Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/proc/base.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * proc base directory handling functions
8 *
9 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
10 * Instead of using magical inumbers to determine the kind of object
11 * we allocate and fill in-core inodes upon lookup. They don't even
12 * go into icache. We cache the reference to task_struct upon lookup too.
13 * Eventually it should become a filesystem in its own. We don't use the
14 * rest of procfs anymore.
15 *
16 *
17 * Changelog:
18 * 17-Jan-2005
19 * Allan Bezerra
20 * Bruna Moreira <bruna.moreira@indt.org.br>
21 * Edjard Mota <edjard.mota@indt.org.br>
22 * Ilias Biris <ilias.biris@indt.org.br>
23 * Mauricio Lin <mauricio.lin@indt.org.br>
24 *
25 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26 *
27 * A new process specific entry (smaps) included in /proc. It shows the
28 * size of rss for each memory area. The maps entry lacks information
29 * about physical memory size (rss) for each mapped file, i.e.,
30 * rss information for executables and library files.
31 * This additional information is useful for any tools that need to know
32 * about physical memory consumption for a process specific library.
33 *
34 * Changelog:
35 * 21-Feb-2005
36 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
37 * Pud inclusion in the page table walking.
38 *
39 * ChangeLog:
40 * 10-Mar-2005
41 * 10LE Instituto Nokia de Tecnologia - INdT:
42 * A better way to walks through the page table as suggested by Hugh Dickins.
43 *
44 * Simo Piiroinen <simo.piiroinen@nokia.com>:
45 * Smaps information related to shared, private, clean and dirty pages.
46 *
47 * Paul Mundt <paul.mundt@nokia.com>:
48 * Overall revision about smaps.
49 */
50
51#include <linux/uaccess.h>
52
53#include <linux/errno.h>
54#include <linux/time.h>
55#include <linux/proc_fs.h>
56#include <linux/stat.h>
57#include <linux/task_io_accounting_ops.h>
58#include <linux/init.h>
59#include <linux/capability.h>
60#include <linux/file.h>
61#include <linux/fdtable.h>
62#include <linux/generic-radix-tree.h>
63#include <linux/string.h>
64#include <linux/seq_file.h>
65#include <linux/namei.h>
66#include <linux/mnt_namespace.h>
67#include <linux/mm.h>
68#include <linux/swap.h>
69#include <linux/rcupdate.h>
70#include <linux/kallsyms.h>
71#include <linux/stacktrace.h>
72#include <linux/resource.h>
73#include <linux/module.h>
74#include <linux/mount.h>
75#include <linux/security.h>
76#include <linux/ptrace.h>
77#include <linux/printk.h>
78#include <linux/cache.h>
79#include <linux/cgroup.h>
80#include <linux/cpuset.h>
81#include <linux/audit.h>
82#include <linux/poll.h>
83#include <linux/nsproxy.h>
84#include <linux/oom.h>
85#include <linux/elf.h>
86#include <linux/pid_namespace.h>
87#include <linux/user_namespace.h>
88#include <linux/fs_struct.h>
89#include <linux/slab.h>
90#include <linux/sched/autogroup.h>
91#include <linux/sched/mm.h>
92#include <linux/sched/coredump.h>
93#include <linux/sched/debug.h>
94#include <linux/sched/stat.h>
95#include <linux/posix-timers.h>
96#include <linux/time_namespace.h>
97#include <linux/resctrl.h>
98#include <linux/cn_proc.h>
99#include <trace/events/oom.h>
100#include "internal.h"
101#include "fd.h"
102
103#include "../../lib/kstrtox.h"
104
105/* NOTE:
106 * Implementing inode permission operations in /proc is almost
107 * certainly an error. Permission checks need to happen during
108 * each system call not at open time. The reason is that most of
109 * what we wish to check for permissions in /proc varies at runtime.
110 *
111 * The classic example of a problem is opening file descriptors
112 * in /proc for a task before it execs a suid executable.
113 */
114
115static u8 nlink_tid __ro_after_init;
116static u8 nlink_tgid __ro_after_init;
117
118struct pid_entry {
119 const char *name;
120 unsigned int len;
121 umode_t mode;
122 const struct inode_operations *iop;
123 const struct file_operations *fop;
124 union proc_op op;
125};
126
127#define NOD(NAME, MODE, IOP, FOP, OP) { \
128 .name = (NAME), \
129 .len = sizeof(NAME) - 1, \
130 .mode = MODE, \
131 .iop = IOP, \
132 .fop = FOP, \
133 .op = OP, \
134}
135
136#define DIR(NAME, MODE, iops, fops) \
137 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
138#define LNK(NAME, get_link) \
139 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
140 &proc_pid_link_inode_operations, NULL, \
141 { .proc_get_link = get_link } )
142#define REG(NAME, MODE, fops) \
143 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
144#define ONE(NAME, MODE, show) \
145 NOD(NAME, (S_IFREG|(MODE)), \
146 NULL, &proc_single_file_operations, \
147 { .proc_show = show } )
148#define ATTR(LSM, NAME, MODE) \
149 NOD(NAME, (S_IFREG|(MODE)), \
150 NULL, &proc_pid_attr_operations, \
151 { .lsm = LSM })
152
153/*
154 * Count the number of hardlinks for the pid_entry table, excluding the .
155 * and .. links.
156 */
157static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
158 unsigned int n)
159{
160 unsigned int i;
161 unsigned int count;
162
163 count = 2;
164 for (i = 0; i < n; ++i) {
165 if (S_ISDIR(entries[i].mode))
166 ++count;
167 }
168
169 return count;
170}
171
172static int get_task_root(struct task_struct *task, struct path *root)
173{
174 int result = -ENOENT;
175
176 task_lock(task);
177 if (task->fs) {
178 get_fs_root(task->fs, root);
179 result = 0;
180 }
181 task_unlock(task);
182 return result;
183}
184
185static int proc_cwd_link(struct dentry *dentry, struct path *path)
186{
187 struct task_struct *task = get_proc_task(d_inode(dentry));
188 int result = -ENOENT;
189
190 if (task) {
191 task_lock(task);
192 if (task->fs) {
193 get_fs_pwd(task->fs, path);
194 result = 0;
195 }
196 task_unlock(task);
197 put_task_struct(task);
198 }
199 return result;
200}
201
202static int proc_root_link(struct dentry *dentry, struct path *path)
203{
204 struct task_struct *task = get_proc_task(d_inode(dentry));
205 int result = -ENOENT;
206
207 if (task) {
208 result = get_task_root(task, path);
209 put_task_struct(task);
210 }
211 return result;
212}
213
214/*
215 * If the user used setproctitle(), we just get the string from
216 * user space at arg_start, and limit it to a maximum of one page.
217 */
218static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf,
219 size_t count, unsigned long pos,
220 unsigned long arg_start)
221{
222 char *page;
223 int ret, got;
224
225 if (pos >= PAGE_SIZE)
226 return 0;
227
228 page = (char *)__get_free_page(GFP_KERNEL);
229 if (!page)
230 return -ENOMEM;
231
232 ret = 0;
233 got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON);
234 if (got > 0) {
235 int len = strnlen(page, got);
236
237 /* Include the NUL character if it was found */
238 if (len < got)
239 len++;
240
241 if (len > pos) {
242 len -= pos;
243 if (len > count)
244 len = count;
245 len -= copy_to_user(buf, page+pos, len);
246 if (!len)
247 len = -EFAULT;
248 ret = len;
249 }
250 }
251 free_page((unsigned long)page);
252 return ret;
253}
254
255static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
256 size_t count, loff_t *ppos)
257{
258 unsigned long arg_start, arg_end, env_start, env_end;
259 unsigned long pos, len;
260 char *page, c;
261
262 /* Check if process spawned far enough to have cmdline. */
263 if (!mm->env_end)
264 return 0;
265
266 spin_lock(&mm->arg_lock);
267 arg_start = mm->arg_start;
268 arg_end = mm->arg_end;
269 env_start = mm->env_start;
270 env_end = mm->env_end;
271 spin_unlock(&mm->arg_lock);
272
273 if (arg_start >= arg_end)
274 return 0;
275
276 /*
277 * We allow setproctitle() to overwrite the argument
278 * strings, and overflow past the original end. But
279 * only when it overflows into the environment area.
280 */
281 if (env_start != arg_end || env_end < env_start)
282 env_start = env_end = arg_end;
283 len = env_end - arg_start;
284
285 /* We're not going to care if "*ppos" has high bits set */
286 pos = *ppos;
287 if (pos >= len)
288 return 0;
289 if (count > len - pos)
290 count = len - pos;
291 if (!count)
292 return 0;
293
294 /*
295 * Magical special case: if the argv[] end byte is not
296 * zero, the user has overwritten it with setproctitle(3).
297 *
298 * Possible future enhancement: do this only once when
299 * pos is 0, and set a flag in the 'struct file'.
300 */
301 if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c)
302 return get_mm_proctitle(mm, buf, count, pos, arg_start);
303
304 /*
305 * For the non-setproctitle() case we limit things strictly
306 * to the [arg_start, arg_end[ range.
307 */
308 pos += arg_start;
309 if (pos < arg_start || pos >= arg_end)
310 return 0;
311 if (count > arg_end - pos)
312 count = arg_end - pos;
313
314 page = (char *)__get_free_page(GFP_KERNEL);
315 if (!page)
316 return -ENOMEM;
317
318 len = 0;
319 while (count) {
320 int got;
321 size_t size = min_t(size_t, PAGE_SIZE, count);
322
323 got = access_remote_vm(mm, pos, page, size, FOLL_ANON);
324 if (got <= 0)
325 break;
326 got -= copy_to_user(buf, page, got);
327 if (unlikely(!got)) {
328 if (!len)
329 len = -EFAULT;
330 break;
331 }
332 pos += got;
333 buf += got;
334 len += got;
335 count -= got;
336 }
337
338 free_page((unsigned long)page);
339 return len;
340}
341
342static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
343 size_t count, loff_t *pos)
344{
345 struct mm_struct *mm;
346 ssize_t ret;
347
348 mm = get_task_mm(tsk);
349 if (!mm)
350 return 0;
351
352 ret = get_mm_cmdline(mm, buf, count, pos);
353 mmput(mm);
354 return ret;
355}
356
357static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
358 size_t count, loff_t *pos)
359{
360 struct task_struct *tsk;
361 ssize_t ret;
362
363 BUG_ON(*pos < 0);
364
365 tsk = get_proc_task(file_inode(file));
366 if (!tsk)
367 return -ESRCH;
368 ret = get_task_cmdline(tsk, buf, count, pos);
369 put_task_struct(tsk);
370 if (ret > 0)
371 *pos += ret;
372 return ret;
373}
374
375static const struct file_operations proc_pid_cmdline_ops = {
376 .read = proc_pid_cmdline_read,
377 .llseek = generic_file_llseek,
378};
379
380#ifdef CONFIG_KALLSYMS
381/*
382 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
383 * Returns the resolved symbol. If that fails, simply return the address.
384 */
385static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
386 struct pid *pid, struct task_struct *task)
387{
388 unsigned long wchan;
389 char symname[KSYM_NAME_LEN];
390
391 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
392 goto print0;
393
394 wchan = get_wchan(task);
395 if (wchan && !lookup_symbol_name(wchan, symname)) {
396 seq_puts(m, symname);
397 return 0;
398 }
399
400print0:
401 seq_putc(m, '0');
402 return 0;
403}
404#endif /* CONFIG_KALLSYMS */
405
406static int lock_trace(struct task_struct *task)
407{
408 int err = down_read_killable(&task->signal->exec_update_lock);
409 if (err)
410 return err;
411 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
412 up_read(&task->signal->exec_update_lock);
413 return -EPERM;
414 }
415 return 0;
416}
417
418static void unlock_trace(struct task_struct *task)
419{
420 up_read(&task->signal->exec_update_lock);
421}
422
423#ifdef CONFIG_STACKTRACE
424
425#define MAX_STACK_TRACE_DEPTH 64
426
427static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
428 struct pid *pid, struct task_struct *task)
429{
430 unsigned long *entries;
431 int err;
432
433 /*
434 * The ability to racily run the kernel stack unwinder on a running task
435 * and then observe the unwinder output is scary; while it is useful for
436 * debugging kernel issues, it can also allow an attacker to leak kernel
437 * stack contents.
438 * Doing this in a manner that is at least safe from races would require
439 * some work to ensure that the remote task can not be scheduled; and
440 * even then, this would still expose the unwinder as local attack
441 * surface.
442 * Therefore, this interface is restricted to root.
443 */
444 if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
445 return -EACCES;
446
447 entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
448 GFP_KERNEL);
449 if (!entries)
450 return -ENOMEM;
451
452 err = lock_trace(task);
453 if (!err) {
454 unsigned int i, nr_entries;
455
456 nr_entries = stack_trace_save_tsk(task, entries,
457 MAX_STACK_TRACE_DEPTH, 0);
458
459 for (i = 0; i < nr_entries; i++) {
460 seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
461 }
462
463 unlock_trace(task);
464 }
465 kfree(entries);
466
467 return err;
468}
469#endif
470
471#ifdef CONFIG_SCHED_INFO
472/*
473 * Provides /proc/PID/schedstat
474 */
475static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
476 struct pid *pid, struct task_struct *task)
477{
478 if (unlikely(!sched_info_on()))
479 seq_puts(m, "0 0 0\n");
480 else
481 seq_printf(m, "%llu %llu %lu\n",
482 (unsigned long long)task->se.sum_exec_runtime,
483 (unsigned long long)task->sched_info.run_delay,
484 task->sched_info.pcount);
485
486 return 0;
487}
488#endif
489
490#ifdef CONFIG_LATENCYTOP
491static int lstats_show_proc(struct seq_file *m, void *v)
492{
493 int i;
494 struct inode *inode = m->private;
495 struct task_struct *task = get_proc_task(inode);
496
497 if (!task)
498 return -ESRCH;
499 seq_puts(m, "Latency Top version : v0.1\n");
500 for (i = 0; i < LT_SAVECOUNT; i++) {
501 struct latency_record *lr = &task->latency_record[i];
502 if (lr->backtrace[0]) {
503 int q;
504 seq_printf(m, "%i %li %li",
505 lr->count, lr->time, lr->max);
506 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
507 unsigned long bt = lr->backtrace[q];
508
509 if (!bt)
510 break;
511 seq_printf(m, " %ps", (void *)bt);
512 }
513 seq_putc(m, '\n');
514 }
515
516 }
517 put_task_struct(task);
518 return 0;
519}
520
521static int lstats_open(struct inode *inode, struct file *file)
522{
523 return single_open(file, lstats_show_proc, inode);
524}
525
526static ssize_t lstats_write(struct file *file, const char __user *buf,
527 size_t count, loff_t *offs)
528{
529 struct task_struct *task = get_proc_task(file_inode(file));
530
531 if (!task)
532 return -ESRCH;
533 clear_tsk_latency_tracing(task);
534 put_task_struct(task);
535
536 return count;
537}
538
539static const struct file_operations proc_lstats_operations = {
540 .open = lstats_open,
541 .read = seq_read,
542 .write = lstats_write,
543 .llseek = seq_lseek,
544 .release = single_release,
545};
546
547#endif
548
549static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
550 struct pid *pid, struct task_struct *task)
551{
552 unsigned long totalpages = totalram_pages() + total_swap_pages;
553 unsigned long points = 0;
554 long badness;
555
556 badness = oom_badness(task, totalpages);
557 /*
558 * Special case OOM_SCORE_ADJ_MIN for all others scale the
559 * badness value into [0, 2000] range which we have been
560 * exporting for a long time so userspace might depend on it.
561 */
562 if (badness != LONG_MIN)
563 points = (1000 + badness * 1000 / (long)totalpages) * 2 / 3;
564
565 seq_printf(m, "%lu\n", points);
566
567 return 0;
568}
569
570struct limit_names {
571 const char *name;
572 const char *unit;
573};
574
575static const struct limit_names lnames[RLIM_NLIMITS] = {
576 [RLIMIT_CPU] = {"Max cpu time", "seconds"},
577 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
578 [RLIMIT_DATA] = {"Max data size", "bytes"},
579 [RLIMIT_STACK] = {"Max stack size", "bytes"},
580 [RLIMIT_CORE] = {"Max core file size", "bytes"},
581 [RLIMIT_RSS] = {"Max resident set", "bytes"},
582 [RLIMIT_NPROC] = {"Max processes", "processes"},
583 [RLIMIT_NOFILE] = {"Max open files", "files"},
584 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
585 [RLIMIT_AS] = {"Max address space", "bytes"},
586 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
587 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
588 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
589 [RLIMIT_NICE] = {"Max nice priority", NULL},
590 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
591 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
592};
593
594/* Display limits for a process */
595static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
596 struct pid *pid, struct task_struct *task)
597{
598 unsigned int i;
599 unsigned long flags;
600
601 struct rlimit rlim[RLIM_NLIMITS];
602
603 if (!lock_task_sighand(task, &flags))
604 return 0;
605 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
606 unlock_task_sighand(task, &flags);
607
608 /*
609 * print the file header
610 */
611 seq_puts(m, "Limit "
612 "Soft Limit "
613 "Hard Limit "
614 "Units \n");
615
616 for (i = 0; i < RLIM_NLIMITS; i++) {
617 if (rlim[i].rlim_cur == RLIM_INFINITY)
618 seq_printf(m, "%-25s %-20s ",
619 lnames[i].name, "unlimited");
620 else
621 seq_printf(m, "%-25s %-20lu ",
622 lnames[i].name, rlim[i].rlim_cur);
623
624 if (rlim[i].rlim_max == RLIM_INFINITY)
625 seq_printf(m, "%-20s ", "unlimited");
626 else
627 seq_printf(m, "%-20lu ", rlim[i].rlim_max);
628
629 if (lnames[i].unit)
630 seq_printf(m, "%-10s\n", lnames[i].unit);
631 else
632 seq_putc(m, '\n');
633 }
634
635 return 0;
636}
637
638#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
639static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
640 struct pid *pid, struct task_struct *task)
641{
642 struct syscall_info info;
643 u64 *args = &info.data.args[0];
644 int res;
645
646 res = lock_trace(task);
647 if (res)
648 return res;
649
650 if (task_current_syscall(task, &info))
651 seq_puts(m, "running\n");
652 else if (info.data.nr < 0)
653 seq_printf(m, "%d 0x%llx 0x%llx\n",
654 info.data.nr, info.sp, info.data.instruction_pointer);
655 else
656 seq_printf(m,
657 "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n",
658 info.data.nr,
659 args[0], args[1], args[2], args[3], args[4], args[5],
660 info.sp, info.data.instruction_pointer);
661 unlock_trace(task);
662
663 return 0;
664}
665#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
666
667/************************************************************************/
668/* Here the fs part begins */
669/************************************************************************/
670
671/* permission checks */
672static bool proc_fd_access_allowed(struct inode *inode)
673{
674 struct task_struct *task;
675 bool allowed = false;
676 /* Allow access to a task's file descriptors if it is us or we
677 * may use ptrace attach to the process and find out that
678 * information.
679 */
680 task = get_proc_task(inode);
681 if (task) {
682 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
683 put_task_struct(task);
684 }
685 return allowed;
686}
687
688int proc_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
689 struct iattr *attr)
690{
691 int error;
692 struct inode *inode = d_inode(dentry);
693
694 if (attr->ia_valid & ATTR_MODE)
695 return -EPERM;
696
697 error = setattr_prepare(&init_user_ns, dentry, attr);
698 if (error)
699 return error;
700
701 setattr_copy(&init_user_ns, inode, attr);
702 mark_inode_dirty(inode);
703 return 0;
704}
705
706/*
707 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
708 * or euid/egid (for hide_pid_min=2)?
709 */
710static bool has_pid_permissions(struct proc_fs_info *fs_info,
711 struct task_struct *task,
712 enum proc_hidepid hide_pid_min)
713{
714 /*
715 * If 'hidpid' mount option is set force a ptrace check,
716 * we indicate that we are using a filesystem syscall
717 * by passing PTRACE_MODE_READ_FSCREDS
718 */
719 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE)
720 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
721
722 if (fs_info->hide_pid < hide_pid_min)
723 return true;
724 if (in_group_p(fs_info->pid_gid))
725 return true;
726 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
727}
728
729
730static int proc_pid_permission(struct user_namespace *mnt_userns,
731 struct inode *inode, int mask)
732{
733 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
734 struct task_struct *task;
735 bool has_perms;
736
737 task = get_proc_task(inode);
738 if (!task)
739 return -ESRCH;
740 has_perms = has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS);
741 put_task_struct(task);
742
743 if (!has_perms) {
744 if (fs_info->hide_pid == HIDEPID_INVISIBLE) {
745 /*
746 * Let's make getdents(), stat(), and open()
747 * consistent with each other. If a process
748 * may not stat() a file, it shouldn't be seen
749 * in procfs at all.
