Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/proc/base.c
   4 *
   5 *  Copyright (C) 1991, 1992 Linus Torvalds
   6 *
   7 *  proc base directory handling functions
   8 *
   9 *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
  10 *  Instead of using magical inumbers to determine the kind of object
  11 *  we allocate and fill in-core inodes upon lookup. They don't even
  12 *  go into icache. We cache the reference to task_struct upon lookup too.
  13 *  Eventually it should become a filesystem in its own. We don't use the
  14 *  rest of procfs anymore.
  15 *
  16 *
  17 *  Changelog:
  18 *  17-Jan-2005
  19 *  Allan Bezerra
  20 *  Bruna Moreira <bruna.moreira@indt.org.br>
  21 *  Edjard Mota <edjard.mota@indt.org.br>
  22 *  Ilias Biris <ilias.biris@indt.org.br>
  23 *  Mauricio Lin <mauricio.lin@indt.org.br>
  24 *
  25 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  26 *
  27 *  A new process specific entry (smaps) included in /proc. It shows the
  28 *  size of rss for each memory area. The maps entry lacks information
  29 *  about physical memory size (rss) for each mapped file, i.e.,
  30 *  rss information for executables and library files.
  31 *  This additional information is useful for any tools that need to know
  32 *  about physical memory consumption for a process specific library.
  33 *
  34 *  Changelog:
  35 *  21-Feb-2005
  36 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  37 *  Pud inclusion in the page table walking.
  38 *
  39 *  ChangeLog:
  40 *  10-Mar-2005
  41 *  10LE Instituto Nokia de Tecnologia - INdT:
  42 *  A better way to walks through the page table as suggested by Hugh Dickins.
  43 *
  44 *  Simo Piiroinen <simo.piiroinen@nokia.com>:
  45 *  Smaps information related to shared, private, clean and dirty pages.
  46 *
  47 *  Paul Mundt <paul.mundt@nokia.com>:
  48 *  Overall revision about smaps.
  49 */
  50
  51#include <linux/uaccess.h>
  52
  53#include <linux/errno.h>
  54#include <linux/time.h>
  55#include <linux/proc_fs.h>
  56#include <linux/stat.h>
  57#include <linux/task_io_accounting_ops.h>
  58#include <linux/init.h>
  59#include <linux/capability.h>
  60#include <linux/file.h>
  61#include <linux/fdtable.h>
  62#include <linux/generic-radix-tree.h>
  63#include <linux/string.h>
  64#include <linux/seq_file.h>
  65#include <linux/namei.h>
  66#include <linux/mnt_namespace.h>
  67#include <linux/mm.h>
  68#include <linux/swap.h>
  69#include <linux/rcupdate.h>
  70#include <linux/kallsyms.h>
  71#include <linux/stacktrace.h>
  72#include <linux/resource.h>
  73#include <linux/module.h>
  74#include <linux/mount.h>
  75#include <linux/security.h>
  76#include <linux/ptrace.h>
  77#include <linux/printk.h>
  78#include <linux/cache.h>
  79#include <linux/cgroup.h>
  80#include <linux/cpuset.h>
  81#include <linux/audit.h>
  82#include <linux/poll.h>
  83#include <linux/nsproxy.h>
  84#include <linux/oom.h>
  85#include <linux/elf.h>
  86#include <linux/pid_namespace.h>
  87#include <linux/user_namespace.h>
 
  88#include <linux/fs_struct.h>
  89#include <linux/slab.h>
  90#include <linux/sched/autogroup.h>
  91#include <linux/sched/mm.h>
  92#include <linux/sched/coredump.h>
  93#include <linux/sched/debug.h>
  94#include <linux/sched/stat.h>
  95#include <linux/posix-timers.h>
  96#include <linux/time_namespace.h>
  97#include <linux/resctrl.h>
  98#include <linux/cn_proc.h>
 
 
  99#include <trace/events/oom.h>
 100#include "internal.h"
 101#include "fd.h"
 102
 103#include "../../lib/kstrtox.h"
 104
 105/* NOTE:
 106 *	Implementing inode permission operations in /proc is almost
 107 *	certainly an error.  Permission checks need to happen during
 108 *	each system call not at open time.  The reason is that most of
 109 *	what we wish to check for permissions in /proc varies at runtime.
 110 *
 111 *	The classic example of a problem is opening file descriptors
 112 *	in /proc for a task before it execs a suid executable.
 113 */
 114
 115static u8 nlink_tid __ro_after_init;
 116static u8 nlink_tgid __ro_after_init;
 117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 118struct pid_entry {
 119	const char *name;
 120	unsigned int len;
 121	umode_t mode;
 122	const struct inode_operations *iop;
 123	const struct file_operations *fop;
 124	union proc_op op;
 125};
 126
 127#define NOD(NAME, MODE, IOP, FOP, OP) {			\
 128	.name = (NAME),					\
 129	.len  = sizeof(NAME) - 1,			\
 130	.mode = MODE,					\
 131	.iop  = IOP,					\
 132	.fop  = FOP,					\
 133	.op   = OP,					\
 134}
 135
 136#define DIR(NAME, MODE, iops, fops)	\
 137	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
 138#define LNK(NAME, get_link)					\
 139	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
 140		&proc_pid_link_inode_operations, NULL,		\
 141		{ .proc_get_link = get_link } )
 142#define REG(NAME, MODE, fops)				\
 143	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
 144#define ONE(NAME, MODE, show)				\
 145	NOD(NAME, (S_IFREG|(MODE)),			\
 146		NULL, &proc_single_file_operations,	\
 147		{ .proc_show = show } )
 148#define ATTR(LSM, NAME, MODE)				\
 149	NOD(NAME, (S_IFREG|(MODE)),			\
 150		NULL, &proc_pid_attr_operations,	\
 151		{ .lsm = LSM })
 152
 153/*
 154 * Count the number of hardlinks for the pid_entry table, excluding the .
 155 * and .. links.
 156 */
 157static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
 158	unsigned int n)
 159{
 160	unsigned int i;
 161	unsigned int count;
 162
 163	count = 2;
 164	for (i = 0; i < n; ++i) {
 165		if (S_ISDIR(entries[i].mode))
 166			++count;
 167	}
 168
 169	return count;
 170}
 171
 172static int get_task_root(struct task_struct *task, struct path *root)
 173{
 174	int result = -ENOENT;
 175
 176	task_lock(task);
 177	if (task->fs) {
 178		get_fs_root(task->fs, root);
 179		result = 0;
 180	}
 181	task_unlock(task);
 182	return result;
 183}
 184
 185static int proc_cwd_link(struct dentry *dentry, struct path *path)
 186{
 187	struct task_struct *task = get_proc_task(d_inode(dentry));
 188	int result = -ENOENT;
 189
 190	if (task) {
 191		task_lock(task);
 192		if (task->fs) {
 193			get_fs_pwd(task->fs, path);
 194			result = 0;
 195		}
 196		task_unlock(task);
 197		put_task_struct(task);
 198	}
 199	return result;
 200}
 201
 202static int proc_root_link(struct dentry *dentry, struct path *path)
 203{
 204	struct task_struct *task = get_proc_task(d_inode(dentry));
 205	int result = -ENOENT;
 206
 207	if (task) {
 208		result = get_task_root(task, path);
 209		put_task_struct(task);
 210	}
 211	return result;
 212}
 213
 214/*
 215 * If the user used setproctitle(), we just get the string from
 216 * user space at arg_start, and limit it to a maximum of one page.
 217 */
 218static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf,
 219				size_t count, unsigned long pos,
 220				unsigned long arg_start)
 221{
 222	char *page;
 223	int ret, got;
 224
 225	if (pos >= PAGE_SIZE)
 226		return 0;
 227
 228	page = (char *)__get_free_page(GFP_KERNEL);
 229	if (!page)
 230		return -ENOMEM;
 231
 232	ret = 0;
 233	got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON);
 234	if (got > 0) {
 235		int len = strnlen(page, got);
 236
 237		/* Include the NUL character if it was found */
 238		if (len < got)
 239			len++;
 240
 241		if (len > pos) {
 242			len -= pos;
 243			if (len > count)
 244				len = count;
 245			len -= copy_to_user(buf, page+pos, len);
 246			if (!len)
 247				len = -EFAULT;
 248			ret = len;
 249		}
 250	}
 251	free_page((unsigned long)page);
 252	return ret;
 253}
 254
 255static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
 256			      size_t count, loff_t *ppos)
 257{
 258	unsigned long arg_start, arg_end, env_start, env_end;
 259	unsigned long pos, len;
 260	char *page, c;
 261
 262	/* Check if process spawned far enough to have cmdline. */
 263	if (!mm->env_end)
 264		return 0;
 265
 266	spin_lock(&mm->arg_lock);
 267	arg_start = mm->arg_start;
 268	arg_end = mm->arg_end;
 269	env_start = mm->env_start;
 270	env_end = mm->env_end;
 271	spin_unlock(&mm->arg_lock);
 272
 273	if (arg_start >= arg_end)
 274		return 0;
 275
 276	/*
 277	 * We allow setproctitle() to overwrite the argument
 278	 * strings, and overflow past the original end. But
 279	 * only when it overflows into the environment area.
 280	 */
 281	if (env_start != arg_end || env_end < env_start)
 282		env_start = env_end = arg_end;
 283	len = env_end - arg_start;
 284
 285	/* We're not going to care if "*ppos" has high bits set */
 286	pos = *ppos;
 287	if (pos >= len)
 288		return 0;
 289	if (count > len - pos)
 290		count = len - pos;
 291	if (!count)
 292		return 0;
 293
 294	/*
 295	 * Magical special case: if the argv[] end byte is not
 296	 * zero, the user has overwritten it with setproctitle(3).
 297	 *
 298	 * Possible future enhancement: do this only once when
 299	 * pos is 0, and set a flag in the 'struct file'.
 300	 */
 301	if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c)
 302		return get_mm_proctitle(mm, buf, count, pos, arg_start);
 303
 304	/*
 305	 * For the non-setproctitle() case we limit things strictly
 306	 * to the [arg_start, arg_end[ range.
 307	 */
 308	pos += arg_start;
 309	if (pos < arg_start || pos >= arg_end)
 310		return 0;
 311	if (count > arg_end - pos)
 312		count = arg_end - pos;
 313
 314	page = (char *)__get_free_page(GFP_KERNEL);
 315	if (!page)
 316		return -ENOMEM;
 317
 318	len = 0;
 319	while (count) {
 320		int got;
 321		size_t size = min_t(size_t, PAGE_SIZE, count);
 322
 323		got = access_remote_vm(mm, pos, page, size, FOLL_ANON);
 324		if (got <= 0)
 325			break;
 326		got -= copy_to_user(buf, page, got);
 327		if (unlikely(!got)) {
 328			if (!len)
 329				len = -EFAULT;
 330			break;
 331		}
 332		pos += got;
 333		buf += got;
 334		len += got;
 335		count -= got;
 336	}
 337
 338	free_page((unsigned long)page);
 339	return len;
 340}
 341
 342static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
 343				size_t count, loff_t *pos)
 344{
 345	struct mm_struct *mm;
 346	ssize_t ret;
 347
 348	mm = get_task_mm(tsk);
 349	if (!mm)
 350		return 0;
 351
 352	ret = get_mm_cmdline(mm, buf, count, pos);
 353	mmput(mm);
 354	return ret;
 355}
 356
 357static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
 358				     size_t count, loff_t *pos)
 359{
 360	struct task_struct *tsk;
 361	ssize_t ret;
 362
 363	BUG_ON(*pos < 0);
 364
 365	tsk = get_proc_task(file_inode(file));
 366	if (!tsk)
 367		return -ESRCH;
 368	ret = get_task_cmdline(tsk, buf, count, pos);
 369	put_task_struct(tsk);
 370	if (ret > 0)
 371		*pos += ret;
 372	return ret;
 373}
 374
 375static const struct file_operations proc_pid_cmdline_ops = {
 376	.read	= proc_pid_cmdline_read,
 377	.llseek	= generic_file_llseek,
 378};
 379
 380#ifdef CONFIG_KALLSYMS
 381/*
 382 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
 383 * Returns the resolved symbol.  If that fails, simply return the address.
 384 */
 385static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
 386			  struct pid *pid, struct task_struct *task)
 387{
 388	unsigned long wchan;
 389	char symname[KSYM_NAME_LEN];
 390
 391	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
 392		goto print0;
 393
 394	wchan = get_wchan(task);
 395	if (wchan && !lookup_symbol_name(wchan, symname)) {
 396		seq_puts(m, symname);
 397		return 0;
 398	}
 399
 400print0:
 401	seq_putc(m, '0');
 402	return 0;
 403}
 404#endif /* CONFIG_KALLSYMS */
 405
 406static int lock_trace(struct task_struct *task)
 407{
 408	int err = down_read_killable(&task->signal->exec_update_lock);
 409	if (err)
 410		return err;
 411	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
 412		up_read(&task->signal->exec_update_lock);
 413		return -EPERM;
 414	}
 415	return 0;
 416}
 417
 418static void unlock_trace(struct task_struct *task)
 419{
 420	up_read(&task->signal->exec_update_lock);
 421}
 422
 423#ifdef CONFIG_STACKTRACE
 424
 425#define MAX_STACK_TRACE_DEPTH	64
 426
 427static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
 428			  struct pid *pid, struct task_struct *task)
 429{
 430	unsigned long *entries;
 431	int err;
 432
 433	/*
 434	 * The ability to racily run the kernel stack unwinder on a running task
 435	 * and then observe the unwinder output is scary; while it is useful for
 436	 * debugging kernel issues, it can also allow an attacker to leak kernel
 437	 * stack contents.
 438	 * Doing this in a manner that is at least safe from races would require
 439	 * some work to ensure that the remote task can not be scheduled; and
 440	 * even then, this would still expose the unwinder as local attack
 441	 * surface.
 442	 * Therefore, this interface is restricted to root.
 443	 */
 444	if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
 445		return -EACCES;
 446
 447	entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
 448				GFP_KERNEL);
 449	if (!entries)
 450		return -ENOMEM;
 451
 452	err = lock_trace(task);
 453	if (!err) {
 454		unsigned int i, nr_entries;
 455
 456		nr_entries = stack_trace_save_tsk(task, entries,
 457						  MAX_STACK_TRACE_DEPTH, 0);
 458
 459		for (i = 0; i < nr_entries; i++) {
 460			seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
 461		}
 462
 463		unlock_trace(task);
 464	}
 465	kfree(entries);
 466
 467	return err;
 468}
 469#endif
 470
 471#ifdef CONFIG_SCHED_INFO
 472/*
 473 * Provides /proc/PID/schedstat
 474 */
 475static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
 476			      struct pid *pid, struct task_struct *task)
 477{
 478	if (unlikely(!sched_info_on()))
 479		seq_puts(m, "0 0 0\n");
 480	else
 481		seq_printf(m, "%llu %llu %lu\n",
 482		   (unsigned long long)task->se.sum_exec_runtime,
 483		   (unsigned long long)task->sched_info.run_delay,
 484		   task->sched_info.pcount);
 485
 486	return 0;
 487}
 488#endif
 489
 490#ifdef CONFIG_LATENCYTOP
 491static int lstats_show_proc(struct seq_file *m, void *v)
 492{
 493	int i;
 494	struct inode *inode = m->private;
 495	struct task_struct *task = get_proc_task(inode);
 496
 497	if (!task)
 498		return -ESRCH;
 499	seq_puts(m, "Latency Top version : v0.1\n");
 500	for (i = 0; i < LT_SAVECOUNT; i++) {
 501		struct latency_record *lr = &task->latency_record[i];
 502		if (lr->backtrace[0]) {
 503			int q;
 504			seq_printf(m, "%i %li %li",
 505				   lr->count, lr->time, lr->max);
 506			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
 507				unsigned long bt = lr->backtrace[q];
 508
 509				if (!bt)
 510					break;
 511				seq_printf(m, " %ps", (void *)bt);
 512			}
 513			seq_putc(m, '\n');
 514		}
 515
 516	}
 517	put_task_struct(task);
 518	return 0;
 519}
 520
 521static int lstats_open(struct inode *inode, struct file *file)
 522{
 523	return single_open(file, lstats_show_proc, inode);
 524}
 525
 526static ssize_t lstats_write(struct file *file, const char __user *buf,
 527			    size_t count, loff_t *offs)
 528{
 529	struct task_struct *task = get_proc_task(file_inode(file));
 530
 531	if (!task)
 532		return -ESRCH;
 533	clear_tsk_latency_tracing(task);
 534	put_task_struct(task);
 535
 536	return count;
 537}
 538
 539static const struct file_operations proc_lstats_operations = {
 540	.open		= lstats_open,
 541	.read		= seq_read,
 542	.write		= lstats_write,
 543	.llseek		= seq_lseek,
 544	.release	= single_release,
 545};
 546
 547#endif
 548
 549static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
 550			  struct pid *pid, struct task_struct *task)
 551{
 552	unsigned long totalpages = totalram_pages() + total_swap_pages;
 553	unsigned long points = 0;
 554	long badness;
 555
 556	badness = oom_badness(task, totalpages);
 557	/*
 558	 * Special case OOM_SCORE_ADJ_MIN for all others scale the
 559	 * badness value into [0, 2000] range which we have been
 560	 * exporting for a long time so userspace might depend on it.
 561	 */
 562	if (badness != LONG_MIN)
 563		points = (1000 + badness * 1000 / (long)totalpages) * 2 / 3;
 564
 565	seq_printf(m, "%lu\n", points);
 566
 567	return 0;
 568}
 569
 570struct limit_names {
 571	const char *name;
 572	const char *unit;
 573};
 574
 575static const struct limit_names lnames[RLIM_NLIMITS] = {
 576	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
 577	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
 578	[RLIMIT_DATA] = {"Max data size", "bytes"},
 579	[RLIMIT_STACK] = {"Max stack size", "bytes"},
 580	[RLIMIT_CORE] = {"Max core file size", "bytes"},
 581	[RLIMIT_RSS] = {"Max resident set", "bytes"},
 582	[RLIMIT_NPROC] = {"Max processes", "processes"},
 583	[RLIMIT_NOFILE] = {"Max open files", "files"},
 584	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
 585	[RLIMIT_AS] = {"Max address space", "bytes"},
 586	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
 587	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
 588	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
 589	[RLIMIT_NICE] = {"Max nice priority", NULL},
 590	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
 591	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
 592};
 593
 594/* Display limits for a process */
 595static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
 596			   struct pid *pid, struct task_struct *task)
 597{
 598	unsigned int i;
 599	unsigned long flags;
 600
 601	struct rlimit rlim[RLIM_NLIMITS];
 602
 603	if (!lock_task_sighand(task, &flags))
 604		return 0;
 605	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
 606	unlock_task_sighand(task, &flags);
 607
 608	/*
 609	 * print the file header
 610	 */
 611	seq_puts(m, "Limit                     "
 612		"Soft Limit           "
 613		"Hard Limit           "
 614		"Units     \n");
 615
 616	for (i = 0; i < RLIM_NLIMITS; i++) {
 617		if (rlim[i].rlim_cur == RLIM_INFINITY)
 618			seq_printf(m, "%-25s %-20s ",
 619				   lnames[i].name, "unlimited");
 620		else
 621			seq_printf(m, "%-25s %-20lu ",
 622				   lnames[i].name, rlim[i].rlim_cur);
 623
 624		if (rlim[i].rlim_max == RLIM_INFINITY)
 625			seq_printf(m, "%-20s ", "unlimited");
 626		else
 627			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
 628
 629		if (lnames[i].unit)
 630			seq_printf(m, "%-10s\n", lnames[i].unit);
 631		else
 632			seq_putc(m, '\n');
 633	}
 634
 635	return 0;
 636}
 637
 638#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
 639static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
 640			    struct pid *pid, struct task_struct *task)
 641{
 642	struct syscall_info info;
 643	u64 *args = &info.data.args[0];
 644	int res;
 645
 646	res = lock_trace(task);
 647	if (res)
 648		return res;
 649
 650	if (task_current_syscall(task, &info))
 651		seq_puts(m, "running\n");
 652	else if (info.data.nr < 0)
 653		seq_printf(m, "%d 0x%llx 0x%llx\n",
 654			   info.data.nr, info.sp, info.data.instruction_pointer);
 655	else
 656		seq_printf(m,
 657		       "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n",
 658		       info.data.nr,
 659		       args[0], args[1], args[2], args[3], args[4], args[5],
 660		       info.sp, info.data.instruction_pointer);
 661	unlock_trace(task);
 662
 663	return 0;
 664}
 665#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
 666
 667/************************************************************************/
 668/*                       Here the fs part begins                        */
 669/************************************************************************/
 670
 671/* permission checks */
 672static bool proc_fd_access_allowed(struct inode *inode)
 673{
 674	struct task_struct *task;
 675	bool allowed = false;
 676	/* Allow access to a task's file descriptors if it is us or we
 677	 * may use ptrace attach to the process and find out that
 678	 * information.
 679	 */
 680	task = get_proc_task(inode);
 681	if (task) {
 682		allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 683		put_task_struct(task);
 684	}
 685	return allowed;
 686}
 687
 688int proc_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
 689		 struct iattr *attr)
 690{
 691	int error;
 692	struct inode *inode = d_inode(dentry);
 693
 694	if (attr->ia_valid & ATTR_MODE)
 695		return -EPERM;
 696
 697	error = setattr_prepare(&init_user_ns, dentry, attr);
 698	if (error)
 699		return error;
 700
 701	setattr_copy(&init_user_ns, inode, attr);
 702	mark_inode_dirty(inode);
 703	return 0;
 704}
 705
 706/*
 707 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
 708 * or euid/egid (for hide_pid_min=2)?
 709 */
 710static bool has_pid_permissions(struct proc_fs_info *fs_info,
 711				 struct task_struct *task,
 712				 enum proc_hidepid hide_pid_min)
 713{
 714	/*
 715	 * If 'hidpid' mount option is set force a ptrace check,
 716	 * we indicate that we are using a filesystem syscall
 717	 * by passing PTRACE_MODE_READ_FSCREDS
 718	 */
 719	if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE)
 720		return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 721
 722	if (fs_info->hide_pid < hide_pid_min)
 723		return true;
 724	if (in_group_p(fs_info->pid_gid))
 725		return true;
 726	return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 727}
 728
 729
 730static int proc_pid_permission(struct user_namespace *mnt_userns,
 731			       struct inode *inode, int mask)
 732{
 733	struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
 734	struct task_struct *task;
 735	bool has_perms;
 736
 737	task = get_proc_task(inode);
 738	if (!task)
 739		return -ESRCH;
 740	has_perms = has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS);
 741	put_task_struct(task);
 742
 743	if (!has_perms) {
 744		if (fs_info->hide_pid == HIDEPID_INVISIBLE) {
 745			/*
 746			 * Let's make getdents(), stat(), and open()
 747			 * consistent with each other.  If a process
 748			 * may not stat() a file, it shouldn't be seen
 749			 * in procfs at all.
 750			 */
 751			return -ENOENT;
 752		}
 753
 754		return -EPERM;
 755	}
 756	return generic_permission(&init_user_ns, inode, mask);
 757}
 758
 759
 760
 761static const struct inode_operations proc_def_inode_operations = {
 762	.setattr	= proc_setattr,
 763};
 764
 765static int proc_single_show(struct seq_file *m, void *v)
 766{
 767	struct inode *inode = m->private;
 768	struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
 769	struct pid *pid = proc_pid(inode);
 770	struct task_struct *task;
 771	int ret;
 772
 773	task = get_pid_task(pid, PIDTYPE_PID);
 774	if (!task)
 775		return -ESRCH;
 776
 777	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
 778
 779	put_task_struct(task);
 780	return ret;
 781}
 782
 783static int proc_single_open(struct inode *inode, struct file *filp)
 784{
 785	return single_open(filp, proc_single_show, inode);
 786}
 787
 788static const struct file_operations proc_single_file_operations = {
 789	.open		= proc_single_open,
 790	.read		= seq_read,
 791	.llseek		= seq_lseek,
 792	.release	= single_release,
 793};
 794
 795
 796struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
 797{
 798	struct task_struct *task = get_proc_task(inode);
 799	struct mm_struct *mm = ERR_PTR(-ESRCH);
 800
 801	if (task) {
 802		mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
 803		put_task_struct(task);
 804
 805		if (!IS_ERR_OR_NULL(mm)) {
 806			/* ensure this mm_struct can't be freed */
 807			mmgrab(mm);
 808			/* but do not pin its memory */
 809			mmput(mm);
 810		}
 811	}
 
 
 
 812
 813	return mm;
 814}
 815
 816static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
 817{
 818	struct mm_struct *mm = proc_mem_open(inode, mode);
 819
 820	if (IS_ERR(mm))
 821		return PTR_ERR(mm);
 822
 823	file->private_data = mm;
 824	return 0;
 825}
 826
 827static int mem_open(struct inode *inode, struct file *file)
 828{
 829	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
 
 
 
 830
 831	/* OK to pass negative loff_t, we can catch out-of-range */
 832	file->f_mode |= FMODE_UNSIGNED_OFFSET;
 
 
 833
 834	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 835}
 836
 837static ssize_t mem_rw(struct file *file, char __user *buf,
 838			size_t count, loff_t *ppos, int write)
 839{
 840	struct mm_struct *mm = file->private_data;
 841	unsigned long addr = *ppos;
 842	ssize_t copied;
 843	char *page;
 844	unsigned int flags;
 845
 846	if (!mm)
 847		return 0;
 848
 849	page = (char *)__get_free_page(GFP_KERNEL);
 850	if (!page)
 851		return -ENOMEM;
 852
 853	copied = 0;
 854	if (!mmget_not_zero(mm))
 855		goto free;
 856
 857	flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
 
 
 858
 859	while (count > 0) {
 860		size_t this_len = min_t(size_t, count, PAGE_SIZE);
 861
 862		if (write && copy_from_user(page, buf, this_len)) {
 863			copied = -EFAULT;
 864			break;
 865		}
 866
 867		this_len = access_remote_vm(mm, addr, page, this_len, flags);
 868		if (!this_len) {
 869			if (!copied)
 870				copied = -EIO;
 871			break;
 872		}
 873
 874		if (!write && copy_to_user(buf, page, this_len)) {
 875			copied = -EFAULT;
 876			break;
 877		}
 878
 879		buf += this_len;
 880		addr += this_len;
 881		copied += this_len;
 882		count -= this_len;
 883	}
 884	*ppos = addr;
 885
 886	mmput(mm);
 887free:
 888	free_page((unsigned long) page);
 889	return copied;
 890}
 891
 892static ssize_t mem_read(struct file *file, char __user *buf,
 893			size_t count, loff_t *ppos)
 894{
 895	return mem_rw(file, buf, count, ppos, 0);
 896}
 897
 898static ssize_t mem_write(struct file *file, const char __user *buf,
 899			 size_t count, loff_t *ppos)
 900{
 901	return mem_rw(file, (char __user*)buf, count, ppos, 1);
 902}
 903
 904loff_t mem_lseek(struct file *file, loff_t offset, int orig)
 905{
 906	switch (orig) {
 907	case 0:
 908		file->f_pos = offset;
 909		break;
 910	case 1:
 911		file->f_pos += offset;
 912		break;
 913	default:
 914		return -EINVAL;
 915	}
 916	force_successful_syscall_return();
 917	return file->f_pos;
 918}
 919
 920static int mem_release(struct inode *inode, struct file *file)
 921{
 922	struct mm_struct *mm = file->private_data;
 923	if (mm)
 924		mmdrop(mm);
 925	return 0;
 926}
 927
 928static const struct file_operations proc_mem_operations = {
 929	.llseek		= mem_lseek,
 930	.read		= mem_read,
 931	.write		= mem_write,
 932	.open		= mem_open,
 933	.release	= mem_release,
 
