Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/super.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  super.c contains code to handle: - mount structures
   8 *                                   - super-block tables
   9 *                                   - filesystem drivers list
  10 *                                   - mount system call
  11 *                                   - umount system call
  12 *                                   - ustat system call
  13 *
  14 * GK 2/5/95  -  Changed to support mounting the root fs via NFS
  15 *
  16 *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
  17 *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
  18 *  Added options to /proc/mounts:
  19 *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
  20 *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
  21 *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
  22 */
  23
  24#include <linux/export.h>
  25#include <linux/slab.h>
 
  26#include <linux/blkdev.h>
  27#include <linux/mount.h>
  28#include <linux/security.h>
  29#include <linux/writeback.h>		/* for the emergency remount stuff */
  30#include <linux/idr.h>
  31#include <linux/mutex.h>
  32#include <linux/backing-dev.h>
  33#include <linux/rculist_bl.h>
  34#include <linux/fscrypt.h>
  35#include <linux/fsnotify.h>
  36#include <linux/lockdep.h>
  37#include <linux/user_namespace.h>
  38#include <linux/fs_context.h>
  39#include <uapi/linux/mount.h>
  40#include "internal.h"
  41
  42static int thaw_super_locked(struct super_block *sb);
  43
  44static LIST_HEAD(super_blocks);
  45static DEFINE_SPINLOCK(sb_lock);
  46
  47static char *sb_writers_name[SB_FREEZE_LEVELS] = {
  48	"sb_writers",
  49	"sb_pagefaults",
  50	"sb_internal",
  51};
  52
  53/*
  54 * One thing we have to be careful of with a per-sb shrinker is that we don't
  55 * drop the last active reference to the superblock from within the shrinker.
  56 * If that happens we could trigger unregistering the shrinker from within the
  57 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
  58 * take a passive reference to the superblock to avoid this from occurring.
  59 */
  60static unsigned long super_cache_scan(struct shrinker *shrink,
  61				      struct shrink_control *sc)
  62{
  63	struct super_block *sb;
  64	long	fs_objects = 0;
  65	long	total_objects;
  66	long	freed = 0;
  67	long	dentries;
  68	long	inodes;
  69
  70	sb = container_of(shrink, struct super_block, s_shrink);
  71
  72	/*
  73	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
  74	 * to recurse into the FS that called us in clear_inode() and friends..
  75	 */
  76	if (!(sc->gfp_mask & __GFP_FS))
  77		return SHRINK_STOP;
  78
  79	if (!trylock_super(sb))
  80		return SHRINK_STOP;
  81
  82	if (sb->s_op->nr_cached_objects)
  83		fs_objects = sb->s_op->nr_cached_objects(sb, sc);
  84
  85	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
  86	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
  87	total_objects = dentries + inodes + fs_objects + 1;
  88	if (!total_objects)
  89		total_objects = 1;
  90
  91	/* proportion the scan between the caches */
  92	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
  93	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
  94	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
  95
  96	/*
  97	 * prune the dcache first as the icache is pinned by it, then
  98	 * prune the icache, followed by the filesystem specific caches
  99	 *
 100	 * Ensure that we always scan at least one object - memcg kmem
 101	 * accounting uses this to fully empty the caches.
 102	 */
 103	sc->nr_to_scan = dentries + 1;
 104	freed = prune_dcache_sb(sb, sc);
 105	sc->nr_to_scan = inodes + 1;
 106	freed += prune_icache_sb(sb, sc);
 107
 108	if (fs_objects) {
 109		sc->nr_to_scan = fs_objects + 1;
 110		freed += sb->s_op->free_cached_objects(sb, sc);
 111	}
 112
 113	up_read(&sb->s_umount);
 114	return freed;
 115}
 116
 117static unsigned long super_cache_count(struct shrinker *shrink,
 118				       struct shrink_control *sc)
 119{
 120	struct super_block *sb;
 121	long	total_objects = 0;
 122
 123	sb = container_of(shrink, struct super_block, s_shrink);
 124
 125	/*
 126	 * We don't call trylock_super() here as it is a scalability bottleneck,
 127	 * so we're exposed to partial setup state. The shrinker rwsem does not
 128	 * protect filesystem operations backing list_lru_shrink_count() or
 129	 * s_op->nr_cached_objects(). Counts can change between
 130	 * super_cache_count and super_cache_scan, so we really don't need locks
 131	 * here.
 132	 *
 133	 * However, if we are currently mounting the superblock, the underlying
 134	 * filesystem might be in a state of partial construction and hence it
 135	 * is dangerous to access it.  trylock_super() uses a SB_BORN check to
 136	 * avoid this situation, so do the same here. The memory barrier is
 137	 * matched with the one in mount_fs() as we don't hold locks here.
 138	 */
 139	if (!(sb->s_flags & SB_BORN))
 140		return 0;
 141	smp_rmb();
 142
 143	if (sb->s_op && sb->s_op->nr_cached_objects)
 144		total_objects = sb->s_op->nr_cached_objects(sb, sc);
 145
 146	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
 147	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
 148
 149	if (!total_objects)
 150		return SHRINK_EMPTY;
 151
 152	total_objects = vfs_pressure_ratio(total_objects);
 153	return total_objects;
 154}
 155
 156static void destroy_super_work(struct work_struct *work)
 157{
 158	struct super_block *s = container_of(work, struct super_block,
 159							destroy_work);
 160	int i;
 161
 162	for (i = 0; i < SB_FREEZE_LEVELS; i++)
 163		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
 164	kfree(s);
 165}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 166
 167static void destroy_super_rcu(struct rcu_head *head)
 168{
 169	struct super_block *s = container_of(head, struct super_block, rcu);
 170	INIT_WORK(&s->destroy_work, destroy_super_work);
 171	schedule_work(&s->destroy_work);
 172}
 
 173
 174/* Free a superblock that has never been seen by anyone */
 175static void destroy_unused_super(struct super_block *s)
 176{
 177	if (!s)
 178		return;
 179	up_write(&s->s_umount);
 180	list_lru_destroy(&s->s_dentry_lru);
 181	list_lru_destroy(&s->s_inode_lru);
 182	security_sb_free(s);
 183	put_user_ns(s->s_user_ns);
 184	kfree(s->s_subtype);
 185	free_prealloced_shrinker(&s->s_shrink);
 186	/* no delays needed */
 187	destroy_super_work(&s->destroy_work);
 188}
 189
 190/**
 191 *	alloc_super	-	create new superblock
 192 *	@type:	filesystem type superblock should belong to
 193 *	@flags: the mount flags
 194 *	@user_ns: User namespace for the super_block
 195 *
 196 *	Allocates and initializes a new &struct super_block.  alloc_super()
 197 *	returns a pointer new superblock or %NULL if allocation had failed.
 198 */
 199static struct super_block *alloc_super(struct file_system_type *type, int flags,
 200				       struct user_namespace *user_ns)
 201{
 202	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
 203	static const struct super_operations default_op;
 204	int i;
 205
 206	if (!s)
 207		return NULL;
 208
 209	INIT_LIST_HEAD(&s->s_mounts);
 210	s->s_user_ns = get_user_ns(user_ns);
 211	init_rwsem(&s->s_umount);
 212	lockdep_set_class(&s->s_umount, &type->s_umount_key);
 213	/*
 214	 * sget() can have s_umount recursion.
 215	 *
 216	 * When it cannot find a suitable sb, it allocates a new
 217	 * one (this one), and tries again to find a suitable old
 218	 * one.
 219	 *
 220	 * In case that succeeds, it will acquire the s_umount
 221	 * lock of the old one. Since these are clearly distrinct
 222	 * locks, and this object isn't exposed yet, there's no
 223	 * risk of deadlocks.
 224	 *
 225	 * Annotate this by putting this lock in a different
 226	 * subclass.
 227	 */
 228	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
 229
 230	if (security_sb_alloc(s))
 231		goto fail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 232
 233	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
 234		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
 235					sb_writers_name[i],
 236					&type->s_writers_key[i]))
 237			goto fail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 238	}
 239	init_waitqueue_head(&s->s_writers.wait_unfrozen);
 240	s->s_bdi = &noop_backing_dev_info;
 241	s->s_flags = flags;
 242	if (s->s_user_ns != &init_user_ns)
 243		s->s_iflags |= SB_I_NODEV;
 244	INIT_HLIST_NODE(&s->s_instances);
 245	INIT_HLIST_BL_HEAD(&s->s_roots);
 246	mutex_init(&s->s_sync_lock);
 247	INIT_LIST_HEAD(&s->s_inodes);
 248	spin_lock_init(&s->s_inode_list_lock);
 249	INIT_LIST_HEAD(&s->s_inodes_wb);
 250	spin_lock_init(&s->s_inode_wblist_lock);
 251
 252	s->s_count = 1;
 253	atomic_set(&s->s_active, 1);
 254	mutex_init(&s->s_vfs_rename_mutex);
 255	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
 256	init_rwsem(&s->s_dquot.dqio_sem);
 257	s->s_maxbytes = MAX_NON_LFS;
 258	s->s_op = &default_op;
 259	s->s_time_gran = 1000000000;
 260	s->s_time_min = TIME64_MIN;
 261	s->s_time_max = TIME64_MAX;
 262
 263	s->s_shrink.seeks = DEFAULT_SEEKS;
 264	s->s_shrink.scan_objects = super_cache_scan;
 265	s->s_shrink.count_objects = super_cache_count;
 266	s->s_shrink.batch = 1024;
 267	s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
 268	if (prealloc_shrinker(&s->s_shrink, "sb-%s", type->name))
 269		goto fail;
 270	if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink))
 271		goto fail;
 272	if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink))
 273		goto fail;
 274	return s;
 
 275
 276fail:
 277	destroy_unused_super(s);
 278	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 279}
 280
 281/* Superblock refcounting  */
 282
 283/*
 284 * Drop a superblock's refcount.  The caller must hold sb_lock.
 285 */
 286static void __put_super(struct super_block *s)
 287{
 288	if (!--s->s_count) {
 289		list_del_init(&s->s_list);
 290		WARN_ON(s->s_dentry_lru.node);
 291		WARN_ON(s->s_inode_lru.node);
 292		WARN_ON(!list_empty(&s->s_mounts));
 293		security_sb_free(s);
 294		fscrypt_destroy_keyring(s);
 295		put_user_ns(s->s_user_ns);
 296		kfree(s->s_subtype);
 297		call_rcu(&s->rcu, destroy_super_rcu);
 298	}
 299}
 300
 301/**
 302 *	put_super	-	drop a temporary reference to superblock
 303 *	@sb: superblock in question
 304 *
 305 *	Drops a temporary reference, frees superblock if there's no
 306 *	references left.
 307 */
 308void put_super(struct super_block *sb)
 309{
 310	spin_lock(&sb_lock);
 311	__put_super(sb);
 312	spin_unlock(&sb_lock);
 313}
 314
 315
 316/**
 317 *	deactivate_locked_super	-	drop an active reference to superblock
 318 *	@s: superblock to deactivate
 319 *
 320 *	Drops an active reference to superblock, converting it into a temporary
 321 *	one if there is no other active references left.  In that case we
 322 *	tell fs driver to shut it down and drop the temporary reference we
 323 *	had just acquired.
 324 *
 325 *	Caller holds exclusive lock on superblock; that lock is released.
 326 */
 327void deactivate_locked_super(struct super_block *s)
 328{
 329	struct file_system_type *fs = s->s_type;
 330	if (atomic_dec_and_test(&s->s_active)) {
 331		unregister_shrinker(&s->s_shrink);
 332		fs->kill_sb(s);
 333
 
 
 