750 */
751 return -ENOENT;
752 }
753
754 return -EPERM;
755 }
756 return generic_permission(&init_user_ns, inode, mask);
757}
758
759
760
761static const struct inode_operations proc_def_inode_operations = {
762 .setattr = proc_setattr,
763};
764
765static int proc_single_show(struct seq_file *m, void *v)
766{
767 struct inode *inode = m->private;
768 struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
769 struct pid *pid = proc_pid(inode);
770 struct task_struct *task;
771 int ret;
772
773 task = get_pid_task(pid, PIDTYPE_PID);
774 if (!task)
775 return -ESRCH;
776
777 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
778
779 put_task_struct(task);
780 return ret;
781}
782
783static int proc_single_open(struct inode *inode, struct file *filp)
784{
785 return single_open(filp, proc_single_show, inode);
786}
787
788static const struct file_operations proc_single_file_operations = {
789 .open = proc_single_open,
790 .read = seq_read,
791 .llseek = seq_lseek,
792 .release = single_release,
793};
794
795
796struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
797{
798 struct task_struct *task = get_proc_task(inode);
799 struct mm_struct *mm = ERR_PTR(-ESRCH);
800
801 if (task) {
802 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
803 put_task_struct(task);
804
805 if (!IS_ERR_OR_NULL(mm)) {
806 /* ensure this mm_struct can't be freed */
807 mmgrab(mm);
808 /* but do not pin its memory */
809 mmput(mm);
810 }
811 }
812
813 return mm;
814}
815
816static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
817{
818 struct mm_struct *mm = proc_mem_open(inode, mode);
819
820 if (IS_ERR(mm))
821 return PTR_ERR(mm);
822
823 file->private_data = mm;
824 return 0;
825}
826
827static int mem_open(struct inode *inode, struct file *file)
828{
829 int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
830
831 /* OK to pass negative loff_t, we can catch out-of-range */
832 file->f_mode |= FMODE_UNSIGNED_OFFSET;
833
834 return ret;
835}
836
837static ssize_t mem_rw(struct file *file, char __user *buf,
838 size_t count, loff_t *ppos, int write)
839{
840 struct mm_struct *mm = file->private_data;
841 unsigned long addr = *ppos;
842 ssize_t copied;
843 char *page;
844 unsigned int flags;
845
846 if (!mm)
847 return 0;
848
849 page = (char *)__get_free_page(GFP_KERNEL);
850 if (!page)
851 return -ENOMEM;
852
853 copied = 0;
854 if (!mmget_not_zero(mm))
855 goto free;
856
857 flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
858
859 while (count > 0) {
860 size_t this_len = min_t(size_t, count, PAGE_SIZE);
861
862 if (write && copy_from_user(page, buf, this_len)) {
863 copied = -EFAULT;
864 break;
865 }
866
867 this_len = access_remote_vm(mm, addr, page, this_len, flags);
868 if (!this_len) {
869 if (!copied)
870 copied = -EIO;
871 break;
872 }
873
874 if (!write && copy_to_user(buf, page, this_len)) {
875 copied = -EFAULT;
876 break;
877 }
878
879 buf += this_len;
880 addr += this_len;
881 copied += this_len;
882 count -= this_len;
883 }
884 *ppos = addr;
885
886 mmput(mm);
887free:
888 free_page((unsigned long) page);
889 return copied;
890}
891
892static ssize_t mem_read(struct file *file, char __user *buf,
893 size_t count, loff_t *ppos)
894{
895 return mem_rw(file, buf, count, ppos, 0);
896}
897
898static ssize_t mem_write(struct file *file, const char __user *buf,
899 size_t count, loff_t *ppos)
900{
901 return mem_rw(file, (char __user*)buf, count, ppos, 1);
902}
903
904loff_t mem_lseek(struct file *file, loff_t offset, int orig)
905{
906 switch (orig) {
907 case 0:
908 file->f_pos = offset;
909 break;
910 case 1:
911 file->f_pos += offset;
912 break;
913 default:
914 return -EINVAL;
915 }
916 force_successful_syscall_return();
917 return file->f_pos;
918}
919
920static int mem_release(struct inode *inode, struct file *file)
921{
922 struct mm_struct *mm = file->private_data;
923 if (mm)
924 mmdrop(mm);
925 return 0;
926}
927
928static const struct file_operations proc_mem_operations = {
929 .llseek = mem_lseek,
930 .read = mem_read,
931 .write = mem_write,
932 .open = mem_open,
933 .release = mem_release,
934};
935
936static int environ_open(struct inode *inode, struct file *file)
937{
938 return __mem_open(inode, file, PTRACE_MODE_READ);
939}
940
941static ssize_t environ_read(struct file *file, char __user *buf,
942 size_t count, loff_t *ppos)
943{
944 char *page;
945 unsigned long src = *ppos;
946 int ret = 0;
947 struct mm_struct *mm = file->private_data;
948 unsigned long env_start, env_end;
949
950 /* Ensure the process spawned far enough to have an environment. */
951 if (!mm || !mm->env_end)
952 return 0;
953
954 page = (char *)__get_free_page(GFP_KERNEL);
955 if (!page)
956 return -ENOMEM;
957
958 ret = 0;
959 if (!mmget_not_zero(mm))
960 goto free;
961
962 spin_lock(&mm->arg_lock);
963 env_start = mm->env_start;
964 env_end = mm->env_end;
965 spin_unlock(&mm->arg_lock);
966
967 while (count > 0) {
968 size_t this_len, max_len;
969 int retval;
970
971 if (src >= (env_end - env_start))
972 break;
973
974 this_len = env_end - (env_start + src);
975
976 max_len = min_t(size_t, PAGE_SIZE, count);
977 this_len = min(max_len, this_len);
978
979 retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
980
981 if (retval <= 0) {
982 ret = retval;
983 break;
984 }
985
986 if (copy_to_user(buf, page, retval)) {
987 ret = -EFAULT;
988 break;
989 }
990
991 ret += retval;
992 src += retval;
993 buf += retval;
994 count -= retval;
995 }
996 *ppos = src;
997 mmput(mm);
998
999free:
1000 free_page((unsigned long) page);
1001 return ret;
1002}
1003
1004static const struct file_operations proc_environ_operations = {
1005 .open = environ_open,
1006 .read = environ_read,
1007 .llseek = generic_file_llseek,
1008 .release = mem_release,
1009};
1010
1011static int auxv_open(struct inode *inode, struct file *file)
1012{
1013 return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
1014}
1015
1016static ssize_t auxv_read(struct file *file, char __user *buf,
1017 size_t count, loff_t *ppos)
1018{
1019 struct mm_struct *mm = file->private_data;
1020 unsigned int nwords = 0;
1021
1022 if (!mm)
1023 return 0;
1024 do {
1025 nwords += 2;
1026 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1027 return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1028 nwords * sizeof(mm->saved_auxv[0]));
1029}
1030
1031static const struct file_operations proc_auxv_operations = {
1032 .open = auxv_open,
1033 .read = auxv_read,
1034 .llseek = generic_file_llseek,
1035 .release = mem_release,
1036};
1037
1038static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1039 loff_t *ppos)
1040{
1041 struct task_struct *task = get_proc_task(file_inode(file));
1042 char buffer[PROC_NUMBUF];
1043 int oom_adj = OOM_ADJUST_MIN;
1044 size_t len;
1045
1046 if (!task)
1047 return -ESRCH;
1048 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1049 oom_adj = OOM_ADJUST_MAX;
1050 else
1051 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1052 OOM_SCORE_ADJ_MAX;
1053 put_task_struct(task);
1054 if (oom_adj > OOM_ADJUST_MAX)
1055 oom_adj = OOM_ADJUST_MAX;
1056 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1057 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1058}
1059
1060static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1061{
1062 struct mm_struct *mm = NULL;
1063 struct task_struct *task;
1064 int err = 0;
1065
1066 task = get_proc_task(file_inode(file));
1067 if (!task)
1068 return -ESRCH;
1069
1070 mutex_lock(&oom_adj_mutex);
1071 if (legacy) {
1072 if (oom_adj < task->signal->oom_score_adj &&
1073 !capable(CAP_SYS_RESOURCE)) {
1074 err = -EACCES;
1075 goto err_unlock;
1076 }
1077 /*
1078 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1079 * /proc/pid/oom_score_adj instead.
1080 */
1081 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1082 current->comm, task_pid_nr(current), task_pid_nr(task),
1083 task_pid_nr(task));
1084 } else {
1085 if ((short)oom_adj < task->signal->oom_score_adj_min &&
1086 !capable(CAP_SYS_RESOURCE)) {
1087 err = -EACCES;
1088 goto err_unlock;
1089 }
1090 }
1091
1092 /*
1093 * Make sure we will check other processes sharing the mm if this is
1094 * not vfrok which wants its own oom_score_adj.
1095 * pin the mm so it doesn't go away and get reused after task_unlock
1096 */
1097 if (!task->vfork_done) {
1098 struct task_struct *p = find_lock_task_mm(task);
1099
1100 if (p) {
1101 if (test_bit(MMF_MULTIPROCESS, &p->mm->flags)) {
1102 mm = p->mm;
1103 mmgrab(mm);
1104 }
1105 task_unlock(p);
1106 }
1107 }
1108
1109 task->signal->oom_score_adj = oom_adj;
1110 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1111 task->signal->oom_score_adj_min = (short)oom_adj;
1112 trace_oom_score_adj_update(task);
1113
1114 if (mm) {
1115 struct task_struct *p;
1116
1117 rcu_read_lock();
1118 for_each_process(p) {
1119 if (same_thread_group(task, p))
1120 continue;
1121
1122 /* do not touch kernel threads or the global init */
1123 if (p->flags & PF_KTHREAD || is_global_init(p))
1124 continue;
1125
1126 task_lock(p);
1127 if (!p->vfork_done && process_shares_mm(p, mm)) {
1128 p->signal->oom_score_adj = oom_adj;
1129 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1130 p->signal->oom_score_adj_min = (short)oom_adj;
1131 }
1132 task_unlock(p);
1133 }
1134 rcu_read_unlock();
1135 mmdrop(mm);
1136 }
1137err_unlock:
1138 mutex_unlock(&oom_adj_mutex);
1139 put_task_struct(task);
1140 return err;
1141}
1142
1143/*
1144 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1145 * kernels. The effective policy is defined by oom_score_adj, which has a
1146 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1147 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1148 * Processes that become oom disabled via oom_adj will still be oom disabled
1149 * with this implementation.
1150 *
1151 * oom_adj cannot be removed since existing userspace binaries use it.
1152 */
1153static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1154 size_t count, loff_t *ppos)
1155{
1156 char buffer[PROC_NUMBUF];
1157 int oom_adj;
1158 int err;
1159
1160 memset(buffer, 0, sizeof(buffer));
1161 if (count > sizeof(buffer) - 1)
1162 count = sizeof(buffer) - 1;
1163 if (copy_from_user(buffer, buf, count)) {
1164 err = -EFAULT;
1165 goto out;
1166 }
1167
1168 err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1169 if (err)
1170 goto out;
1171 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1172 oom_adj != OOM_DISABLE) {
1173 err = -EINVAL;
1174 goto out;
1175 }
1176
1177 /*
1178 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1179 * value is always attainable.
1180 */
1181 if (oom_adj == OOM_ADJUST_MAX)
1182 oom_adj = OOM_SCORE_ADJ_MAX;
1183 else
1184 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1185
1186 err = __set_oom_adj(file, oom_adj, true);
1187out:
1188 return err < 0 ? err : count;
1189}
1190
1191static const struct file_operations proc_oom_adj_operations = {
1192 .read = oom_adj_read,
1193 .write = oom_adj_write,
1194 .llseek = generic_file_llseek,
1195};
1196
1197static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1198 size_t count, loff_t *ppos)
1199{
1200 struct task_struct *task = get_proc_task(file_inode(file));
1201 char buffer[PROC_NUMBUF];
1202 short oom_score_adj = OOM_SCORE_ADJ_MIN;
1203 size_t len;
1204
1205 if (!task)
1206 return -ESRCH;
1207 oom_score_adj = task->signal->oom_score_adj;
1208 put_task_struct(task);
1209 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1210 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1211}
1212
1213static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1214 size_t count, loff_t *ppos)
1215{
1216 char buffer[PROC_NUMBUF];
1217 int oom_score_adj;
1218 int err;
1219
1220 memset(buffer, 0, sizeof(buffer));
1221 if (count > sizeof(buffer) - 1)
1222 count = sizeof(buffer) - 1;
1223 if (copy_from_user(buffer, buf, count)) {
1224 err = -EFAULT;
1225 goto out;
1226 }
1227
1228 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1229 if (err)
1230 goto out;
1231 if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1232 oom_score_adj > OOM_SCORE_ADJ_MAX) {
1233 err = -EINVAL;
1234 goto out;
1235 }
1236
1237 err = __set_oom_adj(file, oom_score_adj, false);
1238out:
1239 return err < 0 ? err : count;
1240}
1241
1242static const struct file_operations proc_oom_score_adj_operations = {
1243 .read = oom_score_adj_read,
1244 .write = oom_score_adj_write,
1245 .llseek = default_llseek,
1246};
1247
1248#ifdef CONFIG_AUDIT
1249#define TMPBUFLEN 11
1250static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1251 size_t count, loff_t *ppos)
1252{
1253 struct inode * inode = file_inode(file);
1254 struct task_struct *task = get_proc_task(inode);
1255 ssize_t length;
1256 char tmpbuf[TMPBUFLEN];
1257
1258 if (!task)
1259 return -ESRCH;
1260 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1261 from_kuid(file->f_cred->user_ns,
1262 audit_get_loginuid(task)));
1263 put_task_struct(task);
1264 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1265}
1266
1267static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1268 size_t count, loff_t *ppos)
1269{
1270 struct inode * inode = file_inode(file);
1271 uid_t loginuid;
1272 kuid_t kloginuid;
1273 int rv;
1274
1275 /* Don't let kthreads write their own loginuid */
1276 if (current->flags & PF_KTHREAD)
1277 return -EPERM;
1278
1279 rcu_read_lock();
1280 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1281 rcu_read_unlock();
1282 return -EPERM;
1283 }
1284 rcu_read_unlock();
1285
1286 if (*ppos != 0) {
1287 /* No partial writes. */
1288 return -EINVAL;
1289 }
1290
1291 rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1292 if (rv < 0)
1293 return rv;
1294
1295 /* is userspace tring to explicitly UNSET the loginuid? */
1296 if (loginuid == AUDIT_UID_UNSET) {
1297 kloginuid = INVALID_UID;
1298 } else {
1299 kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1300 if (!uid_valid(kloginuid))
1301 return -EINVAL;
1302 }
1303
1304 rv = audit_set_loginuid(kloginuid);
1305 if (rv < 0)
1306 return rv;
1307 return count;
1308}
1309
1310static const struct file_operations proc_loginuid_operations = {
1311 .read = proc_loginuid_read,
1312 .write = proc_loginuid_write,
1313 .llseek = generic_file_llseek,
1314};
1315
1316static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1317 size_t count, loff_t *ppos)
1318{
1319 struct inode * inode = file_inode(file);
1320 struct task_struct *task = get_proc_task(inode);
1321 ssize_t length;
1322 char tmpbuf[TMPBUFLEN];
1323
1324 if (!task)
1325 return -ESRCH;
1326 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1327 audit_get_sessionid(task));
1328 put_task_struct(task);
1329 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1330}
1331
1332static const struct file_operations proc_sessionid_operations = {
1333 .read = proc_sessionid_read,
1334 .llseek = generic_file_llseek,
1335};
1336#endif
1337
1338#ifdef CONFIG_FAULT_INJECTION
1339static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1340 size_t count, loff_t *ppos)
1341{
1342 struct task_struct *task = get_proc_task(file_inode(file));
1343 char buffer[PROC_NUMBUF];
1344 size_t len;
1345 int make_it_fail;
1346
1347 if (!task)
1348 return -ESRCH;
1349 make_it_fail = task->make_it_fail;
1350 put_task_struct(task);
1351
1352 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1353
1354 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1355}
1356
1357static ssize_t proc_fault_inject_write(struct file * file,
1358 const char __user * buf, size_t count, loff_t *ppos)
1359{
1360 struct task_struct *task;
1361 char buffer[PROC_NUMBUF];
1362 int make_it_fail;
1363 int rv;
1364
1365 if (!capable(CAP_SYS_RESOURCE))
1366 return -EPERM;
1367 memset(buffer, 0, sizeof(buffer));
1368 if (count > sizeof(buffer) - 1)
1369 count = sizeof(buffer) - 1;
1370 if (copy_from_user(buffer, buf, count))
1371 return -EFAULT;
1372 rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1373 if (rv < 0)
1374 return rv;
1375 if (make_it_fail < 0 || make_it_fail > 1)
1376 return -EINVAL;
1377
1378 task = get_proc_task(file_inode(file));
1379 if (!task)
1380 return -ESRCH;
1381 task->make_it_fail = make_it_fail;
1382 put_task_struct(task);
1383
1384 return count;
1385}
1386
1387static const struct file_operations proc_fault_inject_operations = {
1388 .read = proc_fault_inject_read,
1389 .write = proc_fault_inject_write,
1390 .llseek = generic_file_llseek,
1391};
1392
1393static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1394 size_t count, loff_t *ppos)
1395{
1396 struct task_struct *task;
1397 int err;
1398 unsigned int n;
1399
1400 err = kstrtouint_from_user(buf, count, 0, &n);
1401 if (err)
1402 return err;
1403
1404 task = get_proc_task(file_inode(file));
1405 if (!task)
1406 return -ESRCH;
1407 task->fail_nth = n;
1408 put_task_struct(task);
1409
1410 return count;
1411}
1412
1413static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1414 size_t count, loff_t *ppos)
1415{
1416 struct task_struct *task;
1417 char numbuf[PROC_NUMBUF];
1418 ssize_t len;
1419
1420 task = get_proc_task(file_inode(file));
1421 if (!task)
1422 return -ESRCH;
1423 len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1424 put_task_struct(task);
1425 return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1426}
1427
1428static const struct file_operations proc_fail_nth_operations = {
1429 .read = proc_fail_nth_read,
1430 .write = proc_fail_nth_write,
1431};
1432#endif
1433
1434
1435#ifdef CONFIG_SCHED_DEBUG
1436/*
1437 * Print out various scheduling related per-task fields:
1438 */
1439static int sched_show(struct seq_file *m, void *v)
1440{
1441 struct inode *inode = m->private;
1442 struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
1443 struct task_struct *p;
1444
1445 p = get_proc_task(inode);
1446 if (!p)
1447 return -ESRCH;
1448 proc_sched_show_task(p, ns, m);
1449
1450 put_task_struct(p);
1451
1452 return 0;
1453}
1454
1455static ssize_t
1456sched_write(struct file *file, const char __user *buf,
1457 size_t count, loff_t *offset)
1458{
1459 struct inode *inode = file_inode(file);
1460 struct task_struct *p;
1461
1462 p = get_proc_task(inode);
1463 if (!p)
1464 return -ESRCH;
1465 proc_sched_set_task(p);
1466
1467 put_task_struct(p);
1468
1469 return count;
1470}
1471
1472static int sched_open(struct inode *inode, struct file *filp)
1473{
1474 return single_open(filp, sched_show, inode);
1475}
1476
1477static const struct file_operations proc_pid_sched_operations = {
1478 .open = sched_open,
1479 .read = seq_read,
1480 .write = sched_write,
1481 .llseek = seq_lseek,
1482 .release = single_release,
1483};
1484
1485#endif
1486
1487#ifdef CONFIG_SCHED_AUTOGROUP
1488/*
1489 * Print out autogroup related information:
1490 */
1491static int sched_autogroup_show(struct seq_file *m, void *v)
1492{
1493 struct inode *inode = m->private;
1494 struct task_struct *p;
1495
1496 p = get_proc_task(inode);
1497 if (!p)
1498 return -ESRCH;
1499 proc_sched_autogroup_show_task(p, m);
1500
1501 put_task_struct(p);
1502
1503 return 0;
1504}
1505
1506static ssize_t
1507sched_autogroup_write(struct file *file, const char __user *buf,
1508 size_t count, loff_t *offset)
1509{
1510 struct inode *inode = file_inode(file);
1511 struct task_struct *p;
1512 char buffer[PROC_NUMBUF];
1513 int nice;
1514 int err;
1515
1516 memset(buffer, 0, sizeof(buffer));
1517 if (count > sizeof(buffer) - 1)
1518 count = sizeof(buffer) - 1;
1519 if (copy_from_user(buffer, buf, count))
1520 return -EFAULT;
1521
1522 err = kstrtoint(strstrip(buffer), 0, &nice);
1523 if (err < 0)
1524 return err;
1525
1526 p = get_proc_task(inode);
1527 if (!p)
1528 return -ESRCH;
1529
1530 err = proc_sched_autogroup_set_nice(p, nice);
1531 if (err)
1532 count = err;
1533
1534 put_task_struct(p);
1535
1536 return count;
1537}
1538
1539static int sched_autogroup_open(struct inode *inode, struct file *filp)
1540{
1541 int ret;
1542
1543 ret = single_open(filp, sched_autogroup_show, NULL);
1544 if (!ret) {
1545 struct seq_file *m = filp->private_data;
1546
1547 m->private = inode;
1548 }
1549 return ret;
1550}
1551
1552static const struct file_operations proc_pid_sched_autogroup_operations = {
1553 .open = sched_autogroup_open,
1554 .read = seq_read,
1555 .write = sched_autogroup_write,
1556 .llseek = seq_lseek,
1557 .release = single_release,
1558};
1559
1560#endif /* CONFIG_SCHED_AUTOGROUP */
1561
1562#ifdef CONFIG_TIME_NS
1563static int timens_offsets_show(struct seq_file *m, void *v)
1564{
1565 struct task_struct *p;
1566
1567 p = get_proc_task(file_inode(m->file));
1568 if (!p)
1569 return -ESRCH;
1570 proc_timens_show_offsets(p, m);
1571
1572 put_task_struct(p);
1573
1574 return 0;
1575}
1576
1577static ssize_t timens_offsets_write(struct file *file, const char __user *buf,
1578 size_t count, loff_t *ppos)
1579{
1580 struct inode *inode = file_inode(file);
1581 struct proc_timens_offset offsets[2];
1582 char *kbuf = NULL, *pos, *next_line;
1583 struct task_struct *p;
1584 int ret, noffsets;
1585
1586 /* Only allow < page size writes at the beginning of the file */
1587 if ((*ppos != 0) || (count >= PAGE_SIZE))
1588 return -EINVAL;
1589
1590 /* Slurp in the user data */
1591 kbuf = memdup_user_nul(buf, count);
1592 if (IS_ERR(kbuf))
1593 return PTR_ERR(kbuf);
1594
1595 /* Parse the user data */
1596 ret = -EINVAL;
1597 noffsets = 0;
1598 for (pos = kbuf; pos; pos = next_line) {
1599 struct proc_timens_offset *off = &offsets[noffsets];
1600 char clock[10];
1601 int err;
1602
1603 /* Find the end of line and ensure we don't look past it */
1604 next_line = strchr(pos, '\n');
1605 if (next_line) {
1606 *next_line = '\0';
1607 next_line++;
1608 if (*next_line == '\0')
1609 next_line = NULL;
1610 }
1611
1612 err = sscanf(pos, "%9s %lld %lu", clock,
1613 &off->val.tv_sec, &off->val.tv_nsec);
1614 if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC)
1615 goto out;
1616
1617 clock[sizeof(clock) - 1] = 0;
1618 if (strcmp(clock, "monotonic") == 0 ||
1619 strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0)
1620 off->clockid = CLOCK_MONOTONIC;
1621 else if (strcmp(clock, "boottime") == 0 ||
1622 strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0)
1623 off->clockid = CLOCK_BOOTTIME;
1624 else
1625 goto out;
1626
1627 noffsets++;
1628 if (noffsets == ARRAY_SIZE(offsets)) {
1629 if (next_line)
1630 count = next_line - kbuf;
1631 break;
1632 }
1633 }
1634
1635 ret = -ESRCH;
1636 p = get_proc_task(inode);
1637 if (!p)
1638 goto out;
1639 ret = proc_timens_set_offset(file, p, offsets, noffsets);
1640 put_task_struct(p);
1641 if (ret)
1642 goto out;
1643
1644 ret = count;
1645out:
1646 kfree(kbuf);
1647 return ret;
1648}
1649
1650static int timens_offsets_open(struct inode *inode, struct file *filp)
1651{
1652 return single_open(filp, timens_offsets_show, inode);
1653}
1654
1655static const struct file_operations proc_timens_offsets_operations = {
1656 .open = timens_offsets_open,
1657 .read = seq_read,
1658 .write = timens_offsets_write,
1659 .llseek = seq_lseek,
1660 .release = single_release,
1661};
1662#endif /* CONFIG_TIME_NS */
1663
1664static ssize_t comm_write(struct file *file, const char __user *buf,
1665 size_t count, loff_t *offset)
1666{
1667 struct inode *inode = file_inode(file);
1668 struct task_struct *p;
1669 char buffer[TASK_COMM_LEN];
1670 const size_t maxlen = sizeof(buffer) - 1;
1671
1672 memset(buffer, 0, sizeof(buffer));
1673 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1674 return -EFAULT;
1675
1676 p = get_proc_task(inode);
1677 if (!p)
1678 return -ESRCH;
1679
1680 if (same_thread_group(current, p)) {
1681 set_task_comm(p, buffer);
1682 proc_comm_connector(p);
1683 }
1684 else
1685 count = -EINVAL;
1686
1687 put_task_struct(p);
1688
1689 return count;
1690}
1691
1692static int comm_show(struct seq_file *m, void *v)
1693{
1694 struct inode *inode = m->private;
1695 struct task_struct *p;
1696
1697 p = get_proc_task(inode);
1698 if (!p)
1699 return -ESRCH;
1700
1701 proc_task_name(m, p, false);
1702 seq_putc(m, '\n');
1703
1704 put_task_struct(p);
1705
1706 return 0;
1707}
1708
1709static int comm_open(struct inode *inode, struct file *filp)
1710{
1711 return single_open(filp, comm_show, inode);
1712}
1713
1714static const struct file_operations proc_pid_set_comm_operations = {
1715 .open = comm_open,
1716 .read = seq_read,
1717 .write = comm_write,
1718 .llseek = seq_lseek,
1719 .release = single_release,
1720};
1721
1722static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1723{
1724 struct task_struct *task;
1725 struct file *exe_file;
1726
1727 task = get_proc_task(d_inode(dentry));
1728 if (!task)
1729 return -ENOENT;
1730 exe_file = get_task_exe_file(task);
1731 put_task_struct(task);
1732 if (exe_file) {
1733 *exe_path = exe_file->f_path;
1734 path_get(&exe_file->f_path);
1735 fput(exe_file);
1736 return 0;
1737 } else
1738 return -ENOENT;
1739}
1740
1741static const char *proc_pid_get_link(struct dentry *dentry,
1742 struct inode *inode,
1743 struct delayed_call *done)
1744{
1745 struct path path;
1746 int error = -EACCES;
1747
1748 if (!dentry)
1749 return ERR_PTR(-ECHILD);
1750
1751 /* Are we allowed to snoop on the tasks file descriptors? */
1752 if (!proc_fd_access_allowed(inode))
1753 goto out;
1754
1755 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1756 if (error)
1757 goto out;
1758
1759 error = nd_jump_link(&path);
1760out:
1761 return ERR_PTR(error);
1762}
1763
1764static int do_proc_readlink(const struct path *path, char __user *buffer, int buflen)
1765{
1766 char *tmp = kmalloc(PATH_MAX, GFP_KERNEL);
1767 char *pathname;
1768 int len;
1769
1770 if (!tmp)
1771 return -ENOMEM;
1772
1773 pathname = d_path(path, tmp, PATH_MAX);
1774 len = PTR_ERR(pathname);
1775 if (IS_ERR(pathname))
1776 goto out;
1777 len = tmp + PATH_MAX - 1 - pathname;
1778
1779 if (len > buflen)
1780 len = buflen;
1781 if (copy_to_user(buffer, pathname, len))
1782 len = -EFAULT;
1783 out:
1784 kfree(tmp);
1785 return len;
1786}
1787
1788static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1789{
1790 int error = -EACCES;
1791 struct inode *inode = d_inode(dentry);
1792 struct path path;
1793
1794 /* Are we allowed to snoop on the tasks file descriptors? */
1795 if (!proc_fd_access_allowed(inode))
1796 goto out;
1797
1798 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1799 if (error)
1800 goto out;
1801
1802 error = do_proc_readlink(&path, buffer, buflen);
1803 path_put(&path);
1804out:
1805 return error;
1806}
1807
1808const struct inode_operations proc_pid_link_inode_operations = {
1809 .readlink = proc_pid_readlink,
1810 .get_link = proc_pid_get_link,
1811 .setattr = proc_setattr,
1812};
1813
1814
1815/* building an inode */
1816
1817void task_dump_owner(struct task_struct *task, umode_t mode,
1818 kuid_t *ruid, kgid_t *rgid)
1819{
1820 /* Depending on the state of dumpable compute who should own a
1821 * proc file for a task.