 934};
 935
 936static int environ_open(struct inode *inode, struct file *file)
 937{
 938	return __mem_open(inode, file, PTRACE_MODE_READ);
 939}
 940
 941static ssize_t environ_read(struct file *file, char __user *buf,
 942			size_t count, loff_t *ppos)
 943{
 944	char *page;
 945	unsigned long src = *ppos;
 946	int ret = 0;
 947	struct mm_struct *mm = file->private_data;
 948	unsigned long env_start, env_end;
 949
 950	/* Ensure the process spawned far enough to have an environment. */
 951	if (!mm || !mm->env_end)
 952		return 0;
 953
 954	page = (char *)__get_free_page(GFP_KERNEL);
 955	if (!page)
 956		return -ENOMEM;
 957
 958	ret = 0;
 959	if (!mmget_not_zero(mm))
 960		goto free;
 961
 962	spin_lock(&mm->arg_lock);
 963	env_start = mm->env_start;
 964	env_end = mm->env_end;
 965	spin_unlock(&mm->arg_lock);
 966
 967	while (count > 0) {
 968		size_t this_len, max_len;
 969		int retval;
 970
 971		if (src >= (env_end - env_start))
 972			break;
 973
 974		this_len = env_end - (env_start + src);
 975
 976		max_len = min_t(size_t, PAGE_SIZE, count);
 977		this_len = min(max_len, this_len);
 978
 979		retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
 980
 981		if (retval <= 0) {
 982			ret = retval;
 983			break;
 984		}
 985
 986		if (copy_to_user(buf, page, retval)) {
 987			ret = -EFAULT;
 988			break;
 989		}
 990
 991		ret += retval;
 992		src += retval;
 993		buf += retval;
 994		count -= retval;
 995	}
 996	*ppos = src;
 997	mmput(mm);
 998
 999free:
1000	free_page((unsigned long) page);
1001	return ret;
1002}
1003
1004static const struct file_operations proc_environ_operations = {
1005	.open		= environ_open,
1006	.read		= environ_read,
1007	.llseek		= generic_file_llseek,
1008	.release	= mem_release,
1009};
1010
1011static int auxv_open(struct inode *inode, struct file *file)
1012{
1013	return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
1014}
1015
1016static ssize_t auxv_read(struct file *file, char __user *buf,
1017			size_t count, loff_t *ppos)
1018{
1019	struct mm_struct *mm = file->private_data;
1020	unsigned int nwords = 0;
1021
1022	if (!mm)
1023		return 0;
1024	do {
1025		nwords += 2;
1026	} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1027	return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1028				       nwords * sizeof(mm->saved_auxv[0]));
1029}
1030
1031static const struct file_operations proc_auxv_operations = {
1032	.open		= auxv_open,
1033	.read		= auxv_read,
1034	.llseek		= generic_file_llseek,
1035	.release	= mem_release,
1036};
1037
1038static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1039			    loff_t *ppos)
1040{
1041	struct task_struct *task = get_proc_task(file_inode(file));
1042	char buffer[PROC_NUMBUF];
1043	int oom_adj = OOM_ADJUST_MIN;
1044	size_t len;
1045
1046	if (!task)
1047		return -ESRCH;
1048	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1049		oom_adj = OOM_ADJUST_MAX;
1050	else
1051		oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1052			  OOM_SCORE_ADJ_MAX;
1053	put_task_struct(task);
1054	if (oom_adj > OOM_ADJUST_MAX)
1055		oom_adj = OOM_ADJUST_MAX;
1056	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1057	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1058}
1059
1060static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1061{
1062	struct mm_struct *mm = NULL;
1063	struct task_struct *task;
1064	int err = 0;
1065
1066	task = get_proc_task(file_inode(file));
1067	if (!task)
1068		return -ESRCH;
1069
1070	mutex_lock(&oom_adj_mutex);
1071	if (legacy) {
1072		if (oom_adj < task->signal->oom_score_adj &&
1073				!capable(CAP_SYS_RESOURCE)) {
1074			err = -EACCES;
1075			goto err_unlock;
1076		}
1077		/*
1078		 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1079		 * /proc/pid/oom_score_adj instead.
1080		 */
1081		pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1082			  current->comm, task_pid_nr(current), task_pid_nr(task),
1083			  task_pid_nr(task));
1084	} else {
1085		if ((short)oom_adj < task->signal->oom_score_adj_min &&
1086				!capable(CAP_SYS_RESOURCE)) {
1087			err = -EACCES;
1088			goto err_unlock;
1089		}
1090	}
1091
1092	/*
1093	 * Make sure we will check other processes sharing the mm if this is
1094	 * not vfrok which wants its own oom_score_adj.
1095	 * pin the mm so it doesn't go away and get reused after task_unlock
1096	 */
1097	if (!task->vfork_done) {
1098		struct task_struct *p = find_lock_task_mm(task);
1099
1100		if (p) {
1101			if (test_bit(MMF_MULTIPROCESS, &p->mm->flags)) {
1102				mm = p->mm;
1103				mmgrab(mm);
1104			}
1105			task_unlock(p);
1106		}
1107	}
1108
1109	task->signal->oom_score_adj = oom_adj;
1110	if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1111		task->signal->oom_score_adj_min = (short)oom_adj;
1112	trace_oom_score_adj_update(task);
1113
1114	if (mm) {
1115		struct task_struct *p;
1116
1117		rcu_read_lock();
1118		for_each_process(p) {
1119			if (same_thread_group(task, p))
1120				continue;
1121
1122			/* do not touch kernel threads or the global init */
1123			if (p->flags & PF_KTHREAD || is_global_init(p))
1124				continue;
1125
1126			task_lock(p);
1127			if (!p->vfork_done && process_shares_mm(p, mm)) {
1128				p->signal->oom_score_adj = oom_adj;
1129				if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1130					p->signal->oom_score_adj_min = (short)oom_adj;
1131			}
1132			task_unlock(p);
1133		}
1134		rcu_read_unlock();
1135		mmdrop(mm);
1136	}
1137err_unlock:
1138	mutex_unlock(&oom_adj_mutex);
1139	put_task_struct(task);
1140	return err;
1141}
1142
1143/*
1144 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1145 * kernels.  The effective policy is defined by oom_score_adj, which has a
1146 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1147 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1148 * Processes that become oom disabled via oom_adj will still be oom disabled
1149 * with this implementation.
1150 *
1151 * oom_adj cannot be removed since existing userspace binaries use it.
1152 */
1153static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1154			     size_t count, loff_t *ppos)
1155{
1156	char buffer[PROC_NUMBUF];
1157	int oom_adj;
1158	int err;
1159
1160	memset(buffer, 0, sizeof(buffer));
1161	if (count > sizeof(buffer) - 1)
1162		count = sizeof(buffer) - 1;
1163	if (copy_from_user(buffer, buf, count)) {
1164		err = -EFAULT;
1165		goto out;
1166	}
1167
1168	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1169	if (err)
1170		goto out;
1171	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1172	     oom_adj != OOM_DISABLE) {
1173		err = -EINVAL;
1174		goto out;
1175	}
1176
1177	/*
1178	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1179	 * value is always attainable.
1180	 */
1181	if (oom_adj == OOM_ADJUST_MAX)
1182		oom_adj = OOM_SCORE_ADJ_MAX;
1183	else
1184		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1185
1186	err = __set_oom_adj(file, oom_adj, true);
1187out:
1188	return err < 0 ? err : count;
1189}
1190
1191static const struct file_operations proc_oom_adj_operations = {
1192	.read		= oom_adj_read,
1193	.write		= oom_adj_write,
1194	.llseek		= generic_file_llseek,
1195};
1196
1197static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1198					size_t count, loff_t *ppos)
1199{
1200	struct task_struct *task = get_proc_task(file_inode(file));
1201	char buffer[PROC_NUMBUF];
1202	short oom_score_adj = OOM_SCORE_ADJ_MIN;
1203	size_t len;
1204
1205	if (!task)
1206		return -ESRCH;
1207	oom_score_adj = task->signal->oom_score_adj;
1208	put_task_struct(task);
1209	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1210	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1211}
1212
1213static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1214					size_t count, loff_t *ppos)
1215{
1216	char buffer[PROC_NUMBUF];
1217	int oom_score_adj;
1218	int err;
1219
1220	memset(buffer, 0, sizeof(buffer));
1221	if (count > sizeof(buffer) - 1)
1222		count = sizeof(buffer) - 1;
1223	if (copy_from_user(buffer, buf, count)) {
1224		err = -EFAULT;
1225		goto out;
1226	}
1227
1228	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1229	if (err)
1230		goto out;
1231	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1232			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1233		err = -EINVAL;
1234		goto out;
1235	}
1236
1237	err = __set_oom_adj(file, oom_score_adj, false);
1238out:
1239	return err < 0 ? err : count;
1240}
1241
1242static const struct file_operations proc_oom_score_adj_operations = {
1243	.read		= oom_score_adj_read,
1244	.write		= oom_score_adj_write,
1245	.llseek		= default_llseek,
1246};
1247
1248#ifdef CONFIG_AUDIT
1249#define TMPBUFLEN 11
1250static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1251				  size_t count, loff_t *ppos)
1252{
1253	struct inode * inode = file_inode(file);
1254	struct task_struct *task = get_proc_task(inode);
1255	ssize_t length;
1256	char tmpbuf[TMPBUFLEN];
1257
1258	if (!task)
1259		return -ESRCH;
1260	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1261			   from_kuid(file->f_cred->user_ns,
1262				     audit_get_loginuid(task)));
1263	put_task_struct(task);
1264	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1265}
1266
1267static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1268				   size_t count, loff_t *ppos)
1269{
1270	struct inode * inode = file_inode(file);
1271	uid_t loginuid;
1272	kuid_t kloginuid;
1273	int rv;
1274
1275	/* Don't let kthreads write their own loginuid */
1276	if (current->flags & PF_KTHREAD)
1277		return -EPERM;
1278
1279	rcu_read_lock();
1280	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1281		rcu_read_unlock();
1282		return -EPERM;
1283	}
1284	rcu_read_unlock();
1285
1286	if (*ppos != 0) {
1287		/* No partial writes. */
1288		return -EINVAL;
1289	}
1290
1291	rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1292	if (rv < 0)
1293		return rv;
1294
1295	/* is userspace tring to explicitly UNSET the loginuid? */
1296	if (loginuid == AUDIT_UID_UNSET) {
1297		kloginuid = INVALID_UID;
1298	} else {
1299		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1300		if (!uid_valid(kloginuid))
1301			return -EINVAL;
1302	}
1303
1304	rv = audit_set_loginuid(kloginuid);
1305	if (rv < 0)
1306		return rv;
1307	return count;
1308}
1309
1310static const struct file_operations proc_loginuid_operations = {
1311	.read		= proc_loginuid_read,
1312	.write		= proc_loginuid_write,
1313	.llseek		= generic_file_llseek,
1314};
1315
1316static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1317				  size_t count, loff_t *ppos)
1318{
1319	struct inode * inode = file_inode(file);
1320	struct task_struct *task = get_proc_task(inode);
1321	ssize_t length;
1322	char tmpbuf[TMPBUFLEN];
1323
1324	if (!task)
1325		return -ESRCH;
1326	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1327				audit_get_sessionid(task));
1328	put_task_struct(task);
1329	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1330}
1331
1332static const struct file_operations proc_sessionid_operations = {
1333	.read		= proc_sessionid_read,
1334	.llseek		= generic_file_llseek,
1335};
1336#endif
1337
1338#ifdef CONFIG_FAULT_INJECTION
1339static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1340				      size_t count, loff_t *ppos)
1341{
1342	struct task_struct *task = get_proc_task(file_inode(file));
1343	char buffer[PROC_NUMBUF];
1344	size_t len;
1345	int make_it_fail;
1346
1347	if (!task)
1348		return -ESRCH;
1349	make_it_fail = task->make_it_fail;
1350	put_task_struct(task);
1351
1352	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1353
1354	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1355}
1356
1357static ssize_t proc_fault_inject_write(struct file * file,
1358			const char __user * buf, size_t count, loff_t *ppos)
1359{
1360	struct task_struct *task;
1361	char buffer[PROC_NUMBUF];
1362	int make_it_fail;
1363	int rv;
1364
1365	if (!capable(CAP_SYS_RESOURCE))
1366		return -EPERM;
1367	memset(buffer, 0, sizeof(buffer));
1368	if (count > sizeof(buffer) - 1)
1369		count = sizeof(buffer) - 1;
1370	if (copy_from_user(buffer, buf, count))
1371		return -EFAULT;
1372	rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1373	if (rv < 0)
1374		return rv;
1375	if (make_it_fail < 0 || make_it_fail > 1)
1376		return -EINVAL;
1377
1378	task = get_proc_task(file_inode(file));
1379	if (!task)
1380		return -ESRCH;
1381	task->make_it_fail = make_it_fail;
1382	put_task_struct(task);
1383
1384	return count;
1385}
1386
1387static const struct file_operations proc_fault_inject_operations = {
1388	.read		= proc_fault_inject_read,
1389	.write		= proc_fault_inject_write,
1390	.llseek		= generic_file_llseek,
1391};
1392
1393static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1394				   size_t count, loff_t *ppos)
1395{
1396	struct task_struct *task;
1397	int err;
1398	unsigned int n;
1399
1400	err = kstrtouint_from_user(buf, count, 0, &n);
1401	if (err)
1402		return err;
1403
1404	task = get_proc_task(file_inode(file));
1405	if (!task)
1406		return -ESRCH;
1407	task->fail_nth = n;
1408	put_task_struct(task);
1409
1410	return count;
1411}
1412
1413static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1414				  size_t count, loff_t *ppos)
1415{
1416	struct task_struct *task;
1417	char numbuf[PROC_NUMBUF];
1418	ssize_t len;
1419
1420	task = get_proc_task(file_inode(file));
1421	if (!task)
1422		return -ESRCH;
1423	len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1424	put_task_struct(task);
1425	return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1426}
1427
1428static const struct file_operations proc_fail_nth_operations = {
1429	.read		= proc_fail_nth_read,
1430	.write		= proc_fail_nth_write,
1431};
1432#endif
1433
1434
1435#ifdef CONFIG_SCHED_DEBUG
1436/*
1437 * Print out various scheduling related per-task fields:
1438 */
1439static int sched_show(struct seq_file *m, void *v)
1440{
1441	struct inode *inode = m->private;
1442	struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
1443	struct task_struct *p;
1444
1445	p = get_proc_task(inode);
1446	if (!p)
1447		return -ESRCH;
1448	proc_sched_show_task(p, ns, m);
1449
1450	put_task_struct(p);
1451
1452	return 0;
1453}
1454
1455static ssize_t
1456sched_write(struct file *file, const char __user *buf,
1457	    size_t count, loff_t *offset)
1458{
1459	struct inode *inode = file_inode(file);
1460	struct task_struct *p;
1461
1462	p = get_proc_task(inode);
1463	if (!p)
1464		return -ESRCH;
1465	proc_sched_set_task(p);
1466
1467	put_task_struct(p);
1468
1469	return count;
1470}
1471
1472static int sched_open(struct inode *inode, struct file *filp)
1473{
1474	return single_open(filp, sched_show, inode);
1475}
1476
1477static const struct file_operations proc_pid_sched_operations = {
1478	.open		= sched_open,
1479	.read		= seq_read,
1480	.write		= sched_write,
1481	.llseek		= seq_lseek,
1482	.release	= single_release,
1483};
1484
1485#endif
1486
1487#ifdef CONFIG_SCHED_AUTOGROUP
1488/*
1489 * Print out autogroup related information:
1490 */
1491static int sched_autogroup_show(struct seq_file *m, void *v)
1492{
1493	struct inode *inode = m->private;
1494	struct task_struct *p;
1495
1496	p = get_proc_task(inode);
1497	if (!p)
1498		return -ESRCH;
1499	proc_sched_autogroup_show_task(p, m);
1500
1501	put_task_struct(p);
1502
1503	return 0;
1504}
1505
1506static ssize_t
1507sched_autogroup_write(struct file *file, const char __user *buf,
1508	    size_t count, loff_t *offset)
1509{
1510	struct inode *inode = file_inode(file);
1511	struct task_struct *p;
1512	char buffer[PROC_NUMBUF];
1513	int nice;
1514	int err;
1515
1516	memset(buffer, 0, sizeof(buffer));
1517	if (count > sizeof(buffer) - 1)
1518		count = sizeof(buffer) - 1;
1519	if (copy_from_user(buffer, buf, count))
1520		return -EFAULT;
1521
1522	err = kstrtoint(strstrip(buffer), 0, &nice);
1523	if (err < 0)
1524		return err;
1525
1526	p = get_proc_task(inode);
1527	if (!p)
1528		return -ESRCH;
1529
1530	err = proc_sched_autogroup_set_nice(p, nice);
1531	if (err)
1532		count = err;
1533
1534	put_task_struct(p);
1535
1536	return count;
1537}
1538
1539static int sched_autogroup_open(struct inode *inode, struct file *filp)
1540{
1541	int ret;
1542
1543	ret = single_open(filp, sched_autogroup_show, NULL);
1544	if (!ret) {
1545		struct seq_file *m = filp->private_data;
1546
1547		m->private = inode;
1548	}
1549	return ret;
1550}
1551
1552static const struct file_operations proc_pid_sched_autogroup_operations = {
1553	.open		= sched_autogroup_open,
1554	.read		= seq_read,
1555	.write		= sched_autogroup_write,
1556	.llseek		= seq_lseek,
1557	.release	= single_release,
1558};
1559
1560#endif /* CONFIG_SCHED_AUTOGROUP */
1561
1562#ifdef CONFIG_TIME_NS
1563static int timens_offsets_show(struct seq_file *m, void *v)
1564{
1565	struct task_struct *p;
1566
1567	p = get_proc_task(file_inode(m->file));
1568	if (!p)
1569		return -ESRCH;
1570	proc_timens_show_offsets(p, m);
1571
1572	put_task_struct(p);
1573
1574	return 0;
1575}
1576
1577static ssize_t timens_offsets_write(struct file *file, const char __user *buf,
1578				    size_t count, loff_t *ppos)
1579{
1580	struct inode *inode = file_inode(file);
1581	struct proc_timens_offset offsets[2];
1582	char *kbuf = NULL, *pos, *next_line;
1583	struct task_struct *p;
1584	int ret, noffsets;
1585
1586	/* Only allow < page size writes at the beginning of the file */
1587	if ((*ppos != 0) || (count >= PAGE_SIZE))
1588		return -EINVAL;
1589
1590	/* Slurp in the user data */
1591	kbuf = memdup_user_nul(buf, count);
1592	if (IS_ERR(kbuf))
1593		return PTR_ERR(kbuf);
1594
1595	/* Parse the user data */
1596	ret = -EINVAL;
1597	noffsets = 0;
1598	for (pos = kbuf; pos; pos = next_line) {
1599		struct proc_timens_offset *off = &offsets[noffsets];
1600		char clock[10];
1601		int err;
1602
1603		/* Find the end of line and ensure we don't look past it */
1604		next_line = strchr(pos, '\n');
1605		if (next_line) {
1606			*next_line = '\0';
1607			next_line++;
1608			if (*next_line == '\0')
1609				next_line = NULL;
1610		}
1611
1612		err = sscanf(pos, "%9s %lld %lu", clock,
1613				&off->val.tv_sec, &off->val.tv_nsec);
1614		if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC)
1615			goto out;
1616
1617		clock[sizeof(clock) - 1] = 0;
1618		if (strcmp(clock, "monotonic") == 0 ||
1619		    strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0)
1620			off->clockid = CLOCK_MONOTONIC;
1621		else if (strcmp(clock, "boottime") == 0 ||
1622			 strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0)
1623			off->clockid = CLOCK_BOOTTIME;
1624		else
1625			goto out;
1626
1627		noffsets++;
1628		if (noffsets == ARRAY_SIZE(offsets)) {
1629			if (next_line)
1630				count = next_line - kbuf;
1631			break;
1632		}
1633	}
1634
1635	ret = -ESRCH;
1636	p = get_proc_task(inode);
1637	if (!p)
1638		goto out;
1639	ret = proc_timens_set_offset(file, p, offsets, noffsets);
1640	put_task_struct(p);
1641	if (ret)
1642		goto out;
1643
1644	ret = count;
1645out:
1646	kfree(kbuf);
1647	return ret;
1648}
1649
1650static int timens_offsets_open(struct inode *inode, struct file *filp)
1651{
1652	return single_open(filp, timens_offsets_show, inode);
1653}
1654
1655static const struct file_operations proc_timens_offsets_operations = {
1656	.open		= timens_offsets_open,
1657	.read		= seq_read,
1658	.write		= timens_offsets_write,
1659	.llseek		= seq_lseek,
1660	.release	= single_release,
1661};
1662#endif /* CONFIG_TIME_NS */
1663
1664static ssize_t comm_write(struct file *file, const char __user *buf,
1665				size_t count, loff_t *offset)
1666{
1667	struct inode *inode = file_inode(file);
1668	struct task_struct *p;
1669	char buffer[TASK_COMM_LEN];
1670	const size_t maxlen = sizeof(buffer) - 1;
1671
1672	memset(buffer, 0, sizeof(buffer));
1673	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1674		return -EFAULT;
1675
1676	p = get_proc_task(inode);
1677	if (!p)
1678		return -ESRCH;
1679
1680	if (same_thread_group(current, p)) {
1681		set_task_comm(p, buffer);
1682		proc_comm_connector(p);
1683	}
1684	else
1685		count = -EINVAL;
1686
1687	put_task_struct(p);
1688
1689	return count;
1690}
1691
1692static int comm_show(struct seq_file *m, void *v)
1693{
1694	struct inode *inode = m->private;
1695	struct task_struct *p;
1696
1697	p = get_proc_task(inode);
1698	if (!p)
1699		return -ESRCH;
1700
1701	proc_task_name(m, p, false);
1702	seq_putc(m, '\n');
1703
1704	put_task_struct(p);
1705
1706	return 0;
1707}
1708
1709static int comm_open(struct inode *inode, struct file *filp)
1710{
1711	return single_open(filp, comm_show, inode);
1712}
1713
1714static const struct file_operations proc_pid_set_comm_operations = {
1715	.open		= comm_open,
1716	.read		= seq_read,
1717	.write		= comm_write,
1718	.llseek		= seq_lseek,
1719	.release	= single_release,
1720};
1721
1722static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1723{
1724	struct task_struct *task;
1725	struct file *exe_file;
1726
1727	task = get_proc_task(d_inode(dentry));
1728	if (!task)
1729		return -ENOENT;
1730	exe_file = get_task_exe_file(task);
1731	put_task_struct(task);
1732	if (exe_file) {
1733		*exe_path = exe_file->f_path;
1734		path_get(&exe_file->f_path);
1735		fput(exe_file);
1736		return 0;
1737	} else
1738		return -ENOENT;
1739}
1740
1741static const char *proc_pid_get_link(struct dentry *dentry,
1742				     struct inode *inode,
1743				     struct delayed_call *done)
1744{
1745	struct path path;
1746	int error = -EACCES;
1747
1748	if (!dentry)
1749		return ERR_PTR(-ECHILD);
1750
1751	/* Are we allowed to snoop on the tasks file descriptors? */
1752	if (!proc_fd_access_allowed(inode))
1753		goto out;
1754
1755	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1756	if (error)
1757		goto out;
1758
1759	error = nd_jump_link(&path);
1760out:
1761	return ERR_PTR(error);
1762}
1763
1764static int do_proc_readlink(const struct path *path, char __user *buffer, int buflen)
1765{
1766	char *tmp = kmalloc(PATH_MAX, GFP_KERNEL);
1767	char *pathname;
1768	int len;
1769
1770	if (!tmp)
1771		return -ENOMEM;
1772
1773	pathname = d_path(path, tmp, PATH_MAX);
1774	len = PTR_ERR(pathname);
1775	if (IS_ERR(pathname))
1776		goto out;
1777	len = tmp + PATH_MAX - 1 - pathname;
1778
1779	if (len > buflen)
1780		len = buflen;
1781	if (copy_to_user(buffer, pathname, len))
1782		len = -EFAULT;
1783 out:
1784	kfree(tmp);
1785	return len;
1786}
1787
1788static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1789{
1790	int error = -EACCES;
1791	struct inode *inode = d_inode(dentry);
1792	struct path path;
1793
1794	/* Are we allowed to snoop on the tasks file descriptors? */
1795	if (!proc_fd_access_allowed(inode))
1796		goto out;
1797
1798	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1799	if (error)
1800		goto out;
1801
1802	error = do_proc_readlink(&path, buffer, buflen);
1803	path_put(&path);
1804out:
1805	return error;
1806}
1807
1808const struct inode_operations proc_pid_link_inode_operations = {
1809	.readlink	= proc_pid_readlink,
1810	.get_link	= proc_pid_get_link,
1811	.setattr	= proc_setattr,
1812};
1813
1814
1815/* building an inode */
1816
1817void task_dump_owner(struct task_struct *task, umode_t mode,
1818		     kuid_t *ruid, kgid_t *rgid)
1819{
1820	/* Depending on the state of dumpable compute who should own a
1821	 * proc file for a task.
1822	 */
1823	const struct cred *cred;
1824	kuid_t uid;
1825	kgid_t gid;
1826
1827	if (unlikely(task->flags & PF_KTHREAD)) {
1828		*ruid = GLOBAL_ROOT_UID;
1829		*rgid = GLOBAL_ROOT_GID;
1830		return;
1831	}
1832
1833	/* Default to the tasks effective ownership */
1834	rcu_read_lock();
1835	cred = __task_cred(task);
1836	uid = cred->euid;
1837	gid = cred->egid;
1838	rcu_read_unlock();
1839
1840	/*
1841	 * Before the /proc/pid/status file was created the only way to read
1842	 * the effective uid of a /process was to stat /proc/pid.  Reading
1843	 * /proc/pid/status is slow enough that procps and other packages
1844	 * kept stating /proc/pid.  To keep the rules in /proc simple I have
1845	 * made this apply to all per process world readable and executable
1846	 * directories.
1847	 */
1848	if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1849		struct mm_struct *mm;
1850		task_lock(task);
1851		mm = task->mm;
1852		/* Make non-dumpable tasks owned by some root */
1853		if (mm) {
1854			if (get_dumpable(mm) != SUID_DUMP_USER) {
1855				struct user_namespace *user_ns = mm->user_ns;
1856
1857				uid = make_kuid(user_ns, 0);
1858				if (!uid_valid(uid))
1859					uid = GLOBAL_ROOT_UID;
1860
1861				gid = make_kgid(user_ns, 0);
1862				if (!gid_valid(gid))
1863					gid = GLOBAL_ROOT_GID;
1864			}
1865		} else {
1866			uid = GLOBAL_ROOT_UID;
1867			gid = GLOBAL_ROOT_GID;
1868		}
1869		task_unlock(task);
1870	}
1871	*ruid = uid;
1872	*rgid = gid;
1873}
1874
1875void proc_pid_evict_inode(struct proc_inode *ei)
1876{
1877	struct pid *pid = ei->pid;
1878
1879	if (S_ISDIR(ei->vfs_inode.i_mode)) {
1880		spin_lock(&pid->lock);
1881		hlist_del_init_rcu(&ei->sibling_inodes);
1882		spin_unlock(&pid->lock);
1883	}
1884
1885	put_pid(pid);
1886}
1887
1888struct inode *proc_pid_make_inode(struct super_block *sb,
1889				  struct task_struct *task, umode_t mode)
1890{
1891	struct inode * inode;
1892	struct proc_inode *ei;
1893	struct pid *pid;
1894
1895	/* We need a new inode */
1896
1897	inode = new_inode(sb);
1898	if (!inode)
1899		goto out;
1900
1901	/* Common stuff */
1902	ei = PROC_I(inode);
1903	inode->i_mode = mode;
1904	inode->i_ino = get_next_ino();
1905	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1906	inode->i_op = &proc_def_inode_operations;
1907
1908	/*
1909	 * grab the reference to task.
1910	 */
1911	pid = get_task_pid(task, PIDTYPE_PID);
1912	if (!pid)
1913		goto out_unlock;
1914
1915	/* Let the pid remember us for quick removal */
1916	ei->pid = pid;
1917
1918	task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1919	security_task_to_inode(task, inode);
1920
1921out:
1922	return inode;
1923
1924out_unlock:
1925	iput(inode);
1926	return NULL;
1927}
1928
1929/*
1930 * Generating an inode and adding it into @pid->inodes, so that task will
1931 * invalidate inode's dentry before being released.
1932 *
1933 * This helper is used for creating dir-type entries under '/proc' and
1934 * '/proc/<tgid>/task'. Other entries(eg. fd, stat) under '/proc/<tgid>'
1935 * can be released by invalidating '/proc/<tgid>' dentry.
1936 * In theory, dentries under '/proc/<tgid>/task' can also be released by
1937 * invalidating '/proc/<tgid>' dentry, we reserve it to handle single
1938 * thread exiting situation: Any one of threads should invalidate its
1939 * '/proc/<tgid>/task/<pid>' dentry before released.
1940 */
1941static struct inode *proc_pid_make_base_inode(struct super_block *sb,
1942				struct task_struct *task, umode_t mode)
1943{
1944	struct inode *inode;
1945	struct proc_inode *ei;
1946	struct pid *pid;
1947
1948	inode = proc_pid_make_inode(sb, task, mode);
1949	if (!inode)
1950		return NULL;
1951
1952	/* Let proc_flush_pid find this directory inode */
1953	ei = PROC_I(inode);
1954	pid = ei->pid;
1955	spin_lock(&pid->lock);
1956	hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes);
1957	spin_unlock(&pid->lock);
1958
1959	return inode;
1960}
1961
1962int pid_getattr(struct user_namespace *mnt_userns, const struct path *path,
1963		struct kstat *stat, u32 request_mask, unsigned int query_flags)
1964{
1965	struct inode *inode = d_inode(path->dentry);
1966	struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
1967	struct task_struct *task;
1968
1969	generic_fillattr(&init_user_ns, inode, stat);
1970
1971	stat->uid = GLOBAL_ROOT_UID;
1972	stat->gid = GLOBAL_ROOT_GID;
1973	rcu_read_lock();
1974	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1975	if (task) {
1976		if (!has_pid_permissions(fs_info, task, HIDEPID_INVISIBLE)) {
1977			rcu_read_unlock();
1978			/*
1979			 * This doesn't prevent learning whether PID exists,
1980			 * it only makes getattr() consistent with readdir().
1981			 */
1982			return -ENOENT;
1983		}
1984		task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
1985	}
1986	rcu_read_unlock();
1987	return 0;
1988}
1989
1990/* dentry stuff */
1991
1992/*
1993 * Set <pid>/... inode ownership (can change due to setuid(), etc.)
1994 */
1995void pid_update_inode(struct task_struct *task, struct inode *inode)
1996{
1997	task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1998
1999	inode->i_mode &= ~(S_ISUID | S_ISGID);
2000	security_task_to_inode(task, inode);
2001}
2002
2003/*
2004 * Rewrite the inode's ownerships here because the owning task may have
2005 * performed a setuid(), etc.
2006 *
2007 */
2008static int pid_revalidate(struct dentry *dentry, unsigned int flags)
2009{
2010	struct inode *inode;
2011	struct task_struct *task;
2012	int ret = 0;
2013
2014	rcu_read_lock();
2015	inode = d_inode_rcu(dentry);
2016	if (!inode)
2017		goto out;
2018	task = pid_task(proc_pid(inode), PIDTYPE_PID);
2019
2020	if (task) {
2021		pid_update_inode(task, inode);
2022		ret = 1;
2023	}
2024out:
2025	rcu_read_unlock();
2026	return ret;
2027}
2028
2029static inline bool proc_inode_is_dead(struct inode *inode)
2030{
2031	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
2032}
2033
2034int pid_delete_dentry(const struct dentry *dentry)
2035{
2036	/* Is the task we represent dead?
2037	 * If so, then don't put the dentry on the lru list,
2038	 * kill it immediately.
2039	 */
2040	return proc_inode_is_dead(d_inode(dentry));
2041}
2042
2043const struct dentry_operations pid_dentry_operations =
2044{
2045	.d_revalidate	= pid_revalidate,
2046	.d_delete	= pid_delete_dentry,
2047};
2048
2049/* Lookups */
2050
2051/*
2052 * Fill a directory entry.
2053 *
2054 * If possible create the dcache entry and derive our inode number and
2055 * file type from dcache entry.
2056 *
2057 * Since all of the proc inode numbers are dynamically generated, the inode
2058 * numbers do not exist until the inode is cache.  This means creating
2059 * the dcache entry in readdir is necessary to keep the inode numbers
2060 * reported by readdir in sync with the inode numbers reported
2061 * by stat.
2062 */
2063bool proc_fill_cache(struct file *file, struct dir_context *ctx,
2064	const char *name, unsigned int len,
2065	instantiate_t instantiate, struct task_struct *task, const void *ptr)
2066{
2067	struct dentry *child, *dir = file->f_path.dentry;
2068	struct qstr qname = QSTR_INIT(name, len);
2069	struct inode *inode;
2070	unsigned type = DT_UNKNOWN;
2071	ino_t ino = 1;
2072
2073	child = d_hash_and_lookup(dir, &qname);
2074	if (!child) {
2075		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2076		child = d_alloc_parallel(dir, &qname, &wq);
2077		if (IS_ERR(child))
2078			goto end_instantiate;
2079		if (d_in_lookup(child)) {
2080			struct dentry *res;
2081			res = instantiate(child, task, ptr);
2082			d_lookup_done(child);
2083			if (unlikely(res)) {
2084				dput(child);
2085				child = res;
2086				if (IS_ERR(child))
2087					goto end_instantiate;
2088			}
2089		}
2090	}
2091	inode = d_inode(child);
2092	ino = inode->i_ino;
2093	type = inode->i_mode >> 12;
2094	dput(child);
2095end_instantiate:
2096	return dir_emit(ctx, name, len, ino, type);
2097}
2098
2099/*
2100 * dname_to_vma_addr - maps a dentry name into two unsigned longs
2101 * which represent vma start and end addresses.
2102 */
2103static int dname_to_vma_addr(struct dentry *dentry,
2104			     unsigned long *start, unsigned long *end)
2105{
2106	const char *str = dentry->d_name.name;
2107	unsigned long long sval, eval;
2108	unsigned int len;
2109
2110	if (str[0] == '0' && str[1] != '-')
2111		return -EINVAL;
2112	len = _parse_integer(str, 16, &sval);
2113	if (len & KSTRTOX_OVERFLOW)
2114		return -EINVAL;
2115	if (sval != (unsigned long)sval)
2116		return -EINVAL;
2117	str += len;
2118
2119	if (*str != '-')
2120		return -EINVAL;
2121	str++;
2122
2123	if (str[0] == '0' && str[1])
2124		return -EINVAL;
2125	len = _parse_integer(str, 16, &eval);
2126	if (len & KSTRTOX_OVERFLOW)
2127		return -EINVAL;
2128	if (eval != (unsigned long)eval)
2129		return -EINVAL;
2130	str += len;
2131
2132	if (*str != '\0')
2133		return -EINVAL;
2134
2135	*start = sval;
2136	*end = eval;
2137
2138	return 0;
2139}
2140
2141static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
2142{
2143	unsigned long vm_start, vm_end;
2144	bool exact_vma_exists = false;
2145	struct mm_struct *mm = NULL;
2146	struct task_struct *task;
2147	struct inode *inode;
2148	int status = 0;
2149
2150	if (flags & LOOKUP_RCU)
2151		return -ECHILD;
2152
2153	inode = d_inode(dentry);
2154	task = get_proc_task(inode);
2155	if (!task)
2156		goto out_notask;
2157
2158	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
2159	if (IS_ERR_OR_NULL(mm))
2160		goto out;
2161
2162	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
2163		status = mmap_read_lock_killable(mm);
2164		if (!status) {
2165			exact_vma_exists = !!find_exact_vma(mm, vm_start,
2166							    vm_end);
2167			mmap_read_unlock(mm);
2168		}
2169	}
2170
2171	mmput(mm);
2172
2173	if (exact_vma_exists) {
2174		task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
2175
2176		security_task_to_inode(task, inode);
2177		status = 1;
2178	}
2179
2180out:
2181	put_task_struct(task);
2182
2183out_notask:
2184	return status;
2185}
2186
2187static const struct dentry_operations tid_map_files_dentry_operations = {
2188	.d_revalidate	= map_files_d_revalidate,
2189	.d_delete	= pid_delete_dentry,
2190};
2191
2192static int map_files_get_link(struct dentry *dentry, struct path *path)
2193{
2194	unsigned long vm_start, vm_end;
2195	struct vm_area_struct *vma;
2196	struct task_struct *task;
2197	struct mm_struct *mm;
2198	int rc;
2199
2200	rc = -ENOENT;
2201	task = get_proc_task(d_inode(dentry));
2202	if (!task)
2203		goto out;
2204
2205	mm = get_task_mm(task);
2206	put_task_struct(task);
2207	if (!mm)
2208		goto out;
2209
2210	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2211	if (rc)
2212		goto out_mmput;
2213
2214	rc = mmap_read_lock_killable(mm);
2215	if (rc)
2216		goto out_mmput;
2217
2218	rc = -ENOENT;
2219	vma = find_exact_vma(mm, vm_start, vm_end);
2220	if (vma && vma->vm_file) {
2221		*path = vma->vm_file->f_path;
2222		path_get(path);
2223		rc = 0;
2224	}
2225	mmap_read_unlock(mm);
2226
2227out_mmput:
2228	mmput(mm);
2229out:
2230	return rc;
2231}
2232
2233struct map_files_info {
2234	unsigned long	start;
2235	unsigned long	end;
2236	fmode_t		mode;
2237};
2238
2239/*
2240 * Only allow CAP_SYS_ADMIN and CAP_CHECKPOINT_RESTORE to follow the links, due
2241 * to concerns about how the symlinks may be used to bypass permissions on
2242 * ancestor directories in the path to the file in question.
2243 */
2244static const char *
2245proc_map_files_get_link(struct dentry *dentry,
2246			struct inode *inode,
2247		        struct delayed_call *done)
2248{
2249	if (!checkpoint_restore_ns_capable(&init_user_ns))
2250		return ERR_PTR(-EPERM);
2251
2252	return proc_pid_get_link(dentry, inode, done);
2253}
2254
2255/*
2256 * Identical to proc_pid_link_inode_operations except for get_link()
2257 */
2258static const struct inode_operations proc_map_files_link_inode_operations = {
2259	.readlink	= proc_pid_readlink,
2260	.get_link	= proc_map_files_get_link,
2261	.setattr	= proc_setattr,
2262};
2263
2264static struct dentry *
2265proc_map_files_instantiate(struct dentry *dentry,
2266			   struct task_struct *task, const void *ptr)
2267{
2268	fmode_t mode = (fmode_t)(unsigned long)ptr;
2269	struct proc_inode *ei;
2270	struct inode *inode;
2271
2272	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2273				    ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2274				    ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2275	if (!inode)
2276		return ERR_PTR(-ENOENT);
2277
2278	ei = PROC_I(inode);
2279	ei->op.proc_get_link = map_files_get_link;
2280
2281	inode->i_op = &proc_map_files_link_inode_operations;
2282	inode->i_size = 64;
2283
2284	d_set_d_op(dentry, &tid_map_files_dentry_operations);
2285	return d_splice_alias(inode, dentry);
2286}
2287
2288static struct dentry *proc_map_files_lookup(struct inode *dir,
2289		struct dentry *dentry, unsigned int flags)
2290{
2291	unsigned long vm_start, vm_end;
2292	struct vm_area_struct *vma;
2293	struct task_struct *task;
2294	struct dentry *result;
2295	struct mm_struct *mm;
2296
2297	result = ERR_PTR(-ENOENT);
2298	task = get_proc_task(dir);
2299	if (!task)
2300		goto out;
2301
2302	result = ERR_PTR(-EACCES);
2303	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2304		goto out_put_task;
2305
2306	result = ERR_PTR(-ENOENT);
2307	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2308		goto out_put_task;
2309
2310	mm = get_task_mm(task);
2311	if (!mm)
2312		goto out_put_task;
2313
2314	result = ERR_PTR(-EINTR);
2315	if (mmap_read_lock_killable(mm))
2316		goto out_put_mm;
2317
2318	result = ERR_PTR(-ENOENT);
2319	vma = find_exact_vma(mm, vm_start, vm_end);
2320	if (!vma)
2321		goto out_no_vma;
2322
2323	if (vma->vm_file)
2324		result = proc_map_files_instantiate(dentry, task,
2325				(void *)(unsigned long)vma->vm_file->f_mode);
2326
2327out_no_vma:
2328	mmap_read_unlock(mm);
2329out_put_mm:
2330	mmput(mm);
2331out_put_task:
2332	put_task_struct(task);
2333out:
2334	return result;
2335}
2336
2337static const struct inode_operations proc_map_files_inode_operations = {
2338	.lookup		= proc_map_files_lookup,
2339	.permission	= proc_fd_permission,
2340	.setattr	= proc_setattr,
2341};
2342
2343static int
2344proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2345{
2346	struct vm_area_struct *vma;
2347	struct task_struct *task;
2348	struct mm_struct *mm;
2349	unsigned long nr_files, pos, i;
2350	GENRADIX(struct map_files_info) fa;
2351	struct map_files_info *p;
2352	int ret;
2353	struct vma_iterator vmi;
2354
2355	genradix_init(&fa);
2356
2357	ret = -ENOENT;
2358	task = get_proc_task(file_inode(file));
2359	if (!task)
2360		goto out;
2361
2362	ret = -EACCES;
2363	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2364		goto out_put_task;
2365
2366	ret = 0;
2367	if (!dir_emit_dots(file, ctx))
2368		goto out_put_task;
2369
2370	mm = get_task_mm(task);
2371	if (!mm)
2372		goto out_put_task;
2373
2374	ret = mmap_read_lock_killable(mm);
2375	if (ret) {
2376		mmput(mm);
2377		goto out_put_task;
2378	}
2379
2380	nr_files = 0;
2381
2382	/*
2383	 * We need two passes here:
2384	 *
2385	 *  1) Collect vmas of mapped files with mmap_lock taken
2386	 *  2) Release mmap_lock and instantiate entries
2387	 *
2388	 * otherwise we get lockdep complained, since filldir()
2389	 * routine might require mmap_lock taken in might_fault().
2390	 */
2391
2392	pos = 2;
2393	vma_iter_init(&vmi, mm, 0);
2394	for_each_vma(vmi, vma) {
2395		if (!vma->vm_file)
2396			continue;
2397		if (++pos <= ctx->pos)
2398			continue;
2399
2400		p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL);
2401		if (!p) {
2402			ret = -ENOMEM;
2403			mmap_read_unlock(mm);
2404			mmput(mm);
2405			goto out_put_task;
2406		}
2407
2408		p->start = vma->vm_start;
2409		p->end = vma->vm_end;
2410		p->mode = vma->vm_file->f_mode;
2411	}
2412	mmap_read_unlock(mm);
2413	mmput(mm);
2414
2415	for (i = 0; i < nr_files; i++) {
2416		char buf[4 * sizeof(long) + 2];	/* max: %lx-%lx\0 */
2417		unsigned int len;
2418
2419		p = genradix_ptr(&fa, i);
2420		len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2421		if (!proc_fill_cache(file, ctx,
2422				      buf, len,
2423				      proc_map_files_instantiate,
2424				      task,
2425				      (void *)(unsigned long)p->mode))
2426			break;
2427		ctx->pos++;
2428	}
2429
2430out_put_task:
2431	put_task_struct(task);
2432out:
2433	genradix_free(&fa);
2434	return ret;
2435}
2436
2437static const struct file_operations proc_map_files_operations = {
2438	.read		= generic_read_dir,
2439	.iterate_shared	= proc_map_files_readdir,
2440	.llseek		= generic_file_llseek,
2441};
2442
2443#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2444struct timers_private {
2445	struct pid *pid;
2446	struct task_struct *task;
2447	struct sighand_struct *sighand;
2448	struct pid_namespace *ns;
2449	unsigned long flags;
2450};
2451
2452static void *timers_start(struct seq_file *m, loff_t *pos)
2453{
2454	struct timers_private *tp = m->private;
2455
2456	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2457	if (!tp->task)
2458		return ERR_PTR(-ESRCH);
2459
2460	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2461	if (!tp->sighand)
2462		return ERR_PTR(-ESRCH);
2463
2464	return seq_list_start(&tp->task->signal->posix_timers, *pos);
2465}
2466
2467static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2468{
2469	struct timers_private *tp = m->private;
2470	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2471}
2472
2473static void timers_stop(struct seq_file *m, void *v)
2474{
2475	struct timers_private *tp = m->private;
2476
2477	if (tp->sighand) {
2478		unlock_task_sighand(tp->task, &tp->flags);
2479		tp->sighand = NULL;
2480	}
2481
2482	if (tp->task) {
2483		put_task_struct(tp->task);
2484		tp->task = NULL;
2485	}
2486}
2487
2488static int show_timer(struct seq_file *m, void *v)
2489{
2490	struct k_itimer *timer;
2491	struct timers_private *tp = m->private;
2492	int notify;
2493	static const char * const nstr[] = {
2494		[SIGEV_SIGNAL] = "signal",
2495		[SIGEV_NONE] = "none",
2496		[SIGEV_THREAD] = "thread",
2497	};
2498
2499	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2500	notify = timer->it_sigev_notify;
2501
2502	seq_printf(m, "ID: %d\n", timer->it_id);
2503	seq_printf(m, "signal: %d/%px\n",
2504		   timer->sigq->info.si_signo,
2505		   timer->sigq->info.si_value.sival_ptr);
2506	seq_printf(m, "notify: %s/%s.%d\n",
2507		   nstr[notify & ~SIGEV_THREAD_ID],
2508		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2509		   pid_nr_ns(timer->it_pid, tp->ns));
2510	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2511
2512	return 0;
2513}
2514
2515static const struct seq_operations proc_timers_seq_ops = {
2516	.start	= timers_start,
2517	.next	= timers_next,
2518	.stop	= timers_stop,
2519	.show	= show_timer,
2520};
2521
2522static int proc_timers_open(struct inode *inode, struct file *file)
2523{
2524	struct timers_private *tp;
2525
2526	tp = __seq_open_private(file, &proc_timers_seq_ops,
2527			sizeof(struct timers_private));
2528	if (!tp)
2529		return -ENOMEM;
2530
2531	tp->pid = proc_pid(inode);
2532	tp->ns = proc_pid_ns(inode->i_sb);
2533	return 0;
2534}
2535
2536static const struct file_operations proc_timers_operations = {
2537	.open		= proc_timers_open,
2538	.read		= seq_read,
2539	.llseek		= seq_lseek,
2540	.release	= seq_release_private,
2541};
2542#endif
2543
2544static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2545					size_t count, loff_t *offset)
2546{
2547	struct inode *inode = file_inode(file);
2548	struct task_struct *p;
2549	u64 slack_ns;
2550	int err;
2551
2552	err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2553	if (err < 0)
2554		return err;
2555
2556	p = get_proc_task(inode);
2557	if (!p)
2558		return -ESRCH;
2559
2560	if (p != current) {
2561		rcu_read_lock();
2562		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2563			rcu_read_unlock();
2564			count = -EPERM;
2565			goto out;
2566		}
2567		rcu_read_unlock();
2568
2569		err = security_task_setscheduler(p);
2570		if (err) {
2571			count = err;
2572			goto out;
2573		}
2574	}
2575
2576	task_lock(p);
2577	if (slack_ns == 0)
2578		p->timer_slack_ns = p->default_timer_slack_ns;
2579	else
2580		p->timer_slack_ns = slack_ns;
 