 334		/*
 335		 * Since list_lru_destroy() may sleep, we cannot call it from
 336		 * put_super(), where we hold the sb_lock. Therefore we destroy
 337		 * the lru lists right now.
 338		 */
 339		list_lru_destroy(&s->s_dentry_lru);
 340		list_lru_destroy(&s->s_inode_lru);
 341
 342		put_filesystem(fs);
 343		put_super(s);
 344	} else {
 345		up_write(&s->s_umount);
 346	}
 347}
 348
 349EXPORT_SYMBOL(deactivate_locked_super);
 350
 351/**
 352 *	deactivate_super	-	drop an active reference to superblock
 353 *	@s: superblock to deactivate
 354 *
 355 *	Variant of deactivate_locked_super(), except that superblock is *not*
 356 *	locked by caller.  If we are going to drop the final active reference,
 357 *	lock will be acquired prior to that.
 358 */
 359void deactivate_super(struct super_block *s)
 360{
 361	if (!atomic_add_unless(&s->s_active, -1, 1)) {
 362		down_write(&s->s_umount);
 363		deactivate_locked_super(s);
 364	}
 365}
 366
 367EXPORT_SYMBOL(deactivate_super);
 368
 369/**
 370 *	grab_super - acquire an active reference
 371 *	@s: reference we are trying to make active
 372 *
 373 *	Tries to acquire an active reference.  grab_super() is used when we
 374 * 	had just found a superblock in super_blocks or fs_type->fs_supers
 375 *	and want to turn it into a full-blown active reference.  grab_super()
 376 *	is called with sb_lock held and drops it.  Returns 1 in case of
 377 *	success, 0 if we had failed (superblock contents was already dead or
 378 *	dying when grab_super() had been called).  Note that this is only
 379 *	called for superblocks not in rundown mode (== ones still on ->fs_supers
 380 *	of their type), so increment of ->s_count is OK here.
 381 */
 382static int grab_super(struct super_block *s) __releases(sb_lock)
 383{
 
 
 
 
 
 384	s->s_count++;
 385	spin_unlock(&sb_lock);
 
 386	down_write(&s->s_umount);
 387	if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
 388		put_super(s);
 389		return 1;
 390	}
 391	up_write(&s->s_umount);
 392	put_super(s);
 393	return 0;
 394}
 395
 396/*
 397 *	trylock_super - try to grab ->s_umount shared
 398 *	@sb: reference we are trying to grab
 399 *
 400 *	Try to prevent fs shutdown.  This is used in places where we
 401 *	cannot take an active reference but we need to ensure that the
 402 *	filesystem is not shut down while we are working on it. It returns
 403 *	false if we cannot acquire s_umount or if we lose the race and
 404 *	filesystem already got into shutdown, and returns true with the s_umount
 405 *	lock held in read mode in case of success. On successful return,
 406 *	the caller must drop the s_umount lock when done.
 407 *
 408 *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
 409 *	The reason why it's safe is that we are OK with doing trylock instead
 410 *	of down_read().  There's a couple of places that are OK with that, but
 411 *	it's very much not a general-purpose interface.
 412 */
 413bool trylock_super(struct super_block *sb)
 414{
 
 
 
 
 
 
 
 
 
 415	if (down_read_trylock(&sb->s_umount)) {
 416		if (!hlist_unhashed(&sb->s_instances) &&
 417		    sb->s_root && (sb->s_flags & SB_BORN))
 418			return true;
 419		up_read(&sb->s_umount);
 420	}
 421
 
 422	return false;
 423}
 424
 425/**
 426 *	retire_super	-	prevents superblock from being reused
 427 *	@sb: superblock to retire
 428 *
 429 *	The function marks superblock to be ignored in superblock test, which
 430 *	prevents it from being reused for any new mounts.  If the superblock has
 431 *	a private bdi, it also unregisters it, but doesn't reduce the refcount
 432 *	of the superblock to prevent potential races.  The refcount is reduced
 433 *	by generic_shutdown_super().  The function can not be called
 434 *	concurrently with generic_shutdown_super().  It is safe to call the
 435 *	function multiple times, subsequent calls have no effect.
 436 *
 437 *	The marker will affect the re-use only for block-device-based
 438 *	superblocks.  Other superblocks will still get marked if this function
 439 *	is used, but that will not affect their reusability.
 440 */
 441void retire_super(struct super_block *sb)
 442{
 443	WARN_ON(!sb->s_bdev);
 444	down_write(&sb->s_umount);
 445	if (sb->s_iflags & SB_I_PERSB_BDI) {
 446		bdi_unregister(sb->s_bdi);
 447		sb->s_iflags &= ~SB_I_PERSB_BDI;
 448	}
 449	sb->s_iflags |= SB_I_RETIRED;
 450	up_write(&sb->s_umount);
 451}
 452EXPORT_SYMBOL(retire_super);
 
 
 
 
 
 
 
 453
 454/**
 455 *	generic_shutdown_super	-	common helper for ->kill_sb()
 456 *	@sb: superblock to kill
 457 *
 458 *	generic_shutdown_super() does all fs-independent work on superblock
 459 *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
 460 *	that need destruction out of superblock, call generic_shutdown_super()
 461 *	and release aforementioned objects.  Note: dentries and inodes _are_
 462 *	taken care of and do not need specific handling.
 463 *
 464 *	Upon calling this function, the filesystem may no longer alter or
 465 *	rearrange the set of dentries belonging to this super_block, nor may it
 466 *	change the attachments of dentries to inodes.
 467 */
 468void generic_shutdown_super(struct super_block *sb)
 469{
 470	const struct super_operations *sop = sb->s_op;
 471
 472	if (sb->s_root) {
 473		shrink_dcache_for_umount(sb);
 474		sync_filesystem(sb);
 475		sb->s_flags &= ~SB_ACTIVE;
 476
 477		cgroup_writeback_umount();
 478
 479		/* evict all inodes with zero refcount */
 480		evict_inodes(sb);
 481		/* only nonzero refcount inodes can have marks */
 482		fsnotify_sb_delete(sb);
 483		fscrypt_destroy_keyring(sb);
 484		security_sb_delete(sb);
 485
 486		if (sb->s_dio_done_wq) {
 487			destroy_workqueue(sb->s_dio_done_wq);
 488			sb->s_dio_done_wq = NULL;
 489		}
 490
 491		if (sop->put_super)
 492			sop->put_super(sb);
 493
 494		if (!list_empty(&sb->s_inodes)) {
 495			printk("VFS: Busy inodes after unmount of %s. "
 496			   "Self-destruct in 5 seconds.  Have a nice day...\n",
 497			   sb->s_id);
 498		}
 499	}
 500	spin_lock(&sb_lock);
 501	/* should be initialized for __put_super_and_need_restart() */
 502	hlist_del_init(&sb->s_instances);
 503	spin_unlock(&sb_lock);
 504	up_write(&sb->s_umount);
 505	if (sb->s_bdi != &noop_backing_dev_info) {
 506		if (sb->s_iflags & SB_I_PERSB_BDI)
 507			bdi_unregister(sb->s_bdi);
 508		bdi_put(sb->s_bdi);
 509		sb->s_bdi = &noop_backing_dev_info;
 510	}
 511}
 512
 513EXPORT_SYMBOL(generic_shutdown_super);
 514
 515bool mount_capable(struct fs_context *fc)
 516{
 517	if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
 518		return capable(CAP_SYS_ADMIN);
 519	else
 520		return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
 521}
 522
 523/**
 524 * sget_fc - Find or create a superblock
 525 * @fc:	Filesystem context.
 526 * @test: Comparison callback
 527 * @set: Setup callback
 528 *
 529 * Find or create a superblock using the parameters stored in the filesystem
 530 * context and the two callback functions.
 531 *
 532 * If an extant superblock is matched, then that will be returned with an
 533 * elevated reference count that the caller must transfer or discard.
 534 *
 535 * If no match is made, a new superblock will be allocated and basic
 536 * initialisation will be performed (s_type, s_fs_info and s_id will be set and
 537 * the set() callback will be invoked), the superblock will be published and it
 538 * will be returned in a partially constructed state with SB_BORN and SB_ACTIVE
 539 * as yet unset.
 540 */
 541struct super_block *sget_fc(struct fs_context *fc,
 542			    int (*test)(struct super_block *, struct fs_context *),
 543			    int (*set)(struct super_block *, struct fs_context *))
 544{
 545	struct super_block *s = NULL;
 546	struct super_block *old;
 547	struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
 548	int err;
 549
 550retry:
 551	spin_lock(&sb_lock);
 552	if (test) {
 553		hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
 554			if (test(old, fc))
 555				goto share_extant_sb;
 556		}
 557	}
 558	if (!s) {
 559		spin_unlock(&sb_lock);
 560		s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
 561		if (!s)
 562			return ERR_PTR(-ENOMEM);
 563		goto retry;
 564	}
 565
 566	s->s_fs_info = fc->s_fs_info;
 567	err = set(s, fc);
 568	if (err) {
 569		s->s_fs_info = NULL;
 570		spin_unlock(&sb_lock);
 571		destroy_unused_super(s);
 572		return ERR_PTR(err);
 573	}
 574	fc->s_fs_info = NULL;
 575	s->s_type = fc->fs_type;
 576	s->s_iflags |= fc->s_iflags;
 577	strlcpy(s->s_id, s->s_type->name, sizeof(s->s_id));
 578	list_add_tail(&s->s_list, &super_blocks);
 579	hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
 580	spin_unlock(&sb_lock);
 581	get_filesystem(s->s_type);
 582	register_shrinker_prepared(&s->s_shrink);
 583	return s;
 584
 585share_extant_sb:
 586	if (user_ns != old->s_user_ns) {
 587		spin_unlock(&sb_lock);
 588		destroy_unused_super(s);
 589		return ERR_PTR(-EBUSY);
 590	}
 591	if (!grab_super(old))
 592		goto retry;
 593	destroy_unused_super(s);
 594	return old;
 595}
 596EXPORT_SYMBOL(sget_fc);
 597
 598/**
 599 *	sget	-	find or create a superblock
 600 *	@type:	  filesystem type superblock should belong to
 601 *	@test:	  comparison callback
 602 *	@set:	  setup callback
 603 *	@flags:	  mount flags
 604 *	@data:	  argument to each of them
 605 */
 606struct super_block *sget(struct file_system_type *type,
 607			int (*test)(struct super_block *,void *),
 608			int (*set)(struct super_block *,void *),
 609			int flags,
 610			void *data)
 611{
 612	struct user_namespace *user_ns = current_user_ns();
 613	struct super_block *s = NULL;
 614	struct super_block *old;
 615	int err;
 616
 617	/* We don't yet pass the user namespace of the parent
 618	 * mount through to here so always use &init_user_ns
 619	 * until that changes.
 620	 */
 621	if (flags & SB_SUBMOUNT)
 622		user_ns = &init_user_ns;
 623
 624retry:
 625	spin_lock(&sb_lock);
 626	if (test) {
 627		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
 628			if (!test(old, data))
 629				continue;
 630			if (user_ns != old->s_user_ns) {
 631				spin_unlock(&sb_lock);
 632				destroy_unused_super(s);
 633				return ERR_PTR(-EBUSY);
 634			}
 635			if (!grab_super(old))
 636				goto retry;
 637			destroy_unused_super(s);
 
 
 
 
 
 
 
 
 
 638			return old;
 639		}
 640	}
 641	if (!s) {
 642		spin_unlock(&sb_lock);
 643		s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
 644		if (!s)
 645			return ERR_PTR(-ENOMEM);
 646		goto retry;
 647	}
 648
 649	err = set(s, data);
 650	if (err) {
 651		spin_unlock(&sb_lock);
 652		destroy_unused_super(s);
 
 653		return ERR_PTR(err);
 654	}
 655	s->s_type = type;
 656	strlcpy(s->s_id, type->name, sizeof(s->s_id));
 657	list_add_tail(&s->s_list, &super_blocks);
 658	hlist_add_head(&s->s_instances, &type->fs_supers);
 659	spin_unlock(&sb_lock);
 660	get_filesystem(type);
 661	register_shrinker_prepared(&s->s_shrink);
 662	return s;
 663}
 
 664EXPORT_SYMBOL(sget);
 665
 666void drop_super(struct super_block *sb)
 667{
 668	up_read(&sb->s_umount);
 669	put_super(sb);
 670}
 671
 672EXPORT_SYMBOL(drop_super);
 673
 674void drop_super_exclusive(struct super_block *sb)
 675{
 676	up_write(&sb->s_umount);
 677	put_super(sb);
 678}
 679EXPORT_SYMBOL(drop_super_exclusive);
 680
 681static void __iterate_supers(void (*f)(struct super_block *))
 
 
 
 
 
 682{
 683	struct super_block *sb, *p = NULL;
 684
 685	spin_lock(&sb_lock);
 686	list_for_each_entry(sb, &super_blocks, s_list) {
 687		if (hlist_unhashed(&sb->s_instances))
 688			continue;
 689		sb->s_count++;
 690		spin_unlock(&sb_lock);
 
 691
 692		f(sb);
 
 
 
 693
 694		spin_lock(&sb_lock);
 695		if (p)
 696			__put_super(p);
 697		p = sb;
 
