIRED) && s->s_bdev == fc->sget_key;
 
1208}
1209
1210/**
1211 * get_tree_bdev - Get a superblock based on a single block device
1212 * @fc: The filesystem context holding the parameters
1213 * @fill_super: Helper to initialise a new superblock
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1214 */
1215int get_tree_bdev(struct fs_context *fc,
1216		int (*fill_super)(struct super_block *,
1217				  struct fs_context *))
1218{
1219	struct block_device *bdev;
1220	struct super_block *s;
1221	fmode_t mode = FMODE_READ | FMODE_EXCL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1222	int error = 0;
1223
1224	if (!(fc->sb_flags & SB_RDONLY))
1225		mode |= FMODE_WRITE;
1226
1227	if (!fc->source)
1228		return invalf(fc, "No source specified");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1229
1230	bdev = blkdev_get_by_path(fc->source, mode, fc->fs_type);
1231	if (IS_ERR(bdev)) {
1232		errorf(fc, "%s: Can't open blockdev", fc->source);
1233		return PTR_ERR(bdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1234	}
1235
1236	/* Once the superblock is inserted into the list by sget_fc(), s_umount
1237	 * will protect the lockfs code from trying to start a snapshot while
1238	 * we are mounting
1239	 */
1240	mutex_lock(&bdev->bd_fsfreeze_mutex);
1241	if (bdev->bd_fsfreeze_count > 0) {
1242		mutex_unlock(&bdev->bd_fsfreeze_mutex);
1243		warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev);
1244		blkdev_put(bdev, mode);
1245		return -EBUSY;
1246	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1247
 
 
 
 
 
 
1248	fc->sb_flags |= SB_NOSEC;
1249	fc->sget_key = bdev;
1250	s = sget_fc(fc, test_bdev_super_fc, set_bdev_super_fc);
1251	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1252	if (IS_ERR(s)) {
1253		blkdev_put(bdev, mode);
1254		return PTR_ERR(s);
1255	}
1256
1257	if (s->s_root) {
1258		/* Don't summarily change the RO/RW state. */
1259		if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
1260			warnf(fc, "%pg: Can't mount, would change RO state", bdev);
1261			deactivate_locked_super(s);
1262			blkdev_put(bdev, mode);
1263			return -EBUSY;
1264		}
1265
1266		/*
1267		 * s_umount nests inside open_mutex during
1268		 * __invalidate_device().  blkdev_put() acquires
1269		 * open_mutex and can't be called under s_umount.  Drop
1270		 * s_umount temporarily.  This is safe as we're
1271		 * holding an active reference.
1272		 */
1273		up_write(&s->s_umount);
1274		blkdev_put(bdev, mode);
1275		down_write(&s->s_umount);
1276	} else {
1277		s->s_mode = mode;
1278		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1279		shrinker_debugfs_rename(&s->s_shrink, "sb-%s:%s",
1280					fc->fs_type->name, s->s_id);
1281		sb_set_blocksize(s, block_size(bdev));
1282		error = fill_super(s, fc);
1283		if (error) {
1284			deactivate_locked_super(s);
1285			return error;
1286		}
1287
1288		s->s_flags |= SB_ACTIVE;
1289		bdev->bd_super = s;
1290	}
1291
1292	BUG_ON(fc->root);
1293	fc->root = dget(s->s_root);
1294	return 0;
1295}
 
 
 
 
 
 
 
 
 
 
 
 
 
1296EXPORT_SYMBOL(get_tree_bdev);
1297
1298static int test_bdev_super(struct super_block *s, void *data)
1299{
1300	return !(s->s_iflags & SB_I_RETIRED) && (void *)s->s_bdev == data;
1301}
1302
1303struct dentry *mount_bdev(struct file_system_type *fs_type,
1304	int flags, const char *dev_name, void *data,
1305	int (*fill_super)(struct super_block *, void *, int))
1306{
1307	struct block_device *bdev;
1308	struct super_block *s;
1309	fmode_t mode = FMODE_READ | FMODE_EXCL;
1310	int error = 0;
1311
1312	if (!(flags & SB_RDONLY))
1313		mode |= FMODE_WRITE;
 
1314
1315	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1316	if (IS_ERR(bdev))
1317		return ERR_CAST(bdev);
1318
1319	/*
1320	 * once the super is inserted into the list by sget, s_umount
1321	 * will protect the lockfs code from trying to start a snapshot
1322	 * while we are mounting
1323	 */
1324	mutex_lock(&bdev->bd_fsfreeze_mutex);
1325	if (bdev->bd_fsfreeze_count > 0) {
1326		mutex_unlock(&bdev->bd_fsfreeze_mutex);
1327		error = -EBUSY;
1328		goto error_bdev;
1329	}
1330	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1331		 bdev);
1332	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1333	if (IS_ERR(s))
1334		goto error_s;
1335
1336	if (s->s_root) {
1337		if ((flags ^ s->s_flags) & SB_RDONLY) {
1338			deactivate_locked_super(s);
1339			error = -EBUSY;
1340			goto error_bdev;
1341		}
1342
1343		/*
1344		 * s_umount nests inside open_mutex during
1345		 * __invalidate_device().  blkdev_put() acquires
1346		 * open_mutex and can't be called under s_umount.  Drop
1347		 * s_umount temporarily.  This is safe as we're
1348		 * holding an active reference.
1349		 */
1350		up_write(&s->s_umount);
1351		blkdev_put(bdev, mode);
1352		down_write(&s->s_umount);
1353	} else {
1354		s->s_mode = mode;
1355		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1356		shrinker_debugfs_rename(&s->s_shrink, "sb-%s:%s",
1357					fs_type->name, s->s_id);
1358		sb_set_blocksize(s, block_size(bdev));
1359		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1360		if (error) {
1361			deactivate_locked_super(s);
1362			goto error;
1363		}
1364
1365		s->s_flags |= SB_ACTIVE;
1366		bdev->bd_super = s;
1367	}
1368
1369	return dget(s->s_root);
1370
1371error_s:
1372	error = PTR_ERR(s);
1373error_bdev:
1374	blkdev_put(bdev, mode);
1375error:
1376	return ERR_PTR(error);
1377}
1378EXPORT_SYMBOL(mount_bdev);
1379
1380void kill_block_super(struct super_block *sb)
1381{
1382	struct block_device *bdev = sb->s_bdev;
1383	fmode_t mode = sb->s_mode;
1384
1385	bdev->bd_super = NULL;
1386	generic_shutdown_super(sb);
1387	sync_blockdev(bdev);
1388	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1389	blkdev_put(bdev, mode | FMODE_EXCL);
 
1390}
1391
1392EXPORT_SYMBOL(kill_block_super);
1393#endif
1394
1395struct dentry *mount_nodev(struct file_system_type *fs_type,
1396	int flags, void *data,
1397	int (*fill_super)(struct super_block *, void *, int))
1398{
1399	int error;
1400	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1401
1402	if (IS_ERR(s))
1403		return ERR_CAST(s);
1404
1405	error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1406	if (error) {
1407		deactivate_locked_super(s);
1408		return ERR_PTR(error);
1409	}
1410	s->s_flags |= SB_ACTIVE;
1411	return dget(s->s_root);
1412}
1413EXPORT_SYMBOL(mount_nodev);
1414
1415int reconfigure_single(struct super_block *s,
1416		       int flags, void *data)
1417{
1418	struct fs_context *fc;
1419	int ret;
1420
1421	/* The caller really need to be passing fc down into mount_single(),
1422	 * then a chunk of this can be removed.  [Bollocks -- AV]
1423	 * Better yet, reconfiguration shouldn't happen, but rather the second
1424	 * mount should be rejected if the parameters are not compatible.
1425	 */
1426	fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
1427	if (IS_ERR(fc))
1428		return PTR_ERR(fc);
1429
1430	ret = parse_monolithic_mount_data(fc, data);
1431	if (ret < 0)
1432		goto out;
1433
1434	ret = reconfigure_super(fc);
1435out:
1436	put_fs_context(fc);
1437	return ret;
1438}
1439
1440static int compare_single(struct super_block *s, void *p)
1441{
1442	return 1;
1443}
1444
1445struct dentry *mount_single(struct file_system_type *fs_type,
1446	int flags, void *data,
1447	int (*fill_super)(struct super_block *, void *, int))
1448{
1449	struct super_block *s;
1450	int error;
1451
1452	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1453	if (IS_ERR(s))
1454		return ERR_CAST(s);
1455	if (!s->s_root) {
1456		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1457		if (!error)
1458			s->s_flags |= SB_ACTIVE;
1459	} else {
1460		error = reconfigure_single(s, flags, data);
1461	}
1462	if (unlikely(error)) {
1463		deactivate_locked_super(s);
1464		return ERR_PTR(error);
1465	}
1466	return dget(s->s_root);
1467}
1468EXPORT_SYMBOL(mount_single);
1469
1470/**
1471 * vfs_get_tree - Get the mountable root
1472 * @fc: The superblock configuration context.
1473 *
1474 * The filesystem is invoked to get or create a superblock which can then later
1475 * be used for mounting.  The filesystem places a pointer to the root to be
1476 * used for mounting in @fc->root.
1477 */
1478int vfs_get_tree(struct fs_context *fc)
1479{
1480	struct super_block *sb;
1481	int error;
1482
1483	if (fc->root)
1484		return -EBUSY;
1485
1486	/* Get the mountable root in fc->root, with a ref on the root and a ref
1487	 * on the superblock.
1488	 */
1489	error = fc->ops->get_tree(fc);
1490	if (error < 0)
1491		return error;
1492
1493	if (!fc->root) {
1494		pr_err("Filesystem %s get_tree() didn't set fc->root\n",
1495		       fc->fs_type->name);
1496		/* We don't know what the locking state of the superblock is -
1497		 * if there is a superblock.
1498		 */
1499		BUG();
1500	}
1501
1502	sb = fc->root->d_sb;
1503	WARN_ON(!sb->s_bdi);
1504
1505	/*
1506	 * Write barrier is for super_cache_count(). We place it before setting
1507	 * SB_BORN as the data dependency between the two functions is the
1508	 * superblock structure contents that we just set up, not the SB_BORN
1509	 * flag.
 
1510	 */
1511	smp_wmb();
1512	sb->s_flags |= SB_BORN;
1513
1514	error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
1515	if (unlikely(error)) {
1516		fc_drop_locked(fc);
1517		return error;
1518	}
1519
1520	/*
1521	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1522	 * but s_maxbytes was an unsigned long long for many releases. Throw
1523	 * this warning for a little while to try and catch filesystems that
1524	 * violate this rule.
1525	 */
1526	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1527		"negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
1528
1529	return 0;
1530}
1531EXPORT_SYMBOL(vfs_get_tree);
1532
1533/*
1534 * Setup private BDI for given superblock. It gets automatically cleaned up
1535 * in generic_shutdown_super().
1536 */
1537int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1538{
1539	struct backing_dev_info *bdi;
1540	int err;
1541	va_list args;
1542
1543	bdi = bdi_alloc(NUMA_NO_NODE);
1544	if (!bdi)
1545		return -ENOMEM;
1546
1547	va_start(args, fmt);
1548	err = bdi_register_va(bdi, fmt, args);
1549	va_end(args);
1550	if (err) {
1551		bdi_put(bdi);
1552		return err;
1553	}
1554	WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1555	sb->s_bdi = bdi;
1556	sb->s_iflags |= SB_I_PERSB_BDI;
1557
1558	return 0;
1559}
1560EXPORT_SYMBOL(super_setup_bdi_name);
1561
1562/*
1563 * Setup private BDI for given superblock. I gets automatically cleaned up
1564 * in generic_shutdown_super().
1565 */
1566int super_setup_bdi(struct super_block *sb)
1567{
1568	static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1569
1570	return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1571				    atomic_long_inc_return(&bdi_seq));
1572}
1573EXPORT_SYMBOL(super_setup_bdi);
1574
1575/**
1576 * sb_wait_write - wait until all writers to given file system finish
1577 * @sb: the super for which we wait
1578 * @level: type of writers we wait for (normal vs page fault)
1579 *
1580 * This function waits until there are no writers of given type to given file
1581 * system.
1582 */
1583static void sb_wait_write(struct super_block *sb, int level)
1584{
1585	percpu_down_write(sb->s_writers.rw_sem + level-1);
1586}
1587
1588/*
1589 * We are going to return to userspace and forget about these locks, the
1590 * ownership goes to the caller of thaw_super() which does unlock().
1591 */
1592static void lockdep_sb_freeze_release(struct super_block *sb)
1593{
1594	int level;
1595
1596	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1597		percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1598}
1599
1600/*
1601 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1602 */
1603static void lockdep_sb_freeze_acquire(struct super_block *sb)
1604{
1605	int level;
1606
1607	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1608		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1609}
1610
1611static void sb_freeze_unlock(struct super_block *sb, int level)
1612{
1613	for (level--; level >= 0; level--)
1614		percpu_up_write(sb->s_writers.rw_sem + level);
1615}
1616
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1617/**
1618 * freeze_super - lock the filesystem and force it into a consistent state
1619 * @sb: the super to lock
 