2581	task_unlock(p);
2582
2583out:
2584	put_task_struct(p);
2585
2586	return count;
2587}
2588
2589static int timerslack_ns_show(struct seq_file *m, void *v)
2590{
2591	struct inode *inode = m->private;
2592	struct task_struct *p;
2593	int err = 0;
2594
2595	p = get_proc_task(inode);
2596	if (!p)
2597		return -ESRCH;
2598
2599	if (p != current) {
2600		rcu_read_lock();
2601		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2602			rcu_read_unlock();
2603			err = -EPERM;
2604			goto out;
2605		}
2606		rcu_read_unlock();
2607
2608		err = security_task_getscheduler(p);
2609		if (err)
2610			goto out;
2611	}
2612
2613	task_lock(p);
2614	seq_printf(m, "%llu\n", p->timer_slack_ns);
2615	task_unlock(p);
2616
2617out:
2618	put_task_struct(p);
2619
2620	return err;
2621}
2622
2623static int timerslack_ns_open(struct inode *inode, struct file *filp)
2624{
2625	return single_open(filp, timerslack_ns_show, inode);
2626}
2627
2628static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2629	.open		= timerslack_ns_open,
2630	.read		= seq_read,
2631	.write		= timerslack_ns_write,
2632	.llseek		= seq_lseek,
2633	.release	= single_release,
2634};
2635
2636static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2637	struct task_struct *task, const void *ptr)
2638{
2639	const struct pid_entry *p = ptr;
2640	struct inode *inode;
2641	struct proc_inode *ei;
2642
2643	inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2644	if (!inode)
2645		return ERR_PTR(-ENOENT);
2646
2647	ei = PROC_I(inode);
2648	if (S_ISDIR(inode->i_mode))
2649		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2650	if (p->iop)
2651		inode->i_op = p->iop;
2652	if (p->fop)
2653		inode->i_fop = p->fop;
2654	ei->op = p->op;
2655	pid_update_inode(task, inode);
2656	d_set_d_op(dentry, &pid_dentry_operations);
2657	return d_splice_alias(inode, dentry);
2658}
2659
2660static struct dentry *proc_pident_lookup(struct inode *dir, 
2661					 struct dentry *dentry,
2662					 const struct pid_entry *p,
2663					 const struct pid_entry *end)
2664{
2665	struct task_struct *task = get_proc_task(dir);
2666	struct dentry *res = ERR_PTR(-ENOENT);
2667
2668	if (!task)
2669		goto out_no_task;
2670
2671	/*
2672	 * Yes, it does not scale. And it should not. Don't add
2673	 * new entries into /proc/<tgid>/ without very good reasons.
2674	 */
2675	for (; p < end; p++) {
2676		if (p->len != dentry->d_name.len)
2677			continue;
2678		if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2679			res = proc_pident_instantiate(dentry, task, p);
2680			break;
2681		}
2682	}
2683	put_task_struct(task);
2684out_no_task:
2685	return res;
2686}
2687
2688static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2689		const struct pid_entry *ents, unsigned int nents)
2690{
2691	struct task_struct *task = get_proc_task(file_inode(file));
2692	const struct pid_entry *p;
2693
2694	if (!task)
2695		return -ENOENT;
2696
2697	if (!dir_emit_dots(file, ctx))
2698		goto out;
2699
2700	if (ctx->pos >= nents + 2)
2701		goto out;
2702
2703	for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2704		if (!proc_fill_cache(file, ctx, p->name, p->len,
2705				proc_pident_instantiate, task, p))
2706			break;
2707		ctx->pos++;
2708	}
2709out:
2710	put_task_struct(task);
2711	return 0;
2712}
2713
2714#ifdef CONFIG_SECURITY
2715static int proc_pid_attr_open(struct inode *inode, struct file *file)
2716{
2717	file->private_data = NULL;
2718	__mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
2719	return 0;
2720}
2721
2722static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2723				  size_t count, loff_t *ppos)
2724{
2725	struct inode * inode = file_inode(file);
2726	char *p = NULL;
2727	ssize_t length;
2728	struct task_struct *task = get_proc_task(inode);
2729
2730	if (!task)
2731		return -ESRCH;
2732
2733	length = security_getprocattr(task, PROC_I(inode)->op.lsm,
2734				      file->f_path.dentry->d_name.name,
2735				      &p);
2736	put_task_struct(task);
2737	if (length > 0)
2738		length = simple_read_from_buffer(buf, count, ppos, p, length);
2739	kfree(p);
2740	return length;
2741}
2742
2743static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2744				   size_t count, loff_t *ppos)
2745{
2746	struct inode * inode = file_inode(file);
2747	struct task_struct *task;
2748	void *page;
2749	int rv;
2750
2751	/* A task may only write when it was the opener. */
2752	if (file->private_data != current->mm)
2753		return -EPERM;
2754
2755	rcu_read_lock();
2756	task = pid_task(proc_pid(inode), PIDTYPE_PID);
2757	if (!task) {
2758		rcu_read_unlock();
2759		return -ESRCH;
2760	}
2761	/* A task may only write its own attributes. */
2762	if (current != task) {
2763		rcu_read_unlock();
2764		return -EACCES;
2765	}
2766	/* Prevent changes to overridden credentials. */
2767	if (current_cred() != current_real_cred()) {
2768		rcu_read_unlock();
2769		return -EBUSY;
2770	}
2771	rcu_read_unlock();
2772
2773	if (count > PAGE_SIZE)
2774		count = PAGE_SIZE;
2775
2776	/* No partial writes. */
2777	if (*ppos != 0)
2778		return -EINVAL;
2779
2780	page = memdup_user(buf, count);
2781	if (IS_ERR(page)) {
2782		rv = PTR_ERR(page);
2783		goto out;
2784	}
2785
2786	/* Guard against adverse ptrace interaction */
2787	rv = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
2788	if (rv < 0)
2789		goto out_free;
2790
2791	rv = security_setprocattr(PROC_I(inode)->op.lsm,
2792				  file->f_path.dentry->d_name.name, page,
2793				  count);
2794	mutex_unlock(&current->signal->cred_guard_mutex);
2795out_free:
2796	kfree(page);
2797out:
2798	return rv;
2799}
2800
2801static const struct file_operations proc_pid_attr_operations = {
2802	.open		= proc_pid_attr_open,
2803	.read		= proc_pid_attr_read,
2804	.write		= proc_pid_attr_write,
2805	.llseek		= generic_file_llseek,
2806	.release	= mem_release,
2807};
2808
2809#define LSM_DIR_OPS(LSM) \
2810static int proc_##LSM##_attr_dir_iterate(struct file *filp, \
2811			     struct dir_context *ctx) \
2812{ \
2813	return proc_pident_readdir(filp, ctx, \
2814				   LSM##_attr_dir_stuff, \
2815				   ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2816} \
2817\
2818static const struct file_operations proc_##LSM##_attr_dir_ops = { \
2819	.read		= generic_read_dir, \
2820	.iterate	= proc_##LSM##_attr_dir_iterate, \
2821	.llseek		= default_llseek, \
2822}; \
2823\
2824static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \
2825				struct dentry *dentry, unsigned int flags) \
2826{ \
2827	return proc_pident_lookup(dir, dentry, \
2828				  LSM##_attr_dir_stuff, \
2829				  LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2830} \
2831\
2832static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \
2833	.lookup		= proc_##LSM##_attr_dir_lookup, \
2834	.getattr	= pid_getattr, \
2835	.setattr	= proc_setattr, \
2836}
2837
2838#ifdef CONFIG_SECURITY_SMACK
2839static const struct pid_entry smack_attr_dir_stuff[] = {
2840	ATTR("smack", "current",	0666),
2841};
2842LSM_DIR_OPS(smack);
2843#endif
2844
2845#ifdef CONFIG_SECURITY_APPARMOR
2846static const struct pid_entry apparmor_attr_dir_stuff[] = {
2847	ATTR("apparmor", "current",	0666),
2848	ATTR("apparmor", "prev",	0444),
2849	ATTR("apparmor", "exec",	0666),
2850};
2851LSM_DIR_OPS(apparmor);
2852#endif
2853
2854static const struct pid_entry attr_dir_stuff[] = {
2855	ATTR(NULL, "current",		0666),
2856	ATTR(NULL, "prev",		0444),
2857	ATTR(NULL, "exec",		0666),
2858	ATTR(NULL, "fscreate",		0666),
2859	ATTR(NULL, "keycreate",		0666),
2860	ATTR(NULL, "sockcreate",	0666),
2861#ifdef CONFIG_SECURITY_SMACK
2862	DIR("smack",			0555,
2863	    proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops),
2864#endif
2865#ifdef CONFIG_SECURITY_APPARMOR
2866	DIR("apparmor",			0555,
2867	    proc_apparmor_attr_dir_inode_ops, proc_apparmor_attr_dir_ops),
2868#endif
2869};
2870
2871static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2872{
2873	return proc_pident_readdir(file, ctx, 
2874				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2875}
2876
2877static const struct file_operations proc_attr_dir_operations = {
2878	.read		= generic_read_dir,
2879	.iterate_shared	= proc_attr_dir_readdir,
2880	.llseek		= generic_file_llseek,
2881};
2882
2883static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2884				struct dentry *dentry, unsigned int flags)
2885{
2886	return proc_pident_lookup(dir, dentry,
2887				  attr_dir_stuff,
2888				  attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff));
2889}
2890
2891static const struct inode_operations proc_attr_dir_inode_operations = {
2892	.lookup		= proc_attr_dir_lookup,
2893	.getattr	= pid_getattr,
2894	.setattr	= proc_setattr,
2895};
2896
2897#endif
2898
2899#ifdef CONFIG_ELF_CORE
2900static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2901					 size_t count, loff_t *ppos)
2902{
2903	struct task_struct *task = get_proc_task(file_inode(file));
2904	struct mm_struct *mm;
2905	char buffer[PROC_NUMBUF];
2906	size_t len;
2907	int ret;
2908
2909	if (!task)
2910		return -ESRCH;
2911
2912	ret = 0;
2913	mm = get_task_mm(task);
2914	if (mm) {
2915		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2916			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2917				MMF_DUMP_FILTER_SHIFT));
2918		mmput(mm);
2919		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2920	}
2921
2922	put_task_struct(task);
2923
2924	return ret;
2925}
2926
2927static ssize_t proc_coredump_filter_write(struct file *file,
2928					  const char __user *buf,
2929					  size_t count,
2930					  loff_t *ppos)
2931{
2932	struct task_struct *task;
2933	struct mm_struct *mm;
2934	unsigned int val;
2935	int ret;
2936	int i;
2937	unsigned long mask;
2938
2939	ret = kstrtouint_from_user(buf, count, 0, &val);
2940	if (ret < 0)
2941		return ret;
2942
2943	ret = -ESRCH;
2944	task = get_proc_task(file_inode(file));
2945	if (!task)
2946		goto out_no_task;
2947
2948	mm = get_task_mm(task);
2949	if (!mm)
2950		goto out_no_mm;
2951	ret = 0;
2952
2953	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2954		if (val & mask)
2955			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2956		else
2957			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2958	}
2959
2960	mmput(mm);
2961 out_no_mm:
2962	put_task_struct(task);
2963 out_no_task:
2964	if (ret < 0)
2965		return ret;
2966	return count;
2967}
2968
2969static const struct file_operations proc_coredump_filter_operations = {
2970	.read		= proc_coredump_filter_read,
2971	.write		= proc_coredump_filter_write,
2972	.llseek		= generic_file_llseek,
2973};
2974#endif
2975
2976#ifdef CONFIG_TASK_IO_ACCOUNTING
2977static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2978{
2979	struct task_io_accounting acct = task->ioac;
2980	unsigned long flags;
2981	int result;
2982
2983	result = down_read_killable(&task->signal->exec_update_lock);
2984	if (result)
2985		return result;
2986
2987	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2988		result = -EACCES;
2989		goto out_unlock;
2990	}
2991
2992	if (whole && lock_task_sighand(task, &flags)) {
2993		struct task_struct *t = task;
 
 
 
2994
2995		task_io_accounting_add(&acct, &task->signal->ioac);
2996		while_each_thread(task, t)
2997			task_io_accounting_add(&acct, &t->ioac);
 
 
 
 
 
2998
2999		unlock_task_sighand(task, &flags);
 
 
 