1822 */
1823 const struct cred *cred;
1824 kuid_t uid;
1825 kgid_t gid;
1826
1827 if (unlikely(task->flags & PF_KTHREAD)) {
1828 *ruid = GLOBAL_ROOT_UID;
1829 *rgid = GLOBAL_ROOT_GID;
1830 return;
1831 }
1832
1833 /* Default to the tasks effective ownership */
1834 rcu_read_lock();
1835 cred = __task_cred(task);
1836 uid = cred->euid;
1837 gid = cred->egid;
1838 rcu_read_unlock();
1839
1840 /*
1841 * Before the /proc/pid/status file was created the only way to read
1842 * the effective uid of a /process was to stat /proc/pid. Reading
1843 * /proc/pid/status is slow enough that procps and other packages
1844 * kept stating /proc/pid. To keep the rules in /proc simple I have
1845 * made this apply to all per process world readable and executable
1846 * directories.
1847 */
1848 if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1849 struct mm_struct *mm;
1850 task_lock(task);
1851 mm = task->mm;
1852 /* Make non-dumpable tasks owned by some root */
1853 if (mm) {
1854 if (get_dumpable(mm) != SUID_DUMP_USER) {
1855 struct user_namespace *user_ns = mm->user_ns;
1856
1857 uid = make_kuid(user_ns, 0);
1858 if (!uid_valid(uid))
1859 uid = GLOBAL_ROOT_UID;
1860
1861 gid = make_kgid(user_ns, 0);
1862 if (!gid_valid(gid))
1863 gid = GLOBAL_ROOT_GID;
1864 }
1865 } else {
1866 uid = GLOBAL_ROOT_UID;
1867 gid = GLOBAL_ROOT_GID;
1868 }
1869 task_unlock(task);
1870 }
1871 *ruid = uid;
1872 *rgid = gid;
1873}
1874
1875void proc_pid_evict_inode(struct proc_inode *ei)
1876{
1877 struct pid *pid = ei->pid;
1878
1879 if (S_ISDIR(ei->vfs_inode.i_mode)) {
1880 spin_lock(&pid->lock);
1881 hlist_del_init_rcu(&ei->sibling_inodes);
1882 spin_unlock(&pid->lock);
1883 }
1884
1885 put_pid(pid);
1886}
1887
1888struct inode *proc_pid_make_inode(struct super_block *sb,
1889 struct task_struct *task, umode_t mode)
1890{
1891 struct inode * inode;
1892 struct proc_inode *ei;
1893 struct pid *pid;
1894
1895 /* We need a new inode */
1896
1897 inode = new_inode(sb);
1898 if (!inode)
1899 goto out;
1900
1901 /* Common stuff */
1902 ei = PROC_I(inode);
1903 inode->i_mode = mode;
1904 inode->i_ino = get_next_ino();
1905 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1906 inode->i_op = &proc_def_inode_operations;
1907
1908 /*
1909 * grab the reference to task.
1910 */
1911 pid = get_task_pid(task, PIDTYPE_PID);
1912 if (!pid)
1913 goto out_unlock;
1914
1915 /* Let the pid remember us for quick removal */
1916 ei->pid = pid;
1917
1918 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1919 security_task_to_inode(task, inode);
1920
1921out:
1922 return inode;
1923
1924out_unlock:
1925 iput(inode);
1926 return NULL;
1927}
1928
1929/*
1930 * Generating an inode and adding it into @pid->inodes, so that task will
1931 * invalidate inode's dentry before being released.
1932 *
1933 * This helper is used for creating dir-type entries under '/proc' and
1934 * '/proc/<tgid>/task'. Other entries(eg. fd, stat) under '/proc/<tgid>'
1935 * can be released by invalidating '/proc/<tgid>' dentry.
1936 * In theory, dentries under '/proc/<tgid>/task' can also be released by
1937 * invalidating '/proc/<tgid>' dentry, we reserve it to handle single
1938 * thread exiting situation: Any one of threads should invalidate its
1939 * '/proc/<tgid>/task/<pid>' dentry before released.
1940 */
1941static struct inode *proc_pid_make_base_inode(struct super_block *sb,
1942 struct task_struct *task, umode_t mode)
1943{
1944 struct inode *inode;
1945 struct proc_inode *ei;
1946 struct pid *pid;
1947
1948 inode = proc_pid_make_inode(sb, task, mode);
1949 if (!inode)
1950 return NULL;
1951
1952 /* Let proc_flush_pid find this directory inode */
1953 ei = PROC_I(inode);
1954 pid = ei->pid;
1955 spin_lock(&pid->lock);
1956 hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes);
1957 spin_unlock(&pid->lock);
1958
1959 return inode;
1960}
1961
1962int pid_getattr(struct user_namespace *mnt_userns, const struct path *path,
1963 struct kstat *stat, u32 request_mask, unsigned int query_flags)
1964{
1965 struct inode *inode = d_inode(path->dentry);
1966 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
1967 struct task_struct *task;
1968
1969 generic_fillattr(&init_user_ns, inode, stat);
1970
1971 stat->uid = GLOBAL_ROOT_UID;
1972 stat->gid = GLOBAL_ROOT_GID;
1973 rcu_read_lock();
1974 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1975 if (task) {
1976 if (!has_pid_permissions(fs_info, task, HIDEPID_INVISIBLE)) {
1977 rcu_read_unlock();
1978 /*
1979 * This doesn't prevent learning whether PID exists,
1980 * it only makes getattr() consistent with readdir().
1981 */
1982 return -ENOENT;
1983 }
1984 task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
1985 }
1986 rcu_read_unlock();
1987 return 0;
1988}
1989
1990/* dentry stuff */
1991
1992/*
1993 * Set <pid>/... inode ownership (can change due to setuid(), etc.)
1994 */
1995void pid_update_inode(struct task_struct *task, struct inode *inode)
1996{
1997 task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1998
1999 inode->i_mode &= ~(S_ISUID | S_ISGID);
2000 security_task_to_inode(task, inode);
2001}
2002
2003/*
2004 * Rewrite the inode's ownerships here because the owning task may have
2005 * performed a setuid(), etc.
2006 *
2007 */
2008static int pid_revalidate(struct dentry *dentry, unsigned int flags)
2009{
2010 struct inode *inode;
2011 struct task_struct *task;
2012 int ret = 0;
2013
2014 rcu_read_lock();
2015 inode = d_inode_rcu(dentry);
2016 if (!inode)
2017 goto out;
2018 task = pid_task(proc_pid(inode), PIDTYPE_PID);
2019
2020 if (task) {
2021 pid_update_inode(task, inode);
2022 ret = 1;
2023 }
2024out:
2025 rcu_read_unlock();
2026 return ret;
2027}
2028
2029static inline bool proc_inode_is_dead(struct inode *inode)
2030{
2031 return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
2032}
2033
2034int pid_delete_dentry(const struct dentry *dentry)
2035{
2036 /* Is the task we represent dead?
2037 * If so, then don't put the dentry on the lru list,
2038 * kill it immediately.
2039 */
2040 return proc_inode_is_dead(d_inode(dentry));
2041}
2042
2043const struct dentry_operations pid_dentry_operations =
2044{
2045 .d_revalidate = pid_revalidate,
2046 .d_delete = pid_delete_dentry,
2047};
2048
2049/* Lookups */
2050
2051/*
2052 * Fill a directory entry.
2053 *
2054 * If possible create the dcache entry and derive our inode number and
2055 * file type from dcache entry.
2056 *
2057 * Since all of the proc inode numbers are dynamically generated, the inode
2058 * numbers do not exist until the inode is cache. This means creating
2059 * the dcache entry in readdir is necessary to keep the inode numbers
2060 * reported by readdir in sync with the inode numbers reported
2061 * by stat.
2062 */
2063bool proc_fill_cache(struct file *file, struct dir_context *ctx,
2064 const char *name, unsigned int len,
2065 instantiate_t instantiate, struct task_struct *task, const void *ptr)
2066{
2067 struct dentry *child, *dir = file->f_path.dentry;
2068 struct qstr qname = QSTR_INIT(name, len);
2069 struct inode *inode;
2070 unsigned type = DT_UNKNOWN;
2071 ino_t ino = 1;
2072
2073 child = d_hash_and_lookup(dir, &qname);
2074 if (!child) {
2075 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2076 child = d_alloc_parallel(dir, &qname, &wq);
2077 if (IS_ERR(child))
2078 goto end_instantiate;
2079 if (d_in_lookup(child)) {
2080 struct dentry *res;
2081 res = instantiate(child, task, ptr);
2082 d_lookup_done(child);
2083 if (unlikely(res)) {
2084 dput(child);
2085 child = res;
2086 if (IS_ERR(child))
2087 goto end_instantiate;
2088 }
2089 }
2090 }
2091 inode = d_inode(child);
2092 ino = inode->i_ino;
2093 type = inode->i_mode >> 12;
2094 dput(child);
2095end_instantiate:
2096 return dir_emit(ctx, name, len, ino, type);
2097}
2098
2099/*
2100 * dname_to_vma_addr - maps a dentry name into two unsigned longs
2101 * which represent vma start and end addresses.
2102 */
2103static int dname_to_vma_addr(struct dentry *dentry,
2104 unsigned long *start, unsigned long *end)
2105{
2106 const char *str = dentry->d_name.name;
2107 unsigned long long sval, eval;
2108 unsigned int len;
2109
2110 if (str[0] == '0' && str[1] != '-')
2111 return -EINVAL;
2112 len = _parse_integer(str, 16, &sval);
2113 if (len & KSTRTOX_OVERFLOW)
2114 return -EINVAL;
2115 if (sval != (unsigned long)sval)
2116 return -EINVAL;
2117 str += len;
2118
2119 if (*str != '-')
2120 return -EINVAL;
2121 str++;
2122
2123 if (str[0] == '0' && str[1])
2124 return -EINVAL;
2125 len = _parse_integer(str, 16, &eval);
2126 if (len & KSTRTOX_OVERFLOW)
2127 return -EINVAL;
2128 if (eval != (unsigned long)eval)
2129 return -EINVAL;
2130 str += len;
2131
2132 if (*str != '\0')
2133 return -EINVAL;
2134
2135 *start = sval;
2136 *end = eval;
2137
2138 return 0;
2139}
2140
2141static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
2142{
2143 unsigned long vm_start, vm_end;
2144 bool exact_vma_exists = false;
2145 struct mm_struct *mm = NULL;
2146 struct task_struct *task;
2147 struct inode *inode;
2148 int status = 0;
2149
2150 if (flags & LOOKUP_RCU)
2151 return -ECHILD;
2152
2153 inode = d_inode(dentry);
2154 task = get_proc_task(inode);
2155 if (!task)
2156 goto out_notask;
2157
2158 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
2159 if (IS_ERR_OR_NULL(mm))
2160 goto out;
2161
2162 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
2163 status = mmap_read_lock_killable(mm);
2164 if (!status) {
2165 exact_vma_exists = !!find_exact_vma(mm, vm_start,
2166 vm_end);
2167 mmap_read_unlock(mm);
2168 }
2169 }
2170
2171 mmput(mm);
2172
2173 if (exact_vma_exists) {
2174 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
2175
2176 security_task_to_inode(task, inode);
2177 status = 1;
2178 }
2179
2180out:
2181 put_task_struct(task);
2182
2183out_notask:
2184 return status;
2185}
2186
2187static const struct dentry_operations tid_map_files_dentry_operations = {
2188 .d_revalidate = map_files_d_revalidate,
2189 .d_delete = pid_delete_dentry,
2190};
2191
2192static int map_files_get_link(struct dentry *dentry, struct path *path)
2193{
2194 unsigned long vm_start, vm_end;
2195 struct vm_area_struct *vma;
2196 struct task_struct *task;
2197 struct mm_struct *mm;
2198 int rc;
2199
2200 rc = -ENOENT;
2201 task = get_proc_task(d_inode(dentry));
2202 if (!task)
2203 goto out;
2204
2205 mm = get_task_mm(task);
2206 put_task_struct(task);
2207 if (!mm)
2208 goto out;
2209
2210 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2211 if (rc)
2212 goto out_mmput;
2213
2214 rc = mmap_read_lock_killable(mm);
2215 if (rc)
2216 goto out_mmput;
2217
2218 rc = -ENOENT;
2219 vma = find_exact_vma(mm, vm_start, vm_end);
2220 if (vma && vma->vm_file) {
2221 *path = vma->vm_file->f_path;
2222 path_get(path);
2223 rc = 0;
2224 }
2225 mmap_read_unlock(mm);
2226
2227out_mmput:
2228 mmput(mm);
2229out:
2230 return rc;
2231}
2232
2233struct map_files_info {
2234 unsigned long start;
2235 unsigned long end;
2236 fmode_t mode;
2237};
2238
2239/*
2240 * Only allow CAP_SYS_ADMIN and CAP_CHECKPOINT_RESTORE to follow the links, due
2241 * to concerns about how the symlinks may be used to bypass permissions on
2242 * ancestor directories in the path to the file in question.
2243 */
2244static const char *
2245proc_map_files_get_link(struct dentry *dentry,
2246 struct inode *inode,
2247 struct delayed_call *done)
2248{
2249 if (!checkpoint_restore_ns_capable(&init_user_ns))
2250 return ERR_PTR(-EPERM);
2251
2252 return proc_pid_get_link(dentry, inode, done);
2253}
2254
2255/*
2256 * Identical to proc_pid_link_inode_operations except for get_link()
2257 */
2258static const struct inode_operations proc_map_files_link_inode_operations = {
2259 .readlink = proc_pid_readlink,
2260 .get_link = proc_map_files_get_link,
2261 .setattr = proc_setattr,
2262};
2263
2264static struct dentry *
2265proc_map_files_instantiate(struct dentry *dentry,
2266 struct task_struct *task, const void *ptr)
2267{
2268 fmode_t mode = (fmode_t)(unsigned long)ptr;
2269 struct proc_inode *ei;
2270 struct inode *inode;
2271
2272 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2273 ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2274 ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2275 if (!inode)
2276 return ERR_PTR(-ENOENT);
2277
2278 ei = PROC_I(inode);
2279 ei->op.proc_get_link = map_files_get_link;
2280
2281 inode->i_op = &proc_map_files_link_inode_operations;
2282 inode->i_size = 64;
2283
2284 d_set_d_op(dentry, &tid_map_files_dentry_operations);
2285 return d_splice_alias(inode, dentry);
2286}
2287
2288static struct dentry *proc_map_files_lookup(struct inode *dir,
2289 struct dentry *dentry, unsigned int flags)
2290{
2291 unsigned long vm_start, vm_end;
2292 struct vm_area_struct *vma;
2293 struct task_struct *task;
2294 struct dentry *result;
2295 struct mm_struct *mm;
2296
2297 result = ERR_PTR(-ENOENT);
2298 task = get_proc_task(dir);
2299 if (!task)
2300 goto out;
2301
2302 result = ERR_PTR(-EACCES);
2303 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2304 goto out_put_task;
2305
2306 result = ERR_PTR(-ENOENT);
2307 if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2308 goto out_put_task;
2309
2310 mm = get_task_mm(task);
2311 if (!mm)
2312 goto out_put_task;
2313
2314 result = ERR_PTR(-EINTR);
2315 if (mmap_read_lock_killable(mm))
2316 goto out_put_mm;
2317
2318 result = ERR_PTR(-ENOENT);
2319 vma = find_exact_vma(mm, vm_start, vm_end);
2320 if (!vma)
2321 goto out_no_vma;
2322
2323 if (vma->vm_file)
2324 result = proc_map_files_instantiate(dentry, task,
2325 (void *)(unsigned long)vma->vm_file->f_mode);
2326
2327out_no_vma:
2328 mmap_read_unlock(mm);
2329out_put_mm:
2330 mmput(mm);
2331out_put_task:
2332 put_task_struct(task);
2333out:
2334 return result;
2335}
2336
2337static const struct inode_operations proc_map_files_inode_operations = {
2338 .lookup = proc_map_files_lookup,
2339 .permission = proc_fd_permission,
2340 .setattr = proc_setattr,
2341};
2342
2343static int
2344proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2345{
2346 struct vm_area_struct *vma;
2347 struct task_struct *task;
2348 struct mm_struct *mm;
2349 unsigned long nr_files, pos, i;
2350 GENRADIX(struct map_files_info) fa;
2351 struct map_files_info *p;
2352 int ret;
2353 struct vma_iterator vmi;
2354
2355 genradix_init(&fa);
2356
2357 ret = -ENOENT;
2358 task = get_proc_task(file_inode(file));
2359 if (!task)
2360 goto out;
2361
2362 ret = -EACCES;
2363 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2364 goto out_put_task;
2365
2366 ret = 0;
2367 if (!dir_emit_dots(file, ctx))
2368 goto out_put_task;
2369
2370 mm = get_task_mm(task);
2371 if (!mm)
2372 goto out_put_task;
2373
2374 ret = mmap_read_lock_killable(mm);
2375 if (ret) {
2376 mmput(mm);
2377 goto out_put_task;
2378 }
2379
2380 nr_files = 0;
2381
2382 /*
2383 * We need two passes here:
2384 *
2385 * 1) Collect vmas of mapped files with mmap_lock taken
2386 * 2) Release mmap_lock and instantiate entries
2387 *
2388 * otherwise we get lockdep complained, since filldir()
2389 * routine might require mmap_lock taken in might_fault().