1620 *
1621 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1622 * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1623 * -EBUSY.
1624 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1625 * During this function, sb->s_writers.frozen goes through these values:
1626 *
1627 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1628 *
1629 * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1630 * writes should be blocked, though page faults are still allowed. We wait for
1631 * all writes to complete and then proceed to the next stage.
1632 *
1633 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1634 * but internal fs threads can still modify the filesystem (although they
1635 * should not dirty new pages or inodes), writeback can run etc. After waiting
1636 * for all running page faults we sync the filesystem which will clean all
1637 * dirty pages and inodes (no new dirty pages or inodes can be created when
1638 * sync is running).
1639 *
1640 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1641 * modification are blocked (e.g. XFS preallocation truncation on inode
1642 * reclaim). This is usually implemented by blocking new transactions for
1643 * filesystems that have them and need this additional guard. After all
1644 * internal writers are finished we call ->freeze_fs() to finish filesystem
1645 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1646 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1647 *
1648 * sb->s_writers.frozen is protected by sb->s_umount.
 
 
 
1649 */
1650int freeze_super(struct super_block *sb)
1651{
1652	int ret;
1653
 
 
 
 
1654	atomic_inc(&sb->s_active);
1655	down_write(&sb->s_umount);
1656	if (sb->s_writers.frozen != SB_UNFROZEN) {
 
 
 
 
 
 
1657		deactivate_locked_super(sb);
1658		return -EBUSY;
1659	}
1660
1661	if (!(sb->s_flags & SB_BORN)) {
1662		up_write(&sb->s_umount);
1663		return 0;	/* sic - it's "nothing to do" */
 
 
 
 
 
1664	}
1665
1666	if (sb_rdonly(sb)) {
1667		/* Nothing to do really... */
 
1668		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1669		up_write(&sb->s_umount);
 
1670		return 0;
1671	}
1672
1673	sb->s_writers.frozen = SB_FREEZE_WRITE;
1674	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1675	up_write(&sb->s_umount);
1676	sb_wait_write(sb, SB_FREEZE_WRITE);
1677	down_write(&sb->s_umount);
1678
1679	/* Now we go and block page faults... */
1680	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1681	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1682
1683	/* All writers are done so after syncing there won't be dirty data */
1684	ret = sync_filesystem(sb);
1685	if (ret) {
1686		sb->s_writers.frozen = SB_UNFROZEN;
1687		sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT);
1688		wake_up(&sb->s_writers.wait_unfrozen);
1689		deactivate_locked_super(sb);
1690		return ret;
1691	}
1692
1693	/* Now wait for internal filesystem counter */
1694	sb->s_writers.frozen = SB_FREEZE_FS;
1695	sb_wait_write(sb, SB_FREEZE_FS);
1696
1697	if (sb->s_op->freeze_fs) {
1698		ret = sb->s_op->freeze_fs(sb);
1699		if (ret) {
1700			printk(KERN_ERR
1701				"VFS:Filesystem freeze failed\n");
1702			sb->s_writers.frozen = SB_UNFROZEN;
1703			sb_freeze_unlock(sb, SB_FREEZE_FS);
1704			wake_up(&sb->s_writers.wait_unfrozen);
1705			deactivate_locked_super(sb);
1706			return ret;
1707		}
1708	}
1709	/*
1710	 * For debugging purposes so that fs can warn if it sees write activity
1711	 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1712	 */
 
1713	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
 
1714	lockdep_sb_freeze_release(sb);
1715	up_write(&sb->s_umount);
1716	return 0;
1717}
1718EXPORT_SYMBOL(freeze_super);
1719
1720static int thaw_super_locked(struct super_block *sb)
 
 
 
 
 
 
1721{
1722	int error;
1723
1724	if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1725		up_write(&sb->s_umount);
1726		return -EINVAL;
1727	}
 
 
 
 
 
1728
1729	if (sb_rdonly(sb)) {
1730		sb->s_writers.frozen = SB_UNFROZEN;
1731		goto out;
 
1732	}
1733
1734	lockdep_sb_freeze_acquire(sb);
1735
1736	if (sb->s_op->unfreeze_fs) {
1737		error = sb->s_op->unfreeze_fs(sb);
1738		if (error) {
1739			printk(KERN_ERR
1740				"VFS:Filesystem thaw failed\n");
1741			lockdep_sb_freeze_release(sb);
1742			up_write(&sb->s_umount);
1743			return error;
1744		}
1745	}
1746
1747	sb->s_writers.frozen = SB_UNFROZEN;
 
1748	sb_freeze_unlock(sb, SB_FREEZE_FS);
1749out:
1750	wake_up(&sb->s_writers.wait_unfrozen);
1751	deactivate_locked_super(sb);
1752	return 0;
 
 
 
 
1753}
1754
1755/**
1756 * thaw_super -- unlock filesystem
1757 * @sb: the super to thaw
 
 
 
 
 
 
 
 
 
1758 *
1759 * Unlocks the filesystem and marks it writeable again after freeze_super().
 
 
1760 */
1761int thaw_super(struct super_block *sb)
1762{
1763	down_write(&sb->s_umount);
1764	return thaw_super_locked(sb);
 
 
 
1765}
1766EXPORT_SYMBOL(thaw_super);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/super.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  super.c contains code to handle: - mount structures
   8 *                                   - super-block tables
   9 *                                   - filesystem drivers list
  10 *                                   - mount system call
  11 *                                   - umount system call
  12 *                                   - ustat system call
  13 *
  14 * GK 2/5/95  -  Changed to support mounting the root fs via NFS
  15 *
  16 *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
  17 *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
  18 *  Added options to /proc/mounts:
  19 *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
  20 *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
  21 *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
  22 */
  23
  24#include <linux/export.h>
  25#include <linux/slab.h>
  26#include <linux/blkdev.h>
  27#include <linux/mount.h>
  28#include <linux/security.h>
  29#include <linux/writeback.h>		/* for the emergency remount stuff */
  30#include <linux/idr.h>
  31#include <linux/mutex.h>
  32#include <linux/backing-dev.h>
  33#include <linux/rculist_bl.h>
  34#include <linux/fscrypt.h>
  35#include <linux/fsnotify.h>
  36#include <linux/lockdep.h>
  37#include <linux/user_namespace.h>
  38#include <linux/fs_context.h>
  39#include <uapi/linux/mount.h>
  40#include "internal.h"
  41
  42static int thaw_super_locked(struct super_block *sb, enum freeze_holder who);
  43
  44static LIST_HEAD(super_blocks);
  45static DEFINE_SPINLOCK(sb_lock);
  46
  47static char *sb_writers_name[SB_FREEZE_LEVELS] = {
  48	"sb_writers",
  49	"sb_pagefaults",
  50	"sb_internal",
  51};
  52
  53static inline void __super_lock(struct super_block *sb, bool excl)
  54{
  55	if (excl)
  56		down_write(&sb->s_umount);
  57	else
  58		down_read(&sb->s_umount);
  59}
  60
  61static inline void super_unlock(struct super_block *sb, bool excl)
  62{
  63	if (excl)
  64		up_write(&sb->s_umount);
  65	else
  66		up_read(&sb->s_umount);
  67}
  68
  69static inline void __super_lock_excl(struct super_block *sb)
  70{
  71	__super_lock(sb, true);
  72}
  73
  74static inline void super_unlock_excl(struct super_block *sb)
  75{
  76	super_unlock(sb, true);
  77}
  78
  79static inline void super_unlock_shared(struct super_block *sb)
  80{
  81	super_unlock(sb, false);
  82}
  83
  84static bool super_flags(const struct super_block *sb, unsigned int flags)
  85{
  86	/*
  87	 * Pairs with smp_store_release() in super_wake() and ensures
  88	 * that we see @flags after we're woken.
  89	 */
  90	return smp_load_acquire(&sb->s_flags) & flags;
  91}
  92
  93/**
  94 * super_lock - wait for superblock to become ready and lock it
  95 * @sb: superblock to wait for
  96 * @excl: whether exclusive access is required
  97 *
  98 * If the superblock has neither passed through vfs_get_tree() or
  99 * generic_shutdown_super() yet wait for it to happen. Either superblock
 100 * creation will succeed and SB_BORN is set by vfs_get_tree() or we're
 101 * woken and we'll see SB_DYING.
 102 *
 103 * The caller must have acquired a temporary reference on @sb->s_count.
 104 *
 105 * Return: The function returns true if SB_BORN was set and with
 106 *         s_umount held. The function returns false if SB_DYING was
 107 *         set and without s_umount held.
 108 */
 109static __must_check bool super_lock(struct super_block *sb, bool excl)
 110{
 111	lockdep_assert_not_held(&sb->s_umount);
 112
 113	/* wait until the superblock is ready or dying */
 114	wait_var_event(&sb->s_flags, super_flags(sb, SB_BORN | SB_DYING));
 115
 116	/* Don't pointlessly acquire s_umount. */
 117	if (super_flags(sb, SB_DYING))
 118		return false;
 119
 120	__super_lock(sb, excl);
 121
 122	/*
 123	 * Has gone through generic_shutdown_super() in the meantime.
 124	 * @sb->s_root is NULL and @sb->s_active is 0. No one needs to
 125	 * grab a reference to this. Tell them so.
 126	 */
 127	if (sb->s_flags & SB_DYING) {
 128		super_unlock(sb, excl);
 129		return false;
 130	}
 131
 132	WARN_ON_ONCE(!(sb->s_flags & SB_BORN));
 133	return true;
 134}
 135
 136/* wait and try to acquire read-side of @sb->s_umount */
 137static inline bool super_lock_shared(struct super_block *sb)
 138{
 139	return super_lock(sb, false);
 140}
 141
 142/* wait and try to acquire write-side of @sb->s_umount */
 143static inline bool super_lock_excl(struct super_block *sb)
 144{
 145	return super_lock(sb, true);
 146}
 147
 148/* wake waiters */
 149#define SUPER_WAKE_FLAGS (SB_BORN | SB_DYING | SB_DEAD)
 150static void super_wake(struct super_block *sb, unsigned int flag)
 151{
 152	WARN_ON_ONCE((flag & ~SUPER_WAKE_FLAGS));
 153	WARN_ON_ONCE(hweight32(flag & SUPER_WAKE_FLAGS) > 1);
 154
 155	/*
 156	 * Pairs with smp_load_acquire() in super_lock() to make sure
 157	 * all initializations in the superblock are seen by the user
 158	 * seeing SB_BORN sent.
 159	 */
 160	smp_store_release(&sb->s_flags, sb->s_flags | flag);
 161	/*
 162	 * Pairs with the barrier in prepare_to_wait_event() to make sure
 163	 * ___wait_var_event() either sees SB_BORN set or
 164	 * waitqueue_active() check in wake_up_var() sees the waiter.
 165	 */
 166	smp_mb();
 167	wake_up_var(&sb->s_flags);
 168}
 169
 170/*
 171 * One thing we have to be careful of with a per-sb shrinker is that we don't
 172 * drop the last active reference to the superblock from within the shrinker.
 173 * If that happens we could trigger unregistering the shrinker from within the
 174 * shrinker path and that leads to deadlock on the shrinker_mutex. Hence we
 175 * take a passive reference to the superblock to avoid this from occurring.
 176 */
 177static unsigned long super_cache_scan(struct shrinker *shrink,
 178				      struct shrink_control *sc)
 179{
 180	struct super_block *sb;
 181	long	fs_objects = 0;
 182	long	total_objects;
 183	long	freed = 0;
 184	long	dentries;
 185	long	inodes;
 186
 187	sb = shrink->private_data;
 188
 189	/*
 190	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
 191	 * to recurse into the FS that called us in clear_inode() and friends..
 192	 */
 193	if (!(sc->gfp_mask & __GFP_FS))
 194		return SHRINK_STOP;
 195
 196	if (!super_trylock_shared(sb))
 197		return SHRINK_STOP;
 198
 199	if (sb->s_op->nr_cached_objects)
 200		fs_objects = sb->s_op->nr_cached_objects(sb, sc);
 201
 202	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
 203	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
 204	total_objects = dentries + inodes + fs_objects + 1;
 205	if (!total_objects)
 206		total_objects = 1;
 207
 208	/* proportion the scan between the caches */
 209	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
 210	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
 211	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
 212
 213	/*
 214	 * prune the dcache first as the icache is pinned by it, then
 215	 * prune the icache, followed by the filesystem specific caches
 216	 *
 217	 * Ensure that we always scan at least one object - memcg kmem
 218	 * accounting uses this to fully empty the caches.
 219	 */
 220	sc->nr_to_scan = dentries + 1;
 221	freed = prune_dcache_sb(sb, sc);
 222	sc->nr_to_scan = inodes + 1;
 223	freed += prune_icache_sb(sb, sc);
 224
 225	if (fs_objects) {
 226		sc->nr_to_scan = fs_objects + 1;
 227		freed += sb->s_op->free_cached_objects(sb, sc);
 228	}
 229
 230	super_unlock_shared(sb);
 231	return freed;
 232}
 233
 234static unsigned long super_cache_count(struct shrinker *shrink,
 235				       struct shrink_control *sc)
 236{
 237	struct super_block *sb;
 238	long	total_objects = 0;
 239
 240	sb = shrink->private_data;
 241
 242	/*
 243	 * We don't call super_trylock_shared() here as it is a scalability
 244	 * bottleneck, so we're exposed to partial setup state. The shrinker
 245	 * rwsem does not protect filesystem operations backing
 246	 * list_lru_shrink_count() or s_op->nr_cached_objects(). Counts can
 247	 * change between super_cache_count and super_cache_scan, so we really
 248	 * don't need locks here.
 249	 *
 250	 * However, if we are currently mounting the superblock, the underlying
 251	 * filesystem might be in a state of partial construction and hence it
 252	 * is dangerous to access it.  super_trylock_shared() uses a SB_BORN check
 253	 * to avoid this situation, so do the same here. The memory barrier is
 254	 * matched with the one in mount_fs() as we don't hold locks here.
 255	 */
 256	if (!(sb->s_flags & SB_BORN))
 257		return 0;
 258	smp_rmb();
 259
 260	if (sb->s_op && sb->s_op->nr_cached_objects)
 261		total_objects = sb->s_op->nr_cached_objects(sb, sc);
 262
 263	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
 264	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
 265
 266	if (!total_objects)
 267		return SHRINK_EMPTY;
 268
 269	total_objects = vfs_pressure_ratio(total_objects);
 270	return total_objects;
 271}
 272
 273static void destroy_super_work(struct work_struct *work)
 274{
 275	struct super_block *s = container_of(work, struct super_block,
 276							destroy_work);
 277	fsnotify_sb_free(s);
 278	security_sb_free(s);
 279	put_user_ns(s->s_user_ns);
 280	kfree(s->s_subtype);
 281	for (int i = 0; i < SB_FREEZE_LEVELS; i++)
 282		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
 283	kfree(s);
 284}
 285
 286static void destroy_super_rcu(struct rcu_head *head)
 287{
 288	struct super_block *s = container_of(head, struct super_block, rcu);
 289	INIT_WORK(&s->destroy_work, destroy_super_work);
 290	schedule_work(&s->destroy_work);
 291}
 292
 293/* Free a superblock that has never been seen by anyone */
 294static void destroy_unused_super(struct super_block *s)
 295{
 296	if (!s)
 297		return;
 298	super_unlock_excl(s);
 299	list_lru_destroy(&s->s_dentry_lru);
 300	list_lru_destroy(&s->s_inode_lru);
 301	shrinker_free(s->s_shrink);
 
