Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/proc/base.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * proc base directory handling functions
8 *
9 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
10 * Instead of using magical inumbers to determine the kind of object
11 * we allocate and fill in-core inodes upon lookup. They don't even
12 * go into icache. We cache the reference to task_struct upon lookup too.
13 * Eventually it should become a filesystem in its own. We don't use the
14 * rest of procfs anymore.
15 *
16 *
17 * Changelog:
18 * 17-Jan-2005
19 * Allan Bezerra
20 * Bruna Moreira <bruna.moreira@indt.org.br>
21 * Edjard Mota <edjard.mota@indt.org.br>
22 * Ilias Biris <ilias.biris@indt.org.br>
23 * Mauricio Lin <mauricio.lin@indt.org.br>
24 *
25 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26 *
27 * A new process specific entry (smaps) included in /proc. It shows the
28 * size of rss for each memory area. The maps entry lacks information
29 * about physical memory size (rss) for each mapped file, i.e.,
30 * rss information for executables and library files.
31 * This additional information is useful for any tools that need to know
32 * about physical memory consumption for a process specific library.
33 *
34 * Changelog:
35 * 21-Feb-2005
36 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
37 * Pud inclusion in the page table walking.
38 *
39 * ChangeLog:
40 * 10-Mar-2005
41 * 10LE Instituto Nokia de Tecnologia - INdT:
42 * A better way to walks through the page table as suggested by Hugh Dickins.
43 *
44 * Simo Piiroinen <simo.piiroinen@nokia.com>:
45 * Smaps information related to shared, private, clean and dirty pages.
46 *
47 * Paul Mundt <paul.mundt@nokia.com>:
48 * Overall revision about smaps.
49 */
50
51#include <linux/uaccess.h>
52
53#include <linux/errno.h>
54#include <linux/time.h>
55#include <linux/proc_fs.h>
56#include <linux/stat.h>
57#include <linux/task_io_accounting_ops.h>
58#include <linux/init.h>
59#include <linux/capability.h>
60#include <linux/file.h>
61#include <linux/fdtable.h>
62#include <linux/generic-radix-tree.h>
63#include <linux/string.h>
64#include <linux/seq_file.h>
65#include <linux/namei.h>
66#include <linux/mnt_namespace.h>
67#include <linux/mm.h>
68#include <linux/swap.h>
69#include <linux/rcupdate.h>
70#include <linux/kallsyms.h>
71#include <linux/stacktrace.h>
72#include <linux/resource.h>
73#include <linux/module.h>
74#include <linux/mount.h>
75#include <linux/security.h>
76#include <linux/ptrace.h>
77#include <linux/printk.h>
78#include <linux/cache.h>
79#include <linux/cgroup.h>
80#include <linux/cpuset.h>
81#include <linux/audit.h>
82#include <linux/poll.h>
83#include <linux/nsproxy.h>
84#include <linux/oom.h>
85#include <linux/elf.h>
86#include <linux/pid_namespace.h>
87#include <linux/user_namespace.h>
88#include <linux/fs_struct.h>
89#include <linux/slab.h>
90#include <linux/sched/autogroup.h>
91#include <linux/sched/mm.h>
92#include <linux/sched/coredump.h>
93#include <linux/sched/debug.h>
94#include <linux/sched/stat.h>
95#include <linux/posix-timers.h>
96#include <linux/time_namespace.h>
97#include <linux/resctrl.h>
98#include <linux/cn_proc.h>
99#include <trace/events/oom.h>
100#include "internal.h"
101#include "fd.h"
102
103#include "../../lib/kstrtox.h"
104
105/* NOTE:
106 * Implementing inode permission operations in /proc is almost
107 * certainly an error. Permission checks need to happen during
108 * each system call not at open time. The reason is that most of
109 * what we wish to check for permissions in /proc varies at runtime.
110 *
111 * The classic example of a problem is opening file descriptors
112 * in /proc for a task before it execs a suid executable.
113 */
114
115static u8 nlink_tid __ro_after_init;
116static u8 nlink_tgid __ro_after_init;
117
118struct pid_entry {
119 const char *name;
120 unsigned int len;
121 umode_t mode;
122 const struct inode_operations *iop;
123 const struct file_operations *fop;
124 union proc_op op;
125};
126
127#define NOD(NAME, MODE, IOP, FOP, OP) { \
128 .name = (NAME), \
129 .len = sizeof(NAME) - 1, \
130 .mode = MODE, \
131 .iop = IOP, \
132 .fop = FOP, \
133 .op = OP, \
134}
135
136#define DIR(NAME, MODE, iops, fops) \
137 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
138#define LNK(NAME, get_link) \
139 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
140 &proc_pid_link_inode_operations, NULL, \
141 { .proc_get_link = get_link } )
142#define REG(NAME, MODE, fops) \
143 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
144#define ONE(NAME, MODE, show) \
145 NOD(NAME, (S_IFREG|(MODE)), \
146 NULL, &proc_single_file_operations, \
147 { .proc_show = show } )
148#define ATTR(LSM, NAME, MODE) \
149 NOD(NAME, (S_IFREG|(MODE)), \
150 NULL, &proc_pid_attr_operations, \
151 { .lsm = LSM })
152
153/*
154 * Count the number of hardlinks for the pid_entry table, excluding the .
155 * and .. links.
156 */
157static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
158 unsigned int n)
159{
160 unsigned int i;
161 unsigned int count;
162
163 count = 2;
164 for (i = 0; i < n; ++i) {
165 if (S_ISDIR(entries[i].mode))
166 ++count;
167 }
168
169 return count;
170}
171
172static int get_task_root(struct task_struct *task, struct path *root)
173{
174 int result = -ENOENT;
175
176 task_lock(task);
177 if (task->fs) {
178 get_fs_root(task->fs, root);
179 result = 0;
180 }
181 task_unlock(task);
182 return result;
183}
184
185static int proc_cwd_link(struct dentry *dentry, struct path *path)
186{
187 struct task_struct *task = get_proc_task(d_inode(dentry));
188 int result = -ENOENT;
189
190 if (task) {
191 task_lock(task);
192 if (task->fs) {
193 get_fs_pwd(task->fs, path);
194 result = 0;
195 }
196 task_unlock(task);
197 put_task_struct(task);
198 }
199 return result;
200}
201
202static int proc_root_link(struct dentry *dentry, struct path *path)
203{
204 struct task_struct *task = get_proc_task(d_inode(dentry));
205 int result = -ENOENT;
206
207 if (task) {
208 result = get_task_root(task, path);
209 put_task_struct(task);
210 }
211 return result;
212}
213
214/*
215 * If the user used setproctitle(), we just get the string from
216 * user space at arg_start, and limit it to a maximum of one page.
217 */
218static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf,
219 size_t count, unsigned long pos,
220 unsigned long arg_start)
221{
222 char *page;
223 int ret, got;
224
225 if (pos >= PAGE_SIZE)
226 return 0;
227
228 page = (char *)__get_free_page(GFP_KERNEL);
229 if (!page)
230 return -ENOMEM;
231
232 ret = 0;
233 got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON);
234 if (got > 0) {
235 int len = strnlen(page, got);
236
237 /* Include the NUL character if it was found */
238 if (len < got)
239 len++;
240
241 if (len > pos) {
242 len -= pos;
243 if (len > count)
244 len = count;
245 len -= copy_to_user(buf, page+pos, len);
246 if (!len)
247 len = -EFAULT;
248 ret = len;
249 }
250 }
251 free_page((unsigned long)page);
252 return ret;
253}
254
255static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
256 size_t count, loff_t *ppos)
257{
258 unsigned long arg_start, arg_end, env_start, env_end;
259 unsigned long pos, len;
260 char *page, c;
261
262 /* Check if process spawned far enough to have cmdline. */
263 if (!mm->env_end)
264 return 0;
265
266 spin_lock(&mm->arg_lock);
267 arg_start = mm->arg_start;
268 arg_end = mm->arg_end;
269 env_start = mm->env_start;
270 env_end = mm->env_end;
271 spin_unlock(&mm->arg_lock);
272
273 if (arg_start >= arg_end)
274 return 0;
275
276 /*
277 * We allow setproctitle() to overwrite the argument
278 * strings, and overflow past the original end. But
279 * only when it overflows into the environment area.
280 */
281 if (env_start != arg_end || env_end < env_start)
282 env_start = env_end = arg_end;
283 len = env_end - arg_start;
284
285 /* We're not going to care if "*ppos" has high bits set */
286 pos = *ppos;
287 if (pos >= len)
288 return 0;
289 if (count > len - pos)
290 count = len - pos;
291 if (!count)
292 return 0;
293
294 /*
295 * Magical special case: if the argv[] end byte is not
296 * zero, the user has overwritten it with setproctitle(3).
297 *
298 * Possible future enhancement: do this only once when
299 * pos is 0, and set a flag in the 'struct file'.
300 */
301 if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c)
302 return get_mm_proctitle(mm, buf, count, pos, arg_start);
303
304 /*
305 * For the non-setproctitle() case we limit things strictly
306 * to the [arg_start, arg_end[ range.
307 */
308 pos += arg_start;
309 if (pos < arg_start || pos >= arg_end)
310 return 0;
311 if (count > arg_end - pos)
312 count = arg_end - pos;
313
314 page = (char *)__get_free_page(GFP_KERNEL);
315 if (!page)
316 return -ENOMEM;
317
318 len = 0;
319 while (count) {
320 int got;
321 size_t size = min_t(size_t, PAGE_SIZE, count);
322
323 got = access_remote_vm(mm, pos, page, size, FOLL_ANON);
324 if (got <= 0)
325 break;
326 got -= copy_to_user(buf, page, got);
327 if (unlikely(!got)) {
328 if (!len)
329 len = -EFAULT;
330 break;
331 }
332 pos += got;
333 buf += got;
334 len += got;
335 count -= got;
336 }
337
338 free_page((unsigned long)page);
339 return len;
340}
341
342static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
343 size_t count, loff_t *pos)
344{
345 struct mm_struct *mm;
346 ssize_t ret;
347
348 mm = get_task_mm(tsk);
349 if (!mm)
350 return 0;
351
352 ret = get_mm_cmdline(mm, buf, count, pos);
353 mmput(mm);
354 return ret;
355}
356
357static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
358 size_t count, loff_t *pos)
359{
360 struct task_struct *tsk;
361 ssize_t ret;
362
363 BUG_ON(*pos < 0);
364
365 tsk = get_proc_task(file_inode(file));
366 if (!tsk)
367 return -ESRCH;
368 ret = get_task_cmdline(tsk, buf, count, pos);
369 put_task_struct(tsk);
370 if (ret > 0)
371 *pos += ret;
372 return ret;
373}
374
375static const struct file_operations proc_pid_cmdline_ops = {
376 .read = proc_pid_cmdline_read,
377 .llseek = generic_file_llseek,
378};
379
380#ifdef CONFIG_KALLSYMS
381/*
382 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
383 * Returns the resolved symbol. If that fails, simply return the address.
384 */
385static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
386 struct pid *pid, struct task_struct *task)
387{
388 unsigned long wchan;
389 char symname[KSYM_NAME_LEN];
390
391 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
392 goto print0;
393
394 wchan = get_wchan(task);
395 if (wchan && !lookup_symbol_name(wchan, symname)) {
396 seq_puts(m, symname);
397 return 0;
398 }
399
400print0:
401 seq_putc(m, '0');
402 return 0;
403}
404#endif /* CONFIG_KALLSYMS */
405
406static int lock_trace(struct task_struct *task)
407{
408 int err = down_read_killable(&task->signal->exec_update_lock);
409 if (err)
410 return err;
411 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
412 up_read(&task->signal->exec_update_lock);
413 return -EPERM;
414 }
415 return 0;
416}
417
418static void unlock_trace(struct task_struct *task)
419{
420 up_read(&task->signal->exec_update_lock);
421}
422
423#ifdef CONFIG_STACKTRACE
424
425#define MAX_STACK_TRACE_DEPTH 64
426
427static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
428 struct pid *pid, struct task_struct *task)
429{
430 unsigned long *entries;
431 int err;
432
433 /*
434 * The ability to racily run the kernel stack unwinder on a running task
435 * and then observe the unwinder output is scary; while it is useful for
436 * debugging kernel issues, it can also allow an attacker to leak kernel
437 * stack contents.
438 * Doing this in a manner that is at least safe from races would require
439 * some work to ensure that the remote task can not be scheduled; and
440 * even then, this would still expose the unwinder as local attack
441 * surface.
442 * Therefore, this interface is restricted to root.
443 */
444 if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
445 return -EACCES;
446
447 entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
448 GFP_KERNEL);
449 if (!entries)
450 return -ENOMEM;
451
452 err = lock_trace(task);
453 if (!err) {
454 unsigned int i, nr_entries;
455
456 nr_entries = stack_trace_save_tsk(task, entries,
457 MAX_STACK_TRACE_DEPTH, 0);
458
459 for (i = 0; i < nr_entries; i++) {
460 seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
461 }
462
463 unlock_trace(task);
464 }
465 kfree(entries);
466
467 return err;
468}
469#endif
470
471#ifdef CONFIG_SCHED_INFO
472/*
473 * Provides /proc/PID/schedstat
474 */
475static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
476 struct pid *pid, struct task_struct *task)
477{
478 if (unlikely(!sched_info_on()))
479 seq_puts(m, "0 0 0\n");
480 else
481 seq_printf(m, "%llu %llu %lu\n",
482 (unsigned long long)task->se.sum_exec_runtime,
483 (unsigned long long)task->sched_info.run_delay,
484 task->sched_info.pcount);
485
486 return 0;
487}
488#endif
489
490#ifdef CONFIG_LATENCYTOP
491static int lstats_show_proc(struct seq_file *m, void *v)
492{
493 int i;
494 struct inode *inode = m->private;
495 struct task_struct *task = get_proc_task(inode);
496
497 if (!task)
498 return -ESRCH;
499 seq_puts(m, "Latency Top version : v0.1\n");
500 for (i = 0; i < LT_SAVECOUNT; i++) {
501 struct latency_record *lr = &task->latency_record[i];
502 if (lr->backtrace[0]) {
503 int q;
504 seq_printf(m, "%i %li %li",
505 lr->count, lr->time, lr->max);
506 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
507 unsigned long bt = lr->backtrace[q];
508
509 if (!bt)
510 break;
511 seq_printf(m, " %ps", (void *)bt);
512 }
513 seq_putc(m, '\n');
514 }
515
516 }
517 put_task_struct(task);
518 return 0;
519}
520
521static int lstats_open(struct inode *inode, struct file *file)
522{
523 return single_open(file, lstats_show_proc, inode);
524}
525
526static ssize_t lstats_write(struct file *file, const char __user *buf,
527 size_t count, loff_t *offs)
528{
529 struct task_struct *task = get_proc_task(file_inode(file));
530
531 if (!task)
532 return -ESRCH;
533 clear_tsk_latency_tracing(task);
534 put_task_struct(task);
535
536 return count;
537}
538
539static const struct file_operations proc_lstats_operations = {
540 .open = lstats_open,
541 .read = seq_read,
542 .write = lstats_write,
543 .llseek = seq_lseek,
544 .release = single_release,
545};
546
547#endif
548
549static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
550 struct pid *pid, struct task_struct *task)
551{
552 unsigned long totalpages = totalram_pages() + total_swap_pages;
553 unsigned long points = 0;
554 long badness;
555
556 badness = oom_badness(task, totalpages);
557 /*
558 * Special case OOM_SCORE_ADJ_MIN for all others scale the
559 * badness value into [0, 2000] range which we have been
560 * exporting for a long time so userspace might depend on it.
561 */
562 if (badness != LONG_MIN)
563 points = (1000 + badness * 1000 / (long)totalpages) * 2 / 3;
564
565 seq_printf(m, "%lu\n", points);
566
567 return 0;
568}
569
570struct limit_names {
571 const char *name;
572 const char *unit;
573};
574
575static const struct limit_names lnames[RLIM_NLIMITS] = {
576 [RLIMIT_CPU] = {"Max cpu time", "seconds"},
577 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
578 [RLIMIT_DATA] = {"Max data size", "bytes"},
579 [RLIMIT_STACK] = {"Max stack size", "bytes"},
580 [RLIMIT_CORE] = {"Max core file size", "bytes"},
581 [RLIMIT_RSS] = {"Max resident set", "bytes"},
582 [RLIMIT_NPROC] = {"Max processes", "processes"},
583 [RLIMIT_NOFILE] = {"Max open files", "files"},
584 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
585 [RLIMIT_AS] = {"Max address space", "bytes"},
586 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
587 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
588 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
589 [RLIMIT_NICE] = {"Max nice priority", NULL},
590 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
591 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
592};
593
594/* Display limits for a process */
595static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
596 struct pid *pid, struct task_struct *task)
597{
598 unsigned int i;
599 unsigned long flags;
600
601 struct rlimit rlim[RLIM_NLIMITS];
602
603 if (!lock_task_sighand(task, &flags))
604 return 0;
605 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
606 unlock_task_sighand(task, &flags);
607
608 /*
609 * print the file header
610 */
611 seq_puts(m, "Limit "
612 "Soft Limit "
613 "Hard Limit "
614 "Units \n");
615
616 for (i = 0; i < RLIM_NLIMITS; i++) {
617 if (rlim[i].rlim_cur == RLIM_INFINITY)
618 seq_printf(m, "%-25s %-20s ",
619 lnames[i].name, "unlimited");
620 else
621 seq_printf(m, "%-25s %-20lu ",
622 lnames[i].name, rlim[i].rlim_cur);
623
624 if (rlim[i].rlim_max == RLIM_INFINITY)
625 seq_printf(m, "%-20s ", "unlimited");
626 else
627 seq_printf(m, "%-20lu ", rlim[i].rlim_max);
628
629 if (lnames[i].unit)
630 seq_printf(m, "%-10s\n", lnames[i].unit);
631 else
632 seq_putc(m, '\n');
633 }
634
635 return 0;
636}
637
638#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
639static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
640 struct pid *pid, struct task_struct *task)
641{
642 struct syscall_info info;
643 u64 *args = &info.data.args[0];
644 int res;
645
646 res = lock_trace(task);
647 if (res)
648 return res;
649
650 if (task_current_syscall(task, &info))
651 seq_puts(m, "running\n");
652 else if (info.data.nr < 0)
653 seq_printf(m, "%d 0x%llx 0x%llx\n",
654 info.data.nr, info.sp, info.data.instruction_pointer);
655 else
656 seq_printf(m,
657 "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n",
658 info.data.nr,
659 args[0], args[1], args[2], args[3], args[4], args[5],
660 info.sp, info.data.instruction_pointer);
661 unlock_trace(task);
662
663 return 0;
664}
665#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
666
667/************************************************************************/
668/* Here the fs part begins */
669/************************************************************************/
670
671/* permission checks */
672static bool proc_fd_access_allowed(struct inode *inode)
673{
674 struct task_struct *task;
675 bool allowed = false;
676 /* Allow access to a task's file descriptors if it is us or we
677 * may use ptrace attach to the process and find out that
678 * information.
679 */
680 task = get_proc_task(inode);
681 if (task) {
682 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
683 put_task_struct(task);
684 }
685 return allowed;
686}
687
688int proc_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
689 struct iattr *attr)
690{
691 int error;
692 struct inode *inode = d_inode(dentry);
693
694 if (attr->ia_valid & ATTR_MODE)
695 return -EPERM;
696
697 error = setattr_prepare(&init_user_ns, dentry, attr);
698 if (error)
699 return error;
700
701 setattr_copy(&init_user_ns, inode, attr);
702 mark_inode_dirty(inode);
703 return 0;
704}
705
706/*
707 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
708 * or euid/egid (for hide_pid_min=2)?
709 */
710static bool has_pid_permissions(struct proc_fs_info *fs_info,
711 struct task_struct *task,
712 enum proc_hidepid hide_pid_min)
713{
714 /*
715 * If 'hidpid' mount option is set force a ptrace check,
716 * we indicate that we are using a filesystem syscall
717 * by passing PTRACE_MODE_READ_FSCREDS
718 */
719 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE)
720 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
721
722 if (fs_info->hide_pid < hide_pid_min)
723 return true;
724 if (in_group_p(fs_info->pid_gid))
725 return true;
726 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
727}
728
729
730static int proc_pid_permission(struct user_namespace *mnt_userns,
731 struct inode *inode, int mask)
732{
733 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
734 struct task_struct *task;
735 bool has_perms;
736
737 task = get_proc_task(inode);
738 if (!task)
739 return -ESRCH;
740 has_perms = has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS);
741 put_task_struct(task);
742
743 if (!has_perms) {
744 if (fs_info->hide_pid == HIDEPID_INVISIBLE) {
745 /*
746 * Let's make getdents(), stat(), and open()
747 * consistent with each other. If a process
748 * may not stat() a file, it shouldn't be seen
749 * in procfs at all.
750 */
751 return -ENOENT;
752 }
753
754 return -EPERM;
755 }
756 return generic_permission(&init_user_ns, inode, mask);
757}
758
759
760
761static const struct inode_operations proc_def_inode_operations = {
762 .setattr = proc_setattr,
763};
764
765static int proc_single_show(struct seq_file *m, void *v)
766{
767 struct inode *inode = m->private;
768 struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
769 struct pid *pid = proc_pid(inode);
770 struct task_struct *task;
771 int ret;
772
773 task = get_pid_task(pid, PIDTYPE_PID);
774 if (!task)
775 return -ESRCH;
776
777 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
778
779 put_task_struct(task);
780 return ret;
781}
782
783static int proc_single_open(struct inode *inode, struct file *filp)
784{
785 return single_open(filp, proc_single_show, inode);
786}
787
788static const struct file_operations proc_single_file_operations = {
789 .open = proc_single_open,
790 .read = seq_read,
791 .llseek = seq_lseek,
792 .release = single_release,
793};
794
795
796struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
797{
798 struct task_struct *task = get_proc_task(inode);
799 struct mm_struct *mm = ERR_PTR(-ESRCH);
800
801 if (task) {
802 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
803 put_task_struct(task);
804
805 if (!IS_ERR_OR_NULL(mm)) {
806 /* ensure this mm_struct can't be freed */
807 mmgrab(mm);
808 /* but do not pin its memory */
809 mmput(mm);
810 }
811 }
812
813 return mm;
814}
815
816static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
817{
818 struct mm_struct *mm = proc_mem_open(inode, mode);
819
820 if (IS_ERR(mm))
821 return PTR_ERR(mm);
822
823 file->private_data = mm;
824 return 0;
825}
826
827static int mem_open(struct inode *inode, struct file *file)
828{
829 int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
830
831 /* OK to pass negative loff_t, we can catch out-of-range */
832 file->f_mode |= FMODE_UNSIGNED_OFFSET;
833
834 return ret;
835}
836
837static ssize_t mem_rw(struct file *file, char __user *buf,
838 size_t count, loff_t *ppos, int write)
839{
840 struct mm_struct *mm = file->private_data;
841 unsigned long addr = *ppos;
842 ssize_t copied;
843 char *page;
844 unsigned int flags;
845
846 if (!mm)
847 return 0;
848
849 page = (char *)__get_free_page(GFP_KERNEL);
850 if (!page)
851 return -ENOMEM;
852
853 copied = 0;
854 if (!mmget_not_zero(mm))
855 goto free;
856
857 flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
858
859 while (count > 0) {
860 size_t this_len = min_t(size_t, count, PAGE_SIZE);
861
862 if (write && copy_from_user(page, buf, this_len)) {
863 copied = -EFAULT;
864 break;
865 }
866
867 this_len = access_remote_vm(mm, addr, page, this_len, flags);
868 if (!this_len) {
869 if (!copied)
870 copied = -EIO;
871 break;
872 }
873
874 if (!write && copy_to_user(buf, page, this_len)) {
875 copied = -EFAULT;
876 break;
877 }
878
879 buf += this_len;
880 addr += this_len;
881 copied += this_len;
882 count -= this_len;
883 }
884 *ppos = addr;
885
886 mmput(mm);
887free:
888 free_page((unsigned long) page);
889 return copied;
890}
891
892static ssize_t mem_read(struct file *file, char __user *buf,
893 size_t count, loff_t *ppos)
894{
895 return mem_rw(file, buf, count, ppos, 0);
896}
897
898static ssize_t mem_write(struct file *file, const char __user *buf,
899 size_t count, loff_t *ppos)
900{
901 return mem_rw(file, (char __user*)buf, count, ppos, 1);
902}
903
904loff_t mem_lseek(struct file *file, loff_t offset, int orig)
905{
906 switch (orig) {
907 case 0:
908 file->f_pos = offset;
909 break;
910 case 1:
911 file->f_pos += offset;
912 break;
913 default:
914 return -EINVAL;
915 }
916 force_successful_syscall_return();
917 return file->f_pos;
918}
919
920static int mem_release(struct inode *inode, struct file *file)
921{
922 struct mm_struct *mm = file->private_data;
923 if (mm)
924 mmdrop(mm);
925 return 0;
926}
927
928static const struct file_operations proc_mem_operations = {
929 .llseek = mem_lseek,
930 .read = mem_read,
931 .write = mem_write,
932 .open = mem_open,
933 .release = mem_release,
934};
935
936static int environ_open(struct inode *inode, struct file *file)
937{
938 return __mem_open(inode, file, PTRACE_MODE_READ);
939}
940
941static ssize_t environ_read(struct file *file, char __user *buf,
942 size_t count, loff_t *ppos)
943{
944 char *page;
945 unsigned long src = *ppos;
946 int ret = 0;
947 struct mm_struct *mm = file->private_data;
948 unsigned long env_start, env_end;
949
950 /* Ensure the process spawned far enough to have an environment. */
951 if (!mm || !mm->env_end)
952 return 0;
953
954 page = (char *)__get_free_page(GFP_KERNEL);
955 if (!page)
956 return -ENOMEM;
957
958 ret = 0;
959 if (!mmget_not_zero(mm))
960 goto free;
961
962 spin_lock(&mm->arg_lock);
963 env_start = mm->env_start;
964 env_end = mm->env_end;
965 spin_unlock(&mm->arg_lock);
966
967 while (count > 0) {
968 size_t this_len, max_len;
969 int retval;
970
971 if (src >= (env_end - env_start))
972 break;
973
974 this_len = env_end - (env_start + src);
975
976 max_len = min_t(size_t, PAGE_SIZE, count);
977 this_len = min(max_len, this_len);
978
979 retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
980
981 if (retval <= 0) {
982 ret = retval;
983 break;
984 }
985
986 if (copy_to_user(buf, page, retval)) {
987 ret = -EFAULT;
988 break;
989 }
990
991 ret += retval;
992 src += retval;
993 buf += retval;
994 count -= retval;
995 }
996 *ppos = src;
997 mmput(mm);
998
999free:
1000 free_page((unsigned long) page);
1001 return ret;
1002}
1003
1004static const struct file_operations proc_environ_operations = {
1005 .open = environ_open,
1006 .read = environ_read,
1007 .llseek = generic_file_llseek,
1008 .release = mem_release,
1009};
1010
1011static int auxv_open(struct inode *inode, struct file *file)
1012{
1013 return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
1014}
1015
1016static ssize_t auxv_read(struct file *file, char __user *buf,
1017 size_t count, loff_t *ppos)
1018{
1019 struct mm_struct *mm = file->private_data;
1020 unsigned int nwords = 0;
1021
1022 if (!mm)
1023 return 0;
1024 do {
1025 nwords += 2;
1026 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1027 return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1028 nwords * sizeof(mm->saved_auxv[0]));
1029}
1030
1031static const struct file_operations proc_auxv_operations = {
1032 .open = auxv_open,
1033 .read = auxv_read,
1034 .llseek = generic_file_llseek,
1035 .release = mem_release,
1036};
1037
1038static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1039 loff_t *ppos)
1040{
1041 struct task_struct *task = get_proc_task(file_inode(file));
1042 char buffer[PROC_NUMBUF];
1043 int oom_adj = OOM_ADJUST_MIN;
1044 size_t len;
1045
1046 if (!task)
1047 return -ESRCH;
1048 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1049 oom_adj = OOM_ADJUST_MAX;
1050 else
1051 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1052 OOM_SCORE_ADJ_MAX;
1053 put_task_struct(task);
1054 if (oom_adj > OOM_ADJUST_MAX)
1055 oom_adj = OOM_ADJUST_MAX;
1056 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1057 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1058}
1059
1060static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1061{
1062 struct mm_struct *mm = NULL;
1063 struct task_struct *task;
1064 int err = 0;
1065
1066 task = get_proc_task(file_inode(file));
1067 if (!task)
1068 return -ESRCH;
1069
1070 mutex_lock(&oom_adj_mutex);
1071 if (legacy) {
1072 if (oom_adj < task->signal->oom_score_adj &&
1073 !capable(CAP_SYS_RESOURCE)) {
1074 err = -EACCES;
1075 goto err_unlock;
1076 }
1077 /*
1078 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1079 * /proc/pid/oom_score_adj instead.
1080 */
1081 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1082 current->comm, task_pid_nr(current), task_pid_nr(task),
1083 task_pid_nr(task));
1084 } else {
1085 if ((short)oom_adj < task->signal->oom_score_adj_min &&
1086 !capable(CAP_SYS_RESOURCE)) {
1087 err = -EACCES;
1088 goto err_unlock;
1089 }
1090 }
1091
1092 /*
1093 * Make sure we will check other processes sharing the mm if this is
1094 * not vfrok which wants its own oom_score_adj.