 698	}
 699	if (p)
 700		__put_super(p);
 701	spin_unlock(&sb_lock);
 702}
 
 703/**
 704 *	iterate_supers - call function for all active superblocks
 705 *	@f: function to call
 706 *	@arg: argument to pass to it
 707 *
 708 *	Scans the superblock list and calls given function, passing it
 709 *	locked superblock and given argument.
 710 */
 711void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
 712{
 713	struct super_block *sb, *p = NULL;
 714
 715	spin_lock(&sb_lock);
 716	list_for_each_entry(sb, &super_blocks, s_list) {
 717		if (hlist_unhashed(&sb->s_instances))
 718			continue;
 719		sb->s_count++;
 720		spin_unlock(&sb_lock);
 721
 722		down_read(&sb->s_umount);
 723		if (sb->s_root && (sb->s_flags & SB_BORN))
 724			f(sb, arg);
 725		up_read(&sb->s_umount);
 726
 727		spin_lock(&sb_lock);
 728		if (p)
 729			__put_super(p);
 730		p = sb;
 731	}
 732	if (p)
 733		__put_super(p);
 734	spin_unlock(&sb_lock);
 735}
 736
 737/**
 738 *	iterate_supers_type - call function for superblocks of given type
 739 *	@type: fs type
 740 *	@f: function to call
 741 *	@arg: argument to pass to it
 742 *
 743 *	Scans the superblock list and calls given function, passing it
 744 *	locked superblock and given argument.
 745 */
 746void iterate_supers_type(struct file_system_type *type,
 747	void (*f)(struct super_block *, void *), void *arg)
 748{
 749	struct super_block *sb, *p = NULL;
 750
 751	spin_lock(&sb_lock);
 752	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
 753		sb->s_count++;
 754		spin_unlock(&sb_lock);
 755
 756		down_read(&sb->s_umount);
 757		if (sb->s_root && (sb->s_flags & SB_BORN))
 758			f(sb, arg);
 759		up_read(&sb->s_umount);
 760
 761		spin_lock(&sb_lock);
 762		if (p)
 763			__put_super(p);
 764		p = sb;
 765	}
 766	if (p)
 767		__put_super(p);
 768	spin_unlock(&sb_lock);
 769}
 770
 771EXPORT_SYMBOL(iterate_supers_type);
 772
 773/**
 774 * get_super - get the superblock of a device
 775 * @bdev: device to get the superblock for
 776 *
 777 * Scans the superblock list and finds the superblock of the file system
 778 * mounted on the device given. %NULL is returned if no match is found.
 779 */
 
 780struct super_block *get_super(struct block_device *bdev)
 781{
 782	struct super_block *sb;
 783
 784	if (!bdev)
 785		return NULL;
 786
 787	spin_lock(&sb_lock);
 788rescan:
 789	list_for_each_entry(sb, &super_blocks, s_list) {
 790		if (hlist_unhashed(&sb->s_instances))
 791			continue;
 792		if (sb->s_bdev == bdev) {
 793			sb->s_count++;
 794			spin_unlock(&sb_lock);
 795			down_read(&sb->s_umount);
 796			/* still alive? */
 797			if (sb->s_root && (sb->s_flags & SB_BORN))
 798				return sb;
 799			up_read(&sb->s_umount);
 800			/* nope, got unmounted */
 801			spin_lock(&sb_lock);
 802			__put_super(sb);
 803			goto rescan;
 804		}
 805	}
 806	spin_unlock(&sb_lock);
 807	return NULL;
 808}
 809
 
 
 810/**
 811 * get_active_super - get an active reference to the superblock of a device
 812 * @bdev: device to get the superblock for
 813 *
 814 * Scans the superblock list and finds the superblock of the file system
 815 * mounted on the device given.  Returns the superblock with an active
 816 * reference or %NULL if none was found.
 817 */
 818struct super_block *get_active_super(struct block_device *bdev)
 819{
 820	struct super_block *sb;
 821
 822	if (!bdev)
 823		return NULL;
 824
 825restart:
 826	spin_lock(&sb_lock);
 827	list_for_each_entry(sb, &super_blocks, s_list) {
 828		if (hlist_unhashed(&sb->s_instances))
 829			continue;
 830		if (sb->s_bdev == bdev) {
 831			if (!grab_super(sb))
 
 
 832				goto restart;
 833			up_write(&sb->s_umount);
 834			return sb;
 835		}
 836	}
 837	spin_unlock(&sb_lock);
 838	return NULL;
 839}
 840
 841struct super_block *user_get_super(dev_t dev, bool excl)
 842{
 843	struct super_block *sb;
 844
 845	spin_lock(&sb_lock);
 846rescan:
 847	list_for_each_entry(sb, &super_blocks, s_list) {
 848		if (hlist_unhashed(&sb->s_instances))
 849			continue;
 850		if (sb->s_dev ==  dev) {
 851			sb->s_count++;
 852			spin_unlock(&sb_lock);
 853			if (excl)
 854				down_write(&sb->s_umount);
 855			else
 856				down_read(&sb->s_umount);
 857			/* still alive? */
 858			if (sb->s_root && (sb->s_flags & SB_BORN))
 859				return sb;
 860			if (excl)
 861				up_write(&sb->s_umount);
 862			else
 863				up_read(&sb->s_umount);
 864			/* nope, got unmounted */
 865			spin_lock(&sb_lock);
 866			__put_super(sb);
 867			goto rescan;
 868		}
 869	}
 870	spin_unlock(&sb_lock);
 871	return NULL;
 872}
 873
 874/**
 875 * reconfigure_super - asks filesystem to change superblock parameters
 876 * @fc: The superblock and configuration
 
 
 
 877 *
 878 * Alters the configuration parameters of a live superblock.
 879 */
 880int reconfigure_super(struct fs_context *fc)
 881{
 882	struct super_block *sb = fc->root->d_sb;
 883	int retval;
 884	bool remount_ro = false;
 885	bool force = fc->sb_flags & SB_FORCE;
 886
 887	if (fc->sb_flags_mask & ~MS_RMT_MASK)
 888		return -EINVAL;
 889	if (sb->s_writers.frozen != SB_UNFROZEN)
 890		return -EBUSY;
 891
 892	retval = security_sb_remount(sb, fc->security);
 893	if (retval)
 894		return retval;
 895
 896	if (fc->sb_flags_mask & SB_RDONLY) {
 897#ifdef CONFIG_BLOCK
 898		if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev &&
 899		    bdev_read_only(sb->s_bdev))
 900			return -EACCES;
 901#endif
 902
 903		remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
 904	}
 905
 906	if (remount_ro) {
 907		if (!hlist_empty(&sb->s_pins)) {
 908			up_write(&sb->s_umount);
 909			group_pin_kill(&sb->s_pins);
 910			down_write(&sb->s_umount);
 911			if (!sb->s_root)
 912				return 0;
 913			if (sb->s_writers.frozen != SB_UNFROZEN)
 914				return -EBUSY;
 915			remount_ro = !sb_rdonly(sb);
 916		}
 917	}
 918	shrink_dcache_sb(sb);
 
 919
 920	/* If we are reconfiguring to RDONLY and current sb is read/write,
 921	 * make sure there are no files open for writing.
 922	 */
 
 923	if (remount_ro) {
 924		if (force) {
 925			sb->s_readonly_remount = 1;
 926			smp_wmb();
 927		} else {
 928			retval = sb_prepare_remount_readonly(sb);
 929			if (retval)
 930				return retval;
 931		}
 932	}
 933
 934	if (fc->ops->reconfigure) {
 935		retval = fc->ops->reconfigure(fc);
 936		if (retval) {
 937			if (!force)
 938				goto cancel_readonly;
 939			/* If forced remount, go ahead despite any errors */
 940			WARN(1, "forced remount of a %s fs returned %i\n",
 941			     sb->s_type->name, retval);
 942		}
 943	}
 944
 945	WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
 946				 (fc->sb_flags & fc->sb_flags_mask)));
 947	/* Needs to be ordered wrt mnt_is_readonly() */
 948	smp_wmb();
 949	sb->s_readonly_remount = 0;
 950
 951	/*
 952	 * Some filesystems modify their metadata via some other path than the
 953	 * bdev buffer cache (eg. use a private mapping, or directories in
 954	 * pagecache, etc). Also file data modifications go via their own
 955	 * mappings. So If we try to mount readonly then copy the filesystem
 956	 * from bdev, we could get stale data, so invalidate it to give a best
 957	 * effort at coherency.
 958	 */
 959	if (remount_ro && sb->s_bdev)
 960		invalidate_bdev(sb->s_bdev);
 961	return 0;
 962
 963cancel_readonly:
 964	sb->s_readonly_remount = 0;
 965	return retval;
 966}
 967
 968static void do_emergency_remount_callback(struct super_block *sb)
 969{
 970	down_write(&sb->s_umount);
 971	if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
 972	    !sb_rdonly(sb)) {
 973		struct fs_context *fc;
 974
 975		fc = fs_context_for_reconfigure(sb->s_root,
 976					SB_RDONLY | SB_FORCE, SB_RDONLY);
 977		if (!IS_ERR(fc)) {
 978			if (parse_monolithic_mount_data(fc, NULL) == 0)
 979				(void)reconfigure_super(fc);
 980			put_fs_context(fc);
 
 
 
 981		}
 
 
 
 
 
 982	}
 983	up_write(&sb->s_umount);
 984}
 985
 986static void do_emergency_remount(struct work_struct *work)
 987{
 988	__iterate_supers(do_emergency_remount_callback);
 989	kfree(work);
 990	printk("Emergency Remount complete\n");
 991}
 992
 993void emergency_remount(void)
 994{
 995	struct work_struct *work;
 996
 997	work = kmalloc(sizeof(*work), GFP_ATOMIC);
 998	if (work) {
 999		INIT_WORK(work, do_emergency_remount);
1000		schedule_work(work);
1001	}
1002}
1003
1004static void do_thaw_all_callback(struct super_block *sb)
1005{
1006	down_write(&sb->s_umount);
1007	if (sb->s_root && sb->s_flags & SB_BORN) {
1008		emergency_thaw_bdev(sb);
1009		thaw_super_locked(sb);
1010	} else {
1011		up_write(&sb->s_umount);
1012	}
1013}
1014
1015static void do_thaw_all(struct work_struct *work)
1016{
1017	__iterate_supers(do_thaw_all_callback);
1018	kfree(work);
1019	printk(KERN_WARNING "Emergency Thaw complete\n");
1020}
1021
1022/**
1023 * emergency_thaw_all -- forcibly thaw every frozen filesystem
1024 *
1025 * Used for emergency unfreeze of all filesystems via SysRq
1026 */
1027void emergency_thaw_all(void)
1028{
1029	struct work_struct *work;
1030
1031	work = kmalloc(sizeof(*work), GFP_ATOMIC);
1032	if (work) {
1033		INIT_WORK(work, do_thaw_all);
1034		schedule_work(work);
1035	}
1036}
1037
1038static DEFINE_IDA(unnamed_dev_ida);
 
 
1039
1040/**
1041 * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1042 * @p: Pointer to a dev_t.
1043 *
1044 * Filesystems which don't use real block devices can call this function
1045 * to allocate a virtual block device.
1046 *
1047 * Context: Any context.  Frequently called while holding sb_lock.
1048 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1049 * or -ENOMEM if memory allocation failed.
1050 */
1051int get_anon_bdev(dev_t *p)
1052{
1053	int dev;
 
1054
1055	/*
1056	 * Many userspace utilities consider an FSID of 0 invalid.
1057	 * Always return at least 1 from get_anon_bdev.
1058	 */
1059	dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1060			GFP_ATOMIC);
1061	if (dev == -ENOSPC)
1062		dev = -EMFILE;
1063	if (dev < 0)
1064		return dev;
 
 
 
1065
1066	*p = MKDEV(0, dev);
 
 
 
 
 
 
 
 
1067	return 0;
1068}
1069EXPORT_SYMBOL(get_anon_bdev);
1070
1071void free_anon_bdev(dev_t dev)
1072{
1073	ida_free(&unnamed_dev_ida, MINOR(dev));
 
 
 
 
 
1074}
1075EXPORT_SYMBOL(free_anon_bdev);
1076
1077int set_anon_super(struct super_block *s, void *data)
1078{
1079	return get_anon_bdev(&s->s_dev);
 
 
 
1080}
 
1081EXPORT_SYMBOL(set_anon_super);
1082
1083void kill_anon_super(struct super_block *sb)
1084{
1085	dev_t dev = sb->s_dev;
1086	generic_shutdown_super(sb);
1087	free_anon_bdev(dev);
1088}
 