 
 
 302	/* no delays needed */
 303	destroy_super_work(&s->destroy_work);
 304}
 305
 306/**
 307 *	alloc_super	-	create new superblock
 308 *	@type:	filesystem type superblock should belong to
 309 *	@flags: the mount flags
 310 *	@user_ns: User namespace for the super_block
 311 *
 312 *	Allocates and initializes a new &struct super_block.  alloc_super()
 313 *	returns a pointer new superblock or %NULL if allocation had failed.
 314 */
 315static struct super_block *alloc_super(struct file_system_type *type, int flags,
 316				       struct user_namespace *user_ns)
 317{
 318	struct super_block *s = kzalloc(sizeof(struct super_block), GFP_KERNEL);
 319	static const struct super_operations default_op;
 320	int i;
 321
 322	if (!s)
 323		return NULL;
 324
 325	INIT_LIST_HEAD(&s->s_mounts);
 326	s->s_user_ns = get_user_ns(user_ns);
 327	init_rwsem(&s->s_umount);
 328	lockdep_set_class(&s->s_umount, &type->s_umount_key);
 329	/*
 330	 * sget() can have s_umount recursion.
 331	 *
 332	 * When it cannot find a suitable sb, it allocates a new
 333	 * one (this one), and tries again to find a suitable old
 334	 * one.
 335	 *
 336	 * In case that succeeds, it will acquire the s_umount
 337	 * lock of the old one. Since these are clearly distrinct
 338	 * locks, and this object isn't exposed yet, there's no
 339	 * risk of deadlocks.
 340	 *
 341	 * Annotate this by putting this lock in a different
 342	 * subclass.
 343	 */
 344	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
 345
 346	if (security_sb_alloc(s))
 347		goto fail;
 348
 349	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
 350		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
 351					sb_writers_name[i],
 352					&type->s_writers_key[i]))
 353			goto fail;
 354	}
 
 355	s->s_bdi = &noop_backing_dev_info;
 356	s->s_flags = flags;
 357	if (s->s_user_ns != &init_user_ns)
 358		s->s_iflags |= SB_I_NODEV;
 359	INIT_HLIST_NODE(&s->s_instances);
 360	INIT_HLIST_BL_HEAD(&s->s_roots);
 361	mutex_init(&s->s_sync_lock);
 362	INIT_LIST_HEAD(&s->s_inodes);
 363	spin_lock_init(&s->s_inode_list_lock);
 364	INIT_LIST_HEAD(&s->s_inodes_wb);
 365	spin_lock_init(&s->s_inode_wblist_lock);
 366
 367	s->s_count = 1;
 368	atomic_set(&s->s_active, 1);
 369	mutex_init(&s->s_vfs_rename_mutex);
 370	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
 371	init_rwsem(&s->s_dquot.dqio_sem);
 372	s->s_maxbytes = MAX_NON_LFS;
 373	s->s_op = &default_op;
 374	s->s_time_gran = 1000000000;
 375	s->s_time_min = TIME64_MIN;
 376	s->s_time_max = TIME64_MAX;
 377
 378	s->s_shrink = shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE,
 379				     "sb-%s", type->name);
 380	if (!s->s_shrink)
 
 
 
 381		goto fail;
 382
 383	s->s_shrink->scan_objects = super_cache_scan;
 384	s->s_shrink->count_objects = super_cache_count;
 385	s->s_shrink->batch = 1024;
 386	s->s_shrink->private_data = s;
 387
 388	if (list_lru_init_memcg(&s->s_dentry_lru, s->s_shrink))
 389		goto fail;
 390	if (list_lru_init_memcg(&s->s_inode_lru, s->s_shrink))
 391		goto fail;
 392	return s;
 393
 394fail:
 395	destroy_unused_super(s);
 396	return NULL;
 397}
 398
 399/* Superblock refcounting  */
 400
 401/*
 402 * Drop a superblock's refcount.  The caller must hold sb_lock.
 403 */
 404static void __put_super(struct super_block *s)
 405{
 406	if (!--s->s_count) {
 407		list_del_init(&s->s_list);
 408		WARN_ON(s->s_dentry_lru.node);
 409		WARN_ON(s->s_inode_lru.node);
 410		WARN_ON(!list_empty(&s->s_mounts));
 
 
 
 
 411		call_rcu(&s->rcu, destroy_super_rcu);
 412	}
 413}
 414
 415/**
 416 *	put_super	-	drop a temporary reference to superblock
 417 *	@sb: superblock in question
 418 *
 419 *	Drops a temporary reference, frees superblock if there's no
 420 *	references left.
 421 */
 422void put_super(struct super_block *sb)
 423{
 424	spin_lock(&sb_lock);
 425	__put_super(sb);
 426	spin_unlock(&sb_lock);
 427}
 428
 429static void kill_super_notify(struct super_block *sb)
 430{
 431	lockdep_assert_not_held(&sb->s_umount);
 432
 433	/* already notified earlier */
 434	if (sb->s_flags & SB_DEAD)
 435		return;
 436
 437	/*
 438	 * Remove it from @fs_supers so it isn't found by new
 439	 * sget{_fc}() walkers anymore. Any concurrent mounter still
 440	 * managing to grab a temporary reference is guaranteed to
 441	 * already see SB_DYING and will wait until we notify them about
 442	 * SB_DEAD.
 443	 */
 444	spin_lock(&sb_lock);
 445	hlist_del_init(&sb->s_instances);
 446	spin_unlock(&sb_lock);
 447
 448	/*
 449	 * Let concurrent mounts know that this thing is really dead.
 450	 * We don't need @sb->s_umount here as every concurrent caller
 451	 * will see SB_DYING and either discard the superblock or wait
 452	 * for SB_DEAD.
 453	 */
 454	super_wake(sb, SB_DEAD);
 455}
 456
 457/**
 458 *	deactivate_locked_super	-	drop an active reference to superblock
 459 *	@s: superblock to deactivate
 460 *
 461 *	Drops an active reference to superblock, converting it into a temporary
 462 *	one if there is no other active references left.  In that case we
 463 *	tell fs driver to shut it down and drop the temporary reference we
 464 *	had just acquired.
 465 *
 466 *	Caller holds exclusive lock on superblock; that lock is released.
 467 */
 468void deactivate_locked_super(struct super_block *s)
 469{
 470	struct file_system_type *fs = s->s_type;
 471	if (atomic_dec_and_test(&s->s_active)) {
 472		shrinker_free(s->s_shrink);
 473		fs->kill_sb(s);
 474
 475		kill_super_notify(s);
 476
 477		/*
 478		 * Since list_lru_destroy() may sleep, we cannot call it from
 479		 * put_super(), where we hold the sb_lock. Therefore we destroy
 480		 * the lru lists right now.
 481		 */
 482		list_lru_destroy(&s->s_dentry_lru);
 483		list_lru_destroy(&s->s_inode_lru);
 484
 485		put_filesystem(fs);
 486		put_super(s);
 487	} else {
 488		super_unlock_excl(s);
 489	}
 490}
 491
 492EXPORT_SYMBOL(deactivate_locked_super);
 493
 494/**
 495 *	deactivate_super	-	drop an active reference to superblock
 496 *	@s: superblock to deactivate
 497 *
 498 *	Variant of deactivate_locked_super(), except that superblock is *not*
 499 *	locked by caller.  If we are going to drop the final active reference,
 500 *	lock will be acquired prior to that.
 501 */
 502void deactivate_super(struct super_block *s)
 503{
 504	if (!atomic_add_unless(&s->s_active, -1, 1)) {
 505		__super_lock_excl(s);
 506		deactivate_locked_super(s);
 507	}
 508}
 509
 510EXPORT_SYMBOL(deactivate_super);
 511
 512/**
 513 * grab_super - acquire an active reference to a superblock
 514 * @sb: superblock to acquire
 515 *
 516 * Acquire a temporary reference on a superblock and try to trade it for
 517 * an active reference. This is used in sget{_fc}() to wait for a
 518 * superblock to either become SB_BORN or for it to pass through
 519 * sb->kill() and be marked as SB_DEAD.
 520 *
 521 * Return: This returns true if an active reference could be acquired,
 522 *         false if not.
 