1095 * pin the mm so it doesn't go away and get reused after task_unlock
1096 */
1097 if (!task->vfork_done) {
1098 struct task_struct *p = find_lock_task_mm(task);
1099
1100 if (p) {
1101 if (test_bit(MMF_MULTIPROCESS, &p->mm->flags)) {
1102 mm = p->mm;
1103 mmgrab(mm);
1104 }
1105 task_unlock(p);
1106 }
1107 }
1108
1109 task->signal->oom_score_adj = oom_adj;
1110 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1111 task->signal->oom_score_adj_min = (short)oom_adj;
1112 trace_oom_score_adj_update(task);
1113
1114 if (mm) {
1115 struct task_struct *p;
1116
1117 rcu_read_lock();
1118 for_each_process(p) {
1119 if (same_thread_group(task, p))
1120 continue;
1121
1122 /* do not touch kernel threads or the global init */
1123 if (p->flags & PF_KTHREAD || is_global_init(p))
1124 continue;
1125
1126 task_lock(p);
1127 if (!p->vfork_done && process_shares_mm(p, mm)) {
1128 p->signal->oom_score_adj = oom_adj;
1129 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1130 p->signal->oom_score_adj_min = (short)oom_adj;
1131 }
1132 task_unlock(p);
1133 }
1134 rcu_read_unlock();
1135 mmdrop(mm);
1136 }
1137err_unlock:
1138 mutex_unlock(&oom_adj_mutex);
1139 put_task_struct(task);
1140 return err;
1141}
1142
1143/*
1144 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1145 * kernels. The effective policy is defined by oom_score_adj, which has a
1146 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1147 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1148 * Processes that become oom disabled via oom_adj will still be oom disabled
1149 * with this implementation.
1150 *
1151 * oom_adj cannot be removed since existing userspace binaries use it.
1152 */
1153static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1154 size_t count, loff_t *ppos)
1155{
1156 char buffer[PROC_NUMBUF];
1157 int oom_adj;
1158 int err;
1159
1160 memset(buffer, 0, sizeof(buffer));
1161 if (count > sizeof(buffer) - 1)
1162 count = sizeof(buffer) - 1;
1163 if (copy_from_user(buffer, buf, count)) {
1164 err = -EFAULT;
1165 goto out;
1166 }
1167
1168 err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1169 if (err)
1170 goto out;
1171 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1172 oom_adj != OOM_DISABLE) {
1173 err = -EINVAL;
1174 goto out;
1175 }
1176
1177 /*
1178 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1179 * value is always attainable.
1180 */
1181 if (oom_adj == OOM_ADJUST_MAX)
1182 oom_adj = OOM_SCORE_ADJ_MAX;
1183 else
1184 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1185
1186 err = __set_oom_adj(file, oom_adj, true);
1187out:
1188 return err < 0 ? err : count;
1189}
1190
1191static const struct file_operations proc_oom_adj_operations = {
1192 .read = oom_adj_read,
1193 .write = oom_adj_write,
1194 .llseek = generic_file_llseek,
1195};
1196
1197static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1198 size_t count, loff_t *ppos)
1199{
1200 struct task_struct *task = get_proc_task(file_inode(file));
1201 char buffer[PROC_NUMBUF];
1202 short oom_score_adj = OOM_SCORE_ADJ_MIN;
1203 size_t len;
1204
1205 if (!task)
1206 return -ESRCH;
1207 oom_score_adj = task->signal->oom_score_adj;
1208 put_task_struct(task);
1209 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1210 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1211}
1212
1213static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1214 size_t count, loff_t *ppos)
1215{
1216 char buffer[PROC_NUMBUF];
1217 int oom_score_adj;
1218 int err;
1219
1220 memset(buffer, 0, sizeof(buffer));
1221 if (count > sizeof(buffer) - 1)
1222 count = sizeof(buffer) - 1;
1223 if (copy_from_user(buffer, buf, count)) {
1224 err = -EFAULT;
1225 goto out;
1226 }
1227
1228 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1229 if (err)
1230 goto out;
1231 if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1232 oom_score_adj > OOM_SCORE_ADJ_MAX) {
1233 err = -EINVAL;
1234 goto out;
1235 }
1236
1237 err = __set_oom_adj(file, oom_score_adj, false);
1238out:
1239 return err < 0 ? err : count;
1240}
1241
1242static const struct file_operations proc_oom_score_adj_operations = {
1243 .read = oom_score_adj_read,
1244 .write = oom_score_adj_write,
1245 .llseek = default_llseek,
1246};
1247
1248#ifdef CONFIG_AUDIT
1249#define TMPBUFLEN 11
1250static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1251 size_t count, loff_t *ppos)
1252{
1253 struct inode * inode = file_inode(file);
1254 struct task_struct *task = get_proc_task(inode);
1255 ssize_t length;
1256 char tmpbuf[TMPBUFLEN];
1257
1258 if (!task)
1259 return -ESRCH;
1260 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1261 from_kuid(file->f_cred->user_ns,
1262 audit_get_loginuid(task)));
1263 put_task_struct(task);
1264 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1265}
1266
1267static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1268 size_t count, loff_t *ppos)
1269{
1270 struct inode * inode = file_inode(file);
1271 uid_t loginuid;
1272 kuid_t kloginuid;
1273 int rv;
1274
1275 /* Don't let kthreads write their own loginuid */
1276 if (current->flags & PF_KTHREAD)
1277 return -EPERM;
1278
1279 rcu_read_lock();
1280 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1281 rcu_read_unlock();
1282 return -EPERM;
1283 }
1284 rcu_read_unlock();
1285
1286 if (*ppos != 0) {
1287 /* No partial writes. */
1288 return -EINVAL;
1289 }
1290
1291 rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1292 if (rv < 0)
1293 return rv;
1294
1295 /* is userspace tring to explicitly UNSET the loginuid? */
1296 if (loginuid == AUDIT_UID_UNSET) {
1297 kloginuid = INVALID_UID;
1298 } else {
1299 kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1300 if (!uid_valid(kloginuid))
1301 return -EINVAL;
1302 }
1303
1304 rv = audit_set_loginuid(kloginuid);
1305 if (rv < 0)
1306 return rv;
1307 return count;
1308}
1309
1310static const struct file_operations proc_loginuid_operations = {
1311 .read = proc_loginuid_read,
1312 .write = proc_loginuid_write,
1313 .llseek = generic_file_llseek,
1314};
1315
1316static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1317 size_t count, loff_t *ppos)
1318{
1319 struct inode * inode = file_inode(file);
1320 struct task_struct *task = get_proc_task(inode);
1321 ssize_t length;
1322 char tmpbuf[TMPBUFLEN];
1323
1324 if (!task)
1325 return -ESRCH;
1326 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1327 audit_get_sessionid(task));
1328 put_task_struct(task);
1329 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1330}
1331
1332static const struct file_operations proc_sessionid_operations = {
1333 .read = proc_sessionid_read,
1334 .llseek = generic_file_llseek,
1335};
1336#endif
1337
1338#ifdef CONFIG_FAULT_INJECTION
1339static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1340 size_t count, loff_t *ppos)
1341{
1342 struct task_struct *task = get_proc_task(file_inode(file));
1343 char buffer[PROC_NUMBUF];
1344 size_t len;
1345 int make_it_fail;
1346
1347 if (!task)
1348 return -ESRCH;
1349 make_it_fail = task->make_it_fail;
1350 put_task_struct(task);
1351
1352 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1353
1354 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1355}
1356
1357static ssize_t proc_fault_inject_write(struct file * file,
1358 const char __user * buf, size_t count, loff_t *ppos)
1359{
1360 struct task_struct *task;
1361 char buffer[PROC_NUMBUF];
1362 int make_it_fail;
1363 int rv;
1364
1365 if (!capable(CAP_SYS_RESOURCE))
1366 return -EPERM;
1367 memset(buffer, 0, sizeof(buffer));
1368 if (count > sizeof(buffer) - 1)
1369 count = sizeof(buffer) - 1;
1370 if (copy_from_user(buffer, buf, count))
1371 return -EFAULT;
1372 rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1373 if (rv < 0)
1374 return rv;
1375 if (make_it_fail < 0 || make_it_fail > 1)
1376 return -EINVAL;
1377
1378 task = get_proc_task(file_inode(file));
1379 if (!task)
1380 return -ESRCH;
1381 task->make_it_fail = make_it_fail;
1382 put_task_struct(task);
1383
1384 return count;
1385}
1386
1387static const struct file_operations proc_fault_inject_operations = {
1388 .read = proc_fault_inject_read,
1389 .write = proc_fault_inject_write,
1390 .llseek = generic_file_llseek,
1391};
1392
1393static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1394 size_t count, loff_t *ppos)
1395{
1396 struct task_struct *task;
1397 int err;
1398 unsigned int n;
1399
1400 err = kstrtouint_from_user(buf, count, 0, &n);
1401 if (err)
1402 return err;
1403
1404 task = get_proc_task(file_inode(file));
1405 if (!task)
1406 return -ESRCH;
1407 task->fail_nth = n;
1408 put_task_struct(task);
1409
1410 return count;
1411}
1412
1413static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1414 size_t count, loff_t *ppos)
1415{
1416 struct task_struct *task;
1417 char numbuf[PROC_NUMBUF];
1418 ssize_t len;
1419
1420 task = get_proc_task(file_inode(file));
1421 if (!task)
1422 return -ESRCH;
1423 len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1424 put_task_struct(task);
1425 return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1426}
1427
1428static const struct file_operations proc_fail_nth_operations = {
1429 .read = proc_fail_nth_read,
1430 .write = proc_fail_nth_write,
1431};
1432#endif
1433
1434
1435#ifdef CONFIG_SCHED_DEBUG
1436/*
1437 * Print out various scheduling related per-task fields:
1438 */
1439static int sched_show(struct seq_file *m, void *v)
1440{
1441 struct inode *inode = m->private;
1442 struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
1443 struct task_struct *p;
1444
1445 p = get_proc_task(inode);
1446 if (!p)
1447 return -ESRCH;
1448 proc_sched_show_task(p, ns, m);
1449
1450 put_task_struct(p);
1451
1452 return 0;
1453}
1454
1455static ssize_t
1456sched_write(struct file *file, const char __user *buf,
1457 size_t count, loff_t *offset)
1458{
1459 struct inode *inode = file_inode(file);
1460 struct task_struct *p;
1461
1462 p = get_proc_task(inode);
1463 if (!p)
1464 return -ESRCH;
1465 proc_sched_set_task(p);
1466
1467 put_task_struct(p);
1468
1469 return count;
1470}
1471
1472static int sched_open(struct inode *inode, struct file *filp)
1473{
1474 return single_open(filp, sched_show, inode);
1475}
1476
1477static const struct file_operations proc_pid_sched_operations = {
1478 .open = sched_open,
1479 .read = seq_read,
1480 .write = sched_write,
1481 .llseek = seq_lseek,
1482 .release = single_release,
1483};
1484
1485#endif
1486
1487#ifdef CONFIG_SCHED_AUTOGROUP
1488/*
1489 * Print out autogroup related information:
1490 */
1491static int sched_autogroup_show(struct seq_file *m, void *v)
1492{
1493 struct inode *inode = m->private;
1494 struct task_struct *p;
1495
1496 p = get_proc_task(inode);
1497 if (!p)
1498 return -ESRCH;
1499 proc_sched_autogroup_show_task(p, m);
1500
1501 put_task_struct(p);
1502
1503 return 0;
1504}
1505
1506static ssize_t
1507sched_autogroup_write(struct file *file, const char __user *buf,
1508 size_t count, loff_t *offset)
1509{
1510 struct inode *inode = file_inode(file);
1511 struct task_struct *p;
1512 char buffer[PROC_NUMBUF];
1513 int nice;
1514 int err;
1515
1516 memset(buffer, 0, sizeof(buffer));
1517 if (count > sizeof(buffer) - 1)
1518 count = sizeof(buffer) - 1;
1519 if (copy_from_user(buffer, buf, count))
1520 return -EFAULT;
1521
1522 err = kstrtoint(strstrip(buffer), 0, &nice);
1523 if (err < 0)
1524 return err;
1525
1526 p = get_proc_task(inode);
1527 if (!p)
1528 return -ESRCH;
1529
1530 err = proc_sched_autogroup_set_nice(p, nice);
1531 if (err)
1532 count = err;
1533
1534 put_task_struct(p);
1535
1536 return count;
1537}
1538
1539static int sched_autogroup_open(struct inode *inode, struct file *filp)
1540{
1541 int ret;
1542
1543 ret = single_open(filp, sched_autogroup_show, NULL);
1544 if (!ret) {
1545 struct seq_file *m = filp->private_data;
1546
1547 m->private = inode;
1548 }
1549 return ret;
1550}
1551
1552static const struct file_operations proc_pid_sched_autogroup_operations = {
1553 .open = sched_autogroup_open,
1554 .read = seq_read,
1555 .write = sched_autogroup_write,
1556 .llseek = seq_lseek,
1557 .release = single_release,
1558};
1559
1560#endif /* CONFIG_SCHED_AUTOGROUP */
1561
1562#ifdef CONFIG_TIME_NS
1563static int timens_offsets_show(struct seq_file *m, void *v)
1564{
1565 struct task_struct *p;
1566
1567 p = get_proc_task(file_inode(m->file));
1568 if (!p)
1569 return -ESRCH;
1570 proc_timens_show_offsets(p, m);
1571
1572 put_task_struct(p);
1573
1574 return 0;
1575}
1576
1577static ssize_t timens_offsets_write(struct file *file, const char __user *buf,
1578 size_t count, loff_t *ppos)
1579{
1580 struct inode *inode = file_inode(file);
1581 struct proc_timens_offset offsets[2];
1582 char *kbuf = NULL, *pos, *next_line;
1583 struct task_struct *p;
1584 int ret, noffsets;
1585
1586 /* Only allow < page size writes at the beginning of the file */
1587 if ((*ppos != 0) || (count >= PAGE_SIZE))
1588 return -EINVAL;
1589
1590 /* Slurp in the user data */
1591 kbuf = memdup_user_nul(buf, count);
1592 if (IS_ERR(kbuf))
1593 return PTR_ERR(kbuf);
1594
1595 /* Parse the user data */
1596 ret = -EINVAL;
1597 noffsets = 0;
1598 for (pos = kbuf; pos; pos = next_line) {
1599 struct proc_timens_offset *off = &offsets[noffsets];
1600 char clock[10];
1601 int err;
1602
1603 /* Find the end of line and ensure we don't look past it */
1604 next_line = strchr(pos, '\n');
1605 if (next_line) {
1606 *next_line = '\0';
1607 next_line++;
1608 if (*next_line == '\0')
1609 next_line = NULL;
1610 }
1611
1612 err = sscanf(pos, "%9s %lld %lu", clock,
1613 &off->val.tv_sec, &off->val.tv_nsec);
1614 if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC)
1615 goto out;
1616
1617 clock[sizeof(clock) - 1] = 0;
1618 if (strcmp(clock, "monotonic") == 0 ||
1619 strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0)
1620 off->clockid = CLOCK_MONOTONIC;
1621 else if (strcmp(clock, "boottime") == 0 ||
1622 strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0)
1623 off->clockid = CLOCK_BOOTTIME;
1624 else
1625 goto out;
1626
1627 noffsets++;
1628 if (noffsets == ARRAY_SIZE(offsets)) {
1629 if (next_line)
1630 count = next_line - kbuf;
1631 break;
1632 }
1633 }
1634
1635 ret = -ESRCH;
1636 p = get_proc_task(inode);
1637 if (!p)
1638 goto out;
1639 ret = proc_timens_set_offset(file, p, offsets, noffsets);
1640 put_task_struct(p);
1641 if (ret)
1642 goto out;
1643
1644 ret = count;
1645out:
1646 kfree(kbuf);
1647 return ret;
1648}
1649
1650static int timens_offsets_open(struct inode *inode, struct file *filp)
1651{
1652 return single_open(filp, timens_offsets_show, inode);
1653}
1654
1655static const struct file_operations proc_timens_offsets_operations = {
1656 .open = timens_offsets_open,
1657 .read = seq_read,
1658 .write = timens_offsets_write,
1659 .llseek = seq_lseek,
1660 .release = single_release,
1661};
1662#endif /* CONFIG_TIME_NS */
1663
1664static ssize_t comm_write(struct file *file, const char __user *buf,
1665 size_t count, loff_t *offset)
1666{
1667 struct inode *inode = file_inode(file);
1668 struct task_struct *p;
1669 char buffer[TASK_COMM_LEN];
1670 const size_t maxlen = sizeof(buffer) - 1;
1671
1672 memset(buffer, 0, sizeof(buffer));
1673 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1674 return -EFAULT;
1675
1676 p = get_proc_task(inode);
1677 if (!p)
1678 return -ESRCH;
1679
1680 if (same_thread_group(current, p)) {
1681 set_task_comm(p, buffer);
1682 proc_comm_connector(p);
1683 }
1684 else
1685 count = -EINVAL;
1686
1687 put_task_struct(p);
1688
1689 return count;
1690}
1691
1692static int comm_show(struct seq_file *m, void *v)
1693{
1694 struct inode *inode = m->private;
1695 struct task_struct *p;
1696
1697 p = get_proc_task(inode);
1698 if (!p)
1699 return -ESRCH;
1700
1701 proc_task_name(m, p, false);
1702 seq_putc(m, '\n');
1703
1704 put_task_struct(p);
1705
1706 return 0;
1707}
1708
1709static int comm_open(struct inode *inode, struct file *filp)
1710{
1711 return single_open(filp, comm_show, inode);
1712}
1713
1714static const struct file_operations proc_pid_set_comm_operations = {
1715 .open = comm_open,
1716 .read = seq_read,
1717 .write = comm_write,
1718 .llseek = seq_lseek,
1719 .release = single_release,
1720};
1721
1722static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1723{
1724 struct task_struct *task;
1725 struct file *exe_file;
1726
1727 task = get_proc_task(d_inode(dentry));
1728 if (!task)
1729 return -ENOENT;
1730 exe_file = get_task_exe_file(task);
1731 put_task_struct(task);
1732 if (exe_file) {
1733 *exe_path = exe_file->f_path;
1734 path_get(&exe_file->f_path);
1735 fput(exe_file);
1736 return 0;
1737 } else
1738 return -ENOENT;
1739}
1740
1741static const char *proc_pid_get_link(struct dentry *dentry,
1742 struct inode *inode,
1743 struct delayed_call *done)
1744{
1745 struct path path;
1746 int error = -EACCES;
1747
1748 if (!dentry)
1749 return ERR_PTR(-ECHILD);
1750
1751 /* Are we allowed to snoop on the tasks file descriptors? */
1752 if (!proc_fd_access_allowed(inode))
1753 goto out;
1754
1755 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1756 if (error)
1757 goto out;
1758
1759 error = nd_jump_link(&path);
1760out:
1761 return ERR_PTR(error);
1762}
1763
1764static int do_proc_readlink(const struct path *path, char __user *buffer, int buflen)
1765{
1766 char *tmp = kmalloc(PATH_MAX, GFP_KERNEL);
1767 char *pathname;
1768 int len;
1769
1770 if (!tmp)
1771 return -ENOMEM;
1772
1773 pathname = d_path(path, tmp, PATH_MAX);
1774 len = PTR_ERR(pathname);
1775 if (IS_ERR(pathname))
1776 goto out;
1777 len = tmp + PATH_MAX - 1 - pathname;
1778
1779 if (len > buflen)
1780 len = buflen;
1781 if (copy_to_user(buffer, pathname, len))
1782 len = -EFAULT;
1783 out:
1784 kfree(tmp);
1785 return len;
1786}
1787
1788static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1789{
1790 int error = -EACCES;
1791 struct inode *inode = d_inode(dentry);
1792 struct path path;
1793
1794 /* Are we allowed to snoop on the tasks file descriptors? */
1795 if (!proc_fd_access_allowed(inode))
1796 goto out;
1797
1798 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1799 if (error)
1800 goto out;
1801
1802 error = do_proc_readlink(&path, buffer, buflen);
1803 path_put(&path);
1804out:
1805 return error;
1806}
1807
1808const struct inode_operations proc_pid_link_inode_operations = {
1809 .readlink = proc_pid_readlink,
1810 .get_link = proc_pid_get_link,
1811 .setattr = proc_setattr,
1812};
1813
1814
1815/* building an inode */
1816
1817void task_dump_owner(struct task_struct *task, umode_t mode,
1818 kuid_t *ruid, kgid_t *rgid)
1819{
1820 /* Depending on the state of dumpable compute who should own a
1821 * proc file for a task.
1822 */
1823 const struct cred *cred;
1824 kuid_t uid;
1825 kgid_t gid;
1826
1827 if (unlikely(task->flags & PF_KTHREAD)) {
1828 *ruid = GLOBAL_ROOT_UID;
1829 *rgid = GLOBAL_ROOT_GID;
1830 return;
1831 }
1832
1833 /* Default to the tasks effective ownership */
1834 rcu_read_lock();
1835 cred = __task_cred(task);
1836 uid = cred->euid;
1837 gid = cred->egid;
1838 rcu_read_unlock();
1839
1840 /*
1841 * Before the /proc/pid/status file was created the only way to read
1842 * the effective uid of a /process was to stat /proc/pid. Reading
1843 * /proc/pid/status is slow enough that procps and other packages
1844 * kept stating /proc/pid. To keep the rules in /proc simple I have
1845 * made this apply to all per process world readable and executable
1846 * directories.
1847 */
1848 if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1849 struct mm_struct *mm;
1850 task_lock(task);
1851 mm = task->mm;
1852 /* Make non-dumpable tasks owned by some root */
1853 if (mm) {
1854 if (get_dumpable(mm) != SUID_DUMP_USER) {
1855 struct user_namespace *user_ns = mm->user_ns;
1856
1857 uid = make_kuid(user_ns, 0);
1858 if (!uid_valid(uid))
1859 uid = GLOBAL_ROOT_UID;
1860
1861 gid = make_kgid(user_ns, 0);
1862 if (!gid_valid(gid))
1863 gid = GLOBAL_ROOT_GID;
1864 }
1865 } else {
1866 uid = GLOBAL_ROOT_UID;
1867 gid = GLOBAL_ROOT_GID;
1868 }
1869 task_unlock(task);
1870 }
1871 *ruid = uid;
1872 *rgid = gid;
1873}
1874
1875void proc_pid_evict_inode(struct proc_inode *ei)
1876{
1877 struct pid *pid = ei->pid;
1878
1879 if (S_ISDIR(ei->vfs_inode.i_mode)) {
1880 spin_lock(&pid->lock);
1881 hlist_del_init_rcu(&ei->sibling_inodes);
1882 spin_unlock(&pid->lock);
1883 }
1884
1885 put_pid(pid);
1886}
1887
1888struct inode *proc_pid_make_inode(struct super_block *sb,
1889 struct task_struct *task, umode_t mode)
1890{
1891 struct inode * inode;
1892 struct proc_inode *ei;
1893 struct pid *pid;
1894
1895 /* We need a new inode */
1896
1897 inode = new_inode(sb);
1898 if (!inode)
1899 goto out;
1900
1901 /* Common stuff */
1902 ei = PROC_I(inode);
1903 inode->i_mode = mode;
1904 inode->i_ino = get_next_ino();
1905 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1906 inode->i_op = &proc_def_inode_operations;
1907
1908 /*
1909 * grab the reference to task.
1910 */
1911 pid = get_task_pid(task, PIDTYPE_PID);
1912 if (!pid)
1913 goto out_unlock;
1914
1915 /* Let the pid remember us for quick removal */
1916 ei->pid = pid;
1917
1918 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1919 security_task_to_inode(task, inode);
1920
1921out:
1922 return inode;
1923
1924out_unlock:
1925 iput(inode);
1926 return NULL;
1927}
1928
1929/*
1930 * Generating an inode and adding it into @pid->inodes, so that task will
1931 * invalidate inode's dentry before being released.
1932 *
1933 * This helper is used for creating dir-type entries under '/proc' and
1934 * '/proc/<tgid>/task'. Other entries(eg. fd, stat) under '/proc/<tgid>'
1935 * can be released by invalidating '/proc/<tgid>' dentry.
1936 * In theory, dentries under '/proc/<tgid>/task' can also be released by
1937 * invalidating '/proc/<tgid>' dentry, we reserve it to handle single
1938 * thread exiting situation: Any one of threads should invalidate its
1939 * '/proc/<tgid>/task/<pid>' dentry before released.
1940 */
1941static struct inode *proc_pid_make_base_inode(struct super_block *sb,
1942 struct task_struct *task, umode_t mode)
1943{
1944 struct inode *inode;
1945 struct proc_inode *ei;
1946 struct pid *pid;
1947
1948 inode = proc_pid_make_inode(sb, task, mode);
1949 if (!inode)
1950 return NULL;
1951
1952 /* Let proc_flush_pid find this directory inode */
1953 ei = PROC_I(inode);
1954 pid = ei->pid;
1955 spin_lock(&pid->lock);
1956 hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes);
1957 spin_unlock(&pid->lock);
1958
1959 return inode;
1960}
1961
1962int pid_getattr(struct user_namespace *mnt_userns, const struct path *path,
1963 struct kstat *stat, u32 request_mask, unsigned int query_flags)
1964{
1965 struct inode *inode = d_inode(path->dentry);
1966 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
1967 struct task_struct *task;
1968
1969 generic_fillattr(&init_user_ns, inode, stat);
1970
1971 stat->uid = GLOBAL_ROOT_UID;
1972 stat->gid = GLOBAL_ROOT_GID;
1973 rcu_read_lock();
1974 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1975 if (task) {
1976 if (!has_pid_permissions(fs_info, task, HIDEPID_INVISIBLE)) {
1977 rcu_read_unlock();
1978 /*
1979 * This doesn't prevent learning whether PID exists,
1980 * it only makes getattr() consistent with readdir().
1981 */
1982 return -ENOENT;
1983 }
1984 task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
1985 }
1986 rcu_read_unlock();
1987 return 0;
1988}
1989
1990/* dentry stuff */
1991
1992/*
1993 * Set <pid>/... inode ownership (can change due to setuid(), etc.)
1994 */
1995void pid_update_inode(struct task_struct *task, struct inode *inode)
1996{
1997 task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1998
1999 inode->i_mode &= ~(S_ISUID | S_ISGID);
2000 security_task_to_inode(task, inode);
2001}
2002
2003/*
2004 * Rewrite the inode's ownerships here because the owning task may have
2005 * performed a setuid(), etc.
2006 *
2007 */
2008static int pid_revalidate(struct dentry *dentry, unsigned int flags)
2009{
2010 struct inode *inode;
2011 struct task_struct *task;
2012 int ret = 0;
2013
2014 rcu_read_lock();
2015 inode = d_inode_rcu(dentry);
2016 if (!inode)
2017 goto out;
2018 task = pid_task(proc_pid(inode), PIDTYPE_PID);
2019
2020 if (task) {
2021 pid_update_inode(task, inode);
2022 ret = 1;
2023 }
2024out:
2025 rcu_read_unlock();
2026 return ret;
2027}
2028
2029static inline bool proc_inode_is_dead(struct inode *inode)
2030{
2031 return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
2032}
2033
2034int pid_delete_dentry(const struct dentry *dentry)
2035{
2036 /* Is the task we represent dead?
2037 * If so, then don't put the dentry on the lru list,
2038 * kill it immediately.
2039 */
2040 return proc_inode_is_dead(d_inode(dentry));
2041}
2042
2043const struct dentry_operations pid_dentry_operations =
2044{
2045 .d_revalidate = pid_revalidate,
2046 .d_delete = pid_delete_dentry,
2047};
2048
2049/* Lookups */
2050
2051/*
2052 * Fill a directory entry.
2053 *
2054 * If possible create the dcache entry and derive our inode number and
2055 * file type from dcache entry.
2056 *
2057 * Since all of the proc inode numbers are dynamically generated, the inode
2058 * numbers do not exist until the inode is cache. This means creating
2059 * the dcache entry in readdir is necessary to keep the inode numbers
2060 * reported by readdir in sync with the inode numbers reported
2061 * by stat.
2062 */
2063bool proc_fill_cache(struct file *file, struct dir_context *ctx,
2064 const char *name, unsigned int len,
2065 instantiate_t instantiate, struct task_struct *task, const void *ptr)
2066{
2067 struct dentry *child, *dir = file->f_path.dentry;
2068 struct qstr qname = QSTR_INIT(name, len);
2069 struct inode *inode;
2070 unsigned type = DT_UNKNOWN;
2071 ino_t ino = 1;
2072
2073 child = d_hash_and_lookup(dir, &qname);
2074 if (!child) {
2075 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2076 child = d_alloc_parallel(dir, &qname, &wq);
2077 if (IS_ERR(child))
2078 goto end_instantiate;
2079 if (d_in_lookup(child)) {
2080 struct dentry *res;
2081 res = instantiate(child, task, ptr);
2082 d_lookup_done(child);
2083 if (unlikely(res)) {
2084 dput(child);
2085 child = res;
2086 if (IS_ERR(child))
2087 goto end_instantiate;
2088 }
2089 }
2090 }
2091 inode = d_inode(child);
2092 ino = inode->i_ino;
2093 type = inode->i_mode >> 12;
2094 dput(child);
2095end_instantiate:
2096 return dir_emit(ctx, name, len, ino, type);
2097}
2098
2099/*
2100 * dname_to_vma_addr - maps a dentry name into two unsigned longs
2101 * which represent vma start and end addresses.