2390 */
2391
2392 pos = 2;
2393 vma_iter_init(&vmi, mm, 0);
2394 for_each_vma(vmi, vma) {
2395 if (!vma->vm_file)
2396 continue;
2397 if (++pos <= ctx->pos)
2398 continue;
2399
2400 p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL);
2401 if (!p) {
2402 ret = -ENOMEM;
2403 mmap_read_unlock(mm);
2404 mmput(mm);
2405 goto out_put_task;
2406 }
2407
2408 p->start = vma->vm_start;
2409 p->end = vma->vm_end;
2410 p->mode = vma->vm_file->f_mode;
2411 }
2412 mmap_read_unlock(mm);
2413 mmput(mm);
2414
2415 for (i = 0; i < nr_files; i++) {
2416 char buf[4 * sizeof(long) + 2]; /* max: %lx-%lx\0 */
2417 unsigned int len;
2418
2419 p = genradix_ptr(&fa, i);
2420 len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2421 if (!proc_fill_cache(file, ctx,
2422 buf, len,
2423 proc_map_files_instantiate,
2424 task,
2425 (void *)(unsigned long)p->mode))
2426 break;
2427 ctx->pos++;
2428 }
2429
2430out_put_task:
2431 put_task_struct(task);
2432out:
2433 genradix_free(&fa);
2434 return ret;
2435}
2436
2437static const struct file_operations proc_map_files_operations = {
2438 .read = generic_read_dir,
2439 .iterate_shared = proc_map_files_readdir,
2440 .llseek = generic_file_llseek,
2441};
2442
2443#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2444struct timers_private {
2445 struct pid *pid;
2446 struct task_struct *task;
2447 struct sighand_struct *sighand;
2448 struct pid_namespace *ns;
2449 unsigned long flags;
2450};
2451
2452static void *timers_start(struct seq_file *m, loff_t *pos)
2453{
2454 struct timers_private *tp = m->private;
2455
2456 tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2457 if (!tp->task)
2458 return ERR_PTR(-ESRCH);
2459
2460 tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2461 if (!tp->sighand)
2462 return ERR_PTR(-ESRCH);
2463
2464 return seq_list_start(&tp->task->signal->posix_timers, *pos);
2465}
2466
2467static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2468{
2469 struct timers_private *tp = m->private;
2470 return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2471}
2472
2473static void timers_stop(struct seq_file *m, void *v)
2474{
2475 struct timers_private *tp = m->private;
2476
2477 if (tp->sighand) {
2478 unlock_task_sighand(tp->task, &tp->flags);
2479 tp->sighand = NULL;
2480 }
2481
2482 if (tp->task) {
2483 put_task_struct(tp->task);
2484 tp->task = NULL;
2485 }
2486}
2487
2488static int show_timer(struct seq_file *m, void *v)
2489{
2490 struct k_itimer *timer;
2491 struct timers_private *tp = m->private;
2492 int notify;
2493 static const char * const nstr[] = {
2494 [SIGEV_SIGNAL] = "signal",
2495 [SIGEV_NONE] = "none",
2496 [SIGEV_THREAD] = "thread",
2497 };
2498
2499 timer = list_entry((struct list_head *)v, struct k_itimer, list);
2500 notify = timer->it_sigev_notify;
2501
2502 seq_printf(m, "ID: %d\n", timer->it_id);
2503 seq_printf(m, "signal: %d/%px\n",
2504 timer->sigq->info.si_signo,
2505 timer->sigq->info.si_value.sival_ptr);
2506 seq_printf(m, "notify: %s/%s.%d\n",
2507 nstr[notify & ~SIGEV_THREAD_ID],
2508 (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2509 pid_nr_ns(timer->it_pid, tp->ns));
2510 seq_printf(m, "ClockID: %d\n", timer->it_clock);
2511
2512 return 0;
2513}
2514
2515static const struct seq_operations proc_timers_seq_ops = {
2516 .start = timers_start,
2517 .next = timers_next,
2518 .stop = timers_stop,
2519 .show = show_timer,
2520};
2521
2522static int proc_timers_open(struct inode *inode, struct file *file)
2523{
2524 struct timers_private *tp;
2525
2526 tp = __seq_open_private(file, &proc_timers_seq_ops,
2527 sizeof(struct timers_private));
2528 if (!tp)
2529 return -ENOMEM;
2530
2531 tp->pid = proc_pid(inode);
2532 tp->ns = proc_pid_ns(inode->i_sb);
2533 return 0;
2534}
2535
2536static const struct file_operations proc_timers_operations = {
2537 .open = proc_timers_open,
2538 .read = seq_read,
2539 .llseek = seq_lseek,
2540 .release = seq_release_private,
2541};
2542#endif
2543
2544static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2545 size_t count, loff_t *offset)
2546{
2547 struct inode *inode = file_inode(file);
2548 struct task_struct *p;
2549 u64 slack_ns;
2550 int err;
2551
2552 err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2553 if (err < 0)
2554 return err;
2555
2556 p = get_proc_task(inode);
2557 if (!p)
2558 return -ESRCH;
2559
2560 if (p != current) {
2561 rcu_read_lock();
2562 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2563 rcu_read_unlock();
2564 count = -EPERM;
2565 goto out;
2566 }
2567 rcu_read_unlock();
2568
2569 err = security_task_setscheduler(p);
2570 if (err) {
2571 count = err;
2572 goto out;
2573 }
2574 }
2575
2576 task_lock(p);
2577 if (slack_ns == 0)
2578 p->timer_slack_ns = p->default_timer_slack_ns;
2579 else
2580 p->timer_slack_ns = slack_ns;
2581 task_unlock(p);
2582
2583out:
2584 put_task_struct(p);
2585
2586 return count;
2587}
2588
2589static int timerslack_ns_show(struct seq_file *m, void *v)
2590{
2591 struct inode *inode = m->private;
2592 struct task_struct *p;
2593 int err = 0;
2594
2595 p = get_proc_task(inode);
2596 if (!p)
2597 return -ESRCH;
2598
2599 if (p != current) {
2600 rcu_read_lock();
2601 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2602 rcu_read_unlock();
2603 err = -EPERM;
2604 goto out;
2605 }
2606 rcu_read_unlock();
2607
2608 err = security_task_getscheduler(p);
2609 if (err)
2610 goto out;
2611 }
2612
2613 task_lock(p);
2614 seq_printf(m, "%llu\n", p->timer_slack_ns);
2615 task_unlock(p);
2616
2617out:
2618 put_task_struct(p);
2619
2620 return err;
2621}
2622
2623static int timerslack_ns_open(struct inode *inode, struct file *filp)
2624{
2625 return single_open(filp, timerslack_ns_show, inode);
2626}
2627
2628static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2629 .open = timerslack_ns_open,
2630 .read = seq_read,
2631 .write = timerslack_ns_write,
2632 .llseek = seq_lseek,
2633 .release = single_release,
2634};
2635
2636static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2637 struct task_struct *task, const void *ptr)
2638{
2639 const struct pid_entry *p = ptr;
2640 struct inode *inode;
2641 struct proc_inode *ei;
2642
2643 inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2644 if (!inode)
2645 return ERR_PTR(-ENOENT);
2646
2647 ei = PROC_I(inode);
2648 if (S_ISDIR(inode->i_mode))
2649 set_nlink(inode, 2); /* Use getattr to fix if necessary */
2650 if (p->iop)
2651 inode->i_op = p->iop;
2652 if (p->fop)
2653 inode->i_fop = p->fop;
2654 ei->op = p->op;
2655 pid_update_inode(task, inode);
2656 d_set_d_op(dentry, &pid_dentry_operations);
2657 return d_splice_alias(inode, dentry);
2658}
2659
2660static struct dentry *proc_pident_lookup(struct inode *dir,
2661 struct dentry *dentry,
2662 const struct pid_entry *p,
2663 const struct pid_entry *end)
2664{
2665 struct task_struct *task = get_proc_task(dir);
2666 struct dentry *res = ERR_PTR(-ENOENT);
2667
2668 if (!task)
2669 goto out_no_task;
2670
2671 /*
2672 * Yes, it does not scale. And it should not. Don't add
2673 * new entries into /proc/<tgid>/ without very good reasons.
2674 */
2675 for (; p < end; p++) {
2676 if (p->len != dentry->d_name.len)
2677 continue;
2678 if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2679 res = proc_pident_instantiate(dentry, task, p);
2680 break;
2681 }
2682 }
2683 put_task_struct(task);
2684out_no_task:
2685 return res;
2686}
2687
2688static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2689 const struct pid_entry *ents, unsigned int nents)
2690{
2691 struct task_struct *task = get_proc_task(file_inode(file));
2692 const struct pid_entry *p;
2693
2694 if (!task)
2695 return -ENOENT;
2696
2697 if (!dir_emit_dots(file, ctx))
2698 goto out;
2699
2700 if (ctx->pos >= nents + 2)
2701 goto out;
2702
2703 for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2704 if (!proc_fill_cache(file, ctx, p->name, p->len,
2705 proc_pident_instantiate, task, p))
2706 break;
2707 ctx->pos++;
2708 }
2709out:
2710 put_task_struct(task);
2711 return 0;
2712}
2713
2714#ifdef CONFIG_SECURITY
2715static int proc_pid_attr_open(struct inode *inode, struct file *file)
2716{
2717 file->private_data = NULL;
2718 __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
2719 return 0;
2720}
2721
2722static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2723 size_t count, loff_t *ppos)
2724{
2725 struct inode * inode = file_inode(file);
2726 char *p = NULL;
2727 ssize_t length;
2728 struct task_struct *task = get_proc_task(inode);
2729
2730 if (!task)
2731 return -ESRCH;
2732
2733 length = security_getprocattr(task, PROC_I(inode)->op.lsm,
2734 file->f_path.dentry->d_name.name,
2735 &p);
2736 put_task_struct(task);
2737 if (length > 0)
2738 length = simple_read_from_buffer(buf, count, ppos, p, length);
2739 kfree(p);
2740 return length;
2741}
2742
2743static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2744 size_t count, loff_t *ppos)
2745{
2746 struct inode * inode = file_inode(file);
2747 struct task_struct *task;
2748 void *page;
2749 int rv;
2750
2751 /* A task may only write when it was the opener. */
2752 if (file->private_data != current->mm)
2753 return -EPERM;
2754
2755 rcu_read_lock();
2756 task = pid_task(proc_pid(inode), PIDTYPE_PID);
2757 if (!task) {
2758 rcu_read_unlock();
2759 return -ESRCH;
2760 }
2761 /* A task may only write its own attributes. */
2762 if (current != task) {
2763 rcu_read_unlock();
2764 return -EACCES;
2765 }
2766 /* Prevent changes to overridden credentials. */
2767 if (current_cred() != current_real_cred()) {
2768 rcu_read_unlock();
2769 return -EBUSY;
2770 }
2771 rcu_read_unlock();
2772
2773 if (count > PAGE_SIZE)
2774 count = PAGE_SIZE;
2775
2776 /* No partial writes. */
2777 if (*ppos != 0)
2778 return -EINVAL;
2779
2780 page = memdup_user(buf, count);
2781 if (IS_ERR(page)) {
2782 rv = PTR_ERR(page);
2783 goto out;
2784 }
2785
2786 /* Guard against adverse ptrace interaction */
2787 rv = mutex_lock_interruptible(¤t->signal->cred_guard_mutex);
2788 if (rv < 0)
2789 goto out_free;
2790
2791 rv = security_setprocattr(PROC_I(inode)->op.lsm,
2792 file->f_path.dentry->d_name.name, page,
2793 count);
2794 mutex_unlock(¤t->signal->cred_guard_mutex);
2795out_free:
2796 kfree(page);
2797out:
2798 return rv;
2799}
2800
2801static const struct file_operations proc_pid_attr_operations = {
2802 .open = proc_pid_attr_open,
2803 .read = proc_pid_attr_read,
2804 .write = proc_pid_attr_write,
2805 .llseek = generic_file_llseek,
2806 .release = mem_release,
2807};
2808
2809#define LSM_DIR_OPS(LSM) \
2810static int proc_##LSM##_attr_dir_iterate(struct file *filp, \
2811 struct dir_context *ctx) \
2812{ \
2813 return proc_pident_readdir(filp, ctx, \
2814 LSM##_attr_dir_stuff, \
2815 ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2816} \
2817\
2818static const struct file_operations proc_##LSM##_attr_dir_ops = { \
2819 .read = generic_read_dir, \
2820 .iterate = proc_##LSM##_attr_dir_iterate, \
2821 .llseek = default_llseek, \
2822}; \
2823\
2824static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \
2825 struct dentry *dentry, unsigned int flags) \
2826{ \
2827 return proc_pident_lookup(dir, dentry, \
2828 LSM##_attr_dir_stuff, \
2829 LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2830} \
2831\
2832static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \
2833 .lookup = proc_##LSM##_attr_dir_lookup, \
2834 .getattr = pid_getattr, \
2835 .setattr = proc_setattr, \
2836}
2837
2838#ifdef CONFIG_SECURITY_SMACK
2839static const struct pid_entry smack_attr_dir_stuff[] = {
2840 ATTR("smack", "current", 0666),
2841};
2842LSM_DIR_OPS(smack);
2843#endif
2844
2845#ifdef CONFIG_SECURITY_APPARMOR
2846static const struct pid_entry apparmor_attr_dir_stuff[] = {
2847 ATTR("apparmor", "current", 0666),
2848 ATTR("apparmor", "prev", 0444),
2849 ATTR("apparmor", "exec", 0666),
2850};
2851LSM_DIR_OPS(apparmor);
2852#endif
2853
2854static const struct pid_entry attr_dir_stuff[] = {
2855 ATTR(NULL, "current", 0666),
2856 ATTR(NULL, "prev", 0444),
2857 ATTR(NULL, "exec", 0666),
2858 ATTR(NULL, "fscreate", 0666),
2859 ATTR(NULL, "keycreate", 0666),
2860 ATTR(NULL, "sockcreate", 0666),
2861#ifdef CONFIG_SECURITY_SMACK
2862 DIR("smack", 0555,
2863 proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops),
2864#endif
2865#ifdef CONFIG_SECURITY_APPARMOR
2866 DIR("apparmor", 0555,
2867 proc_apparmor_attr_dir_inode_ops, proc_apparmor_attr_dir_ops),
2868#endif
2869};
2870
2871static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2872{
2873 return proc_pident_readdir(file, ctx,
2874 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2875}
2876
2877static const struct file_operations proc_attr_dir_operations = {
2878 .read = generic_read_dir,
2879 .iterate_shared = proc_attr_dir_readdir,
2880 .llseek = generic_file_llseek,
2881};
2882
2883static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2884 struct dentry *dentry, unsigned int flags)
2885{
2886 return proc_pident_lookup(dir, dentry,
2887 attr_dir_stuff,
2888 attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff));
2889}
2890
2891static const struct inode_operations proc_attr_dir_inode_operations = {
2892 .lookup = proc_attr_dir_lookup,
2893 .getattr = pid_getattr,
2894 .setattr = proc_setattr,
2895};
2896
2897#endif
2898
2899#ifdef CONFIG_ELF_CORE
2900static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2901 size_t count, loff_t *ppos)
2902{
2903 struct task_struct *task = get_proc_task(file_inode(file));
2904 struct mm_struct *mm;
2905 char buffer[PROC_NUMBUF];
2906 size_t len;
2907 int ret;
2908
2909 if (!task)
2910 return -ESRCH;
2911
2912 ret = 0;
2913 mm = get_task_mm(task);
2914 if (mm) {
2915 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2916 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2917 MMF_DUMP_FILTER_SHIFT));
2918 mmput(mm);
2919 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2920 }
2921
2922 put_task_struct(task);
2923
2924 return ret;
2925}
2926
2927static ssize_t proc_coredump_filter_write(struct file *file,
2928 const char __user *buf,
2929 size_t count,
2930 loff_t *ppos)
2931{
2932 struct task_struct *task;
2933 struct mm_struct *mm;
2934 unsigned int val;
2935 int ret;
2936 int i;
2937 unsigned long mask;
2938
2939 ret = kstrtouint_from_user(buf, count, 0, &val);
2940 if (ret < 0)
2941 return ret;
2942
2943 ret = -ESRCH;
2944 task = get_proc_task(file_inode(file));
2945 if (!task)
2946 goto out_no_task;
2947
2948 mm = get_task_mm(task);
2949 if (!mm)
2950 goto out_no_mm;
2951 ret = 0;
2952
2953 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2954 if (val & mask)
2955 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2956 else
2957 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2958 }
2959
2960 mmput(mm);
2961 out_no_mm:
2962 put_task_struct(task);
2963 out_no_task:
2964 if (ret < 0)
2965 return ret;
2966 return count;
2967}
2968
2969static const struct file_operations proc_coredump_filter_operations = {
2970 .read = proc_coredump_filter_read,
2971 .write = proc_coredump_filter_write,
2972 .llseek = generic_file_llseek,
2973};
2974#endif
2975
2976#ifdef CONFIG_TASK_IO_ACCOUNTING
2977static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2978{
2979 struct task_io_accounting acct = task->ioac;
2980 unsigned long flags;
2981 int result;
2982
2983 result = down_read_killable(&task->signal->exec_update_lock);
2984 if (result)
2985 return result;
2986
2987 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2988 result = -EACCES;
2989 goto out_unlock;
2990 }
2991
2992 if (whole && lock_task_sighand(task, &flags)) {
2993 struct task_struct *t = task;
2994
2995 task_io_accounting_add(&acct, &task->signal->ioac);
2996 while_each_thread(task, t)
2997 task_io_accounting_add(&acct, &t->ioac);
2998
2999 unlock_task_sighand(task, &flags);
3000 }
3001 seq_printf(m,
3002 "rchar: %llu\n"
3003 "wchar: %llu\n"
3004 "syscr: %llu\n"
3005 "syscw: %llu\n"
3006 "read_bytes: %llu\n"
3007 "write_bytes: %llu\n"
3008 "cancelled_write_bytes: %llu\n",
3009 (unsigned long long)acct.rchar,
3010 (unsigned long long)acct.wchar,
3011 (unsigned long long)acct.syscr,
3012 (unsigned long long)acct.syscw,
3013 (unsigned long long)acct.read_bytes,
3014 (unsigned long long)acct.write_bytes,
3015 (unsigned long long)acct.cancelled_write_bytes);
3016 result = 0;
3017
3018out_unlock:
3019 up_read(&task->signal->exec_update_lock);
3020 return result;
3021}
3022
3023static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
3024 struct pid *pid, struct task_struct *task)
3025{
3026 return do_io_accounting(task, m, 0);
3027}
3028
3029static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
3030 struct pid *pid, struct task_struct *task)
3031{
3032 return do_io_accounting(task, m, 1);
3033}
3034#endif /* CONFIG_TASK_IO_ACCOUNTING */
3035
3036#ifdef CONFIG_USER_NS
3037static int proc_id_map_open(struct inode *inode, struct file *file,
3038 const struct seq_operations *seq_ops)
3039{
3040 struct user_namespace *ns = NULL;
3041 struct task_struct *task;
3042 struct seq_file *seq;
3043 int ret = -EINVAL;
3044
3045 task = get_proc_task(inode);
3046 if (task) {
3047 rcu_read_lock();
3048 ns = get_user_ns(task_cred_xxx(task, user_ns));
3049 rcu_read_unlock();
3050 put_task_struct(task);
3051 }
3052 if (!ns)
3053 goto err;
3054
3055 ret = seq_open(file, seq_ops);
3056 if (ret)
3057 goto err_put_ns;
3058
3059 seq = file->private_data;
3060 seq->private = ns;
3061
3062 return 0;
3063err_put_ns:
3064 put_user_ns(ns);
3065err:
3066 return ret;
3067}
3068
3069static int proc_id_map_release(struct inode *inode, struct file *file)
3070{
3071 struct seq_file *seq = file->private_data;
3072 struct user_namespace *ns = seq->private;
3073 put_user_ns(ns);
3074 return seq_release(inode, file);
3075}
3076
3077static int proc_uid_map_open(struct inode *inode, struct file *file)
3078{
3079 return proc_id_map_open(inode, file, &proc_uid_seq_operations);
3080}
3081
3082static int proc_gid_map_open(struct inode *inode, struct file *file)
3083{
3084 return proc_id_map_open(inode, file, &proc_gid_seq_operations);
3085}
3086
3087static int proc_projid_map_open(struct inode *inode, struct file *file)
3088{
3089 return proc_id_map_open(inode, file, &proc_projid_seq_operations);
3090}
3091
3092static const struct file_operations proc_uid_map_operations = {
3093 .open = proc_uid_map_open,
3094 .write = proc_uid_map_write,
3095 .read = seq_read,
3096 .llseek = seq_lseek,
3097 .release = proc_id_map_release,
3098};
3099
3100static const struct file_operations proc_gid_map_operations = {
3101 .open = proc_gid_map_open,
3102 .write = proc_gid_map_write,
3103 .read = seq_read,
3104 .llseek = seq_lseek,
3105 .release = proc_id_map_release,
3106};
3107
3108static const struct file_operations proc_projid_map_operations = {
3109 .open = proc_projid_map_open,
3110 .write = proc_projid_map_write,
3111 .read = seq_read,
3112 .llseek = seq_lseek,
3113 .release = proc_id_map_release,
3114};
3115
3116static int proc_setgroups_open(struct inode *inode, struct file *file)
3117{
3118 struct user_namespace *ns = NULL;
3119 struct task_struct *task;
3120 int ret;
3121
3122 ret = -ESRCH;
3123 task = get_proc_task(inode);
3124 if (task) {
3125 rcu_read_lock();
3126 ns = get_user_ns(task_cred_xxx(task, user_ns));
3127 rcu_read_unlock();
3128 put_task_struct(task);
3129 }
3130 if (!ns)
3131 goto err;
3132
3133 if (file->f_mode & FMODE_WRITE) {
3134 ret = -EACCES;
3135 if (!ns_capable(ns, CAP_SYS_ADMIN))
3136 goto err_put_ns;
3137 }
3138
3139 ret = single_open(file, &proc_setgroups_show, ns);
3140 if (ret)
3141 goto err_put_ns;
3142
3143 return 0;
3144err_put_ns:
3145 put_user_ns(ns);
3146err:
3147 return ret;
3148}
3149
3150static int proc_setgroups_release(struct inode *inode, struct file *file)
3151{
3152 struct seq_file *seq = file->private_data;
3153 struct user_namespace *ns = seq->private;
3154 int ret = single_release(inode, file);
3155 put_user_ns(ns);
3156 return ret;
3157}
3158
3159static const struct file_operations proc_setgroups_operations = {
3160 .open = proc_setgroups_open,
3161 .write = proc_setgroups_write,
3162 .read = seq_read,
3163 .llseek = seq_lseek,
3164 .release = proc_setgroups_release,
3165};
3166#endif /* CONFIG_USER_NS */
3167
3168static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
3169 struct pid *pid, struct task_struct *task)
3170{
3171 int err = lock_trace(task);
3172 if (!err) {
3173 seq_printf(m, "%08x\n", task->personality);
3174 unlock_trace(task);
3175 }
3176 return err;
3177}
3178
3179#ifdef CONFIG_LIVEPATCH
3180static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
3181 struct pid *pid, struct task_struct *task)
3182{
3183 seq_printf(m, "%d\n", task->patch_state);
3184 return 0;
3185}
3186#endif /* CONFIG_LIVEPATCH */
3187
3188#ifdef CONFIG_KSM
3189static int proc_pid_ksm_merging_pages(struct seq_file *m, struct pid_namespace *ns,
3190 struct pid *pid, struct task_struct *task)
3191{
3192 struct mm_struct *mm;
3193
3194 mm = get_task_mm(task);
3195 if (mm) {
3196 seq_printf(m, "%lu\n", mm->ksm_merging_pages);
3197 mmput(mm);
3198 }
3199
3200 return 0;
3201}
3202static int proc_pid_ksm_stat(struct seq_file *m, struct pid_namespace *ns,
3203 struct pid *pid, struct task_struct *task)
3204{
3205 struct mm_struct *mm;
3206
3207 mm = get_task_mm(task);
3208 if (mm) {
3209 seq_printf(m, "ksm_rmap_items %lu\n", mm->ksm_rmap_items);
3210 mmput(mm);
3211 }
3212
3213 return 0;
3214}
3215#endif /* CONFIG_KSM */
3216
3217#ifdef CONFIG_STACKLEAK_METRICS
3218static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
3219 struct pid *pid, struct task_struct *task)
3220{
3221 unsigned long prev_depth = THREAD_SIZE -
3222 (task->prev_lowest_stack & (THREAD_SIZE - 1));
3223 unsigned long depth = THREAD_SIZE -
3224 (task->lowest_stack & (THREAD_SIZE - 1));
3225
3226 seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
3227 prev_depth, depth);
3228 return 0;
3229}
3230#endif /* CONFIG_STACKLEAK_METRICS */
3231
3232/*
3233 * Thread groups
3234 */
3235static const struct file_operations proc_task_operations;
3236static const struct inode_operations proc_task_inode_operations;
3237
3238static const struct pid_entry tgid_base_stuff[] = {
3239 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
3240 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3241 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
3242 DIR("fdinfo", S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3243 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3244#ifdef CONFIG_NET
3245 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3246#endif
3247 REG("environ", S_IRUSR, proc_environ_operations),
3248 REG("auxv", S_IRUSR, proc_auxv_operations),
3249 ONE("status", S_IRUGO, proc_pid_status),
3250 ONE("personality", S_IRUSR, proc_pid_personality),
3251 ONE("limits", S_IRUGO, proc_pid_limits),
3252#ifdef CONFIG_SCHED_DEBUG
3253 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3254#endif
3255#ifdef CONFIG_SCHED_AUTOGROUP
3256 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3257#endif
3258#ifdef CONFIG_TIME_NS
3259 REG("timens_offsets", S_IRUGO|S_IWUSR, proc_timens_offsets_operations),
3260#endif
3261 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3262#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3263 ONE("syscall", S_IRUSR, proc_pid_syscall),
3264#endif
3265 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
3266 ONE("stat", S_IRUGO, proc_tgid_stat),
3267 ONE("statm", S_IRUGO, proc_pid_statm),
3268 REG("maps", S_IRUGO, proc_pid_maps_operations),
3269#ifdef CONFIG_NUMA
3270 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3271#endif
3272 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3273 LNK("cwd", proc_cwd_link),
3274 LNK("root", proc_root_link),
3275 LNK("exe", proc_exe_link),
3276 REG("mounts", S_IRUGO, proc_mounts_operations),
3277 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3278 REG("mountstats", S_IRUSR, proc_mountstats_operations),
3279#ifdef CONFIG_PROC_PAGE_MONITOR
3280 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3281 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
3282 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3283 REG("pagemap", S_IRUSR, proc_pagemap_operations),
3284#endif
3285#ifdef CONFIG_SECURITY
3286 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3287#endif
3288#ifdef CONFIG_KALLSYMS
3289 ONE("wchan", S_IRUGO, proc_pid_wchan),
3290#endif
3291#ifdef CONFIG_STACKTRACE
3292 ONE("stack", S_IRUSR, proc_pid_stack),
3293#endif
3294#ifdef CONFIG_SCHED_INFO
3295 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3296#endif
3297#ifdef CONFIG_LATENCYTOP
3298 REG("latency", S_IRUGO, proc_lstats_operations),
3299#endif
3300#ifdef CONFIG_PROC_PID_CPUSET
3301 ONE("cpuset", S_IRUGO, proc_cpuset_show),
3302#endif
3303#ifdef CONFIG_CGROUPS
3304 ONE("cgroup", S_IRUGO, proc_cgroup_show),
3305#endif
3306#ifdef CONFIG_PROC_CPU_RESCTRL
3307 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3308#endif
3309 ONE("oom_score", S_IRUGO, proc_oom_score),
3310 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3311 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3312#ifdef CONFIG_AUDIT
3313 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3314 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3315#endif
3316#ifdef CONFIG_FAULT_INJECTION
3317 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3318 REG("fail-nth", 0644, proc_fail_nth_operations),
3319#endif
3320#ifdef CONFIG_ELF_CORE
3321 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3322#endif
3323#ifdef CONFIG_TASK_IO_ACCOUNTING
3324 ONE("io", S_IRUSR, proc_tgid_io_accounting),
3325#endif
3326#ifdef CONFIG_USER_NS
3327 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3328 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3329 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3330 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
3331#endif
3332#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3333 REG("timers", S_IRUGO, proc_timers_operations),
3334#endif
3335 REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3336#ifdef CONFIG_LIVEPATCH
3337 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
3338#endif
3339#ifdef CONFIG_STACKLEAK_METRICS
3340 ONE("stack_depth", S_IRUGO, proc_stack_depth),
3341#endif
3342#ifdef CONFIG_PROC_PID_ARCH_STATUS
3343 ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3344#endif
3345#ifdef CONFIG_SECCOMP_CACHE_DEBUG
3346 ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
3347#endif
3348#ifdef CONFIG_KSM
3349 ONE("ksm_merging_pages", S_IRUSR, proc_pid_ksm_merging_pages),
3350 ONE("ksm_stat", S_IRUSR, proc_pid_ksm_stat),
3351#endif
3352};
3353
3354static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3355{
3356 return proc_pident_readdir(file, ctx,
3357 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3358}
3359
3360static const struct file_operations proc_tgid_base_operations = {
3361 .read = generic_read_dir,
3362 .iterate_shared = proc_tgid_base_readdir,
3363 .llseek = generic_file_llseek,
3364};
3365
3366struct pid *tgid_pidfd_to_pid(const struct file *file)
3367{
3368 if (file->f_op != &proc_tgid_base_operations)
3369 return ERR_PTR(-EBADF);
3370
3371 return proc_pid(file_inode(file));
3372}
3373
3374static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3375{
3376 return proc_pident_lookup(dir, dentry,
3377 tgid_base_stuff,
3378 tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff));
3379}
3380
3381static const struct inode_operations proc_tgid_base_inode_operations = {
3382 .lookup = proc_tgid_base_lookup,
3383 .getattr = pid_getattr,
3384 .setattr = proc_setattr,
3385 .permission = proc_pid_permission,
3386};
3387
3388/**
3389 * proc_flush_pid - Remove dcache entries for @pid from the /proc dcache.