 
 
 
 
 
 523 */
 524static bool grab_super(struct super_block *sb)
 525{
 526	bool locked;
 527
 528	sb->s_count++;
 529	spin_unlock(&sb_lock);
 530	locked = super_lock_excl(sb);
 531	if (locked) {
 532		if (atomic_inc_not_zero(&sb->s_active)) {
 533			put_super(sb);
 534			return true;
 535		}
 536		super_unlock_excl(sb);
 537	}
 538	wait_var_event(&sb->s_flags, super_flags(sb, SB_DEAD));
 539	put_super(sb);
 540	return false;
 541}
 542
 543/*
 544 *	super_trylock_shared - try to grab ->s_umount shared
 545 *	@sb: reference we are trying to grab
 546 *
 547 *	Try to prevent fs shutdown.  This is used in places where we
 548 *	cannot take an active reference but we need to ensure that the
 549 *	filesystem is not shut down while we are working on it. It returns
 550 *	false if we cannot acquire s_umount or if we lose the race and
 551 *	filesystem already got into shutdown, and returns true with the s_umount
 552 *	lock held in read mode in case of success. On successful return,
 553 *	the caller must drop the s_umount lock when done.
 554 *
 555 *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
 556 *	The reason why it's safe is that we are OK with doing trylock instead
 557 *	of down_read().  There's a couple of places that are OK with that, but
 558 *	it's very much not a general-purpose interface.
 559 */
 560bool super_trylock_shared(struct super_block *sb)
 561{
 562	if (down_read_trylock(&sb->s_umount)) {
 563		if (!(sb->s_flags & SB_DYING) && sb->s_root &&
 564		    (sb->s_flags & SB_BORN))
 565			return true;
 566		super_unlock_shared(sb);
 567	}
 568
 569	return false;
 570}
 571
 572/**
 573 *	retire_super	-	prevents superblock from being reused
 574 *	@sb: superblock to retire
 575 *
 576 *	The function marks superblock to be ignored in superblock test, which
 577 *	prevents it from being reused for any new mounts.  If the superblock has
 578 *	a private bdi, it also unregisters it, but doesn't reduce the refcount
 579 *	of the superblock to prevent potential races.  The refcount is reduced
 580 *	by generic_shutdown_super().  The function can not be called
 581 *	concurrently with generic_shutdown_super().  It is safe to call the
 582 *	function multiple times, subsequent calls have no effect.
 583 *
 584 *	The marker will affect the re-use only for block-device-based
 585 *	superblocks.  Other superblocks will still get marked if this function
 586 *	is used, but that will not affect their reusability.
 587 */
 588void retire_super(struct super_block *sb)
 589{
 590	WARN_ON(!sb->s_bdev);
 591	__super_lock_excl(sb);
 592	if (sb->s_iflags & SB_I_PERSB_BDI) {
 593		bdi_unregister(sb->s_bdi);
 594		sb->s_iflags &= ~SB_I_PERSB_BDI;
 595	}
 596	sb->s_iflags |= SB_I_RETIRED;
 597	super_unlock_excl(sb);
 598}
 599EXPORT_SYMBOL(retire_super);
 600
 601/**
 602 *	generic_shutdown_super	-	common helper for ->kill_sb()
 603 *	@sb: superblock to kill
 604 *
 605 *	generic_shutdown_super() does all fs-independent work on superblock
 606 *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
 607 *	that need destruction out of superblock, call generic_shutdown_super()
 608 *	and release aforementioned objects.  Note: dentries and inodes _are_
 609 *	taken care of and do not need specific handling.
 610 *
 611 *	Upon calling this function, the filesystem may no longer alter or
 612 *	rearrange the set of dentries belonging to this super_block, nor may it
 613 *	change the attachments of dentries to inodes.
 614 */
 615void generic_shutdown_super(struct super_block *sb)
 616{
 617	const struct super_operations *sop = sb->s_op;
 618
 619	if (sb->s_root) {
 620		shrink_dcache_for_umount(sb);
 621		sync_filesystem(sb);
 622		sb->s_flags &= ~SB_ACTIVE;
 623
 624		cgroup_writeback_umount(sb);
 625
 626		/* Evict all inodes with zero refcount. */
 627		evict_inodes(sb);
 628
 629		/*
 630		 * Clean up and evict any inodes that still have references due
 631		 * to fsnotify or the security policy.
 632		 */
 633		fsnotify_sb_delete(sb);
 
 634		security_sb_delete(sb);
 635
 636		if (sb->s_dio_done_wq) {
 637			destroy_workqueue(sb->s_dio_done_wq);
 638			sb->s_dio_done_wq = NULL;
 639		}
 640
 641		if (sop->put_super)
 642			sop->put_super(sb);
 643
 644		/*
 645		 * Now that all potentially-encrypted inodes have been evicted,
 646		 * the fscrypt keyring can be destroyed.
 647		 */
 648		fscrypt_destroy_keyring(sb);
 649
 650		if (CHECK_DATA_CORRUPTION(!list_empty(&sb->s_inodes),
 651				"VFS: Busy inodes after unmount of %s (%s)",
 652				sb->s_id, sb->s_type->name)) {
 653			/*
 654			 * Adding a proper bailout path here would be hard, but
 655			 * we can at least make it more likely that a later
 656			 * iput_final() or such crashes cleanly.
 657			 */
 658			struct inode *inode;
 659
 660			spin_lock(&sb->s_inode_list_lock);
 661			list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
 662				inode->i_op = VFS_PTR_POISON;
 663				inode->i_sb = VFS_PTR_POISON;
 664				inode->i_mapping = VFS_PTR_POISON;
 665			}
 666			spin_unlock(&sb->s_inode_list_lock);
 667		}
 668	}
 669	/*
 670	 * Broadcast to everyone that grabbed a temporary reference to this
 671	 * superblock before we removed it from @fs_supers that the superblock
 672	 * is dying. Every walker of @fs_supers outside of sget{_fc}() will now
 673	 * discard this superblock and treat it as dead.
 674	 *
 675	 * We leave the superblock on @fs_supers so it can be found by
 676	 * sget{_fc}() until we passed sb->kill_sb().
 677	 */
 678	super_wake(sb, SB_DYING);
 679	super_unlock_excl(sb);
 680	if (sb->s_bdi != &noop_backing_dev_info) {
 681		if (sb->s_iflags & SB_I_PERSB_BDI)
 682			bdi_unregister(sb->s_bdi);
 683		bdi_put(sb->s_bdi);
 684		sb->s_bdi = &noop_backing_dev_info;
 685	}
 686}
 687
 688EXPORT_SYMBOL(generic_shutdown_super);
 689
 690bool mount_capable(struct fs_context *fc)
 691{
 692	if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
 693		return capable(CAP_SYS_ADMIN);
 694	else
 695		return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
 696}
 697
 698/**
 699 * sget_fc - Find or create a superblock
 700 * @fc:	Filesystem context.
 701 * @test: Comparison callback
 702 * @set: Setup callback
 703 *
 704 * Create a new superblock or find an existing one.
 705 *
 706 * The @test callback is used to find a matching existing superblock.
 707 * Whether or not the requested parameters in @fc are taken into account
 708 * is specific to the @test callback that is used. They may even be
 709 * completely ignored.
 710 *
 711 * If an extant superblock is matched, it will be returned unless:
 712 *
 713 * (1) the namespace the filesystem context @fc and the extant
 714 *     superblock's namespace differ
 715 *
 716 * (2) the filesystem context @fc has requested that reusing an extant
 717 *     superblock is not allowed
 718 *
 719 * In both cases EBUSY will be returned.
 720 *
 721 * If no match is made, a new superblock will be allocated and basic
 722 * initialisation will be performed (s_type, s_fs_info and s_id will be
 723 * set and the @set callback will be invoked), the superblock will be
 724 * published and it will be returned in a partially constructed state
 725 * with SB_BORN and SB_ACTIVE as yet unset.
 726 *
 727 * Return: On success, an extant or newly created superblock is
 728 *         returned. On failure an error pointer is returned.
 729 */
 730struct super_block *sget_fc(struct fs_context *fc,
 731			    int (*test)(struct super_block *, struct fs_context *),
 732			    int (*set)(struct super_block *, struct fs_context *))
 733{
 734	struct super_block *s = NULL;
 735	struct super_block *old;
 736	struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
 737	int err;
 738
 739	/*
 740	 * Never allow s_user_ns != &init_user_ns when FS_USERNS_MOUNT is
 741	 * not set, as the filesystem is likely unprepared to handle it.
 742	 * This can happen when fsconfig() is called from init_user_ns with
 743	 * an fs_fd opened in another user namespace.
 744	 */
 745	if (user_ns != &init_user_ns && !(fc->fs_type->fs_flags & FS_USERNS_MOUNT)) {
 746		errorfc(fc, "VFS: Mounting from non-initial user namespace is not allowed");
 747		return ERR_PTR(-EPERM);
 748	}
 749
 750retry:
 751	spin_lock(&sb_lock);
 752	if (test) {
 753		hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
 754			if (test(old, fc))
 755				goto share_extant_sb;
 756		}
 757	}
 758	if (!s) {
 759		spin_unlock(&sb_lock);
 760		s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
 761		if (!s)
 762			return ERR_PTR(-ENOMEM);
 763		goto retry;
 764	}
 765
 766	s->s_fs_info = fc->s_fs_info;
 767	err = set(s, fc);
 768	if (err) {
 769		s->s_fs_info = NULL;
 770		spin_unlock(&sb_lock);
 771		destroy_unused_super(s);
 772		return ERR_PTR(err);
 773	}
 774	fc->s_fs_info = NULL;
 775	s->s_type = fc->fs_type;
 776	s->s_iflags |= fc->s_iflags;
 777	strscpy(s->s_id, s->s_type->name, sizeof(s->s_id));
 778	/*
 779	 * Make the superblock visible on @super_blocks and @fs_supers.
 780	 * It's in a nascent state and users should wait on SB_BORN or
 781	 * SB_DYING to be set.
 782	 */
 783	list_add_tail(&s->s_list, &super_blocks);
 784	hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
 785	spin_unlock(&sb_lock);
 786	get_filesystem(s->s_type);
 787	shrinker_register(s->s_shrink);
 788	return s;
 789
 790share_extant_sb:
 791	if (user_ns != old->s_user_ns || fc->exclusive) {
 792		spin_unlock(&sb_lock);
 793		destroy_unused_super(s);
 794		if (fc->exclusive)
 795			warnfc(fc, "reusing existing filesystem not allowed");
 796		else
 797			warnfc(fc, "reusing existing filesystem in another namespace not allowed");
 798		return ERR_PTR(-EBUSY);
 799	}
 800	if (!grab_super(old))
 801		goto retry;
 802	destroy_unused_super(s);
 803	return old;
 804}
 805EXPORT_SYMBOL(sget_fc);
 806
 807/**
 808 *	sget	-	find or create a superblock
 809 *	@type:	  filesystem type superblock should belong to
 810 *	@test:	  comparison callback
 811 *	@set:	  setup callback
 812 *	@flags:	  mount flags
 813 *	@data:	  argument to each of them
 814 */
 815struct super_block *sget(struct file_system_type *type,
 816			int (*test)(struct super_block *,void *),
 817			int (*set)(struct super_block *,void *),
 818			int flags,
 819			void *data)
 820{
 821	struct user_namespace *user_ns = current_user_ns();
 822	struct super_block *s = NULL;
 823	struct super_block *old;
 824	int err;
 825
 826	/* We don't yet pass the user namespace of the parent
 827	 * mount through to here so always use &init_user_ns
 828	 * until that changes.
 829	 */
 830	if (flags & SB_SUBMOUNT)
 831		user_ns = &init_user_ns;
 832
 833retry:
 834	spin_lock(&sb_lock);
 835	if (test) {
 836		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
 837			if (!test(old, data))
 838				continue;
 839			if (user_ns != old->s_user_ns) {
 840				spin_unlock(&sb_lock);
 841				destroy_unused_super(s);
 842				return ERR_PTR(-EBUSY);
 843			}
 844			if (!grab_super(old))
 845				goto retry;
 846			destroy_unused_super(s);
 847			return old;
 848		}
 849	}
 850	if (!s) {
 851		spin_unlock(&sb_lock);
 852		s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
 853		if (!s)
 854			return ERR_PTR(-ENOMEM);
 855		goto retry;
 856	}
 857
 858	err = set(s, data);
 859	if (err) {
 860		spin_unlock(&sb_lock);
 861		destroy_unused_super(s);
 862		return ERR_PTR(err);
 863	}
 864	s->s_type = type;
 865	strscpy(s->s_id, type->name, sizeof(s->s_id));
 866	list_add_tail(&s->s_list, &super_blocks);
 867	hlist_add_head(&s->s_instances, &type->fs_supers);
 868	spin_unlock(&sb_lock);
 869	get_filesystem(type);
 870	shrinker_register(s->s_shrink);
 871	return s;
 872}
 873EXPORT_SYMBOL(sget);
 874
 875void drop_super(struct super_block *sb)
 876{
 877	super_unlock_shared(sb);
 878	put_super(sb);
 879}
 880
 881EXPORT_SYMBOL(drop_super);
 882
 883void drop_super_exclusive(struct super_block *sb)
 884{
 885	super_unlock_excl(sb);
 886	put_super(sb);
 887}
 888EXPORT_SYMBOL(drop_super_exclusive);
 889
 890static void __iterate_supers(void (*f)(struct super_block *))
 891{
 892	struct super_block *sb, *p = NULL;
 893
 894	spin_lock(&sb_lock);
 895	list_for_each_entry(sb, &super_blocks, s_list) {
 896		if (super_flags(sb, SB_DYING))
 897			continue;
 898		sb->s_count++;
 899		spin_unlock(&sb_lock);
 900
 901		f(sb);
 902
 903		spin_lock(&sb_lock);
 904		if (p)
 905			__put_super(p);
 906		p = sb;
 907	}
 908	if (p)
 909		__put_super(p);
 910	spin_unlock(&sb_lock);
 911}
 912/**
 913 *	iterate_supers - call function for all active superblocks
 914 *	@f: function to call
 915 *	@arg: argument to pass to it
 916 *
 917 *	Scans the superblock list and calls given function, passing it
 918 *	locked superblock and given argument.
 919 */
 920void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
 921{
 922	struct super_block *sb, *p = NULL;
 923
 924	spin_lock(&sb_lock);
 925	list_for_each_entry(sb, &super_blocks, s_list) {
 926		bool locked;
 927
 928		sb->s_count++;
 929		spin_unlock(&sb_lock);
 930
 931		locked = super_lock_shared(sb);
 932		if (locked) {
 933			if (sb->s_root)
 934				f(sb, arg);
 935			super_unlock_shared(sb);
 936		}
 937
 938		spin_lock(&sb_lock);
 939		if (p)
 940			__put_super(p);
 941		p = sb;
 942	}
 943	if (p)
 944		__put_super(p);
 945	spin_unlock(&sb_lock);
 946}
 947
 948/**
 949 *	iterate_supers_type - call function for superblocks of given type
 950 *	@type: fs type
 951 *	@f: function to call
 952 *	@arg: argument to pass to it
 953 *
 954 *	Scans the superblock list and calls given function, passing it
 955 *	locked superblock and given argument.
 956 */
 957void iterate_supers_type(struct file_system_type *type,
 958	void (*f)(struct super_block *, void *), void *arg)
 959{
 960	struct super_block *sb, *p = NULL;
 961
 962	spin_lock(&sb_lock);
 963	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
 964		bool locked;
 965
 966		sb->s_count++;
 967		spin_unlock(&sb_lock);
 968
 969		locked = super_lock_shared(sb);
 970		if (locked) {
 971			if (sb->s_root)
 972				f(sb, arg);
 973			super_unlock_shared(sb);
 974		}
 975
 976		spin_lock(&sb_lock);
 977		if (p)
 978			__put_super(p);
 979		p = sb;
 980	}
 981	if (p)
 982		__put_super(p);
 983	spin_unlock(&sb_lock);
 984}
 985
 986EXPORT_SYMBOL(iterate_supers_type);
 987
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 988struct super_block *user_get_super(dev_t dev, bool excl)
 989{
 990	struct super_block *sb;
 991
 992	spin_lock(&sb_lock);
 