2102 */
2103static int dname_to_vma_addr(struct dentry *dentry,
2104 unsigned long *start, unsigned long *end)
2105{
2106 const char *str = dentry->d_name.name;
2107 unsigned long long sval, eval;
2108 unsigned int len;
2109
2110 if (str[0] == '0' && str[1] != '-')
2111 return -EINVAL;
2112 len = _parse_integer(str, 16, &sval);
2113 if (len & KSTRTOX_OVERFLOW)
2114 return -EINVAL;
2115 if (sval != (unsigned long)sval)
2116 return -EINVAL;
2117 str += len;
2118
2119 if (*str != '-')
2120 return -EINVAL;
2121 str++;
2122
2123 if (str[0] == '0' && str[1])
2124 return -EINVAL;
2125 len = _parse_integer(str, 16, &eval);
2126 if (len & KSTRTOX_OVERFLOW)
2127 return -EINVAL;
2128 if (eval != (unsigned long)eval)
2129 return -EINVAL;
2130 str += len;
2131
2132 if (*str != '\0')
2133 return -EINVAL;
2134
2135 *start = sval;
2136 *end = eval;
2137
2138 return 0;
2139}
2140
2141static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
2142{
2143 unsigned long vm_start, vm_end;
2144 bool exact_vma_exists = false;
2145 struct mm_struct *mm = NULL;
2146 struct task_struct *task;
2147 struct inode *inode;
2148 int status = 0;
2149
2150 if (flags & LOOKUP_RCU)
2151 return -ECHILD;
2152
2153 inode = d_inode(dentry);
2154 task = get_proc_task(inode);
2155 if (!task)
2156 goto out_notask;
2157
2158 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
2159 if (IS_ERR_OR_NULL(mm))
2160 goto out;
2161
2162 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
2163 status = mmap_read_lock_killable(mm);
2164 if (!status) {
2165 exact_vma_exists = !!find_exact_vma(mm, vm_start,
2166 vm_end);
2167 mmap_read_unlock(mm);
2168 }
2169 }
2170
2171 mmput(mm);
2172
2173 if (exact_vma_exists) {
2174 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
2175
2176 security_task_to_inode(task, inode);
2177 status = 1;
2178 }
2179
2180out:
2181 put_task_struct(task);
2182
2183out_notask:
2184 return status;
2185}
2186
2187static const struct dentry_operations tid_map_files_dentry_operations = {
2188 .d_revalidate = map_files_d_revalidate,
2189 .d_delete = pid_delete_dentry,
2190};
2191
2192static int map_files_get_link(struct dentry *dentry, struct path *path)
2193{
2194 unsigned long vm_start, vm_end;
2195 struct vm_area_struct *vma;
2196 struct task_struct *task;
2197 struct mm_struct *mm;
2198 int rc;
2199
2200 rc = -ENOENT;
2201 task = get_proc_task(d_inode(dentry));
2202 if (!task)
2203 goto out;
2204
2205 mm = get_task_mm(task);
2206 put_task_struct(task);
2207 if (!mm)
2208 goto out;
2209
2210 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2211 if (rc)
2212 goto out_mmput;
2213
2214 rc = mmap_read_lock_killable(mm);
2215 if (rc)
2216 goto out_mmput;
2217
2218 rc = -ENOENT;
2219 vma = find_exact_vma(mm, vm_start, vm_end);
2220 if (vma && vma->vm_file) {
2221 *path = vma->vm_file->f_path;
2222 path_get(path);
2223 rc = 0;
2224 }
2225 mmap_read_unlock(mm);
2226
2227out_mmput:
2228 mmput(mm);
2229out:
2230 return rc;
2231}
2232
2233struct map_files_info {
2234 unsigned long start;
2235 unsigned long end;
2236 fmode_t mode;
2237};
2238
2239/*
2240 * Only allow CAP_SYS_ADMIN and CAP_CHECKPOINT_RESTORE to follow the links, due
2241 * to concerns about how the symlinks may be used to bypass permissions on
2242 * ancestor directories in the path to the file in question.
2243 */
2244static const char *
2245proc_map_files_get_link(struct dentry *dentry,
2246 struct inode *inode,
2247 struct delayed_call *done)
2248{
2249 if (!checkpoint_restore_ns_capable(&init_user_ns))
2250 return ERR_PTR(-EPERM);
2251
2252 return proc_pid_get_link(dentry, inode, done);
2253}
2254
2255/*
2256 * Identical to proc_pid_link_inode_operations except for get_link()
2257 */
2258static const struct inode_operations proc_map_files_link_inode_operations = {
2259 .readlink = proc_pid_readlink,
2260 .get_link = proc_map_files_get_link,
2261 .setattr = proc_setattr,
2262};
2263
2264static struct dentry *
2265proc_map_files_instantiate(struct dentry *dentry,
2266 struct task_struct *task, const void *ptr)
2267{
2268 fmode_t mode = (fmode_t)(unsigned long)ptr;
2269 struct proc_inode *ei;
2270 struct inode *inode;
2271
2272 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2273 ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2274 ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2275 if (!inode)
2276 return ERR_PTR(-ENOENT);
2277
2278 ei = PROC_I(inode);
2279 ei->op.proc_get_link = map_files_get_link;
2280
2281 inode->i_op = &proc_map_files_link_inode_operations;
2282 inode->i_size = 64;
2283
2284 d_set_d_op(dentry, &tid_map_files_dentry_operations);
2285 return d_splice_alias(inode, dentry);
2286}
2287
2288static struct dentry *proc_map_files_lookup(struct inode *dir,
2289 struct dentry *dentry, unsigned int flags)
2290{
2291 unsigned long vm_start, vm_end;
2292 struct vm_area_struct *vma;
2293 struct task_struct *task;
2294 struct dentry *result;
2295 struct mm_struct *mm;
2296
2297 result = ERR_PTR(-ENOENT);
2298 task = get_proc_task(dir);
2299 if (!task)
2300 goto out;
2301
2302 result = ERR_PTR(-EACCES);
2303 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2304 goto out_put_task;
2305
2306 result = ERR_PTR(-ENOENT);
2307 if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2308 goto out_put_task;
2309
2310 mm = get_task_mm(task);
2311 if (!mm)
2312 goto out_put_task;
2313
2314 result = ERR_PTR(-EINTR);
2315 if (mmap_read_lock_killable(mm))
2316 goto out_put_mm;
2317
2318 result = ERR_PTR(-ENOENT);
2319 vma = find_exact_vma(mm, vm_start, vm_end);
2320 if (!vma)
2321 goto out_no_vma;
2322
2323 if (vma->vm_file)
2324 result = proc_map_files_instantiate(dentry, task,
2325 (void *)(unsigned long)vma->vm_file->f_mode);
2326
2327out_no_vma:
2328 mmap_read_unlock(mm);
2329out_put_mm:
2330 mmput(mm);
2331out_put_task:
2332 put_task_struct(task);
2333out:
2334 return result;
2335}
2336
2337static const struct inode_operations proc_map_files_inode_operations = {
2338 .lookup = proc_map_files_lookup,
2339 .permission = proc_fd_permission,
2340 .setattr = proc_setattr,
2341};
2342
2343static int
2344proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2345{
2346 struct vm_area_struct *vma;
2347 struct task_struct *task;
2348 struct mm_struct *mm;
2349 unsigned long nr_files, pos, i;
2350 GENRADIX(struct map_files_info) fa;
2351 struct map_files_info *p;
2352 int ret;
2353 struct vma_iterator vmi;
2354
2355 genradix_init(&fa);
2356
2357 ret = -ENOENT;
2358 task = get_proc_task(file_inode(file));
2359 if (!task)
2360 goto out;
2361
2362 ret = -EACCES;
2363 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2364 goto out_put_task;
2365
2366 ret = 0;
2367 if (!dir_emit_dots(file, ctx))
2368 goto out_put_task;
2369
2370 mm = get_task_mm(task);
2371 if (!mm)
2372 goto out_put_task;
2373
2374 ret = mmap_read_lock_killable(mm);
2375 if (ret) {
2376 mmput(mm);
2377 goto out_put_task;
2378 }
2379
2380 nr_files = 0;
2381
2382 /*
2383 * We need two passes here:
2384 *
2385 * 1) Collect vmas of mapped files with mmap_lock taken
2386 * 2) Release mmap_lock and instantiate entries
2387 *
2388 * otherwise we get lockdep complained, since filldir()
2389 * routine might require mmap_lock taken in might_fault().
2390 */
2391
2392 pos = 2;
2393 vma_iter_init(&vmi, mm, 0);
2394 for_each_vma(vmi, vma) {
2395 if (!vma->vm_file)
2396 continue;
2397 if (++pos <= ctx->pos)
2398 continue;
2399
2400 p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL);
2401 if (!p) {
2402 ret = -ENOMEM;
2403 mmap_read_unlock(mm);
2404 mmput(mm);
2405 goto out_put_task;
2406 }
2407
2408 p->start = vma->vm_start;
2409 p->end = vma->vm_end;
2410 p->mode = vma->vm_file->f_mode;
2411 }
2412 mmap_read_unlock(mm);
2413 mmput(mm);
2414
2415 for (i = 0; i < nr_files; i++) {
2416 char buf[4 * sizeof(long) + 2]; /* max: %lx-%lx\0 */
2417 unsigned int len;
2418
2419 p = genradix_ptr(&fa, i);
2420 len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2421 if (!proc_fill_cache(file, ctx,
2422 buf, len,
2423 proc_map_files_instantiate,
2424 task,
2425 (void *)(unsigned long)p->mode))
2426 break;
2427 ctx->pos++;
2428 }
2429
2430out_put_task:
2431 put_task_struct(task);
2432out:
2433 genradix_free(&fa);
2434 return ret;
2435}
2436
2437static const struct file_operations proc_map_files_operations = {
2438 .read = generic_read_dir,
2439 .iterate_shared = proc_map_files_readdir,
2440 .llseek = generic_file_llseek,
2441};
2442
2443#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2444struct timers_private {
2445 struct pid *pid;
2446 struct task_struct *task;
2447 struct sighand_struct *sighand;
2448 struct pid_namespace *ns;
2449 unsigned long flags;
2450};
2451
2452static void *timers_start(struct seq_file *m, loff_t *pos)
2453{
2454 struct timers_private *tp = m->private;
2455
2456 tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2457 if (!tp->task)
2458 return ERR_PTR(-ESRCH);
2459
2460 tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2461 if (!tp->sighand)
2462 return ERR_PTR(-ESRCH);
2463
2464 return seq_list_start(&tp->task->signal->posix_timers, *pos);
2465}
2466
2467static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2468{
2469 struct timers_private *tp = m->private;
2470 return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2471}
2472
2473static void timers_stop(struct seq_file *m, void *v)
2474{
2475 struct timers_private *tp = m->private;
2476
2477 if (tp->sighand) {
2478 unlock_task_sighand(tp->task, &tp->flags);
2479 tp->sighand = NULL;
2480 }
2481
2482 if (tp->task) {
2483 put_task_struct(tp->task);
2484 tp->task = NULL;
2485 }
2486}
2487
2488static int show_timer(struct seq_file *m, void *v)
2489{
2490 struct k_itimer *timer;
2491 struct timers_private *tp = m->private;
2492 int notify;
2493 static const char * const nstr[] = {
2494 [SIGEV_SIGNAL] = "signal",
2495 [SIGEV_NONE] = "none",
2496 [SIGEV_THREAD] = "thread",
2497 };
2498
2499 timer = list_entry((struct list_head *)v, struct k_itimer, list);
2500 notify = timer->it_sigev_notify;
2501
2502 seq_printf(m, "ID: %d\n", timer->it_id);
2503 seq_printf(m, "signal: %d/%px\n",
2504 timer->sigq->info.si_signo,
2505 timer->sigq->info.si_value.sival_ptr);
2506 seq_printf(m, "notify: %s/%s.%d\n",
2507 nstr[notify & ~SIGEV_THREAD_ID],
2508 (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2509 pid_nr_ns(timer->it_pid, tp->ns));
2510 seq_printf(m, "ClockID: %d\n", timer->it_clock);
2511
2512 return 0;
2513}
2514
2515static const struct seq_operations proc_timers_seq_ops = {
2516 .start = timers_start,
2517 .next = timers_next,
2518 .stop = timers_stop,
2519 .show = show_timer,
2520};
2521
2522static int proc_timers_open(struct inode *inode, struct file *file)
2523{
2524 struct timers_private *tp;
2525
2526 tp = __seq_open_private(file, &proc_timers_seq_ops,
2527 sizeof(struct timers_private));
2528 if (!tp)
2529 return -ENOMEM;
2530
2531 tp->pid = proc_pid(inode);
2532 tp->ns = proc_pid_ns(inode->i_sb);
2533 return 0;
2534}
2535
2536static const struct file_operations proc_timers_operations = {
2537 .open = proc_timers_open,
2538 .read = seq_read,
2539 .llseek = seq_lseek,
2540 .release = seq_release_private,
2541};
2542#endif
2543
2544static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2545 size_t count, loff_t *offset)
2546{
2547 struct inode *inode = file_inode(file);
2548 struct task_struct *p;
2549 u64 slack_ns;
2550 int err;
2551
2552 err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2553 if (err < 0)
2554 return err;
2555
2556 p = get_proc_task(inode);
2557 if (!p)
2558 return -ESRCH;
2559
2560 if (p != current) {
2561 rcu_read_lock();
2562 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2563 rcu_read_unlock();
2564 count = -EPERM;
2565 goto out;
2566 }
2567 rcu_read_unlock();
2568
2569 err = security_task_setscheduler(p);
2570 if (err) {
2571 count = err;
2572 goto out;
2573 }
2574 }
2575
2576 task_lock(p);
2577 if (slack_ns == 0)
2578 p->timer_slack_ns = p->default_timer_slack_ns;
2579 else
2580 p->timer_slack_ns = slack_ns;
2581 task_unlock(p);
2582
2583out:
2584 put_task_struct(p);
2585
2586 return count;
2587}
2588
2589static int timerslack_ns_show(struct seq_file *m, void *v)
2590{
2591 struct inode *inode = m->private;
2592 struct task_struct *p;
2593 int err = 0;
2594
2595 p = get_proc_task(inode);
2596 if (!p)
2597 return -ESRCH;
2598
2599 if (p != current) {
2600 rcu_read_lock();
2601 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2602 rcu_read_unlock();
2603 err = -EPERM;
2604 goto out;
2605 }
2606 rcu_read_unlock();
2607
2608 err = security_task_getscheduler(p);
2609 if (err)
2610 goto out;
2611 }
2612
2613 task_lock(p);
2614 seq_printf(m, "%llu\n", p->timer_slack_ns);
2615 task_unlock(p);
2616
2617out:
2618 put_task_struct(p);
2619
2620 return err;
2621}
2622
2623static int timerslack_ns_open(struct inode *inode, struct file *filp)
2624{
2625 return single_open(filp, timerslack_ns_show, inode);
2626}
2627
2628static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2629 .open = timerslack_ns_open,
2630 .read = seq_read,
2631 .write = timerslack_ns_write,
2632 .llseek = seq_lseek,
2633 .release = single_release,
2634};
2635
2636static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2637 struct task_struct *task, const void *ptr)
2638{
2639 const struct pid_entry *p = ptr;
2640 struct inode *inode;
2641 struct proc_inode *ei;
2642
2643 inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2644 if (!inode)
2645 return ERR_PTR(-ENOENT);
2646
2647 ei = PROC_I(inode);
2648 if (S_ISDIR(inode->i_mode))
2649 set_nlink(inode, 2); /* Use getattr to fix if necessary */
2650 if (p->iop)
2651 inode->i_op = p->iop;
2652 if (p->fop)
2653 inode->i_fop = p->fop;
2654 ei->op = p->op;
2655 pid_update_inode(task, inode);
2656 d_set_d_op(dentry, &pid_dentry_operations);
2657 return d_splice_alias(inode, dentry);
2658}
2659
2660static struct dentry *proc_pident_lookup(struct inode *dir,
2661 struct dentry *dentry,
2662 const struct pid_entry *p,
2663 const struct pid_entry *end)
2664{
2665 struct task_struct *task = get_proc_task(dir);
2666 struct dentry *res = ERR_PTR(-ENOENT);
2667
2668 if (!task)
2669 goto out_no_task;
2670
2671 /*
2672 * Yes, it does not scale. And it should not. Don't add
2673 * new entries into /proc/<tgid>/ without very good reasons.
2674 */
2675 for (; p < end; p++) {
2676 if (p->len != dentry->d_name.len)
2677 continue;
2678 if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2679 res = proc_pident_instantiate(dentry, task, p);
2680 break;
2681 }
2682 }
2683 put_task_struct(task);
2684out_no_task:
2685 return res;
2686}
2687
2688static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2689 const struct pid_entry *ents, unsigned int nents)
2690{
2691 struct task_struct *task = get_proc_task(file_inode(file));
2692 const struct pid_entry *p;
2693
2694 if (!task)
2695 return -ENOENT;
2696
2697 if (!dir_emit_dots(file, ctx))
2698 goto out;
2699
2700 if (ctx->pos >= nents + 2)
2701 goto out;
2702
2703 for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2704 if (!proc_fill_cache(file, ctx, p->name, p->len,
2705 proc_pident_instantiate, task, p))
2706 break;
2707 ctx->pos++;
2708 }
2709out:
2710 put_task_struct(task);
2711 return 0;
2712}
2713
2714#ifdef CONFIG_SECURITY
2715static int proc_pid_attr_open(struct inode *inode, struct file *file)
2716{
2717 file->private_data = NULL;
2718 __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
2719 return 0;
2720}
2721
2722static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2723 size_t count, loff_t *ppos)
2724{
2725 struct inode * inode = file_inode(file);
2726 char *p = NULL;
2727 ssize_t length;
2728 struct task_struct *task = get_proc_task(inode);
2729
2730 if (!task)
2731 return -ESRCH;
2732
2733 length = security_getprocattr(task, PROC_I(inode)->op.lsm,
2734 file->f_path.dentry->d_name.name,
2735 &p);
2736 put_task_struct(task);
2737 if (length > 0)
2738 length = simple_read_from_buffer(buf, count, ppos, p, length);
2739 kfree(p);
2740 return length;
2741}
2742
2743static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2744 size_t count, loff_t *ppos)
2745{
2746 struct inode * inode = file_inode(file);
2747 struct task_struct *task;
2748 void *page;
2749 int rv;
2750
2751 /* A task may only write when it was the opener. */
2752 if (file->private_data != current->mm)
2753 return -EPERM;
2754
2755 rcu_read_lock();
2756 task = pid_task(proc_pid(inode), PIDTYPE_PID);
2757 if (!task) {
2758 rcu_read_unlock();
2759 return -ESRCH;
2760 }
2761 /* A task may only write its own attributes. */
2762 if (current != task) {
2763 rcu_read_unlock();
2764 return -EACCES;
2765 }
2766 /* Prevent changes to overridden credentials. */
2767 if (current_cred() != current_real_cred()) {
2768 rcu_read_unlock();
2769 return -EBUSY;
2770 }
2771 rcu_read_unlock();
2772
2773 if (count > PAGE_SIZE)
2774 count = PAGE_SIZE;
2775
2776 /* No partial writes. */
2777 if (*ppos != 0)
2778 return -EINVAL;
2779
2780 page = memdup_user(buf, count);
2781 if (IS_ERR(page)) {
2782 rv = PTR_ERR(page);
2783 goto out;
2784 }
2785
2786 /* Guard against adverse ptrace interaction */
2787 rv = mutex_lock_interruptible(¤t->signal->cred_guard_mutex);
2788 if (rv < 0)
2789 goto out_free;
2790
2791 rv = security_setprocattr(PROC_I(inode)->op.lsm,
2792 file->f_path.dentry->d_name.name, page,
2793 count);
2794 mutex_unlock(¤t->signal->cred_guard_mutex);
2795out_free:
2796 kfree(page);
2797out:
2798 return rv;
2799}
2800
2801static const struct file_operations proc_pid_attr_operations = {
2802 .open = proc_pid_attr_open,
2803 .read = proc_pid_attr_read,
2804 .write = proc_pid_attr_write,
2805 .llseek = generic_file_llseek,
2806 .release = mem_release,
2807};
2808
2809#define LSM_DIR_OPS(LSM) \
2810static int proc_##LSM##_attr_dir_iterate(struct file *filp, \
2811 struct dir_context *ctx) \
2812{ \
2813 return proc_pident_readdir(filp, ctx, \
2814 LSM##_attr_dir_stuff, \
2815 ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2816} \
2817\
2818static const struct file_operations proc_##LSM##_attr_dir_ops = { \
2819 .read = generic_read_dir, \
2820 .iterate = proc_##LSM##_attr_dir_iterate, \
2821 .llseek = default_llseek, \
2822}; \
2823\
2824static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \
2825 struct dentry *dentry, unsigned int flags) \
2826{ \
2827 return proc_pident_lookup(dir, dentry, \
2828 LSM##_attr_dir_stuff, \
2829 LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2830} \
2831\
2832static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \
2833 .lookup = proc_##LSM##_attr_dir_lookup, \
2834 .getattr = pid_getattr, \
2835 .setattr = proc_setattr, \
2836}
2837
2838#ifdef CONFIG_SECURITY_SMACK
2839static const struct pid_entry smack_attr_dir_stuff[] = {
2840 ATTR("smack", "current", 0666),
2841};
2842LSM_DIR_OPS(smack);
2843#endif
2844
2845#ifdef CONFIG_SECURITY_APPARMOR
2846static const struct pid_entry apparmor_attr_dir_stuff[] = {
2847 ATTR("apparmor", "current", 0666),
2848 ATTR("apparmor", "prev", 0444),
2849 ATTR("apparmor", "exec", 0666),
2850};
2851LSM_DIR_OPS(apparmor);
2852#endif
2853
2854static const struct pid_entry attr_dir_stuff[] = {
2855 ATTR(NULL, "current", 0666),
2856 ATTR(NULL, "prev", 0444),
2857 ATTR(NULL, "exec", 0666),
2858 ATTR(NULL, "fscreate", 0666),
2859 ATTR(NULL, "keycreate", 0666),
2860 ATTR(NULL, "sockcreate", 0666),
2861#ifdef CONFIG_SECURITY_SMACK
2862 DIR("smack", 0555,
2863 proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops),
2864#endif
2865#ifdef CONFIG_SECURITY_APPARMOR
2866 DIR("apparmor", 0555,
2867 proc_apparmor_attr_dir_inode_ops, proc_apparmor_attr_dir_ops),
2868#endif
2869};
2870
2871static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2872{
2873 return proc_pident_readdir(file, ctx,
2874 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2875}
2876
2877static const struct file_operations proc_attr_dir_operations = {
2878 .read = generic_read_dir,
2879 .iterate_shared = proc_attr_dir_readdir,
2880 .llseek = generic_file_llseek,
2881};
2882
2883static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2884 struct dentry *dentry, unsigned int flags)
2885{
2886 return proc_pident_lookup(dir, dentry,
2887 attr_dir_stuff,
2888 attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff));
2889}
2890
2891static const struct inode_operations proc_attr_dir_inode_operations = {
2892 .lookup = proc_attr_dir_lookup,
2893 .getattr = pid_getattr,
2894 .setattr = proc_setattr,
2895};
2896
2897#endif
2898
2899#ifdef CONFIG_ELF_CORE
2900static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2901 size_t count, loff_t *ppos)
2902{
2903 struct task_struct *task = get_proc_task(file_inode(file));
2904 struct mm_struct *mm;
2905 char buffer[PROC_NUMBUF];
2906 size_t len;
2907 int ret;
2908
2909 if (!task)
2910 return -ESRCH;
2911
2912 ret = 0;
2913 mm = get_task_mm(task);
2914 if (mm) {
2915 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2916 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2917 MMF_DUMP_FILTER_SHIFT));
2918 mmput(mm);
2919 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2920 }
2921
2922 put_task_struct(task);
2923
2924 return ret;
2925}
2926
2927static ssize_t proc_coredump_filter_write(struct file *file,
2928 const char __user *buf,
2929 size_t count,
2930 loff_t *ppos)
2931{
2932 struct task_struct *task;
2933 struct mm_struct *mm;
2934 unsigned int val;
2935 int ret;
2936 int i;
2937 unsigned long mask;
2938
2939 ret = kstrtouint_from_user(buf, count, 0, &val);
2940 if (ret < 0)
2941 return ret;
2942
2943 ret = -ESRCH;
2944 task = get_proc_task(file_inode(file));
2945 if (!task)
2946 goto out_no_task;
2947
2948 mm = get_task_mm(task);
2949 if (!mm)
2950 goto out_no_mm;
2951 ret = 0;
2952
2953 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2954 if (val & mask)
2955 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2956 else
2957 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2958 }
2959
2960 mmput(mm);
2961 out_no_mm:
2962 put_task_struct(task);
2963 out_no_task:
2964 if (ret < 0)
2965 return ret;
2966 return count;
2967}
2968
2969static const struct file_operations proc_coredump_filter_operations = {
2970 .read = proc_coredump_filter_read,
2971 .write = proc_coredump_filter_write,
2972 .llseek = generic_file_llseek,
2973};
2974#endif
2975
2976#ifdef CONFIG_TASK_IO_ACCOUNTING
2977static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2978{
2979 struct task_io_accounting acct = task->ioac;
2980 unsigned long flags;
2981 int result;
2982
2983 result = down_read_killable(&task->signal->exec_update_lock);
2984 if (result)
2985 return result;
2986
2987 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2988 result = -EACCES;
2989 goto out_unlock;
2990 }
2991
2992 if (whole && lock_task_sighand(task, &flags)) {
2993 struct task_struct *t = task;
2994
2995 task_io_accounting_add(&acct, &task->signal->ioac);
2996 while_each_thread(task, t)
2997 task_io_accounting_add(&acct, &t->ioac);
2998
2999 unlock_task_sighand(task, &flags);
3000 }
3001 seq_printf(m,
3002 "rchar: %llu\n"
3003 "wchar: %llu\n"
3004 "syscr: %llu\n"
3005 "syscw: %llu\n"
3006 "read_bytes: %llu\n"
3007 "write_bytes: %llu\n"
3008 "cancelled_write_bytes: %llu\n",
3009 (unsigned long long)acct.rchar,
3010 (unsigned long long)acct.wchar,
3011 (unsigned long long)acct.syscr,
3012 (unsigned long long)acct.syscw,
3013 (unsigned long long)acct.read_bytes,
3014 (unsigned long long)acct.write_bytes,
3015 (unsigned long long)acct.cancelled_write_bytes);
3016 result = 0;
3017
3018out_unlock:
3019 up_read(&task->signal->exec_update_lock);
3020 return result;
3021}
3022
3023static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
3024 struct pid *pid, struct task_struct *task)
3025{
3026 return do_io_accounting(task, m, 0);
3027}
3028
3029static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
3030 struct pid *pid, struct task_struct *task)
3031{
3032 return do_io_accounting(task, m, 1);
3033}
3034#endif /* CONFIG_TASK_IO_ACCOUNTING */
3035
3036#ifdef CONFIG_USER_NS
3037static int proc_id_map_open(struct inode *inode, struct file *file,
3038 const struct seq_operations *seq_ops)
3039{
3040 struct user_namespace *ns = NULL;
3041 struct task_struct *task;
3042 struct seq_file *seq;
3043 int ret = -EINVAL;
3044
3045 task = get_proc_task(inode);
3046 if (task) {
3047 rcu_read_lock();
3048 ns = get_user_ns(task_cred_xxx(task, user_ns));
3049 rcu_read_unlock();
3050 put_task_struct(task);
3051 }
3052 if (!ns)
3053 goto err;
3054
3055 ret = seq_open(file, seq_ops);
3056 if (ret)
3057 goto err_put_ns;
3058
3059 seq = file->private_data;
3060 seq->private = ns;
3061
3062 return 0;
3063err_put_ns:
3064 put_user_ns(ns);
3065err:
3066 return ret;
3067}
3068
3069static int proc_id_map_release(struct inode *inode, struct file *file)
3070{
3071 struct seq_file *seq = file->private_data;
3072 struct user_namespace *ns = seq->private;
3073 put_user_ns(ns);
3074 return seq_release(inode, file);
3075}
3076
3077static int proc_uid_map_open(struct inode *inode, struct file *file)
3078{
3079 return proc_id_map_open(inode, file, &proc_uid_seq_operations);
3080}
3081
3082static int proc_gid_map_open(struct inode *inode, struct file *file)
3083{
3084 return proc_id_map_open(inode, file, &proc_gid_seq_operations);
3085}
3086
3087static int proc_projid_map_open(struct inode *inode, struct file *file)
3088{
3089 return proc_id_map_open(inode, file, &proc_projid_seq_operations);
3090}
3091
3092static const struct file_operations proc_uid_map_operations = {
3093 .open = proc_uid_map_open,
3094 .write = proc_uid_map_write,
3095 .read = seq_read,
3096 .llseek = seq_lseek,
3097 .release = proc_id_map_release,
3098};
3099
3100static const struct file_operations proc_gid_map_operations = {
3101 .open = proc_gid_map_open,
3102 .write = proc_gid_map_write,
3103 .read = seq_read,
3104 .llseek = seq_lseek,
3105 .release = proc_id_map_release,
3106};
3107
3108static const struct file_operations proc_projid_map_operations = {
3109 .open = proc_projid_map_open,
3110 .write = proc_projid_map_write,
3111 .read = seq_read,
3112 .llseek = seq_lseek,
3113 .release = proc_id_map_release,
3114};
3115
3116static int proc_setgroups_open(struct inode *inode, struct file *file)
3117{
3118 struct user_namespace *ns = NULL;
3119 struct task_struct *task;
3120 int ret;
3121
3122 ret = -ESRCH;
3123 task = get_proc_task(inode);
3124 if (task) {
3125 rcu_read_lock();
3126 ns = get_user_ns(task_cred_xxx(task, user_ns));
3127 rcu_read_unlock();
3128 put_task_struct(task);
3129 }
3130 if (!ns)
3131 goto err;
3132
3133 if (file->f_mode & FMODE_WRITE) {
3134 ret = -EACCES;
3135 if (!ns_capable(ns, CAP_SYS_ADMIN))
3136 goto err_put_ns;
3137 }
3138