1089EXPORT_SYMBOL(kill_anon_super);
1090
1091void kill_litter_super(struct super_block *sb)
1092{
1093	if (sb->s_root)
1094		d_genocide(sb->s_root);
1095	kill_anon_super(sb);
1096}
1097EXPORT_SYMBOL(kill_litter_super);
1098
1099int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
1100{
1101	return set_anon_super(sb, NULL);
1102}
1103EXPORT_SYMBOL(set_anon_super_fc);
1104
1105static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
1106{
1107	return sb->s_fs_info == fc->s_fs_info;
1108}
1109
1110static int test_single_super(struct super_block *s, struct fs_context *fc)
1111{
1112	return 1;
 
1113}
1114
1115static int vfs_get_super(struct fs_context *fc, bool reconf,
1116		int (*test)(struct super_block *, struct fs_context *),
1117		int (*fill_super)(struct super_block *sb,
1118				  struct fs_context *fc))
1119{
1120	struct super_block *sb;
1121	int err;
1122
1123	sb = sget_fc(fc, test, set_anon_super_fc);
1124	if (IS_ERR(sb))
1125		return PTR_ERR(sb);
1126
1127	if (!sb->s_root) {
1128		err = fill_super(sb, fc);
1129		if (err)
1130			goto error;
1131
1132		sb->s_flags |= SB_ACTIVE;
1133		fc->root = dget(sb->s_root);
1134	} else {
1135		fc->root = dget(sb->s_root);
1136		if (reconf) {
1137			err = reconfigure_super(fc);
1138			if (err < 0) {
1139				dput(fc->root);
1140				fc->root = NULL;
1141				goto error;
1142			}
1143		}
1144	}
1145
1146	return 0;
1147
1148error:
1149	deactivate_locked_super(sb);
1150	return err;
1151}
1152
1153int get_tree_nodev(struct fs_context *fc,
1154		  int (*fill_super)(struct super_block *sb,
1155				    struct fs_context *fc))
1156{
1157	return vfs_get_super(fc, false, NULL, fill_super);
1158}
1159EXPORT_SYMBOL(get_tree_nodev);
1160
1161int get_tree_single(struct fs_context *fc,
1162		  int (*fill_super)(struct super_block *sb,
1163				    struct fs_context *fc))
1164{
1165	return vfs_get_super(fc, false, test_single_super, fill_super);
1166}
1167EXPORT_SYMBOL(get_tree_single);
1168
1169int get_tree_single_reconf(struct fs_context *fc,
1170		  int (*fill_super)(struct super_block *sb,
1171				    struct fs_context *fc))
1172{
1173	return vfs_get_super(fc, true, test_single_super, fill_super);
1174}
1175EXPORT_SYMBOL(get_tree_single_reconf);
1176
1177int get_tree_keyed(struct fs_context *fc,
1178		  int (*fill_super)(struct super_block *sb,
1179				    struct fs_context *fc),
1180		void *key)
1181{
1182	fc->s_fs_info = key;
1183	return vfs_get_super(fc, false, test_keyed_super, fill_super);
1184}
1185EXPORT_SYMBOL(get_tree_keyed);
1186
1187#ifdef CONFIG_BLOCK
1188
1189static int set_bdev_super(struct super_block *s, void *data)
1190{
1191	s->s_bdev = data;
1192	s->s_dev = s->s_bdev->bd_dev;
1193	s->s_bdi = bdi_get(s->s_bdev->bd_disk->bdi);
1194
1195	if (bdev_stable_writes(s->s_bdev))
1196		s->s_iflags |= SB_I_STABLE_WRITES;
1197	return 0;
1198}
1199
1200static int set_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1201{
1202	return set_bdev_super(s, fc->sget_key);
1203}
1204
1205static int test_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1206{
1207	return !(s->s_iflags & SB_I_RETIRED) && s->s_bdev == fc->sget_key;
1208}
1209
1210/**
1211 * get_tree_bdev - Get a superblock based on a single block device
1212 * @fc: The filesystem context holding the parameters
1213 * @fill_super: Helper to initialise a new superblock
1214 */
1215int get_tree_bdev(struct fs_context *fc,
1216		int (*fill_super)(struct super_block *,
1217				  struct fs_context *))
1218{
1219	struct block_device *bdev;
1220	struct super_block *s;
1221	fmode_t mode = FMODE_READ | FMODE_EXCL;
1222	int error = 0;
1223
1224	if (!(fc->sb_flags & SB_RDONLY))
1225		mode |= FMODE_WRITE;
1226
1227	if (!fc->source)
1228		return invalf(fc, "No source specified");
1229
1230	bdev = blkdev_get_by_path(fc->source, mode, fc->fs_type);
1231	if (IS_ERR(bdev)) {
1232		errorf(fc, "%s: Can't open blockdev", fc->source);
1233		return PTR_ERR(bdev);
1234	}
1235
1236	/* Once the superblock is inserted into the list by sget_fc(), s_umount
1237	 * will protect the lockfs code from trying to start a snapshot while
1238	 * we are mounting
1239	 */
1240	mutex_lock(&bdev->bd_fsfreeze_mutex);
1241	if (bdev->bd_fsfreeze_count > 0) {
1242		mutex_unlock(&bdev->bd_fsfreeze_mutex);
1243		warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev);
1244		blkdev_put(bdev, mode);
1245		return -EBUSY;
1246	}
1247
1248	fc->sb_flags |= SB_NOSEC;
1249	fc->sget_key = bdev;
1250	s = sget_fc(fc, test_bdev_super_fc, set_bdev_super_fc);
1251	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1252	if (IS_ERR(s)) {
1253		blkdev_put(bdev, mode);
1254		return PTR_ERR(s);
1255	}
1256
1257	if (s->s_root) {
1258		/* Don't summarily change the RO/RW state. */
1259		if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
1260			warnf(fc, "%pg: Can't mount, would change RO state", bdev);
1261			deactivate_locked_super(s);
1262			blkdev_put(bdev, mode);
1263			return -EBUSY;
1264		}
1265
1266		/*
1267		 * s_umount nests inside open_mutex during
1268		 * __invalidate_device().  blkdev_put() acquires
1269		 * open_mutex and can't be called under s_umount.  Drop
1270		 * s_umount temporarily.  This is safe as we're
1271		 * holding an active reference.
1272		 */
1273		up_write(&s->s_umount);
1274		blkdev_put(bdev, mode);
1275		down_write(&s->s_umount);
1276	} else {
1277		s->s_mode = mode;
1278		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1279		shrinker_debugfs_rename(&s->s_shrink, "sb-%s:%s",
1280					fc->fs_type->name, s->s_id);
1281		sb_set_blocksize(s, block_size(bdev));
1282		error = fill_super(s, fc);
1283		if (error) {
1284			deactivate_locked_super(s);
1285			return error;
1286		}
1287
1288		s->s_flags |= SB_ACTIVE;
1289		bdev->bd_super = s;
1290	}
1291
1292	BUG_ON(fc->root);
1293	fc->root = dget(s->s_root);
1294	return 0;
1295}
1296EXPORT_SYMBOL(get_tree_bdev);
1297
1298static int test_bdev_super(struct super_block *s, void *data)
1299{
1300	return !(s->s_iflags & SB_I_RETIRED) && (void *)s->s_bdev == data;
1301}
1302
1303struct dentry *mount_bdev(struct file_system_type *fs_type,
1304	int flags, const char *dev_name, void *data,
1305	int (*fill_super)(struct super_block *, void *, int))
1306{
1307	struct block_device *bdev;
1308	struct super_block *s;
1309	fmode_t mode = FMODE_READ | FMODE_EXCL;
1310	int error = 0;
1311
1312	if (!(flags & SB_RDONLY))
1313		mode |= FMODE_WRITE;
1314
1315	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1316	if (IS_ERR(bdev))
1317		return ERR_CAST(bdev);
1318
1319	/*
1320	 * once the super is inserted into the list by sget, s_umount
1321	 * will protect the lockfs code from trying to start a snapshot
1322	 * while we are mounting
1323	 */
1324	mutex_lock(&bdev->bd_fsfreeze_mutex);
1325	if (bdev->bd_fsfreeze_count > 0) {
1326		mutex_unlock(&bdev->bd_fsfreeze_mutex);
1327		error = -EBUSY;
1328		goto error_bdev;
1329	}
1330	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1331		 bdev);
1332	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1333	if (IS_ERR(s))
1334		goto error_s;
1335
1336	if (s->s_root) {
1337		if ((flags ^ s->s_flags) & SB_RDONLY) {
1338			deactivate_locked_super(s);
1339			error = -EBUSY;
1340			goto error_bdev;
1341		}
1342
1343		/*
1344		 * s_umount nests inside open_mutex during
1345		 * __invalidate_device().  blkdev_put() acquires
1346		 * open_mutex and can't be called under s_umount.  Drop
1347		 * s_umount temporarily.  This is safe as we're
1348		 * holding an active reference.
1349		 */
1350		up_write(&s->s_umount);
1351		blkdev_put(bdev, mode);
1352		down_write(&s->s_umount);
1353	} else {
 
 
 
1354		s->s_mode = mode;
1355		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1356		shrinker_debugfs_rename(&s->s_shrink, "sb-%s:%s",
1357					fs_type->name, s->s_id);
1358		sb_set_blocksize(s, block_size(bdev));
1359		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1360		if (error) {
1361			deactivate_locked_super(s);
1362			goto error;
1363		}
1364
1365		s->s_flags |= SB_ACTIVE;
1366		bdev->bd_super = s;
1367	}
1368
1369	return dget(s->s_root);
1370
1371error_s:
1372	error = PTR_ERR(s);
1373error_bdev:
1374	blkdev_put(bdev, mode);
1375error:
1376	return ERR_PTR(error);
1377}
1378EXPORT_SYMBOL(mount_bdev);
1379
1380void kill_block_super(struct super_block *sb)
1381{
1382	struct block_device *bdev = sb->s_bdev;
1383	fmode_t mode = sb->s_mode;
1384
1385	bdev->bd_super = NULL;
1386	generic_shutdown_super(sb);
1387	sync_blockdev(bdev);
1388	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1389	blkdev_put(bdev, mode | FMODE_EXCL);
1390}
1391
1392EXPORT_SYMBOL(kill_block_super);
1393#endif
1394
1395struct dentry *mount_nodev(struct file_system_type *fs_type,
1396	int flags, void *data,
1397	int (*fill_super)(struct super_block *, void *, int))
1398{
1399	int error;
1400	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1401
1402	if (IS_ERR(s))
1403		return ERR_CAST(s);
1404
1405	error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
 
 
1406	if (error) {
1407		deactivate_locked_super(s);
1408		return ERR_PTR(error);
1409	}
1410	s->s_flags |= SB_ACTIVE;
1411	return dget(s->s_root);
1412}
1413EXPORT_SYMBOL(mount_nodev);
1414
1415int reconfigure_single(struct super_block *s,
1416		       int flags, void *data)
1417{
1418	struct fs_context *fc;
1419	int ret;
1420
1421	/* The caller really need to be passing fc down into mount_single(),
1422	 * then a chunk of this can be removed.  [Bollocks -- AV]
1423	 * Better yet, reconfiguration shouldn't happen, but rather the second
1424	 * mount should be rejected if the parameters are not compatible.
1425	 */
1426	fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
1427	if (IS_ERR(fc))
1428		return PTR_ERR(fc);
1429
1430	ret = parse_monolithic_mount_data(fc, data);
1431	if (ret < 0)
1432		goto out;
1433
1434	ret = reconfigure_super(fc);
1435out:
1436	put_fs_context(fc);
1437	return ret;
1438}
1439
1440static int compare_single(struct super_block *s, void *p)
1441{
1442	return 1;
1443}
1444
1445struct dentry *mount_single(struct file_system_type *fs_type,
1446	int flags, void *data,
1447	int (*fill_super)(struct super_block *, void *, int))
1448{
1449	struct super_block *s;
1450	int error;
1451
1452	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1453	if (IS_ERR(s))
1454		return ERR_CAST(s);
1455	if (!s->s_root) {
1456		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1457		if (!error)
1458			s->s_flags |= SB_ACTIVE;
 
 
 