3390 * @pid: pid that should be flushed.
3391 *
3392 * This function walks a list of inodes (that belong to any proc
3393 * filesystem) that are attached to the pid and flushes them from
3394 * the dentry cache.
3395 *
3396 * It is safe and reasonable to cache /proc entries for a task until
3397 * that task exits. After that they just clog up the dcache with
3398 * useless entries, possibly causing useful dcache entries to be
3399 * flushed instead. This routine is provided to flush those useless
3400 * dcache entries when a process is reaped.
3401 *
3402 * NOTE: This routine is just an optimization so it does not guarantee
3403 * that no dcache entries will exist after a process is reaped
3404 * it just makes it very unlikely that any will persist.
3405 */
3406
3407void proc_flush_pid(struct pid *pid)
3408{
3409 proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock);
3410}
3411
3412static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3413 struct task_struct *task, const void *ptr)
3414{
3415 struct inode *inode;
3416
3417 inode = proc_pid_make_base_inode(dentry->d_sb, task,
3418 S_IFDIR | S_IRUGO | S_IXUGO);
3419 if (!inode)
3420 return ERR_PTR(-ENOENT);
3421
3422 inode->i_op = &proc_tgid_base_inode_operations;
3423 inode->i_fop = &proc_tgid_base_operations;
3424 inode->i_flags|=S_IMMUTABLE;
3425
3426 set_nlink(inode, nlink_tgid);
3427 pid_update_inode(task, inode);
3428
3429 d_set_d_op(dentry, &pid_dentry_operations);
3430 return d_splice_alias(inode, dentry);
3431}
3432
3433struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags)
3434{
3435 struct task_struct *task;
3436 unsigned tgid;
3437 struct proc_fs_info *fs_info;
3438 struct pid_namespace *ns;
3439 struct dentry *result = ERR_PTR(-ENOENT);
3440
3441 tgid = name_to_int(&dentry->d_name);
3442 if (tgid == ~0U)
3443 goto out;
3444
3445 fs_info = proc_sb_info(dentry->d_sb);
3446 ns = fs_info->pid_ns;
3447 rcu_read_lock();
3448 task = find_task_by_pid_ns(tgid, ns);
3449 if (task)
3450 get_task_struct(task);
3451 rcu_read_unlock();
3452 if (!task)
3453 goto out;
3454
3455 /* Limit procfs to only ptraceable tasks */
3456 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) {
3457 if (!has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS))
3458 goto out_put_task;
3459 }
3460
3461 result = proc_pid_instantiate(dentry, task, NULL);
3462out_put_task:
3463 put_task_struct(task);
3464out:
3465 return result;
3466}
3467
3468/*
3469 * Find the first task with tgid >= tgid
3470 *
3471 */
3472struct tgid_iter {
3473 unsigned int tgid;
3474 struct task_struct *task;
3475};
3476static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3477{
3478 struct pid *pid;
3479
3480 if (iter.task)
3481 put_task_struct(iter.task);
3482 rcu_read_lock();
3483retry:
3484 iter.task = NULL;
3485 pid = find_ge_pid(iter.tgid, ns);
3486 if (pid) {
3487 iter.tgid = pid_nr_ns(pid, ns);
3488 iter.task = pid_task(pid, PIDTYPE_TGID);
3489 if (!iter.task) {
3490 iter.tgid += 1;
3491 goto retry;
3492 }
3493 get_task_struct(iter.task);
3494 }
3495 rcu_read_unlock();
3496 return iter;
3497}
3498
3499#define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3500
3501/* for the /proc/ directory itself, after non-process stuff has been done */
3502int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3503{
3504 struct tgid_iter iter;
3505 struct proc_fs_info *fs_info = proc_sb_info(file_inode(file)->i_sb);
3506 struct pid_namespace *ns = proc_pid_ns(file_inode(file)->i_sb);
3507 loff_t pos = ctx->pos;
3508
3509 if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3510 return 0;
3511
3512 if (pos == TGID_OFFSET - 2) {
3513 struct inode *inode = d_inode(fs_info->proc_self);
3514 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3515 return 0;
3516 ctx->pos = pos = pos + 1;
3517 }
3518 if (pos == TGID_OFFSET - 1) {
3519 struct inode *inode = d_inode(fs_info->proc_thread_self);
3520 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3521 return 0;
3522 ctx->pos = pos = pos + 1;
3523 }
3524 iter.tgid = pos - TGID_OFFSET;
3525 iter.task = NULL;
3526 for (iter = next_tgid(ns, iter);
3527 iter.task;
3528 iter.tgid += 1, iter = next_tgid(ns, iter)) {
3529 char name[10 + 1];
3530 unsigned int len;
3531
3532 cond_resched();
3533 if (!has_pid_permissions(fs_info, iter.task, HIDEPID_INVISIBLE))
3534 continue;
3535
3536 len = snprintf(name, sizeof(name), "%u", iter.tgid);
3537 ctx->pos = iter.tgid + TGID_OFFSET;
3538 if (!proc_fill_cache(file, ctx, name, len,
3539 proc_pid_instantiate, iter.task, NULL)) {
3540 put_task_struct(iter.task);
3541 return 0;
3542 }
3543 }
3544 ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3545 return 0;
3546}
3547
3548/*
3549 * proc_tid_comm_permission is a special permission function exclusively
3550 * used for the node /proc/<pid>/task/<tid>/comm.
3551 * It bypasses generic permission checks in the case where a task of the same
3552 * task group attempts to access the node.
3553 * The rationale behind this is that glibc and bionic access this node for
3554 * cross thread naming (pthread_set/getname_np(!self)). However, if
3555 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3556 * which locks out the cross thread naming implementation.
3557 * This function makes sure that the node is always accessible for members of
3558 * same thread group.
3559 */
3560static int proc_tid_comm_permission(struct user_namespace *mnt_userns,
3561 struct inode *inode, int mask)
3562{
3563 bool is_same_tgroup;
3564 struct task_struct *task;
3565
3566 task = get_proc_task(inode);
3567 if (!task)
3568 return -ESRCH;
3569 is_same_tgroup = same_thread_group(current, task);
3570 put_task_struct(task);
3571
3572 if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3573 /* This file (/proc/<pid>/task/<tid>/comm) can always be
3574 * read or written by the members of the corresponding
3575 * thread group.
3576 */
3577 return 0;
3578 }
3579
3580 return generic_permission(&init_user_ns, inode, mask);
3581}
3582
3583static const struct inode_operations proc_tid_comm_inode_operations = {
3584 .permission = proc_tid_comm_permission,
3585};
3586
3587/*
3588 * Tasks
3589 */
3590static const struct pid_entry tid_base_stuff[] = {
3591 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3592 DIR("fdinfo", S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3593 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3594#ifdef CONFIG_NET
3595 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3596#endif
3597 REG("environ", S_IRUSR, proc_environ_operations),
3598 REG("auxv", S_IRUSR, proc_auxv_operations),
3599 ONE("status", S_IRUGO, proc_pid_status),
3600 ONE("personality", S_IRUSR, proc_pid_personality),
3601 ONE("limits", S_IRUGO, proc_pid_limits),
3602#ifdef CONFIG_SCHED_DEBUG
3603 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3604#endif
3605 NOD("comm", S_IFREG|S_IRUGO|S_IWUSR,
3606 &proc_tid_comm_inode_operations,
3607 &proc_pid_set_comm_operations, {}),
3608#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3609 ONE("syscall", S_IRUSR, proc_pid_syscall),
3610#endif
3611 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
3612 ONE("stat", S_IRUGO, proc_tid_stat),
3613 ONE("statm", S_IRUGO, proc_pid_statm),
3614 REG("maps", S_IRUGO, proc_pid_maps_operations),
3615#ifdef CONFIG_PROC_CHILDREN
3616 REG("children", S_IRUGO, proc_tid_children_operations),
3617#endif
3618#ifdef CONFIG_NUMA
3619 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3620#endif
3621 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3622 LNK("cwd", proc_cwd_link),
3623 LNK("root", proc_root_link),
3624 LNK("exe", proc_exe_link),
3625 REG("mounts", S_IRUGO, proc_mounts_operations),
3626 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3627#ifdef CONFIG_PROC_PAGE_MONITOR
3628 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3629 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
3630 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3631 REG("pagemap", S_IRUSR, proc_pagemap_operations),
3632#endif
3633#ifdef CONFIG_SECURITY
3634 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3635#endif
3636#ifdef CONFIG_KALLSYMS
3637 ONE("wchan", S_IRUGO, proc_pid_wchan),
3638#endif
3639#ifdef CONFIG_STACKTRACE
3640 ONE("stack", S_IRUSR, proc_pid_stack),
3641#endif
3642#ifdef CONFIG_SCHED_INFO
3643 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3644#endif
3645#ifdef CONFIG_LATENCYTOP
3646 REG("latency", S_IRUGO, proc_lstats_operations),
3647#endif
3648#ifdef CONFIG_PROC_PID_CPUSET
3649 ONE("cpuset", S_IRUGO, proc_cpuset_show),
3650#endif
3651#ifdef CONFIG_CGROUPS
3652 ONE("cgroup", S_IRUGO, proc_cgroup_show),
3653#endif
3654#ifdef CONFIG_PROC_CPU_RESCTRL
3655 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3656#endif
3657 ONE("oom_score", S_IRUGO, proc_oom_score),
3658 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3659 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3660#ifdef CONFIG_AUDIT
3661 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3662 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3663#endif
3664#ifdef CONFIG_FAULT_INJECTION
3665 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3666 REG("fail-nth", 0644, proc_fail_nth_operations),
3667#endif
3668#ifdef CONFIG_TASK_IO_ACCOUNTING
3669 ONE("io", S_IRUSR, proc_tid_io_accounting),
3670#endif
3671#ifdef CONFIG_USER_NS
3672 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3673 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3674 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3675 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
3676#endif
3677#ifdef CONFIG_LIVEPATCH
3678 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
3679#endif
3680#ifdef CONFIG_PROC_PID_ARCH_STATUS
3681 ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3682#endif
3683#ifdef CONFIG_SECCOMP_CACHE_DEBUG
3684 ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
3685#endif
3686#ifdef CONFIG_KSM
3687 ONE("ksm_merging_pages", S_IRUSR, proc_pid_ksm_merging_pages),
3688 ONE("ksm_stat", S_IRUSR, proc_pid_ksm_stat),
3689#endif
3690};
3691
3692static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3693{
3694 return proc_pident_readdir(file, ctx,
3695 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3696}
3697
3698static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3699{
3700 return proc_pident_lookup(dir, dentry,
3701 tid_base_stuff,
3702 tid_base_stuff + ARRAY_SIZE(tid_base_stuff));
3703}
3704
3705static const struct file_operations proc_tid_base_operations = {
3706 .read = generic_read_dir,
3707 .iterate_shared = proc_tid_base_readdir,
3708 .llseek = generic_file_llseek,
3709};
3710
3711static const struct inode_operations proc_tid_base_inode_operations = {
3712 .lookup = proc_tid_base_lookup,
3713 .getattr = pid_getattr,
3714 .setattr = proc_setattr,
3715};
3716
3717static struct dentry *proc_task_instantiate(struct dentry *dentry,
3718 struct task_struct *task, const void *ptr)
3719{
3720 struct inode *inode;
3721 inode = proc_pid_make_base_inode(dentry->d_sb, task,
3722 S_IFDIR | S_IRUGO | S_IXUGO);
3723 if (!inode)
3724 return ERR_PTR(-ENOENT);
3725
3726 inode->i_op = &proc_tid_base_inode_operations;
3727 inode->i_fop = &proc_tid_base_operations;
3728 inode->i_flags |= S_IMMUTABLE;
3729
3730 set_nlink(inode, nlink_tid);
3731 pid_update_inode(task, inode);
3732
3733 d_set_d_op(dentry, &pid_dentry_operations);
3734 return d_splice_alias(inode, dentry);
3735}
3736
3737static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3738{
3739 struct task_struct *task;
3740 struct task_struct *leader = get_proc_task(dir);
3741 unsigned tid;
3742 struct proc_fs_info *fs_info;
3743 struct pid_namespace *ns;
3744 struct dentry *result = ERR_PTR(-ENOENT);
3745
3746 if (!leader)
3747 goto out_no_task;
3748
3749 tid = name_to_int(&dentry->d_name);
3750 if (tid == ~0U)
3751 goto out;
3752
3753 fs_info = proc_sb_info(dentry->d_sb);
3754 ns = fs_info->pid_ns;
3755 rcu_read_lock();
3756 task = find_task_by_pid_ns(tid, ns);
3757 if (task)
3758 get_task_struct(task);
3759 rcu_read_unlock();
3760 if (!task)
3761 goto out;
3762 if (!same_thread_group(leader, task))
3763 goto out_drop_task;
3764
3765 result = proc_task_instantiate(dentry, task, NULL);
3766out_drop_task:
3767 put_task_struct(task);
3768out:
3769 put_task_struct(leader);
3770out_no_task:
3771 return result;
3772}
3773
3774/*
3775 * Find the first tid of a thread group to return to user space.
3776 *
3777 * Usually this is just the thread group leader, but if the users
3778 * buffer was too small or there was a seek into the middle of the
3779 * directory we have more work todo.
3780 *
3781 * In the case of a short read we start with find_task_by_pid.
3782 *
3783 * In the case of a seek we start with the leader and walk nr
3784 * threads past it.
3785 */
3786static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3787 struct pid_namespace *ns)
3788{
3789 struct task_struct *pos, *task;
3790 unsigned long nr = f_pos;
3791
3792 if (nr != f_pos) /* 32bit overflow? */
3793 return NULL;
3794
3795 rcu_read_lock();
3796 task = pid_task(pid, PIDTYPE_PID);
3797 if (!task)
3798 goto fail;
3799
3800 /* Attempt to start with the tid of a thread */
3801 if (tid && nr) {
3802 pos = find_task_by_pid_ns(tid, ns);
3803 if (pos && same_thread_group(pos, task))
3804 goto found;
3805 }
3806
3807 /* If nr exceeds the number of threads there is nothing todo */
3808 if (nr >= get_nr_threads(task))
3809 goto fail;
3810
3811 /* If we haven't found our starting place yet start
3812 * with the leader and walk nr threads forward.
3813 */
3814 pos = task = task->group_leader;
3815 do {
3816 if (!nr--)
3817 goto found;
3818 } while_each_thread(task, pos);
3819fail:
3820 pos = NULL;
3821 goto out;
3822found:
3823 get_task_struct(pos);
3824out:
3825 rcu_read_unlock();
3826 return pos;
3827}
3828
3829/*
3830 * Find the next thread in the thread list.
3831 * Return NULL if there is an error or no next thread.
3832 *
3833 * The reference to the input task_struct is released.
3834 */
3835static struct task_struct *next_tid(struct task_struct *start)
3836{
3837 struct task_struct *pos = NULL;
3838 rcu_read_lock();
3839 if (pid_alive(start)) {
3840 pos = next_thread(start);
3841 if (thread_group_leader(pos))
3842 pos = NULL;
3843 else
3844 get_task_struct(pos);
3845 }
3846 rcu_read_unlock();
3847 put_task_struct(start);
3848 return pos;
3849}
3850
3851/* for the /proc/TGID/task/ directories */
3852static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3853{
3854 struct inode *inode = file_inode(file);
3855 struct task_struct *task;
3856 struct pid_namespace *ns;
3857 int tid;
3858
3859 if (proc_inode_is_dead(inode))
3860 return -ENOENT;
3861
3862 if (!dir_emit_dots(file, ctx))
3863 return 0;
3864
3865 /* f_version caches the tgid value that the last readdir call couldn't
3866 * return. lseek aka telldir automagically resets f_version to 0.
3867 */
3868 ns = proc_pid_ns(inode->i_sb);
3869 tid = (int)file->f_version;
3870 file->f_version = 0;
3871 for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3872 task;
3873 task = next_tid(task), ctx->pos++) {
3874 char name[10 + 1];
3875 unsigned int len;
3876
3877 tid = task_pid_nr_ns(task, ns);
3878 if (!tid)
3879 continue; /* The task has just exited. */
3880 len = snprintf(name, sizeof(name), "%u", tid);
3881 if (!proc_fill_cache(file, ctx, name, len,
3882 proc_task_instantiate, task, NULL)) {
3883 /* returning this tgid failed, save it as the first
3884 * pid for the next readir call */
3885 file->f_version = (u64)tid;
3886 put_task_struct(task);
3887 break;
3888 }
3889 }
3890
3891 return 0;
3892}
3893
3894static int proc_task_getattr(struct user_namespace *mnt_userns,
3895 const struct path *path, struct kstat *stat,
3896 u32 request_mask, unsigned int query_flags)
3897{
3898 struct inode *inode = d_inode(path->dentry);
3899 struct task_struct *p = get_proc_task(inode);
3900 generic_fillattr(&init_user_ns, inode, stat);
3901
3902 if (p) {
3903 stat->nlink += get_nr_threads(p);
3904 put_task_struct(p);
3905 }
3906
3907 return 0;
3908}
3909
3910static const struct inode_operations proc_task_inode_operations = {
3911 .lookup = proc_task_lookup,
3912 .getattr = proc_task_getattr,
3913 .setattr = proc_setattr,
3914 .permission = proc_pid_permission,
3915};
3916
3917static const struct file_operations proc_task_operations = {
3918 .read = generic_read_dir,
3919 .iterate_shared = proc_task_readdir,
3920 .llseek = generic_file_llseek,
3921};
3922
3923void __init set_proc_pid_nlink(void)
3924{
3925 nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3926 nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3927}
1/*
2 * linux/fs/proc/base.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * proc base directory handling functions
7 *
8 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9 * Instead of using magical inumbers to determine the kind of object
10 * we allocate and fill in-core inodes upon lookup. They don't even
11 * go into icache. We cache the reference to task_struct upon lookup too.
12 * Eventually it should become a filesystem in its own. We don't use the
13 * rest of procfs anymore.