3139 ret = single_open(file, &proc_setgroups_show, ns);
3140 if (ret)
3141 goto err_put_ns;
3142
3143 return 0;
3144err_put_ns:
3145 put_user_ns(ns);
3146err:
3147 return ret;
3148}
3149
3150static int proc_setgroups_release(struct inode *inode, struct file *file)
3151{
3152 struct seq_file *seq = file->private_data;
3153 struct user_namespace *ns = seq->private;
3154 int ret = single_release(inode, file);
3155 put_user_ns(ns);
3156 return ret;
3157}
3158
3159static const struct file_operations proc_setgroups_operations = {
3160 .open = proc_setgroups_open,
3161 .write = proc_setgroups_write,
3162 .read = seq_read,
3163 .llseek = seq_lseek,
3164 .release = proc_setgroups_release,
3165};
3166#endif /* CONFIG_USER_NS */
3167
3168static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
3169 struct pid *pid, struct task_struct *task)
3170{
3171 int err = lock_trace(task);
3172 if (!err) {
3173 seq_printf(m, "%08x\n", task->personality);
3174 unlock_trace(task);
3175 }
3176 return err;
3177}
3178
3179#ifdef CONFIG_LIVEPATCH
3180static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
3181 struct pid *pid, struct task_struct *task)
3182{
3183 seq_printf(m, "%d\n", task->patch_state);
3184 return 0;
3185}
3186#endif /* CONFIG_LIVEPATCH */
3187
3188#ifdef CONFIG_KSM
3189static int proc_pid_ksm_merging_pages(struct seq_file *m, struct pid_namespace *ns,
3190 struct pid *pid, struct task_struct *task)
3191{
3192 struct mm_struct *mm;
3193
3194 mm = get_task_mm(task);
3195 if (mm) {
3196 seq_printf(m, "%lu\n", mm->ksm_merging_pages);
3197 mmput(mm);
3198 }
3199
3200 return 0;
3201}
3202static int proc_pid_ksm_stat(struct seq_file *m, struct pid_namespace *ns,
3203 struct pid *pid, struct task_struct *task)
3204{
3205 struct mm_struct *mm;
3206
3207 mm = get_task_mm(task);
3208 if (mm) {
3209 seq_printf(m, "ksm_rmap_items %lu\n", mm->ksm_rmap_items);
3210 mmput(mm);
3211 }
3212
3213 return 0;
3214}
3215#endif /* CONFIG_KSM */
3216
3217#ifdef CONFIG_STACKLEAK_METRICS
3218static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
3219 struct pid *pid, struct task_struct *task)
3220{
3221 unsigned long prev_depth = THREAD_SIZE -
3222 (task->prev_lowest_stack & (THREAD_SIZE - 1));
3223 unsigned long depth = THREAD_SIZE -
3224 (task->lowest_stack & (THREAD_SIZE - 1));
3225
3226 seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
3227 prev_depth, depth);
3228 return 0;
3229}
3230#endif /* CONFIG_STACKLEAK_METRICS */
3231
3232/*
3233 * Thread groups
3234 */
3235static const struct file_operations proc_task_operations;
3236static const struct inode_operations proc_task_inode_operations;
3237
3238static const struct pid_entry tgid_base_stuff[] = {
3239 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
3240 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3241 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
3242 DIR("fdinfo", S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3243 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3244#ifdef CONFIG_NET
3245 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3246#endif
3247 REG("environ", S_IRUSR, proc_environ_operations),
3248 REG("auxv", S_IRUSR, proc_auxv_operations),
3249 ONE("status", S_IRUGO, proc_pid_status),
3250 ONE("personality", S_IRUSR, proc_pid_personality),
3251 ONE("limits", S_IRUGO, proc_pid_limits),
3252#ifdef CONFIG_SCHED_DEBUG
3253 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3254#endif
3255#ifdef CONFIG_SCHED_AUTOGROUP
3256 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3257#endif
3258#ifdef CONFIG_TIME_NS
3259 REG("timens_offsets", S_IRUGO|S_IWUSR, proc_timens_offsets_operations),
3260#endif
3261 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3262#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3263 ONE("syscall", S_IRUSR, proc_pid_syscall),
3264#endif
3265 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
3266 ONE("stat", S_IRUGO, proc_tgid_stat),
3267 ONE("statm", S_IRUGO, proc_pid_statm),
3268 REG("maps", S_IRUGO, proc_pid_maps_operations),
3269#ifdef CONFIG_NUMA
3270 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3271#endif
3272 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3273 LNK("cwd", proc_cwd_link),
3274 LNK("root", proc_root_link),
3275 LNK("exe", proc_exe_link),
3276 REG("mounts", S_IRUGO, proc_mounts_operations),
3277 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3278 REG("mountstats", S_IRUSR, proc_mountstats_operations),
3279#ifdef CONFIG_PROC_PAGE_MONITOR
3280 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3281 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
3282 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3283 REG("pagemap", S_IRUSR, proc_pagemap_operations),
3284#endif
3285#ifdef CONFIG_SECURITY
3286 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3287#endif
3288#ifdef CONFIG_KALLSYMS
3289 ONE("wchan", S_IRUGO, proc_pid_wchan),
3290#endif
3291#ifdef CONFIG_STACKTRACE
3292 ONE("stack", S_IRUSR, proc_pid_stack),
3293#endif
3294#ifdef CONFIG_SCHED_INFO
3295 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3296#endif
3297#ifdef CONFIG_LATENCYTOP
3298 REG("latency", S_IRUGO, proc_lstats_operations),
3299#endif
3300#ifdef CONFIG_PROC_PID_CPUSET
3301 ONE("cpuset", S_IRUGO, proc_cpuset_show),
3302#endif
3303#ifdef CONFIG_CGROUPS
3304 ONE("cgroup", S_IRUGO, proc_cgroup_show),
3305#endif
3306#ifdef CONFIG_PROC_CPU_RESCTRL
3307 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3308#endif
3309 ONE("oom_score", S_IRUGO, proc_oom_score),
3310 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3311 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3312#ifdef CONFIG_AUDIT
3313 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3314 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3315#endif
3316#ifdef CONFIG_FAULT_INJECTION
3317 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3318 REG("fail-nth", 0644, proc_fail_nth_operations),
3319#endif
3320#ifdef CONFIG_ELF_CORE
3321 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3322#endif
3323#ifdef CONFIG_TASK_IO_ACCOUNTING
3324 ONE("io", S_IRUSR, proc_tgid_io_accounting),
3325#endif
3326#ifdef CONFIG_USER_NS
3327 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3328 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3329 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3330 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
3331#endif
3332#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3333 REG("timers", S_IRUGO, proc_timers_operations),
3334#endif
3335 REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3336#ifdef CONFIG_LIVEPATCH
3337 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
3338#endif
3339#ifdef CONFIG_STACKLEAK_METRICS
3340 ONE("stack_depth", S_IRUGO, proc_stack_depth),
3341#endif
3342#ifdef CONFIG_PROC_PID_ARCH_STATUS
3343 ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3344#endif
3345#ifdef CONFIG_SECCOMP_CACHE_DEBUG
3346 ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
3347#endif
3348#ifdef CONFIG_KSM
3349 ONE("ksm_merging_pages", S_IRUSR, proc_pid_ksm_merging_pages),
3350 ONE("ksm_stat", S_IRUSR, proc_pid_ksm_stat),
3351#endif
3352};
3353
3354static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3355{
3356 return proc_pident_readdir(file, ctx,
3357 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3358}
3359
3360static const struct file_operations proc_tgid_base_operations = {
3361 .read = generic_read_dir,
3362 .iterate_shared = proc_tgid_base_readdir,
3363 .llseek = generic_file_llseek,
3364};
3365
3366struct pid *tgid_pidfd_to_pid(const struct file *file)
3367{
3368 if (file->f_op != &proc_tgid_base_operations)
3369 return ERR_PTR(-EBADF);
3370
3371 return proc_pid(file_inode(file));
3372}
3373
3374static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3375{
3376 return proc_pident_lookup(dir, dentry,
3377 tgid_base_stuff,
3378 tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff));
3379}
3380
3381static const struct inode_operations proc_tgid_base_inode_operations = {
3382 .lookup = proc_tgid_base_lookup,
3383 .getattr = pid_getattr,
3384 .setattr = proc_setattr,
3385 .permission = proc_pid_permission,
3386};
3387
3388/**
3389 * proc_flush_pid - Remove dcache entries for @pid from the /proc dcache.
3390 * @pid: pid that should be flushed.
3391 *
3392 * This function walks a list of inodes (that belong to any proc
3393 * filesystem) that are attached to the pid and flushes them from
3394 * the dentry cache.
3395 *
3396 * It is safe and reasonable to cache /proc entries for a task until
3397 * that task exits. After that they just clog up the dcache with
3398 * useless entries, possibly causing useful dcache entries to be
3399 * flushed instead. This routine is provided to flush those useless
3400 * dcache entries when a process is reaped.
3401 *
3402 * NOTE: This routine is just an optimization so it does not guarantee
3403 * that no dcache entries will exist after a process is reaped
3404 * it just makes it very unlikely that any will persist.
3405 */
3406
3407void proc_flush_pid(struct pid *pid)
3408{
3409 proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock);
3410}
3411
3412static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3413 struct task_struct *task, const void *ptr)
3414{
3415 struct inode *inode;
3416
3417 inode = proc_pid_make_base_inode(dentry->d_sb, task,
3418 S_IFDIR | S_IRUGO | S_IXUGO);
3419 if (!inode)
3420 return ERR_PTR(-ENOENT);
3421
3422 inode->i_op = &proc_tgid_base_inode_operations;
3423 inode->i_fop = &proc_tgid_base_operations;
3424 inode->i_flags|=S_IMMUTABLE;
3425
3426 set_nlink(inode, nlink_tgid);
3427 pid_update_inode(task, inode);
3428
3429 d_set_d_op(dentry, &pid_dentry_operations);
3430 return d_splice_alias(inode, dentry);
3431}
3432
3433struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags)
3434{
3435 struct task_struct *task;
3436 unsigned tgid;
3437 struct proc_fs_info *fs_info;
3438 struct pid_namespace *ns;
3439 struct dentry *result = ERR_PTR(-ENOENT);
3440
3441 tgid = name_to_int(&dentry->d_name);
3442 if (tgid == ~0U)
3443 goto out;
3444
3445 fs_info = proc_sb_info(dentry->d_sb);
3446 ns = fs_info->pid_ns;
3447 rcu_read_lock();
3448 task = find_task_by_pid_ns(tgid, ns);
3449 if (task)
3450 get_task_struct(task);
3451 rcu_read_unlock();
3452 if (!task)
3453 goto out;
3454
3455 /* Limit procfs to only ptraceable tasks */
3456 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) {
3457 if (!has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS))
3458 goto out_put_task;
3459 }
3460
3461 result = proc_pid_instantiate(dentry, task, NULL);
3462out_put_task:
3463 put_task_struct(task);
3464out:
3465 return result;
3466}
3467
3468/*
3469 * Find the first task with tgid >= tgid
3470 *
3471 */
3472struct tgid_iter {
3473 unsigned int tgid;
3474 struct task_struct *task;
3475};
3476static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3477{
3478 struct pid *pid;
3479
3480 if (iter.task)
3481 put_task_struct(iter.task);
3482 rcu_read_lock();
3483retry:
3484 iter.task = NULL;
3485 pid = find_ge_pid(iter.tgid, ns);
3486 if (pid) {
3487 iter.tgid = pid_nr_ns(pid, ns);
3488 iter.task = pid_task(pid, PIDTYPE_TGID);
3489 if (!iter.task) {
3490 iter.tgid += 1;
3491 goto retry;
3492 }
3493 get_task_struct(iter.task);
3494 }
3495 rcu_read_unlock();
3496 return iter;
3497}
3498
3499#define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3500
3501/* for the /proc/ directory itself, after non-process stuff has been done */
3502int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3503{
3504 struct tgid_iter iter;
3505 struct proc_fs_info *fs_info = proc_sb_info(file_inode(file)->i_sb);
3506 struct pid_namespace *ns = proc_pid_ns(file_inode(file)->i_sb);
3507 loff_t pos = ctx->pos;
3508
3509 if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3510 return 0;
3511
3512 if (pos == TGID_OFFSET - 2) {
3513 struct inode *inode = d_inode(fs_info->proc_self);
3514 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3515 return 0;
3516 ctx->pos = pos = pos + 1;
3517 }
3518 if (pos == TGID_OFFSET - 1) {
3519 struct inode *inode = d_inode(fs_info->proc_thread_self);
3520 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3521 return 0;
3522 ctx->pos = pos = pos + 1;
3523 }
3524 iter.tgid = pos - TGID_OFFSET;
3525 iter.task = NULL;
3526 for (iter = next_tgid(ns, iter);
3527 iter.task;
3528 iter.tgid += 1, iter = next_tgid(ns, iter)) {
3529 char name[10 + 1];
3530 unsigned int len;
3531
3532 cond_resched();
3533 if (!has_pid_permissions(fs_info, iter.task, HIDEPID_INVISIBLE))
3534 continue;
3535
3536 len = snprintf(name, sizeof(name), "%u", iter.tgid);
3537 ctx->pos = iter.tgid + TGID_OFFSET;
3538 if (!proc_fill_cache(file, ctx, name, len,
3539 proc_pid_instantiate, iter.task, NULL)) {
3540 put_task_struct(iter.task);
3541 return 0;
3542 }
3543 }
3544 ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3545 return 0;
3546}
3547
3548/*
3549 * proc_tid_comm_permission is a special permission function exclusively
3550 * used for the node /proc/<pid>/task/<tid>/comm.
3551 * It bypasses generic permission checks in the case where a task of the same
3552 * task group attempts to access the node.
3553 * The rationale behind this is that glibc and bionic access this node for
3554 * cross thread naming (pthread_set/getname_np(!self)). However, if
3555 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3556 * which locks out the cross thread naming implementation.
3557 * This function makes sure that the node is always accessible for members of
3558 * same thread group.
3559 */
3560static int proc_tid_comm_permission(struct user_namespace *mnt_userns,
3561 struct inode *inode, int mask)
3562{
3563 bool is_same_tgroup;
3564 struct task_struct *task;
3565
3566 task = get_proc_task(inode);
3567 if (!task)
3568 return -ESRCH;
3569 is_same_tgroup = same_thread_group(current, task);
3570 put_task_struct(task);
3571
3572 if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3573 /* This file (/proc/<pid>/task/<tid>/comm) can always be
3574 * read or written by the members of the corresponding
3575 * thread group.
3576 */
3577 return 0;
3578 }
3579
3580 return generic_permission(&init_user_ns, inode, mask);
3581}
3582
3583static const struct inode_operations proc_tid_comm_inode_operations = {
3584 .permission = proc_tid_comm_permission,
3585};
3586
3587/*
3588 * Tasks
3589 */
3590static const struct pid_entry tid_base_stuff[] = {
3591 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3592 DIR("fdinfo", S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3593 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3594#ifdef CONFIG_NET
3595 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3596#endif
3597 REG("environ", S_IRUSR, proc_environ_operations),
3598 REG("auxv", S_IRUSR, proc_auxv_operations),
3599 ONE("status", S_IRUGO, proc_pid_status),
3600 ONE("personality", S_IRUSR, proc_pid_personality),
3601 ONE("limits", S_IRUGO, proc_pid_limits),
3602#ifdef CONFIG_SCHED_DEBUG
3603 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3604#endif
3605 NOD("comm", S_IFREG|S_IRUGO|S_IWUSR,
3606 &proc_tid_comm_inode_operations,
3607 &proc_pid_set_comm_operations, {}),
3608#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3609 ONE("syscall", S_IRUSR, proc_pid_syscall),
3610#endif
3611 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
3612 ONE("stat", S_IRUGO, proc_tid_stat),
3613 ONE("statm", S_IRUGO, proc_pid_statm),
3614 REG("maps", S_IRUGO, proc_pid_maps_operations),
3615#ifdef CONFIG_PROC_CHILDREN
3616 REG("children", S_IRUGO, proc_tid_children_operations),
3617#endif
3618#ifdef CONFIG_NUMA
3619 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3620#endif
3621 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3622 LNK("cwd", proc_cwd_link),
3623 LNK("root", proc_root_link),
3624 LNK("exe", proc_exe_link),
3625 REG("mounts", S_IRUGO, proc_mounts_operations),
3626 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3627#ifdef CONFIG_PROC_PAGE_MONITOR
3628 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3629 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
3630 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3631 REG("pagemap", S_IRUSR, proc_pagemap_operations),
3632#endif
3633#ifdef CONFIG_SECURITY
3634 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3635#endif
3636#ifdef CONFIG_KALLSYMS
3637 ONE("wchan", S_IRUGO, proc_pid_wchan),
3638#endif
3639#ifdef CONFIG_STACKTRACE
3640 ONE("stack", S_IRUSR, proc_pid_stack),
3641#endif
3642#ifdef CONFIG_SCHED_INFO
3643 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3644#endif
3645#ifdef CONFIG_LATENCYTOP
3646 REG("latency", S_IRUGO, proc_lstats_operations),
3647#endif
3648#ifdef CONFIG_PROC_PID_CPUSET
3649 ONE("cpuset", S_IRUGO, proc_cpuset_show),
3650#endif
3651#ifdef CONFIG_CGROUPS
3652 ONE("cgroup", S_IRUGO, proc_cgroup_show),
3653#endif
3654#ifdef CONFIG_PROC_CPU_RESCTRL
3655 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3656#endif
3657 ONE("oom_score", S_IRUGO, proc_oom_score),
3658 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3659 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3660#ifdef CONFIG_AUDIT
3661 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3662 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3663#endif
3664#ifdef CONFIG_FAULT_INJECTION
3665 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3666 REG("fail-nth", 0644, proc_fail_nth_operations),
3667#endif
3668#ifdef CONFIG_TASK_IO_ACCOUNTING
3669 ONE("io", S_IRUSR, proc_tid_io_accounting),
3670#endif
3671#ifdef CONFIG_USER_NS
3672 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3673 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3674 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3675 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
3676#endif
3677#ifdef CONFIG_LIVEPATCH
3678 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
3679#endif
3680#ifdef CONFIG_PROC_PID_ARCH_STATUS
3681 ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3682#endif
3683#ifdef CONFIG_SECCOMP_CACHE_DEBUG
3684 ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
3685#endif
3686#ifdef CONFIG_KSM
3687 ONE("ksm_merging_pages", S_IRUSR, proc_pid_ksm_merging_pages),
3688 ONE("ksm_stat", S_IRUSR, proc_pid_ksm_stat),
3689#endif
3690};
3691
3692static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3693{
3694 return proc_pident_readdir(file, ctx,
3695 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3696}
3697
3698static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3699{
3700 return proc_pident_lookup(dir, dentry,
3701 tid_base_stuff,
3702 tid_base_stuff + ARRAY_SIZE(tid_base_stuff));
3703}
3704
3705static const struct file_operations proc_tid_base_operations = {
3706 .read = generic_read_dir,
3707 .iterate_shared = proc_tid_base_readdir,
3708 .llseek = generic_file_llseek,
3709};
3710
3711static const struct inode_operations proc_tid_base_inode_operations = {
3712 .lookup = proc_tid_base_lookup,
3713 .getattr = pid_getattr,
3714 .setattr = proc_setattr,
3715};
3716
3717static struct dentry *proc_task_instantiate(struct dentry *dentry,
3718 struct task_struct *task, const void *ptr)
3719{
3720 struct inode *inode;
3721 inode = proc_pid_make_base_inode(dentry->d_sb, task,
3722 S_IFDIR | S_IRUGO | S_IXUGO);
3723 if (!inode)
3724 return ERR_PTR(-ENOENT);
3725
3726 inode->i_op = &proc_tid_base_inode_operations;
3727 inode->i_fop = &proc_tid_base_operations;
3728 inode->i_flags |= S_IMMUTABLE;
3729
3730 set_nlink(inode, nlink_tid);
3731 pid_update_inode(task, inode);
3732
3733 d_set_d_op(dentry, &pid_dentry_operations);
3734 return d_splice_alias(inode, dentry);
3735}
3736
3737static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3738{
3739 struct task_struct *task;
3740 struct task_struct *leader = get_proc_task(dir);
3741 unsigned tid;
3742 struct proc_fs_info *fs_info;
3743 struct pid_namespace *ns;
3744 struct dentry *result = ERR_PTR(-ENOENT);
3745
3746 if (!leader)
3747 goto out_no_task;
3748
3749 tid = name_to_int(&dentry->d_name);
3750 if (tid == ~0U)
3751 goto out;
3752
3753 fs_info = proc_sb_info(dentry->d_sb);
3754 ns = fs_info->pid_ns;
3755 rcu_read_lock();
3756 task = find_task_by_pid_ns(tid, ns);
3757 if (task)
3758 get_task_struct(task);
3759 rcu_read_unlock();
3760 if (!task)
3761 goto out;
3762 if (!same_thread_group(leader, task))
3763 goto out_drop_task;
3764
3765 result = proc_task_instantiate(dentry, task, NULL);
3766out_drop_task:
3767 put_task_struct(task);
3768out:
3769 put_task_struct(leader);
3770out_no_task:
3771 return result;
3772}
3773
3774/*
3775 * Find the first tid of a thread group to return to user space.
3776 *
3777 * Usually this is just the thread group leader, but if the users
3778 * buffer was too small or there was a seek into the middle of the
3779 * directory we have more work todo.
3780 *
3781 * In the case of a short read we start with find_task_by_pid.
3782 *
3783 * In the case of a seek we start with the leader and walk nr
3784 * threads past it.
3785 */
3786static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3787 struct pid_namespace *ns)
3788{
3789 struct task_struct *pos, *task;
3790 unsigned long nr = f_pos;
3791
3792 if (nr != f_pos) /* 32bit overflow? */
3793 return NULL;
3794
3795 rcu_read_lock();
3796 task = pid_task(pid, PIDTYPE_PID);
3797 if (!task)
3798 goto fail;
3799
3800 /* Attempt to start with the tid of a thread */
3801 if (tid && nr) {
3802 pos = find_task_by_pid_ns(tid, ns);
3803 if (pos && same_thread_group(pos, task))
3804 goto found;
3805 }
3806
3807 /* If nr exceeds the number of threads there is nothing todo */
3808 if (nr >= get_nr_threads(task))
3809 goto fail;
3810
3811 /* If we haven't found our starting place yet start
3812 * with the leader and walk nr threads forward.
3813 */
3814 pos = task = task->group_leader;
3815 do {
3816 if (!nr--)
3817 goto found;
3818 } while_each_thread(task, pos);
3819fail:
3820 pos = NULL;
3821 goto out;
3822found:
3823 get_task_struct(pos);
3824out:
3825 rcu_read_unlock();
3826 return pos;
3827}
3828
3829/*
3830 * Find the next thread in the thread list.
3831 * Return NULL if there is an error or no next thread.
3832 *
3833 * The reference to the input task_struct is released.
3834 */
3835static struct task_struct *next_tid(struct task_struct *start)
3836{
3837 struct task_struct *pos = NULL;
3838 rcu_read_lock();
3839 if (pid_alive(start)) {
3840 pos = next_thread(start);
3841 if (thread_group_leader(pos))
3842 pos = NULL;
3843 else
3844 get_task_struct(pos);
3845 }
3846 rcu_read_unlock();
3847 put_task_struct(start);
3848 return pos;
3849}
3850
3851/* for the /proc/TGID/task/ directories */
3852static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3853{
3854 struct inode *inode = file_inode(file);
3855 struct task_struct *task;
3856 struct pid_namespace *ns;
3857 int tid;
3858
3859 if (proc_inode_is_dead(inode))
3860 return -ENOENT;
3861
3862 if (!dir_emit_dots(file, ctx))
3863 return 0;
3864
3865 /* f_version caches the tgid value that the last readdir call couldn't
3866 * return. lseek aka telldir automagically resets f_version to 0.
3867 */
3868 ns = proc_pid_ns(inode->i_sb);
3869 tid = (int)file->f_version;
3870 file->f_version = 0;
3871 for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3872 task;
3873 task = next_tid(task), ctx->pos++) {
3874 char name[10 + 1];
3875 unsigned int len;
3876
3877 tid = task_pid_nr_ns(task, ns);
3878 if (!tid)
3879 continue; /* The task has just exited. */
3880 len = snprintf(name, sizeof(name), "%u", tid);
3881 if (!proc_fill_cache(file, ctx, name, len,
3882 proc_task_instantiate, task, NULL)) {
3883 /* returning this tgid failed, save it as the first
3884 * pid for the next readir call */
3885 file->f_version = (u64)tid;
3886 put_task_struct(task);
3887 break;
3888 }
3889 }
3890
3891 return 0;
3892}
3893
3894static int proc_task_getattr(struct user_namespace *mnt_userns,
3895 const struct path *path, struct kstat *stat,
3896 u32 request_mask, unsigned int query_flags)
3897{
3898 struct inode *inode = d_inode(path->dentry);
3899 struct task_struct *p = get_proc_task(inode);
3900 generic_fillattr(&init_user_ns, inode, stat);
3901
3902 if (p) {
3903 stat->nlink += get_nr_threads(p);
3904 put_task_struct(p);
3905 }
3906
3907 return 0;
3908}
3909
3910static const struct inode_operations proc_task_inode_operations = {
3911 .lookup = proc_task_lookup,
3912 .getattr = proc_task_getattr,
3913 .setattr = proc_setattr,
3914 .permission = proc_pid_permission,
3915};
3916
3917static const struct file_operations proc_task_operations = {
3918 .read = generic_read_dir,
3919 .iterate_shared = proc_task_readdir,
3920 .llseek = generic_file_llseek,
3921};
3922
3923void __init set_proc_pid_nlink(void)
3924{
3925 nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3926 nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3927}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/proc/base.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * proc base directory handling functions
8 *
9 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
10 * Instead of using magical inumbers to determine the kind of object
11 * we allocate and fill in-core inodes upon lookup. They don't even
12 * go into icache. We cache the reference to task_struct upon lookup too.
13 * Eventually it should become a filesystem in its own. We don't use the
14 * rest of procfs anymore.
15 *
16 *
17 * Changelog:
18 * 17-Jan-2005
19 * Allan Bezerra
20 * Bruna Moreira <bruna.moreira@indt.org.br>
21 * Edjard Mota <edjard.mota@indt.org.br>
22 * Ilias Biris <ilias.biris@indt.org.br>
23 * Mauricio Lin <mauricio.lin@indt.org.br>
24 *
25 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26 *
27 * A new process specific entry (smaps) included in /proc. It shows the
28 * size of rss for each memory area. The maps entry lacks information
29 * about physical memory size (rss) for each mapped file, i.e.,
30 * rss information for executables and library files.
31 * This additional information is useful for any tools that need to know
32 * about physical memory consumption for a process specific library.
33 *
34 * Changelog:
35 * 21-Feb-2005
36 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
37 * Pud inclusion in the page table walking.
38 *
39 * ChangeLog:
40 * 10-Mar-2005
41 * 10LE Instituto Nokia de Tecnologia - INdT:
42 * A better way to walks through the page table as suggested by Hugh Dickins.
43 *
44 * Simo Piiroinen <simo.piiroinen@nokia.com>:
45 * Smaps information related to shared, private, clean and dirty pages.
46 *
47 * Paul Mundt <paul.mundt@nokia.com>:
48 * Overall revision about smaps.