 
3000	}
 
3001	seq_printf(m,
3002		   "rchar: %llu\n"
3003		   "wchar: %llu\n"
3004		   "syscr: %llu\n"
3005		   "syscw: %llu\n"
3006		   "read_bytes: %llu\n"
3007		   "write_bytes: %llu\n"
3008		   "cancelled_write_bytes: %llu\n",
3009		   (unsigned long long)acct.rchar,
3010		   (unsigned long long)acct.wchar,
3011		   (unsigned long long)acct.syscr,
3012		   (unsigned long long)acct.syscw,
3013		   (unsigned long long)acct.read_bytes,
3014		   (unsigned long long)acct.write_bytes,
3015		   (unsigned long long)acct.cancelled_write_bytes);
3016	result = 0;
3017
3018out_unlock:
3019	up_read(&task->signal->exec_update_lock);
3020	return result;
3021}
3022
3023static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
3024				  struct pid *pid, struct task_struct *task)
3025{
3026	return do_io_accounting(task, m, 0);
3027}
3028
3029static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
3030				   struct pid *pid, struct task_struct *task)
3031{
3032	return do_io_accounting(task, m, 1);
3033}
3034#endif /* CONFIG_TASK_IO_ACCOUNTING */
3035
3036#ifdef CONFIG_USER_NS
3037static int proc_id_map_open(struct inode *inode, struct file *file,
3038	const struct seq_operations *seq_ops)
3039{
3040	struct user_namespace *ns = NULL;
3041	struct task_struct *task;
3042	struct seq_file *seq;
3043	int ret = -EINVAL;
3044
3045	task = get_proc_task(inode);
3046	if (task) {
3047		rcu_read_lock();
3048		ns = get_user_ns(task_cred_xxx(task, user_ns));
3049		rcu_read_unlock();
3050		put_task_struct(task);
3051	}
3052	if (!ns)
3053		goto err;
3054
3055	ret = seq_open(file, seq_ops);
3056	if (ret)
3057		goto err_put_ns;
3058
3059	seq = file->private_data;
3060	seq->private = ns;
3061
3062	return 0;
3063err_put_ns:
3064	put_user_ns(ns);
3065err:
3066	return ret;
3067}
3068
3069static int proc_id_map_release(struct inode *inode, struct file *file)
3070{
3071	struct seq_file *seq = file->private_data;
3072	struct user_namespace *ns = seq->private;
3073	put_user_ns(ns);
3074	return seq_release(inode, file);
3075}
3076
3077static int proc_uid_map_open(struct inode *inode, struct file *file)
3078{
3079	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
3080}
3081
3082static int proc_gid_map_open(struct inode *inode, struct file *file)
3083{
3084	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
3085}
3086
3087static int proc_projid_map_open(struct inode *inode, struct file *file)
3088{
3089	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
3090}
3091
3092static const struct file_operations proc_uid_map_operations = {
3093	.open		= proc_uid_map_open,
3094	.write		= proc_uid_map_write,
3095	.read		= seq_read,
3096	.llseek		= seq_lseek,
3097	.release	= proc_id_map_release,
3098};
3099
3100static const struct file_operations proc_gid_map_operations = {
3101	.open		= proc_gid_map_open,
3102	.write		= proc_gid_map_write,
3103	.read		= seq_read,
3104	.llseek		= seq_lseek,
3105	.release	= proc_id_map_release,
3106};
3107
3108static const struct file_operations proc_projid_map_operations = {
3109	.open		= proc_projid_map_open,
3110	.write		= proc_projid_map_write,
3111	.read		= seq_read,
3112	.llseek		= seq_lseek,
3113	.release	= proc_id_map_release,
3114};
3115
3116static int proc_setgroups_open(struct inode *inode, struct file *file)
3117{
3118	struct user_namespace *ns = NULL;
3119	struct task_struct *task;
3120	int ret;
3121
3122	ret = -ESRCH;
3123	task = get_proc_task(inode);
3124	if (task) {
3125		rcu_read_lock();
3126		ns = get_user_ns(task_cred_xxx(task, user_ns));
3127		rcu_read_unlock();
3128		put_task_struct(task);
3129	}
3130	if (!ns)
3131		goto err;
3132
3133	if (file->f_mode & FMODE_WRITE) {
3134		ret = -EACCES;
3135		if (!ns_capable(ns, CAP_SYS_ADMIN))
3136			goto err_put_ns;
3137	}
3138
3139	ret = single_open(file, &proc_setgroups_show, ns);
3140	if (ret)
3141		goto err_put_ns;
3142
3143	return 0;
3144err_put_ns:
3145	put_user_ns(ns);
3146err:
3147	return ret;
3148}
3149
3150static int proc_setgroups_release(struct inode *inode, struct file *file)
3151{
3152	struct seq_file *seq = file->private_data;
3153	struct user_namespace *ns = seq->private;
3154	int ret = single_release(inode, file);
3155	put_user_ns(ns);
3156	return ret;
3157}
3158
3159static const struct file_operations proc_setgroups_operations = {
3160	.open		= proc_setgroups_open,
3161	.write		= proc_setgroups_write,
3162	.read		= seq_read,
3163	.llseek		= seq_lseek,
3164	.release	= proc_setgroups_release,
3165};
3166#endif /* CONFIG_USER_NS */
3167
3168static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
3169				struct pid *pid, struct task_struct *task)
3170{
3171	int err = lock_trace(task);
3172	if (!err) {
3173		seq_printf(m, "%08x\n", task->personality);
3174		unlock_trace(task);
3175	}
3176	return err;
3177}
3178
3179#ifdef CONFIG_LIVEPATCH
3180static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
3181				struct pid *pid, struct task_struct *task)
3182{
3183	seq_printf(m, "%d\n", task->patch_state);
3184	return 0;
3185}
3186#endif /* CONFIG_LIVEPATCH */
3187
3188#ifdef CONFIG_KSM
3189static int proc_pid_ksm_merging_pages(struct seq_file *m, struct pid_namespace *ns,
3190				struct pid *pid, struct task_struct *task)
3191{
3192	struct mm_struct *mm;
3193
3194	mm = get_task_mm(task);
3195	if (mm) {
3196		seq_printf(m, "%lu\n", mm->ksm_merging_pages);
3197		mmput(mm);
3198	}
3199
3200	return 0;
3201}
3202static int proc_pid_ksm_stat(struct seq_file *m, struct pid_namespace *ns,
3203				struct pid *pid, struct task_struct *task)
3204{
3205	struct mm_struct *mm;
3206
3207	mm = get_task_mm(task);
3208	if (mm) {
3209		seq_printf(m, "ksm_rmap_items %lu\n", mm->ksm_rmap_items);
 
 
 
3210		mmput(mm);
3211	}
3212
3213	return 0;
3214}
3215#endif /* CONFIG_KSM */
3216
3217#ifdef CONFIG_STACKLEAK_METRICS
3218static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
3219				struct pid *pid, struct task_struct *task)
3220{
3221	unsigned long prev_depth = THREAD_SIZE -
3222				(task->prev_lowest_stack & (THREAD_SIZE - 1));
3223	unsigned long depth = THREAD_SIZE -
3224				(task->lowest_stack & (THREAD_SIZE - 1));
3225
3226	seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
3227							prev_depth, depth);
3228	return 0;
3229}
3230#endif /* CONFIG_STACKLEAK_METRICS */
3231
3232/*
3233 * Thread groups
3234 */
3235static const struct file_operations proc_task_operations;
3236static const struct inode_operations proc_task_inode_operations;
3237
3238static const struct pid_entry tgid_base_stuff[] = {
3239	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
3240	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3241	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
3242	DIR("fdinfo",     S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3243	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3244#ifdef CONFIG_NET
3245	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3246#endif
3247	REG("environ",    S_IRUSR, proc_environ_operations),
3248	REG("auxv",       S_IRUSR, proc_auxv_operations),
3249	ONE("status",     S_IRUGO, proc_pid_status),
3250	ONE("personality", S_IRUSR, proc_pid_personality),
3251	ONE("limits",	  S_IRUGO, proc_pid_limits),
3252#ifdef CONFIG_SCHED_DEBUG
3253	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3254#endif
3255#ifdef CONFIG_SCHED_AUTOGROUP
3256	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3257#endif
3258#ifdef CONFIG_TIME_NS
3259	REG("timens_offsets",  S_IRUGO|S_IWUSR, proc_timens_offsets_operations),
3260#endif
3261	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3262#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3263	ONE("syscall",    S_IRUSR, proc_pid_syscall),
3264#endif
3265	REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
3266	ONE("stat",       S_IRUGO, proc_tgid_stat),
3267	ONE("statm",      S_IRUGO, proc_pid_statm),
3268	REG("maps",       S_IRUGO, proc_pid_maps_operations),
3269#ifdef CONFIG_NUMA
3270	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
3271#endif
3272	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
3273	LNK("cwd",        proc_cwd_link),
3274	LNK("root",       proc_root_link),
3275	LNK("exe",        proc_exe_link),
3276	REG("mounts",     S_IRUGO, proc_mounts_operations),
3277	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3278	REG("mountstats", S_IRUSR, proc_mountstats_operations),
3279#ifdef CONFIG_PROC_PAGE_MONITOR
3280	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3281	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
3282	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3283	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3284#endif
3285#ifdef CONFIG_SECURITY
3286	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3287#endif
3288#ifdef CONFIG_KALLSYMS
3289	ONE("wchan",      S_IRUGO, proc_pid_wchan),
3290#endif
3291#ifdef CONFIG_STACKTRACE
3292	ONE("stack",      S_IRUSR, proc_pid_stack),
3293#endif
3294#ifdef CONFIG_SCHED_INFO
3295	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
3296#endif
3297#ifdef CONFIG_LATENCYTOP
3298	REG("latency",  S_IRUGO, proc_lstats_operations),
3299#endif
3300#ifdef CONFIG_PROC_PID_CPUSET
3301	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
3302#endif
3303#ifdef CONFIG_CGROUPS
3304	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3305#endif
3306#ifdef CONFIG_PROC_CPU_RESCTRL
3307	ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3308#endif
3309	ONE("oom_score",  S_IRUGO, proc_oom_score),
3310	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3311	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3312#ifdef CONFIG_AUDIT
3313	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
3314	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3315#endif
3316#ifdef CONFIG_FAULT_INJECTION
3317	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3318	REG("fail-nth", 0644, proc_fail_nth_operations),
3319#endif
3320#ifdef CONFIG_ELF_CORE
3321	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3322#endif
3323#ifdef CONFIG_TASK_IO_ACCOUNTING
3324	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
3325#endif
3326#ifdef CONFIG_USER_NS
3327	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3328	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3329	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3330	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3331#endif
3332#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3333	REG("timers",	  S_IRUGO, proc_timers_operations),
3334#endif
3335	REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3336#ifdef CONFIG_LIVEPATCH
3337	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3338#endif
3339#ifdef CONFIG_STACKLEAK_METRICS
3340	ONE("stack_depth", S_IRUGO, proc_stack_depth),
3341#endif
3342#ifdef CONFIG_PROC_PID_ARCH_STATUS
3343	ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3344#endif
3345#ifdef CONFIG_SECCOMP_CACHE_DEBUG
3346	ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
3347#endif
3348#ifdef CONFIG_KSM
3349	ONE("ksm_merging_pages",  S_IRUSR, proc_pid_ksm_merging_pages),
3350	ONE("ksm_stat",  S_IRUSR, proc_pid_ksm_stat),
3351#endif
3352};
3353
3354static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3355{
3356	return proc_pident_readdir(file, ctx,
3357				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3358}
3359
3360static const struct file_operations proc_tgid_base_operations = {
3361	.read		= generic_read_dir,
3362	.iterate_shared	= proc_tgid_base_readdir,
3363	.llseek		= generic_file_llseek,
3364};
3365
3366struct pid *tgid_pidfd_to_pid(const struct file *file)
3367{
3368	if (file->f_op != &proc_tgid_base_operations)
3369		return ERR_PTR(-EBADF);
3370
3371	return proc_pid(file_inode(file));
3372}
3373
3374static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3375{
3376	return proc_pident_lookup(dir, dentry,
3377				  tgid_base_stuff,
3378				  tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff));
3379}
3380
3381static const struct inode_operations proc_tgid_base_inode_operations = {
3382	.lookup		= proc_tgid_base_lookup,
3383	.getattr	= pid_getattr,
3384	.setattr	= proc_setattr,
3385	.permission	= proc_pid_permission,
3386};
3387
3388/**
3389 * proc_flush_pid -  Remove dcache entries for @pid from the /proc dcache.
3390 * @pid: pid that should be flushed.
3391 *
3392 * This function walks a list of inodes (that belong to any proc
3393 * filesystem) that are attached to the pid and flushes them from
3394 * the dentry cache.
3395 *
3396 * It is safe and reasonable to cache /proc entries for a task until
3397 * that task exits.  After that they just clog up the dcache with
3398 * useless entries, possibly causing useful dcache entries to be
3399 * flushed instead.  This routine is provided to flush those useless
3400 * dcache entries when a process is reaped.
3401 *
3402 * NOTE: This routine is just an optimization so it does not guarantee
3403 *       that no dcache entries will exist after a process is reaped
3404 *       it just makes it very unlikely that any will persist.
3405 */
3406
3407void proc_flush_pid(struct pid *pid)
3408{
3409	proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock);
3410}
3411
3412static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3413				   struct task_struct *task, const void *ptr)
3414{
3415	struct inode *inode;
3416
3417	inode = proc_pid_make_base_inode(dentry->d_sb, task,
3418					 S_IFDIR | S_IRUGO | S_IXUGO);
3419	if (!inode)
3420		return ERR_PTR(-ENOENT);
3421
3422	inode->i_op = &proc_tgid_base_inode_operations;
3423	inode->i_fop = &proc_tgid_base_operations;
3424	inode->i_flags|=S_IMMUTABLE;
3425
3426	set_nlink(inode, nlink_tgid);
3427	pid_update_inode(task, inode);
3428
3429	d_set_d_op(dentry, &pid_dentry_operations);
3430	return d_splice_alias(inode, dentry);
3431}
3432
3433struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags)
3434{
3435	struct task_struct *task;
3436	unsigned tgid;
3437	struct proc_fs_info *fs_info;
3438	struct pid_namespace *ns;
3439	struct dentry *result = ERR_PTR(-ENOENT);
3440
3441	tgid = name_to_int(&dentry->d_name);
3442	if (tgid == ~0U)
3443		goto out;
3444
3445	fs_info = proc_sb_info(dentry->d_sb);
3446	ns = fs_info->pid_ns;
3447	rcu_read_lock();
3448	task = find_task_by_pid_ns(tgid, ns);
3449	if (task)
3450		get_task_struct(task);
3451	rcu_read_unlock();
3452	if (!task)
3453		goto out;
3454
3455	/* Limit procfs to only ptraceable tasks */
3456	if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) {
3457		if (!has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS))
3458			goto out_put_task;
3459	}
3460
3461	result = proc_pid_instantiate(dentry, task, NULL);
3462out_put_task:
3463	put_task_struct(task);
3464out:
3465	return result;
3466}
3467
3468/*
3469 * Find the first task with tgid >= tgid
3470 *
3471 */
3472struct tgid_iter {
3473	unsigned int tgid;
3474	struct task_struct *task;
3475};
3476static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3477{
3478	struct pid *pid;
3479
3480	if (iter.task)
3481		put_task_struct(iter.task);
3482	rcu_read_lock();
3483retry:
3484	iter.task = NULL;
3485	pid = find_ge_pid(iter.tgid, ns);
3486	if (pid) {
3487		iter.tgid = pid_nr_ns(pid, ns);
3488		iter.task = pid_task(pid, PIDTYPE_TGID);
3489		if (!iter.task) {
3490			iter.tgid += 1;
3491			goto retry;
3492		}
3493		get_task_struct(iter.task);
3494	}
3495	rcu_read_unlock();
3496	return iter;
3497}
3498
3499#define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3500
3501/* for the /proc/ directory itself, after non-process stuff has been done */
3502int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3503{
3504	struct tgid_iter iter;
3505	struct proc_fs_info *fs_info = proc_sb_info(file_inode(file)->i_sb);
3506	struct pid_namespace *ns = proc_pid_ns(file_inode(file)->i_sb);
3507	loff_t pos = ctx->pos;
3508
3509	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3510		return 0;
3511
3512	if (pos == TGID_OFFSET - 2) {
3513		struct inode *inode = d_inode(fs_info->proc_self);
3514		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3515			return 0;
3516		ctx->pos = pos = pos + 1;
3517	}
3518	if (pos == TGID_OFFSET - 1) {
3519		struct inode *inode = d_inode(fs_info->proc_thread_self);
3520		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3521			return 0;
3522		ctx->pos = pos = pos + 1;
3523	}
3524	iter.tgid = pos - TGID_OFFSET;
3525	iter.task = NULL;
3526	for (iter = next_tgid(ns, iter);
3527	     iter.task;
3528	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3529		char name[10 + 1];
3530		unsigned int len;
3531
3532		cond_resched();
3533		if (!has_pid_permissions(fs_info, iter.task, HIDEPID_INVISIBLE))
3534			continue;
3535
3536		len = snprintf(name, sizeof(name), "%u", iter.tgid);
3537		ctx->pos = iter.tgid + TGID_OFFSET;
3538		if (!proc_fill_cache(file, ctx, name, len,
3539				     proc_pid_instantiate, iter.task, NULL)) {
3540			put_task_struct(iter.task);
3541			return 0;
3542		}
3543	}
3544	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3545	return 0;
3546}
3547
3548/*
3549 * proc_tid_comm_permission is a special permission function exclusively
3550 * used for the node /proc/<pid>/task/<tid>/comm.
3551 * It bypasses generic permission checks in the case where a task of the same
3552 * task group attempts to access the node.
3553 * The rationale behind this is that glibc and bionic access this node for
3554 * cross thread naming (pthread_set/getname_np(!self)). However, if
3555 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3556 * which locks out the cross thread naming implementation.
3557 * This function makes sure that the node is always accessible for members of
3558 * same thread group.
3559 */
3560static int proc_tid_comm_permission(struct user_namespace *mnt_userns,
3561				    struct inode *inode, int mask)
3562{
3563	bool is_same_tgroup;
3564	struct task_struct *task;
3565
3566	task = get_proc_task(inode);
3567	if (!task)
3568		return -ESRCH;
3569	is_same_tgroup = same_thread_group(current, task);
3570	put_task_struct(task);
3571
3572	if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3573		/* This file (/proc/<pid>/task/<tid>/comm) can always be
3574		 * read or written by the members of the corresponding
3575		 * thread group.
3576		 */
3577		return 0;
3578	}
3579
3580	return generic_permission(&init_user_ns, inode, mask);
3581}
3582
3583static const struct inode_operations proc_tid_comm_inode_operations = {
3584		.permission = proc_tid_comm_permission,
 
3585};
3586
3587/*
3588 * Tasks
3589 */
3590static const struct pid_entry tid_base_stuff[] = {
3591	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3592	DIR("fdinfo",    S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3593	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3594#ifdef CONFIG_NET
3595	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3596#endif
3597	REG("environ",   S_IRUSR, proc_environ_operations),
3598	REG("auxv",      S_IRUSR, proc_auxv_operations),
3599	ONE("status",    S_IRUGO, proc_pid_status),
3600	ONE("personality", S_IRUSR, proc_pid_personality),
3601	ONE("limits",	 S_IRUGO, proc_pid_limits),
3602#ifdef CONFIG_SCHED_DEBUG
3603	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3604#endif
3605	NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3606			 &proc_tid_comm_inode_operations,
3607			 &proc_pid_set_comm_operations, {}),
3608#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3609	ONE("syscall",   S_IRUSR, proc_pid_syscall),
3610#endif
3611	REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3612	ONE("stat",      S_IRUGO, proc_tid_stat),
3613	ONE("statm",     S_IRUGO, proc_pid_statm),
3614	REG("maps",      S_IRUGO, proc_pid_maps_operations),
3615#ifdef CONFIG_PROC_CHILDREN
3616	REG("children",  S_IRUGO, proc_tid_children_operations),
3617#endif
3618#ifdef CONFIG_NUMA
3619	REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3620#endif
3621	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3622	LNK("cwd",       proc_cwd_link),
3623	LNK("root",      proc_root_link),
3624	LNK("exe",       proc_exe_link),
3625	REG("mounts",    S_IRUGO, proc_mounts_operations),
3626	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3627#ifdef CONFIG_PROC_PAGE_MONITOR
3628	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3629	REG("smaps",     S_IRUGO, proc_pid_smaps_operations),
3630	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3631	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3632#endif
3633#ifdef CONFIG_SECURITY
3634	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3635#endif
3636#ifdef CONFIG_KALLSYMS
3637	ONE("wchan",     S_IRUGO, proc_pid_wchan),
3638#endif
3639#ifdef CONFIG_STACKTRACE
3640	ONE("stack",      S_IRUSR, proc_pid_stack),
3641#endif
3642#ifdef CONFIG_SCHED_INFO
3643	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3644#endif
3645#ifdef CONFIG_LATENCYTOP
3646	REG("latency",  S_IRUGO, proc_lstats_operations),
3647#endif
3648#ifdef CONFIG_PROC_PID_CPUSET
3649	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3650#endif
3651#ifdef CONFIG_CGROUPS
3652	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3653#endif
3654#ifdef CONFIG_PROC_CPU_RESCTRL
3655	ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3656#endif
3657	ONE("oom_score", S_IRUGO, proc_oom_score),
3658	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3659	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3660#ifdef CONFIG_AUDIT
3661	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3662	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3663#endif
3664#ifdef CONFIG_FAULT_INJECTION
3665	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3666	REG("fail-nth", 0644, proc_fail_nth_operations),
3667#endif
3668#ifdef CONFIG_TASK_IO_ACCOUNTING
3669	ONE("io",	S_IRUSR, proc_tid_io_accounting),
3670#endif
3671#ifdef CONFIG_USER_NS
3672	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3673	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3674	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3675	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3676#endif
3677#ifdef CONFIG_LIVEPATCH
3678	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3679#endif
3680#ifdef CONFIG_PROC_PID_ARCH_STATUS
3681	ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3682#endif
3683#ifdef CONFIG_SECCOMP_CACHE_DEBUG
3684	ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
3685#endif
3686#ifdef CONFIG_KSM
3687	ONE("ksm_merging_pages",  S_IRUSR, proc_pid_ksm_merging_pages),
3688	ONE("ksm_stat",  S_IRUSR, proc_pid_ksm_stat),
3689#endif
3690};
3691
3692static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3693{
3694	return proc_pident_readdir(file, ctx,
3695				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3696}
3697
3698static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3699{
3700	return proc_pident_lookup(dir, dentry,
3701				  tid_base_stuff,
3702				  tid_base_stuff + ARRAY_SIZE(tid_base_stuff));
3703}
3704
3705static const struct file_operations proc_tid_base_operations = {
3706	.read		= generic_read_dir,
3707	.iterate_shared	= proc_tid_base_readdir,
3708	.llseek		= generic_file_llseek,
3709};
3710
3711static const struct inode_operations proc_tid_base_inode_operations = {
3712	.lookup		= proc_tid_base_lookup,
3713	.getattr	= pid_getattr,
3714	.setattr	= proc_setattr,
3715};
3716
3717static struct dentry *proc_task_instantiate(struct dentry *dentry,
3718	struct task_struct *task, const void *ptr)
3719{
3720	struct inode *inode;
3721	inode = proc_pid_make_base_inode(dentry->d_sb, task,
3722					 S_IFDIR | S_IRUGO | S_IXUGO);
3723	if (!inode)
3724		return ERR_PTR(-ENOENT);
3725
3726	inode->i_op = &proc_tid_base_inode_operations;
3727	inode->i_fop = &proc_tid_base_operations;
3728	inode->i_flags |= S_IMMUTABLE;
3729
3730	set_nlink(inode, nlink_tid);
3731	pid_update_inode(task, inode);
3732
3733	d_set_d_op(dentry, &pid_dentry_operations);
3734	return d_splice_alias(inode, dentry);
3735}
3736
3737static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3738{
3739	struct task_struct *task;
3740	struct task_struct *leader = get_proc_task(dir);
3741	unsigned tid;
3742	struct proc_fs_info *fs_info;
3743	struct pid_namespace *ns;
3744	struct dentry *result = ERR_PTR(-ENOENT);
3745
3746	if (!leader)
3747		goto out_no_task;
3748
3749	tid = name_to_int(&dentry->d_name);
3750	if (tid == ~0U)
3751		goto out;
3752
3753	fs_info = proc_sb_info(dentry->d_sb);
3754	ns = fs_info->pid_ns;
3755	rcu_read_lock();
3756	task = find_task_by_pid_ns(tid, ns);
3757	if (task)
3758		get_task_struct(task);
3759	rcu_read_unlock();
3760	if (!task)
3761		goto out;
3762	if (!same_thread_group(leader, task))
3763		goto out_drop_task;
3764
3765	result = proc_task_instantiate(dentry, task, NULL);
3766out_drop_task:
3767	put_task_struct(task);
3768out:
3769	put_task_struct(leader);
3770out_no_task:
3771	return result;
3772}
3773
3774/*
3775 * Find the first tid of a thread group to return to user space.
3776 *
3777 * Usually this is just the thread group leader, but if the users
3778 * buffer was too small or there was a seek into the middle of the
3779 * directory we have more work todo.
3780 *
3781 * In the case of a short read we start with find_task_by_pid.
3782 *
3783 * In the case of a seek we start with the leader and walk nr
3784 * threads past it.
3785 */
3786static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3787					struct pid_namespace *ns)
3788{
3789	struct task_struct *pos, *task;
3790	unsigned long nr = f_pos;
3791
3792	if (nr != f_pos)	/* 32bit overflow? */
3793		return NULL;
3794
3795	rcu_read_lock();
3796	task = pid_task(pid, PIDTYPE_PID);
3797	if (!task)
3798		goto fail;
3799
3800	/* Attempt to start with the tid of a thread */
3801	if (tid && nr) {
3802		pos = find_task_by_pid_ns(tid, ns);
3803		if (pos && same_thread_group(pos, task))
3804			goto found;
3805	}
3806
3807	/* If nr exceeds the number of threads there is nothing todo */
3808	if (nr >= get_nr_threads(task))
3809		goto fail;
3810
3811	/* If we haven't found our starting place yet start
3812	 * with the leader and walk nr threads forward.
3813	 */
3814	pos = task = task->group_leader;
3815	do {
3816		if (!nr--)
3817			goto found;
3818	} while_each_thread(task, pos);
3819fail:
3820	pos = NULL;
3821	goto out;
3822found:
3823	get_task_struct(pos);
3824out:
3825	rcu_read_unlock();
3826	return pos;
3827}
3828
3829/*
3830 * Find the next thread in the thread list.
3831 * Return NULL if there is an error or no next thread.
3832 *
3833 * The reference to the input task_struct is released.
3834 */
3835static struct task_struct *next_tid(struct task_struct *start)
3836{
3837	struct task_struct *pos = NULL;
3838	rcu_read_lock();
3839	if (pid_alive(start)) {
3840		pos = next_thread(start);
3841		if (thread_group_leader(pos))
3842			pos = NULL;
3843		else
3844			get_task_struct(pos);
3845	}
3846	rcu_read_unlock();
3847	put_task_struct(start);
3848	return pos;
3849}
3850
3851/* for the /proc/TGID/task/ directories */
3852static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3853{
3854	struct inode *inode = file_inode(file);
3855	struct task_struct *task;
3856	struct pid_namespace *ns;
3857	int tid;
3858
3859	if (proc_inode_is_dead(inode))
3860		return -ENOENT;
3861
3862	if (!dir_emit_dots(file, ctx))
3863		return 0;
3864
3865	/* f_version caches the tgid value that the last readdir call couldn't
3866	 * return. lseek aka telldir automagically resets f_version to 0.
3867	 */
3868	ns = proc_pid_ns(inode->i_sb);
3869	tid = (int)file->f_version;
3870	file->f_version = 0;
3871	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3872	     task;
3873	     task = next_tid(task), ctx->pos++) {
3874		char name[10 + 1];
3875		unsigned int len;
3876
3877		tid = task_pid_nr_ns(task, ns);
3878		if (!tid)
3879			continue;	/* The task has just exited. */
3880		len = snprintf(name, sizeof(name), "%u", tid);
3881		if (!proc_fill_cache(file, ctx, name, len,
3882				proc_task_instantiate, task, NULL)) {
3883			/* returning this tgid failed, save it as the first
3884			 * pid for the next readir call */
3885			file->f_version = (u64)tid;
3886			put_task_struct(task);
3887			break;
3888		}
3889	}
3890
3891	return 0;
3892}
3893
3894static int proc_task_getattr(struct user_namespace *mnt_userns,
3895			     const struct path *path, struct kstat *stat,
3896			     u32 request_mask, unsigned int query_flags)
3897{
3898	struct inode *inode = d_inode(path->dentry);
3899	struct task_struct *p = get_proc_task(inode);
3900	generic_fillattr(&init_user_ns, inode, stat);
3901
3902	if (p) {
3903		stat->nlink += get_nr_threads(p);
3904		put_task_struct(p);
3905	}
3906
3907	return 0;
3908}
3909
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3910static const struct inode_operations proc_task_inode_operations = {
3911	.lookup		= proc_task_lookup,
3912	.getattr	= proc_task_getattr,
3913	.setattr	= proc_setattr,
3914	.permission	= proc_pid_permission,
3915};
3916
3917static const struct file_operations proc_task_operations = {
3918	.read		= generic_read_dir,
3919	.iterate_shared	= proc_task_readdir,
3920	.llseek		= generic_file_llseek,
3921};
3922
3923void __init set_proc_pid_nlink(void)
3924{
3925	nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3926	nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3927}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/proc/base.c
   4 *
   5 *  Copyright (C) 1991, 1992 Linus Torvalds
   6 *
   7 *  proc base directory handling functions
   8 *
   9 *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
  10 *  Instead of using magical inumbers to determine the kind of object
  11 *  we allocate and fill in-core inodes upon lookup. They don't even
  12 *  go into icache. We cache the reference to task_struct upon lookup too.
  13 *  Eventually it should become a filesystem in its own. We don't use the
  14 *  rest of procfs anymore.
  15 *
  16 *
  17 *  Changelog:
  18 *  17-Jan-2005
  19 *  Allan Bezerra
  20 *  Bruna Moreira <bruna.moreira@indt.org.br>
  21 *  Edjard Mota <edjard.mota@indt.org.br>
  22 *  Ilias Biris <ilias.biris@indt.org.br>
  23 *  Mauricio Lin <mauricio.lin@indt.org.br>
  24 *
  25 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  26 *
  27 *  A new process specific entry (smaps) included in /proc. It shows the
  28 *  size of rss for each memory area. The maps entry lacks information
  29 *  about physical memory size (rss) for each mapped file, i.e.,
  30 *  rss information for executables and library files.
  31 *  This additional information is useful for any tools that need to know
  32 *  about physical memory consumption for a process specific library.
  33 *
  34 *  Changelog:
  35 *  21-Feb-2005
  36 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  37 *  Pud inclusion in the page table walking.
  38 *
  39 *  ChangeLog:
  40 *  10-Mar-2005
  41 *  10LE Instituto Nokia de Tecnologia - INdT:
  42 *  A better way to walks through the page table as suggested by Hugh Dickins.
  43 *
  44 *  Simo Piiroinen <simo.piiroinen@nokia.com>:
  45 *  Smaps information related to shared, private, clean and dirty pages.
  46 *
  47 *  Paul Mundt <paul.mundt@nokia.com>:
  48 *  Overall revision about smaps.
  49 */
  50
  51#include <linux/uaccess.h>
  52
  53#include <linux/errno.h>
  54#include <linux/time.h>
  55#include <linux/proc_fs.h>
  56#include <linux/stat.h>
  57#include <linux/task_io_accounting_ops.h>
  58#include <linux/init.h>
  59#include <linux/capability.h>
  60#include <linux/file.h>
 