 
1459	} else {
1460		error = reconfigure_single(s, flags, data);
1461	}
1462	if (unlikely(error)) {
1463		deactivate_locked_super(s);
1464		return ERR_PTR(error);
1465	}
1466	return dget(s->s_root);
1467}
1468EXPORT_SYMBOL(mount_single);
1469
1470/**
1471 * vfs_get_tree - Get the mountable root
1472 * @fc: The superblock configuration context.
1473 *
1474 * The filesystem is invoked to get or create a superblock which can then later
1475 * be used for mounting.  The filesystem places a pointer to the root to be
1476 * used for mounting in @fc->root.
1477 */
1478int vfs_get_tree(struct fs_context *fc)
1479{
 
1480	struct super_block *sb;
1481	int error;
 
1482
1483	if (fc->root)
1484		return -EBUSY;
1485
1486	/* Get the mountable root in fc->root, with a ref on the root and a ref
1487	 * on the superblock.
1488	 */
1489	error = fc->ops->get_tree(fc);
1490	if (error < 0)
1491		return error;
1492
1493	if (!fc->root) {
1494		pr_err("Filesystem %s get_tree() didn't set fc->root\n",
1495		       fc->fs_type->name);
1496		/* We don't know what the locking state of the superblock is -
1497		 * if there is a superblock.
1498		 */
1499		BUG();
1500	}
1501
1502	sb = fc->root->d_sb;
1503	WARN_ON(!sb->s_bdi);
 
 
1504
1505	/*
1506	 * Write barrier is for super_cache_count(). We place it before setting
1507	 * SB_BORN as the data dependency between the two functions is the
1508	 * superblock structure contents that we just set up, not the SB_BORN
1509	 * flag.
1510	 */
1511	smp_wmb();
1512	sb->s_flags |= SB_BORN;
1513
1514	error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
1515	if (unlikely(error)) {
1516		fc_drop_locked(fc);
1517		return error;
1518	}
1519
1520	/*
1521	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1522	 * but s_maxbytes was an unsigned long long for many releases. Throw
1523	 * this warning for a little while to try and catch filesystems that
1524	 * violate this rule.
1525	 */
1526	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1527		"negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
1528
1529	return 0;
1530}
1531EXPORT_SYMBOL(vfs_get_tree);
1532
1533/*
1534 * Setup private BDI for given superblock. It gets automatically cleaned up
1535 * in generic_shutdown_super().
1536 */
1537int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1538{
1539	struct backing_dev_info *bdi;
1540	int err;
1541	va_list args;
1542
1543	bdi = bdi_alloc(NUMA_NO_NODE);
1544	if (!bdi)
1545		return -ENOMEM;
1546
1547	va_start(args, fmt);
1548	err = bdi_register_va(bdi, fmt, args);
1549	va_end(args);
1550	if (err) {
1551		bdi_put(bdi);
1552		return err;
1553	}
1554	WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1555	sb->s_bdi = bdi;
1556	sb->s_iflags |= SB_I_PERSB_BDI;
1557
1558	return 0;
1559}
1560EXPORT_SYMBOL(super_setup_bdi_name);
1561
1562/*
1563 * Setup private BDI for given superblock. I gets automatically cleaned up
1564 * in generic_shutdown_super().
1565 */
1566int super_setup_bdi(struct super_block *sb)
1567{
1568	static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1569
1570	return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1571				    atomic_long_inc_return(&bdi_seq));
1572}
1573EXPORT_SYMBOL(super_setup_bdi);
1574
1575/**
1576 * sb_wait_write - wait until all writers to given file system finish
1577 * @sb: the super for which we wait
1578 * @level: type of writers we wait for (normal vs page fault)
1579 *
1580 * This function waits until there are no writers of given type to given file
1581 * system.
1582 */
1583static void sb_wait_write(struct super_block *sb, int level)
1584{
1585	percpu_down_write(sb->s_writers.rw_sem + level-1);
1586}
1587
1588/*
1589 * We are going to return to userspace and forget about these locks, the
1590 * ownership goes to the caller of thaw_super() which does unlock().
1591 */
1592static void lockdep_sb_freeze_release(struct super_block *sb)
1593{
1594	int level;
1595
1596	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1597		percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1598}
1599
1600/*
1601 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1602 */
1603static void lockdep_sb_freeze_acquire(struct super_block *sb)
1604{
1605	int level;
1606
1607	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1608		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1609}
1610
1611static void sb_freeze_unlock(struct super_block *sb, int level)
1612{
1613	for (level--; level >= 0; level--)
1614		percpu_up_write(sb->s_writers.rw_sem + level);
1615}
1616
1617/**
1618 * freeze_super - lock the filesystem and force it into a consistent state
1619 * @sb: the super to lock
1620 *
1621 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1622 * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1623 * -EBUSY.
1624 *
1625 * During this function, sb->s_writers.frozen goes through these values:
1626 *
1627 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1628 *
1629 * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1630 * writes should be blocked, though page faults are still allowed. We wait for
1631 * all writes to complete and then proceed to the next stage.
1632 *
1633 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1634 * but internal fs threads can still modify the filesystem (although they
1635 * should not dirty new pages or inodes), writeback can run etc. After waiting
1636 * for all running page faults we sync the filesystem which will clean all
1637 * dirty pages and inodes (no new dirty pages or inodes can be created when
1638 * sync is running).
1639 *
1640 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1641 * modification are blocked (e.g. XFS preallocation truncation on inode
1642 * reclaim). This is usually implemented by blocking new transactions for
1643 * filesystems that have them and need this additional guard. After all
1644 * internal writers are finished we call ->freeze_fs() to finish filesystem
1645 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1646 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1647 *
1648 * sb->s_writers.frozen is protected by sb->s_umount.
1649 */
1650int freeze_super(struct super_block *sb)
1651{
1652	int ret;
1653
1654	atomic_inc(&sb->s_active);
1655	down_write(&sb->s_umount);
1656	if (sb->s_writers.frozen != SB_UNFROZEN) {
1657		deactivate_locked_super(sb);
1658		return -EBUSY;
1659	}
1660
1661	if (!(sb->s_flags & SB_BORN)) {
1662		up_write(&sb->s_umount);
1663		return 0;	/* sic - it's "nothing to do" */
1664	}
1665
1666	if (sb_rdonly(sb)) {
1667		/* Nothing to do really... */
1668		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1669		up_write(&sb->s_umount);
1670		return 0;
1671	}
1672
1673	sb->s_writers.frozen = SB_FREEZE_WRITE;
1674	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1675	up_write(&sb->s_umount);
1676	sb_wait_write(sb, SB_FREEZE_WRITE);
1677	down_write(&sb->s_umount);
1678
1679	/* Now we go and block page faults... */
1680	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1681	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1682
1683	/* All writers are done so after syncing there won't be dirty data */
1684	ret = sync_filesystem(sb);
1685	if (ret) {
1686		sb->s_writers.frozen = SB_UNFROZEN;
1687		sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT);
1688		wake_up(&sb->s_writers.wait_unfrozen);
1689		deactivate_locked_super(sb);
1690		return ret;
1691	}
1692
1693	/* Now wait for internal filesystem counter */
1694	sb->s_writers.frozen = SB_FREEZE_FS;
1695	sb_wait_write(sb, SB_FREEZE_FS);
1696
 
1697	if (sb->s_op->freeze_fs) {
1698		ret = sb->s_op->freeze_fs(sb);
1699		if (ret) {
1700			printk(KERN_ERR
1701				"VFS:Filesystem freeze failed\n");
1702			sb->s_writers.frozen = SB_UNFROZEN;
1703			sb_freeze_unlock(sb, SB_FREEZE_FS);
1704			wake_up(&sb->s_writers.wait_unfrozen);
1705			deactivate_locked_super(sb);
1706			return ret;
1707		}
1708	}
1709	/*
1710	 * For debugging purposes so that fs can warn if it sees write activity
1711	 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1712	 */
1713	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1714	lockdep_sb_freeze_release(sb);
1715	up_write(&sb->s_umount);
1716	return 0;
1717}
1718EXPORT_SYMBOL(freeze_super);
1719
1720static int thaw_super_locked(struct super_block *sb)
 
 
 
 
 
 
1721{
1722	int error;
1723
1724	if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
 
1725		up_write(&sb->s_umount);
1726		return -EINVAL;
1727	}
1728
1729	if (sb_rdonly(sb)) {
1730		sb->s_writers.frozen = SB_UNFROZEN;
1731		goto out;
1732	}
1733
1734	lockdep_sb_freeze_acquire(sb);
1735
1736	if (sb->s_op->unfreeze_fs) {
1737		error = sb->s_op->unfreeze_fs(sb);
1738		if (error) {
1739			printk(KERN_ERR
1740				"VFS:Filesystem thaw failed\n");
1741			lockdep_sb_freeze_release(sb);
1742			up_write(&sb->s_umount);
1743			return error;
1744		}
1745	}
1746
1747	sb->s_writers.frozen = SB_UNFROZEN;
1748	sb_freeze_unlock(sb, SB_FREEZE_FS);
1749out:
1750	wake_up(&sb->s_writers.wait_unfrozen);
 
 
1751	deactivate_locked_super(sb);
1752	return 0;
1753}
1754
1755/**
1756 * thaw_super -- unlock filesystem
1757 * @sb: the super to thaw
1758 *
1759 * Unlocks the filesystem and marks it writeable again after freeze_super().
1760 */
1761int thaw_super(struct super_block *sb)
1762{
1763	down_write(&sb->s_umount);
1764	return thaw_super_locked(sb);
1765}
1766EXPORT_SYMBOL(thaw_super);
v3.1
 
   1/*
   2 *  linux/fs/super.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 *  super.c contains code to handle: - mount structures
   7 *                                   - super-block tables
   8 *                                   - filesystem drivers list
   9 *                                   - mount system call
  10 *                                   - umount system call
  11 *                                   - ustat system call
  12 *
  13 * GK 2/5/95  -  Changed to support mounting the root fs via NFS
  14 *
  15 *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
  16 *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
  17 *  Added options to /proc/mounts:
  18 *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
  19 *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
  20 *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
  21 */
  22
  23#include <linux/module.h>
  24#include <linux/slab.h>
  25#include <linux/acct.h>
  26#include <linux/blkdev.h>
  27#include <linux/mount.h>
  28#include <linux/security.h>
  29#include <linux/writeback.h>		/* for the emergency remount stuff */
  30#include <linux/idr.h>
  31#include <linux/mutex.h>
  32#include <linux/backing-dev.h>
  33#include <linux/rculist_bl.h>
  34#include <linux/cleancache.h>
 
 
 
 
 
  35#include "internal.h"
  36
 
  37
  38LIST_HEAD(super_blocks);
  39DEFINE_SPINLOCK(sb_lock);
 
 
 
 
 
 
  40
  41/*
  42 * One thing we have to be careful of with a per-sb shrinker is that we don't
  43 * drop the last active reference to the superblock from within the shrinker.
  44 * If that happens we could trigger unregistering the shrinker from within the
  45 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
  46 * take a passive reference to the superblock to avoid this from occurring.
  47 */
  48static int prune_super(struct shrinker *shrink, struct shrink_control *sc)
 
  49{
  50	struct super_block *sb;
  51	int	fs_objects = 0;
  52	int	total_objects;
 
 
 
  53
  54	sb = container_of(shrink, struct super_block, s_shrink);
  55
  56	/*
  57	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
  58	 * to recurse into the FS that called us in clear_inode() and friends..
  59	 */
  60	if (sc->nr_to_scan && !(sc->gfp_mask & __GFP_FS))
  61		return -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  62
  63	if (!grab_super_passive(sb))
  64		return -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  65
  66	if (sb->s_op && sb->s_op->nr_cached_objects)
  67		fs_objects = sb->s_op->nr_cached_objects(sb);
 
 
 
 
 
 
  68
  69	total_objects = sb->s_nr_dentry_unused +
  70			sb->s_nr_inodes_unused + fs_objects + 1;
 
 
 
 
 
 
 
  71
  72	if (sc->nr_to_scan) {
  73		int	dentries;
  74		int	inodes;
  75
  76		/* proportion the scan between the caches */
  77		dentries = (sc->nr_to_scan * sb->s_nr_dentry_unused) /
  78							total_objects;
  79		inodes = (sc->nr_to_scan * sb->s_nr_inodes_unused) /
  80							total_objects;
  81		if (fs_objects)
  82			fs_objects = (sc->nr_to_scan * fs_objects) /
  83							total_objects;
  84		/*
  85		 * prune the dcache first as the icache is pinned by it, then
  86		 * prune the icache, followed by the filesystem specific caches
  87		 */
  88		prune_dcache_sb(sb, dentries);
  89		prune_icache_sb(sb, inodes);
  90
  91		if (fs_objects && sb->s_op->free_cached_objects) {
  92			sb->s_op->free_cached_objects(sb, fs_objects);
  93			fs_objects = sb->s_op->nr_cached_objects(sb);
  94		}
  95		total_objects = sb->s_nr_dentry_unused +
  96				sb->s_nr_inodes_unused + fs_objects;
  97	}
  98
  99	total_objects = (total_objects / 100) * sysctl_vfs_cache_pressure;
 100	drop_super(sb);
 101	return total_objects;
 