 993	list_for_each_entry(sb, &super_blocks, s_list) {
 
 
 994		if (sb->s_dev ==  dev) {
 995			bool locked;
 996
 997			sb->s_count++;
 998			spin_unlock(&sb_lock);
 
 
 
 
 999			/* still alive? */
1000			locked = super_lock(sb, excl);
1001			if (locked) {
1002				if (sb->s_root)
1003					return sb;
1004				super_unlock(sb, excl);
1005			}
1006			/* nope, got unmounted */
1007			spin_lock(&sb_lock);
1008			__put_super(sb);
1009			break;
1010		}
1011	}
1012	spin_unlock(&sb_lock);
1013	return NULL;
1014}
1015
1016/**
1017 * reconfigure_super - asks filesystem to change superblock parameters
1018 * @fc: The superblock and configuration
1019 *
1020 * Alters the configuration parameters of a live superblock.
1021 */
1022int reconfigure_super(struct fs_context *fc)
1023{
1024	struct super_block *sb = fc->root->d_sb;
1025	int retval;
1026	bool remount_ro = false;
1027	bool remount_rw = false;
1028	bool force = fc->sb_flags & SB_FORCE;
1029
1030	if (fc->sb_flags_mask & ~MS_RMT_MASK)
1031		return -EINVAL;
1032	if (sb->s_writers.frozen != SB_UNFROZEN)
1033		return -EBUSY;
1034
1035	retval = security_sb_remount(sb, fc->security);
1036	if (retval)
1037		return retval;
1038
1039	if (fc->sb_flags_mask & SB_RDONLY) {
1040#ifdef CONFIG_BLOCK
1041		if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev &&
1042		    bdev_read_only(sb->s_bdev))
1043			return -EACCES;
1044#endif
1045		remount_rw = !(fc->sb_flags & SB_RDONLY) && sb_rdonly(sb);
1046		remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
1047	}
1048
1049	if (remount_ro) {
1050		if (!hlist_empty(&sb->s_pins)) {
1051			super_unlock_excl(sb);
1052			group_pin_kill(&sb->s_pins);
1053			__super_lock_excl(sb);
1054			if (!sb->s_root)
1055				return 0;
1056			if (sb->s_writers.frozen != SB_UNFROZEN)
1057				return -EBUSY;
1058			remount_ro = !sb_rdonly(sb);
1059		}
1060	}
1061	shrink_dcache_sb(sb);
1062
1063	/* If we are reconfiguring to RDONLY and current sb is read/write,
1064	 * make sure there are no files open for writing.
1065	 */
1066	if (remount_ro) {
1067		if (force) {
1068			sb_start_ro_state_change(sb);
 
1069		} else {
1070			retval = sb_prepare_remount_readonly(sb);
1071			if (retval)
1072				return retval;
1073		}
1074	} else if (remount_rw) {
1075		/*
1076		 * Protect filesystem's reconfigure code from writes from
1077		 * userspace until reconfigure finishes.
1078		 */
1079		sb_start_ro_state_change(sb);
1080	}
1081
1082	if (fc->ops->reconfigure) {
1083		retval = fc->ops->reconfigure(fc);
1084		if (retval) {
1085			if (!force)
1086				goto cancel_readonly;
1087			/* If forced remount, go ahead despite any errors */
1088			WARN(1, "forced remount of a %s fs returned %i\n",
1089			     sb->s_type->name, retval);
1090		}
1091	}
1092
1093	WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
1094				 (fc->sb_flags & fc->sb_flags_mask)));
1095	sb_end_ro_state_change(sb);
 
 
1096
1097	/*
1098	 * Some filesystems modify their metadata via some other path than the
1099	 * bdev buffer cache (eg. use a private mapping, or directories in
1100	 * pagecache, etc). Also file data modifications go via their own
1101	 * mappings. So If we try to mount readonly then copy the filesystem
1102	 * from bdev, we could get stale data, so invalidate it to give a best
1103	 * effort at coherency.
1104	 */
1105	if (remount_ro && sb->s_bdev)
1106		invalidate_bdev(sb->s_bdev);
1107	return 0;
1108
1109cancel_readonly:
1110	sb_end_ro_state_change(sb);
1111	return retval;
1112}
1113
1114static void do_emergency_remount_callback(struct super_block *sb)
1115{
1116	bool locked = super_lock_excl(sb);
1117
1118	if (locked && sb->s_root && sb->s_bdev && !sb_rdonly(sb)) {
1119		struct fs_context *fc;
1120
1121		fc = fs_context_for_reconfigure(sb->s_root,
1122					SB_RDONLY | SB_FORCE, SB_RDONLY);
1123		if (!IS_ERR(fc)) {
1124			if (parse_monolithic_mount_data(fc, NULL) == 0)
1125				(void)reconfigure_super(fc);
1126			put_fs_context(fc);
1127		}
1128	}
1129	if (locked)
1130		super_unlock_excl(sb);
1131}
1132
1133static void do_emergency_remount(struct work_struct *work)
1134{
1135	__iterate_supers(do_emergency_remount_callback);
1136	kfree(work);
1137	printk("Emergency Remount complete\n");
1138}
1139
1140void emergency_remount(void)
1141{
1142	struct work_struct *work;
1143
1144	work = kmalloc(sizeof(*work), GFP_ATOMIC);
1145	if (work) {
1146		INIT_WORK(work, do_emergency_remount);
1147		schedule_work(work);
1148	}
1149}
1150
1151static void do_thaw_all_callback(struct super_block *sb)
1152{
1153	bool locked = super_lock_excl(sb);
1154
1155	if (locked && sb->s_root) {
1156		if (IS_ENABLED(CONFIG_BLOCK))
1157			while (sb->s_bdev && !bdev_thaw(sb->s_bdev))
1158				pr_warn("Emergency Thaw on %pg\n", sb->s_bdev);
1159		thaw_super_locked(sb, FREEZE_HOLDER_USERSPACE);
1160		return;
1161	}
1162	if (locked)
1163		super_unlock_excl(sb);
1164}
1165
1166static void do_thaw_all(struct work_struct *work)
1167{
1168	__iterate_supers(do_thaw_all_callback);
1169	kfree(work);
1170	printk(KERN_WARNING "Emergency Thaw complete\n");
1171}
1172
1173/**
1174 * emergency_thaw_all -- forcibly thaw every frozen filesystem
1175 *
1176 * Used for emergency unfreeze of all filesystems via SysRq
1177 */
1178void emergency_thaw_all(void)
1179{
1180	struct work_struct *work;
1181
1182	work = kmalloc(sizeof(*work), GFP_ATOMIC);
1183	if (work) {
1184		INIT_WORK(work, do_thaw_all);
1185		schedule_work(work);
1186	}
1187}
1188
1189static DEFINE_IDA(unnamed_dev_ida);
1190
1191/**
1192 * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1193 * @p: Pointer to a dev_t.
1194 *
1195 * Filesystems which don't use real block devices can call this function
1196 * to allocate a virtual block device.
1197 *
1198 * Context: Any context.  Frequently called while holding sb_lock.
1199 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1200 * or -ENOMEM if memory allocation failed.
1201 */
1202int get_anon_bdev(dev_t *p)
1203{
1204	int dev;
1205
1206	/*
1207	 * Many userspace utilities consider an FSID of 0 invalid.
1208	 * Always return at least 1 from get_anon_bdev.
1209	 */
1210	dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1211			GFP_ATOMIC);
1212	if (dev == -ENOSPC)
1213		dev = -EMFILE;
1214	if (dev < 0)
1215		return dev;
1216
1217	*p = MKDEV(0, dev);
1218	return 0;
1219}
1220EXPORT_SYMBOL(get_anon_bdev);
1221
1222void free_anon_bdev(dev_t dev)
1223{
1224	ida_free(&unnamed_dev_ida, MINOR(dev));
1225}
1226EXPORT_SYMBOL(free_anon_bdev);
1227
1228int set_anon_super(struct super_block *s, void *data)
1229{
1230	return get_anon_bdev(&s->s_dev);
1231}
1232EXPORT_SYMBOL(set_anon_super);
1233
1234void kill_anon_super(struct super_block *sb)
1235{
1236	dev_t dev = sb->s_dev;
1237	generic_shutdown_super(sb);
1238	kill_super_notify(sb);
1239	free_anon_bdev(dev);
1240}
1241EXPORT_SYMBOL(kill_anon_super);
1242
1243void kill_litter_super(struct super_block *sb)
1244{
1245	if (sb->s_root)
1246		d_genocide(sb->s_root);
1247	kill_anon_super(sb);
1248}
1249EXPORT_SYMBOL(kill_litter_super);
1250
1251int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
1252{
1253	return set_anon_super(sb, NULL);
1254}
1255EXPORT_SYMBOL(set_anon_super_fc);
1256
1257static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
1258{
1259	return sb->s_fs_info == fc->s_fs_info;
1260}
1261
1262static int test_single_super(struct super_block *s, struct fs_context *fc)
1263{
1264	return 1;
1265}
1266
1267static int vfs_get_super(struct fs_context *fc,
1268		int (*test)(struct super_block *, struct fs_context *),
1269		int (*fill_super)(struct super_block *sb,
1270				  struct fs_context *fc))
1271{
1272	struct super_block *sb;
1273	int err;
1274
1275	sb = sget_fc(fc, test, set_anon_super_fc);
1276	if (IS_ERR(sb))
1277		return PTR_ERR(sb);
1278
1279	if (!sb->s_root) {
1280		err = fill_super(sb, fc);
1281		if (err)
1282			goto error;
1283
1284		sb->s_flags |= SB_ACTIVE;
 