  61#include <linux/generic-radix-tree.h>
  62#include <linux/string.h>
  63#include <linux/seq_file.h>
  64#include <linux/namei.h>
  65#include <linux/mnt_namespace.h>
  66#include <linux/mm.h>
  67#include <linux/swap.h>
  68#include <linux/rcupdate.h>
  69#include <linux/kallsyms.h>
  70#include <linux/stacktrace.h>
  71#include <linux/resource.h>
  72#include <linux/module.h>
  73#include <linux/mount.h>
  74#include <linux/security.h>
  75#include <linux/ptrace.h>
  76#include <linux/printk.h>
  77#include <linux/cache.h>
  78#include <linux/cgroup.h>
  79#include <linux/cpuset.h>
  80#include <linux/audit.h>
  81#include <linux/poll.h>
  82#include <linux/nsproxy.h>
  83#include <linux/oom.h>
  84#include <linux/elf.h>
  85#include <linux/pid_namespace.h>
  86#include <linux/user_namespace.h>
  87#include <linux/fs_parser.h>
  88#include <linux/fs_struct.h>
  89#include <linux/slab.h>
  90#include <linux/sched/autogroup.h>
  91#include <linux/sched/mm.h>
  92#include <linux/sched/coredump.h>
  93#include <linux/sched/debug.h>
  94#include <linux/sched/stat.h>
  95#include <linux/posix-timers.h>
  96#include <linux/time_namespace.h>
  97#include <linux/resctrl.h>
  98#include <linux/cn_proc.h>
  99#include <linux/ksm.h>
 100#include <uapi/linux/lsm.h>
 101#include <trace/events/oom.h>
 102#include "internal.h"
 103#include "fd.h"
 104
 105#include "../../lib/kstrtox.h"
 106
 107/* NOTE:
 108 *	Implementing inode permission operations in /proc is almost
 109 *	certainly an error.  Permission checks need to happen during
 110 *	each system call not at open time.  The reason is that most of
 111 *	what we wish to check for permissions in /proc varies at runtime.
 112 *
 113 *	The classic example of a problem is opening file descriptors
 114 *	in /proc for a task before it execs a suid executable.
 115 */
 116
 117static u8 nlink_tid __ro_after_init;
 118static u8 nlink_tgid __ro_after_init;
 119
 120enum proc_mem_force {
 121	PROC_MEM_FORCE_ALWAYS,
 122	PROC_MEM_FORCE_PTRACE,
 123	PROC_MEM_FORCE_NEVER
 124};
 125
 126static enum proc_mem_force proc_mem_force_override __ro_after_init =
 127	IS_ENABLED(CONFIG_PROC_MEM_NO_FORCE) ? PROC_MEM_FORCE_NEVER :
 128	IS_ENABLED(CONFIG_PROC_MEM_FORCE_PTRACE) ? PROC_MEM_FORCE_PTRACE :
 129	PROC_MEM_FORCE_ALWAYS;
 130
 131static const struct constant_table proc_mem_force_table[] __initconst = {
 132	{ "always", PROC_MEM_FORCE_ALWAYS },
 133	{ "ptrace", PROC_MEM_FORCE_PTRACE },
 134	{ "never", PROC_MEM_FORCE_NEVER },
 135	{ }
 136};
 137
 138static int __init early_proc_mem_force_override(char *buf)
 139{
 140	if (!buf)
 141		return -EINVAL;
 142
 143	/*
 144	 * lookup_constant() defaults to proc_mem_force_override to preseve
 145	 * the initial Kconfig choice in case an invalid param gets passed.
 146	 */
 147	proc_mem_force_override = lookup_constant(proc_mem_force_table,
 148						  buf, proc_mem_force_override);
 149
 150	return 0;
 151}
 152early_param("proc_mem.force_override", early_proc_mem_force_override);
 153
 154struct pid_entry {
 155	const char *name;
 156	unsigned int len;
 157	umode_t mode;
 158	const struct inode_operations *iop;
 159	const struct file_operations *fop;
 160	union proc_op op;
 161};
 162
 163#define NOD(NAME, MODE, IOP, FOP, OP) {			\
 164	.name = (NAME),					\
 165	.len  = sizeof(NAME) - 1,			\
 166	.mode = MODE,					\
 167	.iop  = IOP,					\
 168	.fop  = FOP,					\
 169	.op   = OP,					\
 170}
 171
 172#define DIR(NAME, MODE, iops, fops)	\
 173	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
 174#define LNK(NAME, get_link)					\
 175	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
 176		&proc_pid_link_inode_operations, NULL,		\
 177		{ .proc_get_link = get_link } )
 178#define REG(NAME, MODE, fops)				\
 179	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
 180#define ONE(NAME, MODE, show)				\
 181	NOD(NAME, (S_IFREG|(MODE)),			\
 182		NULL, &proc_single_file_operations,	\
 183		{ .proc_show = show } )
 184#define ATTR(LSMID, NAME, MODE)				\
 185	NOD(NAME, (S_IFREG|(MODE)),			\
 186		NULL, &proc_pid_attr_operations,	\
 187		{ .lsmid = LSMID })
 188
 189/*
 190 * Count the number of hardlinks for the pid_entry table, excluding the .
 191 * and .. links.
 192 */
 193static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
 194	unsigned int n)
 195{
 196	unsigned int i;
 197	unsigned int count;
 198
 199	count = 2;
 200	for (i = 0; i < n; ++i) {
 201		if (S_ISDIR(entries[i].mode))
 202			++count;
 203	}
 204
 205	return count;
 206}
 207
 208static int get_task_root(struct task_struct *task, struct path *root)
 209{
 210	int result = -ENOENT;
 211
 212	task_lock(task);
 213	if (task->fs) {
 214		get_fs_root(task->fs, root);
 215		result = 0;
 216	}
 217	task_unlock(task);
 218	return result;
 219}
 220
 221static int proc_cwd_link(struct dentry *dentry, struct path *path)
 222{
 223	struct task_struct *task = get_proc_task(d_inode(dentry));
 224	int result = -ENOENT;
 225
 226	if (task) {
 227		task_lock(task);
 228		if (task->fs) {
 229			get_fs_pwd(task->fs, path);
 230			result = 0;
 231		}
 232		task_unlock(task);
 233		put_task_struct(task);
 234	}
 235	return result;
 236}
 237
 238static int proc_root_link(struct dentry *dentry, struct path *path)
 239{
 240	struct task_struct *task = get_proc_task(d_inode(dentry));
 241	int result = -ENOENT;
 242
 243	if (task) {
 244		result = get_task_root(task, path);
 245		put_task_struct(task);
 246	}
 247	return result;
 248}
 249
 250/*
 251 * If the user used setproctitle(), we just get the string from
 252 * user space at arg_start, and limit it to a maximum of one page.
 253 */
 254static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf,
 255				size_t count, unsigned long pos,
 256				unsigned long arg_start)
 257{
 258	char *page;
 259	int ret, got;
 260
 261	if (pos >= PAGE_SIZE)
 262		return 0;
 263
 264	page = (char *)__get_free_page(GFP_KERNEL);
 265	if (!page)
 266		return -ENOMEM;
 267
 268	ret = 0;
 269	got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON);
 270	if (got > 0) {
 271		int len = strnlen(page, got);
 272
 273		/* Include the NUL character if it was found */
 274		if (len < got)
 275			len++;
 276
 277		if (len > pos) {
 278			len -= pos;
 279			if (len > count)
 280				len = count;
 281			len -= copy_to_user(buf, page+pos, len);
 282			if (!len)
 283				len = -EFAULT;
 284			ret = len;
 285		}
 286	}
 287	free_page((unsigned long)page);
 288	return ret;
 289}
 290
 291static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
 292			      size_t count, loff_t *ppos)
 293{
 294	unsigned long arg_start, arg_end, env_start, env_end;
 295	unsigned long pos, len;
 296	char *page, c;
 297
 298	/* Check if process spawned far enough to have cmdline. */
 299	if (!mm->env_end)
 300		return 0;
 301
 302	spin_lock(&mm->arg_lock);
 303	arg_start = mm->arg_start;
 304	arg_end = mm->arg_end;
 305	env_start = mm->env_start;
 306	env_end = mm->env_end;
 307	spin_unlock(&mm->arg_lock);
 308
 309	if (arg_start >= arg_end)
 310		return 0;
 311
 312	/*
 313	 * We allow setproctitle() to overwrite the argument
 314	 * strings, and overflow past the original end. But
 315	 * only when it overflows into the environment area.
 316	 */
 317	if (env_start != arg_end || env_end < env_start)
 318		env_start = env_end = arg_end;
 319	len = env_end - arg_start;
 320
 321	/* We're not going to care if "*ppos" has high bits set */
 322	pos = *ppos;
 323	if (pos >= len)
 324		return 0;
 325	if (count > len - pos)
 326		count = len - pos;
 327	if (!count)
 328		return 0;
 329
 330	/*
 331	 * Magical special case: if the argv[] end byte is not
 332	 * zero, the user has overwritten it with setproctitle(3).
 333	 *
 334	 * Possible future enhancement: do this only once when
 335	 * pos is 0, and set a flag in the 'struct file'.
 336	 */
 337	if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c)
 338		return get_mm_proctitle(mm, buf, count, pos, arg_start);
 339
 340	/*
 341	 * For the non-setproctitle() case we limit things strictly
 342	 * to the [arg_start, arg_end[ range.
 343	 */
 344	pos += arg_start;
 345	if (pos < arg_start || pos >= arg_end)
 346		return 0;
 347	if (count > arg_end - pos)
 348		count = arg_end - pos;
 349
 350	page = (char *)__get_free_page(GFP_KERNEL);
 351	if (!page)
 352		return -ENOMEM;
 353
 354	len = 0;
 355	while (count) {
 356		int got;
 357		size_t size = min_t(size_t, PAGE_SIZE, count);
 358
 359		got = access_remote_vm(mm, pos, page, size, FOLL_ANON);
 360		if (got <= 0)
 361			break;
 362		got -= copy_to_user(buf, page, got);
 363		if (unlikely(!got)) {
 364			if (!len)
 365				len = -EFAULT;
 366			break;
 367		}
 368		pos += got;
 369		buf += got;
 370		len += got;
 371		count -= got;
 372	}
 373
 374	free_page((unsigned long)page);
 375	return len;
 376}
 377
 378static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
 379				size_t count, loff_t *pos)
 380{
 381	struct mm_struct *mm;
 382	ssize_t ret;
 383
 384	mm = get_task_mm(tsk);
 385	if (!mm)
 386		return 0;
 387
 388	ret = get_mm_cmdline(mm, buf, count, pos);
 389	mmput(mm);
 390	return ret;
 391}
 392
 393static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
 394				     size_t count, loff_t *pos)
 395{
 396	struct task_struct *tsk;
 397	ssize_t ret;
 398
 399	BUG_ON(*pos < 0);
 400
 401	tsk = get_proc_task(file_inode(file));
 402	if (!tsk)
 403		return -ESRCH;
 404	ret = get_task_cmdline(tsk, buf, count, pos);
 405	put_task_struct(tsk);
 406	if (ret > 0)
 407		*pos += ret;
 408	return ret;
 409}
 410
 411static const struct file_operations proc_pid_cmdline_ops = {
 412	.read	= proc_pid_cmdline_read,
 413	.llseek	= generic_file_llseek,
 414};
 415
 416#ifdef CONFIG_KALLSYMS
 417/*
 418 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
 419 * Returns the resolved symbol.  If that fails, simply return the address.
 420 */
 421static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
 422			  struct pid *pid, struct task_struct *task)
 423{
 424	unsigned long wchan;
 425	char symname[KSYM_NAME_LEN];
 426
 427	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
 428		goto print0;
 429
 430	wchan = get_wchan(task);
 431	if (wchan && !lookup_symbol_name(wchan, symname)) {
 432		seq_puts(m, symname);
 433		return 0;
 434	}
 435
 436print0:
 437	seq_putc(m, '0');
 438	return 0;
 439}
 440#endif /* CONFIG_KALLSYMS */
 441
 442static int lock_trace(struct task_struct *task)
 443{
 444	int err = down_read_killable(&task->signal->exec_update_lock);
 445	if (err)
 446		return err;
 447	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
 448		up_read(&task->signal->exec_update_lock);
 449		return -EPERM;
 450	}
 451	return 0;
 452}
 453
 454static void unlock_trace(struct task_struct *task)
 455{
 456	up_read(&task->signal->exec_update_lock);
 457}
 458
 459#ifdef CONFIG_STACKTRACE
 460
 461#define MAX_STACK_TRACE_DEPTH	64
 462
 463static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
 464			  struct pid *pid, struct task_struct *task)
 465{
 466	unsigned long *entries;
 467	int err;
 468
 469	/*
 470	 * The ability to racily run the kernel stack unwinder on a running task
 471	 * and then observe the unwinder output is scary; while it is useful for
 472	 * debugging kernel issues, it can also allow an attacker to leak kernel
 473	 * stack contents.
 474	 * Doing this in a manner that is at least safe from races would require
 475	 * some work to ensure that the remote task can not be scheduled; and
 476	 * even then, this would still expose the unwinder as local attack
 477	 * surface.
 478	 * Therefore, this interface is restricted to root.
 479	 */
 480	if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
 481		return -EACCES;
 482
 483	entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
 484				GFP_KERNEL);
 485	if (!entries)
 486		return -ENOMEM;
 487
 488	err = lock_trace(task);
 489	if (!err) {
 490		unsigned int i, nr_entries;
 491
 492		nr_entries = stack_trace_save_tsk(task, entries,
 493						  MAX_STACK_TRACE_DEPTH, 0);
 494
 495		for (i = 0; i < nr_entries; i++) {
 496			seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
 497		}
 498
 499		unlock_trace(task);
 500	}
 501	kfree(entries);
 502
 503	return err;
 504}
 505#endif
 506
 507#ifdef CONFIG_SCHED_INFO
 508/*
 509 * Provides /proc/PID/schedstat
 510 */
 511static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
 512			      struct pid *pid, struct task_struct *task)
 513{
 514	if (unlikely(!sched_info_on()))
 515		seq_puts(m, "0 0 0\n");
 516	else
 517		seq_printf(m, "%llu %llu %lu\n",
 518		   (unsigned long long)task->se.sum_exec_runtime,
 519		   (unsigned long long)task->sched_info.run_delay,
 520		   task->sched_info.pcount);
 521
 522	return 0;
 523}
 524#endif
 525
 526#ifdef CONFIG_LATENCYTOP
 527static int lstats_show_proc(struct seq_file *m, void *v)
 528{
 529	int i;
 530	struct inode *inode = m->private;
 531	struct task_struct *task = get_proc_task(inode);
 532
 533	if (!task)
 534		return -ESRCH;
 535	seq_puts(m, "Latency Top version : v0.1\n");
 536	for (i = 0; i < LT_SAVECOUNT; i++) {
 537		struct latency_record *lr = &task->latency_record[i];
 538		if (lr->backtrace[0]) {
 539			int q;
 540			seq_printf(m, "%i %li %li",
 541				   lr->count, lr->time, lr->max);
 542			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
 543				unsigned long bt = lr->backtrace[q];
 544
 545				if (!bt)
 546					break;
 547				seq_printf(m, " %ps", (void *)bt);
 548			}
 549			seq_putc(m, '\n');
 550		}
 551
 552	}
 553	put_task_struct(task);
 554	return 0;
 555}
 556
 557static int lstats_open(struct inode *inode, struct file *file)
 558{
 559	return single_open(file, lstats_show_proc, inode);
 560}
 561
 562static ssize_t lstats_write(struct file *file, const char __user *buf,
 563			    size_t count, loff_t *offs)
 564{
 565	struct task_struct *task = get_proc_task(file_inode(file));
 566
 567	if (!task)
 568		return -ESRCH;
 569	clear_tsk_latency_tracing(task);
 570	put_task_struct(task);
 571
 572	return count;
 573}
 574
 575static const struct file_operations proc_lstats_operations = {
 576	.open		= lstats_open,
 577	.read		= seq_read,
 578	.write		= lstats_write,
 579	.llseek		= seq_lseek,
 580	.release	= single_release,
 581};
 582
 583#endif
 584
 585static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
 586			  struct pid *pid, struct task_struct *task)
 587{
 588	unsigned long totalpages = totalram_pages() + total_swap_pages;
 589	unsigned long points = 0;
 590	long badness;
 591
 592	badness = oom_badness(task, totalpages);
 593	/*
 594	 * Special case OOM_SCORE_ADJ_MIN for all others scale the
 595	 * badness value into [0, 2000] range which we have been
 596	 * exporting for a long time so userspace might depend on it.
 597	 */
 598	if (badness != LONG_MIN)
 599		points = (1000 + badness * 1000 / (long)totalpages) * 2 / 3;
 600
 601	seq_printf(m, "%lu\n", points);
 602
 603	return 0;
 604}
 605
 606struct limit_names {
 607	const char *name;
 608	const char *unit;
 609};
 610
 611static const struct limit_names lnames[RLIM_NLIMITS] = {
 612	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
 613	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
 614	[RLIMIT_DATA] = {"Max data size", "bytes"},
 615	[RLIMIT_STACK] = {"Max stack size", "bytes"},
 616	[RLIMIT_CORE] = {"Max core file size", "bytes"},
 617	[RLIMIT_RSS] = {"Max resident set", "bytes"},
 618	[RLIMIT_NPROC] = {"Max processes", "processes"},
 619	[RLIMIT_NOFILE] = {"Max open files", "files"},
 620	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
 621	[RLIMIT_AS] = {"Max address space", "bytes"},
 622	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
 623	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
 624	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
 625	[RLIMIT_NICE] = {"Max nice priority", NULL},
 626	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
 627	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
 628};
 629
 630/* Display limits for a process */
 631static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
 632			   struct pid *pid, struct task_struct *task)
 633{
 634	unsigned int i;
 635	unsigned long flags;
 636
 637	struct rlimit rlim[RLIM_NLIMITS];
 638
 639	if (!lock_task_sighand(task, &flags))
 640		return 0;
 641	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
 642	unlock_task_sighand(task, &flags);
 643
 644	/*
 645	 * print the file header
 646	 */
 647	seq_puts(m, "Limit                     "
 648		"Soft Limit           "
 649		"Hard Limit           "
 650		"Units     \n");
 651
 652	for (i = 0; i < RLIM_NLIMITS; i++) {
 653		if (rlim[i].rlim_cur == RLIM_INFINITY)
 654			seq_printf(m, "%-25s %-20s ",
 655				   lnames[i].name, "unlimited");
 656		else
 657			seq_printf(m, "%-25s %-20lu ",
 658				   lnames[i].name, rlim[i].rlim_cur);
 659
 660		if (rlim[i].rlim_max == RLIM_INFINITY)
 661			seq_printf(m, "%-20s ", "unlimited");
 662		else
 663			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
 664
 665		if (lnames[i].unit)
 666			seq_printf(m, "%-10s\n", lnames[i].unit);
 667		else
 668			seq_putc(m, '\n');
 669	}
 670
 671	return 0;
 672}
 673
 674#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
 675static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
 676			    struct pid *pid, struct task_struct *task)
 677{
 678	struct syscall_info info;
 679	u64 *args = &info.data.args[0];
 680	int res;
 681
 682	res = lock_trace(task);
 683	if (res)
 684		return res;
 685
 686	if (task_current_syscall(task, &info))
 687		seq_puts(m, "running\n");
 688	else if (info.data.nr < 0)
 689		seq_printf(m, "%d 0x%llx 0x%llx\n",
 690			   info.data.nr, info.sp, info.data.instruction_pointer);
 691	else
 692		seq_printf(m,
 693		       "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n",
 694		       info.data.nr,
 695		       args[0], args[1], args[2], args[3], args[4], args[5],
 696		       info.sp, info.data.instruction_pointer);
 697	unlock_trace(task);
 698
 699	return 0;
 700}
 701#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
 702
 703/************************************************************************/
 704/*                       Here the fs part begins                        */
 705/************************************************************************/
 706
 707/* permission checks */
 708static bool proc_fd_access_allowed(struct inode *inode)
 709{
 710	struct task_struct *task;
 711	bool allowed = false;
 712	/* Allow access to a task's file descriptors if it is us or we
 713	 * may use ptrace attach to the process and find out that
 714	 * information.
 715	 */
 716	task = get_proc_task(inode);
 717	if (task) {
 718		allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 719		put_task_struct(task);
 720	}
 721	return allowed;
 722}
 723
 724int proc_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
 725		 struct iattr *attr)
 726{
 727	int error;
 728	struct inode *inode = d_inode(dentry);
 729
 730	if (attr->ia_valid & ATTR_MODE)
 731		return -EPERM;
 732
 733	error = setattr_prepare(&nop_mnt_idmap, dentry, attr);
 734	if (error)
 735		return error;
 736
 737	setattr_copy(&nop_mnt_idmap, inode, attr);
 
 738	return 0;
 739}
 740
 741/*
 742 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
 743 * or euid/egid (for hide_pid_min=2)?
 744 */
 745static bool has_pid_permissions(struct proc_fs_info *fs_info,
 746				 struct task_struct *task,
 747				 enum proc_hidepid hide_pid_min)
 748{
 749	/*
 750	 * If 'hidpid' mount option is set force a ptrace check,
 751	 * we indicate that we are using a filesystem syscall
 752	 * by passing PTRACE_MODE_READ_FSCREDS
 753	 */
 754	if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE)
 755		return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 756
 757	if (fs_info->hide_pid < hide_pid_min)
 758		return true;
 759	if (in_group_p(fs_info->pid_gid))
 760		return true;
 761	return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 762}
 763
 764
 765static int proc_pid_permission(struct mnt_idmap *idmap,
 766			       struct inode *inode, int mask)
 767{
 768	struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
 769	struct task_struct *task;
 770	bool has_perms;
 771
 772	task = get_proc_task(inode);
 773	if (!task)
 774		return -ESRCH;
 775	has_perms = has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS);
 776	put_task_struct(task);
 777
 778	if (!has_perms) {
 779		if (fs_info->hide_pid == HIDEPID_INVISIBLE) {
 780			/*
 781			 * Let's make getdents(), stat(), and open()
 782			 * consistent with each other.  If a process
 783			 * may not stat() a file, it shouldn't be seen
 784			 * in procfs at all.
 785			 */
 786			return -ENOENT;
 787		}
 788
 789		return -EPERM;
 790	}
 791	return generic_permission(&nop_mnt_idmap, inode, mask);
 792}
 793
 794
 795
 796static const struct inode_operations proc_def_inode_operations = {
 797	.setattr	= proc_setattr,
 798};
 799
 800static int proc_single_show(struct seq_file *m, void *v)
 801{
 802	struct inode *inode = m->private;
 803	struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
 804	struct pid *pid = proc_pid(inode);
 805	struct task_struct *task;
 806	int ret;
 807
 808	task = get_pid_task(pid, PIDTYPE_PID);
 809	if (!task)
 810		return -ESRCH;
 811
 812	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
 813
 814	put_task_struct(task);
 815	return ret;
 816}
 817
 818static int proc_single_open(struct inode *inode, struct file *filp)
 819{
 820	return single_open(filp, proc_single_show, inode);
 821}
 822
 823static const struct file_operations proc_single_file_operations = {
 824	.open		= proc_single_open,
 825	.read		= seq_read,
 826	.llseek		= seq_lseek,
 827	.release	= single_release,
 828};
 829
 830
 831struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
 832{
 833	struct task_struct *task = get_proc_task(inode);
 834	struct mm_struct *mm;
 835
 836	if (!task)
 837		return ERR_PTR(-ESRCH);
 
 838
 839	mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
 840	put_task_struct(task);
 841
 842	if (IS_ERR(mm))
 843		return mm == ERR_PTR(-ESRCH) ? NULL : mm;
 844
 845	/* ensure this mm_struct can't be freed */
 846	mmgrab(mm);
 847	/* but do not pin its memory */
 848	mmput(mm);
 849
 850	return mm;
 851}
 852
 853static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
 854{
 855	struct mm_struct *mm = proc_mem_open(inode, mode);
 856
 857	if (IS_ERR(mm))
 858		return PTR_ERR(mm);
 859
 860	file->private_data = mm;
 861	return 0;
 862}
 863
 864static int mem_open(struct inode *inode, struct file *file)
 865{
 866	if (WARN_ON_ONCE(!(file->f_op->fop_flags & FOP_UNSIGNED_OFFSET)))
 867		return -EINVAL;
 868	return __mem_open(inode, file, PTRACE_MODE_ATTACH);
 869}
 870
 871static bool proc_mem_foll_force(struct file *file, struct mm_struct *mm)
 872{
 873	struct task_struct *task;
 874	bool ptrace_active = false;
 875
 876	switch (proc_mem_force_override) {
 877	case PROC_MEM_FORCE_NEVER:
 878		return false;
 879	case PROC_MEM_FORCE_PTRACE:
 880		task = get_proc_task(file_inode(file));
 881		if (task) {
 882			ptrace_active =	READ_ONCE(task->ptrace) &&
 883					READ_ONCE(task->mm) == mm &&
 884					READ_ONCE(task->parent) == current;
 885			put_task_struct(task);
 886		}
 887		return ptrace_active;
 888	default:
 889		return true;
 890	}
 891}
 892
 893static ssize_t mem_rw(struct file *file, char __user *buf,
 894			size_t count, loff_t *ppos, int write)
 895{
 896	struct mm_struct *mm = file->private_data;
 897	unsigned long addr = *ppos;
 898	ssize_t copied;
 899	char *page;
 900	unsigned int flags;
 901
 902	if (!mm)
 903		return 0;
 904
 905	page = (char *)__get_free_page(GFP_KERNEL);
 906	if (!page)
 907		return -ENOMEM;
 908
 909	copied = 0;
 910	if (!mmget_not_zero(mm))
 911		goto free;
 912
 913	flags = write ? FOLL_WRITE : 0;
 914	if (proc_mem_foll_force(file, mm))
 915		flags |= FOLL_FORCE;
 916
 917	while (count > 0) {
 918		size_t this_len = min_t(size_t, count, PAGE_SIZE);
 919
 920		if (write && copy_from_user(page, buf, this_len)) {
 921			copied = -EFAULT;
 922			break;
 923		}
 924
 925		this_len = access_remote_vm(mm, addr, page, this_len, flags);
 926		if (!this_len) {
 927			if (!copied)
 928				copied = -EIO;
 929			break;
 930		}
 931
 932		if (!write && copy_to_user(buf, page, this_len)) {
 933			copied = -EFAULT;
 934			break;
 935		}
 936
 937		buf += this_len;
 938		addr += this_len;
 939		copied += this_len;
 940		count -= this_len;
 941	}
 942	*ppos = addr;
 943
 944	mmput(mm);
 945free:
 946	free_page((unsigned long) page);
 947	return copied;
 948}
 949
 950static ssize_t mem_read(struct file *file, char __user *buf,
 951			size_t count, loff_t *ppos)
 952{
 953	return mem_rw(file, buf, count, ppos, 0);
 954}
 955
 956static ssize_t mem_write(struct file *file, const char __user *buf,
 957			 size_t count, loff_t *ppos)
 958{
 959	return mem_rw(file, (char __user*)buf, count, ppos, 1);
 960}
 961
 962loff_t mem_lseek(struct file *file, loff_t offset, int orig)
 963{
 964	switch (orig) {
 965	case 0:
 966		file->f_pos = offset;
 967		break;
 968	case 1:
 969		file->f_pos += offset;
 970		break;
 971	default:
 972		return -EINVAL;
 973	}
 974	force_successful_syscall_return();
 975	return file->f_pos;
 976}
 977
 978static int mem_release(struct inode *inode, struct file *file)
 979{
 980	struct mm_struct *mm = file->private_data;
 981	if (mm)
 982		mmdrop(mm);
 983	return 0;
 984}
 985
 986static const struct file_operations proc_mem_operations = {
 987	.llseek		= mem_lseek,
 988	.read		= mem_read,
 989	.write		= mem_write,
 990	.open		= mem_open,
 991	.release	= mem_release,
 992	.fop_flags	= FOP_UNSIGNED_OFFSET,
 993};
 994
 995static int environ_open(struct inode *inode, struct file *file)
 996{
 997	return __mem_open(inode, file, PTRACE_MODE_READ);
 998}
 999
1000static ssize_t environ_read(struct file *file, char __user *buf,
1001			size_t count, loff_t *ppos)
1002{
1003	char *page;
1004	unsigned long src = *ppos;
1005	int ret = 0;
1006	struct mm_struct *mm = file->private_data;
1007	unsigned long env_start, env_end;
1008
1009	/* Ensure the process spawned far enough to have an environment. */
1010	if (!mm || !mm->env_end)
1011		return 0;
1012
1013	page = (char *)__get_free_page(GFP_KERNEL);
1014	if (!page)
1015		return -ENOMEM;
1016
1017	ret = 0;
1018	if (!mmget_not_zero(mm))
1019		goto free;
1020
1021	spin_lock(&mm->arg_lock);
1022	env_start = mm->env_start;
1023	env_end = mm->env_end;
1024	spin_unlock(&mm->arg_lock);
1025
1026	while (count > 0) {
1027		size_t this_len, max_len;
1028		int retval;
1029
1030		if (src >= (env_end - env_start))
1031			break;
1032
1033		this_len = env_end - (env_start + src);
1034
1035		max_len = min_t(size_t, PAGE_SIZE, count);
1036		this_len = min(max_len, this_len);
1037
1038		retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
1039
1040		if (retval <= 0) {
1041			ret = retval;
1042			break;
1043		}
1044
1045		if (copy_to_user(buf, page, retval)) {
1046			ret = -EFAULT;
1047			break;
1048		}
1049
1050		ret += retval;
1051		src += retval;
1052		buf += retval;
1053		count -= retval;
1054	}
1055	*ppos = src;
1056	mmput(mm);
1057
1058free:
1059	free_page((unsigned long) page);
1060	return ret;
1061}
1062
1063static const struct file_operations proc_environ_operations = {
1064	.open		= environ_open,
1065	.read		= environ_read,
1066	.llseek		= generic_file_llseek,
1067	.release	= mem_release,
1068};
1069
1070static int auxv_open(struct inode *inode, struct file *file)
1071{
1072	return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
1073}
1074
1075static ssize_t auxv_read(struct file *file, char __user *buf,
1076			size_t count, loff_t *ppos)
1077{
1078	struct mm_struct *mm = file->private_data;
1079	unsigned int nwords = 0;
1080
1081	if (!mm)
1082		return 0;
1083	do {
1084		nwords += 2;
1085	} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1086	return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1087				       nwords * sizeof(mm->saved_auxv[0]));
1088}
1089
1090static const struct file_operations proc_auxv_operations = {
1091	.open		= auxv_open,
1092	.read		= auxv_read,
1093	.llseek		= generic_file_llseek,
1094	.release	= mem_release,
1095};
1096
1097static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1098			    loff_t *ppos)
1099{
1100	struct task_struct *task = get_proc_task(file_inode(file));
1101	char buffer[PROC_NUMBUF];
1102	int oom_adj = OOM_ADJUST_MIN;
1103	size_t len;
1104
1105	if (!task)
1106		return -ESRCH;
1107	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1108		oom_adj = OOM_ADJUST_MAX;
1109	else
1110		oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1111			  OOM_SCORE_ADJ_MAX;
1112	put_task_struct(task);
1113	if (oom_adj > OOM_ADJUST_MAX)
1114		oom_adj = OOM_ADJUST_MAX;
1115	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1116	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1117}
1118
1119static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1120{
1121	struct mm_struct *mm = NULL;
1122	struct task_struct *task;
1123	int err = 0;
1124
1125	task = get_proc_task(file_inode(file));
1126	if (!task)
1127		return -ESRCH;
1128
1129	mutex_lock(&oom_adj_mutex);
1130	if (legacy) {
1131		if (oom_adj < task->signal->oom_score_adj &&
1132				!capable(CAP_SYS_RESOURCE)) {
1133			err = -EACCES;
1134			goto err_unlock;
1135		}
1136		/*
1137		 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1138		 * /proc/pid/oom_score_adj instead.
1139		 */
1140		pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1141			  current->comm, task_pid_nr(current), task_pid_nr(task),
1142			  task_pid_nr(task));
1143	} else {
1144		if ((short)oom_adj < task->signal->oom_score_adj_min &&
1145				!capable(CAP_SYS_RESOURCE)) {
1146			err = -EACCES;
1147			goto err_unlock;
1148		}
1149	}
1150
1151	/*
1152	 * Make sure we will check other processes sharing the mm if this is
1153	 * not vfrok which wants its own oom_score_adj.
1154	 * pin the mm so it doesn't go away and get reused after task_unlock
1155	 */
1156	if (!task->vfork_done) {
1157		struct task_struct *p = find_lock_task_mm(task);
1158
1159		if (p) {
1160			if (test_bit(MMF_MULTIPROCESS, &p->mm->flags)) {
1161				mm = p->mm;
1162				mmgrab(mm);
1163			}
1164			task_unlock(p);
1165		}
1166	}
1167
1168	task->signal->oom_score_adj = oom_adj;
1169	if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1170		task->signal->oom_score_adj_min = (short)oom_adj;
1171	trace_oom_score_adj_update(task);
1172
1173	if (mm) {
1174		struct task_struct *p;
1175
1176		rcu_read_lock();
1177		for_each_process(p) {
1178			if (same_thread_group(task, p))
1179				continue;
1180
1181			/* do not touch kernel threads or the global init */
1182			if (p->flags & PF_KTHREAD || is_global_init(p))
1183				continue;
1184
1185			task_lock(p);
1186			if (!p->vfork_done && process_shares_mm(p, mm)) {
1187				p->signal->oom_score_adj = oom_adj;
1188				if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1189					p->signal->oom_score_adj_min = (short)oom_adj;
1190			}
1191			task_unlock(p);
1192		}
1193		rcu_read_unlock();
1194		mmdrop(mm);
1195	}
1196err_unlock:
1197	mutex_unlock(&oom_adj_mutex);
1198	put_task_struct(task);
1199	return err;
1200}
1201
1202/*
1203 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1204 * kernels.  The effective policy is defined by oom_score_adj, which has a
1205 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1206 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1207 * Processes that become oom disabled via oom_adj will still be oom disabled
1208 * with this implementation.
1209 *
1210 * oom_adj cannot be removed since existing userspace binaries use it.
1211 */
1212static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1213			     size_t count, loff_t *ppos)
1214{
1215	char buffer[PROC_NUMBUF] = {};
1216	int oom_adj;
1217	int err;
1218
 