 
 
 
 
 
 
 
 
 
 
 102}
 103
 104/**
 105 *	alloc_super	-	create new superblock
 106 *	@type:	filesystem type superblock should belong to
 
 
 107 *
 108 *	Allocates and initializes a new &struct super_block.  alloc_super()
 109 *	returns a pointer new superblock or %NULL if allocation had failed.
 110 */
 111static struct super_block *alloc_super(struct file_system_type *type)
 
 112{
 113	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
 114	static const struct super_operations default_op;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 115
 116	if (s) {
 117		if (security_sb_alloc(s)) {
 118			kfree(s);
 119			s = NULL;
 120			goto out;
 121		}
 122#ifdef CONFIG_SMP
 123		s->s_files = alloc_percpu(struct list_head);
 124		if (!s->s_files) {
 125			security_sb_free(s);
 126			kfree(s);
 127			s = NULL;
 128			goto out;
 129		} else {
 130			int i;
 131
 132			for_each_possible_cpu(i)
 133				INIT_LIST_HEAD(per_cpu_ptr(s->s_files, i));
 134		}
 135#else
 136		INIT_LIST_HEAD(&s->s_files);
 137#endif
 138		s->s_bdi = &default_backing_dev_info;
 139		INIT_LIST_HEAD(&s->s_instances);
 140		INIT_HLIST_BL_HEAD(&s->s_anon);
 141		INIT_LIST_HEAD(&s->s_inodes);
 142		INIT_LIST_HEAD(&s->s_dentry_lru);
 143		INIT_LIST_HEAD(&s->s_inode_lru);
 144		spin_lock_init(&s->s_inode_lru_lock);
 145		init_rwsem(&s->s_umount);
 146		mutex_init(&s->s_lock);
 147		lockdep_set_class(&s->s_umount, &type->s_umount_key);
 148		/*
 149		 * The locking rules for s_lock are up to the
 150		 * filesystem. For example ext3fs has different
 151		 * lock ordering than usbfs:
 152		 */
 153		lockdep_set_class(&s->s_lock, &type->s_lock_key);
 154		/*
 155		 * sget() can have s_umount recursion.
 156		 *
 157		 * When it cannot find a suitable sb, it allocates a new
 158		 * one (this one), and tries again to find a suitable old
 159		 * one.
 160		 *
 161		 * In case that succeeds, it will acquire the s_umount
 162		 * lock of the old one. Since these are clearly distrinct
 163		 * locks, and this object isn't exposed yet, there's no
 164		 * risk of deadlocks.
 165		 *
 166		 * Annotate this by putting this lock in a different
 167		 * subclass.
 168		 */
 169		down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
 170		s->s_count = 1;
 171		atomic_set(&s->s_active, 1);
 172		mutex_init(&s->s_vfs_rename_mutex);
 173		lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
 174		mutex_init(&s->s_dquot.dqio_mutex);
 175		mutex_init(&s->s_dquot.dqonoff_mutex);
 176		init_rwsem(&s->s_dquot.dqptr_sem);
 177		init_waitqueue_head(&s->s_wait_unfrozen);
 178		s->s_maxbytes = MAX_NON_LFS;
 179		s->s_op = &default_op;
 180		s->s_time_gran = 1000000000;
 181		s->cleancache_poolid = -1;
 182
 183		s->s_shrink.seeks = DEFAULT_SEEKS;
 184		s->s_shrink.shrink = prune_super;
 185		s->s_shrink.batch = 1024;
 186	}
 187out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 188	return s;
 189}
 190
 191/**
 192 *	destroy_super	-	frees a superblock
 193 *	@s: superblock to free
 194 *
 195 *	Frees a superblock.
 196 */
 197static inline void destroy_super(struct super_block *s)
 198{
 199#ifdef CONFIG_SMP
 200	free_percpu(s->s_files);
 201#endif
 202	security_sb_free(s);
 203	kfree(s->s_subtype);
 204	kfree(s->s_options);
 205	kfree(s);
 206}
 207
 208/* Superblock refcounting  */
 209
 210/*
 211 * Drop a superblock's refcount.  The caller must hold sb_lock.
 212 */
 213void __put_super(struct super_block *sb)
 214{
 215	if (!--sb->s_count) {
 216		list_del_init(&sb->s_list);
 217		destroy_super(sb);
 
 
 
 
 
 
 
 218	}
 219}
 220
 221/**
 222 *	put_super	-	drop a temporary reference to superblock
 223 *	@sb: superblock in question
 224 *
 225 *	Drops a temporary reference, frees superblock if there's no
 226 *	references left.
 227 */
 228void put_super(struct super_block *sb)
 229{
 230	spin_lock(&sb_lock);
 231	__put_super(sb);
 232	spin_unlock(&sb_lock);
 233}
 234
 235
 236/**
 237 *	deactivate_locked_super	-	drop an active reference to superblock
 238 *	@s: superblock to deactivate
 239 *
 240 *	Drops an active reference to superblock, converting it into a temprory
 241 *	one if there is no other active references left.  In that case we
 242 *	tell fs driver to shut it down and drop the temporary reference we
 243 *	had just acquired.
 244 *
 245 *	Caller holds exclusive lock on superblock; that lock is released.
 246 */
 247void deactivate_locked_super(struct super_block *s)
 248{
 249	struct file_system_type *fs = s->s_type;
 250	if (atomic_dec_and_test(&s->s_active)) {
 251		cleancache_flush_fs(s);
 252		fs->kill_sb(s);
 253
 254		/* caches are now gone, we can safely kill the shrinker now */
 255		unregister_shrinker(&s->s_shrink);
 256
 257		/*
 258		 * We need to call rcu_barrier so all the delayed rcu free
 259		 * inodes are flushed before we release the fs module.
 
 260		 */
 261		rcu_barrier();
 
 
 262		put_filesystem(fs);
 263		put_super(s);
 264	} else {
 265		up_write(&s->s_umount);
 266	}
 267}
 268
 269EXPORT_SYMBOL(deactivate_locked_super);
 270
 271/**
 272 *	deactivate_super	-	drop an active reference to superblock
 273 *	@s: superblock to deactivate
 274 *
 275 *	Variant of deactivate_locked_super(), except that superblock is *not*
 276 *	locked by caller.  If we are going to drop the final active reference,
 277 *	lock will be acquired prior to that.
 278 */
 279void deactivate_super(struct super_block *s)
 280{
 281        if (!atomic_add_unless(&s->s_active, -1, 1)) {
 282		down_write(&s->s_umount);
 283		deactivate_locked_super(s);
 284	}
 285}
 286
 287EXPORT_SYMBOL(deactivate_super);
 288
 289/**
 290 *	grab_super - acquire an active reference
 291 *	@s: reference we are trying to make active
 292 *
 293 *	Tries to acquire an active reference.  grab_super() is used when we
 294 * 	had just found a superblock in super_blocks or fs_type->fs_supers
 295 *	and want to turn it into a full-blown active reference.  grab_super()
 296 *	is called with sb_lock held and drops it.  Returns 1 in case of
 297 *	success, 0 if we had failed (superblock contents was already dead or
 298 *	dying when grab_super() had been called).
 
 
 299 */
 300static int grab_super(struct super_block *s) __releases(sb_lock)
 301{
 302	if (atomic_inc_not_zero(&s->s_active)) {
 303		spin_unlock(&sb_lock);
 304		return 1;
 305	}
 306	/* it's going away */
 307	s->s_count++;
 308	spin_unlock(&sb_lock);
 309	/* wait for it to die */
 310	down_write(&s->s_umount);
 
 
 
 
 311	up_write(&s->s_umount);
 312	put_super(s);
 313	return 0;
 314}
 315
 316/*
 317 *	grab_super_passive - acquire a passive reference
 318 *	@s: reference we are trying to grab
 319 *
 320 *	Tries to acquire a passive reference. This is used in places where we
 321 *	cannot take an active reference but we need to ensure that the
 322 *	superblock does not go away while we are working on it. It returns
 323 *	false if a reference was not gained, and returns true with the s_umount
 324 *	lock held in read mode if a reference is gained. On successful return,
 325 *	the caller must drop the s_umount lock and the passive reference when
 326 *	done.
 
 
 
 
 
 327 */
 328bool grab_super_passive(struct super_block *sb)
 329{
 330	spin_lock(&sb_lock);
 331	if (list_empty(&sb->s_instances)) {
 332		spin_unlock(&sb_lock);
 333		return false;
 334	}
 335
 336	sb->s_count++;
 337	spin_unlock(&sb_lock);
 338
 339	if (down_read_trylock(&sb->s_umount)) {
 340		if (sb->s_root)
 
 341			return true;
 342		up_read(&sb->s_umount);
 343	}
 344
 345	put_super(sb);
 346	return false;
 347}
 348
 349/*
 350 * Superblock locking.  We really ought to get rid of these two.
 
 
 
 
 
 
 
 
 
 
 
 
 
 351 */
 352void lock_super(struct super_block * sb)
 353{
 354	mutex_lock(&sb->s_lock);
 
 
 
 
 
 
 
 355}
 356
 357void unlock_super(struct super_block * sb)
 358{
 359	mutex_unlock(&sb->s_lock);
 360}
 361
 362EXPORT_SYMBOL(lock_super);
 363EXPORT_SYMBOL(unlock_super);
 364
 365/**
 366 *	generic_shutdown_super	-	common helper for ->kill_sb()
 367 *	@sb: superblock to kill
 368 *
 369 *	generic_shutdown_super() does all fs-independent work on superblock
 370 *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
 371 *	that need destruction out of superblock, call generic_shutdown_super()
 372 *	and release aforementioned objects.  Note: dentries and inodes _are_
 373 *	taken care of and do not need specific handling.
 374 *
 375 *	Upon calling this function, the filesystem may no longer alter or
 376 *	rearrange the set of dentries belonging to this super_block, nor may it
 377 *	change the attachments of dentries to inodes.
 378 */
 379void generic_shutdown_super(struct super_block *sb)
 380{
 381	const struct super_operations *sop = sb->s_op;
 382
 383	if (sb->s_root) {
 384		shrink_dcache_for_umount(sb);
 385		sync_filesystem(sb);
 386		sb->s_flags &= ~MS_ACTIVE;
 387
 388		fsnotify_unmount_inodes(&sb->s_inodes);
 389
 
 390		evict_inodes(sb);
 
 
 
 
 
 
 
 
 
 391
 392		if (sop->put_super)
 393			sop->put_super(sb);
 394
 395		if (!list_empty(&sb->s_inodes)) {
 396			printk("VFS: Busy inodes after unmount of %s. "
 397			   "Self-destruct in 5 seconds.  Have a nice day...\n",
 398			   sb->s_id);
 399		}
 400	}
 401	spin_lock(&sb_lock);
 402	/* should be initialized for __put_super_and_need_restart() */
 403	list_del_init(&sb->s_instances);
 404	spin_unlock(&sb_lock);
 405	up_write(&sb->s_umount);
 
 
 
 
 
 
 406}
 407
 408EXPORT_SYMBOL(generic_shutdown_super);
 409
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 410/**
 411 *	sget	-	find or create a superblock
 412 *	@type:	filesystem type superblock should belong to
 413 *	@test:	comparison callback
 414 *	@set:	setup callback
 415 *	@data:	argument to each of them
 
 416 */
 417struct super_block *sget(struct file_system_type *type,
 418			int (*test)(struct super_block *,void *),
 419			int (*set)(struct super_block *,void *),
 
 420			void *data)
 421{
 
 422	struct super_block *s = NULL;
 423	struct super_block *old;
 424	int err;
 425
 
 
 
 
 
 
 
 426retry:
 427	spin_lock(&sb_lock);
 428	if (test) {
 429		list_for_each_entry(old, &type->fs_supers, s_instances) {
 430			if (!test(old, data))
 431				continue;
 
 
 
 
 