 
 
 
 
 
 
 
 
 
 
1285	}
1286
1287	fc->root = dget(sb->s_root);
1288	return 0;
1289
1290error:
1291	deactivate_locked_super(sb);
1292	return err;
1293}
1294
1295int get_tree_nodev(struct fs_context *fc,
1296		  int (*fill_super)(struct super_block *sb,
1297				    struct fs_context *fc))
1298{
1299	return vfs_get_super(fc, NULL, fill_super);
1300}
1301EXPORT_SYMBOL(get_tree_nodev);
1302
1303int get_tree_single(struct fs_context *fc,
1304		  int (*fill_super)(struct super_block *sb,
1305				    struct fs_context *fc))
1306{
1307	return vfs_get_super(fc, test_single_super, fill_super);
1308}
1309EXPORT_SYMBOL(get_tree_single);
1310
 
 
 
 
 
 
 
 
1311int get_tree_keyed(struct fs_context *fc,
1312		  int (*fill_super)(struct super_block *sb,
1313				    struct fs_context *fc),
1314		void *key)
1315{
1316	fc->s_fs_info = key;
1317	return vfs_get_super(fc, test_keyed_super, fill_super);
1318}
1319EXPORT_SYMBOL(get_tree_keyed);
1320
 
 
1321static int set_bdev_super(struct super_block *s, void *data)
1322{
1323	s->s_dev = *(dev_t *)data;
 
 
 
 
 
1324	return 0;
1325}
1326
1327static int super_s_dev_set(struct super_block *s, struct fs_context *fc)
1328{
1329	return set_bdev_super(s, fc->sget_key);
1330}
1331
1332static int super_s_dev_test(struct super_block *s, struct fs_context *fc)
1333{
1334	return !(s->s_iflags & SB_I_RETIRED) &&
1335		s->s_dev == *(dev_t *)fc->sget_key;
1336}
1337
1338/**
1339 * sget_dev - Find or create a superblock by device number
1340 * @fc: Filesystem context.
1341 * @dev: device number
1342 *
1343 * Find or create a superblock using the provided device number that
1344 * will be stored in fc->sget_key.
1345 *
1346 * If an extant superblock is matched, then that will be returned with
1347 * an elevated reference count that the caller must transfer or discard.
1348 *
1349 * If no match is made, a new superblock will be allocated and basic
1350 * initialisation will be performed (s_type, s_fs_info, s_id, s_dev will
1351 * be set). The superblock will be published and it will be returned in
1352 * a partially constructed state with SB_BORN and SB_ACTIVE as yet
1353 * unset.
1354 *
1355 * Return: an existing or newly created superblock on success, an error
1356 *         pointer on failure.
1357 */
1358struct super_block *sget_dev(struct fs_context *fc, dev_t dev)
 
 
1359{
1360	fc->sget_key = &dev;
1361	return sget_fc(fc, super_s_dev_test, super_s_dev_set);
1362}
1363EXPORT_SYMBOL(sget_dev);
1364
1365#ifdef CONFIG_BLOCK
1366/*
1367 * Lock the superblock that is holder of the bdev. Returns the superblock
1368 * pointer if we successfully locked the superblock and it is alive. Otherwise
1369 * we return NULL and just unlock bdev->bd_holder_lock.
1370 *
1371 * The function must be called with bdev->bd_holder_lock and releases it.
1372 */
1373static struct super_block *bdev_super_lock(struct block_device *bdev, bool excl)
1374	__releases(&bdev->bd_holder_lock)
1375{
1376	struct super_block *sb = bdev->bd_holder;
1377	bool locked;
1378
1379	lockdep_assert_held(&bdev->bd_holder_lock);
1380	lockdep_assert_not_held(&sb->s_umount);
1381	lockdep_assert_not_held(&bdev->bd_disk->open_mutex);
1382
1383	/* Make sure sb doesn't go away from under us */
1384	spin_lock(&sb_lock);
1385	sb->s_count++;
1386	spin_unlock(&sb_lock);
1387
1388	mutex_unlock(&bdev->bd_holder_lock);
1389
1390	locked = super_lock(sb, excl);
1391
1392	/*
1393	 * If the superblock wasn't already SB_DYING then we hold
1394	 * s_umount and can safely drop our temporary reference.
1395         */
1396	put_super(sb);
1397
1398	if (!locked)
1399		return NULL;
1400
1401	if (!sb->s_root || !(sb->s_flags & SB_ACTIVE)) {
1402		super_unlock(sb, excl);
1403		return NULL;
1404	}
1405
1406	return sb;
1407}
1408
1409static void fs_bdev_mark_dead(struct block_device *bdev, bool surprise)
1410{
1411	struct super_block *sb;
1412
1413	sb = bdev_super_lock(bdev, false);
1414	if (!sb)
1415		return;
1416
1417	if (!surprise)
1418		sync_filesystem(sb);
1419	shrink_dcache_sb(sb);
1420	invalidate_inodes(sb);
1421	if (sb->s_op->shutdown)
1422		sb->s_op->shutdown(sb);
1423
1424	super_unlock_shared(sb);
1425}
1426
1427static void fs_bdev_sync(struct block_device *bdev)
1428{
1429	struct super_block *sb;
1430
1431	sb = bdev_super_lock(bdev, false);
1432	if (!sb)
1433		return;
1434
1435	sync_filesystem(sb);
1436	super_unlock_shared(sb);
1437}
1438
1439static struct super_block *get_bdev_super(struct block_device *bdev)
1440{
1441	bool active = false;
1442	struct super_block *sb;
1443
1444	sb = bdev_super_lock(bdev, true);
1445	if (sb) {
1446		active = atomic_inc_not_zero(&sb->s_active);
1447		super_unlock_excl(sb);
1448	}
1449	if (!active)
1450		return NULL;
1451	return sb;
1452}
1453
1454/**
1455 * fs_bdev_freeze - freeze owning filesystem of block device
1456 * @bdev: block device
1457 *
1458 * Freeze the filesystem that owns this block device if it is still
1459 * active.
1460 *
1461 * A filesystem that owns multiple block devices may be frozen from each
1462 * block device and won't be unfrozen until all block devices are
1463 * unfrozen. Each block device can only freeze the filesystem once as we
1464 * nest freezes for block devices in the block layer.
1465 *
1466 * Return: If the freeze was successful zero is returned. If the freeze
1467 *         failed a negative error code is returned.
1468 */
1469static int fs_bdev_freeze(struct block_device *bdev)
1470{
1471	struct super_block *sb;
1472	int error = 0;
1473
1474	lockdep_assert_held(&bdev->bd_fsfreeze_mutex);
 
1475
1476	sb = get_bdev_super(bdev);
1477	if (!sb)
1478		return -EINVAL;
1479
1480	if (sb->s_op->freeze_super)
1481		error = sb->s_op->freeze_super(sb,
1482				FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE);
1483	else
1484		error = freeze_super(sb,
1485				FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE);
1486	if (!error)
1487		error = sync_blockdev(bdev);
1488	deactivate_super(sb);
1489	return error;
1490}
1491
1492/**
1493 * fs_bdev_thaw - thaw owning filesystem of block device
1494 * @bdev: block device
1495 *
1496 * Thaw the filesystem that owns this block device.
1497 *
1498 * A filesystem that owns multiple block devices may be frozen from each
1499 * block device and won't be unfrozen until all block devices are
1500 * unfrozen. Each block device can only freeze the filesystem once as we
1501 * nest freezes for block devices in the block layer.
1502 *
1503 * Return: If the thaw was successful zero is returned. If the thaw
1504 *         failed a negative error code is returned. If this function
1505 *         returns zero it doesn't mean that the filesystem is unfrozen
1506 *         as it may have been frozen multiple times (kernel may hold a
1507 *         freeze or might be frozen from other block devices).
1508 */
1509static int fs_bdev_thaw(struct block_device *bdev)
1510{
1511	struct super_block *sb;
1512	int error;
1513
1514	lockdep_assert_held(&bdev->bd_fsfreeze_mutex);
1515
1516	/*
1517	 * The block device may have been frozen before it was claimed by a
1518	 * filesystem. Concurrently another process might try to mount that
1519	 * frozen block device and has temporarily claimed the block device for
1520	 * that purpose causing a concurrent fs_bdev_thaw() to end up here. The
1521	 * mounter is already about to abort mounting because they still saw an
1522	 * elevanted bdev->bd_fsfreeze_count so get_bdev_super() will return
1523	 * NULL in that case.
1524	 */
1525	sb = get_bdev_super(bdev);
1526	if (!sb)
1527		return -EINVAL;
1528
1529	if (sb->s_op->thaw_super)
1530		error = sb->s_op->thaw_super(sb,
1531				FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE);
1532	else
1533		error = thaw_super(sb,
1534				FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE);
1535	deactivate_super(sb);
1536	return error;
1537}
1538
1539const struct blk_holder_ops fs_holder_ops = {
1540	.mark_dead		= fs_bdev_mark_dead,
1541	.sync			= fs_bdev_sync,
1542	.freeze			= fs_bdev_freeze,
1543	.thaw			= fs_bdev_thaw,
1544};
1545EXPORT_SYMBOL_GPL(fs_holder_ops);
1546
1547int setup_bdev_super(struct super_block *sb, int sb_flags,
1548		struct fs_context *fc)
1549{
1550	blk_mode_t mode = sb_open_mode(sb_flags);
1551	struct file *bdev_file;
1552	struct block_device *bdev;
1553
1554	bdev_file = bdev_file_open_by_dev(sb->s_dev, mode, sb, &fs_holder_ops);
1555	if (IS_ERR(bdev_file)) {
1556		if (fc)
1557			errorf(fc, "%s: Can't open blockdev", fc->source);
1558		return PTR_ERR(bdev_file);
1559	}
1560	bdev = file_bdev(bdev_file);
1561
1562	/*
1563	 * This really should be in blkdev_get_by_dev, but right now can't due
1564	 * to legacy issues that require us to allow opening a block device node
1565	 * writable from userspace even for a read-only block device.
1566	 */
1567	if ((mode & BLK_OPEN_WRITE) && bdev_read_only(bdev)) {
1568		bdev_fput(bdev_file);
1569		return -EACCES;
1570	}
1571
1572	/*
1573	 * It is enough to check bdev was not frozen before we set
1574	 * s_bdev as freezing will wait until SB_BORN is set.
1575	 */
1576	if (atomic_read(&bdev->bd_fsfreeze_count) > 0) {
1577		if (fc)
1578			warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev);
1579		bdev_fput(bdev_file);
 