49 */
50
51#include <linux/uaccess.h>
52
53#include <linux/errno.h>
54#include <linux/time.h>
55#include <linux/proc_fs.h>
56#include <linux/stat.h>
57#include <linux/task_io_accounting_ops.h>
58#include <linux/init.h>
59#include <linux/capability.h>
60#include <linux/file.h>
61#include <linux/generic-radix-tree.h>
62#include <linux/string.h>
63#include <linux/seq_file.h>
64#include <linux/namei.h>
65#include <linux/mnt_namespace.h>
66#include <linux/mm.h>
67#include <linux/swap.h>
68#include <linux/rcupdate.h>
69#include <linux/kallsyms.h>
70#include <linux/stacktrace.h>
71#include <linux/resource.h>
72#include <linux/module.h>
73#include <linux/mount.h>
74#include <linux/security.h>
75#include <linux/ptrace.h>
76#include <linux/printk.h>
77#include <linux/cache.h>
78#include <linux/cgroup.h>
79#include <linux/cpuset.h>
80#include <linux/audit.h>
81#include <linux/poll.h>
82#include <linux/nsproxy.h>
83#include <linux/oom.h>
84#include <linux/elf.h>
85#include <linux/pid_namespace.h>
86#include <linux/user_namespace.h>
87#include <linux/fs_parser.h>
88#include <linux/fs_struct.h>
89#include <linux/slab.h>
90#include <linux/sched/autogroup.h>
91#include <linux/sched/mm.h>
92#include <linux/sched/coredump.h>
93#include <linux/sched/debug.h>
94#include <linux/sched/stat.h>
95#include <linux/posix-timers.h>
96#include <linux/time_namespace.h>
97#include <linux/resctrl.h>
98#include <linux/cn_proc.h>
99#include <linux/ksm.h>
100#include <uapi/linux/lsm.h>
101#include <trace/events/oom.h>
102#include "internal.h"
103#include "fd.h"
104
105#include "../../lib/kstrtox.h"
106
107/* NOTE:
108 * Implementing inode permission operations in /proc is almost
109 * certainly an error. Permission checks need to happen during
110 * each system call not at open time. The reason is that most of
111 * what we wish to check for permissions in /proc varies at runtime.
112 *
113 * The classic example of a problem is opening file descriptors
114 * in /proc for a task before it execs a suid executable.
115 */
116
117static u8 nlink_tid __ro_after_init;
118static u8 nlink_tgid __ro_after_init;
119
120enum proc_mem_force {
121 PROC_MEM_FORCE_ALWAYS,
122 PROC_MEM_FORCE_PTRACE,
123 PROC_MEM_FORCE_NEVER
124};
125
126static enum proc_mem_force proc_mem_force_override __ro_after_init =
127 IS_ENABLED(CONFIG_PROC_MEM_NO_FORCE) ? PROC_MEM_FORCE_NEVER :
128 IS_ENABLED(CONFIG_PROC_MEM_FORCE_PTRACE) ? PROC_MEM_FORCE_PTRACE :
129 PROC_MEM_FORCE_ALWAYS;
130
131static const struct constant_table proc_mem_force_table[] __initconst = {
132 { "always", PROC_MEM_FORCE_ALWAYS },
133 { "ptrace", PROC_MEM_FORCE_PTRACE },
134 { "never", PROC_MEM_FORCE_NEVER },
135 { }
136};
137
138static int __init early_proc_mem_force_override(char *buf)
139{
140 if (!buf)
141 return -EINVAL;
142
143 /*
144 * lookup_constant() defaults to proc_mem_force_override to preseve
145 * the initial Kconfig choice in case an invalid param gets passed.
146 */
147 proc_mem_force_override = lookup_constant(proc_mem_force_table,
148 buf, proc_mem_force_override);
149
150 return 0;
151}
152early_param("proc_mem.force_override", early_proc_mem_force_override);
153
154struct pid_entry {
155 const char *name;
156 unsigned int len;
157 umode_t mode;
158 const struct inode_operations *iop;
159 const struct file_operations *fop;
160 union proc_op op;
161};
162
163#define NOD(NAME, MODE, IOP, FOP, OP) { \
164 .name = (NAME), \
165 .len = sizeof(NAME) - 1, \
166 .mode = MODE, \
167 .iop = IOP, \
168 .fop = FOP, \
169 .op = OP, \
170}
171
172#define DIR(NAME, MODE, iops, fops) \
173 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
174#define LNK(NAME, get_link) \
175 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
176 &proc_pid_link_inode_operations, NULL, \
177 { .proc_get_link = get_link } )
178#define REG(NAME, MODE, fops) \
179 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
180#define ONE(NAME, MODE, show) \
181 NOD(NAME, (S_IFREG|(MODE)), \
182 NULL, &proc_single_file_operations, \
183 { .proc_show = show } )
184#define ATTR(LSMID, NAME, MODE) \
185 NOD(NAME, (S_IFREG|(MODE)), \
186 NULL, &proc_pid_attr_operations, \
187 { .lsmid = LSMID })
188
189/*
190 * Count the number of hardlinks for the pid_entry table, excluding the .
191 * and .. links.
192 */
193static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
194 unsigned int n)
195{
196 unsigned int i;
197 unsigned int count;
198
199 count = 2;
200 for (i = 0; i < n; ++i) {
201 if (S_ISDIR(entries[i].mode))
202 ++count;
203 }
204
205 return count;
206}
207
208static int get_task_root(struct task_struct *task, struct path *root)
209{
210 int result = -ENOENT;
211
212 task_lock(task);
213 if (task->fs) {
214 get_fs_root(task->fs, root);
215 result = 0;
216 }
217 task_unlock(task);
218 return result;
219}
220
221static int proc_cwd_link(struct dentry *dentry, struct path *path)
222{
223 struct task_struct *task = get_proc_task(d_inode(dentry));
224 int result = -ENOENT;
225
226 if (task) {
227 task_lock(task);
228 if (task->fs) {
229 get_fs_pwd(task->fs, path);
230 result = 0;
231 }
232 task_unlock(task);
233 put_task_struct(task);
234 }
235 return result;
236}
237
238static int proc_root_link(struct dentry *dentry, struct path *path)
239{
240 struct task_struct *task = get_proc_task(d_inode(dentry));
241 int result = -ENOENT;
242
243 if (task) {
244 result = get_task_root(task, path);
245 put_task_struct(task);
246 }
247 return result;
248}
249
250/*
251 * If the user used setproctitle(), we just get the string from
252 * user space at arg_start, and limit it to a maximum of one page.
253 */
254static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf,
255 size_t count, unsigned long pos,
256 unsigned long arg_start)
257{
258 char *page;
259 int ret, got;
260
261 if (pos >= PAGE_SIZE)
262 return 0;
263
264 page = (char *)__get_free_page(GFP_KERNEL);
265 if (!page)
266 return -ENOMEM;
267
268 ret = 0;
269 got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON);
270 if (got > 0) {
271 int len = strnlen(page, got);
272
273 /* Include the NUL character if it was found */
274 if (len < got)
275 len++;
276
277 if (len > pos) {
278 len -= pos;
279 if (len > count)
280 len = count;
281 len -= copy_to_user(buf, page+pos, len);
282 if (!len)
283 len = -EFAULT;
284 ret = len;
285 }
286 }
287 free_page((unsigned long)page);
288 return ret;
289}
290
291static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
292 size_t count, loff_t *ppos)
293{
294 unsigned long arg_start, arg_end, env_start, env_end;
295 unsigned long pos, len;
296 char *page, c;
297
298 /* Check if process spawned far enough to have cmdline. */
299 if (!mm->env_end)
300 return 0;
301
302 spin_lock(&mm->arg_lock);
303 arg_start = mm->arg_start;
304 arg_end = mm->arg_end;
305 env_start = mm->env_start;
306 env_end = mm->env_end;
307 spin_unlock(&mm->arg_lock);
308
309 if (arg_start >= arg_end)
310 return 0;
311
312 /*
313 * We allow setproctitle() to overwrite the argument
314 * strings, and overflow past the original end. But
315 * only when it overflows into the environment area.
316 */
317 if (env_start != arg_end || env_end < env_start)
318 env_start = env_end = arg_end;
319 len = env_end - arg_start;
320
321 /* We're not going to care if "*ppos" has high bits set */
322 pos = *ppos;
323 if (pos >= len)
324 return 0;
325 if (count > len - pos)
326 count = len - pos;
327 if (!count)
328 return 0;
329
330 /*
331 * Magical special case: if the argv[] end byte is not
332 * zero, the user has overwritten it with setproctitle(3).
333 *
334 * Possible future enhancement: do this only once when
335 * pos is 0, and set a flag in the 'struct file'.
336 */
337 if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c)
338 return get_mm_proctitle(mm, buf, count, pos, arg_start);
339
340 /*
341 * For the non-setproctitle() case we limit things strictly
342 * to the [arg_start, arg_end[ range.
343 */
344 pos += arg_start;
345 if (pos < arg_start || pos >= arg_end)
346 return 0;
347 if (count > arg_end - pos)
348 count = arg_end - pos;
349
350 page = (char *)__get_free_page(GFP_KERNEL);
351 if (!page)
352 return -ENOMEM;
353
354 len = 0;
355 while (count) {
356 int got;
357 size_t size = min_t(size_t, PAGE_SIZE, count);
358
359 got = access_remote_vm(mm, pos, page, size, FOLL_ANON);
360 if (got <= 0)
361 break;
362 got -= copy_to_user(buf, page, got);
363 if (unlikely(!got)) {
364 if (!len)
365 len = -EFAULT;
366 break;
367 }
368 pos += got;
369 buf += got;
370 len += got;
371 count -= got;
372 }
373
374 free_page((unsigned long)page);
375 return len;
376}
377
378static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
379 size_t count, loff_t *pos)
380{
381 struct mm_struct *mm;
382 ssize_t ret;
383
384 mm = get_task_mm(tsk);
385 if (!mm)
386 return 0;
387
388 ret = get_mm_cmdline(mm, buf, count, pos);
389 mmput(mm);
390 return ret;
391}
392
393static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
394 size_t count, loff_t *pos)
395{
396 struct task_struct *tsk;
397 ssize_t ret;
398
399 BUG_ON(*pos < 0);
400
401 tsk = get_proc_task(file_inode(file));
402 if (!tsk)
403 return -ESRCH;
404 ret = get_task_cmdline(tsk, buf, count, pos);
405 put_task_struct(tsk);
406 if (ret > 0)
407 *pos += ret;
408 return ret;
409}
410
411static const struct file_operations proc_pid_cmdline_ops = {
412 .read = proc_pid_cmdline_read,
413 .llseek = generic_file_llseek,
414};
415
416#ifdef CONFIG_KALLSYMS
417/*
418 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
419 * Returns the resolved symbol. If that fails, simply return the address.
420 */
421static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
422 struct pid *pid, struct task_struct *task)
423{
424 unsigned long wchan;
425 char symname[KSYM_NAME_LEN];
426
427 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
428 goto print0;
429
430 wchan = get_wchan(task);
431 if (wchan && !lookup_symbol_name(wchan, symname)) {
432 seq_puts(m, symname);
433 return 0;
434 }
435
436print0:
437 seq_putc(m, '0');
438 return 0;
439}
440#endif /* CONFIG_KALLSYMS */
441
442static int lock_trace(struct task_struct *task)
443{
444 int err = down_read_killable(&task->signal->exec_update_lock);
445 if (err)
446 return err;
447 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
448 up_read(&task->signal->exec_update_lock);
449 return -EPERM;
450 }
451 return 0;
452}
453
454static void unlock_trace(struct task_struct *task)
455{
456 up_read(&task->signal->exec_update_lock);
457}
458
459#ifdef CONFIG_STACKTRACE
460
461#define MAX_STACK_TRACE_DEPTH 64
462
463static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
464 struct pid *pid, struct task_struct *task)
465{
466 unsigned long *entries;
467 int err;
468
469 /*
470 * The ability to racily run the kernel stack unwinder on a running task
471 * and then observe the unwinder output is scary; while it is useful for
472 * debugging kernel issues, it can also allow an attacker to leak kernel
473 * stack contents.
474 * Doing this in a manner that is at least safe from races would require
475 * some work to ensure that the remote task can not be scheduled; and
476 * even then, this would still expose the unwinder as local attack
477 * surface.
478 * Therefore, this interface is restricted to root.
479 */
480 if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
481 return -EACCES;
482
483 entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
484 GFP_KERNEL);
485 if (!entries)
486 return -ENOMEM;
487
488 err = lock_trace(task);
489 if (!err) {
490 unsigned int i, nr_entries;
491
492 nr_entries = stack_trace_save_tsk(task, entries,
493 MAX_STACK_TRACE_DEPTH, 0);
494
495 for (i = 0; i < nr_entries; i++) {
496 seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
497 }
498
499 unlock_trace(task);
500 }
501 kfree(entries);
502
503 return err;
504}
505#endif
506
507#ifdef CONFIG_SCHED_INFO
508/*
509 * Provides /proc/PID/schedstat
510 */
511static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
512 struct pid *pid, struct task_struct *task)
513{
514 if (unlikely(!sched_info_on()))
515 seq_puts(m, "0 0 0\n");
516 else
517 seq_printf(m, "%llu %llu %lu\n",
518 (unsigned long long)task->se.sum_exec_runtime,
519 (unsigned long long)task->sched_info.run_delay,
520 task->sched_info.pcount);
521
522 return 0;
523}
524#endif
525
526#ifdef CONFIG_LATENCYTOP
527static int lstats_show_proc(struct seq_file *m, void *v)
528{
529 int i;
530 struct inode *inode = m->private;
531 struct task_struct *task = get_proc_task(inode);
532
533 if (!task)
534 return -ESRCH;
535 seq_puts(m, "Latency Top version : v0.1\n");
536 for (i = 0; i < LT_SAVECOUNT; i++) {
537 struct latency_record *lr = &task->latency_record[i];
538 if (lr->backtrace[0]) {
539 int q;
540 seq_printf(m, "%i %li %li",
541 lr->count, lr->time, lr->max);
542 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
543 unsigned long bt = lr->backtrace[q];
544
545 if (!bt)
546 break;
547 seq_printf(m, " %ps", (void *)bt);
548 }
549 seq_putc(m, '\n');
550 }
551
552 }
553 put_task_struct(task);
554 return 0;
555}
556
557static int lstats_open(struct inode *inode, struct file *file)
558{
559 return single_open(file, lstats_show_proc, inode);
560}
561
562static ssize_t lstats_write(struct file *file, const char __user *buf,
563 size_t count, loff_t *offs)
564{
565 struct task_struct *task = get_proc_task(file_inode(file));
566
567 if (!task)
568 return -ESRCH;
569 clear_tsk_latency_tracing(task);
570 put_task_struct(task);
571
572 return count;
573}
574
575static const struct file_operations proc_lstats_operations = {
576 .open = lstats_open,
577 .read = seq_read,
578 .write = lstats_write,
579 .llseek = seq_lseek,
580 .release = single_release,
581};
582
583#endif
584
585static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
586 struct pid *pid, struct task_struct *task)
587{
588 unsigned long totalpages = totalram_pages() + total_swap_pages;
589 unsigned long points = 0;
590 long badness;
591
592 badness = oom_badness(task, totalpages);
593 /*
594 * Special case OOM_SCORE_ADJ_MIN for all others scale the
595 * badness value into [0, 2000] range which we have been
596 * exporting for a long time so userspace might depend on it.
597 */
598 if (badness != LONG_MIN)
599 points = (1000 + badness * 1000 / (long)totalpages) * 2 / 3;
600
601 seq_printf(m, "%lu\n", points);
602
603 return 0;
604}
605
606struct limit_names {
607 const char *name;
608 const char *unit;
609};
610
611static const struct limit_names lnames[RLIM_NLIMITS] = {
612 [RLIMIT_CPU] = {"Max cpu time", "seconds"},
613 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
614 [RLIMIT_DATA] = {"Max data size", "bytes"},
615 [RLIMIT_STACK] = {"Max stack size", "bytes"},
616 [RLIMIT_CORE] = {"Max core file size", "bytes"},
617 [RLIMIT_RSS] = {"Max resident set", "bytes"},
618 [RLIMIT_NPROC] = {"Max processes", "processes"},
619 [RLIMIT_NOFILE] = {"Max open files", "files"},
620 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
621 [RLIMIT_AS] = {"Max address space", "bytes"},
622 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
623 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
624 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
625 [RLIMIT_NICE] = {"Max nice priority", NULL},
626 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
627 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
628};
629
630/* Display limits for a process */
631static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
632 struct pid *pid, struct task_struct *task)
633{
634 unsigned int i;
635 unsigned long flags;
636
637 struct rlimit rlim[RLIM_NLIMITS];
638
639 if (!lock_task_sighand(task, &flags))
640 return 0;
641 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
642 unlock_task_sighand(task, &flags);
643
644 /*
645 * print the file header
646 */
647 seq_puts(m, "Limit "
648 "Soft Limit "
649 "Hard Limit "
650 "Units \n");
651
652 for (i = 0; i < RLIM_NLIMITS; i++) {
653 if (rlim[i].rlim_cur == RLIM_INFINITY)
654 seq_printf(m, "%-25s %-20s ",
655 lnames[i].name, "unlimited");
656 else
657 seq_printf(m, "%-25s %-20lu ",
658 lnames[i].name, rlim[i].rlim_cur);
659
660 if (rlim[i].rlim_max == RLIM_INFINITY)
661 seq_printf(m, "%-20s ", "unlimited");
662 else
663 seq_printf(m, "%-20lu ", rlim[i].rlim_max);
664
665 if (lnames[i].unit)
666 seq_printf(m, "%-10s\n", lnames[i].unit);
667 else
668 seq_putc(m, '\n');
669 }
670
671 return 0;
672}
673
674#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
675static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
676 struct pid *pid, struct task_struct *task)
677{
678 struct syscall_info info;
679 u64 *args = &info.data.args[0];
680 int res;
681
682 res = lock_trace(task);
683 if (res)
684 return res;
685
686 if (task_current_syscall(task, &info))
687 seq_puts(m, "running\n");
688 else if (info.data.nr < 0)
689 seq_printf(m, "%d 0x%llx 0x%llx\n",
690 info.data.nr, info.sp, info.data.instruction_pointer);
691 else
692 seq_printf(m,
693 "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n",
694 info.data.nr,
695 args[0], args[1], args[2], args[3], args[4], args[5],
696 info.sp, info.data.instruction_pointer);
697 unlock_trace(task);
698
699 return 0;
700}
701#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
702
703/************************************************************************/
704/* Here the fs part begins */
705/************************************************************************/
706
707/* permission checks */
708static bool proc_fd_access_allowed(struct inode *inode)
709{
710 struct task_struct *task;
711 bool allowed = false;
712 /* Allow access to a task's file descriptors if it is us or we
713 * may use ptrace attach to the process and find out that
714 * information.
715 */
716 task = get_proc_task(inode);
717 if (task) {
718 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
719 put_task_struct(task);
720 }
721 return allowed;
722}
723
724int proc_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
725 struct iattr *attr)
726{
727 int error;
728 struct inode *inode = d_inode(dentry);
729
730 if (attr->ia_valid & ATTR_MODE)
731 return -EPERM;
732
733 error = setattr_prepare(&nop_mnt_idmap, dentry, attr);
734 if (error)
735 return error;
736
737 setattr_copy(&nop_mnt_idmap, inode, attr);
738 return 0;
739}
740
741/*
742 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
743 * or euid/egid (for hide_pid_min=2)?
744 */
745static bool has_pid_permissions(struct proc_fs_info *fs_info,
746 struct task_struct *task,
747 enum proc_hidepid hide_pid_min)
748{
749 /*
750 * If 'hidpid' mount option is set force a ptrace check,
751 * we indicate that we are using a filesystem syscall
752 * by passing PTRACE_MODE_READ_FSCREDS
753 */
754 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE)
755 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
756
757 if (fs_info->hide_pid < hide_pid_min)
758 return true;
759 if (in_group_p(fs_info->pid_gid))
760 return true;
761 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
762}
763
764
765static int proc_pid_permission(struct mnt_idmap *idmap,
766 struct inode *inode, int mask)
767{
768 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
769 struct task_struct *task;
770 bool has_perms;
771
772 task = get_proc_task(inode);
773 if (!task)
774 return -ESRCH;
775 has_perms = has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS);
776 put_task_struct(task);
777
778 if (!has_perms) {
779 if (fs_info->hide_pid == HIDEPID_INVISIBLE) {
780 /*
781 * Let's make getdents(), stat(), and open()
782 * consistent with each other. If a process
783 * may not stat() a file, it shouldn't be seen
784 * in procfs at all.
785 */
786 return -ENOENT;
787 }
788
789 return -EPERM;
790 }
791 return generic_permission(&nop_mnt_idmap, inode, mask);
792}
793
794
795
796static const struct inode_operations proc_def_inode_operations = {
797 .setattr = proc_setattr,
798};
799
800static int proc_single_show(struct seq_file *m, void *v)
801{
802 struct inode *inode = m->private;
803 struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
804 struct pid *pid = proc_pid(inode);
805 struct task_struct *task;
806 int ret;
807
808 task = get_pid_task(pid, PIDTYPE_PID);
809 if (!task)
810 return -ESRCH;
811
812 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
813
814 put_task_struct(task);
815 return ret;
816}
817
818static int proc_single_open(struct inode *inode, struct file *filp)
819{
820 return single_open(filp, proc_single_show, inode);
821}
822
823static const struct file_operations proc_single_file_operations = {
824 .open = proc_single_open,
825 .read = seq_read,
826 .llseek = seq_lseek,
827 .release = single_release,
828};
829
830
831struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
832{
833 struct task_struct *task = get_proc_task(inode);
834 struct mm_struct *mm;
835
836 if (!task)
837 return ERR_PTR(-ESRCH);
838
839 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
840 put_task_struct(task);
841
842 if (IS_ERR(mm))
843 return mm == ERR_PTR(-ESRCH) ? NULL : mm;
844
845 /* ensure this mm_struct can't be freed */
846 mmgrab(mm);
847 /* but do not pin its memory */
848 mmput(mm);
849
850 return mm;
851}
852
853static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
854{
855 struct mm_struct *mm = proc_mem_open(inode, mode);
856
857 if (IS_ERR(mm))
858 return PTR_ERR(mm);
859
860 file->private_data = mm;
861 return 0;
862}
863
864static int mem_open(struct inode *inode, struct file *file)
865{
866 if (WARN_ON_ONCE(!(file->f_op->fop_flags & FOP_UNSIGNED_OFFSET)))
867 return -EINVAL;
868 return __mem_open(inode, file, PTRACE_MODE_ATTACH);
869}
870
871static bool proc_mem_foll_force(struct file *file, struct mm_struct *mm)
872{
873 struct task_struct *task;
874 bool ptrace_active = false;
875
876 switch (proc_mem_force_override) {
877 case PROC_MEM_FORCE_NEVER:
878 return false;
879 case PROC_MEM_FORCE_PTRACE:
880 task = get_proc_task(file_inode(file));
881 if (task) {
882 ptrace_active = READ_ONCE(task->ptrace) &&
883 READ_ONCE(task->mm) == mm &&
884 READ_ONCE(task->parent) == current;
885 put_task_struct(task);
886 }
887 return ptrace_active;
888 default:
889 return true;
890 }
891}
892
893static ssize_t mem_rw(struct file *file, char __user *buf,
894 size_t count, loff_t *ppos, int write)
895{
896 struct mm_struct *mm = file->private_data;
897 unsigned long addr = *ppos;
898 ssize_t copied;
899 char *page;
900 unsigned int flags;
901
902 if (!mm)
903 return 0;
904
905 page = (char *)__get_free_page(GFP_KERNEL);
906 if (!page)
907 return -ENOMEM;
908
909 copied = 0;
910 if (!mmget_not_zero(mm))
911 goto free;
912
913 flags = write ? FOLL_WRITE : 0;
914 if (proc_mem_foll_force(file, mm))
915 flags |= FOLL_FORCE;
916
917 while (count > 0) {
918 size_t this_len = min_t(size_t, count, PAGE_SIZE);
919
920 if (write && copy_from_user(page, buf, this_len)) {
921 copied = -EFAULT;
922 break;
923 }
924
925 this_len = access_remote_vm(mm, addr, page, this_len, flags);
926 if (!this_len) {
927 if (!copied)
928 copied = -EIO;
929 break;
930 }
931
932 if (!write && copy_to_user(buf, page, this_len)) {
933 copied = -EFAULT;
934 break;
935 }
936
937 buf += this_len;
938 addr += this_len;
939 copied += this_len;
940 count -= this_len;
941 }
942 *ppos = addr;
943
944 mmput(mm);
945free:
946 free_page((unsigned long) page);
947 return copied;
948}
949
950static ssize_t mem_read(struct file *file, char __user *buf,
951 size_t count, loff_t *ppos)
952{
953 return mem_rw(file, buf, count, ppos, 0);
954}
955
956static ssize_t mem_write(struct file *file, const char __user *buf,
957 size_t count, loff_t *ppos)
958{
959 return mem_rw(file, (char __user*)buf, count, ppos, 1);
960}
961
962loff_t mem_lseek(struct file *file, loff_t offset, int orig)
963{
964 switch (orig) {
965 case 0:
966 file->f_pos = offset;
967 break;
968 case 1:
969 file->f_pos += offset;
970 break;
971 default:
972 return -EINVAL;
973 }
974 force_successful_syscall_return();
975 return file->f_pos;
976}
977
978static int mem_release(struct inode *inode, struct file *file)
979{
980 struct mm_struct *mm = file->private_data;
981 if (mm)
982 mmdrop(mm);
983 return 0;
984}
985
986static const struct file_operations proc_mem_operations = {
987 .llseek = mem_lseek,
988 .read = mem_read,
989 .write = mem_write,
990 .open = mem_open,
991 .release = mem_release,
992 .fop_flags = FOP_UNSIGNED_OFFSET,
993};
994
995static int environ_open(struct inode *inode, struct file *file)
996{
997 return __mem_open(inode, file, PTRACE_MODE_READ);
998}
999
1000static ssize_t environ_read(struct file *file, char __user *buf,
1001 size_t count, loff_t *ppos)
1002{
1003 char *page;
1004 unsigned long src = *ppos;
1005 int ret = 0;
1006 struct mm_struct *mm = file->private_data;
1007 unsigned long env_start, env_end;
1008
1009 /* Ensure the process spawned far enough to have an environment. */
1010 if (!mm || !mm->env_end)
1011 return 0;
1012
1013 page = (char *)__get_free_page(GFP_KERNEL);
1014 if (!page)
1015 return -ENOMEM;
1016
1017 ret = 0;
1018 if (!mmget_not_zero(mm))
1019 goto free;
1020
1021 spin_lock(&mm->arg_lock);
1022 env_start = mm->env_start;
1023 env_end = mm->env_end;
1024 spin_unlock(&mm->arg_lock);
1025
1026 while (count > 0) {
1027 size_t this_len, max_len;
1028 int retval;
1029
1030 if (src >= (env_end - env_start))
1031 break;
1032
1033 this_len = env_end - (env_start + src);
1034
1035 max_len = min_t(size_t, PAGE_SIZE, count);
1036 this_len = min(max_len, this_len);
1037
1038 retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
1039
1040 if (retval <= 0) {
1041 ret = retval;
1042 break;
1043 }
1044
1045 if (copy_to_user(buf, page, retval)) {
1046 ret = -EFAULT;
1047 break;
1048 }
1049
1050 ret += retval;
1051 src += retval;
1052 buf += retval;
1053 count -= retval;
1054 }
1055 *ppos = src;
1056 mmput(mm);
1057
1058free:
1059 free_page((unsigned long) page);
1060 return ret;
1061}
1062
1063static const struct file_operations proc_environ_operations = {
1064 .open = environ_open,
1065 .read = environ_read,
1066 .llseek = generic_file_llseek,
1067 .release = mem_release,
1068};
1069
1070static int auxv_open(struct inode *inode, struct file *file)
1071{
1072 return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
1073}
1074
1075static ssize_t auxv_read(struct file *file, char __user *buf,
1076 size_t count, loff_t *ppos)
1077{
1078 struct mm_struct *mm = file->private_data;
1079 unsigned int nwords = 0;
1080
1081 if (!mm)
1082 return 0;
1083 do {
1084 nwords += 2;
1085 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1086 return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1087 nwords * sizeof(mm->saved_auxv[0]));
1088}
1089
1090static const struct file_operations proc_auxv_operations = {
1091 .open = auxv_open,
1092 .read = auxv_read,
1093 .llseek = generic_file_llseek,
1094 .release = mem_release,
1095};
1096
1097static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1098 loff_t *ppos)
1099{
1100 struct task_struct *task = get_proc_task(file_inode(file));
1101 char buffer[PROC_NUMBUF];
1102 int oom_adj = OOM_ADJUST_MIN;
1103 size_t len;
1104
1105 if (!task)
1106 return -ESRCH;
1107 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1108 oom_adj = OOM_ADJUST_MAX;
1109 else
1110 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1111 OOM_SCORE_ADJ_MAX;
1112 put_task_struct(task);
1113 if (oom_adj > OOM_ADJUST_MAX)
1114 oom_adj = OOM_ADJUST_MAX;
1115 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1116 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1117}
1118
1119static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1120{
1121 struct mm_struct *mm = NULL;
1122 struct task_struct *task;
1123 int err = 0;
1124
1125 task = get_proc_task(file_inode(file));
1126 if (!task)
1127 return -ESRCH;
1128
1129 mutex_lock(&oom_adj_mutex);
1130 if (legacy) {
1131 if (oom_adj < task->signal->oom_score_adj &&
1132 !capable(CAP_SYS_RESOURCE)) {
1133 err = -EACCES;
1134 goto err_unlock;
1135 }
1136 /*
1137 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1138 * /proc/pid/oom_score_adj instead.