1219	if (count > sizeof(buffer) - 1)
1220		count = sizeof(buffer) - 1;
1221	if (copy_from_user(buffer, buf, count)) {
1222		err = -EFAULT;
1223		goto out;
1224	}
1225
1226	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1227	if (err)
1228		goto out;
1229	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1230	     oom_adj != OOM_DISABLE) {
1231		err = -EINVAL;
1232		goto out;
1233	}
1234
1235	/*
1236	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1237	 * value is always attainable.
1238	 */
1239	if (oom_adj == OOM_ADJUST_MAX)
1240		oom_adj = OOM_SCORE_ADJ_MAX;
1241	else
1242		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1243
1244	err = __set_oom_adj(file, oom_adj, true);
1245out:
1246	return err < 0 ? err : count;
1247}
1248
1249static const struct file_operations proc_oom_adj_operations = {
1250	.read		= oom_adj_read,
1251	.write		= oom_adj_write,
1252	.llseek		= generic_file_llseek,
1253};
1254
1255static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1256					size_t count, loff_t *ppos)
1257{
1258	struct task_struct *task = get_proc_task(file_inode(file));
1259	char buffer[PROC_NUMBUF];
1260	short oom_score_adj = OOM_SCORE_ADJ_MIN;
1261	size_t len;
1262
1263	if (!task)
1264		return -ESRCH;
1265	oom_score_adj = task->signal->oom_score_adj;
1266	put_task_struct(task);
1267	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1268	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1269}
1270
1271static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1272					size_t count, loff_t *ppos)
1273{
1274	char buffer[PROC_NUMBUF] = {};
1275	int oom_score_adj;
1276	int err;
1277
 
1278	if (count > sizeof(buffer) - 1)
1279		count = sizeof(buffer) - 1;
1280	if (copy_from_user(buffer, buf, count)) {
1281		err = -EFAULT;
1282		goto out;
1283	}
1284
1285	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1286	if (err)
1287		goto out;
1288	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1289			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1290		err = -EINVAL;
1291		goto out;
1292	}
1293
1294	err = __set_oom_adj(file, oom_score_adj, false);
1295out:
1296	return err < 0 ? err : count;
1297}
1298
1299static const struct file_operations proc_oom_score_adj_operations = {
1300	.read		= oom_score_adj_read,
1301	.write		= oom_score_adj_write,
1302	.llseek		= default_llseek,
1303};
1304
1305#ifdef CONFIG_AUDIT
1306#define TMPBUFLEN 11
1307static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1308				  size_t count, loff_t *ppos)
1309{
1310	struct inode * inode = file_inode(file);
1311	struct task_struct *task = get_proc_task(inode);
1312	ssize_t length;
1313	char tmpbuf[TMPBUFLEN];
1314
1315	if (!task)
1316		return -ESRCH;
1317	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1318			   from_kuid(file->f_cred->user_ns,
1319				     audit_get_loginuid(task)));
1320	put_task_struct(task);
1321	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1322}
1323
1324static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1325				   size_t count, loff_t *ppos)
1326{
1327	struct inode * inode = file_inode(file);
1328	uid_t loginuid;
1329	kuid_t kloginuid;
1330	int rv;
1331
1332	/* Don't let kthreads write their own loginuid */
1333	if (current->flags & PF_KTHREAD)
1334		return -EPERM;
1335
1336	rcu_read_lock();
1337	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1338		rcu_read_unlock();
1339		return -EPERM;
1340	}
1341	rcu_read_unlock();
1342
1343	if (*ppos != 0) {
1344		/* No partial writes. */
1345		return -EINVAL;
1346	}
1347
1348	rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1349	if (rv < 0)
1350		return rv;
1351
1352	/* is userspace tring to explicitly UNSET the loginuid? */
1353	if (loginuid == AUDIT_UID_UNSET) {
1354		kloginuid = INVALID_UID;
1355	} else {
1356		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1357		if (!uid_valid(kloginuid))
1358			return -EINVAL;
1359	}
1360
1361	rv = audit_set_loginuid(kloginuid);
1362	if (rv < 0)
1363		return rv;
1364	return count;
1365}
1366
1367static const struct file_operations proc_loginuid_operations = {
1368	.read		= proc_loginuid_read,
1369	.write		= proc_loginuid_write,
1370	.llseek		= generic_file_llseek,
1371};
1372
1373static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1374				  size_t count, loff_t *ppos)
1375{
1376	struct inode * inode = file_inode(file);
1377	struct task_struct *task = get_proc_task(inode);
1378	ssize_t length;
1379	char tmpbuf[TMPBUFLEN];
1380
1381	if (!task)
1382		return -ESRCH;
1383	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1384				audit_get_sessionid(task));
1385	put_task_struct(task);
1386	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1387}
1388
1389static const struct file_operations proc_sessionid_operations = {
1390	.read		= proc_sessionid_read,
1391	.llseek		= generic_file_llseek,
1392};
1393#endif
1394
1395#ifdef CONFIG_FAULT_INJECTION
1396static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1397				      size_t count, loff_t *ppos)
1398{
1399	struct task_struct *task = get_proc_task(file_inode(file));
1400	char buffer[PROC_NUMBUF];
1401	size_t len;
1402	int make_it_fail;
1403
1404	if (!task)
1405		return -ESRCH;
1406	make_it_fail = task->make_it_fail;
1407	put_task_struct(task);
1408
1409	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1410
1411	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1412}
1413
1414static ssize_t proc_fault_inject_write(struct file * file,
1415			const char __user * buf, size_t count, loff_t *ppos)
1416{
1417	struct task_struct *task;
1418	char buffer[PROC_NUMBUF] = {};
1419	int make_it_fail;
1420	int rv;
1421
1422	if (!capable(CAP_SYS_RESOURCE))
1423		return -EPERM;
1424
1425	if (count > sizeof(buffer) - 1)
1426		count = sizeof(buffer) - 1;
1427	if (copy_from_user(buffer, buf, count))
1428		return -EFAULT;
1429	rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1430	if (rv < 0)
1431		return rv;
1432	if (make_it_fail < 0 || make_it_fail > 1)
1433		return -EINVAL;
1434
1435	task = get_proc_task(file_inode(file));
1436	if (!task)
1437		return -ESRCH;
1438	task->make_it_fail = make_it_fail;
1439	put_task_struct(task);
1440
1441	return count;
1442}
1443
1444static const struct file_operations proc_fault_inject_operations = {
1445	.read		= proc_fault_inject_read,
1446	.write		= proc_fault_inject_write,
1447	.llseek		= generic_file_llseek,
1448};
1449
1450static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1451				   size_t count, loff_t *ppos)
1452{
1453	struct task_struct *task;
1454	int err;
1455	unsigned int n;
1456
1457	err = kstrtouint_from_user(buf, count, 0, &n);
1458	if (err)
1459		return err;
1460
1461	task = get_proc_task(file_inode(file));
1462	if (!task)
1463		return -ESRCH;
1464	task->fail_nth = n;
1465	put_task_struct(task);
1466
1467	return count;
1468}
1469
1470static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1471				  size_t count, loff_t *ppos)
1472{
1473	struct task_struct *task;
1474	char numbuf[PROC_NUMBUF];
1475	ssize_t len;
1476
1477	task = get_proc_task(file_inode(file));
1478	if (!task)
1479		return -ESRCH;
1480	len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1481	put_task_struct(task);
1482	return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1483}
1484
1485static const struct file_operations proc_fail_nth_operations = {
1486	.read		= proc_fail_nth_read,
1487	.write		= proc_fail_nth_write,
1488};
1489#endif
1490
1491
1492#ifdef CONFIG_SCHED_DEBUG
1493/*
1494 * Print out various scheduling related per-task fields:
1495 */
1496static int sched_show(struct seq_file *m, void *v)
1497{
1498	struct inode *inode = m->private;
1499	struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
1500	struct task_struct *p;
1501
1502	p = get_proc_task(inode);
1503	if (!p)
1504		return -ESRCH;
1505	proc_sched_show_task(p, ns, m);
1506
1507	put_task_struct(p);
1508
1509	return 0;
1510}
1511
1512static ssize_t
1513sched_write(struct file *file, const char __user *buf,
1514	    size_t count, loff_t *offset)
1515{
1516	struct inode *inode = file_inode(file);
1517	struct task_struct *p;
1518
1519	p = get_proc_task(inode);
1520	if (!p)
1521		return -ESRCH;
1522	proc_sched_set_task(p);
1523
1524	put_task_struct(p);
1525
1526	return count;
1527}
1528
1529static int sched_open(struct inode *inode, struct file *filp)
1530{
1531	return single_open(filp, sched_show, inode);
1532}
1533
1534static const struct file_operations proc_pid_sched_operations = {
1535	.open		= sched_open,
1536	.read		= seq_read,
1537	.write		= sched_write,
1538	.llseek		= seq_lseek,
1539	.release	= single_release,
1540};
1541
1542#endif
1543
1544#ifdef CONFIG_SCHED_AUTOGROUP
1545/*
1546 * Print out autogroup related information:
1547 */
1548static int sched_autogroup_show(struct seq_file *m, void *v)
1549{
1550	struct inode *inode = m->private;
1551	struct task_struct *p;
1552
1553	p = get_proc_task(inode);
1554	if (!p)
1555		return -ESRCH;
1556	proc_sched_autogroup_show_task(p, m);
1557
1558	put_task_struct(p);
1559
1560	return 0;
1561}
1562
1563static ssize_t
1564sched_autogroup_write(struct file *file, const char __user *buf,
1565	    size_t count, loff_t *offset)
1566{
1567	struct inode *inode = file_inode(file);
1568	struct task_struct *p;
1569	char buffer[PROC_NUMBUF] = {};
1570	int nice;
1571	int err;
1572
 
1573	if (count > sizeof(buffer) - 1)
1574		count = sizeof(buffer) - 1;
1575	if (copy_from_user(buffer, buf, count))
1576		return -EFAULT;
1577
1578	err = kstrtoint(strstrip(buffer), 0, &nice);
1579	if (err < 0)
1580		return err;
1581
1582	p = get_proc_task(inode);
1583	if (!p)
1584		return -ESRCH;
1585
1586	err = proc_sched_autogroup_set_nice(p, nice);
1587	if (err)
1588		count = err;
1589
1590	put_task_struct(p);
1591
1592	return count;
1593}
1594
1595static int sched_autogroup_open(struct inode *inode, struct file *filp)
1596{
1597	int ret;
1598
1599	ret = single_open(filp, sched_autogroup_show, NULL);
1600	if (!ret) {
1601		struct seq_file *m = filp->private_data;
1602
1603		m->private = inode;
1604	}
1605	return ret;
1606}
1607
1608static const struct file_operations proc_pid_sched_autogroup_operations = {
1609	.open		= sched_autogroup_open,
1610	.read		= seq_read,
1611	.write		= sched_autogroup_write,
1612	.llseek		= seq_lseek,
1613	.release	= single_release,
1614};
1615
1616#endif /* CONFIG_SCHED_AUTOGROUP */
1617
1618#ifdef CONFIG_TIME_NS
1619static int timens_offsets_show(struct seq_file *m, void *v)
1620{
1621	struct task_struct *p;
1622
1623	p = get_proc_task(file_inode(m->file));
1624	if (!p)
1625		return -ESRCH;
1626	proc_timens_show_offsets(p, m);
1627
1628	put_task_struct(p);
1629
1630	return 0;
1631}
1632
1633static ssize_t timens_offsets_write(struct file *file, const char __user *buf,
1634				    size_t count, loff_t *ppos)
1635{
1636	struct inode *inode = file_inode(file);
1637	struct proc_timens_offset offsets[2];
1638	char *kbuf = NULL, *pos, *next_line;
1639	struct task_struct *p;
1640	int ret, noffsets;
1641
1642	/* Only allow < page size writes at the beginning of the file */
1643	if ((*ppos != 0) || (count >= PAGE_SIZE))
1644		return -EINVAL;
1645
1646	/* Slurp in the user data */
1647	kbuf = memdup_user_nul(buf, count);
1648	if (IS_ERR(kbuf))
1649		return PTR_ERR(kbuf);
1650
1651	/* Parse the user data */
1652	ret = -EINVAL;
1653	noffsets = 0;
1654	for (pos = kbuf; pos; pos = next_line) {
1655		struct proc_timens_offset *off = &offsets[noffsets];
1656		char clock[10];
1657		int err;
1658
1659		/* Find the end of line and ensure we don't look past it */
1660		next_line = strchr(pos, '\n');
1661		if (next_line) {
1662			*next_line = '\0';
1663			next_line++;
1664			if (*next_line == '\0')
1665				next_line = NULL;
1666		}
1667
1668		err = sscanf(pos, "%9s %lld %lu", clock,
1669				&off->val.tv_sec, &off->val.tv_nsec);
1670		if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC)
1671			goto out;
1672
1673		clock[sizeof(clock) - 1] = 0;
1674		if (strcmp(clock, "monotonic") == 0 ||
1675		    strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0)
1676			off->clockid = CLOCK_MONOTONIC;
1677		else if (strcmp(clock, "boottime") == 0 ||
1678			 strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0)
1679			off->clockid = CLOCK_BOOTTIME;
1680		else
1681			goto out;
1682
1683		noffsets++;
1684		if (noffsets == ARRAY_SIZE(offsets)) {
1685			if (next_line)
1686				count = next_line - kbuf;
1687			break;
1688		}
1689	}
1690
1691	ret = -ESRCH;
1692	p = get_proc_task(inode);
1693	if (!p)
1694		goto out;
1695	ret = proc_timens_set_offset(file, p, offsets, noffsets);
1696	put_task_struct(p);
1697	if (ret)
1698		goto out;
1699
1700	ret = count;
1701out:
1702	kfree(kbuf);
1703	return ret;
1704}
1705
1706static int timens_offsets_open(struct inode *inode, struct file *filp)
1707{
1708	return single_open(filp, timens_offsets_show, inode);
1709}
1710
1711static const struct file_operations proc_timens_offsets_operations = {
1712	.open		= timens_offsets_open,
1713	.read		= seq_read,
1714	.write		= timens_offsets_write,
1715	.llseek		= seq_lseek,
1716	.release	= single_release,
1717};
1718#endif /* CONFIG_TIME_NS */
1719
1720static ssize_t comm_write(struct file *file, const char __user *buf,
1721				size_t count, loff_t *offset)
1722{
1723	struct inode *inode = file_inode(file);
1724	struct task_struct *p;
1725	char buffer[TASK_COMM_LEN] = {};
1726	const size_t maxlen = sizeof(buffer) - 1;
1727
 
1728	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1729		return -EFAULT;
1730
1731	p = get_proc_task(inode);
1732	if (!p)
1733		return -ESRCH;
1734
1735	if (same_thread_group(current, p)) {
1736		set_task_comm(p, buffer);
1737		proc_comm_connector(p);
1738	}
1739	else
1740		count = -EINVAL;
1741
1742	put_task_struct(p);
1743
1744	return count;
1745}
1746
1747static int comm_show(struct seq_file *m, void *v)
1748{
1749	struct inode *inode = m->private;
1750	struct task_struct *p;
1751
1752	p = get_proc_task(inode);
1753	if (!p)
1754		return -ESRCH;
1755
1756	proc_task_name(m, p, false);
1757	seq_putc(m, '\n');
1758
1759	put_task_struct(p);
1760
1761	return 0;
1762}
1763
1764static int comm_open(struct inode *inode, struct file *filp)
1765{
1766	return single_open(filp, comm_show, inode);
1767}
1768
1769static const struct file_operations proc_pid_set_comm_operations = {
1770	.open		= comm_open,
1771	.read		= seq_read,
1772	.write		= comm_write,
1773	.llseek		= seq_lseek,
1774	.release	= single_release,
1775};
1776
1777static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1778{
1779	struct task_struct *task;
1780	struct file *exe_file;
1781
1782	task = get_proc_task(d_inode(dentry));
1783	if (!task)
1784		return -ENOENT;
1785	exe_file = get_task_exe_file(task);
1786	put_task_struct(task);
1787	if (exe_file) {
1788		*exe_path = exe_file->f_path;
1789		path_get(&exe_file->f_path);
1790		fput(exe_file);
1791		return 0;
1792	} else
1793		return -ENOENT;
1794}
1795
1796static const char *proc_pid_get_link(struct dentry *dentry,
1797				     struct inode *inode,
1798				     struct delayed_call *done)
1799{
1800	struct path path;
1801	int error = -EACCES;
1802
1803	if (!dentry)
1804		return ERR_PTR(-ECHILD);
1805
1806	/* Are we allowed to snoop on the tasks file descriptors? */
1807	if (!proc_fd_access_allowed(inode))
1808		goto out;
1809
1810	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1811	if (error)
1812		goto out;
1813
1814	error = nd_jump_link(&path);
1815out:
1816	return ERR_PTR(error);
1817}
1818
1819static int do_proc_readlink(const struct path *path, char __user *buffer, int buflen)
1820{
1821	char *tmp = kmalloc(PATH_MAX, GFP_KERNEL);
1822	char *pathname;
1823	int len;
1824
1825	if (!tmp)
1826		return -ENOMEM;
1827
1828	pathname = d_path(path, tmp, PATH_MAX);
1829	len = PTR_ERR(pathname);
1830	if (IS_ERR(pathname))
1831		goto out;
1832	len = tmp + PATH_MAX - 1 - pathname;
1833
1834	if (len > buflen)
1835		len = buflen;
1836	if (copy_to_user(buffer, pathname, len))
1837		len = -EFAULT;
1838 out:
1839	kfree(tmp);
1840	return len;
1841}
1842
1843static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1844{
1845	int error = -EACCES;
1846	struct inode *inode = d_inode(dentry);
1847	struct path path;
1848
1849	/* Are we allowed to snoop on the tasks file descriptors? */
1850	if (!proc_fd_access_allowed(inode))
1851		goto out;
1852
1853	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1854	if (error)
1855		goto out;
1856
1857	error = do_proc_readlink(&path, buffer, buflen);
1858	path_put(&path);
1859out:
1860	return error;
1861}
1862
1863const struct inode_operations proc_pid_link_inode_operations = {
1864	.readlink	= proc_pid_readlink,
1865	.get_link	= proc_pid_get_link,
1866	.setattr	= proc_setattr,
1867};
1868
1869
1870/* building an inode */
1871
1872void task_dump_owner(struct task_struct *task, umode_t mode,
1873		     kuid_t *ruid, kgid_t *rgid)
1874{
1875	/* Depending on the state of dumpable compute who should own a
1876	 * proc file for a task.
1877	 */
1878	const struct cred *cred;
1879	kuid_t uid;
1880	kgid_t gid;
1881
1882	if (unlikely(task->flags & PF_KTHREAD)) {
1883		*ruid = GLOBAL_ROOT_UID;
1884		*rgid = GLOBAL_ROOT_GID;
1885		return;
1886	}
1887
1888	/* Default to the tasks effective ownership */
1889	rcu_read_lock();
1890	cred = __task_cred(task);
1891	uid = cred->euid;
1892	gid = cred->egid;
1893	rcu_read_unlock();
1894
1895	/*
1896	 * Before the /proc/pid/status file was created the only way to read
1897	 * the effective uid of a /process was to stat /proc/pid.  Reading
1898	 * /proc/pid/status is slow enough that procps and other packages
1899	 * kept stating /proc/pid.  To keep the rules in /proc simple I have
1900	 * made this apply to all per process world readable and executable
1901	 * directories.
1902	 */
1903	if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1904		struct mm_struct *mm;
1905		task_lock(task);
1906		mm = task->mm;
1907		/* Make non-dumpable tasks owned by some root */
1908		if (mm) {
1909			if (get_dumpable(mm) != SUID_DUMP_USER) {
1910				struct user_namespace *user_ns = mm->user_ns;
1911
1912				uid = make_kuid(user_ns, 0);
1913				if (!uid_valid(uid))
1914					uid = GLOBAL_ROOT_UID;
1915
1916				gid = make_kgid(user_ns, 0);
1917				if (!gid_valid(gid))
1918					gid = GLOBAL_ROOT_GID;
1919			}
1920		} else {
1921			uid = GLOBAL_ROOT_UID;
1922			gid = GLOBAL_ROOT_GID;
1923		}
1924		task_unlock(task);
1925	}
1926	*ruid = uid;
1927	*rgid = gid;
1928}
1929
1930void proc_pid_evict_inode(struct proc_inode *ei)
1931{
1932	struct pid *pid = ei->pid;
1933
1934	if (S_ISDIR(ei->vfs_inode.i_mode)) {
1935		spin_lock(&pid->lock);
1936		hlist_del_init_rcu(&ei->sibling_inodes);
1937		spin_unlock(&pid->lock);
1938	}
 