 432			if (!grab_super(old))
 433				goto retry;
 434			if (s) {
 435				up_write(&s->s_umount);
 436				destroy_super(s);
 437				s = NULL;
 438			}
 439			down_write(&old->s_umount);
 440			if (unlikely(!(old->s_flags & MS_BORN))) {
 441				deactivate_locked_super(old);
 442				goto retry;
 443			}
 444			return old;
 445		}
 446	}
 447	if (!s) {
 448		spin_unlock(&sb_lock);
 449		s = alloc_super(type);
 450		if (!s)
 451			return ERR_PTR(-ENOMEM);
 452		goto retry;
 453	}
 454		
 455	err = set(s, data);
 456	if (err) {
 457		spin_unlock(&sb_lock);
 458		up_write(&s->s_umount);
 459		destroy_super(s);
 460		return ERR_PTR(err);
 461	}
 462	s->s_type = type;
 463	strlcpy(s->s_id, type->name, sizeof(s->s_id));
 464	list_add_tail(&s->s_list, &super_blocks);
 465	list_add(&s->s_instances, &type->fs_supers);
 466	spin_unlock(&sb_lock);
 467	get_filesystem(type);
 468	register_shrinker(&s->s_shrink);
 469	return s;
 470}
 471
 472EXPORT_SYMBOL(sget);
 473
 474void drop_super(struct super_block *sb)
 475{
 476	up_read(&sb->s_umount);
 477	put_super(sb);
 478}
 479
 480EXPORT_SYMBOL(drop_super);
 481
 482/**
 483 * sync_supers - helper for periodic superblock writeback
 484 *
 485 * Call the write_super method if present on all dirty superblocks in
 486 * the system.  This is for the periodic writeback used by most older
 487 * filesystems.  For data integrity superblock writeback use
 488 * sync_filesystems() instead.
 489 *
 490 * Note: check the dirty flag before waiting, so we don't
 491 * hold up the sync while mounting a device. (The newly
 492 * mounted device won't need syncing.)
 493 */
 494void sync_supers(void)
 495{
 496	struct super_block *sb, *p = NULL;
 497
 498	spin_lock(&sb_lock);
 499	list_for_each_entry(sb, &super_blocks, s_list) {
 500		if (list_empty(&sb->s_instances))
 501			continue;
 502		if (sb->s_op->write_super && sb->s_dirt) {
 503			sb->s_count++;
 504			spin_unlock(&sb_lock);
 505
 506			down_read(&sb->s_umount);
 507			if (sb->s_root && sb->s_dirt)
 508				sb->s_op->write_super(sb);
 509			up_read(&sb->s_umount);
 510
 511			spin_lock(&sb_lock);
 512			if (p)
 513				__put_super(p);
 514			p = sb;
 515		}
 516	}
 517	if (p)
 518		__put_super(p);
 519	spin_unlock(&sb_lock);
 520}
 521
 522/**
 523 *	iterate_supers - call function for all active superblocks
 524 *	@f: function to call
 525 *	@arg: argument to pass to it
 526 *
 527 *	Scans the superblock list and calls given function, passing it
 528 *	locked superblock and given argument.
 529 */
 530void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
 531{
 532	struct super_block *sb, *p = NULL;
 533
 534	spin_lock(&sb_lock);
 535	list_for_each_entry(sb, &super_blocks, s_list) {
 536		if (list_empty(&sb->s_instances))
 537			continue;
 538		sb->s_count++;
 539		spin_unlock(&sb_lock);
 540
 541		down_read(&sb->s_umount);
 542		if (sb->s_root)
 543			f(sb, arg);
 544		up_read(&sb->s_umount);
 545
 546		spin_lock(&sb_lock);
 547		if (p)
 548			__put_super(p);
 549		p = sb;
 550	}
 551	if (p)
 552		__put_super(p);
 553	spin_unlock(&sb_lock);
 554}
 555
 556/**
 557 *	iterate_supers_type - call function for superblocks of given type
 558 *	@type: fs type
 559 *	@f: function to call
 560 *	@arg: argument to pass to it
 561 *
 562 *	Scans the superblock list and calls given function, passing it
 563 *	locked superblock and given argument.
 564 */
 565void iterate_supers_type(struct file_system_type *type,
 566	void (*f)(struct super_block *, void *), void *arg)
 567{
 568	struct super_block *sb, *p = NULL;
 569
 570	spin_lock(&sb_lock);
 571	list_for_each_entry(sb, &type->fs_supers, s_instances) {
 572		sb->s_count++;
 573		spin_unlock(&sb_lock);
 574
 575		down_read(&sb->s_umount);
 576		if (sb->s_root)
 577			f(sb, arg);
 578		up_read(&sb->s_umount);
 579
 580		spin_lock(&sb_lock);
 581		if (p)
 582			__put_super(p);
 583		p = sb;
 584	}
 585	if (p)
 586		__put_super(p);
 587	spin_unlock(&sb_lock);
 588}
 589
 590EXPORT_SYMBOL(iterate_supers_type);
 591
 592/**
 593 *	get_super - get the superblock of a device
 594 *	@bdev: device to get the superblock for
 595 *	
 596 *	Scans the superblock list and finds the superblock of the file system
 597 *	mounted on the device given. %NULL is returned if no match is found.
 598 */
 599
 600struct super_block *get_super(struct block_device *bdev)
 601{
 602	struct super_block *sb;
 603
 604	if (!bdev)
 605		return NULL;
 606
 607	spin_lock(&sb_lock);
 608rescan:
 609	list_for_each_entry(sb, &super_blocks, s_list) {
 610		if (list_empty(&sb->s_instances))
 611			continue;
 612		if (sb->s_bdev == bdev) {
 613			sb->s_count++;
 614			spin_unlock(&sb_lock);
 615			down_read(&sb->s_umount);
 616			/* still alive? */
 617			if (sb->s_root)
 618				return sb;
 619			up_read(&sb->s_umount);
 620			/* nope, got unmounted */
 621			spin_lock(&sb_lock);
 622			__put_super(sb);
 623			goto rescan;
 624		}
 625	}
 626	spin_unlock(&sb_lock);
 627	return NULL;
 628}
 629
 630EXPORT_SYMBOL(get_super);
 631
 632/**
 633 * get_active_super - get an active reference to the superblock of a device
 634 * @bdev: device to get the superblock for
 635 *
 636 * Scans the superblock list and finds the superblock of the file system
 637 * mounted on the device given.  Returns the superblock with an active
 638 * reference or %NULL if none was found.
 639 */
 640struct super_block *get_active_super(struct block_device *bdev)
 641{
 642	struct super_block *sb;
 643
 644	if (!bdev)
 645		return NULL;
 646
 647restart:
 648	spin_lock(&sb_lock);
 649	list_for_each_entry(sb, &super_blocks, s_list) {
 650		if (list_empty(&sb->s_instances))
 651			continue;
 652		if (sb->s_bdev == bdev) {
 653			if (grab_super(sb)) /* drops sb_lock */
 654				return sb;
 655			else
 656				goto restart;
 
 
 657		}
 658	}
 659	spin_unlock(&sb_lock);
 660	return NULL;
 661}
 662 
 663struct super_block *user_get_super(dev_t dev)
 664{
 665	struct super_block *sb;
 666
 667	spin_lock(&sb_lock);
 668rescan:
 669	list_for_each_entry(sb, &super_blocks, s_list) {
 670		if (list_empty(&sb->s_instances))
 671			continue;
 672		if (sb->s_dev ==  dev) {
 673			sb->s_count++;
 674			spin_unlock(&sb_lock);
 675			down_read(&sb->s_umount);
 
 
 
 676			/* still alive? */
 677			if (sb->s_root)
 678				return sb;
 679			up_read(&sb->s_umount);
 
 
 
 680			/* nope, got unmounted */
 681			spin_lock(&sb_lock);
 682			__put_super(sb);
 683			goto rescan;
 684		}
 685	}
 686	spin_unlock(&sb_lock);
 687	return NULL;
 688}
 689
 690/**
 691 *	do_remount_sb - asks filesystem to change mount options.
 692 *	@sb:	superblock in question
 693 *	@flags:	numeric part of options
 694 *	@data:	the rest of options
 695 *      @force: whether or not to force the change
 696 *
 697 *	Alters the mount options of a mounted file system.
 698 */
 699int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
 700{
 
 701	int retval;
 702	int remount_ro;
 
 703
 704	if (sb->s_frozen != SB_UNFROZEN)
 
 
 705		return -EBUSY;
 706
 
 
 
 
 
 707#ifdef CONFIG_BLOCK
 708	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
 709		return -EACCES;
 
 710#endif
 711
 712	if (flags & MS_RDONLY)
 713		acct_auto_close(sb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 714	shrink_dcache_sb(sb);
 715	sync_filesystem(sb);
 716
 717	remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
 718
 719	/* If we are remounting RDONLY and current sb is read/write,
 720	   make sure there are no rw files opened */
 721	if (remount_ro) {
 722		if (force)
 723			mark_files_ro(sb);
 724		else if (!fs_may_remount_ro(sb))
 725			return -EBUSY;
 
 
 
 
 726	}
 727
 728	if (sb->s_op->remount_fs) {
 729		retval = sb->s_op->remount_fs(sb, &flags, data);
 730		if (retval)
 731			return retval;
 
 
 
 
 
 732	}
 733	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
 
 
 
 
 
 734
 735	/*
 736	 * Some filesystems modify their metadata via some other path than the
 737	 * bdev buffer cache (eg. use a private mapping, or directories in
 738	 * pagecache, etc). Also file data modifications go via their own
 739	 * mappings. So If we try to mount readonly then copy the filesystem
 740	 * from bdev, we could get stale data, so invalidate it to give a best
 741	 * effort at coherency.
 742	 */
 743	if (remount_ro && sb->s_bdev)
 744		invalidate_bdev(sb->s_bdev);
 745	return 0;
 
 
 
 
 746}
 747
 748static void do_emergency_remount(struct work_struct *work)
 749{
 750	struct super_block *sb, *p = NULL;
 751
 752	spin_lock(&sb_lock);
 753	list_for_each_entry(sb, &super_blocks, s_list) {
 754		if (list_empty(&sb->s_instances))
 755			continue;
 756		sb->s_count++;
 757		spin_unlock(&sb_lock);
 758		down_write(&sb->s_umount);
 759		if (sb->s_root && sb->s_bdev && !(sb->s_flags & MS_RDONLY)) {
 760			/*
 761			 * What lock protects sb->s_flags??
 762			 */
 763			do_remount_sb(sb, MS_RDONLY, NULL, 1);
 764		}
 765		up_write(&sb->s_umount);
 766		spin_lock(&sb_lock);
 767		if (p)
 768			__put_super(p);
 769		p = sb;
 770	}
 771	if (p)
 772		__put_super(p);
 773	spin_unlock(&sb_lock);
 
 
 
 774	kfree(work);
 775	printk("Emergency Remount complete\n");
 776}
 777
 778void emergency_remount(void)
 779{
 780	struct work_struct *work;
 781
 782	work = kmalloc(sizeof(*work), GFP_ATOMIC);
 783	if (work) {
 784		INIT_WORK(work, do_emergency_remount);
 785		schedule_work(work);
 786	}
 787}
 788
 789/*
 790 * Unnamed block devices are dummy devices used by virtual
 791 * filesystems which don't use real block-devices.  -- jrs
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 792 */
 
 
 
 
 
 
 
 
 
 
 793
 794static DEFINE_IDA(unnamed_dev_ida);
 795static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
 796static int unnamed_dev_start = 0; /* don't bother trying below it */
 797
 
 
 
 
 
 
 
 
 
 
 