1139 */
1140 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1141 current->comm, task_pid_nr(current), task_pid_nr(task),
1142 task_pid_nr(task));
1143 } else {
1144 if ((short)oom_adj < task->signal->oom_score_adj_min &&
1145 !capable(CAP_SYS_RESOURCE)) {
1146 err = -EACCES;
1147 goto err_unlock;
1148 }
1149 }
1150
1151 /*
1152 * Make sure we will check other processes sharing the mm if this is
1153 * not vfrok which wants its own oom_score_adj.
1154 * pin the mm so it doesn't go away and get reused after task_unlock
1155 */
1156 if (!task->vfork_done) {
1157 struct task_struct *p = find_lock_task_mm(task);
1158
1159 if (p) {
1160 if (test_bit(MMF_MULTIPROCESS, &p->mm->flags)) {
1161 mm = p->mm;
1162 mmgrab(mm);
1163 }
1164 task_unlock(p);
1165 }
1166 }
1167
1168 task->signal->oom_score_adj = oom_adj;
1169 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1170 task->signal->oom_score_adj_min = (short)oom_adj;
1171 trace_oom_score_adj_update(task);
1172
1173 if (mm) {
1174 struct task_struct *p;
1175
1176 rcu_read_lock();
1177 for_each_process(p) {
1178 if (same_thread_group(task, p))
1179 continue;
1180
1181 /* do not touch kernel threads or the global init */
1182 if (p->flags & PF_KTHREAD || is_global_init(p))
1183 continue;
1184
1185 task_lock(p);
1186 if (!p->vfork_done && process_shares_mm(p, mm)) {
1187 p->signal->oom_score_adj = oom_adj;
1188 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1189 p->signal->oom_score_adj_min = (short)oom_adj;
1190 }
1191 task_unlock(p);
1192 }
1193 rcu_read_unlock();
1194 mmdrop(mm);
1195 }
1196err_unlock:
1197 mutex_unlock(&oom_adj_mutex);
1198 put_task_struct(task);
1199 return err;
1200}
1201
1202/*
1203 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1204 * kernels. The effective policy is defined by oom_score_adj, which has a
1205 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1206 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1207 * Processes that become oom disabled via oom_adj will still be oom disabled
1208 * with this implementation.
1209 *
1210 * oom_adj cannot be removed since existing userspace binaries use it.
1211 */
1212static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1213 size_t count, loff_t *ppos)
1214{
1215 char buffer[PROC_NUMBUF] = {};
1216 int oom_adj;
1217 int err;
1218
1219 if (count > sizeof(buffer) - 1)
1220 count = sizeof(buffer) - 1;
1221 if (copy_from_user(buffer, buf, count)) {
1222 err = -EFAULT;
1223 goto out;
1224 }
1225
1226 err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1227 if (err)
1228 goto out;
1229 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1230 oom_adj != OOM_DISABLE) {
1231 err = -EINVAL;
1232 goto out;
1233 }
1234
1235 /*
1236 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1237 * value is always attainable.
1238 */
1239 if (oom_adj == OOM_ADJUST_MAX)
1240 oom_adj = OOM_SCORE_ADJ_MAX;
1241 else
1242 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1243
1244 err = __set_oom_adj(file, oom_adj, true);
1245out:
1246 return err < 0 ? err : count;
1247}
1248
1249static const struct file_operations proc_oom_adj_operations = {
1250 .read = oom_adj_read,
1251 .write = oom_adj_write,
1252 .llseek = generic_file_llseek,
1253};
1254
1255static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1256 size_t count, loff_t *ppos)
1257{
1258 struct task_struct *task = get_proc_task(file_inode(file));
1259 char buffer[PROC_NUMBUF];
1260 short oom_score_adj = OOM_SCORE_ADJ_MIN;
1261 size_t len;
1262
1263 if (!task)
1264 return -ESRCH;
1265 oom_score_adj = task->signal->oom_score_adj;
1266 put_task_struct(task);
1267 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1268 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1269}
1270
1271static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1272 size_t count, loff_t *ppos)
1273{
1274 char buffer[PROC_NUMBUF] = {};
1275 int oom_score_adj;
1276 int err;
1277
1278 if (count > sizeof(buffer) - 1)
1279 count = sizeof(buffer) - 1;
1280 if (copy_from_user(buffer, buf, count)) {
1281 err = -EFAULT;
1282 goto out;
1283 }
1284
1285 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1286 if (err)
1287 goto out;
1288 if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1289 oom_score_adj > OOM_SCORE_ADJ_MAX) {
1290 err = -EINVAL;
1291 goto out;
1292 }
1293
1294 err = __set_oom_adj(file, oom_score_adj, false);
1295out:
1296 return err < 0 ? err : count;
1297}
1298
1299static const struct file_operations proc_oom_score_adj_operations = {
1300 .read = oom_score_adj_read,
1301 .write = oom_score_adj_write,
1302 .llseek = default_llseek,
1303};
1304
1305#ifdef CONFIG_AUDIT
1306#define TMPBUFLEN 11
1307static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1308 size_t count, loff_t *ppos)
1309{
1310 struct inode * inode = file_inode(file);
1311 struct task_struct *task = get_proc_task(inode);
1312 ssize_t length;
1313 char tmpbuf[TMPBUFLEN];
1314
1315 if (!task)
1316 return -ESRCH;
1317 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1318 from_kuid(file->f_cred->user_ns,
1319 audit_get_loginuid(task)));
1320 put_task_struct(task);
1321 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1322}
1323
1324static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1325 size_t count, loff_t *ppos)
1326{
1327 struct inode * inode = file_inode(file);
1328 uid_t loginuid;
1329 kuid_t kloginuid;
1330 int rv;
1331
1332 /* Don't let kthreads write their own loginuid */
1333 if (current->flags & PF_KTHREAD)
1334 return -EPERM;
1335
1336 rcu_read_lock();
1337 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1338 rcu_read_unlock();
1339 return -EPERM;
1340 }
1341 rcu_read_unlock();
1342
1343 if (*ppos != 0) {
1344 /* No partial writes. */
1345 return -EINVAL;
1346 }
1347
1348 rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1349 if (rv < 0)
1350 return rv;
1351
1352 /* is userspace tring to explicitly UNSET the loginuid? */
1353 if (loginuid == AUDIT_UID_UNSET) {
1354 kloginuid = INVALID_UID;
1355 } else {
1356 kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1357 if (!uid_valid(kloginuid))
1358 return -EINVAL;
1359 }
1360
1361 rv = audit_set_loginuid(kloginuid);
1362 if (rv < 0)
1363 return rv;
1364 return count;
1365}
1366
1367static const struct file_operations proc_loginuid_operations = {
1368 .read = proc_loginuid_read,
1369 .write = proc_loginuid_write,
1370 .llseek = generic_file_llseek,
1371};
1372
1373static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1374 size_t count, loff_t *ppos)
1375{
1376 struct inode * inode = file_inode(file);
1377 struct task_struct *task = get_proc_task(inode);
1378 ssize_t length;
1379 char tmpbuf[TMPBUFLEN];
1380
1381 if (!task)
1382 return -ESRCH;
1383 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1384 audit_get_sessionid(task));
1385 put_task_struct(task);
1386 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1387}
1388
1389static const struct file_operations proc_sessionid_operations = {
1390 .read = proc_sessionid_read,
1391 .llseek = generic_file_llseek,
1392};
1393#endif
1394
1395#ifdef CONFIG_FAULT_INJECTION
1396static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1397 size_t count, loff_t *ppos)
1398{
1399 struct task_struct *task = get_proc_task(file_inode(file));
1400 char buffer[PROC_NUMBUF];
1401 size_t len;
1402 int make_it_fail;
1403
1404 if (!task)
1405 return -ESRCH;
1406 make_it_fail = task->make_it_fail;
1407 put_task_struct(task);
1408
1409 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1410
1411 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1412}
1413
1414static ssize_t proc_fault_inject_write(struct file * file,
1415 const char __user * buf, size_t count, loff_t *ppos)
1416{
1417 struct task_struct *task;
1418 char buffer[PROC_NUMBUF] = {};
1419 int make_it_fail;
1420 int rv;
1421
1422 if (!capable(CAP_SYS_RESOURCE))
1423 return -EPERM;
1424
1425 if (count > sizeof(buffer) - 1)
1426 count = sizeof(buffer) - 1;
1427 if (copy_from_user(buffer, buf, count))
1428 return -EFAULT;
1429 rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1430 if (rv < 0)
1431 return rv;
1432 if (make_it_fail < 0 || make_it_fail > 1)
1433 return -EINVAL;
1434
1435 task = get_proc_task(file_inode(file));
1436 if (!task)
1437 return -ESRCH;
1438 task->make_it_fail = make_it_fail;
1439 put_task_struct(task);
1440
1441 return count;
1442}
1443
1444static const struct file_operations proc_fault_inject_operations = {
1445 .read = proc_fault_inject_read,
1446 .write = proc_fault_inject_write,
1447 .llseek = generic_file_llseek,
1448};
1449
1450static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1451 size_t count, loff_t *ppos)
1452{
1453 struct task_struct *task;
1454 int err;
1455 unsigned int n;
1456
1457 err = kstrtouint_from_user(buf, count, 0, &n);
1458 if (err)
1459 return err;
1460
1461 task = get_proc_task(file_inode(file));
1462 if (!task)
1463 return -ESRCH;
1464 task->fail_nth = n;
1465 put_task_struct(task);
1466
1467 return count;
1468}
1469
1470static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1471 size_t count, loff_t *ppos)
1472{
1473 struct task_struct *task;
1474 char numbuf[PROC_NUMBUF];
1475 ssize_t len;
1476
1477 task = get_proc_task(file_inode(file));
1478 if (!task)
1479 return -ESRCH;
1480 len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1481 put_task_struct(task);
1482 return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1483}
1484
1485static const struct file_operations proc_fail_nth_operations = {
1486 .read = proc_fail_nth_read,
1487 .write = proc_fail_nth_write,
1488};
1489#endif
1490
1491
1492#ifdef CONFIG_SCHED_DEBUG
1493/*
1494 * Print out various scheduling related per-task fields:
1495 */
1496static int sched_show(struct seq_file *m, void *v)
1497{
1498 struct inode *inode = m->private;
1499 struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
1500 struct task_struct *p;
1501
1502 p = get_proc_task(inode);
1503 if (!p)
1504 return -ESRCH;
1505 proc_sched_show_task(p, ns, m);
1506
1507 put_task_struct(p);
1508
1509 return 0;
1510}
1511
1512static ssize_t
1513sched_write(struct file *file, const char __user *buf,
1514 size_t count, loff_t *offset)
1515{
1516 struct inode *inode = file_inode(file);
1517 struct task_struct *p;
1518
1519 p = get_proc_task(inode);
1520 if (!p)
1521 return -ESRCH;
1522 proc_sched_set_task(p);
1523
1524 put_task_struct(p);
1525
1526 return count;
1527}
1528
1529static int sched_open(struct inode *inode, struct file *filp)
1530{
1531 return single_open(filp, sched_show, inode);
1532}
1533
1534static const struct file_operations proc_pid_sched_operations = {
1535 .open = sched_open,
1536 .read = seq_read,
1537 .write = sched_write,
1538 .llseek = seq_lseek,
1539 .release = single_release,
1540};
1541
1542#endif
1543
1544#ifdef CONFIG_SCHED_AUTOGROUP
1545/*
1546 * Print out autogroup related information:
1547 */
1548static int sched_autogroup_show(struct seq_file *m, void *v)
1549{
1550 struct inode *inode = m->private;
1551 struct task_struct *p;
1552
1553 p = get_proc_task(inode);
1554 if (!p)
1555 return -ESRCH;
1556 proc_sched_autogroup_show_task(p, m);
1557
1558 put_task_struct(p);
1559
1560 return 0;
1561}
1562
1563static ssize_t
1564sched_autogroup_write(struct file *file, const char __user *buf,
1565 size_t count, loff_t *offset)
1566{
1567 struct inode *inode = file_inode(file);
1568 struct task_struct *p;
1569 char buffer[PROC_NUMBUF] = {};
1570 int nice;
1571 int err;
1572
1573 if (count > sizeof(buffer) - 1)
1574 count = sizeof(buffer) - 1;
1575 if (copy_from_user(buffer, buf, count))
1576 return -EFAULT;
1577
1578 err = kstrtoint(strstrip(buffer), 0, &nice);
1579 if (err < 0)
1580 return err;
1581
1582 p = get_proc_task(inode);
1583 if (!p)
1584 return -ESRCH;
1585
1586 err = proc_sched_autogroup_set_nice(p, nice);
1587 if (err)
1588 count = err;
1589
1590 put_task_struct(p);
1591
1592 return count;
1593}
1594
1595static int sched_autogroup_open(struct inode *inode, struct file *filp)
1596{
1597 int ret;
1598
1599 ret = single_open(filp, sched_autogroup_show, NULL);
1600 if (!ret) {
1601 struct seq_file *m = filp->private_data;
1602
1603 m->private = inode;
1604 }
1605 return ret;
1606}
1607
1608static const struct file_operations proc_pid_sched_autogroup_operations = {
1609 .open = sched_autogroup_open,
1610 .read = seq_read,
1611 .write = sched_autogroup_write,
1612 .llseek = seq_lseek,
1613 .release = single_release,
1614};
1615
1616#endif /* CONFIG_SCHED_AUTOGROUP */
1617
1618#ifdef CONFIG_TIME_NS
1619static int timens_offsets_show(struct seq_file *m, void *v)
1620{
1621 struct task_struct *p;
1622
1623 p = get_proc_task(file_inode(m->file));
1624 if (!p)
1625 return -ESRCH;
1626 proc_timens_show_offsets(p, m);
1627
1628 put_task_struct(p);
1629
1630 return 0;
1631}
1632
1633static ssize_t timens_offsets_write(struct file *file, const char __user *buf,
1634 size_t count, loff_t *ppos)
1635{
1636 struct inode *inode = file_inode(file);
1637 struct proc_timens_offset offsets[2];
1638 char *kbuf = NULL, *pos, *next_line;
1639 struct task_struct *p;
1640 int ret, noffsets;
1641
1642 /* Only allow < page size writes at the beginning of the file */
1643 if ((*ppos != 0) || (count >= PAGE_SIZE))
1644 return -EINVAL;
1645
1646 /* Slurp in the user data */
1647 kbuf = memdup_user_nul(buf, count);
1648 if (IS_ERR(kbuf))
1649 return PTR_ERR(kbuf);
1650
1651 /* Parse the user data */
1652 ret = -EINVAL;
1653 noffsets = 0;
1654 for (pos = kbuf; pos; pos = next_line) {
1655 struct proc_timens_offset *off = &offsets[noffsets];
1656 char clock[10];
1657 int err;
1658
1659 /* Find the end of line and ensure we don't look past it */
1660 next_line = strchr(pos, '\n');
1661 if (next_line) {
1662 *next_line = '\0';
1663 next_line++;
1664 if (*next_line == '\0')
1665 next_line = NULL;
1666 }
1667
1668 err = sscanf(pos, "%9s %lld %lu", clock,
1669 &off->val.tv_sec, &off->val.tv_nsec);
1670 if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC)
1671 goto out;
1672
1673 clock[sizeof(clock) - 1] = 0;
1674 if (strcmp(clock, "monotonic") == 0 ||
1675 strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0)
1676 off->clockid = CLOCK_MONOTONIC;
1677 else if (strcmp(clock, "boottime") == 0 ||
1678 strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0)
1679 off->clockid = CLOCK_BOOTTIME;
1680 else
1681 goto out;
1682
1683 noffsets++;
1684 if (noffsets == ARRAY_SIZE(offsets)) {
1685 if (next_line)
1686 count = next_line - kbuf;
1687 break;
1688 }
1689 }
1690
1691 ret = -ESRCH;
1692 p = get_proc_task(inode);
1693 if (!p)
1694 goto out;
1695 ret = proc_timens_set_offset(file, p, offsets, noffsets);
1696 put_task_struct(p);
1697 if (ret)
1698 goto out;
1699
1700 ret = count;
1701out:
1702 kfree(kbuf);
1703 return ret;
1704}
1705
1706static int timens_offsets_open(struct inode *inode, struct file *filp)
1707{
1708 return single_open(filp, timens_offsets_show, inode);
1709}
1710
1711static const struct file_operations proc_timens_offsets_operations = {
1712 .open = timens_offsets_open,
1713 .read = seq_read,
1714 .write = timens_offsets_write,
1715 .llseek = seq_lseek,
1716 .release = single_release,
1717};
1718#endif /* CONFIG_TIME_NS */
1719
1720static ssize_t comm_write(struct file *file, const char __user *buf,
1721 size_t count, loff_t *offset)
1722{
1723 struct inode *inode = file_inode(file);
1724 struct task_struct *p;
1725 char buffer[TASK_COMM_LEN] = {};
1726 const size_t maxlen = sizeof(buffer) - 1;
1727
1728 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1729 return -EFAULT;
1730
1731 p = get_proc_task(inode);
1732 if (!p)
1733 return -ESRCH;
1734
1735 if (same_thread_group(current, p)) {
1736 set_task_comm(p, buffer);
1737 proc_comm_connector(p);
1738 }
1739 else
1740 count = -EINVAL;
1741
1742 put_task_struct(p);
1743
1744 return count;
1745}
1746
1747static int comm_show(struct seq_file *m, void *v)
1748{
1749 struct inode *inode = m->private;
1750 struct task_struct *p;
1751
1752 p = get_proc_task(inode);
1753 if (!p)
1754 return -ESRCH;
1755
1756 proc_task_name(m, p, false);
1757 seq_putc(m, '\n');
1758
1759 put_task_struct(p);
1760
1761 return 0;
1762}
1763
1764static int comm_open(struct inode *inode, struct file *filp)
1765{
1766 return single_open(filp, comm_show, inode);
1767}
1768
1769static const struct file_operations proc_pid_set_comm_operations = {
1770 .open = comm_open,
1771 .read = seq_read,
1772 .write = comm_write,
1773 .llseek = seq_lseek,
1774 .release = single_release,
1775};
1776
1777static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1778{
1779 struct task_struct *task;
1780 struct file *exe_file;
1781
1782 task = get_proc_task(d_inode(dentry));
1783 if (!task)
1784 return -ENOENT;
1785 exe_file = get_task_exe_file(task);
1786 put_task_struct(task);
1787 if (exe_file) {
1788 *exe_path = exe_file->f_path;
1789 path_get(&exe_file->f_path);
1790 fput(exe_file);
1791 return 0;
1792 } else
1793 return -ENOENT;
1794}
1795
1796static const char *proc_pid_get_link(struct dentry *dentry,
1797 struct inode *inode,
1798 struct delayed_call *done)
1799{
1800 struct path path;
1801 int error = -EACCES;
1802
1803 if (!dentry)
1804 return ERR_PTR(-ECHILD);
1805
1806 /* Are we allowed to snoop on the tasks file descriptors? */
1807 if (!proc_fd_access_allowed(inode))
1808 goto out;
1809
1810 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1811 if (error)
1812 goto out;
1813
1814 error = nd_jump_link(&path);
1815out:
1816 return ERR_PTR(error);
1817}
1818
1819static int do_proc_readlink(const struct path *path, char __user *buffer, int buflen)
1820{
1821 char *tmp = kmalloc(PATH_MAX, GFP_KERNEL);
1822 char *pathname;
1823 int len;
1824
1825 if (!tmp)
1826 return -ENOMEM;
1827
1828 pathname = d_path(path, tmp, PATH_MAX);
1829 len = PTR_ERR(pathname);
1830 if (IS_ERR(pathname))
1831 goto out;
1832 len = tmp + PATH_MAX - 1 - pathname;
1833
1834 if (len > buflen)
1835 len = buflen;
1836 if (copy_to_user(buffer, pathname, len))
1837 len = -EFAULT;
1838 out:
1839 kfree(tmp);
1840 return len;
1841}
1842
1843static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1844{
1845 int error = -EACCES;
1846 struct inode *inode = d_inode(dentry);
1847 struct path path;
1848
1849 /* Are we allowed to snoop on the tasks file descriptors? */
1850 if (!proc_fd_access_allowed(inode))
1851 goto out;
1852
1853 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1854 if (error)
1855 goto out;
1856
1857 error = do_proc_readlink(&path, buffer, buflen);
1858 path_put(&path);
1859out:
1860 return error;
1861}
1862
1863const struct inode_operations proc_pid_link_inode_operations = {
1864 .readlink = proc_pid_readlink,
1865 .get_link = proc_pid_get_link,
1866 .setattr = proc_setattr,
1867};
1868
1869
1870/* building an inode */
1871
1872void task_dump_owner(struct task_struct *task, umode_t mode,
1873 kuid_t *ruid, kgid_t *rgid)
1874{
1875 /* Depending on the state of dumpable compute who should own a
1876 * proc file for a task.
1877 */
1878 const struct cred *cred;
1879 kuid_t uid;
1880 kgid_t gid;
1881
1882 if (unlikely(task->flags & PF_KTHREAD)) {
1883 *ruid = GLOBAL_ROOT_UID;
1884 *rgid = GLOBAL_ROOT_GID;
1885 return;
1886 }
1887
1888 /* Default to the tasks effective ownership */
1889 rcu_read_lock();
1890 cred = __task_cred(task);
1891 uid = cred->euid;
1892 gid = cred->egid;
1893 rcu_read_unlock();
1894
1895 /*
1896 * Before the /proc/pid/status file was created the only way to read
1897 * the effective uid of a /process was to stat /proc/pid. Reading
1898 * /proc/pid/status is slow enough that procps and other packages
1899 * kept stating /proc/pid. To keep the rules in /proc simple I have
1900 * made this apply to all per process world readable and executable
1901 * directories.
1902 */
1903 if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1904 struct mm_struct *mm;
1905 task_lock(task);
1906 mm = task->mm;
1907 /* Make non-dumpable tasks owned by some root */
1908 if (mm) {
1909 if (get_dumpable(mm) != SUID_DUMP_USER) {
1910 struct user_namespace *user_ns = mm->user_ns;
1911
1912 uid = make_kuid(user_ns, 0);
1913 if (!uid_valid(uid))
1914 uid = GLOBAL_ROOT_UID;
1915
1916 gid = make_kgid(user_ns, 0);
1917 if (!gid_valid(gid))
1918 gid = GLOBAL_ROOT_GID;
1919 }
1920 } else {
1921 uid = GLOBAL_ROOT_UID;
1922 gid = GLOBAL_ROOT_GID;
1923 }
1924 task_unlock(task);
1925 }
1926 *ruid = uid;
1927 *rgid = gid;
1928}
1929
1930void proc_pid_evict_inode(struct proc_inode *ei)
1931{
1932 struct pid *pid = ei->pid;
1933
1934 if (S_ISDIR(ei->vfs_inode.i_mode)) {
1935 spin_lock(&pid->lock);
1936 hlist_del_init_rcu(&ei->sibling_inodes);
1937 spin_unlock(&pid->lock);
1938 }
1939}
1940
1941struct inode *proc_pid_make_inode(struct super_block *sb,
1942 struct task_struct *task, umode_t mode)
1943{
1944 struct inode * inode;
1945 struct proc_inode *ei;
1946 struct pid *pid;
1947
1948 /* We need a new inode */
1949
1950 inode = new_inode(sb);
1951 if (!inode)
1952 goto out;
1953
1954 /* Common stuff */
1955 ei = PROC_I(inode);
1956 inode->i_mode = mode;
1957 inode->i_ino = get_next_ino();
1958 simple_inode_init_ts(inode);
1959 inode->i_op = &proc_def_inode_operations;
1960
1961 /*
1962 * grab the reference to task.
1963 */
1964 pid = get_task_pid(task, PIDTYPE_PID);
1965 if (!pid)
1966 goto out_unlock;
1967
1968 /* Let the pid remember us for quick removal */
1969 ei->pid = pid;
1970
1971 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1972 security_task_to_inode(task, inode);
1973
1974out:
1975 return inode;
1976
1977out_unlock:
1978 iput(inode);
1979 return NULL;
1980}
1981
1982/*
1983 * Generating an inode and adding it into @pid->inodes, so that task will
1984 * invalidate inode's dentry before being released.
1985 *
1986 * This helper is used for creating dir-type entries under '/proc' and
1987 * '/proc/<tgid>/task'. Other entries(eg. fd, stat) under '/proc/<tgid>'
1988 * can be released by invalidating '/proc/<tgid>' dentry.
1989 * In theory, dentries under '/proc/<tgid>/task' can also be released by
1990 * invalidating '/proc/<tgid>' dentry, we reserve it to handle single
1991 * thread exiting situation: Any one of threads should invalidate its
1992 * '/proc/<tgid>/task/<pid>' dentry before released.
1993 */
1994static struct inode *proc_pid_make_base_inode(struct super_block *sb,
1995 struct task_struct *task, umode_t mode)
1996{
1997 struct inode *inode;
1998 struct proc_inode *ei;
1999 struct pid *pid;
2000
2001 inode = proc_pid_make_inode(sb, task, mode);
2002 if (!inode)
2003 return NULL;
2004
2005 /* Let proc_flush_pid find this directory inode */
2006 ei = PROC_I(inode);
2007 pid = ei->pid;
2008 spin_lock(&pid->lock);
2009 hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes);
2010 spin_unlock(&pid->lock);
2011
2012 return inode;
2013}
2014
2015int pid_getattr(struct mnt_idmap *idmap, const struct path *path,
2016 struct kstat *stat, u32 request_mask, unsigned int query_flags)
2017{
2018 struct inode *inode = d_inode(path->dentry);
2019 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
2020 struct task_struct *task;
2021
2022 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
2023
2024 stat->uid = GLOBAL_ROOT_UID;
2025 stat->gid = GLOBAL_ROOT_GID;
2026 rcu_read_lock();
2027 task = pid_task(proc_pid(inode), PIDTYPE_PID);
2028 if (task) {
2029 if (!has_pid_permissions(fs_info, task, HIDEPID_INVISIBLE)) {
2030 rcu_read_unlock();
2031 /*
2032 * This doesn't prevent learning whether PID exists,
2033 * it only makes getattr() consistent with readdir().
2034 */
2035 return -ENOENT;
2036 }
2037 task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
2038 }
2039 rcu_read_unlock();
2040 return 0;
2041}
2042
2043/* dentry stuff */
2044
2045/*
2046 * Set <pid>/... inode ownership (can change due to setuid(), etc.)
2047 */
2048void pid_update_inode(struct task_struct *task, struct inode *inode)
2049{
2050 task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
2051
2052 inode->i_mode &= ~(S_ISUID | S_ISGID);
2053 security_task_to_inode(task, inode);
2054}
2055
2056/*
2057 * Rewrite the inode's ownerships here because the owning task may have
2058 * performed a setuid(), etc.
2059 *
2060 */
2061static int pid_revalidate(struct dentry *dentry, unsigned int flags)
2062{
2063 struct inode *inode;
2064 struct task_struct *task;
2065 int ret = 0;
2066
2067 rcu_read_lock();
2068 inode = d_inode_rcu(dentry);
2069 if (!inode)
2070 goto out;
2071 task = pid_task(proc_pid(inode), PIDTYPE_PID);
2072
2073 if (task) {
2074 pid_update_inode(task, inode);
2075 ret = 1;
2076 }
2077out:
2078 rcu_read_unlock();
2079 return ret;
2080}
2081
2082static inline bool proc_inode_is_dead(struct inode *inode)
2083{
2084 return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
2085}
2086
2087int pid_delete_dentry(const struct dentry *dentry)
2088{
2089 /* Is the task we represent dead?
2090 * If so, then don't put the dentry on the lru list,
2091 * kill it immediately.
2092 */
2093 return proc_inode_is_dead(d_inode(dentry));
2094}
2095
2096const struct dentry_operations pid_dentry_operations =
2097{
2098 .d_revalidate = pid_revalidate,
2099 .d_delete = pid_delete_dentry,
2100};
2101
2102/* Lookups */
2103
2104/*
2105 * Fill a directory entry.
2106 *
2107 * If possible create the dcache entry and derive our inode number and
2108 * file type from dcache entry.
2109 *
2110 * Since all of the proc inode numbers are dynamically generated, the inode
2111 * numbers do not exist until the inode is cache. This means creating
2112 * the dcache entry in readdir is necessary to keep the inode numbers
2113 * reported by readdir in sync with the inode numbers reported
2114 * by stat.