14 *
15 *
16 * Changelog:
17 * 17-Jan-2005
18 * Allan Bezerra
19 * Bruna Moreira <bruna.moreira@indt.org.br>
20 * Edjard Mota <edjard.mota@indt.org.br>
21 * Ilias Biris <ilias.biris@indt.org.br>
22 * Mauricio Lin <mauricio.lin@indt.org.br>
23 *
24 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25 *
26 * A new process specific entry (smaps) included in /proc. It shows the
27 * size of rss for each memory area. The maps entry lacks information
28 * about physical memory size (rss) for each mapped file, i.e.,
29 * rss information for executables and library files.
30 * This additional information is useful for any tools that need to know
31 * about physical memory consumption for a process specific library.
32 *
33 * Changelog:
34 * 21-Feb-2005
35 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36 * Pud inclusion in the page table walking.
37 *
38 * ChangeLog:
39 * 10-Mar-2005
40 * 10LE Instituto Nokia de Tecnologia - INdT:
41 * A better way to walks through the page table as suggested by Hugh Dickins.
42 *
43 * Simo Piiroinen <simo.piiroinen@nokia.com>:
44 * Smaps information related to shared, private, clean and dirty pages.
45 *
46 * Paul Mundt <paul.mundt@nokia.com>:
47 * Overall revision about smaps.
48 */
49
50#include <asm/uaccess.h>
51
52#include <linux/errno.h>
53#include <linux/time.h>
54#include <linux/proc_fs.h>
55#include <linux/stat.h>
56#include <linux/task_io_accounting_ops.h>
57#include <linux/init.h>
58#include <linux/capability.h>
59#include <linux/file.h>
60#include <linux/fdtable.h>
61#include <linux/string.h>
62#include <linux/seq_file.h>
63#include <linux/namei.h>
64#include <linux/mnt_namespace.h>
65#include <linux/mm.h>
66#include <linux/swap.h>
67#include <linux/rcupdate.h>
68#include <linux/kallsyms.h>
69#include <linux/stacktrace.h>
70#include <linux/resource.h>
71#include <linux/module.h>
72#include <linux/mount.h>
73#include <linux/security.h>
74#include <linux/ptrace.h>
75#include <linux/tracehook.h>
76#include <linux/cgroup.h>
77#include <linux/cpuset.h>
78#include <linux/audit.h>
79#include <linux/poll.h>
80#include <linux/nsproxy.h>
81#include <linux/oom.h>
82#include <linux/elf.h>
83#include <linux/pid_namespace.h>
84#include <linux/fs_struct.h>
85#include <linux/slab.h>
86#ifdef CONFIG_HARDWALL
87#include <asm/hardwall.h>
88#endif
89#include "internal.h"
90
91/* NOTE:
92 * Implementing inode permission operations in /proc is almost
93 * certainly an error. Permission checks need to happen during
94 * each system call not at open time. The reason is that most of
95 * what we wish to check for permissions in /proc varies at runtime.
96 *
97 * The classic example of a problem is opening file descriptors
98 * in /proc for a task before it execs a suid executable.
99 */
100
101struct pid_entry {
102 char *name;
103 int len;
104 mode_t mode;
105 const struct inode_operations *iop;
106 const struct file_operations *fop;
107 union proc_op op;
108};
109
110#define NOD(NAME, MODE, IOP, FOP, OP) { \
111 .name = (NAME), \
112 .len = sizeof(NAME) - 1, \
113 .mode = MODE, \
114 .iop = IOP, \
115 .fop = FOP, \
116 .op = OP, \
117}
118
119#define DIR(NAME, MODE, iops, fops) \
120 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
121#define LNK(NAME, get_link) \
122 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
123 &proc_pid_link_inode_operations, NULL, \
124 { .proc_get_link = get_link } )
125#define REG(NAME, MODE, fops) \
126 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
127#define INF(NAME, MODE, read) \
128 NOD(NAME, (S_IFREG|(MODE)), \
129 NULL, &proc_info_file_operations, \
130 { .proc_read = read } )
131#define ONE(NAME, MODE, show) \
132 NOD(NAME, (S_IFREG|(MODE)), \
133 NULL, &proc_single_file_operations, \
134 { .proc_show = show } )
135
136/*
137 * Count the number of hardlinks for the pid_entry table, excluding the .
138 * and .. links.
139 */
140static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
141 unsigned int n)
142{
143 unsigned int i;
144 unsigned int count;
145
146 count = 0;
147 for (i = 0; i < n; ++i) {
148 if (S_ISDIR(entries[i].mode))
149 ++count;
150 }
151
152 return count;
153}
154
155static int get_task_root(struct task_struct *task, struct path *root)
156{
157 int result = -ENOENT;
158
159 task_lock(task);
160 if (task->fs) {
161 get_fs_root(task->fs, root);
162 result = 0;
163 }
164 task_unlock(task);
165 return result;
166}
167
168static int proc_cwd_link(struct inode *inode, struct path *path)
169{
170 struct task_struct *task = get_proc_task(inode);
171 int result = -ENOENT;
172
173 if (task) {
174 task_lock(task);
175 if (task->fs) {
176 get_fs_pwd(task->fs, path);
177 result = 0;
178 }
179 task_unlock(task);
180 put_task_struct(task);
181 }
182 return result;
183}
184
185static int proc_root_link(struct inode *inode, struct path *path)
186{
187 struct task_struct *task = get_proc_task(inode);
188 int result = -ENOENT;
189
190 if (task) {
191 result = get_task_root(task, path);
192 put_task_struct(task);
193 }
194 return result;
195}
196
197static struct mm_struct *__check_mem_permission(struct task_struct *task)
198{
199 struct mm_struct *mm;
200
201 mm = get_task_mm(task);
202 if (!mm)
203 return ERR_PTR(-EINVAL);
204
205 /*
206 * A task can always look at itself, in case it chooses
207 * to use system calls instead of load instructions.
208 */
209 if (task == current)
210 return mm;
211
212 /*
213 * If current is actively ptrace'ing, and would also be
214 * permitted to freshly attach with ptrace now, permit it.
215 */
216 if (task_is_stopped_or_traced(task)) {
217 int match;
218 rcu_read_lock();
219 match = (ptrace_parent(task) == current);
220 rcu_read_unlock();
221 if (match && ptrace_may_access(task, PTRACE_MODE_ATTACH))
222 return mm;
223 }
224
225 /*
226 * No one else is allowed.
227 */
228 mmput(mm);
229 return ERR_PTR(-EPERM);
230}
231
232/*
233 * If current may access user memory in @task return a reference to the
234 * corresponding mm, otherwise ERR_PTR.
235 */
236static struct mm_struct *check_mem_permission(struct task_struct *task)
237{
238 struct mm_struct *mm;
239 int err;
240
241 /*
242 * Avoid racing if task exec's as we might get a new mm but validate
243 * against old credentials.
244 */
245 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
246 if (err)
247 return ERR_PTR(err);
248
249 mm = __check_mem_permission(task);
250 mutex_unlock(&task->signal->cred_guard_mutex);
251
252 return mm;
253}
254
255struct mm_struct *mm_for_maps(struct task_struct *task)
256{
257 struct mm_struct *mm;
258 int err;
259
260 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
261 if (err)
262 return ERR_PTR(err);
263
264 mm = get_task_mm(task);
265 if (mm && mm != current->mm &&
266 !ptrace_may_access(task, PTRACE_MODE_READ)) {
267 mmput(mm);
268 mm = ERR_PTR(-EACCES);
269 }
270 mutex_unlock(&task->signal->cred_guard_mutex);
271
272 return mm;
273}
274
275static int proc_pid_cmdline(struct task_struct *task, char * buffer)
276{
277 int res = 0;
278 unsigned int len;
279 struct mm_struct *mm = get_task_mm(task);
280 if (!mm)
281 goto out;
282 if (!mm->arg_end)
283 goto out_mm; /* Shh! No looking before we're done */
284
285 len = mm->arg_end - mm->arg_start;
286
287 if (len > PAGE_SIZE)
288 len = PAGE_SIZE;
289
290 res = access_process_vm(task, mm->arg_start, buffer, len, 0);
291
292 // If the nul at the end of args has been overwritten, then
293 // assume application is using setproctitle(3).
294 if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
295 len = strnlen(buffer, res);
296 if (len < res) {
297 res = len;
298 } else {
299 len = mm->env_end - mm->env_start;
300 if (len > PAGE_SIZE - res)
301 len = PAGE_SIZE - res;
302 res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
303 res = strnlen(buffer, res);
304 }
305 }
306out_mm:
307 mmput(mm);
308out:
309 return res;
310}
311
312static int proc_pid_auxv(struct task_struct *task, char *buffer)
313{
314 struct mm_struct *mm = mm_for_maps(task);
315 int res = PTR_ERR(mm);
316 if (mm && !IS_ERR(mm)) {
317 unsigned int nwords = 0;
318 do {
319 nwords += 2;
320 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
321 res = nwords * sizeof(mm->saved_auxv[0]);
322 if (res > PAGE_SIZE)
323 res = PAGE_SIZE;
324 memcpy(buffer, mm->saved_auxv, res);
325 mmput(mm);
326 }
327 return res;
328}
329
330
331#ifdef CONFIG_KALLSYMS
332/*
333 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
334 * Returns the resolved symbol. If that fails, simply return the address.
335 */
336static int proc_pid_wchan(struct task_struct *task, char *buffer)
337{
338 unsigned long wchan;
339 char symname[KSYM_NAME_LEN];
340
341 wchan = get_wchan(task);
342
343 if (lookup_symbol_name(wchan, symname) < 0)
344 if (!ptrace_may_access(task, PTRACE_MODE_READ))
345 return 0;
346 else
347 return sprintf(buffer, "%lu", wchan);
348 else
349 return sprintf(buffer, "%s", symname);
350}
351#endif /* CONFIG_KALLSYMS */
352
353static int lock_trace(struct task_struct *task)
354{
355 int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
356 if (err)
357 return err;
358 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) {
359 mutex_unlock(&task->signal->cred_guard_mutex);
360 return -EPERM;
361 }
362 return 0;
363}
364
365static void unlock_trace(struct task_struct *task)
366{
367 mutex_unlock(&task->signal->cred_guard_mutex);
368}
369
370#ifdef CONFIG_STACKTRACE
371
372#define MAX_STACK_TRACE_DEPTH 64
373
374static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
375 struct pid *pid, struct task_struct *task)
376{
377 struct stack_trace trace;
378 unsigned long *entries;
379 int err;
380 int i;
381
382 entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
383 if (!entries)
384 return -ENOMEM;
385
386 trace.nr_entries = 0;
387 trace.max_entries = MAX_STACK_TRACE_DEPTH;
388 trace.entries = entries;
389 trace.skip = 0;
390
391 err = lock_trace(task);
392 if (!err) {
393 save_stack_trace_tsk(task, &trace);
394
395 for (i = 0; i < trace.nr_entries; i++) {
396 seq_printf(m, "[<%pK>] %pS\n",
397 (void *)entries[i], (void *)entries[i]);
398 }
399 unlock_trace(task);
400 }
401 kfree(entries);
402
403 return err;
404}
405#endif
406
407#ifdef CONFIG_SCHEDSTATS
408/*
409 * Provides /proc/PID/schedstat
410 */
411static int proc_pid_schedstat(struct task_struct *task, char *buffer)
412{
413 return sprintf(buffer, "%llu %llu %lu\n",
414 (unsigned long long)task->se.sum_exec_runtime,
415 (unsigned long long)task->sched_info.run_delay,
416 task->sched_info.pcount);
417}
418#endif
419
420#ifdef CONFIG_LATENCYTOP
421static int lstats_show_proc(struct seq_file *m, void *v)
422{
423 int i;
424 struct inode *inode = m->private;
425 struct task_struct *task = get_proc_task(inode);
426
427 if (!task)
428 return -ESRCH;
429 seq_puts(m, "Latency Top version : v0.1\n");
430 for (i = 0; i < 32; i++) {
431 struct latency_record *lr = &task->latency_record[i];
432 if (lr->backtrace[0]) {
433 int q;
434 seq_printf(m, "%i %li %li",
435 lr->count, lr->time, lr->max);
436 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
437 unsigned long bt = lr->backtrace[q];
438 if (!bt)
439 break;
440 if (bt == ULONG_MAX)
441 break;
442 seq_printf(m, " %ps", (void *)bt);
443 }
444 seq_putc(m, '\n');
445 }
446
447 }
448 put_task_struct(task);
449 return 0;
450}
451
452static int lstats_open(struct inode *inode, struct file *file)
453{
454 return single_open(file, lstats_show_proc, inode);
455}
456
457static ssize_t lstats_write(struct file *file, const char __user *buf,
458 size_t count, loff_t *offs)
459{
460 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
461
462 if (!task)
463 return -ESRCH;
464 clear_all_latency_tracing(task);
465 put_task_struct(task);
466
467 return count;
468}
469
470static const struct file_operations proc_lstats_operations = {
471 .open = lstats_open,
472 .read = seq_read,
473 .write = lstats_write,
474 .llseek = seq_lseek,
475 .release = single_release,
476};
477
478#endif
479
480static int proc_oom_score(struct task_struct *task, char *buffer)
481{
482 unsigned long points = 0;
483
484 read_lock(&tasklist_lock);
485 if (pid_alive(task))
486 points = oom_badness(task, NULL, NULL,
487 totalram_pages + total_swap_pages);
488 read_unlock(&tasklist_lock);
489 return sprintf(buffer, "%lu\n", points);
490}
491
492struct limit_names {
493 char *name;
494 char *unit;
495};
496
497static const struct limit_names lnames[RLIM_NLIMITS] = {
498 [RLIMIT_CPU] = {"Max cpu time", "seconds"},
499 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
500 [RLIMIT_DATA] = {"Max data size", "bytes"},
501 [RLIMIT_STACK] = {"Max stack size", "bytes"},
502 [RLIMIT_CORE] = {"Max core file size", "bytes"},
503 [RLIMIT_RSS] = {"Max resident set", "bytes"},
504 [RLIMIT_NPROC] = {"Max processes", "processes"},
505 [RLIMIT_NOFILE] = {"Max open files", "files"},
506 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
507 [RLIMIT_AS] = {"Max address space", "bytes"},
508 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
509 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
510 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
511 [RLIMIT_NICE] = {"Max nice priority", NULL},
512 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
513 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
514};
515
516/* Display limits for a process */
517static int proc_pid_limits(struct task_struct *task, char *buffer)
518{
519 unsigned int i;
520 int count = 0;
521 unsigned long flags;
522 char *bufptr = buffer;
523
524 struct rlimit rlim[RLIM_NLIMITS];
525
526 if (!lock_task_sighand(task, &flags))
527 return 0;
528 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
529 unlock_task_sighand(task, &flags);
530
531 /*
532 * print the file header
533 */
534 count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
535 "Limit", "Soft Limit", "Hard Limit", "Units");
536
537 for (i = 0; i < RLIM_NLIMITS; i++) {
538 if (rlim[i].rlim_cur == RLIM_INFINITY)
539 count += sprintf(&bufptr[count], "%-25s %-20s ",
540 lnames[i].name, "unlimited");
541 else
542 count += sprintf(&bufptr[count], "%-25s %-20lu ",
543 lnames[i].name, rlim[i].rlim_cur);
544
545 if (rlim[i].rlim_max == RLIM_INFINITY)
546 count += sprintf(&bufptr[count], "%-20s ", "unlimited");
547 else
548 count += sprintf(&bufptr[count], "%-20lu ",
549 rlim[i].rlim_max);
550
551 if (lnames[i].unit)
552 count += sprintf(&bufptr[count], "%-10s\n",
553 lnames[i].unit);
554 else
555 count += sprintf(&bufptr[count], "\n");
556 }
557
558 return count;
559}
560
561#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
562static int proc_pid_syscall(struct task_struct *task, char *buffer)
563{
564 long nr;
565 unsigned long args[6], sp, pc;
566 int res = lock_trace(task);
567 if (res)
568 return res;
569
570 if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
571 res = sprintf(buffer, "running\n");
572 else if (nr < 0)
573 res = sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
574 else
575 res = sprintf(buffer,
576 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
577 nr,
578 args[0], args[1], args[2], args[3], args[4], args[5],
579 sp, pc);
580 unlock_trace(task);
581 return res;
582}
583#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
584
585/************************************************************************/
586/* Here the fs part begins */
587/************************************************************************/
588
589/* permission checks */
590static int proc_fd_access_allowed(struct inode *inode)
591{
592 struct task_struct *task;
593 int allowed = 0;
594 /* Allow access to a task's file descriptors if it is us or we
595 * may use ptrace attach to the process and find out that
596 * information.