1580		return -EBUSY;
1581	}
1582	spin_lock(&sb_lock);
1583	sb->s_bdev_file = bdev_file;
1584	sb->s_bdev = bdev;
1585	sb->s_bdi = bdi_get(bdev->bd_disk->bdi);
1586	if (bdev_stable_writes(bdev))
1587		sb->s_iflags |= SB_I_STABLE_WRITES;
1588	spin_unlock(&sb_lock);
1589
1590	snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev);
1591	shrinker_debugfs_rename(sb->s_shrink, "sb-%s:%s", sb->s_type->name,
1592				sb->s_id);
1593	sb_set_blocksize(sb, block_size(bdev));
1594	return 0;
1595}
1596EXPORT_SYMBOL_GPL(setup_bdev_super);
1597
1598/**
1599 * get_tree_bdev_flags - Get a superblock based on a single block device
1600 * @fc: The filesystem context holding the parameters
1601 * @fill_super: Helper to initialise a new superblock
1602 * @flags: GET_TREE_BDEV_* flags
1603 */
1604int get_tree_bdev_flags(struct fs_context *fc,
1605		int (*fill_super)(struct super_block *sb,
1606				  struct fs_context *fc), unsigned int flags)
1607{
1608	struct super_block *s;
1609	int error = 0;
1610	dev_t dev;
1611
1612	if (!fc->source)
1613		return invalf(fc, "No source specified");
1614
1615	error = lookup_bdev(fc->source, &dev);
1616	if (error) {
1617		if (!(flags & GET_TREE_BDEV_QUIET_LOOKUP))
1618			errorf(fc, "%s: Can't lookup blockdev", fc->source);
1619		return error;
1620	}
1621	fc->sb_flags |= SB_NOSEC;
1622	s = sget_dev(fc, dev);
1623	if (IS_ERR(s))
 
 
 
1624		return PTR_ERR(s);
 
1625
1626	if (s->s_root) {
1627		/* Don't summarily change the RO/RW state. */
1628		if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
1629			warnf(fc, "%pg: Can't mount, would change RO state", s->s_bdev);
1630			deactivate_locked_super(s);
 
1631			return -EBUSY;
1632		}
 
 
 
 
 
 
 
 
 
 
 
1633	} else {
1634		error = setup_bdev_super(s, fc->sb_flags, fc);
1635		if (!error)
1636			error = fill_super(s, fc);
 
 
 
1637		if (error) {
1638			deactivate_locked_super(s);
1639			return error;
1640		}
 
1641		s->s_flags |= SB_ACTIVE;
 
1642	}
1643
1644	BUG_ON(fc->root);
1645	fc->root = dget(s->s_root);
1646	return 0;
1647}
1648EXPORT_SYMBOL_GPL(get_tree_bdev_flags);
1649
1650/**
1651 * get_tree_bdev - Get a superblock based on a single block device
1652 * @fc: The filesystem context holding the parameters
1653 * @fill_super: Helper to initialise a new superblock
1654 */
1655int get_tree_bdev(struct fs_context *fc,
1656		int (*fill_super)(struct super_block *,
1657				  struct fs_context *))
1658{
1659	return get_tree_bdev_flags(fc, fill_super, 0);
1660}
1661EXPORT_SYMBOL(get_tree_bdev);
1662
1663static int test_bdev_super(struct super_block *s, void *data)
1664{
1665	return !(s->s_iflags & SB_I_RETIRED) && s->s_dev == *(dev_t *)data;
1666}
1667
1668struct dentry *mount_bdev(struct file_system_type *fs_type,
1669	int flags, const char *dev_name, void *data,
1670	int (*fill_super)(struct super_block *, void *, int))
1671{
 
1672	struct super_block *s;
1673	int error;
1674	dev_t dev;
1675
1676	error = lookup_bdev(dev_name, &dev);
1677	if (error)
1678		return ERR_PTR(error);
1679
1680	flags |= SB_NOSEC;
1681	s = sget(fs_type, test_bdev_super, set_bdev_super, flags, &dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1682	if (IS_ERR(s))
1683		return ERR_CAST(s);
1684
1685	if (s->s_root) {
1686		if ((flags ^ s->s_flags) & SB_RDONLY) {
1687			deactivate_locked_super(s);
1688			return ERR_PTR(-EBUSY);
 
1689		}
 
 
 
 
 
 
 
 
 
 
 
1690	} else {
1691		error = setup_bdev_super(s, flags, NULL);
1692		if (!error)
1693			error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
 
 
 
1694		if (error) {
1695			deactivate_locked_super(s);
1696			return ERR_PTR(error);
1697		}
1698
1699		s->s_flags |= SB_ACTIVE;
 
1700	}
1701
1702	return dget(s->s_root);
 
 
 
 
 
 
 
1703}
1704EXPORT_SYMBOL(mount_bdev);
1705
1706void kill_block_super(struct super_block *sb)
1707{
1708	struct block_device *bdev = sb->s_bdev;
 
1709
 
1710	generic_shutdown_super(sb);
1711	if (bdev) {
1712		sync_blockdev(bdev);
1713		bdev_fput(sb->s_bdev_file);
1714	}
1715}
1716
1717EXPORT_SYMBOL(kill_block_super);
1718#endif
1719
1720struct dentry *mount_nodev(struct file_system_type *fs_type,
1721	int flags, void *data,
1722	int (*fill_super)(struct super_block *, void *, int))
1723{
1724	int error;
1725	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1726
1727	if (IS_ERR(s))
1728		return ERR_CAST(s);
1729
1730	error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1731	if (error) {
1732		deactivate_locked_super(s);
1733		return ERR_PTR(error);
1734	}
1735	s->s_flags |= SB_ACTIVE;
1736	return dget(s->s_root);
1737}
1738EXPORT_SYMBOL(mount_nodev);
1739
1740int reconfigure_single(struct super_block *s,
1741		       int flags, void *data)
1742{
1743	struct fs_context *fc;
1744	int ret;
1745
1746	/* The caller really need to be passing fc down into mount_single(),
1747	 * then a chunk of this can be removed.  [Bollocks -- AV]
1748	 * Better yet, reconfiguration shouldn't happen, but rather the second
1749	 * mount should be rejected if the parameters are not compatible.
1750	 */
1751	fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
1752	if (IS_ERR(fc))
1753		return PTR_ERR(fc);
1754
1755	ret = parse_monolithic_mount_data(fc, data);
1756	if (ret < 0)
1757		goto out;
1758
1759	ret = reconfigure_super(fc);
1760out:
1761	put_fs_context(fc);
1762	return ret;
1763}
1764
1765static int compare_single(struct super_block *s, void *p)
1766{
1767	return 1;
1768}
1769
1770struct dentry *mount_single(struct file_system_type *fs_type,
1771	int flags, void *data,
1772	int (*fill_super)(struct super_block *, void *, int))
1773{
1774	struct super_block *s;
1775	int error;
1776
1777	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1778	if (IS_ERR(s))
1779		return ERR_CAST(s);
1780	if (!s->s_root) {
1781		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1782		if (!error)
1783			s->s_flags |= SB_ACTIVE;
1784	} else {
1785		error = reconfigure_single(s, flags, data);
1786	}
1787	if (unlikely(error)) {
1788		deactivate_locked_super(s);
1789		return ERR_PTR(error);
1790	}
1791	return dget(s->s_root);
1792}
1793EXPORT_SYMBOL(mount_single);
1794
1795/**
1796 * vfs_get_tree - Get the mountable root
1797 * @fc: The superblock configuration context.
1798 *
1799 * The filesystem is invoked to get or create a superblock which can then later
1800 * be used for mounting.  The filesystem places a pointer to the root to be
1801 * used for mounting in @fc->root.
1802 */
1803int vfs_get_tree(struct fs_context *fc)
1804{
1805	struct super_block *sb;
1806	int error;
1807
1808	if (fc->root)
1809		return -EBUSY;
1810
1811	/* Get the mountable root in fc->root, with a ref on the root and a ref
1812	 * on the superblock.
1813	 */
1814	error = fc->ops->get_tree(fc);
1815	if (error < 0)
1816		return error;
1817
1818	if (!fc->root) {
1819		pr_err("Filesystem %s get_tree() didn't set fc->root, returned %i\n",
1820		       fc->fs_type->name, error);
1821		/* We don't know what the locking state of the superblock is -
1822		 * if there is a superblock.
1823		 */
1824		BUG();
1825	}
1826
1827	sb = fc->root->d_sb;
1828	WARN_ON(!sb->s_bdi);
1829
1830	/*
1831	 * super_wake() contains a memory barrier which also care of
1832	 * ordering for super_cache_count(). We place it before setting
1833	 * SB_BORN as the data dependency between the two functions is
1834	 * the superblock structure contents that we just set up, not
1835	 * the SB_BORN flag.
1836	 */
1837	super_wake(sb, SB_BORN);
 