2115 */
2116bool proc_fill_cache(struct file *file, struct dir_context *ctx,
2117 const char *name, unsigned int len,
2118 instantiate_t instantiate, struct task_struct *task, const void *ptr)
2119{
2120 struct dentry *child, *dir = file->f_path.dentry;
2121 struct qstr qname = QSTR_INIT(name, len);
2122 struct inode *inode;
2123 unsigned type = DT_UNKNOWN;
2124 ino_t ino = 1;
2125
2126 child = d_hash_and_lookup(dir, &qname);
2127 if (!child) {
2128 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2129 child = d_alloc_parallel(dir, &qname, &wq);
2130 if (IS_ERR(child))
2131 goto end_instantiate;
2132 if (d_in_lookup(child)) {
2133 struct dentry *res;
2134 res = instantiate(child, task, ptr);
2135 d_lookup_done(child);
2136 if (unlikely(res)) {
2137 dput(child);
2138 child = res;
2139 if (IS_ERR(child))
2140 goto end_instantiate;
2141 }
2142 }
2143 }
2144 inode = d_inode(child);
2145 ino = inode->i_ino;
2146 type = inode->i_mode >> 12;
2147 dput(child);
2148end_instantiate:
2149 return dir_emit(ctx, name, len, ino, type);
2150}
2151
2152/*
2153 * dname_to_vma_addr - maps a dentry name into two unsigned longs
2154 * which represent vma start and end addresses.
2155 */
2156static int dname_to_vma_addr(struct dentry *dentry,
2157 unsigned long *start, unsigned long *end)
2158{
2159 const char *str = dentry->d_name.name;
2160 unsigned long long sval, eval;
2161 unsigned int len;
2162
2163 if (str[0] == '0' && str[1] != '-')
2164 return -EINVAL;
2165 len = _parse_integer(str, 16, &sval);
2166 if (len & KSTRTOX_OVERFLOW)
2167 return -EINVAL;
2168 if (sval != (unsigned long)sval)
2169 return -EINVAL;
2170 str += len;
2171
2172 if (*str != '-')
2173 return -EINVAL;
2174 str++;
2175
2176 if (str[0] == '0' && str[1])
2177 return -EINVAL;
2178 len = _parse_integer(str, 16, &eval);
2179 if (len & KSTRTOX_OVERFLOW)
2180 return -EINVAL;
2181 if (eval != (unsigned long)eval)
2182 return -EINVAL;
2183 str += len;
2184
2185 if (*str != '\0')
2186 return -EINVAL;
2187
2188 *start = sval;
2189 *end = eval;
2190
2191 return 0;
2192}
2193
2194static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
2195{
2196 unsigned long vm_start, vm_end;
2197 bool exact_vma_exists = false;
2198 struct mm_struct *mm = NULL;
2199 struct task_struct *task;
2200 struct inode *inode;
2201 int status = 0;
2202
2203 if (flags & LOOKUP_RCU)
2204 return -ECHILD;
2205
2206 inode = d_inode(dentry);
2207 task = get_proc_task(inode);
2208 if (!task)
2209 goto out_notask;
2210
2211 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
2212 if (IS_ERR(mm))
2213 goto out;
2214
2215 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
2216 status = mmap_read_lock_killable(mm);
2217 if (!status) {
2218 exact_vma_exists = !!find_exact_vma(mm, vm_start,
2219 vm_end);
2220 mmap_read_unlock(mm);
2221 }
2222 }
2223
2224 mmput(mm);
2225
2226 if (exact_vma_exists) {
2227 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
2228
2229 security_task_to_inode(task, inode);
2230 status = 1;
2231 }
2232
2233out:
2234 put_task_struct(task);
2235
2236out_notask:
2237 return status;
2238}
2239
2240static const struct dentry_operations tid_map_files_dentry_operations = {
2241 .d_revalidate = map_files_d_revalidate,
2242 .d_delete = pid_delete_dentry,
2243};
2244
2245static int map_files_get_link(struct dentry *dentry, struct path *path)
2246{
2247 unsigned long vm_start, vm_end;
2248 struct vm_area_struct *vma;
2249 struct task_struct *task;
2250 struct mm_struct *mm;
2251 int rc;
2252
2253 rc = -ENOENT;
2254 task = get_proc_task(d_inode(dentry));
2255 if (!task)
2256 goto out;
2257
2258 mm = get_task_mm(task);
2259 put_task_struct(task);
2260 if (!mm)
2261 goto out;
2262
2263 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2264 if (rc)
2265 goto out_mmput;
2266
2267 rc = mmap_read_lock_killable(mm);
2268 if (rc)
2269 goto out_mmput;
2270
2271 rc = -ENOENT;
2272 vma = find_exact_vma(mm, vm_start, vm_end);
2273 if (vma && vma->vm_file) {
2274 *path = *file_user_path(vma->vm_file);
2275 path_get(path);
2276 rc = 0;
2277 }
2278 mmap_read_unlock(mm);
2279
2280out_mmput:
2281 mmput(mm);
2282out:
2283 return rc;
2284}
2285
2286struct map_files_info {
2287 unsigned long start;
2288 unsigned long end;
2289 fmode_t mode;
2290};
2291
2292/*
2293 * Only allow CAP_SYS_ADMIN and CAP_CHECKPOINT_RESTORE to follow the links, due
2294 * to concerns about how the symlinks may be used to bypass permissions on
2295 * ancestor directories in the path to the file in question.
2296 */
2297static const char *
2298proc_map_files_get_link(struct dentry *dentry,
2299 struct inode *inode,
2300 struct delayed_call *done)
2301{
2302 if (!checkpoint_restore_ns_capable(&init_user_ns))
2303 return ERR_PTR(-EPERM);
2304
2305 return proc_pid_get_link(dentry, inode, done);
2306}
2307
2308/*
2309 * Identical to proc_pid_link_inode_operations except for get_link()
2310 */
2311static const struct inode_operations proc_map_files_link_inode_operations = {
2312 .readlink = proc_pid_readlink,
2313 .get_link = proc_map_files_get_link,
2314 .setattr = proc_setattr,
2315};
2316
2317static struct dentry *
2318proc_map_files_instantiate(struct dentry *dentry,
2319 struct task_struct *task, const void *ptr)
2320{
2321 fmode_t mode = (fmode_t)(unsigned long)ptr;
2322 struct proc_inode *ei;
2323 struct inode *inode;
2324
2325 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2326 ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2327 ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2328 if (!inode)
2329 return ERR_PTR(-ENOENT);
2330
2331 ei = PROC_I(inode);
2332 ei->op.proc_get_link = map_files_get_link;
2333
2334 inode->i_op = &proc_map_files_link_inode_operations;
2335 inode->i_size = 64;
2336
2337 return proc_splice_unmountable(inode, dentry,
2338 &tid_map_files_dentry_operations);
2339}
2340
2341static struct dentry *proc_map_files_lookup(struct inode *dir,
2342 struct dentry *dentry, unsigned int flags)
2343{
2344 unsigned long vm_start, vm_end;
2345 struct vm_area_struct *vma;
2346 struct task_struct *task;
2347 struct dentry *result;
2348 struct mm_struct *mm;
2349
2350 result = ERR_PTR(-ENOENT);
2351 task = get_proc_task(dir);
2352 if (!task)
2353 goto out;
2354
2355 result = ERR_PTR(-EACCES);
2356 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2357 goto out_put_task;
2358
2359 result = ERR_PTR(-ENOENT);
2360 if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2361 goto out_put_task;
2362
2363 mm = get_task_mm(task);
2364 if (!mm)
2365 goto out_put_task;
2366
2367 result = ERR_PTR(-EINTR);
2368 if (mmap_read_lock_killable(mm))
2369 goto out_put_mm;
2370
2371 result = ERR_PTR(-ENOENT);
2372 vma = find_exact_vma(mm, vm_start, vm_end);
2373 if (!vma)
2374 goto out_no_vma;
2375
2376 if (vma->vm_file)
2377 result = proc_map_files_instantiate(dentry, task,
2378 (void *)(unsigned long)vma->vm_file->f_mode);
2379
2380out_no_vma:
2381 mmap_read_unlock(mm);
2382out_put_mm:
2383 mmput(mm);
2384out_put_task:
2385 put_task_struct(task);
2386out:
2387 return result;
2388}
2389
2390static const struct inode_operations proc_map_files_inode_operations = {
2391 .lookup = proc_map_files_lookup,
2392 .permission = proc_fd_permission,
2393 .setattr = proc_setattr,
2394};
2395
2396static int
2397proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2398{
2399 struct vm_area_struct *vma;
2400 struct task_struct *task;
2401 struct mm_struct *mm;
2402 unsigned long nr_files, pos, i;
2403 GENRADIX(struct map_files_info) fa;
2404 struct map_files_info *p;
2405 int ret;
2406 struct vma_iterator vmi;
2407
2408 genradix_init(&fa);
2409
2410 ret = -ENOENT;
2411 task = get_proc_task(file_inode(file));
2412 if (!task)
2413 goto out;
2414
2415 ret = -EACCES;
2416 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2417 goto out_put_task;
2418
2419 ret = 0;
2420 if (!dir_emit_dots(file, ctx))
2421 goto out_put_task;
2422
2423 mm = get_task_mm(task);
2424 if (!mm)
2425 goto out_put_task;
2426
2427 ret = mmap_read_lock_killable(mm);
2428 if (ret) {
2429 mmput(mm);
2430 goto out_put_task;
2431 }
2432
2433 nr_files = 0;
2434
2435 /*
2436 * We need two passes here:
2437 *
2438 * 1) Collect vmas of mapped files with mmap_lock taken
2439 * 2) Release mmap_lock and instantiate entries
2440 *
2441 * otherwise we get lockdep complained, since filldir()
2442 * routine might require mmap_lock taken in might_fault().
2443 */
2444
2445 pos = 2;
2446 vma_iter_init(&vmi, mm, 0);
2447 for_each_vma(vmi, vma) {
2448 if (!vma->vm_file)
2449 continue;
2450 if (++pos <= ctx->pos)
2451 continue;
2452
2453 p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL);
2454 if (!p) {
2455 ret = -ENOMEM;
2456 mmap_read_unlock(mm);
2457 mmput(mm);
2458 goto out_put_task;
2459 }
2460
2461 p->start = vma->vm_start;
2462 p->end = vma->vm_end;
2463 p->mode = vma->vm_file->f_mode;
2464 }
2465 mmap_read_unlock(mm);
2466 mmput(mm);
2467
2468 for (i = 0; i < nr_files; i++) {
2469 char buf[4 * sizeof(long) + 2]; /* max: %lx-%lx\0 */
2470 unsigned int len;
2471
2472 p = genradix_ptr(&fa, i);
2473 len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2474 if (!proc_fill_cache(file, ctx,
2475 buf, len,
2476 proc_map_files_instantiate,
2477 task,
2478 (void *)(unsigned long)p->mode))
2479 break;
2480 ctx->pos++;
2481 }
2482
2483out_put_task:
2484 put_task_struct(task);
2485out:
2486 genradix_free(&fa);
2487 return ret;
2488}
2489
2490static const struct file_operations proc_map_files_operations = {
2491 .read = generic_read_dir,
2492 .iterate_shared = proc_map_files_readdir,
2493 .llseek = generic_file_llseek,
2494};
2495
2496#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2497struct timers_private {
2498 struct pid *pid;
2499 struct task_struct *task;
2500 struct sighand_struct *sighand;
2501 struct pid_namespace *ns;
2502 unsigned long flags;
2503};
2504
2505static void *timers_start(struct seq_file *m, loff_t *pos)
2506{
2507 struct timers_private *tp = m->private;
2508
2509 tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2510 if (!tp->task)
2511 return ERR_PTR(-ESRCH);
2512
2513 tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2514 if (!tp->sighand)
2515 return ERR_PTR(-ESRCH);
2516
2517 return seq_hlist_start(&tp->task->signal->posix_timers, *pos);
2518}
2519
2520static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2521{
2522 struct timers_private *tp = m->private;
2523 return seq_hlist_next(v, &tp->task->signal->posix_timers, pos);
2524}
2525
2526static void timers_stop(struct seq_file *m, void *v)
2527{
2528 struct timers_private *tp = m->private;
2529
2530 if (tp->sighand) {
2531 unlock_task_sighand(tp->task, &tp->flags);
2532 tp->sighand = NULL;
2533 }
2534
2535 if (tp->task) {
2536 put_task_struct(tp->task);
2537 tp->task = NULL;
2538 }
2539}
2540
2541static int show_timer(struct seq_file *m, void *v)
2542{
2543 struct k_itimer *timer;
2544 struct timers_private *tp = m->private;
2545 int notify;
2546 static const char * const nstr[] = {
2547 [SIGEV_SIGNAL] = "signal",
2548 [SIGEV_NONE] = "none",
2549 [SIGEV_THREAD] = "thread",
2550 };
2551
2552 timer = hlist_entry((struct hlist_node *)v, struct k_itimer, list);
2553 notify = timer->it_sigev_notify;
2554
2555 seq_printf(m, "ID: %d\n", timer->it_id);
2556 seq_printf(m, "signal: %d/%px\n",
2557 timer->sigq.info.si_signo,
2558 timer->sigq.info.si_value.sival_ptr);
2559 seq_printf(m, "notify: %s/%s.%d\n",
2560 nstr[notify & ~SIGEV_THREAD_ID],
2561 (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2562 pid_nr_ns(timer->it_pid, tp->ns));
2563 seq_printf(m, "ClockID: %d\n", timer->it_clock);
2564
2565 return 0;
2566}
2567
2568static const struct seq_operations proc_timers_seq_ops = {
2569 .start = timers_start,
2570 .next = timers_next,
2571 .stop = timers_stop,
2572 .show = show_timer,
2573};
2574
2575static int proc_timers_open(struct inode *inode, struct file *file)
2576{
2577 struct timers_private *tp;
2578
2579 tp = __seq_open_private(file, &proc_timers_seq_ops,
2580 sizeof(struct timers_private));
2581 if (!tp)
2582 return -ENOMEM;
2583
2584 tp->pid = proc_pid(inode);
2585 tp->ns = proc_pid_ns(inode->i_sb);
2586 return 0;
2587}
2588
2589static const struct file_operations proc_timers_operations = {
2590 .open = proc_timers_open,
2591 .read = seq_read,
2592 .llseek = seq_lseek,
2593 .release = seq_release_private,
2594};
2595#endif
2596
2597static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2598 size_t count, loff_t *offset)
2599{
2600 struct inode *inode = file_inode(file);
2601 struct task_struct *p;
2602 u64 slack_ns;
2603 int err;
2604
2605 err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2606 if (err < 0)
2607 return err;
2608
2609 p = get_proc_task(inode);
2610 if (!p)
2611 return -ESRCH;
2612
2613 if (p != current) {
2614 rcu_read_lock();
2615 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2616 rcu_read_unlock();
2617 count = -EPERM;
2618 goto out;
2619 }
2620 rcu_read_unlock();
2621
2622 err = security_task_setscheduler(p);
2623 if (err) {
2624 count = err;
2625 goto out;
2626 }
2627 }
2628
2629 task_lock(p);
2630 if (rt_or_dl_task_policy(p))
2631 slack_ns = 0;
2632 else if (slack_ns == 0)
2633 slack_ns = p->default_timer_slack_ns;
2634 p->timer_slack_ns = slack_ns;
2635 task_unlock(p);
2636
2637out:
2638 put_task_struct(p);
2639
2640 return count;
2641}
2642
2643static int timerslack_ns_show(struct seq_file *m, void *v)
2644{
2645 struct inode *inode = m->private;
2646 struct task_struct *p;
2647 int err = 0;
2648
2649 p = get_proc_task(inode);
2650 if (!p)
2651 return -ESRCH;
2652
2653 if (p != current) {
2654 rcu_read_lock();
2655 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2656 rcu_read_unlock();
2657 err = -EPERM;
2658 goto out;
2659 }
2660 rcu_read_unlock();
2661
2662 err = security_task_getscheduler(p);
2663 if (err)
2664 goto out;
2665 }
2666
2667 task_lock(p);
2668 seq_printf(m, "%llu\n", p->timer_slack_ns);
2669 task_unlock(p);
2670
2671out:
2672 put_task_struct(p);
2673
2674 return err;
2675}
2676
2677static int timerslack_ns_open(struct inode *inode, struct file *filp)
2678{
2679 return single_open(filp, timerslack_ns_show, inode);
2680}
2681
2682static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2683 .open = timerslack_ns_open,
2684 .read = seq_read,
2685 .write = timerslack_ns_write,
2686 .llseek = seq_lseek,
2687 .release = single_release,
2688};
2689
2690static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2691 struct task_struct *task, const void *ptr)
2692{
2693 const struct pid_entry *p = ptr;
2694 struct inode *inode;
2695 struct proc_inode *ei;
2696
2697 inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2698 if (!inode)
2699 return ERR_PTR(-ENOENT);
2700
2701 ei = PROC_I(inode);
2702 if (S_ISDIR(inode->i_mode))
2703 set_nlink(inode, 2); /* Use getattr to fix if necessary */
2704 if (p->iop)
2705 inode->i_op = p->iop;
2706 if (p->fop)
2707 inode->i_fop = p->fop;
2708 ei->op = p->op;
2709 pid_update_inode(task, inode);
2710 d_set_d_op(dentry, &pid_dentry_operations);
2711 return d_splice_alias(inode, dentry);
2712}
2713
2714static struct dentry *proc_pident_lookup(struct inode *dir,
2715 struct dentry *dentry,
2716 const struct pid_entry *p,
2717 const struct pid_entry *end)
2718{
2719 struct task_struct *task = get_proc_task(dir);
2720 struct dentry *res = ERR_PTR(-ENOENT);
2721
2722 if (!task)
2723 goto out_no_task;
2724
2725 /*
2726 * Yes, it does not scale. And it should not. Don't add
2727 * new entries into /proc/<tgid>/ without very good reasons.
2728 */
2729 for (; p < end; p++) {
2730 if (p->len != dentry->d_name.len)
2731 continue;
2732 if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2733 res = proc_pident_instantiate(dentry, task, p);
2734 break;
2735 }
2736 }
2737 put_task_struct(task);
2738out_no_task:
2739 return res;
2740}
2741
2742static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2743 const struct pid_entry *ents, unsigned int nents)
2744{
2745 struct task_struct *task = get_proc_task(file_inode(file));
2746 const struct pid_entry *p;
2747
2748 if (!task)
2749 return -ENOENT;
2750
2751 if (!dir_emit_dots(file, ctx))
2752 goto out;
2753
2754 if (ctx->pos >= nents + 2)
2755 goto out;
2756
2757 for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2758 if (!proc_fill_cache(file, ctx, p->name, p->len,
2759 proc_pident_instantiate, task, p))
2760 break;
2761 ctx->pos++;
2762 }
2763out:
2764 put_task_struct(task);
2765 return 0;
2766}
2767
2768#ifdef CONFIG_SECURITY
2769static int proc_pid_attr_open(struct inode *inode, struct file *file)
2770{
2771 file->private_data = NULL;
2772 __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
2773 return 0;
2774}
2775
2776static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2777 size_t count, loff_t *ppos)
2778{
2779 struct inode * inode = file_inode(file);
2780 char *p = NULL;
2781 ssize_t length;
2782 struct task_struct *task = get_proc_task(inode);
2783
2784 if (!task)
2785 return -ESRCH;
2786
2787 length = security_getprocattr(task, PROC_I(inode)->op.lsmid,
2788 file->f_path.dentry->d_name.name,
2789 &p);
2790 put_task_struct(task);
2791 if (length > 0)
2792 length = simple_read_from_buffer(buf, count, ppos, p, length);
2793 kfree(p);
2794 return length;
2795}
2796
2797static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2798 size_t count, loff_t *ppos)
2799{
2800 struct inode * inode = file_inode(file);
2801 struct task_struct *task;
2802 void *page;
2803 int rv;
2804
2805 /* A task may only write when it was the opener. */
2806 if (file->private_data != current->mm)
2807 return -EPERM;
2808
2809 rcu_read_lock();
2810 task = pid_task(proc_pid(inode), PIDTYPE_PID);
2811 if (!task) {
2812 rcu_read_unlock();
2813 return -ESRCH;
2814 }
2815 /* A task may only write its own attributes. */
2816 if (current != task) {
2817 rcu_read_unlock();
2818 return -EACCES;
2819 }
2820 /* Prevent changes to overridden credentials. */
2821 if (current_cred() != current_real_cred()) {
2822 rcu_read_unlock();
2823 return -EBUSY;
2824 }
2825 rcu_read_unlock();
2826
2827 if (count > PAGE_SIZE)
2828 count = PAGE_SIZE;
2829
2830 /* No partial writes. */
2831 if (*ppos != 0)
2832 return -EINVAL;
2833
2834 page = memdup_user(buf, count);
2835 if (IS_ERR(page)) {
2836 rv = PTR_ERR(page);
2837 goto out;
2838 }
2839
2840 /* Guard against adverse ptrace interaction */
2841 rv = mutex_lock_interruptible(¤t->signal->cred_guard_mutex);
2842 if (rv < 0)
2843 goto out_free;
2844
2845 rv = security_setprocattr(PROC_I(inode)->op.lsmid,
2846 file->f_path.dentry->d_name.name, page,
2847 count);
2848 mutex_unlock(¤t->signal->cred_guard_mutex);
2849out_free:
2850 kfree(page);
2851out:
2852 return rv;
2853}
2854
2855static const struct file_operations proc_pid_attr_operations = {
2856 .open = proc_pid_attr_open,
2857 .read = proc_pid_attr_read,
2858 .write = proc_pid_attr_write,
2859 .llseek = generic_file_llseek,
2860 .release = mem_release,
2861};
2862
2863#define LSM_DIR_OPS(LSM) \
2864static int proc_##LSM##_attr_dir_iterate(struct file *filp, \
2865 struct dir_context *ctx) \
2866{ \
2867 return proc_pident_readdir(filp, ctx, \
2868 LSM##_attr_dir_stuff, \
2869 ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2870} \
2871\
2872static const struct file_operations proc_##LSM##_attr_dir_ops = { \
2873 .read = generic_read_dir, \
2874 .iterate_shared = proc_##LSM##_attr_dir_iterate, \
2875 .llseek = default_llseek, \
2876}; \
2877\
2878static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \
2879 struct dentry *dentry, unsigned int flags) \
2880{ \
2881 return proc_pident_lookup(dir, dentry, \
2882 LSM##_attr_dir_stuff, \
2883 LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2884} \
2885\
2886static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \
2887 .lookup = proc_##LSM##_attr_dir_lookup, \
2888 .getattr = pid_getattr, \
2889 .setattr = proc_setattr, \
2890}
2891
2892#ifdef CONFIG_SECURITY_SMACK
2893static const struct pid_entry smack_attr_dir_stuff[] = {
2894 ATTR(LSM_ID_SMACK, "current", 0666),
2895};
2896LSM_DIR_OPS(smack);
2897#endif
2898
2899#ifdef CONFIG_SECURITY_APPARMOR
2900static const struct pid_entry apparmor_attr_dir_stuff[] = {
2901 ATTR(LSM_ID_APPARMOR, "current", 0666),
2902 ATTR(LSM_ID_APPARMOR, "prev", 0444),
2903 ATTR(LSM_ID_APPARMOR, "exec", 0666),
2904};
2905LSM_DIR_OPS(apparmor);
2906#endif
2907
2908static const struct pid_entry attr_dir_stuff[] = {
2909 ATTR(LSM_ID_UNDEF, "current", 0666),
2910 ATTR(LSM_ID_UNDEF, "prev", 0444),
2911 ATTR(LSM_ID_UNDEF, "exec", 0666),
2912 ATTR(LSM_ID_UNDEF, "fscreate", 0666),
2913 ATTR(LSM_ID_UNDEF, "keycreate", 0666),
2914 ATTR(LSM_ID_UNDEF, "sockcreate", 0666),
2915#ifdef CONFIG_SECURITY_SMACK
2916 DIR("smack", 0555,
2917 proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops),
2918#endif
2919#ifdef CONFIG_SECURITY_APPARMOR
2920 DIR("apparmor", 0555,
2921 proc_apparmor_attr_dir_inode_ops, proc_apparmor_attr_dir_ops),
2922#endif
2923};
2924
2925static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2926{
2927 return proc_pident_readdir(file, ctx,
2928 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2929}
2930
2931static const struct file_operations proc_attr_dir_operations = {
2932 .read = generic_read_dir,
2933 .iterate_shared = proc_attr_dir_readdir,
2934 .llseek = generic_file_llseek,
2935};
2936
2937static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2938 struct dentry *dentry, unsigned int flags)
2939{
2940 return proc_pident_lookup(dir, dentry,
2941 attr_dir_stuff,
2942 attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff));
2943}
2944
2945static const struct inode_operations proc_attr_dir_inode_operations = {
2946 .lookup = proc_attr_dir_lookup,
2947 .getattr = pid_getattr,
2948 .setattr = proc_setattr,
2949};
2950
2951#endif
2952
2953#ifdef CONFIG_ELF_CORE
2954static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2955 size_t count, loff_t *ppos)
2956{
2957 struct task_struct *task = get_proc_task(file_inode(file));
2958 struct mm_struct *mm;
2959 char buffer[PROC_NUMBUF];
2960 size_t len;
2961 int ret;
2962
2963 if (!task)
2964 return -ESRCH;
2965
2966 ret = 0;
2967 mm = get_task_mm(task);
2968 if (mm) {
2969 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2970 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2971 MMF_DUMP_FILTER_SHIFT));
2972 mmput(mm);
2973 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2974 }
2975
2976 put_task_struct(task);
2977
2978 return ret;
2979}
2980
2981static ssize_t proc_coredump_filter_write(struct file *file,
2982 const char __user *buf,
2983 size_t count,
2984 loff_t *ppos)
2985{
2986 struct task_struct *task;
2987 struct mm_struct *mm;
2988 unsigned int val;
2989 int ret;
2990 int i;
2991 unsigned long mask;
2992
2993 ret = kstrtouint_from_user(buf, count, 0, &val);
2994 if (ret < 0)
2995 return ret;
2996
2997 ret = -ESRCH;
2998 task = get_proc_task(file_inode(file));
2999 if (!task)
3000 goto out_no_task;
3001
3002 mm = get_task_mm(task);
3003 if (!mm)
3004 goto out_no_mm;
3005 ret = 0;
3006
3007 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
3008 if (val & mask)
3009 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
3010 else
3011 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
3012 }
3013
3014 mmput(mm);
3015 out_no_mm:
3016 put_task_struct(task);
3017 out_no_task:
3018 if (ret < 0)
3019 return ret;
3020 return count;
3021}
3022
3023static const struct file_operations proc_coredump_filter_operations = {
3024 .read = proc_coredump_filter_read,
3025 .write = proc_coredump_filter_write,
3026 .llseek = generic_file_llseek,
3027};
3028#endif
3029
3030#ifdef CONFIG_TASK_IO_ACCOUNTING
3031static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
3032{
3033 struct task_io_accounting acct;
3034 int result;
3035
3036 result = down_read_killable(&task->signal->exec_update_lock);
3037 if (result)
3038 return result;
3039
3040 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
3041 result = -EACCES;
3042 goto out_unlock;
3043 }
3044
3045 if (whole) {
3046 struct signal_struct *sig = task->signal;
3047 struct task_struct *t;
3048 unsigned int seq = 1;
3049 unsigned long flags;
3050
3051 rcu_read_lock();
3052 do {
3053 seq++; /* 2 on the 1st/lockless path, otherwise odd */
3054 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
3055
3056 acct = sig->ioac;
3057 __for_each_thread(sig, t)
3058 task_io_accounting_add(&acct, &t->ioac);
3059
3060 } while (need_seqretry(&sig->stats_lock, seq));
3061 done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
3062 rcu_read_unlock();
3063 } else {
3064 acct = task->ioac;
3065 }
3066
3067 seq_printf(m,
3068 "rchar: %llu\n"
3069 "wchar: %llu\n"
3070 "syscr: %llu\n"
3071 "syscw: %llu\n"
3072 "read_bytes: %llu\n"
3073 "write_bytes: %llu\n"
3074 "cancelled_write_bytes: %llu\n",
3075 (unsigned long long)acct.rchar,
3076 (unsigned long long)acct.wchar,
3077 (unsigned long long)acct.syscr,
3078 (unsigned long long)acct.syscw,
3079 (unsigned long long)acct.read_bytes,
3080 (unsigned long long)acct.write_bytes,
3081 (unsigned long long)acct.cancelled_write_bytes);
3082 result = 0;
3083
3084out_unlock:
3085 up_read(&task->signal->exec_update_lock);
3086 return result;
3087}
3088
3089static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
3090 struct pid *pid, struct task_struct *task)
3091{
3092 return do_io_accounting(task, m, 0);
3093}
3094
3095static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
3096 struct pid *pid, struct task_struct *task)
3097{
3098 return do_io_accounting(task, m, 1);
3099}
3100#endif /* CONFIG_TASK_IO_ACCOUNTING */
3101
3102#ifdef CONFIG_USER_NS
3103static int proc_id_map_open(struct inode *inode, struct file *file,
3104 const struct seq_operations *seq_ops)
3105{
3106 struct user_namespace *ns = NULL;
3107 struct task_struct *task;
3108 struct seq_file *seq;
3109 int ret = -EINVAL;
3110
3111 task = get_proc_task(inode);
3112 if (task) {
3113 rcu_read_lock();
3114 ns = get_user_ns(task_cred_xxx(task, user_ns));
3115 rcu_read_unlock();
3116 put_task_struct(task);
3117 }
3118 if (!ns)
3119 goto err;
3120
3121 ret = seq_open(file, seq_ops);
3122 if (ret)
3123 goto err_put_ns;
3124
3125 seq = file->private_data;
3126 seq->private = ns;
3127
3128 return 0;
3129err_put_ns:
3130 put_user_ns(ns);
3131err:
3132 return ret;
3133}
3134
3135static int proc_id_map_release(struct inode *inode, struct file *file)
3136{
3137 struct seq_file *seq = file->private_data;
3138 struct user_namespace *ns = seq->private;
3139 put_user_ns(ns);
3140 return seq_release(inode, file);
3141}
3142
3143static int proc_uid_map_open(struct inode *inode, struct file *file)
3144{
3145 return proc_id_map_open(inode, file, &proc_uid_seq_operations);
3146}
3147
3148static int proc_gid_map_open(struct inode *inode, struct file *file)
3149{
3150 return proc_id_map_open(inode, file, &proc_gid_seq_operations);
3151}
3152
3153static int proc_projid_map_open(struct inode *inode, struct file *file)
3154{
3155 return proc_id_map_open(inode, file, &proc_projid_seq_operations);
3156}
3157