597 */
598 task = get_proc_task(inode);
599 if (task) {
600 allowed = ptrace_may_access(task, PTRACE_MODE_READ);
601 put_task_struct(task);
602 }
603 return allowed;
604}
605
606int proc_setattr(struct dentry *dentry, struct iattr *attr)
607{
608 int error;
609 struct inode *inode = dentry->d_inode;
610
611 if (attr->ia_valid & ATTR_MODE)
612 return -EPERM;
613
614 error = inode_change_ok(inode, attr);
615 if (error)
616 return error;
617
618 if ((attr->ia_valid & ATTR_SIZE) &&
619 attr->ia_size != i_size_read(inode)) {
620 error = vmtruncate(inode, attr->ia_size);
621 if (error)
622 return error;
623 }
624
625 setattr_copy(inode, attr);
626 mark_inode_dirty(inode);
627 return 0;
628}
629
630static const struct inode_operations proc_def_inode_operations = {
631 .setattr = proc_setattr,
632};
633
634static int mounts_open_common(struct inode *inode, struct file *file,
635 const struct seq_operations *op)
636{
637 struct task_struct *task = get_proc_task(inode);
638 struct nsproxy *nsp;
639 struct mnt_namespace *ns = NULL;
640 struct path root;
641 struct proc_mounts *p;
642 int ret = -EINVAL;
643
644 if (task) {
645 rcu_read_lock();
646 nsp = task_nsproxy(task);
647 if (nsp) {
648 ns = nsp->mnt_ns;
649 if (ns)
650 get_mnt_ns(ns);
651 }
652 rcu_read_unlock();
653 if (ns && get_task_root(task, &root) == 0)
654 ret = 0;
655 put_task_struct(task);
656 }
657
658 if (!ns)
659 goto err;
660 if (ret)
661 goto err_put_ns;
662
663 ret = -ENOMEM;
664 p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
665 if (!p)
666 goto err_put_path;
667
668 file->private_data = &p->m;
669 ret = seq_open(file, op);
670 if (ret)
671 goto err_free;
672
673 p->m.private = p;
674 p->ns = ns;
675 p->root = root;
676 p->m.poll_event = ns->event;
677
678 return 0;
679
680 err_free:
681 kfree(p);
682 err_put_path:
683 path_put(&root);
684 err_put_ns:
685 put_mnt_ns(ns);
686 err:
687 return ret;
688}
689
690static int mounts_release(struct inode *inode, struct file *file)
691{
692 struct proc_mounts *p = file->private_data;
693 path_put(&p->root);
694 put_mnt_ns(p->ns);
695 return seq_release(inode, file);
696}
697
698static unsigned mounts_poll(struct file *file, poll_table *wait)
699{
700 struct proc_mounts *p = file->private_data;
701 unsigned res = POLLIN | POLLRDNORM;
702
703 poll_wait(file, &p->ns->poll, wait);
704 if (mnt_had_events(p))
705 res |= POLLERR | POLLPRI;
706
707 return res;
708}
709
710static int mounts_open(struct inode *inode, struct file *file)
711{
712 return mounts_open_common(inode, file, &mounts_op);
713}
714
715static const struct file_operations proc_mounts_operations = {
716 .open = mounts_open,
717 .read = seq_read,
718 .llseek = seq_lseek,
719 .release = mounts_release,
720 .poll = mounts_poll,
721};
722
723static int mountinfo_open(struct inode *inode, struct file *file)
724{
725 return mounts_open_common(inode, file, &mountinfo_op);
726}
727
728static const struct file_operations proc_mountinfo_operations = {
729 .open = mountinfo_open,
730 .read = seq_read,
731 .llseek = seq_lseek,
732 .release = mounts_release,
733 .poll = mounts_poll,
734};
735
736static int mountstats_open(struct inode *inode, struct file *file)
737{
738 return mounts_open_common(inode, file, &mountstats_op);
739}
740
741static const struct file_operations proc_mountstats_operations = {
742 .open = mountstats_open,
743 .read = seq_read,
744 .llseek = seq_lseek,
745 .release = mounts_release,
746};
747
748#define PROC_BLOCK_SIZE (3*1024) /* 4K page size but our output routines use some slack for overruns */
749
750static ssize_t proc_info_read(struct file * file, char __user * buf,
751 size_t count, loff_t *ppos)
752{
753 struct inode * inode = file->f_path.dentry->d_inode;
754 unsigned long page;
755 ssize_t length;
756 struct task_struct *task = get_proc_task(inode);
757
758 length = -ESRCH;
759 if (!task)
760 goto out_no_task;
761
762 if (count > PROC_BLOCK_SIZE)
763 count = PROC_BLOCK_SIZE;
764
765 length = -ENOMEM;
766 if (!(page = __get_free_page(GFP_TEMPORARY)))
767 goto out;
768
769 length = PROC_I(inode)->op.proc_read(task, (char*)page);
770
771 if (length >= 0)
772 length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
773 free_page(page);
774out:
775 put_task_struct(task);
776out_no_task:
777 return length;
778}
779
780static const struct file_operations proc_info_file_operations = {
781 .read = proc_info_read,
782 .llseek = generic_file_llseek,
783};
784
785static int proc_single_show(struct seq_file *m, void *v)
786{
787 struct inode *inode = m->private;
788 struct pid_namespace *ns;
789 struct pid *pid;
790 struct task_struct *task;
791 int ret;
792
793 ns = inode->i_sb->s_fs_info;
794 pid = proc_pid(inode);
795 task = get_pid_task(pid, PIDTYPE_PID);
796 if (!task)
797 return -ESRCH;
798
799 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
800
801 put_task_struct(task);
802 return ret;
803}
804
805static int proc_single_open(struct inode *inode, struct file *filp)
806{
807 return single_open(filp, proc_single_show, inode);
808}
809
810static const struct file_operations proc_single_file_operations = {
811 .open = proc_single_open,
812 .read = seq_read,
813 .llseek = seq_lseek,
814 .release = single_release,
815};
816
817static int mem_open(struct inode* inode, struct file* file)
818{
819 file->private_data = (void*)((long)current->self_exec_id);
820 /* OK to pass negative loff_t, we can catch out-of-range */
821 file->f_mode |= FMODE_UNSIGNED_OFFSET;
822 return 0;
823}
824
825static ssize_t mem_read(struct file * file, char __user * buf,
826 size_t count, loff_t *ppos)
827{
828 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
829 char *page;
830 unsigned long src = *ppos;
831 int ret = -ESRCH;
832 struct mm_struct *mm;
833
834 if (!task)
835 goto out_no_task;
836
837 ret = -ENOMEM;
838 page = (char *)__get_free_page(GFP_TEMPORARY);
839 if (!page)
840 goto out;
841
842 mm = check_mem_permission(task);
843 ret = PTR_ERR(mm);
844 if (IS_ERR(mm))
845 goto out_free;
846
847 ret = -EIO;
848
849 if (file->private_data != (void*)((long)current->self_exec_id))
850 goto out_put;
851
852 ret = 0;
853
854 while (count > 0) {
855 int this_len, retval;
856
857 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
858 retval = access_remote_vm(mm, src, page, this_len, 0);
859 if (!retval) {
860 if (!ret)
861 ret = -EIO;
862 break;
863 }
864
865 if (copy_to_user(buf, page, retval)) {
866 ret = -EFAULT;
867 break;
868 }
869
870 ret += retval;
871 src += retval;
872 buf += retval;
873 count -= retval;
874 }
875 *ppos = src;
876
877out_put:
878 mmput(mm);
879out_free:
880 free_page((unsigned long) page);
881out:
882 put_task_struct(task);
883out_no_task:
884 return ret;
885}
886
887static ssize_t mem_write(struct file * file, const char __user *buf,
888 size_t count, loff_t *ppos)
889{
890 int copied;
891 char *page;
892 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
893 unsigned long dst = *ppos;
894 struct mm_struct *mm;
895
896 copied = -ESRCH;
897 if (!task)
898 goto out_no_task;
899
900 copied = -ENOMEM;
901 page = (char *)__get_free_page(GFP_TEMPORARY);
902 if (!page)
903 goto out_task;
904
905 mm = check_mem_permission(task);
906 copied = PTR_ERR(mm);
907 if (IS_ERR(mm))
908 goto out_free;
909
910 copied = -EIO;
911 if (file->private_data != (void *)((long)current->self_exec_id))
912 goto out_mm;
913
914 copied = 0;
915 while (count > 0) {
916 int this_len, retval;
917
918 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
919 if (copy_from_user(page, buf, this_len)) {
920 copied = -EFAULT;
921 break;
922 }
923 retval = access_remote_vm(mm, dst, page, this_len, 1);
924 if (!retval) {
925 if (!copied)
926 copied = -EIO;
927 break;
928 }
929 copied += retval;
930 buf += retval;
931 dst += retval;
932 count -= retval;
933 }
934 *ppos = dst;
935
936out_mm:
937 mmput(mm);
938out_free:
939 free_page((unsigned long) page);
940out_task:
941 put_task_struct(task);
942out_no_task:
943 return copied;
944}
945
946loff_t mem_lseek(struct file *file, loff_t offset, int orig)
947{
948 switch (orig) {
949 case 0:
950 file->f_pos = offset;
951 break;
952 case 1:
953 file->f_pos += offset;
954 break;
955 default:
956 return -EINVAL;
957 }
958 force_successful_syscall_return();
959 return file->f_pos;
960}
961
962static const struct file_operations proc_mem_operations = {
963 .llseek = mem_lseek,
964 .read = mem_read,
965 .write = mem_write,
966 .open = mem_open,
967};
968
969static ssize_t environ_read(struct file *file, char __user *buf,
970 size_t count, loff_t *ppos)
971{
972 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
973 char *page;
974 unsigned long src = *ppos;
975 int ret = -ESRCH;
976 struct mm_struct *mm;
977
978 if (!task)
979 goto out_no_task;
980
981 ret = -ENOMEM;
982 page = (char *)__get_free_page(GFP_TEMPORARY);
983 if (!page)
984 goto out;
985
986
987 mm = mm_for_maps(task);
988 ret = PTR_ERR(mm);
989 if (!mm || IS_ERR(mm))
990 goto out_free;
991
992 ret = 0;
993 while (count > 0) {
994 int this_len, retval, max_len;
995
996 this_len = mm->env_end - (mm->env_start + src);
997
998 if (this_len <= 0)
999 break;
1000
1001 max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
1002 this_len = (this_len > max_len) ? max_len : this_len;
1003
1004 retval = access_process_vm(task, (mm->env_start + src),
1005 page, this_len, 0);
1006
1007 if (retval <= 0) {
1008 ret = retval;
1009 break;
1010 }
1011
1012 if (copy_to_user(buf, page, retval)) {
1013 ret = -EFAULT;
1014 break;
1015 }
1016
1017 ret += retval;
1018 src += retval;
1019 buf += retval;
1020 count -= retval;
1021 }
1022 *ppos = src;
1023
1024 mmput(mm);
1025out_free:
1026 free_page((unsigned long) page);
1027out:
1028 put_task_struct(task);
1029out_no_task:
1030 return ret;
1031}
1032
1033static const struct file_operations proc_environ_operations = {
1034 .read = environ_read,
1035 .llseek = generic_file_llseek,
1036};
1037
1038static ssize_t oom_adjust_read(struct file *file, char __user *buf,
1039 size_t count, loff_t *ppos)
1040{
1041 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
1042 char buffer[PROC_NUMBUF];
1043 size_t len;
1044 int oom_adjust = OOM_DISABLE;
1045 unsigned long flags;
1046
1047 if (!task)
1048 return -ESRCH;
1049
1050 if (lock_task_sighand(task, &flags)) {
1051 oom_adjust = task->signal->oom_adj;
1052 unlock_task_sighand(task, &flags);
1053 }
1054
1055 put_task_struct(task);
1056
1057 len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
1058
1059 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1060}
1061
1062static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
1063 size_t count, loff_t *ppos)
1064{
1065 struct task_struct *task;
1066 char buffer[PROC_NUMBUF];
1067 int oom_adjust;
1068 unsigned long flags;
1069 int err;
1070
1071 memset(buffer, 0, sizeof(buffer));
1072 if (count > sizeof(buffer) - 1)
1073 count = sizeof(buffer) - 1;
1074 if (copy_from_user(buffer, buf, count)) {
1075 err = -EFAULT;
1076 goto out;
1077 }
1078
1079 err = kstrtoint(strstrip(buffer), 0, &oom_adjust);
1080 if (err)
1081 goto out;
1082 if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
1083 oom_adjust != OOM_DISABLE) {
1084 err = -EINVAL;
1085 goto out;
1086 }
1087
1088 task = get_proc_task(file->f_path.dentry->d_inode);
1089 if (!task) {
1090 err = -ESRCH;
1091 goto out;
1092 }
1093
1094 task_lock(task);
1095 if (!task->mm) {
1096 err = -EINVAL;
1097 goto err_task_lock;
1098 }
1099
1100 if (!lock_task_sighand(task, &flags)) {
1101 err = -ESRCH;
1102 goto err_task_lock;
1103 }
1104
1105 if (oom_adjust < task->signal->oom_adj && !capable(CAP_SYS_RESOURCE)) {
1106 err = -EACCES;
1107 goto err_sighand;
1108 }
1109
1110 if (oom_adjust != task->signal->oom_adj) {
1111 if (oom_adjust == OOM_DISABLE)
1112 atomic_inc(&task->mm->oom_disable_count);
1113 if (task->signal->oom_adj == OOM_DISABLE)
1114 atomic_dec(&task->mm->oom_disable_count);
1115 }
1116
1117 /*
1118 * Warn that /proc/pid/oom_adj is deprecated, see
1119 * Documentation/feature-removal-schedule.txt.
1120 */
1121 printk_once(KERN_WARNING "%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1122 current->comm, task_pid_nr(current), task_pid_nr(task),
1123 task_pid_nr(task));
1124 task->signal->oom_adj = oom_adjust;
1125 /*
1126 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1127 * value is always attainable.
1128 */
1129 if (task->signal->oom_adj == OOM_ADJUST_MAX)
1130 task->signal->oom_score_adj = OOM_SCORE_ADJ_MAX;
1131 else
1132 task->signal->oom_score_adj = (oom_adjust * OOM_SCORE_ADJ_MAX) /
1133 -OOM_DISABLE;
1134err_sighand:
1135 unlock_task_sighand(task, &flags);
1136err_task_lock:
1137 task_unlock(task);
1138 put_task_struct(task);
1139out:
1140 return err < 0 ? err : count;
1141}
1142
1143static const struct file_operations proc_oom_adjust_operations = {
1144 .read = oom_adjust_read,
1145 .write = oom_adjust_write,
1146 .llseek = generic_file_llseek,
1147};
1148
1149static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1150 size_t count, loff_t *ppos)
1151{
1152 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
1153 char buffer[PROC_NUMBUF];
1154 int oom_score_adj = OOM_SCORE_ADJ_MIN;
1155 unsigned long flags;
1156 size_t len;
1157
1158 if (!task)
1159 return -ESRCH;
1160 if (lock_task_sighand(task, &flags)) {
1161 oom_score_adj = task->signal->oom_score_adj;
1162 unlock_task_sighand(task, &flags);
1163 }
1164 put_task_struct(task);
1165 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_score_adj);
1166 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1167}
1168
1169static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1170 size_t count, loff_t *ppos)
1171{
1172 struct task_struct *task;
1173 char buffer[PROC_NUMBUF];
1174 unsigned long flags;
1175 int oom_score_adj;
1176 int err;
1177
1178 memset(buffer, 0, sizeof(buffer));
1179 if (count > sizeof(buffer) - 1)
1180 count = sizeof(buffer) - 1;
1181 if (copy_from_user(buffer, buf, count)) {
1182 err = -EFAULT;
1183 goto out;
1184 }
1185
1186 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1187 if (err)
1188 goto out;
1189 if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1190 oom_score_adj > OOM_SCORE_ADJ_MAX) {
1191 err = -EINVAL;
1192 goto out;
1193 }
1194
1195 task = get_proc_task(file->f_path.dentry->d_inode);
1196 if (!task) {
1197 err = -ESRCH;
1198 goto out;
1199 }
1200
1201 task_lock(task);
1202 if (!task->mm) {
1203 err = -EINVAL;
1204 goto err_task_lock;
1205 }
1206
1207 if (!lock_task_sighand(task, &flags)) {
1208 err = -ESRCH;
1209 goto err_task_lock;
1210 }
1211
1212 if (oom_score_adj < task->signal->oom_score_adj_min &&
1213 !capable(CAP_SYS_RESOURCE)) {
1214 err = -EACCES;
1215 goto err_sighand;
1216 }
1217
1218 if (oom_score_adj != task->signal->oom_score_adj) {
1219 if (oom_score_adj == OOM_SCORE_ADJ_MIN)
1220 atomic_inc(&task->mm->oom_disable_count);
1221 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1222 atomic_dec(&task->mm->oom_disable_count);
1223 }
1224 task->signal->oom_score_adj = oom_score_adj;
1225 if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1226 task->signal->oom_score_adj_min = oom_score_adj;
1227 /*
1228 * Scale /proc/pid/oom_adj appropriately ensuring that OOM_DISABLE is
1229 * always attainable.
1230 */
1231 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1232 task->signal->oom_adj = OOM_DISABLE;
1233 else
1234 task->signal->oom_adj = (oom_score_adj * OOM_ADJUST_MAX) /
1235 OOM_SCORE_ADJ_MAX;
1236err_sighand:
1237 unlock_task_sighand(task, &flags);
1238err_task_lock:
1239 task_unlock(task);
1240 put_task_struct(task);
1241out:
1242 return err < 0 ? err : count;
1243}
1244
1245static const struct file_operations proc_oom_score_adj_operations = {
1246 .read = oom_score_adj_read,
1247 .write = oom_score_adj_write,
1248 .llseek = default_llseek,
1249};
1250
1251#ifdef CONFIG_AUDITSYSCALL
1252#define TMPBUFLEN 21
1253static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1254 size_t count, loff_t *ppos)
1255{
1256 struct inode * inode = file->f_path.dentry->d_inode;
1257 struct task_struct *task = get_proc_task(inode);
1258 ssize_t length;
1259 char tmpbuf[TMPBUFLEN];
1260
1261 if (!task)
1262 return -ESRCH;
1263 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1264 audit_get_loginuid(task));
1265 put_task_struct(task);
1266 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1267}
1268
1269static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1270 size_t count, loff_t *ppos)
1271{
1272 struct inode * inode = file->f_path.dentry->d_inode;
1273 char *page, *tmp;
1274 ssize_t length;
1275 uid_t loginuid;
1276
1277 if (!capable(CAP_AUDIT_CONTROL))
1278 return -EPERM;
1279
1280 rcu_read_lock();
1281 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1282 rcu_read_unlock();
1283 return -EPERM;
1284 }
1285 rcu_read_unlock();
1286
1287 if (count >= PAGE_SIZE)
1288 count = PAGE_SIZE - 1;
1289
1290 if (*ppos != 0) {
1291 /* No partial writes. */
1292 return -EINVAL;
1293 }
1294 page = (char*)__get_free_page(GFP_TEMPORARY);
1295 if (!page)
1296 return -ENOMEM;
1297 length = -EFAULT;
1298 if (copy_from_user(page, buf, count))
1299 goto out_free_page;
1300
1301 page[count] = '\0';
1302 loginuid = simple_strtoul(page, &tmp, 10);
1303 if (tmp == page) {
1304 length = -EINVAL;
1305 goto out_free_page;
1306
1307 }
1308 length = audit_set_loginuid(current, loginuid);
1309 if (likely(length == 0))
1310 length = count;
1311
1312out_free_page:
1313 free_page((unsigned long) page);
1314 return length;
1315}
1316
1317static const struct file_operations proc_loginuid_operations = {
1318 .read = proc_loginuid_read,
1319 .write = proc_loginuid_write,
1320 .llseek = generic_file_llseek,
1321};
1322
1323static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1324 size_t count, loff_t *ppos)
1325{
1326 struct inode * inode = file->f_path.dentry->d_inode;
1327 struct task_struct *task = get_proc_task(inode);
1328 ssize_t length;
1329 char tmpbuf[TMPBUFLEN];
1330
1331 if (!task)
1332 return -ESRCH;
1333 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1334 audit_get_sessionid(task));
1335 put_task_struct(task);
1336 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1337}
1338
1339static const struct file_operations proc_sessionid_operations = {
1340 .read = proc_sessionid_read,
1341 .llseek = generic_file_llseek,
1342};
1343#endif
1344
1345#ifdef CONFIG_FAULT_INJECTION
1346static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1347 size_t count, loff_t *ppos)
1348{
1349 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1350 char buffer[PROC_NUMBUF];
1351 size_t len;
1352 int make_it_fail;
1353
1354 if (!task)
1355 return -ESRCH;
1356 make_it_fail = task->make_it_fail;
1357 put_task_struct(task);
1358
1359 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1360
1361 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1362}
1363
1364static ssize_t proc_fault_inject_write(struct file * file,
1365 const char __user * buf, size_t count, loff_t *ppos)
1366{
1367 struct task_struct *task;
1368 char buffer[PROC_NUMBUF], *end;
1369 int make_it_fail;
1370
1371 if (!capable(CAP_SYS_RESOURCE))
1372 return -EPERM;
1373 memset(buffer, 0, sizeof(buffer));
1374 if (count > sizeof(buffer) - 1)
1375 count = sizeof(buffer) - 1;
1376 if (copy_from_user(buffer, buf, count))
1377 return -EFAULT;
1378 make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1379 if (*end)
1380 return -EINVAL;
1381 task = get_proc_task(file->f_dentry->d_inode);
1382 if (!task)
1383 return -ESRCH;
1384 task->make_it_fail = make_it_fail;
1385 put_task_struct(task);
1386
1387 return count;
1388}
1389
1390static const struct file_operations proc_fault_inject_operations = {
1391 .read = proc_fault_inject_read,
1392 .write = proc_fault_inject_write,
1393 .llseek = generic_file_llseek,
1394};
1395#endif
1396
1397
1398#ifdef CONFIG_SCHED_DEBUG
1399/*
1400 * Print out various scheduling related per-task fields:
1401 */
1402static int sched_show(struct seq_file *m, void *v)
1403{
1404 struct inode *inode = m->private;
1405 struct task_struct *p;
1406
1407 p = get_proc_task(inode);
1408 if (!p)
1409 return -ESRCH;
1410 proc_sched_show_task(p, m);
1411
1412 put_task_struct(p);
1413
1414 return 0;
1415}
1416
1417static ssize_t
1418sched_write(struct file *file, const char __user *buf,
1419 size_t count, loff_t *offset)
1420{
1421 struct inode *inode = file->f_path.dentry->d_inode;
1422 struct task_struct *p;
1423
1424 p = get_proc_task(inode);
1425 if (!p)
1426 return -ESRCH;
1427 proc_sched_set_task(p);
1428
1429 put_task_struct(p);
1430
1431 return count;
1432}
1433
1434static int sched_open(struct inode *inode, struct file *filp)
1435{
1436 return single_open(filp, sched_show, inode);
1437}
1438
1439static const struct file_operations proc_pid_sched_operations = {
1440 .open = sched_open,
1441 .read = seq_read,
1442 .write = sched_write,
1443 .llseek = seq_lseek,
1444 .release = single_release,
1445};
1446
1447#endif
1448
1449#ifdef CONFIG_SCHED_AUTOGROUP
1450/*
1451 * Print out autogroup related information:
1452 */
1453static int sched_autogroup_show(struct seq_file *m, void *v)
1454{
1455 struct inode *inode = m->private;
1456 struct task_struct *p;
1457
1458 p = get_proc_task(inode);
1459 if (!p)
1460 return -ESRCH;
1461 proc_sched_autogroup_show_task(p, m);
1462
1463 put_task_struct(p);
1464
1465 return 0;
1466}
1467
1468static ssize_t
1469sched_autogroup_write(struct file *file, const char __user *buf,
1470 size_t count, loff_t *offset)
1471{
1472 struct inode *inode = file->f_path.dentry->d_inode;
1473 struct task_struct *p;
1474 char buffer[PROC_NUMBUF];
1475 int nice;
1476 int err;
1477
1478 memset(buffer, 0, sizeof(buffer));
1479 if (count > sizeof(buffer) - 1)
1480 count = sizeof(buffer) - 1;
1481 if (copy_from_user(buffer, buf, count))
1482 return -EFAULT;
1483
1484 err = kstrtoint(strstrip(buffer), 0, &nice);
1485 if (err < 0)
1486 return err;
1487
1488 p = get_proc_task(inode);
1489 if (!p)
1490 return -ESRCH;
1491
1492 err = nice;
1493 err = proc_sched_autogroup_set_nice(p, &err);
1494 if (err)
1495 count = err;
1496
1497 put_task_struct(p);
1498
1499 return count;
1500}
1501
1502static int sched_autogroup_open(struct inode *inode, struct file *filp)
1503{
1504 int ret;
1505
1506 ret = single_open(filp, sched_autogroup_show, NULL);
1507 if (!ret) {
1508 struct seq_file *m = filp->private_data;
1509
1510 m->private = inode;
1511 }
1512 return ret;
1513}
1514
1515static const struct file_operations proc_pid_sched_autogroup_operations = {
1516 .open = sched_autogroup_open,
1517 .read = seq_read,
1518 .write = sched_autogroup_write,
1519 .llseek = seq_lseek,
1520 .release = single_release,
1521};
1522
1523#endif /* CONFIG_SCHED_AUTOGROUP */
1524
1525static ssize_t comm_write(struct file *file, const char __user *buf,
1526 size_t count, loff_t *offset)
1527{
1528 struct inode *inode = file->f_path.dentry->d_inode;
1529 struct task_struct *p;
1530 char buffer[TASK_COMM_LEN];
1531
1532 memset(buffer, 0, sizeof(buffer));
1533 if (count > sizeof(buffer) - 1)
1534 count = sizeof(buffer) - 1;
1535 if (copy_from_user(buffer, buf, count))
1536 return -EFAULT;
1537
1538 p = get_proc_task(inode);
1539 if (!p)
1540 return -ESRCH;
1541
1542 if (same_thread_group(current, p))
1543 set_task_comm(p, buffer);
1544 else
1545 count = -EINVAL;
1546
1547 put_task_struct(p);
1548
1549 return count;
1550}
1551
1552static int comm_show(struct seq_file *m, void *v)
1553{
1554 struct inode *inode = m->private;
1555 struct task_struct *p;
1556
1557 p = get_proc_task(inode);
1558 if (!p)
1559 return -ESRCH;
1560
1561 task_lock(p);
1562 seq_printf(m, "%s\n", p->comm);
1563 task_unlock(p);
1564
1565 put_task_struct(p);
1566
1567 return 0;
1568}
1569
1570static int comm_open(struct inode *inode, struct file *filp)
1571{
1572 return single_open(filp, comm_show, inode);
1573}
1574
1575static const struct file_operations proc_pid_set_comm_operations = {
1576 .open = comm_open,
1577 .read = seq_read,
1578 .write = comm_write,
1579 .llseek = seq_lseek,
1580 .release = single_release,
1581};
1582
1583static int proc_exe_link(struct inode *inode, struct path *exe_path)
1584{
1585 struct task_struct *task;
1586 struct mm_struct *mm;
1587 struct file *exe_file;
1588
1589 task = get_proc_task(inode);
1590 if (!task)
1591 return -ENOENT;
1592 mm = get_task_mm(task);
1593 put_task_struct(task);
1594 if (!mm)
1595 return -ENOENT;
1596 exe_file = get_mm_exe_file(mm);
1597 mmput(mm);
1598 if (exe_file) {
1599 *exe_path = exe_file->f_path;
1600 path_get(&exe_file->f_path);
1601 fput(exe_file);
1602 return 0;
1603 } else
1604 return -ENOENT;
1605}
1606
1607static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1608{
1609 struct inode *inode = dentry->d_inode;
1610 int error = -EACCES;
1611
1612 /* We don't need a base pointer in the /proc filesystem */
1613 path_put(&nd->path);
1614
1615 /* Are we allowed to snoop on the tasks file descriptors? */
1616 if (!proc_fd_access_allowed(inode))
1617 goto out;
1618
1619 error = PROC_I(inode)->op.proc_get_link(inode, &nd->path);
1620out:
1621 return ERR_PTR(error);
1622}
1623
1624static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1625{
1626 char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1627 char *pathname;
1628 int len;
1629
1630 if (!tmp)
1631 return -ENOMEM;
1632
1633 pathname = d_path(path, tmp, PAGE_SIZE);
1634 len = PTR_ERR(pathname);
1635 if (IS_ERR(pathname))
1636 goto out;
1637 len = tmp + PAGE_SIZE - 1 - pathname;
1638
1639 if (len > buflen)
1640 len = buflen;
1641 if (copy_to_user(buffer, pathname, len))
1642 len = -EFAULT;
1643 out:
1644 free_page((unsigned long)tmp);
1645 return len;
1646}
1647
1648static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1649{
1650 int error = -EACCES;
1651 struct inode *inode = dentry->d_inode;
1652 struct path path;
1653
1654 /* Are we allowed to snoop on the tasks file descriptors? */
1655 if (!proc_fd_access_allowed(inode))
1656 goto out;
1657
1658 error = PROC_I(inode)->op.proc_get_link(inode, &path);
1659 if (error)
1660 goto out;
1661
1662 error = do_proc_readlink(&path, buffer, buflen);
1663 path_put(&path);
1664out:
1665 return error;
1666}
1667
1668static const struct inode_operations proc_pid_link_inode_operations = {
1669 .readlink = proc_pid_readlink,
1670 .follow_link = proc_pid_follow_link,
1671 .setattr = proc_setattr,
1672};
1673
1674
1675/* building an inode */
1676
1677static int task_dumpable(struct task_struct *task)
1678{
1679 int dumpable = 0;
1680 struct mm_struct *mm;
1681
1682 task_lock(task);
1683 mm = task->mm;
1684 if (mm)
1685 dumpable = get_dumpable(mm);
1686 task_unlock(task);
1687 if(dumpable == 1)
1688 return 1;
1689 return 0;
1690}
1691
1692struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1693{
1694 struct inode * inode;
1695 struct proc_inode *ei;
1696 const struct cred *cred;
1697
1698 /* We need a new inode */
1699
1700 inode = new_inode(sb);
1701 if (!inode)
1702 goto out;
1703
1704 /* Common stuff */
1705 ei = PROC_I(inode);
1706 inode->i_ino = get_next_ino();
1707 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1708 inode->i_op = &proc_def_inode_operations;
1709
1710 /*
1711 * grab the reference to task.