1838
1839	error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
1840	if (unlikely(error)) {
1841		fc_drop_locked(fc);
1842		return error;
1843	}
1844
1845	/*
1846	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1847	 * but s_maxbytes was an unsigned long long for many releases. Throw
1848	 * this warning for a little while to try and catch filesystems that
1849	 * violate this rule.
1850	 */
1851	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1852		"negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
1853
1854	return 0;
1855}
1856EXPORT_SYMBOL(vfs_get_tree);
1857
1858/*
1859 * Setup private BDI for given superblock. It gets automatically cleaned up
1860 * in generic_shutdown_super().
1861 */
1862int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1863{
1864	struct backing_dev_info *bdi;
1865	int err;
1866	va_list args;
1867
1868	bdi = bdi_alloc(NUMA_NO_NODE);
1869	if (!bdi)
1870		return -ENOMEM;
1871
1872	va_start(args, fmt);
1873	err = bdi_register_va(bdi, fmt, args);
1874	va_end(args);
1875	if (err) {
1876		bdi_put(bdi);
1877		return err;
1878	}
1879	WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1880	sb->s_bdi = bdi;
1881	sb->s_iflags |= SB_I_PERSB_BDI;
1882
1883	return 0;
1884}
1885EXPORT_SYMBOL(super_setup_bdi_name);
1886
1887/*
1888 * Setup private BDI for given superblock. I gets automatically cleaned up
1889 * in generic_shutdown_super().
1890 */
1891int super_setup_bdi(struct super_block *sb)
1892{
1893	static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1894
1895	return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1896				    atomic_long_inc_return(&bdi_seq));
1897}
1898EXPORT_SYMBOL(super_setup_bdi);
1899
1900/**
1901 * sb_wait_write - wait until all writers to given file system finish
1902 * @sb: the super for which we wait
1903 * @level: type of writers we wait for (normal vs page fault)
1904 *
1905 * This function waits until there are no writers of given type to given file
1906 * system.
1907 */
1908static void sb_wait_write(struct super_block *sb, int level)
1909{
1910	percpu_down_write(sb->s_writers.rw_sem + level-1);
1911}
1912
1913/*
1914 * We are going to return to userspace and forget about these locks, the
1915 * ownership goes to the caller of thaw_super() which does unlock().
1916 */
1917static void lockdep_sb_freeze_release(struct super_block *sb)
1918{
1919	int level;
1920
1921	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1922		percpu_rwsem_release(sb->s_writers.rw_sem + level, _THIS_IP_);
1923}
1924
1925/*
1926 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1927 */
1928static void lockdep_sb_freeze_acquire(struct super_block *sb)
1929{
1930	int level;
1931
1932	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1933		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1934}
1935
1936static void sb_freeze_unlock(struct super_block *sb, int level)
1937{
1938	for (level--; level >= 0; level--)
1939		percpu_up_write(sb->s_writers.rw_sem + level);
1940}
1941
1942static int wait_for_partially_frozen(struct super_block *sb)
1943{
1944	int ret = 0;
1945
1946	do {
1947		unsigned short old = sb->s_writers.frozen;
1948
1949		up_write(&sb->s_umount);
1950		ret = wait_var_event_killable(&sb->s_writers.frozen,
1951					       sb->s_writers.frozen != old);
1952		down_write(&sb->s_umount);
1953	} while (ret == 0 &&
1954		 sb->s_writers.frozen != SB_UNFROZEN &&
1955		 sb->s_writers.frozen != SB_FREEZE_COMPLETE);
1956
1957	return ret;
1958}
1959
1960#define FREEZE_HOLDERS (FREEZE_HOLDER_KERNEL | FREEZE_HOLDER_USERSPACE)
1961#define FREEZE_FLAGS (FREEZE_HOLDERS | FREEZE_MAY_NEST)
1962
1963static inline int freeze_inc(struct super_block *sb, enum freeze_holder who)
1964{
1965	WARN_ON_ONCE((who & ~FREEZE_FLAGS));
1966	WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1);
1967
1968	if (who & FREEZE_HOLDER_KERNEL)
1969		++sb->s_writers.freeze_kcount;
1970	if (who & FREEZE_HOLDER_USERSPACE)
1971		++sb->s_writers.freeze_ucount;
1972	return sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount;
1973}
1974
1975static inline int freeze_dec(struct super_block *sb, enum freeze_holder who)
1976{
1977	WARN_ON_ONCE((who & ~FREEZE_FLAGS));
1978	WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1);
1979
1980	if ((who & FREEZE_HOLDER_KERNEL) && sb->s_writers.freeze_kcount)
1981		--sb->s_writers.freeze_kcount;
1982	if ((who & FREEZE_HOLDER_USERSPACE) && sb->s_writers.freeze_ucount)
1983		--sb->s_writers.freeze_ucount;
1984	return sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount;
1985}
1986
1987static inline bool may_freeze(struct super_block *sb, enum freeze_holder who)
1988{
1989	WARN_ON_ONCE((who & ~FREEZE_FLAGS));
1990	WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1);
1991
1992	if (who & FREEZE_HOLDER_KERNEL)
1993		return (who & FREEZE_MAY_NEST) ||
1994		       sb->s_writers.freeze_kcount == 0;
1995	if (who & FREEZE_HOLDER_USERSPACE)
1996		return (who & FREEZE_MAY_NEST) ||
1997		       sb->s_writers.freeze_ucount == 0;
1998	return false;
1999}
2000
2001/**
2002 * freeze_super - lock the filesystem and force it into a consistent state
2003 * @sb: the super to lock
2004 * @who: context that wants to freeze
2005 *
2006 * Syncs the super to make sure the filesystem is consistent and calls the fs's
2007 * freeze_fs.  Subsequent calls to this without first thawing the fs may return
2008 * -EBUSY.
2009 *
2010 * @who should be:
2011 * * %FREEZE_HOLDER_USERSPACE if userspace wants to freeze the fs;
2012 * * %FREEZE_HOLDER_KERNEL if the kernel wants to freeze the fs.
2013 * * %FREEZE_MAY_NEST whether nesting freeze and thaw requests is allowed.
2014 *
2015 * The @who argument distinguishes between the kernel and userspace trying to
2016 * freeze the filesystem.  Although there cannot be multiple kernel freezes or
2017 * multiple userspace freezes in effect at any given time, the kernel and
2018 * userspace can both hold a filesystem frozen.  The filesystem remains frozen
2019 * until there are no kernel or userspace freezes in effect.
2020 *
2021 * A filesystem may hold multiple devices and thus a filesystems may be
2022 * frozen through the block layer via multiple block devices. In this
2023 * case the request is marked as being allowed to nest by passing
2024 * FREEZE_MAY_NEST. The filesystem remains frozen until all block
2025 * devices are unfrozen. If multiple freezes are attempted without
2026 * FREEZE_MAY_NEST -EBUSY will be returned.
2027 *
2028 * During this function, sb->s_writers.frozen goes through these values:
2029 *
2030 * SB_UNFROZEN: File system is normal, all writes progress as usual.
2031 *
2032 * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
2033 * writes should be blocked, though page faults are still allowed. We wait for
2034 * all writes to complete and then proceed to the next stage.
2035 *
2036 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
2037 * but internal fs threads can still modify the filesystem (although they
2038 * should not dirty new pages or inodes), writeback can run etc. After waiting
2039 * for all running page faults we sync the filesystem which will clean all
2040 * dirty pages and inodes (no new dirty pages or inodes can be created when
2041 * sync is running).
2042 *
2043 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
2044 * modification are blocked (e.g. XFS preallocation truncation on inode
2045 * reclaim). This is usually implemented by blocking new transactions for
2046 * filesystems that have them and need this additional guard. After all
2047 * internal writers are finished we call ->freeze_fs() to finish filesystem
2048 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
2049 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
2050 *
2051 * sb->s_writers.frozen is protected by sb->s_umount.
2052 *
2053 * Return: If the freeze was successful zero is returned. If the freeze
2054 *         failed a negative error code is returned.
2055 */
2056int freeze_super(struct super_block *sb, enum freeze_holder who)
2057{
2058	int ret;
2059
2060	if (!super_lock_excl(sb)) {
2061		WARN_ON_ONCE("Dying superblock while freezing!");
2062		return -EINVAL;
2063	}
2064	atomic_inc(&sb->s_active);
2065
2066retry:
2067	if (sb->s_writers.frozen == SB_FREEZE_COMPLETE) {
2068		if (may_freeze(sb, who))
2069			ret = !!WARN_ON_ONCE(freeze_inc(sb, who) == 1);
2070		else
2071			ret = -EBUSY;
2072		/* All freezers share a single active reference. */
2073		deactivate_locked_super(sb);
2074		return ret;
2075	}
2076
2077	if (sb->s_writers.frozen != SB_UNFROZEN) {
2078		ret = wait_for_partially_frozen(sb);
2079		if (ret) {
2080			deactivate_locked_super(sb);
2081			return ret;
2082		}
2083
2084		goto retry;
2085	}
2086
2087	if (sb_rdonly(sb)) {
2088		/* Nothing to do really... */
2089		WARN_ON_ONCE(freeze_inc(sb, who) > 1);
2090		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
2091		wake_up_var(&sb->s_writers.frozen);
2092		super_unlock_excl(sb);
2093		return 0;
2094	}
2095
2096	sb->s_writers.frozen = SB_FREEZE_WRITE;
2097	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
2098	super_unlock_excl(sb);
2099	sb_wait_write(sb, SB_FREEZE_WRITE);
2100	__super_lock_excl(sb);
2101
2102	/* Now we go and block page faults... */
2103	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
2104	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
2105
2106	/* All writers are done so after syncing there won't be dirty data */
2107	ret = sync_filesystem(sb);
2108	if (ret) {
2109		sb->s_writers.frozen = SB_UNFROZEN;
2110		sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT);
2111		wake_up_var(&sb->s_writers.frozen);
2112		deactivate_locked_super(sb);
2113		return ret;
2114	}
2115
2116	/* Now wait for internal filesystem counter */
2117	sb->s_writers.frozen = SB_FREEZE_FS;
2118	sb_wait_write(sb, SB_FREEZE_FS);
2119
2120	if (sb->s_op->freeze_fs) {
2121		ret = sb->s_op->freeze_fs(sb);
2122		if (ret) {
2123			printk(KERN_ERR
2124				"VFS:Filesystem freeze failed\n");
2125			sb->s_writers.frozen = SB_UNFROZEN;
2126			sb_freeze_unlock(sb, SB_FREEZE_FS);
2127			wake_up_var(&sb->s_writers.frozen);
2128			deactivate_locked_super(sb);
2129			return ret;
2130		}
2131	}
2132	/*
2133	 * For debugging purposes so that fs can warn if it sees write activity
2134	 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
2135	 */
2136	WARN_ON_ONCE(freeze_inc(sb, who) > 1);
2137	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
2138	wake_up_var(&sb->s_writers.frozen);
2139	lockdep_sb_freeze_release(sb);
2140	super_unlock_excl(sb);
2141	return 0;
2142}
2143EXPORT_SYMBOL(freeze_super);
2144
2145/*
2146 * Undoes the effect of a freeze_super_locked call.  If the filesystem is
2147 * frozen both by userspace and the kernel, a thaw call from either source
2148 * removes that state without releasing the other state or unlocking the
2149 * filesystem.
2150 */
2151static int thaw_super_locked(struct super_block *sb, enum freeze_holder who)
2152{
2153	int error = -EINVAL;
2154
2155	if (sb->s_writers.frozen != SB_FREEZE_COMPLETE)
2156		goto out_unlock;
2157
2158	/*
2159	 * All freezers share a single active reference.
2160	 * So just unlock in case there are any left.
2161	 */
2162	if (freeze_dec(sb, who))
2163		goto out_unlock;
2164
2165	if (sb_rdonly(sb)) {
2166		sb->s_writers.frozen = SB_UNFROZEN;
2167		wake_up_var(&sb->s_writers.frozen);
2168		goto out_deactivate;
2169	}
2170
2171	lockdep_sb_freeze_acquire(sb);
2172
2173	if (sb->s_op->unfreeze_fs) {
2174		error = sb->s_op->unfreeze_fs(sb);
2175		if (error) {
2176			pr_err("VFS: Filesystem thaw failed\n");
2177			freeze_inc(sb, who);
2178			lockdep_sb_freeze_release(sb);
2179			goto out_unlock;
 
2180		}
2181	}
2182
2183	sb->s_writers.frozen = SB_UNFROZEN;
2184	wake_up_var(&sb->s_writers.frozen);
2185	sb_freeze_unlock(sb, SB_FREEZE_FS);
2186out_deactivate:
 
2187	deactivate_locked_super(sb);
2188	return 0;
2189
2190out_unlock:
2191	super_unlock_excl(sb);
2192	return error;
2193}
2194
2195/**
2196 * thaw_super -- unlock filesystem
2197 * @sb: the super to thaw
2198 * @who: context that wants to freeze
2199 *
2200 * Unlocks the filesystem and marks it writeable again after freeze_super()
2201 * if there are no remaining freezes on the filesystem.
2202 *
2203 * @who should be:
2204 * * %FREEZE_HOLDER_USERSPACE if userspace wants to thaw the fs;
2205 * * %FREEZE_HOLDER_KERNEL if the kernel wants to thaw the fs.
2206 * * %FREEZE_MAY_NEST whether nesting freeze and thaw requests is allowed
2207 *
2208 * A filesystem may hold multiple devices and thus a filesystems may
2209 * have been frozen through the block layer via multiple block devices.
2210 * The filesystem remains frozen until all block devices are unfrozen.
2211 */
2212int thaw_super(struct super_block *sb, enum freeze_holder who)
2213{
2214	if (!super_lock_excl(sb)) {
2215		WARN_ON_ONCE("Dying superblock while thawing!");
2216		return -EINVAL;
2217	}
2218	return thaw_super_locked(sb, who);
2219}
2220EXPORT_SYMBOL(thaw_super);
2221
2222/*
2223 * Create workqueue for deferred direct IO completions. We allocate the
2224 * workqueue when it's first needed. This avoids creating workqueue for
2225 * filesystems that don't need it and also allows us to create the workqueue
2226 * late enough so the we can include s_id in the name of the workqueue.
2227 */
2228int sb_init_dio_done_wq(struct super_block *sb)
2229{
2230	struct workqueue_struct *old;
2231	struct workqueue_struct *wq = alloc_workqueue("dio/%s",
2232						      WQ_MEM_RECLAIM, 0,
2233						      sb->s_id);
2234	if (!wq)
2235		return -ENOMEM;
2236	/*
2237	 * This has to be atomic as more DIOs can race to create the workqueue
2238	 */
2239	old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
2240	/* Someone created workqueue before us? Free ours... */
2241	if (old)
2242		destroy_workqueue(wq);
2243	return 0;
2244}
2245EXPORT_SYMBOL_GPL(sb_init_dio_done_wq);