 
1939}
1940
1941struct inode *proc_pid_make_inode(struct super_block *sb,
1942				  struct task_struct *task, umode_t mode)
1943{
1944	struct inode * inode;
1945	struct proc_inode *ei;
1946	struct pid *pid;
1947
1948	/* We need a new inode */
1949
1950	inode = new_inode(sb);
1951	if (!inode)
1952		goto out;
1953
1954	/* Common stuff */
1955	ei = PROC_I(inode);
1956	inode->i_mode = mode;
1957	inode->i_ino = get_next_ino();
1958	simple_inode_init_ts(inode);
1959	inode->i_op = &proc_def_inode_operations;
1960
1961	/*
1962	 * grab the reference to task.
1963	 */
1964	pid = get_task_pid(task, PIDTYPE_PID);
1965	if (!pid)
1966		goto out_unlock;
1967
1968	/* Let the pid remember us for quick removal */
1969	ei->pid = pid;
1970
1971	task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1972	security_task_to_inode(task, inode);
1973
1974out:
1975	return inode;
1976
1977out_unlock:
1978	iput(inode);
1979	return NULL;
1980}
1981
1982/*
1983 * Generating an inode and adding it into @pid->inodes, so that task will
1984 * invalidate inode's dentry before being released.
1985 *
1986 * This helper is used for creating dir-type entries under '/proc' and
1987 * '/proc/<tgid>/task'. Other entries(eg. fd, stat) under '/proc/<tgid>'
1988 * can be released by invalidating '/proc/<tgid>' dentry.
1989 * In theory, dentries under '/proc/<tgid>/task' can also be released by
1990 * invalidating '/proc/<tgid>' dentry, we reserve it to handle single
1991 * thread exiting situation: Any one of threads should invalidate its
1992 * '/proc/<tgid>/task/<pid>' dentry before released.
1993 */
1994static struct inode *proc_pid_make_base_inode(struct super_block *sb,
1995				struct task_struct *task, umode_t mode)
1996{
1997	struct inode *inode;
1998	struct proc_inode *ei;
1999	struct pid *pid;
2000
2001	inode = proc_pid_make_inode(sb, task, mode);
2002	if (!inode)
2003		return NULL;
2004
2005	/* Let proc_flush_pid find this directory inode */
2006	ei = PROC_I(inode);
2007	pid = ei->pid;
2008	spin_lock(&pid->lock);
2009	hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes);
2010	spin_unlock(&pid->lock);
2011
2012	return inode;
2013}
2014
2015int pid_getattr(struct mnt_idmap *idmap, const struct path *path,
2016		struct kstat *stat, u32 request_mask, unsigned int query_flags)
2017{
2018	struct inode *inode = d_inode(path->dentry);
2019	struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
2020	struct task_struct *task;
2021
2022	generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
2023
2024	stat->uid = GLOBAL_ROOT_UID;
2025	stat->gid = GLOBAL_ROOT_GID;
2026	rcu_read_lock();
2027	task = pid_task(proc_pid(inode), PIDTYPE_PID);
2028	if (task) {
2029		if (!has_pid_permissions(fs_info, task, HIDEPID_INVISIBLE)) {
2030			rcu_read_unlock();
2031			/*
2032			 * This doesn't prevent learning whether PID exists,
2033			 * it only makes getattr() consistent with readdir().
2034			 */
2035			return -ENOENT;
2036		}
2037		task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
2038	}
2039	rcu_read_unlock();
2040	return 0;
2041}
2042
2043/* dentry stuff */
2044
2045/*
2046 * Set <pid>/... inode ownership (can change due to setuid(), etc.)
2047 */
2048void pid_update_inode(struct task_struct *task, struct inode *inode)
2049{
2050	task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
2051
2052	inode->i_mode &= ~(S_ISUID | S_ISGID);
2053	security_task_to_inode(task, inode);
2054}
2055
2056/*
2057 * Rewrite the inode's ownerships here because the owning task may have
2058 * performed a setuid(), etc.
2059 *
2060 */
2061static int pid_revalidate(struct dentry *dentry, unsigned int flags)
2062{
2063	struct inode *inode;
2064	struct task_struct *task;
2065	int ret = 0;
2066
2067	rcu_read_lock();
2068	inode = d_inode_rcu(dentry);
2069	if (!inode)
2070		goto out;
2071	task = pid_task(proc_pid(inode), PIDTYPE_PID);
2072
2073	if (task) {
2074		pid_update_inode(task, inode);
2075		ret = 1;
2076	}
2077out:
2078	rcu_read_unlock();
2079	return ret;
2080}
2081
2082static inline bool proc_inode_is_dead(struct inode *inode)
2083{
2084	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
2085}
2086
2087int pid_delete_dentry(const struct dentry *dentry)
2088{
2089	/* Is the task we represent dead?
2090	 * If so, then don't put the dentry on the lru list,
2091	 * kill it immediately.
2092	 */
2093	return proc_inode_is_dead(d_inode(dentry));
2094}
2095
2096const struct dentry_operations pid_dentry_operations =
2097{
2098	.d_revalidate	= pid_revalidate,
2099	.d_delete	= pid_delete_dentry,
2100};
2101
2102/* Lookups */
2103
2104/*
2105 * Fill a directory entry.
2106 *
2107 * If possible create the dcache entry and derive our inode number and
2108 * file type from dcache entry.
2109 *
2110 * Since all of the proc inode numbers are dynamically generated, the inode
2111 * numbers do not exist until the inode is cache.  This means creating
2112 * the dcache entry in readdir is necessary to keep the inode numbers
2113 * reported by readdir in sync with the inode numbers reported
2114 * by stat.
2115 */
2116bool proc_fill_cache(struct file *file, struct dir_context *ctx,
2117	const char *name, unsigned int len,
2118	instantiate_t instantiate, struct task_struct *task, const void *ptr)
2119{
2120	struct dentry *child, *dir = file->f_path.dentry;
2121	struct qstr qname = QSTR_INIT(name, len);
2122	struct inode *inode;
2123	unsigned type = DT_UNKNOWN;
2124	ino_t ino = 1;
2125
2126	child = d_hash_and_lookup(dir, &qname);
2127	if (!child) {
2128		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2129		child = d_alloc_parallel(dir, &qname, &wq);
2130		if (IS_ERR(child))
2131			goto end_instantiate;
2132		if (d_in_lookup(child)) {
2133			struct dentry *res;
2134			res = instantiate(child, task, ptr);
2135			d_lookup_done(child);
2136			if (unlikely(res)) {
2137				dput(child);
2138				child = res;
2139				if (IS_ERR(child))
2140					goto end_instantiate;
2141			}
2142		}
2143	}
2144	inode = d_inode(child);
2145	ino = inode->i_ino;
2146	type = inode->i_mode >> 12;
2147	dput(child);
2148end_instantiate:
2149	return dir_emit(ctx, name, len, ino, type);
2150}
2151
2152/*
2153 * dname_to_vma_addr - maps a dentry name into two unsigned longs
2154 * which represent vma start and end addresses.
2155 */
2156static int dname_to_vma_addr(struct dentry *dentry,
2157			     unsigned long *start, unsigned long *end)
2158{
2159	const char *str = dentry->d_name.name;
2160	unsigned long long sval, eval;
2161	unsigned int len;
2162
2163	if (str[0] == '0' && str[1] != '-')
2164		return -EINVAL;
2165	len = _parse_integer(str, 16, &sval);
2166	if (len & KSTRTOX_OVERFLOW)
2167		return -EINVAL;
2168	if (sval != (unsigned long)sval)
2169		return -EINVAL;
2170	str += len;
2171
2172	if (*str != '-')
2173		return -EINVAL;
2174	str++;
2175
2176	if (str[0] == '0' && str[1])
2177		return -EINVAL;
2178	len = _parse_integer(str, 16, &eval);
2179	if (len & KSTRTOX_OVERFLOW)
2180		return -EINVAL;
2181	if (eval != (unsigned long)eval)
2182		return -EINVAL;
2183	str += len;
2184
2185	if (*str != '\0')
2186		return -EINVAL;
2187
2188	*start = sval;
2189	*end = eval;
2190
2191	return 0;
2192}
2193
2194static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
2195{
2196	unsigned long vm_start, vm_end;
2197	bool exact_vma_exists = false;
2198	struct mm_struct *mm = NULL;
2199	struct task_struct *task;
2200	struct inode *inode;
2201	int status = 0;
2202
2203	if (flags & LOOKUP_RCU)
2204		return -ECHILD;
2205
2206	inode = d_inode(dentry);
2207	task = get_proc_task(inode);
2208	if (!task)
2209		goto out_notask;
2210
2211	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
2212	if (IS_ERR(mm))
2213		goto out;
2214
2215	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
2216		status = mmap_read_lock_killable(mm);
2217		if (!status) {
2218			exact_vma_exists = !!find_exact_vma(mm, vm_start,
2219							    vm_end);
2220			mmap_read_unlock(mm);
2221		}
2222	}
2223
2224	mmput(mm);
2225
2226	if (exact_vma_exists) {
2227		task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
2228
2229		security_task_to_inode(task, inode);
2230		status = 1;
2231	}
2232
2233out:
2234	put_task_struct(task);
2235
2236out_notask:
2237	return status;
2238}
2239
2240static const struct dentry_operations tid_map_files_dentry_operations = {
2241	.d_revalidate	= map_files_d_revalidate,
2242	.d_delete	= pid_delete_dentry,
2243};
2244
2245static int map_files_get_link(struct dentry *dentry, struct path *path)
2246{
2247	unsigned long vm_start, vm_end;
2248	struct vm_area_struct *vma;
2249	struct task_struct *task;
2250	struct mm_struct *mm;
2251	int rc;
2252
2253	rc = -ENOENT;
2254	task = get_proc_task(d_inode(dentry));
2255	if (!task)
2256		goto out;
2257
2258	mm = get_task_mm(task);
2259	put_task_struct(task);
2260	if (!mm)
2261		goto out;
2262
2263	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2264	if (rc)
2265		goto out_mmput;
2266
2267	rc = mmap_read_lock_killable(mm);
2268	if (rc)
2269		goto out_mmput;
2270
2271	rc = -ENOENT;
2272	vma = find_exact_vma(mm, vm_start, vm_end);
2273	if (vma && vma->vm_file) {
2274		*path = *file_user_path(vma->vm_file);
2275		path_get(path);
2276		rc = 0;
2277	}
2278	mmap_read_unlock(mm);
2279
2280out_mmput:
2281	mmput(mm);
2282out:
2283	return rc;
2284}
2285
2286struct map_files_info {
2287	unsigned long	start;
2288	unsigned long	end;
2289	fmode_t		mode;
2290};
2291
2292/*
2293 * Only allow CAP_SYS_ADMIN and CAP_CHECKPOINT_RESTORE to follow the links, due
2294 * to concerns about how the symlinks may be used to bypass permissions on
2295 * ancestor directories in the path to the file in question.
2296 */
2297static const char *
2298proc_map_files_get_link(struct dentry *dentry,
2299			struct inode *inode,
2300		        struct delayed_call *done)
2301{
2302	if (!checkpoint_restore_ns_capable(&init_user_ns))
2303		return ERR_PTR(-EPERM);
2304
2305	return proc_pid_get_link(dentry, inode, done);
2306}
2307
2308/*
2309 * Identical to proc_pid_link_inode_operations except for get_link()
2310 */
2311static const struct inode_operations proc_map_files_link_inode_operations = {
2312	.readlink	= proc_pid_readlink,
2313	.get_link	= proc_map_files_get_link,
2314	.setattr	= proc_setattr,
2315};
2316
2317static struct dentry *
2318proc_map_files_instantiate(struct dentry *dentry,
2319			   struct task_struct *task, const void *ptr)
2320{
2321	fmode_t mode = (fmode_t)(unsigned long)ptr;
2322	struct proc_inode *ei;
2323	struct inode *inode;
2324
2325	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2326				    ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2327				    ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2328	if (!inode)
2329		return ERR_PTR(-ENOENT);
2330
2331	ei = PROC_I(inode);
2332	ei->op.proc_get_link = map_files_get_link;
2333
2334	inode->i_op = &proc_map_files_link_inode_operations;
2335	inode->i_size = 64;
2336
2337	return proc_splice_unmountable(inode, dentry,
2338				       &tid_map_files_dentry_operations);
2339}
2340
2341static struct dentry *proc_map_files_lookup(struct inode *dir,
2342		struct dentry *dentry, unsigned int flags)
2343{
2344	unsigned long vm_start, vm_end;
2345	struct vm_area_struct *vma;
2346	struct task_struct *task;
2347	struct dentry *result;
2348	struct mm_struct *mm;
2349
2350	result = ERR_PTR(-ENOENT);
2351	task = get_proc_task(dir);
2352	if (!task)
2353		goto out;
2354
2355	result = ERR_PTR(-EACCES);
2356	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2357		goto out_put_task;
2358
2359	result = ERR_PTR(-ENOENT);
2360	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2361		goto out_put_task;
2362
2363	mm = get_task_mm(task);
2364	if (!mm)
2365		goto out_put_task;
2366
2367	result = ERR_PTR(-EINTR);
2368	if (mmap_read_lock_killable(mm))
2369		goto out_put_mm;
2370
2371	result = ERR_PTR(-ENOENT);
2372	vma = find_exact_vma(mm, vm_start, vm_end);
2373	if (!vma)
2374		goto out_no_vma;
2375
2376	if (vma->vm_file)
2377		result = proc_map_files_instantiate(dentry, task,
2378				(void *)(unsigned long)vma->vm_file->f_mode);
2379
2380out_no_vma:
2381	mmap_read_unlock(mm);
2382out_put_mm:
2383	mmput(mm);
2384out_put_task:
2385	put_task_struct(task);
2386out:
2387	return result;
2388}
2389
2390static const struct inode_operations proc_map_files_inode_operations = {
2391	.lookup		= proc_map_files_lookup,
2392	.permission	= proc_fd_permission,
2393	.setattr	= proc_setattr,
2394};
2395
2396static int
2397proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2398{
2399	struct vm_area_struct *vma;
2400	struct task_struct *task;
2401	struct mm_struct *mm;
2402	unsigned long nr_files, pos, i;
2403	GENRADIX(struct map_files_info) fa;
2404	struct map_files_info *p;
2405	int ret;
2406	struct vma_iterator vmi;
2407
2408	genradix_init(&fa);
2409
2410	ret = -ENOENT;
2411	task = get_proc_task(file_inode(file));
2412	if (!task)
2413		goto out;
2414
2415	ret = -EACCES;
2416	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2417		goto out_put_task;
2418
2419	ret = 0;
2420	if (!dir_emit_dots(file, ctx))
2421		goto out_put_task;
2422
2423	mm = get_task_mm(task);
2424	if (!mm)
2425		goto out_put_task;
2426
2427	ret = mmap_read_lock_killable(mm);
2428	if (ret) {
2429		mmput(mm);
2430		goto out_put_task;
2431	}
2432
2433	nr_files = 0;
2434
2435	/*
2436	 * We need two passes here:
2437	 *
2438	 *  1) Collect vmas of mapped files with mmap_lock taken
2439	 *  2) Release mmap_lock and instantiate entries
2440	 *
2441	 * otherwise we get lockdep complained, since filldir()
2442	 * routine might require mmap_lock taken in might_fault().
2443	 */
2444
2445	pos = 2;
2446	vma_iter_init(&vmi, mm, 0);
2447	for_each_vma(vmi, vma) {
2448		if (!vma->vm_file)
2449			continue;
2450		if (++pos <= ctx->pos)
2451			continue;
2452
2453		p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL);
2454		if (!p) {
2455			ret = -ENOMEM;
2456			mmap_read_unlock(mm);
2457			mmput(mm);
2458			goto out_put_task;
2459		}
2460
2461		p->start = vma->vm_start;
2462		p->end = vma->vm_end;
2463		p->mode = vma->vm_file->f_mode;
2464	}
2465	mmap_read_unlock(mm);
2466	mmput(mm);
2467
2468	for (i = 0; i < nr_files; i++) {
2469		char buf[4 * sizeof(long) + 2];	/* max: %lx-%lx\0 */
2470		unsigned int len;
2471
2472		p = genradix_ptr(&fa, i);
2473		len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2474		if (!proc_fill_cache(file, ctx,
2475				      buf, len,
2476				      proc_map_files_instantiate,
2477				      task,
2478				      (void *)(unsigned long)p->mode))
2479			break;
2480		ctx->pos++;
2481	}
2482
2483out_put_task:
2484	put_task_struct(task);
2485out:
2486	genradix_free(&fa);
2487	return ret;
2488}
2489
2490static const struct file_operations proc_map_files_operations = {
2491	.read		= generic_read_dir,
2492	.iterate_shared	= proc_map_files_readdir,
2493	.llseek		= generic_file_llseek,
2494};
2495
2496#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2497struct timers_private {
2498	struct pid *pid;
2499	struct task_struct *task;
2500	struct sighand_struct *sighand;
2501	struct pid_namespace *ns;
2502	unsigned long flags;
2503};
2504
2505static void *timers_start(struct seq_file *m, loff_t *pos)
2506{
2507	struct timers_private *tp = m->private;
2508
2509	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2510	if (!tp->task)
2511		return ERR_PTR(-ESRCH);
2512
2513	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2514	if (!tp->sighand)
2515		return ERR_PTR(-ESRCH);
2516
2517	return seq_hlist_start(&tp->task->signal->posix_timers, *pos);
2518}
2519
2520static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2521{
2522	struct timers_private *tp = m->private;
2523	return seq_hlist_next(v, &tp->task->signal->posix_timers, pos);
2524}
2525
2526static void timers_stop(struct seq_file *m, void *v)
2527{
2528	struct timers_private *tp = m->private;
2529
2530	if (tp->sighand) {
2531		unlock_task_sighand(tp->task, &tp->flags);
2532		tp->sighand = NULL;
2533	}
2534
2535	if (tp->task) {
2536		put_task_struct(tp->task);
2537		tp->task = NULL;
2538	}
2539}
2540
2541static int show_timer(struct seq_file *m, void *v)
2542{
2543	struct k_itimer *timer;
2544	struct timers_private *tp = m->private;
2545	int notify;
2546	static const char * const nstr[] = {
2547		[SIGEV_SIGNAL] = "signal",
2548		[SIGEV_NONE] = "none",
2549		[SIGEV_THREAD] = "thread",
2550	};
2551
2552	timer = hlist_entry((struct hlist_node *)v, struct k_itimer, list);
2553	notify = timer->it_sigev_notify;
2554
2555	seq_printf(m, "ID: %d\n", timer->it_id);
2556	seq_printf(m, "signal: %d/%px\n",
2557		   timer->sigq.info.si_signo,
2558		   timer->sigq.info.si_value.sival_ptr);
2559	seq_printf(m, "notify: %s/%s.%d\n",
2560		   nstr[notify & ~SIGEV_THREAD_ID],
2561		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2562		   pid_nr_ns(timer->it_pid, tp->ns));
2563	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2564
2565	return 0;
2566}
2567
2568static const struct seq_operations proc_timers_seq_ops = {
2569	.start	= timers_start,
2570	.next	= timers_next,
2571	.stop	= timers_stop,
2572	.show	= show_timer,
2573};
2574
2575static int proc_timers_open(struct inode *inode, struct file *file)
2576{
2577	struct timers_private *tp;
2578
2579	tp = __seq_open_private(file, &proc_timers_seq_ops,
2580			sizeof(struct timers_private));
2581	if (!tp)
2582		return -ENOMEM;
2583
2584	tp->pid = proc_pid(inode);
2585	tp->ns = proc_pid_ns(inode->i_sb);
2586	return 0;
2587}
2588
2589static const struct file_operations proc_timers_operations = {
2590	.open		= proc_timers_open,
2591	.read		= seq_read,
2592	.llseek		= seq_lseek,
2593	.release	= seq_release_private,
2594};
2595#endif
2596
2597static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2598					size_t count, loff_t *offset)
2599{
2600	struct inode *inode = file_inode(file);
2601	struct task_struct *p;
2602	u64 slack_ns;
2603	int err;
2604
2605	err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2606	if (err < 0)
2607		return err;
2608
2609	p = get_proc_task(inode);
2610	if (!p)
2611		return -ESRCH;
2612
2613	if (p != current) {
2614		rcu_read_lock();
2615		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2616			rcu_read_unlock();
2617			count = -EPERM;
2618			goto out;
2619		}
2620		rcu_read_unlock();
2621
2622		err = security_task_setscheduler(p);
2623		if (err) {
2624			count = err;
2625			goto out;
2626		}
2627	}
2628
2629	task_lock(p);
2630	if (rt_or_dl_task_policy(p))
2631		slack_ns = 0;
2632	else if (slack_ns == 0)
2633		slack_ns = p->default_timer_slack_ns;
2634	p->timer_slack_ns = slack_ns;
2635	task_unlock(p);
2636
2637out:
2638	put_task_struct(p);
2639
2640	return count;
2641}
2642
2643static int timerslack_ns_show(struct seq_file *m, void *v)
2644{
2645	struct inode *inode = m->private;
2646	struct task_struct *p;
2647	int err = 0;
2648
2649	p = get_proc_task(inode);
2650	if (!p)
2651		return -ESRCH;
2652
2653	if (p != current) {
2654		rcu_read_lock();
2655		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2656			rcu_read_unlock();
2657			err = -EPERM;
2658			goto out;
2659		}
2660		rcu_read_unlock();
2661
2662		err = security_task_getscheduler(p);
2663		if (err)
2664			goto out;
2665	}
2666
2667	task_lock(p);
2668	seq_printf(m, "%llu\n", p->timer_slack_ns);
2669	task_unlock(p);
2670
2671out:
2672	put_task_struct(p);
2673
2674	return err;
2675}
2676
2677static int timerslack_ns_open(struct inode *inode, struct file *filp)
2678{
2679	return single_open(filp, timerslack_ns_show, inode);
2680}
2681
2682static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2683	.open		= timerslack_ns_open,
2684	.read		= seq_read,
2685	.write		= timerslack_ns_write,
2686	.llseek		= seq_lseek,
2687	.release	= single_release,
2688};
2689
2690static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2691	struct task_struct *task, const void *ptr)
2692{
2693	const struct pid_entry *p = ptr;
2694	struct inode *inode;
2695	struct proc_inode *ei;
2696
2697	inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2698	if (!inode)
2699		return ERR_PTR(-ENOENT);
2700
2701	ei = PROC_I(inode);
2702	if (S_ISDIR(inode->i_mode))
2703		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2704	if (p->iop)
2705		inode->i_op = p->iop;
2706	if (p->fop)
2707		inode->i_fop = p->fop;
2708	ei->op = p->op;
2709	pid_update_inode(task, inode);
2710	d_set_d_op(dentry, &pid_dentry_operations);
2711	return d_splice_alias(inode, dentry);
2712}
2713
2714static struct dentry *proc_pident_lookup(struct inode *dir, 
2715					 struct dentry *dentry,
2716					 const struct pid_entry *p,
2717					 const struct pid_entry *end)
2718{
2719	struct task_struct *task = get_proc_task(dir);
2720	struct dentry *res = ERR_PTR(-ENOENT);
2721
2722	if (!task)
2723		goto out_no_task;
2724
2725	/*
2726	 * Yes, it does not scale. And it should not. Don't add
2727	 * new entries into /proc/<tgid>/ without very good reasons.
2728	 */
2729	for (; p < end; p++) {
2730		if (p->len != dentry->d_name.len)
2731			continue;
2732		if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2733			res = proc_pident_instantiate(dentry, task, p);
2734			break;
2735		}
2736	}
2737	put_task_struct(task);
2738out_no_task:
2739	return res;
2740}
2741
2742static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2743		const struct pid_entry *ents, unsigned int nents)
2744{
2745	struct task_struct *task = get_proc_task(file_inode(file));
2746	const struct pid_entry *p;
2747
2748	if (!task)
2749		return -ENOENT;
2750
2751	if (!dir_emit_dots(file, ctx))
2752		goto out;
2753
2754	if (ctx->pos >= nents + 2)
2755		goto out;
2756
2757	for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2758		if (!proc_fill_cache(file, ctx, p->name, p->len,
2759				proc_pident_instantiate, task, p))
2760			break;
2761		ctx->pos++;
2762	}
2763out:
2764	put_task_struct(task);
2765	return 0;
2766}
2767
2768#ifdef CONFIG_SECURITY
2769static int proc_pid_attr_open(struct inode *inode, struct file *file)
2770{
2771	file->private_data = NULL;
2772	__mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
2773	return 0;
2774}
2775
2776static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2777				  size_t count, loff_t *ppos)
2778{
2779	struct inode * inode = file_inode(file);
2780	char *p = NULL;
2781	ssize_t length;
2782	struct task_struct *task = get_proc_task(inode);
2783
2784	if (!task)
2785		return -ESRCH;
2786
2787	length = security_getprocattr(task, PROC_I(inode)->op.lsmid,
2788				      file->f_path.dentry->d_name.name,
2789				      &p);
2790	put_task_struct(task);
2791	if (length > 0)
2792		length = simple_read_from_buffer(buf, count, ppos, p, length);
2793	kfree(p);
2794	return length;
2795}
2796
2797static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2798				   size_t count, loff_t *ppos)
2799{
2800	struct inode * inode = file_inode(file);
2801	struct task_struct *task;
2802	void *page;
2803	int rv;
2804
2805	/* A task may only write when it was the opener. */
2806	if (file->private_data != current->mm)
2807		return -EPERM;
2808
2809	rcu_read_lock();
2810	task = pid_task(proc_pid(inode), PIDTYPE_PID);
2811	if (!task) {
2812		rcu_read_unlock();
2813		return -ESRCH;
2814	}
2815	/* A task may only write its own attributes. */
2816	if (current != task) {
2817		rcu_read_unlock();
2818		return -EACCES;
2819	}
2820	/* Prevent changes to overridden credentials. */
2821	if (current_cred() != current_real_cred()) {
2822		rcu_read_unlock();
2823		return -EBUSY;
2824	}
2825	rcu_read_unlock();
2826
2827	if (count > PAGE_SIZE)
2828		count = PAGE_SIZE;
2829
2830	/* No partial writes. */
2831	if (*ppos != 0)
2832		return -EINVAL;
2833
2834	page = memdup_user(buf, count);
2835	if (IS_ERR(page)) {
2836		rv = PTR_ERR(page);
2837		goto out;
2838	}
2839
2840	/* Guard against adverse ptrace interaction */
2841	rv = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
2842	if (rv < 0)
2843		goto out_free;
2844
2845	rv = security_setprocattr(PROC_I(inode)->op.lsmid,
2846				  file->f_path.dentry->d_name.name, page,
2847				  count);
2848	mutex_unlock(&current->signal->cred_guard_mutex);
2849out_free:
2850	kfree(page);
2851out:
2852	return rv;
2853}
2854
2855static const struct file_operations proc_pid_attr_operations = {
2856	.open		= proc_pid_attr_open,
2857	.read		= proc_pid_attr_read,
2858	.write		= proc_pid_attr_write,
2859	.llseek		= generic_file_llseek,
2860	.release	= mem_release,
2861};
2862
2863#define LSM_DIR_OPS(LSM) \
2864static int proc_##LSM##_attr_dir_iterate(struct file *filp, \
2865			     struct dir_context *ctx) \
2866{ \
2867	return proc_pident_readdir(filp, ctx, \
2868				   LSM##_attr_dir_stuff, \
2869				   ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2870} \
2871\
2872static const struct file_operations proc_##LSM##_attr_dir_ops = { \
2873	.read		= generic_read_dir, \
2874	.iterate_shared	= proc_##LSM##_attr_dir_iterate, \
2875	.llseek		= default_llseek, \
2876}; \
2877\
2878static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \
2879				struct dentry *dentry, unsigned int flags) \
2880{ \
2881	return proc_pident_lookup(dir, dentry, \
2882				  LSM##_attr_dir_stuff, \
2883				  LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2884} \
2885\
2886static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \
2887	.lookup		= proc_##LSM##_attr_dir_lookup, \
2888	.getattr	= pid_getattr, \
2889	.setattr	= proc_setattr, \
2890}
2891
2892#ifdef CONFIG_SECURITY_SMACK
2893static const struct pid_entry smack_attr_dir_stuff[] = {
2894	ATTR(LSM_ID_SMACK, "current",	0666),
2895};
2896LSM_DIR_OPS(smack);
2897#endif
2898
2899#ifdef CONFIG_SECURITY_APPARMOR
2900static const struct pid_entry apparmor_attr_dir_stuff[] = {
2901	ATTR(LSM_ID_APPARMOR, "current",	0666),
2902	ATTR(LSM_ID_APPARMOR, "prev",		0444),
2903	ATTR(LSM_ID_APPARMOR, "exec",		0666),
2904};
2905LSM_DIR_OPS(apparmor);
2906#endif
2907
2908static const struct pid_entry attr_dir_stuff[] = {
2909	ATTR(LSM_ID_UNDEF, "current",	0666),
2910	ATTR(LSM_ID_UNDEF, "prev",		0444),
2911	ATTR(LSM_ID_UNDEF, "exec",		0666),
2912	ATTR(LSM_ID_UNDEF, "fscreate",	0666),
2913	ATTR(LSM_ID_UNDEF, "keycreate",	0666),
2914	ATTR(LSM_ID_UNDEF, "sockcreate",	0666),
2915#ifdef CONFIG_SECURITY_SMACK
2916	DIR("smack",			0555,
2917	    proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops),
2918#endif
2919#ifdef CONFIG_SECURITY_APPARMOR
2920	DIR("apparmor",			0555,
2921	    proc_apparmor_attr_dir_inode_ops, proc_apparmor_attr_dir_ops),
2922#endif
2923};
2924
2925static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2926{
2927	return proc_pident_readdir(file, ctx, 
2928				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2929}
2930
2931static const struct file_operations proc_attr_dir_operations = {
2932	.read		= generic_read_dir,
2933	.iterate_shared	= proc_attr_dir_readdir,
2934	.llseek		= generic_file_llseek,
2935};
2936
2937static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2938				struct dentry *dentry, unsigned int flags)
2939{
2940	return proc_pident_lookup(dir, dentry,
2941				  attr_dir_stuff,
2942				  attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff));
2943}
2944
2945static const struct inode_operations proc_attr_dir_inode_operations = {
2946	.lookup		= proc_attr_dir_lookup,
2947	.getattr	= pid_getattr,
2948	.setattr	= proc_setattr,
2949};
2950
2951#endif
2952
2953#ifdef CONFIG_ELF_CORE
2954static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2955					 size_t count, loff_t *ppos)
2956{
2957	struct task_struct *task = get_proc_task(file_inode(file));
2958	struct mm_struct *mm;
2959	char buffer[PROC_NUMBUF];
2960	size_t len;
2961	int ret;
2962
2963	if (!task)
2964		return -ESRCH;
2965
2966	ret = 0;
2967	mm = get_task_mm(task);
2968	if (mm) {
2969		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2970			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2971				MMF_DUMP_FILTER_SHIFT));
2972		mmput(mm);
2973		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2974	}
2975
2976	put_task_struct(task);
2977
2978	return ret;
2979}
2980
2981static ssize_t proc_coredump_filter_write(struct file *file,
2982					  const char __user *buf,
2983					  size_t count,
2984					  loff_t *ppos)
2985{
2986	struct task_struct *task;
2987	struct mm_struct *mm;
2988	unsigned int val;
2989	int ret;
2990	int i;
2991	unsigned long mask;
2992
2993	ret = kstrtouint_from_user(buf, count, 0, &val);
2994	if (ret < 0)
2995		return ret;
2996
2997	ret = -ESRCH;
2998	task = get_proc_task(file_inode(file));
2999	if (!task)
3000		goto out_no_task;
3001
3002	mm = get_task_mm(task);
3003	if (!mm)
3004		goto out_no_mm;
3005	ret = 0;
3006
3007	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
3008		if (val & mask)
3009			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
3010		else
3011			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
3012	}
3013
3014	mmput(mm);
3015 out_no_mm:
3016	put_task_struct(task);
3017 out_no_task:
3018	if (ret < 0)
3019		return ret;
3020	return count;
3021}
3022
3023static const struct file_operations proc_coredump_filter_operations = {
3024	.read		= proc_coredump_filter_read,
3025	.write		= proc_coredump_filter_write,
3026	.llseek		= generic_file_llseek,
3027};
3028#endif
3029
3030#ifdef CONFIG_TASK_IO_ACCOUNTING
3031static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
3032{
3033	struct task_io_accounting acct;
 