 798int get_anon_bdev(dev_t *p)
 799{
 800	int dev;
 801	int error;
 802
 803 retry:
 804	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
 805		return -ENOMEM;
 806	spin_lock(&unnamed_dev_lock);
 807	error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
 808	if (!error)
 809		unnamed_dev_start = dev + 1;
 810	spin_unlock(&unnamed_dev_lock);
 811	if (error == -EAGAIN)
 812		/* We raced and lost with another CPU. */
 813		goto retry;
 814	else if (error)
 815		return -EAGAIN;
 816
 817	if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
 818		spin_lock(&unnamed_dev_lock);
 819		ida_remove(&unnamed_dev_ida, dev);
 820		if (unnamed_dev_start > dev)
 821			unnamed_dev_start = dev;
 822		spin_unlock(&unnamed_dev_lock);
 823		return -EMFILE;
 824	}
 825	*p = MKDEV(0, dev & MINORMASK);
 826	return 0;
 827}
 828EXPORT_SYMBOL(get_anon_bdev);
 829
 830void free_anon_bdev(dev_t dev)
 831{
 832	int slot = MINOR(dev);
 833	spin_lock(&unnamed_dev_lock);
 834	ida_remove(&unnamed_dev_ida, slot);
 835	if (slot < unnamed_dev_start)
 836		unnamed_dev_start = slot;
 837	spin_unlock(&unnamed_dev_lock);
 838}
 839EXPORT_SYMBOL(free_anon_bdev);
 840
 841int set_anon_super(struct super_block *s, void *data)
 842{
 843	int error = get_anon_bdev(&s->s_dev);
 844	if (!error)
 845		s->s_bdi = &noop_backing_dev_info;
 846	return error;
 847}
 848
 849EXPORT_SYMBOL(set_anon_super);
 850
 851void kill_anon_super(struct super_block *sb)
 852{
 853	dev_t dev = sb->s_dev;
 854	generic_shutdown_super(sb);
 855	free_anon_bdev(dev);
 856}
 857
 858EXPORT_SYMBOL(kill_anon_super);
 859
 860void kill_litter_super(struct super_block *sb)
 861{
 862	if (sb->s_root)
 863		d_genocide(sb->s_root);
 864	kill_anon_super(sb);
 865}
 
 866
 867EXPORT_SYMBOL(kill_litter_super);
 
 
 
 
 868
 869static int ns_test_super(struct super_block *sb, void *data)
 870{
 871	return sb->s_fs_info == data;
 872}
 873
 874static int ns_set_super(struct super_block *sb, void *data)
 875{
 876	sb->s_fs_info = data;
 877	return set_anon_super(sb, NULL);
 878}
 879
 880struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
 881	void *data, int (*fill_super)(struct super_block *, void *, int))
 
 
 882{
 883	struct super_block *sb;
 
 884
 885	sb = sget(fs_type, ns_test_super, ns_set_super, data);
 886	if (IS_ERR(sb))
 887		return ERR_CAST(sb);
 888
 889	if (!sb->s_root) {
 890		int err;
 891		sb->s_flags = flags;
 892		err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
 893		if (err) {
 894			deactivate_locked_super(sb);
 895			return ERR_PTR(err);
 
 
 
 
 
 
 
 
 
 896		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 897
 898		sb->s_flags |= MS_ACTIVE;
 899	}
 
 
 
 
 
 900
 901	return dget(sb->s_root);
 
 
 
 
 902}
 
 903
 904EXPORT_SYMBOL(mount_ns);
 
 
 
 
 
 
 
 
 905
 906#ifdef CONFIG_BLOCK
 
 907static int set_bdev_super(struct super_block *s, void *data)
 908{
 909	s->s_bdev = data;
 910	s->s_dev = s->s_bdev->bd_dev;
 
 
 
 
 
 
 
 
 
 
 
 911
 912	/*
 913	 * We set the bdi here to the queue backing, file systems can
 914	 * overwrite this in ->fill_super()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 915	 */
 916	s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 917	return 0;
 918}
 
 919
 920static int test_bdev_super(struct super_block *s, void *data)
 921{
 922	return (void *)s->s_bdev == data;
 923}
 924
 925struct dentry *mount_bdev(struct file_system_type *fs_type,
 926	int flags, const char *dev_name, void *data,
 927	int (*fill_super)(struct super_block *, void *, int))
 928{
 929	struct block_device *bdev;
 930	struct super_block *s;
 931	fmode_t mode = FMODE_READ | FMODE_EXCL;
 932	int error = 0;
 933
 934	if (!(flags & MS_RDONLY))
 935		mode |= FMODE_WRITE;
 936
 937	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
 938	if (IS_ERR(bdev))
 939		return ERR_CAST(bdev);
 940
 941	/*
 942	 * once the super is inserted into the list by sget, s_umount
 943	 * will protect the lockfs code from trying to start a snapshot
 944	 * while we are mounting
 945	 */
 946	mutex_lock(&bdev->bd_fsfreeze_mutex);
 947	if (bdev->bd_fsfreeze_count > 0) {
 948		mutex_unlock(&bdev->bd_fsfreeze_mutex);
 949		error = -EBUSY;
 950		goto error_bdev;
 951	}
 952	s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);
 
 953	mutex_unlock(&bdev->bd_fsfreeze_mutex);
 954	if (IS_ERR(s))
 955		goto error_s;
 956
 957	if (s->s_root) {
 958		if ((flags ^ s->s_flags) & MS_RDONLY) {
 959			deactivate_locked_super(s);
 960			error = -EBUSY;
 961			goto error_bdev;
 962		}
 963
 964		/*
 965		 * s_umount nests inside bd_mutex during
 966		 * __invalidate_device().  blkdev_put() acquires
 967		 * bd_mutex and can't be called under s_umount.  Drop
 968		 * s_umount temporarily.  This is safe as we're
 969		 * holding an active reference.
 970		 */
 971		up_write(&s->s_umount);
 972		blkdev_put(bdev, mode);
 973		down_write(&s->s_umount);
 974	} else {
 975		char b[BDEVNAME_SIZE];
 976
 977		s->s_flags = flags | MS_NOSEC;
 978		s->s_mode = mode;
 979		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
 
 
 980		sb_set_blocksize(s, block_size(bdev));
 981		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
 982		if (error) {
 983			deactivate_locked_super(s);
 984			goto error;
 985		}
 986
 987		s->s_flags |= MS_ACTIVE;
 988		bdev->bd_super = s;
 989	}
 990
 991	return dget(s->s_root);
 992
 993error_s:
 994	error = PTR_ERR(s);
 995error_bdev:
 996	blkdev_put(bdev, mode);
 997error:
 998	return ERR_PTR(error);
 999}
1000EXPORT_SYMBOL(mount_bdev);
1001
1002void kill_block_super(struct super_block *sb)
1003{
1004	struct block_device *bdev = sb->s_bdev;
1005	fmode_t mode = sb->s_mode;
1006
1007	bdev->bd_super = NULL;
1008	generic_shutdown_super(sb);
1009	sync_blockdev(bdev);
1010	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1011	blkdev_put(bdev, mode | FMODE_EXCL);
1012}
1013
1014EXPORT_SYMBOL(kill_block_super);
1015#endif
1016
1017struct dentry *mount_nodev(struct file_system_type *fs_type,
1018	int flags, void *data,
1019	int (*fill_super)(struct super_block *, void *, int))
1020{
1021	int error;
1022	struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
1023
1024	if (IS_ERR(s))
1025		return ERR_CAST(s);
1026
1027	s->s_flags = flags;
1028
1029	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1030	if (error) {
1031		deactivate_locked_super(s);
1032		return ERR_PTR(error);
1033	}
1034	s->s_flags |= MS_ACTIVE;
1035	return dget(s->s_root);
1036}
1037EXPORT_SYMBOL(mount_nodev);
1038
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1039static int compare_single(struct super_block *s, void *p)
1040{
1041	return 1;
1042}
1043
1044struct dentry *mount_single(struct file_system_type *fs_type,
1045	int flags, void *data,
1046	int (*fill_super)(struct super_block *, void *, int))
1047{
1048	struct super_block *s;
1049	int error;
1050
1051	s = sget(fs_type, compare_single, set_anon_super, NULL);
1052	if (IS_ERR(s))
1053		return ERR_CAST(s);
1054	if (!s->s_root) {
1055		s->s_flags = flags;
1056		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1057		if (error) {
1058			deactivate_locked_super(s);
1059			return ERR_PTR(error);
1060		}
1061		s->s_flags |= MS_ACTIVE;
1062	} else {
1063		do_remount_sb(s, flags, data, 0);
 
 
 
 
1064	}
1065	return dget(s->s_root);
1066}
1067EXPORT_SYMBOL(mount_single);
1068
1069struct dentry *
1070mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
 
 
 
 
 
 
 
1071{
1072	struct dentry *root;
1073	struct super_block *sb;
1074	char *secdata = NULL;
1075	int error = -ENOMEM;
1076
1077	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1078		secdata = alloc_secdata();
1079		if (!secdata)
1080			goto out;
1081
1082		error = security_sb_copy_data(data, secdata);
1083		if (error)
1084			goto out_free_secdata;
1085	}
1086
1087	root = type->mount(type, flags, name, data);
1088	if (IS_ERR(root)) {
1089		error = PTR_ERR(root);
1090		goto out_free_secdata;
 
 
 
1091	}
1092	sb = root->d_sb;
1093	BUG_ON(!sb);
1094	WARN_ON(!sb->s_bdi);
1095	WARN_ON(sb->s_bdi == &default_backing_dev_info);
1096	sb->s_flags |= MS_BORN;
1097
1098	error = security_sb_kern_mount(sb, flags, secdata);
1099	if (error)
1100		goto out_sb;
 
 
 
 
 
 
 
 
 
 
 
1101
1102	/*
1103	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1104	 * but s_maxbytes was an unsigned long long for many releases. Throw
1105	 * this warning for a little while to try and catch filesystems that
1106	 * violate this rule.
1107	 */
1108	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1109		"negative value (%lld)\n", type->name, sb->s_maxbytes);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1110
1111	up_write(&sb->s_umount);
1112	free_secdata(secdata);
1113	return root;
1114out_sb:
1115	dput(root);
1116	deactivate_locked_super(sb);
1117out_free_secdata:
1118	free_secdata(secdata);
1119out:
1120	return ERR_PTR(error);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1121}
1122
1123/**
1124 * freeze_super - lock the filesystem and force it into a consistent state
1125 * @sb: the super to lock
1126 *
1127 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1128 * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1129 * -EBUSY.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1130 */
1131int freeze_super(struct super_block *sb)
1132{
1133	int ret;
1134
1135	atomic_inc(&sb->s_active);
1136	down_write(&sb->s_umount);
1137	if (sb->s_frozen) {
1138		deactivate_locked_super(sb);
1139		return -EBUSY;
1140	}
1141
1142	if (sb->s_flags & MS_RDONLY) {
1143		sb->s_frozen = SB_FREEZE_TRANS;
1144		smp_wmb();
 
 
 
 
 
1145		up_write(&sb->s_umount);
1146		return 0;
1147	}
1148
1149	sb->s_frozen = SB_FREEZE_WRITE;
1150	smp_wmb();
 
 
 
1151
1152	sync_filesystem(sb);
 
 
 
 
 
 
 
 
 
 
 
 
1153
1154	sb->s_frozen = SB_FREEZE_TRANS;
1155	smp_wmb();
 
1156
1157	sync_blockdev(sb->s_bdev);
1158	if (sb->s_op->freeze_fs) {
1159		ret = sb->s_op->freeze_fs(sb);
1160		if (ret) {
1161			printk(KERN_ERR
1162				"VFS:Filesystem freeze failed\n");
1163			sb->s_frozen = SB_UNFROZEN;
 
 
1164			deactivate_locked_super(sb);
1165			return ret;
1166		}
1167	}
 
 
 
 
 
 
1168	up_write(&sb->s_umount);
1169	return 0;
1170}
1171EXPORT_SYMBOL(freeze_super);
1172
1173/**
1174 * thaw_super -- unlock filesystem
1175 * @sb: the super to thaw
1176 *
1177 * Unlocks the filesystem and marks it writeable again after freeze_super().
1178 */
1179int thaw_super(struct super_block *sb)
1180{
1181	int error;
1182
1183	down_write(&sb->s_umount);
1184	if (sb->s_frozen == SB_UNFROZEN) {
1185		up_write(&sb->s_umount);
1186		return -EINVAL;
1187	}
1188
1189	if (sb->s_flags & MS_RDONLY)
 
1190		goto out;
 
 
 
1191
1192	if (sb->s_op->unfreeze_fs) {
1193		error = sb->s_op->unfreeze_fs(sb);
1194		if (error) {
1195			printk(KERN_ERR
1196				"VFS:Filesystem thaw failed\n");
1197			sb->s_frozen = SB_FREEZE_TRANS;
1198			up_write(&sb->s_umount);
1199			return error;
1200		}
1201	}
1202
 
 
1203out:
1204	sb->s_frozen = SB_UNFROZEN;
1205	smp_wmb();
1206	wake_up(&sb->s_wait_unfrozen);
1207	deactivate_locked_super(sb);
 
 
1208
1209	return 0;
 
 
 
 
 
 
 
 
 
1210}
1211EXPORT_SYMBOL(thaw_super);