3158static const struct file_operations proc_uid_map_operations = {
3159 .open = proc_uid_map_open,
3160 .write = proc_uid_map_write,
3161 .read = seq_read,
3162 .llseek = seq_lseek,
3163 .release = proc_id_map_release,
3164};
3165
3166static const struct file_operations proc_gid_map_operations = {
3167 .open = proc_gid_map_open,
3168 .write = proc_gid_map_write,
3169 .read = seq_read,
3170 .llseek = seq_lseek,
3171 .release = proc_id_map_release,
3172};
3173
3174static const struct file_operations proc_projid_map_operations = {
3175 .open = proc_projid_map_open,
3176 .write = proc_projid_map_write,
3177 .read = seq_read,
3178 .llseek = seq_lseek,
3179 .release = proc_id_map_release,
3180};
3181
3182static int proc_setgroups_open(struct inode *inode, struct file *file)
3183{
3184 struct user_namespace *ns = NULL;
3185 struct task_struct *task;
3186 int ret;
3187
3188 ret = -ESRCH;
3189 task = get_proc_task(inode);
3190 if (task) {
3191 rcu_read_lock();
3192 ns = get_user_ns(task_cred_xxx(task, user_ns));
3193 rcu_read_unlock();
3194 put_task_struct(task);
3195 }
3196 if (!ns)
3197 goto err;
3198
3199 if (file->f_mode & FMODE_WRITE) {
3200 ret = -EACCES;
3201 if (!ns_capable(ns, CAP_SYS_ADMIN))
3202 goto err_put_ns;
3203 }
3204
3205 ret = single_open(file, &proc_setgroups_show, ns);
3206 if (ret)
3207 goto err_put_ns;
3208
3209 return 0;
3210err_put_ns:
3211 put_user_ns(ns);
3212err:
3213 return ret;
3214}
3215
3216static int proc_setgroups_release(struct inode *inode, struct file *file)
3217{
3218 struct seq_file *seq = file->private_data;
3219 struct user_namespace *ns = seq->private;
3220 int ret = single_release(inode, file);
3221 put_user_ns(ns);
3222 return ret;
3223}
3224
3225static const struct file_operations proc_setgroups_operations = {
3226 .open = proc_setgroups_open,
3227 .write = proc_setgroups_write,
3228 .read = seq_read,
3229 .llseek = seq_lseek,
3230 .release = proc_setgroups_release,
3231};
3232#endif /* CONFIG_USER_NS */
3233
3234static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
3235 struct pid *pid, struct task_struct *task)
3236{
3237 int err = lock_trace(task);
3238 if (!err) {
3239 seq_printf(m, "%08x\n", task->personality);
3240 unlock_trace(task);
3241 }
3242 return err;
3243}
3244
3245#ifdef CONFIG_LIVEPATCH
3246static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
3247 struct pid *pid, struct task_struct *task)
3248{
3249 seq_printf(m, "%d\n", task->patch_state);
3250 return 0;
3251}
3252#endif /* CONFIG_LIVEPATCH */
3253
3254#ifdef CONFIG_KSM
3255static int proc_pid_ksm_merging_pages(struct seq_file *m, struct pid_namespace *ns,
3256 struct pid *pid, struct task_struct *task)
3257{
3258 struct mm_struct *mm;
3259
3260 mm = get_task_mm(task);
3261 if (mm) {
3262 seq_printf(m, "%lu\n", mm->ksm_merging_pages);
3263 mmput(mm);
3264 }
3265
3266 return 0;
3267}
3268static int proc_pid_ksm_stat(struct seq_file *m, struct pid_namespace *ns,
3269 struct pid *pid, struct task_struct *task)
3270{
3271 struct mm_struct *mm;
3272
3273 mm = get_task_mm(task);
3274 if (mm) {
3275 seq_printf(m, "ksm_rmap_items %lu\n", mm->ksm_rmap_items);
3276 seq_printf(m, "ksm_zero_pages %ld\n", mm_ksm_zero_pages(mm));
3277 seq_printf(m, "ksm_merging_pages %lu\n", mm->ksm_merging_pages);
3278 seq_printf(m, "ksm_process_profit %ld\n", ksm_process_profit(mm));
3279 mmput(mm);
3280 }
3281
3282 return 0;
3283}
3284#endif /* CONFIG_KSM */
3285
3286#ifdef CONFIG_STACKLEAK_METRICS
3287static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
3288 struct pid *pid, struct task_struct *task)
3289{
3290 unsigned long prev_depth = THREAD_SIZE -
3291 (task->prev_lowest_stack & (THREAD_SIZE - 1));
3292 unsigned long depth = THREAD_SIZE -
3293 (task->lowest_stack & (THREAD_SIZE - 1));
3294
3295 seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
3296 prev_depth, depth);
3297 return 0;
3298}
3299#endif /* CONFIG_STACKLEAK_METRICS */
3300
3301/*
3302 * Thread groups
3303 */
3304static const struct file_operations proc_task_operations;
3305static const struct inode_operations proc_task_inode_operations;
3306
3307static const struct pid_entry tgid_base_stuff[] = {
3308 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
3309 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3310 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
3311 DIR("fdinfo", S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3312 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3313#ifdef CONFIG_NET
3314 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3315#endif
3316 REG("environ", S_IRUSR, proc_environ_operations),
3317 REG("auxv", S_IRUSR, proc_auxv_operations),
3318 ONE("status", S_IRUGO, proc_pid_status),
3319 ONE("personality", S_IRUSR, proc_pid_personality),
3320 ONE("limits", S_IRUGO, proc_pid_limits),
3321#ifdef CONFIG_SCHED_DEBUG
3322 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3323#endif
3324#ifdef CONFIG_SCHED_AUTOGROUP
3325 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3326#endif
3327#ifdef CONFIG_TIME_NS
3328 REG("timens_offsets", S_IRUGO|S_IWUSR, proc_timens_offsets_operations),
3329#endif
3330 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3331#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3332 ONE("syscall", S_IRUSR, proc_pid_syscall),
3333#endif
3334 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
3335 ONE("stat", S_IRUGO, proc_tgid_stat),
3336 ONE("statm", S_IRUGO, proc_pid_statm),
3337 REG("maps", S_IRUGO, proc_pid_maps_operations),
3338#ifdef CONFIG_NUMA
3339 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3340#endif
3341 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3342 LNK("cwd", proc_cwd_link),
3343 LNK("root", proc_root_link),
3344 LNK("exe", proc_exe_link),
3345 REG("mounts", S_IRUGO, proc_mounts_operations),
3346 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3347 REG("mountstats", S_IRUSR, proc_mountstats_operations),
3348#ifdef CONFIG_PROC_PAGE_MONITOR
3349 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3350 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
3351 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3352 REG("pagemap", S_IRUSR, proc_pagemap_operations),
3353#endif
3354#ifdef CONFIG_SECURITY
3355 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3356#endif
3357#ifdef CONFIG_KALLSYMS
3358 ONE("wchan", S_IRUGO, proc_pid_wchan),
3359#endif
3360#ifdef CONFIG_STACKTRACE
3361 ONE("stack", S_IRUSR, proc_pid_stack),
3362#endif
3363#ifdef CONFIG_SCHED_INFO
3364 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3365#endif
3366#ifdef CONFIG_LATENCYTOP
3367 REG("latency", S_IRUGO, proc_lstats_operations),
3368#endif
3369#ifdef CONFIG_PROC_PID_CPUSET
3370 ONE("cpuset", S_IRUGO, proc_cpuset_show),
3371#endif
3372#ifdef CONFIG_CGROUPS
3373 ONE("cgroup", S_IRUGO, proc_cgroup_show),
3374#endif
3375#ifdef CONFIG_PROC_CPU_RESCTRL
3376 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3377#endif
3378 ONE("oom_score", S_IRUGO, proc_oom_score),
3379 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3380 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3381#ifdef CONFIG_AUDIT
3382 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3383 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3384#endif
3385#ifdef CONFIG_FAULT_INJECTION
3386 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3387 REG("fail-nth", 0644, proc_fail_nth_operations),
3388#endif
3389#ifdef CONFIG_ELF_CORE
3390 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3391#endif
3392#ifdef CONFIG_TASK_IO_ACCOUNTING
3393 ONE("io", S_IRUSR, proc_tgid_io_accounting),
3394#endif
3395#ifdef CONFIG_USER_NS
3396 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3397 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3398 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3399 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
3400#endif
3401#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3402 REG("timers", S_IRUGO, proc_timers_operations),
3403#endif
3404 REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3405#ifdef CONFIG_LIVEPATCH
3406 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
3407#endif
3408#ifdef CONFIG_STACKLEAK_METRICS
3409 ONE("stack_depth", S_IRUGO, proc_stack_depth),
3410#endif
3411#ifdef CONFIG_PROC_PID_ARCH_STATUS
3412 ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3413#endif
3414#ifdef CONFIG_SECCOMP_CACHE_DEBUG
3415 ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
3416#endif
3417#ifdef CONFIG_KSM
3418 ONE("ksm_merging_pages", S_IRUSR, proc_pid_ksm_merging_pages),
3419 ONE("ksm_stat", S_IRUSR, proc_pid_ksm_stat),
3420#endif
3421};
3422
3423static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3424{
3425 return proc_pident_readdir(file, ctx,
3426 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3427}
3428
3429static const struct file_operations proc_tgid_base_operations = {
3430 .read = generic_read_dir,
3431 .iterate_shared = proc_tgid_base_readdir,
3432 .llseek = generic_file_llseek,
3433};
3434
3435struct pid *tgid_pidfd_to_pid(const struct file *file)
3436{
3437 if (file->f_op != &proc_tgid_base_operations)
3438 return ERR_PTR(-EBADF);
3439
3440 return proc_pid(file_inode(file));
3441}
3442
3443static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3444{
3445 return proc_pident_lookup(dir, dentry,
3446 tgid_base_stuff,
3447 tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff));
3448}
3449
3450static const struct inode_operations proc_tgid_base_inode_operations = {
3451 .lookup = proc_tgid_base_lookup,
3452 .getattr = pid_getattr,
3453 .setattr = proc_setattr,
3454 .permission = proc_pid_permission,
3455};
3456
3457/**
3458 * proc_flush_pid - Remove dcache entries for @pid from the /proc dcache.
3459 * @pid: pid that should be flushed.
3460 *
3461 * This function walks a list of inodes (that belong to any proc
3462 * filesystem) that are attached to the pid and flushes them from
3463 * the dentry cache.
3464 *
3465 * It is safe and reasonable to cache /proc entries for a task until
3466 * that task exits. After that they just clog up the dcache with
3467 * useless entries, possibly causing useful dcache entries to be
3468 * flushed instead. This routine is provided to flush those useless
3469 * dcache entries when a process is reaped.
3470 *
3471 * NOTE: This routine is just an optimization so it does not guarantee
3472 * that no dcache entries will exist after a process is reaped
3473 * it just makes it very unlikely that any will persist.
3474 */
3475
3476void proc_flush_pid(struct pid *pid)
3477{
3478 proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock);
3479}
3480
3481static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3482 struct task_struct *task, const void *ptr)
3483{
3484 struct inode *inode;
3485
3486 inode = proc_pid_make_base_inode(dentry->d_sb, task,
3487 S_IFDIR | S_IRUGO | S_IXUGO);
3488 if (!inode)
3489 return ERR_PTR(-ENOENT);
3490
3491 inode->i_op = &proc_tgid_base_inode_operations;
3492 inode->i_fop = &proc_tgid_base_operations;
3493 inode->i_flags|=S_IMMUTABLE;
3494
3495 set_nlink(inode, nlink_tgid);
3496 pid_update_inode(task, inode);
3497
3498 d_set_d_op(dentry, &pid_dentry_operations);
3499 return d_splice_alias(inode, dentry);
3500}
3501
3502struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags)
3503{
3504 struct task_struct *task;
3505 unsigned tgid;
3506 struct proc_fs_info *fs_info;
3507 struct pid_namespace *ns;
3508 struct dentry *result = ERR_PTR(-ENOENT);
3509
3510 tgid = name_to_int(&dentry->d_name);
3511 if (tgid == ~0U)
3512 goto out;
3513
3514 fs_info = proc_sb_info(dentry->d_sb);
3515 ns = fs_info->pid_ns;
3516 rcu_read_lock();
3517 task = find_task_by_pid_ns(tgid, ns);
3518 if (task)
3519 get_task_struct(task);
3520 rcu_read_unlock();
3521 if (!task)
3522 goto out;
3523
3524 /* Limit procfs to only ptraceable tasks */
3525 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) {
3526 if (!has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS))
3527 goto out_put_task;
3528 }
3529
3530 result = proc_pid_instantiate(dentry, task, NULL);
3531out_put_task:
3532 put_task_struct(task);
3533out:
3534 return result;
3535}
3536
3537/*
3538 * Find the first task with tgid >= tgid
3539 *
3540 */
3541struct tgid_iter {
3542 unsigned int tgid;
3543 struct task_struct *task;
3544};
3545static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3546{
3547 struct pid *pid;
3548
3549 if (iter.task)
3550 put_task_struct(iter.task);
3551 rcu_read_lock();
3552retry:
3553 iter.task = NULL;
3554 pid = find_ge_pid(iter.tgid, ns);
3555 if (pid) {
3556 iter.tgid = pid_nr_ns(pid, ns);
3557 iter.task = pid_task(pid, PIDTYPE_TGID);
3558 if (!iter.task) {
3559 iter.tgid += 1;
3560 goto retry;
3561 }
3562 get_task_struct(iter.task);
3563 }
3564 rcu_read_unlock();
3565 return iter;
3566}
3567
3568#define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3569
3570/* for the /proc/ directory itself, after non-process stuff has been done */
3571int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3572{
3573 struct tgid_iter iter;
3574 struct proc_fs_info *fs_info = proc_sb_info(file_inode(file)->i_sb);
3575 struct pid_namespace *ns = proc_pid_ns(file_inode(file)->i_sb);
3576 loff_t pos = ctx->pos;
3577
3578 if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3579 return 0;
3580
3581 if (pos == TGID_OFFSET - 2) {
3582 struct inode *inode = d_inode(fs_info->proc_self);
3583 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3584 return 0;
3585 ctx->pos = pos = pos + 1;
3586 }
3587 if (pos == TGID_OFFSET - 1) {
3588 struct inode *inode = d_inode(fs_info->proc_thread_self);
3589 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3590 return 0;
3591 ctx->pos = pos = pos + 1;
3592 }
3593 iter.tgid = pos - TGID_OFFSET;
3594 iter.task = NULL;
3595 for (iter = next_tgid(ns, iter);
3596 iter.task;
3597 iter.tgid += 1, iter = next_tgid(ns, iter)) {
3598 char name[10 + 1];
3599 unsigned int len;
3600
3601 cond_resched();
3602 if (!has_pid_permissions(fs_info, iter.task, HIDEPID_INVISIBLE))
3603 continue;
3604
3605 len = snprintf(name, sizeof(name), "%u", iter.tgid);
3606 ctx->pos = iter.tgid + TGID_OFFSET;
3607 if (!proc_fill_cache(file, ctx, name, len,
3608 proc_pid_instantiate, iter.task, NULL)) {
3609 put_task_struct(iter.task);
3610 return 0;
3611 }
3612 }
3613 ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3614 return 0;
3615}
3616
3617/*
3618 * proc_tid_comm_permission is a special permission function exclusively
3619 * used for the node /proc/<pid>/task/<tid>/comm.
3620 * It bypasses generic permission checks in the case where a task of the same
3621 * task group attempts to access the node.
3622 * The rationale behind this is that glibc and bionic access this node for
3623 * cross thread naming (pthread_set/getname_np(!self)). However, if
3624 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3625 * which locks out the cross thread naming implementation.
3626 * This function makes sure that the node is always accessible for members of
3627 * same thread group.
3628 */
3629static int proc_tid_comm_permission(struct mnt_idmap *idmap,
3630 struct inode *inode, int mask)
3631{
3632 bool is_same_tgroup;
3633 struct task_struct *task;
3634
3635 task = get_proc_task(inode);
3636 if (!task)
3637 return -ESRCH;
3638 is_same_tgroup = same_thread_group(current, task);
3639 put_task_struct(task);
3640
3641 if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3642 /* This file (/proc/<pid>/task/<tid>/comm) can always be
3643 * read or written by the members of the corresponding
3644 * thread group.
3645 */
3646 return 0;
3647 }
3648
3649 return generic_permission(&nop_mnt_idmap, inode, mask);
3650}
3651
3652static const struct inode_operations proc_tid_comm_inode_operations = {
3653 .setattr = proc_setattr,
3654 .permission = proc_tid_comm_permission,
3655};
3656
3657/*
3658 * Tasks
3659 */
3660static const struct pid_entry tid_base_stuff[] = {
3661 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3662 DIR("fdinfo", S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3663 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3664#ifdef CONFIG_NET
3665 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3666#endif
3667 REG("environ", S_IRUSR, proc_environ_operations),
3668 REG("auxv", S_IRUSR, proc_auxv_operations),
3669 ONE("status", S_IRUGO, proc_pid_status),
3670 ONE("personality", S_IRUSR, proc_pid_personality),
3671 ONE("limits", S_IRUGO, proc_pid_limits),
3672#ifdef CONFIG_SCHED_DEBUG
3673 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3674#endif
3675 NOD("comm", S_IFREG|S_IRUGO|S_IWUSR,
3676 &proc_tid_comm_inode_operations,
3677 &proc_pid_set_comm_operations, {}),
3678#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3679 ONE("syscall", S_IRUSR, proc_pid_syscall),
3680#endif
3681 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
3682 ONE("stat", S_IRUGO, proc_tid_stat),
3683 ONE("statm", S_IRUGO, proc_pid_statm),
3684 REG("maps", S_IRUGO, proc_pid_maps_operations),
3685#ifdef CONFIG_PROC_CHILDREN
3686 REG("children", S_IRUGO, proc_tid_children_operations),
3687#endif
3688#ifdef CONFIG_NUMA
3689 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3690#endif
3691 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3692 LNK("cwd", proc_cwd_link),
3693 LNK("root", proc_root_link),
3694 LNK("exe", proc_exe_link),
3695 REG("mounts", S_IRUGO, proc_mounts_operations),
3696 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3697#ifdef CONFIG_PROC_PAGE_MONITOR
3698 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3699 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
3700 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3701 REG("pagemap", S_IRUSR, proc_pagemap_operations),
3702#endif
3703#ifdef CONFIG_SECURITY
3704 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3705#endif
3706#ifdef CONFIG_KALLSYMS
3707 ONE("wchan", S_IRUGO, proc_pid_wchan),
3708#endif
3709#ifdef CONFIG_STACKTRACE
3710 ONE("stack", S_IRUSR, proc_pid_stack),
3711#endif
3712#ifdef CONFIG_SCHED_INFO
3713 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3714#endif
3715#ifdef CONFIG_LATENCYTOP
3716 REG("latency", S_IRUGO, proc_lstats_operations),
3717#endif
3718#ifdef CONFIG_PROC_PID_CPUSET
3719 ONE("cpuset", S_IRUGO, proc_cpuset_show),
3720#endif
3721#ifdef CONFIG_CGROUPS
3722 ONE("cgroup", S_IRUGO, proc_cgroup_show),
3723#endif
3724#ifdef CONFIG_PROC_CPU_RESCTRL
3725 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3726#endif
3727 ONE("oom_score", S_IRUGO, proc_oom_score),
3728 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3729 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3730#ifdef CONFIG_AUDIT
3731 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3732 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3733#endif
3734#ifdef CONFIG_FAULT_INJECTION
3735 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3736 REG("fail-nth", 0644, proc_fail_nth_operations),
3737#endif
3738#ifdef CONFIG_TASK_IO_ACCOUNTING
3739 ONE("io", S_IRUSR, proc_tid_io_accounting),
3740#endif
3741#ifdef CONFIG_USER_NS
3742 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3743 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3744 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3745 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
3746#endif
3747#ifdef CONFIG_LIVEPATCH
3748 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
3749#endif
3750#ifdef CONFIG_PROC_PID_ARCH_STATUS
3751 ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3752#endif
3753#ifdef CONFIG_SECCOMP_CACHE_DEBUG
3754 ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
3755#endif
3756#ifdef CONFIG_KSM
3757 ONE("ksm_merging_pages", S_IRUSR, proc_pid_ksm_merging_pages),
3758 ONE("ksm_stat", S_IRUSR, proc_pid_ksm_stat),
3759#endif
3760};
3761
3762static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3763{
3764 return proc_pident_readdir(file, ctx,
3765 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3766}
3767
3768static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3769{
3770 return proc_pident_lookup(dir, dentry,
3771 tid_base_stuff,
3772 tid_base_stuff + ARRAY_SIZE(tid_base_stuff));
3773}
3774
3775static const struct file_operations proc_tid_base_operations = {
3776 .read = generic_read_dir,
3777 .iterate_shared = proc_tid_base_readdir,
3778 .llseek = generic_file_llseek,
3779};
3780
3781static const struct inode_operations proc_tid_base_inode_operations = {
3782 .lookup = proc_tid_base_lookup,
3783 .getattr = pid_getattr,
3784 .setattr = proc_setattr,
3785};
3786
3787static struct dentry *proc_task_instantiate(struct dentry *dentry,
3788 struct task_struct *task, const void *ptr)
3789{
3790 struct inode *inode;
3791 inode = proc_pid_make_base_inode(dentry->d_sb, task,
3792 S_IFDIR | S_IRUGO | S_IXUGO);
3793 if (!inode)
3794 return ERR_PTR(-ENOENT);
3795
3796 inode->i_op = &proc_tid_base_inode_operations;
3797 inode->i_fop = &proc_tid_base_operations;
3798 inode->i_flags |= S_IMMUTABLE;
3799
3800 set_nlink(inode, nlink_tid);
3801 pid_update_inode(task, inode);
3802
3803 d_set_d_op(dentry, &pid_dentry_operations);
3804 return d_splice_alias(inode, dentry);
3805}
3806
3807static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3808{
3809 struct task_struct *task;
3810 struct task_struct *leader = get_proc_task(dir);
3811 unsigned tid;
3812 struct proc_fs_info *fs_info;
3813 struct pid_namespace *ns;
3814 struct dentry *result = ERR_PTR(-ENOENT);
3815
3816 if (!leader)
3817 goto out_no_task;
3818
3819 tid = name_to_int(&dentry->d_name);
3820 if (tid == ~0U)
3821 goto out;
3822
3823 fs_info = proc_sb_info(dentry->d_sb);
3824 ns = fs_info->pid_ns;
3825 rcu_read_lock();
3826 task = find_task_by_pid_ns(tid, ns);
3827 if (task)
3828 get_task_struct(task);
3829 rcu_read_unlock();
3830 if (!task)
3831 goto out;
3832 if (!same_thread_group(leader, task))
3833 goto out_drop_task;
3834
3835 result = proc_task_instantiate(dentry, task, NULL);
3836out_drop_task:
3837 put_task_struct(task);
3838out:
3839 put_task_struct(leader);
3840out_no_task:
3841 return result;
3842}
3843
3844/*
3845 * Find the first tid of a thread group to return to user space.
3846 *
3847 * Usually this is just the thread group leader, but if the users
3848 * buffer was too small or there was a seek into the middle of the
3849 * directory we have more work todo.
3850 *
3851 * In the case of a short read we start with find_task_by_pid.
3852 *
3853 * In the case of a seek we start with the leader and walk nr
3854 * threads past it.
3855 */
3856static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3857 struct pid_namespace *ns)
3858{
3859 struct task_struct *pos, *task;
3860 unsigned long nr = f_pos;
3861
3862 if (nr != f_pos) /* 32bit overflow? */
3863 return NULL;
3864
3865 rcu_read_lock();
3866 task = pid_task(pid, PIDTYPE_PID);
3867 if (!task)
3868 goto fail;
3869
3870 /* Attempt to start with the tid of a thread */
3871 if (tid && nr) {
3872 pos = find_task_by_pid_ns(tid, ns);
3873 if (pos && same_thread_group(pos, task))
3874 goto found;
3875 }
3876
3877 /* If nr exceeds the number of threads there is nothing todo */
3878 if (nr >= get_nr_threads(task))
3879 goto fail;
3880
3881 /* If we haven't found our starting place yet start
3882 * with the leader and walk nr threads forward.
3883 */
3884 for_each_thread(task, pos) {
3885 if (!nr--)
3886 goto found;
3887 }
3888fail:
3889 pos = NULL;
3890 goto out;
3891found:
3892 get_task_struct(pos);
3893out:
3894 rcu_read_unlock();
3895 return pos;
3896}
3897
3898/*
3899 * Find the next thread in the thread list.
3900 * Return NULL if there is an error or no next thread.
3901 *
3902 * The reference to the input task_struct is released.
3903 */
3904static struct task_struct *next_tid(struct task_struct *start)
3905{
3906 struct task_struct *pos = NULL;
3907 rcu_read_lock();
3908 if (pid_alive(start)) {
3909 pos = __next_thread(start);
3910 if (pos)
3911 get_task_struct(pos);
3912 }
3913 rcu_read_unlock();
3914 put_task_struct(start);
3915 return pos;
3916}
3917
3918/* for the /proc/TGID/task/ directories */
3919static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3920{
3921 struct inode *inode = file_inode(file);
3922 struct task_struct *task;
3923 struct pid_namespace *ns;
3924 int tid;
3925
3926 if (proc_inode_is_dead(inode))
3927 return -ENOENT;
3928
3929 if (!dir_emit_dots(file, ctx))
3930 return 0;
3931
3932 /* We cache the tgid value that the last readdir call couldn't
3933 * return and lseek resets it to 0.
3934 */
3935 ns = proc_pid_ns(inode->i_sb);
3936 tid = (int)(intptr_t)file->private_data;
3937 file->private_data = NULL;
3938 for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3939 task;
3940 task = next_tid(task), ctx->pos++) {
3941 char name[10 + 1];
3942 unsigned int len;
3943
3944 tid = task_pid_nr_ns(task, ns);
3945 if (!tid)
3946 continue; /* The task has just exited. */
3947 len = snprintf(name, sizeof(name), "%u", tid);
3948 if (!proc_fill_cache(file, ctx, name, len,
3949 proc_task_instantiate, task, NULL)) {
3950 /* returning this tgid failed, save it as the first
3951 * pid for the next readir call */
3952 file->private_data = (void *)(intptr_t)tid;
3953 put_task_struct(task);
3954 break;
3955 }
3956 }
3957
3958 return 0;
3959}
3960
3961static int proc_task_getattr(struct mnt_idmap *idmap,
3962 const struct path *path, struct kstat *stat,
3963 u32 request_mask, unsigned int query_flags)
3964{
3965 struct inode *inode = d_inode(path->dentry);
3966 struct task_struct *p = get_proc_task(inode);
3967 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
3968
3969 if (p) {
3970 stat->nlink += get_nr_threads(p);
3971 put_task_struct(p);
3972 }
3973
3974 return 0;
3975}
3976
3977/*
3978 * proc_task_readdir() set @file->private_data to a positive integer
3979 * value, so casting that to u64 is safe. generic_llseek_cookie() will
3980 * set @cookie to 0, so casting to an int is safe. The WARN_ON_ONCE() is
3981 * here to catch any unexpected change in behavior either in
3982 * proc_task_readdir() or generic_llseek_cookie().
3983 */
3984static loff_t proc_dir_llseek(struct file *file, loff_t offset, int whence)
3985{
3986 u64 cookie = (u64)(intptr_t)file->private_data;
3987 loff_t off;
3988
3989 off = generic_llseek_cookie(file, offset, whence, &cookie);
3990 WARN_ON_ONCE(cookie > INT_MAX);
3991 file->private_data = (void *)(intptr_t)cookie; /* serialized by f_pos_lock */
3992 return off;
3993}
3994
3995static const struct inode_operations proc_task_inode_operations = {
3996 .lookup = proc_task_lookup,
3997 .getattr = proc_task_getattr,
3998 .setattr = proc_setattr,
3999 .permission = proc_pid_permission,
4000};
4001
4002static const struct file_operations proc_task_operations = {
4003 .read = generic_read_dir,
4004 .iterate_shared = proc_task_readdir,
4005 .llseek = proc_dir_llseek,
4006};
4007
4008void __init set_proc_pid_nlink(void)
4009{
4010 nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
4011 nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
4012}