3034	int result;
3035
3036	result = down_read_killable(&task->signal->exec_update_lock);
3037	if (result)
3038		return result;
3039
3040	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
3041		result = -EACCES;
3042		goto out_unlock;
3043	}
3044
3045	if (whole) {
3046		struct signal_struct *sig = task->signal;
3047		struct task_struct *t;
3048		unsigned int seq = 1;
3049		unsigned long flags;
3050
3051		rcu_read_lock();
3052		do {
3053			seq++; /* 2 on the 1st/lockless path, otherwise odd */
3054			flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
3055
3056			acct = sig->ioac;
3057			__for_each_thread(sig, t)
3058				task_io_accounting_add(&acct, &t->ioac);
3059
3060		} while (need_seqretry(&sig->stats_lock, seq));
3061		done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
3062		rcu_read_unlock();
3063	} else {
3064		acct = task->ioac;
3065	}
3066
3067	seq_printf(m,
3068		   "rchar: %llu\n"
3069		   "wchar: %llu\n"
3070		   "syscr: %llu\n"
3071		   "syscw: %llu\n"
3072		   "read_bytes: %llu\n"
3073		   "write_bytes: %llu\n"
3074		   "cancelled_write_bytes: %llu\n",
3075		   (unsigned long long)acct.rchar,
3076		   (unsigned long long)acct.wchar,
3077		   (unsigned long long)acct.syscr,
3078		   (unsigned long long)acct.syscw,
3079		   (unsigned long long)acct.read_bytes,
3080		   (unsigned long long)acct.write_bytes,
3081		   (unsigned long long)acct.cancelled_write_bytes);
3082	result = 0;
3083
3084out_unlock:
3085	up_read(&task->signal->exec_update_lock);
3086	return result;
3087}
3088
3089static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
3090				  struct pid *pid, struct task_struct *task)
3091{
3092	return do_io_accounting(task, m, 0);
3093}
3094
3095static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
3096				   struct pid *pid, struct task_struct *task)
3097{
3098	return do_io_accounting(task, m, 1);
3099}
3100#endif /* CONFIG_TASK_IO_ACCOUNTING */
3101
3102#ifdef CONFIG_USER_NS
3103static int proc_id_map_open(struct inode *inode, struct file *file,
3104	const struct seq_operations *seq_ops)
3105{
3106	struct user_namespace *ns = NULL;
3107	struct task_struct *task;
3108	struct seq_file *seq;
3109	int ret = -EINVAL;
3110
3111	task = get_proc_task(inode);
3112	if (task) {
3113		rcu_read_lock();
3114		ns = get_user_ns(task_cred_xxx(task, user_ns));
3115		rcu_read_unlock();
3116		put_task_struct(task);
3117	}
3118	if (!ns)
3119		goto err;
3120
3121	ret = seq_open(file, seq_ops);
3122	if (ret)
3123		goto err_put_ns;
3124
3125	seq = file->private_data;
3126	seq->private = ns;
3127
3128	return 0;
3129err_put_ns:
3130	put_user_ns(ns);
3131err:
3132	return ret;
3133}
3134
3135static int proc_id_map_release(struct inode *inode, struct file *file)
3136{
3137	struct seq_file *seq = file->private_data;
3138	struct user_namespace *ns = seq->private;
3139	put_user_ns(ns);
3140	return seq_release(inode, file);
3141}
3142
3143static int proc_uid_map_open(struct inode *inode, struct file *file)
3144{
3145	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
3146}
3147
3148static int proc_gid_map_open(struct inode *inode, struct file *file)
3149{
3150	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
3151}
3152
3153static int proc_projid_map_open(struct inode *inode, struct file *file)
3154{
3155	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
3156}
3157
3158static const struct file_operations proc_uid_map_operations = {
3159	.open		= proc_uid_map_open,
3160	.write		= proc_uid_map_write,
3161	.read		= seq_read,
3162	.llseek		= seq_lseek,
3163	.release	= proc_id_map_release,
3164};
3165
3166static const struct file_operations proc_gid_map_operations = {
3167	.open		= proc_gid_map_open,
3168	.write		= proc_gid_map_write,
3169	.read		= seq_read,
3170	.llseek		= seq_lseek,
3171	.release	= proc_id_map_release,
3172};
3173
3174static const struct file_operations proc_projid_map_operations = {
3175	.open		= proc_projid_map_open,
3176	.write		= proc_projid_map_write,
3177	.read		= seq_read,
3178	.llseek		= seq_lseek,
3179	.release	= proc_id_map_release,
3180};
3181
3182static int proc_setgroups_open(struct inode *inode, struct file *file)
3183{
3184	struct user_namespace *ns = NULL;
3185	struct task_struct *task;
3186	int ret;
3187
3188	ret = -ESRCH;
3189	task = get_proc_task(inode);
3190	if (task) {
3191		rcu_read_lock();
3192		ns = get_user_ns(task_cred_xxx(task, user_ns));
3193		rcu_read_unlock();
3194		put_task_struct(task);
3195	}
3196	if (!ns)
3197		goto err;
3198
3199	if (file->f_mode & FMODE_WRITE) {
3200		ret = -EACCES;
3201		if (!ns_capable(ns, CAP_SYS_ADMIN))
3202			goto err_put_ns;
3203	}
3204
3205	ret = single_open(file, &proc_setgroups_show, ns);
3206	if (ret)
3207		goto err_put_ns;
3208
3209	return 0;
3210err_put_ns:
3211	put_user_ns(ns);
3212err:
3213	return ret;
3214}
3215
3216static int proc_setgroups_release(struct inode *inode, struct file *file)
3217{
3218	struct seq_file *seq = file->private_data;
3219	struct user_namespace *ns = seq->private;
3220	int ret = single_release(inode, file);
3221	put_user_ns(ns);
3222	return ret;
3223}
3224
3225static const struct file_operations proc_setgroups_operations = {
3226	.open		= proc_setgroups_open,
3227	.write		= proc_setgroups_write,
3228	.read		= seq_read,
3229	.llseek		= seq_lseek,
3230	.release	= proc_setgroups_release,
3231};
3232#endif /* CONFIG_USER_NS */
3233
3234static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
3235				struct pid *pid, struct task_struct *task)
3236{
3237	int err = lock_trace(task);
3238	if (!err) {
3239		seq_printf(m, "%08x\n", task->personality);
3240		unlock_trace(task);
3241	}
3242	return err;
3243}
3244
3245#ifdef CONFIG_LIVEPATCH
3246static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
3247				struct pid *pid, struct task_struct *task)
3248{
3249	seq_printf(m, "%d\n", task->patch_state);
3250	return 0;
3251}
3252#endif /* CONFIG_LIVEPATCH */
3253
3254#ifdef CONFIG_KSM
3255static int proc_pid_ksm_merging_pages(struct seq_file *m, struct pid_namespace *ns,
3256				struct pid *pid, struct task_struct *task)
3257{
3258	struct mm_struct *mm;
3259
3260	mm = get_task_mm(task);
3261	if (mm) {
3262		seq_printf(m, "%lu\n", mm->ksm_merging_pages);
3263		mmput(mm);
3264	}
3265
3266	return 0;
3267}
3268static int proc_pid_ksm_stat(struct seq_file *m, struct pid_namespace *ns,
3269				struct pid *pid, struct task_struct *task)
3270{
3271	struct mm_struct *mm;
3272
3273	mm = get_task_mm(task);
3274	if (mm) {
3275		seq_printf(m, "ksm_rmap_items %lu\n", mm->ksm_rmap_items);
3276		seq_printf(m, "ksm_zero_pages %ld\n", mm_ksm_zero_pages(mm));
3277		seq_printf(m, "ksm_merging_pages %lu\n", mm->ksm_merging_pages);
3278		seq_printf(m, "ksm_process_profit %ld\n", ksm_process_profit(mm));
3279		mmput(mm);
3280	}
3281
3282	return 0;
3283}
3284#endif /* CONFIG_KSM */
3285
3286#ifdef CONFIG_STACKLEAK_METRICS
3287static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
3288				struct pid *pid, struct task_struct *task)
3289{
3290	unsigned long prev_depth = THREAD_SIZE -
3291				(task->prev_lowest_stack & (THREAD_SIZE - 1));
3292	unsigned long depth = THREAD_SIZE -
3293				(task->lowest_stack & (THREAD_SIZE - 1));
3294
3295	seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
3296							prev_depth, depth);
3297	return 0;
3298}
3299#endif /* CONFIG_STACKLEAK_METRICS */
3300
3301/*
3302 * Thread groups
3303 */
3304static const struct file_operations proc_task_operations;
3305static const struct inode_operations proc_task_inode_operations;
3306
3307static const struct pid_entry tgid_base_stuff[] = {
3308	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
3309	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3310	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
3311	DIR("fdinfo",     S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3312	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3313#ifdef CONFIG_NET
3314	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3315#endif
3316	REG("environ",    S_IRUSR, proc_environ_operations),
3317	REG("auxv",       S_IRUSR, proc_auxv_operations),
3318	ONE("status",     S_IRUGO, proc_pid_status),
3319	ONE("personality", S_IRUSR, proc_pid_personality),
3320	ONE("limits",	  S_IRUGO, proc_pid_limits),
3321#ifdef CONFIG_SCHED_DEBUG
3322	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3323#endif
3324#ifdef CONFIG_SCHED_AUTOGROUP
3325	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3326#endif
3327#ifdef CONFIG_TIME_NS
3328	REG("timens_offsets",  S_IRUGO|S_IWUSR, proc_timens_offsets_operations),
3329#endif
3330	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3331#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3332	ONE("syscall",    S_IRUSR, proc_pid_syscall),
3333#endif
3334	REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
3335	ONE("stat",       S_IRUGO, proc_tgid_stat),
3336	ONE("statm",      S_IRUGO, proc_pid_statm),
3337	REG("maps",       S_IRUGO, proc_pid_maps_operations),
3338#ifdef CONFIG_NUMA
3339	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
3340#endif
3341	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
3342	LNK("cwd",        proc_cwd_link),
3343	LNK("root",       proc_root_link),
3344	LNK("exe",        proc_exe_link),
3345	REG("mounts",     S_IRUGO, proc_mounts_operations),
3346	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3347	REG("mountstats", S_IRUSR, proc_mountstats_operations),
3348#ifdef CONFIG_PROC_PAGE_MONITOR
3349	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3350	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
3351	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3352	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3353#endif
3354#ifdef CONFIG_SECURITY
3355	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3356#endif
3357#ifdef CONFIG_KALLSYMS
3358	ONE("wchan",      S_IRUGO, proc_pid_wchan),
3359#endif
3360#ifdef CONFIG_STACKTRACE
3361	ONE("stack",      S_IRUSR, proc_pid_stack),
3362#endif
3363#ifdef CONFIG_SCHED_INFO
3364	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
3365#endif
3366#ifdef CONFIG_LATENCYTOP
3367	REG("latency",  S_IRUGO, proc_lstats_operations),
3368#endif
3369#ifdef CONFIG_PROC_PID_CPUSET
3370	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
3371#endif
3372#ifdef CONFIG_CGROUPS
3373	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3374#endif
3375#ifdef CONFIG_PROC_CPU_RESCTRL
3376	ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3377#endif
3378	ONE("oom_score",  S_IRUGO, proc_oom_score),
3379	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3380	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3381#ifdef CONFIG_AUDIT
3382	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
3383	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3384#endif
3385#ifdef CONFIG_FAULT_INJECTION
3386	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3387	REG("fail-nth", 0644, proc_fail_nth_operations),
3388#endif
3389#ifdef CONFIG_ELF_CORE
3390	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3391#endif
3392#ifdef CONFIG_TASK_IO_ACCOUNTING
3393	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
3394#endif
3395#ifdef CONFIG_USER_NS
3396	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3397	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3398	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3399	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3400#endif
3401#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3402	REG("timers",	  S_IRUGO, proc_timers_operations),
3403#endif
3404	REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3405#ifdef CONFIG_LIVEPATCH
3406	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3407#endif
3408#ifdef CONFIG_STACKLEAK_METRICS
3409	ONE("stack_depth", S_IRUGO, proc_stack_depth),
3410#endif
3411#ifdef CONFIG_PROC_PID_ARCH_STATUS
3412	ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3413#endif
3414#ifdef CONFIG_SECCOMP_CACHE_DEBUG
3415	ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
3416#endif
3417#ifdef CONFIG_KSM
3418	ONE("ksm_merging_pages",  S_IRUSR, proc_pid_ksm_merging_pages),
3419	ONE("ksm_stat",  S_IRUSR, proc_pid_ksm_stat),
3420#endif
3421};
3422
3423static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3424{
3425	return proc_pident_readdir(file, ctx,
3426				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3427}
3428
3429static const struct file_operations proc_tgid_base_operations = {
3430	.read		= generic_read_dir,
3431	.iterate_shared	= proc_tgid_base_readdir,
3432	.llseek		= generic_file_llseek,
3433};
3434
3435struct pid *tgid_pidfd_to_pid(const struct file *file)
3436{
3437	if (file->f_op != &proc_tgid_base_operations)
3438		return ERR_PTR(-EBADF);
3439
3440	return proc_pid(file_inode(file));
3441}
3442
3443static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3444{
3445	return proc_pident_lookup(dir, dentry,
3446				  tgid_base_stuff,
3447				  tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff));
3448}
3449
3450static const struct inode_operations proc_tgid_base_inode_operations = {
3451	.lookup		= proc_tgid_base_lookup,
3452	.getattr	= pid_getattr,
3453	.setattr	= proc_setattr,
3454	.permission	= proc_pid_permission,
3455};
3456
3457/**
3458 * proc_flush_pid -  Remove dcache entries for @pid from the /proc dcache.
3459 * @pid: pid that should be flushed.
3460 *
3461 * This function walks a list of inodes (that belong to any proc
3462 * filesystem) that are attached to the pid and flushes them from
3463 * the dentry cache.
3464 *
3465 * It is safe and reasonable to cache /proc entries for a task until
3466 * that task exits.  After that they just clog up the dcache with
3467 * useless entries, possibly causing useful dcache entries to be
3468 * flushed instead.  This routine is provided to flush those useless
3469 * dcache entries when a process is reaped.
3470 *
3471 * NOTE: This routine is just an optimization so it does not guarantee
3472 *       that no dcache entries will exist after a process is reaped
3473 *       it just makes it very unlikely that any will persist.
3474 */
3475
3476void proc_flush_pid(struct pid *pid)
3477{
3478	proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock);
3479}
3480
3481static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3482				   struct task_struct *task, const void *ptr)
3483{
3484	struct inode *inode;
3485
3486	inode = proc_pid_make_base_inode(dentry->d_sb, task,
3487					 S_IFDIR | S_IRUGO | S_IXUGO);
3488	if (!inode)
3489		return ERR_PTR(-ENOENT);
3490
3491	inode->i_op = &proc_tgid_base_inode_operations;
3492	inode->i_fop = &proc_tgid_base_operations;
3493	inode->i_flags|=S_IMMUTABLE;
3494
3495	set_nlink(inode, nlink_tgid);
3496	pid_update_inode(task, inode);
3497
3498	d_set_d_op(dentry, &pid_dentry_operations);
3499	return d_splice_alias(inode, dentry);
3500}
3501
3502struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags)
3503{
3504	struct task_struct *task;
3505	unsigned tgid;
3506	struct proc_fs_info *fs_info;
3507	struct pid_namespace *ns;
3508	struct dentry *result = ERR_PTR(-ENOENT);
3509
3510	tgid = name_to_int(&dentry->d_name);
3511	if (tgid == ~0U)
3512		goto out;
3513
3514	fs_info = proc_sb_info(dentry->d_sb);
3515	ns = fs_info->pid_ns;
3516	rcu_read_lock();
3517	task = find_task_by_pid_ns(tgid, ns);
3518	if (task)
3519		get_task_struct(task);
3520	rcu_read_unlock();
3521	if (!task)
3522		goto out;
3523
3524	/* Limit procfs to only ptraceable tasks */
3525	if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) {
3526		if (!has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS))
3527			goto out_put_task;
3528	}
3529
3530	result = proc_pid_instantiate(dentry, task, NULL);
3531out_put_task:
3532	put_task_struct(task);
3533out:
3534	return result;
3535}
3536
3537/*
3538 * Find the first task with tgid >= tgid
3539 *
3540 */
3541struct tgid_iter {
3542	unsigned int tgid;
3543	struct task_struct *task;
3544};
3545static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3546{
3547	struct pid *pid;
3548
3549	if (iter.task)
3550		put_task_struct(iter.task);
3551	rcu_read_lock();
3552retry:
3553	iter.task = NULL;
3554	pid = find_ge_pid(iter.tgid, ns);
3555	if (pid) {
3556		iter.tgid = pid_nr_ns(pid, ns);
3557		iter.task = pid_task(pid, PIDTYPE_TGID);
3558		if (!iter.task) {
3559			iter.tgid += 1;
3560			goto retry;
3561		}
3562		get_task_struct(iter.task);
3563	}
3564	rcu_read_unlock();
3565	return iter;
3566}
3567
3568#define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3569
3570/* for the /proc/ directory itself, after non-process stuff has been done */
3571int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3572{
3573	struct tgid_iter iter;
3574	struct proc_fs_info *fs_info = proc_sb_info(file_inode(file)->i_sb);
3575	struct pid_namespace *ns = proc_pid_ns(file_inode(file)->i_sb);
3576	loff_t pos = ctx->pos;
3577
3578	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3579		return 0;
3580
3581	if (pos == TGID_OFFSET - 2) {
3582		struct inode *inode = d_inode(fs_info->proc_self);
3583		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3584			return 0;
3585		ctx->pos = pos = pos + 1;
3586	}
3587	if (pos == TGID_OFFSET - 1) {
3588		struct inode *inode = d_inode(fs_info->proc_thread_self);
3589		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3590			return 0;
3591		ctx->pos = pos = pos + 1;
3592	}
3593	iter.tgid = pos - TGID_OFFSET;
3594	iter.task = NULL;
3595	for (iter = next_tgid(ns, iter);
3596	     iter.task;
3597	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3598		char name[10 + 1];
3599		unsigned int len;
3600
3601		cond_resched();
3602		if (!has_pid_permissions(fs_info, iter.task, HIDEPID_INVISIBLE))
3603			continue;
3604
3605		len = snprintf(name, sizeof(name), "%u", iter.tgid);
3606		ctx->pos = iter.tgid + TGID_OFFSET;
3607		if (!proc_fill_cache(file, ctx, name, len,
3608				     proc_pid_instantiate, iter.task, NULL)) {
3609			put_task_struct(iter.task);
3610			return 0;
3611		}
3612	}
3613	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3614	return 0;
3615}
3616
3617/*
3618 * proc_tid_comm_permission is a special permission function exclusively
3619 * used for the node /proc/<pid>/task/<tid>/comm.
3620 * It bypasses generic permission checks in the case where a task of the same
3621 * task group attempts to access the node.
3622 * The rationale behind this is that glibc and bionic access this node for
3623 * cross thread naming (pthread_set/getname_np(!self)). However, if
3624 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3625 * which locks out the cross thread naming implementation.
3626 * This function makes sure that the node is always accessible for members of
3627 * same thread group.
3628 */
3629static int proc_tid_comm_permission(struct mnt_idmap *idmap,
3630				    struct inode *inode, int mask)
3631{
3632	bool is_same_tgroup;
3633	struct task_struct *task;
3634
3635	task = get_proc_task(inode);
3636	if (!task)
3637		return -ESRCH;
3638	is_same_tgroup = same_thread_group(current, task);
3639	put_task_struct(task);
3640
3641	if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3642		/* This file (/proc/<pid>/task/<tid>/comm) can always be
3643		 * read or written by the members of the corresponding
3644		 * thread group.
3645		 */
3646		return 0;
3647	}
3648
3649	return generic_permission(&nop_mnt_idmap, inode, mask);
3650}
3651
3652static const struct inode_operations proc_tid_comm_inode_operations = {
3653		.setattr	= proc_setattr,
3654		.permission	= proc_tid_comm_permission,
3655};
3656
3657/*
3658 * Tasks
3659 */
3660static const struct pid_entry tid_base_stuff[] = {
3661	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3662	DIR("fdinfo",    S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3663	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3664#ifdef CONFIG_NET
3665	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3666#endif
3667	REG("environ",   S_IRUSR, proc_environ_operations),
3668	REG("auxv",      S_IRUSR, proc_auxv_operations),
3669	ONE("status",    S_IRUGO, proc_pid_status),
3670	ONE("personality", S_IRUSR, proc_pid_personality),
3671	ONE("limits",	 S_IRUGO, proc_pid_limits),
3672#ifdef CONFIG_SCHED_DEBUG
3673	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3674#endif
3675	NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3676			 &proc_tid_comm_inode_operations,
3677			 &proc_pid_set_comm_operations, {}),
3678#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3679	ONE("syscall",   S_IRUSR, proc_pid_syscall),
3680#endif
3681	REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3682	ONE("stat",      S_IRUGO, proc_tid_stat),
3683	ONE("statm",     S_IRUGO, proc_pid_statm),
3684	REG("maps",      S_IRUGO, proc_pid_maps_operations),
3685#ifdef CONFIG_PROC_CHILDREN
3686	REG("children",  S_IRUGO, proc_tid_children_operations),
3687#endif
3688#ifdef CONFIG_NUMA
3689	REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3690#endif
3691	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3692	LNK("cwd",       proc_cwd_link),
3693	LNK("root",      proc_root_link),
3694	LNK("exe",       proc_exe_link),
3695	REG("mounts",    S_IRUGO, proc_mounts_operations),
3696	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3697#ifdef CONFIG_PROC_PAGE_MONITOR
3698	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3699	REG("smaps",     S_IRUGO, proc_pid_smaps_operations),
3700	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3701	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3702#endif
3703#ifdef CONFIG_SECURITY
3704	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3705#endif
3706#ifdef CONFIG_KALLSYMS
3707	ONE("wchan",     S_IRUGO, proc_pid_wchan),
3708#endif
3709#ifdef CONFIG_STACKTRACE
3710	ONE("stack",      S_IRUSR, proc_pid_stack),
3711#endif
3712#ifdef CONFIG_SCHED_INFO
3713	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3714#endif
3715#ifdef CONFIG_LATENCYTOP
3716	REG("latency",  S_IRUGO, proc_lstats_operations),
3717#endif
3718#ifdef CONFIG_PROC_PID_CPUSET
3719	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3720#endif
3721#ifdef CONFIG_CGROUPS
3722	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3723#endif
3724#ifdef CONFIG_PROC_CPU_RESCTRL
3725	ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3726#endif
3727	ONE("oom_score", S_IRUGO, proc_oom_score),
3728	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3729	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3730#ifdef CONFIG_AUDIT
3731	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3732	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3733#endif
3734#ifdef CONFIG_FAULT_INJECTION
3735	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3736	REG("fail-nth", 0644, proc_fail_nth_operations),
3737#endif
3738#ifdef CONFIG_TASK_IO_ACCOUNTING
3739	ONE("io",	S_IRUSR, proc_tid_io_accounting),
3740#endif
3741#ifdef CONFIG_USER_NS
3742	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3743	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3744	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3745	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3746#endif
3747#ifdef CONFIG_LIVEPATCH
3748	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3749#endif
3750#ifdef CONFIG_PROC_PID_ARCH_STATUS
3751	ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3752#endif
3753#ifdef CONFIG_SECCOMP_CACHE_DEBUG
3754	ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
3755#endif
3756#ifdef CONFIG_KSM
3757	ONE("ksm_merging_pages",  S_IRUSR, proc_pid_ksm_merging_pages),
3758	ONE("ksm_stat",  S_IRUSR, proc_pid_ksm_stat),
3759#endif
3760};
3761
3762static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3763{
3764	return proc_pident_readdir(file, ctx,
3765				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3766}
3767
3768static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3769{
3770	return proc_pident_lookup(dir, dentry,
3771				  tid_base_stuff,
3772				  tid_base_stuff + ARRAY_SIZE(tid_base_stuff));
3773}
3774
3775static const struct file_operations proc_tid_base_operations = {
3776	.read		= generic_read_dir,
3777	.iterate_shared	= proc_tid_base_readdir,
3778	.llseek		= generic_file_llseek,
3779};
3780
3781static const struct inode_operations proc_tid_base_inode_operations = {
3782	.lookup		= proc_tid_base_lookup,
3783	.getattr	= pid_getattr,
3784	.setattr	= proc_setattr,
3785};
3786
3787static struct dentry *proc_task_instantiate(struct dentry *dentry,
3788	struct task_struct *task, const void *ptr)
3789{
3790	struct inode *inode;
3791	inode = proc_pid_make_base_inode(dentry->d_sb, task,
3792					 S_IFDIR | S_IRUGO | S_IXUGO);
3793	if (!inode)
3794		return ERR_PTR(-ENOENT);
3795
3796	inode->i_op = &proc_tid_base_inode_operations;
3797	inode->i_fop = &proc_tid_base_operations;
3798	inode->i_flags |= S_IMMUTABLE;
3799
3800	set_nlink(inode, nlink_tid);
3801	pid_update_inode(task, inode);
3802
3803	d_set_d_op(dentry, &pid_dentry_operations);
3804	return d_splice_alias(inode, dentry);
3805}
3806
3807static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3808{
3809	struct task_struct *task;
3810	struct task_struct *leader = get_proc_task(dir);
3811	unsigned tid;
3812	struct proc_fs_info *fs_info;
3813	struct pid_namespace *ns;
3814	struct dentry *result = ERR_PTR(-ENOENT);
3815
3816	if (!leader)
3817		goto out_no_task;
3818
3819	tid = name_to_int(&dentry->d_name);
3820	if (tid == ~0U)
3821		goto out;
3822
3823	fs_info = proc_sb_info(dentry->d_sb);
3824	ns = fs_info->pid_ns;
3825	rcu_read_lock();
3826	task = find_task_by_pid_ns(tid, ns);
3827	if (task)
3828		get_task_struct(task);
3829	rcu_read_unlock();
3830	if (!task)
3831		goto out;
3832	if (!same_thread_group(leader, task))
3833		goto out_drop_task;
3834
3835	result = proc_task_instantiate(dentry, task, NULL);
3836out_drop_task:
3837	put_task_struct(task);
3838out:
3839	put_task_struct(leader);
3840out_no_task:
3841	return result;
3842}
3843
3844/*
3845 * Find the first tid of a thread group to return to user space.
3846 *
3847 * Usually this is just the thread group leader, but if the users
3848 * buffer was too small or there was a seek into the middle of the
3849 * directory we have more work todo.
3850 *
3851 * In the case of a short read we start with find_task_by_pid.
3852 *
3853 * In the case of a seek we start with the leader and walk nr
3854 * threads past it.
3855 */
3856static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3857					struct pid_namespace *ns)
3858{
3859	struct task_struct *pos, *task;
3860	unsigned long nr = f_pos;
3861
3862	if (nr != f_pos)	/* 32bit overflow? */
3863		return NULL;
3864
3865	rcu_read_lock();
3866	task = pid_task(pid, PIDTYPE_PID);
3867	if (!task)
3868		goto fail;
3869
3870	/* Attempt to start with the tid of a thread */
3871	if (tid && nr) {
3872		pos = find_task_by_pid_ns(tid, ns);
3873		if (pos && same_thread_group(pos, task))
3874			goto found;
3875	}
3876
3877	/* If nr exceeds the number of threads there is nothing todo */
3878	if (nr >= get_nr_threads(task))
3879		goto fail;
3880
3881	/* If we haven't found our starting place yet start
3882	 * with the leader and walk nr threads forward.
3883	 */
3884	for_each_thread(task, pos) {
 
3885		if (!nr--)
3886			goto found;
3887	}
3888fail:
3889	pos = NULL;
3890	goto out;
3891found:
3892	get_task_struct(pos);
3893out:
3894	rcu_read_unlock();
3895	return pos;
3896}
3897
3898/*
3899 * Find the next thread in the thread list.
3900 * Return NULL if there is an error or no next thread.
3901 *
3902 * The reference to the input task_struct is released.
3903 */
3904static struct task_struct *next_tid(struct task_struct *start)
3905{
3906	struct task_struct *pos = NULL;
3907	rcu_read_lock();
3908	if (pid_alive(start)) {
3909		pos = __next_thread(start);
3910		if (pos)
 
 
3911			get_task_struct(pos);
3912	}
3913	rcu_read_unlock();
3914	put_task_struct(start);
3915	return pos;
3916}
3917
3918/* for the /proc/TGID/task/ directories */
3919static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3920{
3921	struct inode *inode = file_inode(file);
3922	struct task_struct *task;
3923	struct pid_namespace *ns;
3924	int tid;
3925
3926	if (proc_inode_is_dead(inode))
3927		return -ENOENT;
3928
3929	if (!dir_emit_dots(file, ctx))
3930		return 0;
3931
3932	/* We cache the tgid value that the last readdir call couldn't
3933	 * return and lseek resets it to 0.
3934	 */
3935	ns = proc_pid_ns(inode->i_sb);
3936	tid = (int)(intptr_t)file->private_data;
3937	file->private_data = NULL;
3938	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3939	     task;
3940	     task = next_tid(task), ctx->pos++) {
3941		char name[10 + 1];
3942		unsigned int len;
3943
3944		tid = task_pid_nr_ns(task, ns);
3945		if (!tid)
3946			continue;	/* The task has just exited. */
3947		len = snprintf(name, sizeof(name), "%u", tid);
3948		if (!proc_fill_cache(file, ctx, name, len,
3949				proc_task_instantiate, task, NULL)) {
3950			/* returning this tgid failed, save it as the first
3951			 * pid for the next readir call */
3952			file->private_data = (void *)(intptr_t)tid;
3953			put_task_struct(task);
3954			break;
3955		}
3956	}
3957
3958	return 0;
3959}
3960
3961static int proc_task_getattr(struct mnt_idmap *idmap,
3962			     const struct path *path, struct kstat *stat,
3963			     u32 request_mask, unsigned int query_flags)
3964{
3965	struct inode *inode = d_inode(path->dentry);
3966	struct task_struct *p = get_proc_task(inode);
3967	generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
3968
3969	if (p) {
3970		stat->nlink += get_nr_threads(p);
3971		put_task_struct(p);
3972	}
3973
3974	return 0;
3975}
3976
3977/*
3978 * proc_task_readdir() set @file->private_data to a positive integer
3979 * value, so casting that to u64 is safe. generic_llseek_cookie() will
3980 * set @cookie to 0, so casting to an int is safe. The WARN_ON_ONCE() is
3981 * here to catch any unexpected change in behavior either in
3982 * proc_task_readdir() or generic_llseek_cookie().
3983 */
3984static loff_t proc_dir_llseek(struct file *file, loff_t offset, int whence)
3985{
3986	u64 cookie = (u64)(intptr_t)file->private_data;
3987	loff_t off;
3988
3989	off = generic_llseek_cookie(file, offset, whence, &cookie);
3990	WARN_ON_ONCE(cookie > INT_MAX);
3991	file->private_data = (void *)(intptr_t)cookie; /* serialized by f_pos_lock */
3992	return off;
3993}
3994
3995static const struct inode_operations proc_task_inode_operations = {
3996	.lookup		= proc_task_lookup,
3997	.getattr	= proc_task_getattr,
3998	.setattr	= proc_setattr,
3999	.permission	= proc_pid_permission,
4000};
4001
4002static const struct file_operations proc_task_operations = {
4003	.read		= generic_read_dir,
4004	.iterate_shared	= proc_task_readdir,
4005	.llseek		= proc_dir_llseek,
4006};
4007
4008void __init set_proc_pid_nlink(void)
4009{
4010	nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
4011	nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
4012}