1712 */
1713 ei->pid = get_task_pid(task, PIDTYPE_PID);
1714 if (!ei->pid)
1715 goto out_unlock;
1716
1717 if (task_dumpable(task)) {
1718 rcu_read_lock();
1719 cred = __task_cred(task);
1720 inode->i_uid = cred->euid;
1721 inode->i_gid = cred->egid;
1722 rcu_read_unlock();
1723 }
1724 security_task_to_inode(task, inode);
1725
1726out:
1727 return inode;
1728
1729out_unlock:
1730 iput(inode);
1731 return NULL;
1732}
1733
1734int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1735{
1736 struct inode *inode = dentry->d_inode;
1737 struct task_struct *task;
1738 const struct cred *cred;
1739
1740 generic_fillattr(inode, stat);
1741
1742 rcu_read_lock();
1743 stat->uid = 0;
1744 stat->gid = 0;
1745 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1746 if (task) {
1747 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1748 task_dumpable(task)) {
1749 cred = __task_cred(task);
1750 stat->uid = cred->euid;
1751 stat->gid = cred->egid;
1752 }
1753 }
1754 rcu_read_unlock();
1755 return 0;
1756}
1757
1758/* dentry stuff */
1759
1760/*
1761 * Exceptional case: normally we are not allowed to unhash a busy
1762 * directory. In this case, however, we can do it - no aliasing problems
1763 * due to the way we treat inodes.
1764 *
1765 * Rewrite the inode's ownerships here because the owning task may have
1766 * performed a setuid(), etc.
1767 *
1768 * Before the /proc/pid/status file was created the only way to read
1769 * the effective uid of a /process was to stat /proc/pid. Reading
1770 * /proc/pid/status is slow enough that procps and other packages
1771 * kept stating /proc/pid. To keep the rules in /proc simple I have
1772 * made this apply to all per process world readable and executable
1773 * directories.
1774 */
1775int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1776{
1777 struct inode *inode;
1778 struct task_struct *task;
1779 const struct cred *cred;
1780
1781 if (nd && nd->flags & LOOKUP_RCU)
1782 return -ECHILD;
1783
1784 inode = dentry->d_inode;
1785 task = get_proc_task(inode);
1786
1787 if (task) {
1788 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1789 task_dumpable(task)) {
1790 rcu_read_lock();
1791 cred = __task_cred(task);
1792 inode->i_uid = cred->euid;
1793 inode->i_gid = cred->egid;
1794 rcu_read_unlock();
1795 } else {
1796 inode->i_uid = 0;
1797 inode->i_gid = 0;
1798 }
1799 inode->i_mode &= ~(S_ISUID | S_ISGID);
1800 security_task_to_inode(task, inode);
1801 put_task_struct(task);
1802 return 1;
1803 }
1804 d_drop(dentry);
1805 return 0;
1806}
1807
1808static int pid_delete_dentry(const struct dentry * dentry)
1809{
1810 /* Is the task we represent dead?
1811 * If so, then don't put the dentry on the lru list,
1812 * kill it immediately.
1813 */
1814 return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1815}
1816
1817const struct dentry_operations pid_dentry_operations =
1818{
1819 .d_revalidate = pid_revalidate,
1820 .d_delete = pid_delete_dentry,
1821};
1822
1823/* Lookups */
1824
1825/*
1826 * Fill a directory entry.
1827 *
1828 * If possible create the dcache entry and derive our inode number and
1829 * file type from dcache entry.
1830 *
1831 * Since all of the proc inode numbers are dynamically generated, the inode
1832 * numbers do not exist until the inode is cache. This means creating the
1833 * the dcache entry in readdir is necessary to keep the inode numbers
1834 * reported by readdir in sync with the inode numbers reported
1835 * by stat.
1836 */
1837int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1838 const char *name, int len,
1839 instantiate_t instantiate, struct task_struct *task, const void *ptr)
1840{
1841 struct dentry *child, *dir = filp->f_path.dentry;
1842 struct inode *inode;
1843 struct qstr qname;
1844 ino_t ino = 0;
1845 unsigned type = DT_UNKNOWN;
1846
1847 qname.name = name;
1848 qname.len = len;
1849 qname.hash = full_name_hash(name, len);
1850
1851 child = d_lookup(dir, &qname);
1852 if (!child) {
1853 struct dentry *new;
1854 new = d_alloc(dir, &qname);
1855 if (new) {
1856 child = instantiate(dir->d_inode, new, task, ptr);
1857 if (child)
1858 dput(new);
1859 else
1860 child = new;
1861 }
1862 }
1863 if (!child || IS_ERR(child) || !child->d_inode)
1864 goto end_instantiate;
1865 inode = child->d_inode;
1866 if (inode) {
1867 ino = inode->i_ino;
1868 type = inode->i_mode >> 12;
1869 }
1870 dput(child);
1871end_instantiate:
1872 if (!ino)
1873 ino = find_inode_number(dir, &qname);
1874 if (!ino)
1875 ino = 1;
1876 return filldir(dirent, name, len, filp->f_pos, ino, type);
1877}
1878
1879static unsigned name_to_int(struct dentry *dentry)
1880{
1881 const char *name = dentry->d_name.name;
1882 int len = dentry->d_name.len;
1883 unsigned n = 0;
1884
1885 if (len > 1 && *name == '0')
1886 goto out;
1887 while (len-- > 0) {
1888 unsigned c = *name++ - '0';
1889 if (c > 9)
1890 goto out;
1891 if (n >= (~0U-9)/10)
1892 goto out;
1893 n *= 10;
1894 n += c;
1895 }
1896 return n;
1897out:
1898 return ~0U;
1899}
1900
1901#define PROC_FDINFO_MAX 64
1902
1903static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1904{
1905 struct task_struct *task = get_proc_task(inode);
1906 struct files_struct *files = NULL;
1907 struct file *file;
1908 int fd = proc_fd(inode);
1909
1910 if (task) {
1911 files = get_files_struct(task);
1912 put_task_struct(task);
1913 }
1914 if (files) {
1915 /*
1916 * We are not taking a ref to the file structure, so we must
1917 * hold ->file_lock.
1918 */
1919 spin_lock(&files->file_lock);
1920 file = fcheck_files(files, fd);
1921 if (file) {
1922 unsigned int f_flags;
1923 struct fdtable *fdt;
1924
1925 fdt = files_fdtable(files);
1926 f_flags = file->f_flags & ~O_CLOEXEC;
1927 if (FD_ISSET(fd, fdt->close_on_exec))
1928 f_flags |= O_CLOEXEC;
1929
1930 if (path) {
1931 *path = file->f_path;
1932 path_get(&file->f_path);
1933 }
1934 if (info)
1935 snprintf(info, PROC_FDINFO_MAX,
1936 "pos:\t%lli\n"
1937 "flags:\t0%o\n",
1938 (long long) file->f_pos,
1939 f_flags);
1940 spin_unlock(&files->file_lock);
1941 put_files_struct(files);
1942 return 0;
1943 }
1944 spin_unlock(&files->file_lock);
1945 put_files_struct(files);
1946 }
1947 return -ENOENT;
1948}
1949
1950static int proc_fd_link(struct inode *inode, struct path *path)
1951{
1952 return proc_fd_info(inode, path, NULL);
1953}
1954
1955static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1956{
1957 struct inode *inode;
1958 struct task_struct *task;
1959 int fd;
1960 struct files_struct *files;
1961 const struct cred *cred;
1962
1963 if (nd && nd->flags & LOOKUP_RCU)
1964 return -ECHILD;
1965
1966 inode = dentry->d_inode;
1967 task = get_proc_task(inode);
1968 fd = proc_fd(inode);
1969
1970 if (task) {
1971 files = get_files_struct(task);
1972 if (files) {
1973 rcu_read_lock();
1974 if (fcheck_files(files, fd)) {
1975 rcu_read_unlock();
1976 put_files_struct(files);
1977 if (task_dumpable(task)) {
1978 rcu_read_lock();
1979 cred = __task_cred(task);
1980 inode->i_uid = cred->euid;
1981 inode->i_gid = cred->egid;
1982 rcu_read_unlock();
1983 } else {
1984 inode->i_uid = 0;
1985 inode->i_gid = 0;
1986 }
1987 inode->i_mode &= ~(S_ISUID | S_ISGID);
1988 security_task_to_inode(task, inode);
1989 put_task_struct(task);
1990 return 1;
1991 }
1992 rcu_read_unlock();
1993 put_files_struct(files);
1994 }
1995 put_task_struct(task);
1996 }
1997 d_drop(dentry);
1998 return 0;
1999}
2000
2001static const struct dentry_operations tid_fd_dentry_operations =
2002{
2003 .d_revalidate = tid_fd_revalidate,
2004 .d_delete = pid_delete_dentry,
2005};
2006
2007static struct dentry *proc_fd_instantiate(struct inode *dir,
2008 struct dentry *dentry, struct task_struct *task, const void *ptr)
2009{
2010 unsigned fd = *(const unsigned *)ptr;
2011 struct file *file;
2012 struct files_struct *files;
2013 struct inode *inode;
2014 struct proc_inode *ei;
2015 struct dentry *error = ERR_PTR(-ENOENT);
2016
2017 inode = proc_pid_make_inode(dir->i_sb, task);
2018 if (!inode)
2019 goto out;
2020 ei = PROC_I(inode);
2021 ei->fd = fd;
2022 files = get_files_struct(task);
2023 if (!files)
2024 goto out_iput;
2025 inode->i_mode = S_IFLNK;
2026
2027 /*
2028 * We are not taking a ref to the file structure, so we must
2029 * hold ->file_lock.
2030 */
2031 spin_lock(&files->file_lock);
2032 file = fcheck_files(files, fd);
2033 if (!file)
2034 goto out_unlock;
2035 if (file->f_mode & FMODE_READ)
2036 inode->i_mode |= S_IRUSR | S_IXUSR;
2037 if (file->f_mode & FMODE_WRITE)
2038 inode->i_mode |= S_IWUSR | S_IXUSR;
2039 spin_unlock(&files->file_lock);
2040 put_files_struct(files);
2041
2042 inode->i_op = &proc_pid_link_inode_operations;
2043 inode->i_size = 64;
2044 ei->op.proc_get_link = proc_fd_link;
2045 d_set_d_op(dentry, &tid_fd_dentry_operations);
2046 d_add(dentry, inode);
2047 /* Close the race of the process dying before we return the dentry */
2048 if (tid_fd_revalidate(dentry, NULL))
2049 error = NULL;
2050
2051 out:
2052 return error;
2053out_unlock:
2054 spin_unlock(&files->file_lock);
2055 put_files_struct(files);
2056out_iput:
2057 iput(inode);
2058 goto out;
2059}
2060
2061static struct dentry *proc_lookupfd_common(struct inode *dir,
2062 struct dentry *dentry,
2063 instantiate_t instantiate)
2064{
2065 struct task_struct *task = get_proc_task(dir);
2066 unsigned fd = name_to_int(dentry);
2067 struct dentry *result = ERR_PTR(-ENOENT);
2068
2069 if (!task)
2070 goto out_no_task;
2071 if (fd == ~0U)
2072 goto out;
2073
2074 result = instantiate(dir, dentry, task, &fd);
2075out:
2076 put_task_struct(task);
2077out_no_task:
2078 return result;
2079}
2080
2081static int proc_readfd_common(struct file * filp, void * dirent,
2082 filldir_t filldir, instantiate_t instantiate)
2083{
2084 struct dentry *dentry = filp->f_path.dentry;
2085 struct inode *inode = dentry->d_inode;
2086 struct task_struct *p = get_proc_task(inode);
2087 unsigned int fd, ino;
2088 int retval;
2089 struct files_struct * files;
2090
2091 retval = -ENOENT;
2092 if (!p)
2093 goto out_no_task;
2094 retval = 0;
2095
2096 fd = filp->f_pos;
2097 switch (fd) {
2098 case 0:
2099 if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
2100 goto out;
2101 filp->f_pos++;
2102 case 1:
2103 ino = parent_ino(dentry);
2104 if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
2105 goto out;
2106 filp->f_pos++;
2107 default:
2108 files = get_files_struct(p);
2109 if (!files)
2110 goto out;
2111 rcu_read_lock();
2112 for (fd = filp->f_pos-2;
2113 fd < files_fdtable(files)->max_fds;
2114 fd++, filp->f_pos++) {
2115 char name[PROC_NUMBUF];
2116 int len;
2117
2118 if (!fcheck_files(files, fd))
2119 continue;
2120 rcu_read_unlock();
2121
2122 len = snprintf(name, sizeof(name), "%d", fd);
2123 if (proc_fill_cache(filp, dirent, filldir,
2124 name, len, instantiate,
2125 p, &fd) < 0) {
2126 rcu_read_lock();
2127 break;
2128 }
2129 rcu_read_lock();
2130 }
2131 rcu_read_unlock();
2132 put_files_struct(files);
2133 }
2134out:
2135 put_task_struct(p);
2136out_no_task:
2137 return retval;
2138}
2139
2140static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
2141 struct nameidata *nd)
2142{
2143 return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
2144}
2145
2146static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
2147{
2148 return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
2149}
2150
2151static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
2152 size_t len, loff_t *ppos)
2153{
2154 char tmp[PROC_FDINFO_MAX];
2155 int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
2156 if (!err)
2157 err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
2158 return err;
2159}
2160
2161static const struct file_operations proc_fdinfo_file_operations = {
2162 .open = nonseekable_open,
2163 .read = proc_fdinfo_read,
2164 .llseek = no_llseek,
2165};
2166
2167static const struct file_operations proc_fd_operations = {
2168 .read = generic_read_dir,
2169 .readdir = proc_readfd,
2170 .llseek = default_llseek,
2171};
2172
2173/*
2174 * /proc/pid/fd needs a special permission handler so that a process can still
2175 * access /proc/self/fd after it has executed a setuid().
2176 */
2177static int proc_fd_permission(struct inode *inode, int mask)
2178{
2179 int rv = generic_permission(inode, mask);
2180 if (rv == 0)
2181 return 0;
2182 if (task_pid(current) == proc_pid(inode))
2183 rv = 0;
2184 return rv;
2185}
2186
2187/*
2188 * proc directories can do almost nothing..
2189 */
2190static const struct inode_operations proc_fd_inode_operations = {
2191 .lookup = proc_lookupfd,
2192 .permission = proc_fd_permission,
2193 .setattr = proc_setattr,
2194};
2195
2196static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
2197 struct dentry *dentry, struct task_struct *task, const void *ptr)
2198{
2199 unsigned fd = *(unsigned *)ptr;
2200 struct inode *inode;
2201 struct proc_inode *ei;
2202 struct dentry *error = ERR_PTR(-ENOENT);
2203
2204 inode = proc_pid_make_inode(dir->i_sb, task);
2205 if (!inode)
2206 goto out;
2207 ei = PROC_I(inode);
2208 ei->fd = fd;
2209 inode->i_mode = S_IFREG | S_IRUSR;
2210 inode->i_fop = &proc_fdinfo_file_operations;
2211 d_set_d_op(dentry, &tid_fd_dentry_operations);
2212 d_add(dentry, inode);
2213 /* Close the race of the process dying before we return the dentry */
2214 if (tid_fd_revalidate(dentry, NULL))
2215 error = NULL;
2216
2217 out:
2218 return error;
2219}
2220
2221static struct dentry *proc_lookupfdinfo(struct inode *dir,
2222 struct dentry *dentry,
2223 struct nameidata *nd)
2224{
2225 return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
2226}
2227
2228static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
2229{
2230 return proc_readfd_common(filp, dirent, filldir,
2231 proc_fdinfo_instantiate);
2232}
2233
2234static const struct file_operations proc_fdinfo_operations = {
2235 .read = generic_read_dir,
2236 .readdir = proc_readfdinfo,
2237 .llseek = default_llseek,
2238};
2239
2240/*
2241 * proc directories can do almost nothing..
2242 */
2243static const struct inode_operations proc_fdinfo_inode_operations = {
2244 .lookup = proc_lookupfdinfo,
2245 .setattr = proc_setattr,
2246};
2247
2248
2249static struct dentry *proc_pident_instantiate(struct inode *dir,
2250 struct dentry *dentry, struct task_struct *task, const void *ptr)
2251{
2252 const struct pid_entry *p = ptr;
2253 struct inode *inode;
2254 struct proc_inode *ei;
2255 struct dentry *error = ERR_PTR(-ENOENT);
2256
2257 inode = proc_pid_make_inode(dir->i_sb, task);
2258 if (!inode)
2259 goto out;
2260
2261 ei = PROC_I(inode);
2262 inode->i_mode = p->mode;
2263 if (S_ISDIR(inode->i_mode))
2264 inode->i_nlink = 2; /* Use getattr to fix if necessary */
2265 if (p->iop)
2266 inode->i_op = p->iop;
2267 if (p->fop)
2268 inode->i_fop = p->fop;
2269 ei->op = p->op;
2270 d_set_d_op(dentry, &pid_dentry_operations);
2271 d_add(dentry, inode);
2272 /* Close the race of the process dying before we return the dentry */
2273 if (pid_revalidate(dentry, NULL))
2274 error = NULL;
2275out:
2276 return error;
2277}
2278
2279static struct dentry *proc_pident_lookup(struct inode *dir,
2280 struct dentry *dentry,
2281 const struct pid_entry *ents,
2282 unsigned int nents)
2283{
2284 struct dentry *error;
2285 struct task_struct *task = get_proc_task(dir);
2286 const struct pid_entry *p, *last;
2287
2288 error = ERR_PTR(-ENOENT);
2289
2290 if (!task)
2291 goto out_no_task;
2292
2293 /*
2294 * Yes, it does not scale. And it should not. Don't add
2295 * new entries into /proc/<tgid>/ without very good reasons.
2296 */
2297 last = &ents[nents - 1];
2298 for (p = ents; p <= last; p++) {
2299 if (p->len != dentry->d_name.len)
2300 continue;
2301 if (!memcmp(dentry->d_name.name, p->name, p->len))
2302 break;
2303 }
2304 if (p > last)
2305 goto out;
2306
2307 error = proc_pident_instantiate(dir, dentry, task, p);
2308out:
2309 put_task_struct(task);
2310out_no_task:
2311 return error;
2312}
2313
2314static int proc_pident_fill_cache(struct file *filp, void *dirent,
2315 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2316{
2317 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2318 proc_pident_instantiate, task, p);
2319}
2320
2321static int proc_pident_readdir(struct file *filp,
2322 void *dirent, filldir_t filldir,
2323 const struct pid_entry *ents, unsigned int nents)
2324{
2325 int i;
2326 struct dentry *dentry = filp->f_path.dentry;
2327 struct inode *inode = dentry->d_inode;
2328 struct task_struct *task = get_proc_task(inode);
2329 const struct pid_entry *p, *last;
2330 ino_t ino;
2331 int ret;
2332
2333 ret = -ENOENT;
2334 if (!task)
2335 goto out_no_task;
2336
2337 ret = 0;
2338 i = filp->f_pos;
2339 switch (i) {
2340 case 0:
2341 ino = inode->i_ino;
2342 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2343 goto out;
2344 i++;
2345 filp->f_pos++;
2346 /* fall through */
2347 case 1:
2348 ino = parent_ino(dentry);
2349 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2350 goto out;
2351 i++;
2352 filp->f_pos++;
2353 /* fall through */
2354 default:
2355 i -= 2;
2356 if (i >= nents) {
2357 ret = 1;
2358 goto out;
2359 }
2360 p = ents + i;
2361 last = &ents[nents - 1];
2362 while (p <= last) {
2363 if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2364 goto out;
2365 filp->f_pos++;
2366 p++;
2367 }
2368 }
2369
2370 ret = 1;
2371out:
2372 put_task_struct(task);
2373out_no_task:
2374 return ret;
2375}
2376
2377#ifdef CONFIG_SECURITY
2378static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2379 size_t count, loff_t *ppos)
2380{
2381 struct inode * inode = file->f_path.dentry->d_inode;
2382 char *p = NULL;
2383 ssize_t length;
2384 struct task_struct *task = get_proc_task(inode);
2385
2386 if (!task)
2387 return -ESRCH;
2388
2389 length = security_getprocattr(task,
2390 (char*)file->f_path.dentry->d_name.name,
2391 &p);
2392 put_task_struct(task);
2393 if (length > 0)
2394 length = simple_read_from_buffer(buf, count, ppos, p, length);
2395 kfree(p);
2396 return length;
2397}
2398
2399static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2400 size_t count, loff_t *ppos)
2401{
2402 struct inode * inode = file->f_path.dentry->d_inode;
2403 char *page;
2404 ssize_t length;
2405 struct task_struct *task = get_proc_task(inode);
2406
2407 length = -ESRCH;
2408 if (!task)
2409 goto out_no_task;
2410 if (count > PAGE_SIZE)
2411 count = PAGE_SIZE;
2412
2413 /* No partial writes. */
2414 length = -EINVAL;
2415 if (*ppos != 0)
2416 goto out;
2417
2418 length = -ENOMEM;
2419 page = (char*)__get_free_page(GFP_TEMPORARY);
2420 if (!page)
2421 goto out;
2422
2423 length = -EFAULT;
2424 if (copy_from_user(page, buf, count))
2425 goto out_free;
2426
2427 /* Guard against adverse ptrace interaction */
2428 length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2429 if (length < 0)
2430 goto out_free;
2431
2432 length = security_setprocattr(task,
2433 (char*)file->f_path.dentry->d_name.name,
2434 (void*)page, count);
2435 mutex_unlock(&task->signal->cred_guard_mutex);
2436out_free:
2437 free_page((unsigned long) page);
2438out:
2439 put_task_struct(task);
2440out_no_task:
2441 return length;
2442}
2443
2444static const struct file_operations proc_pid_attr_operations = {
2445 .read = proc_pid_attr_read,
2446 .write = proc_pid_attr_write,
2447 .llseek = generic_file_llseek,
2448};
2449
2450static const struct pid_entry attr_dir_stuff[] = {
2451 REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2452 REG("prev", S_IRUGO, proc_pid_attr_operations),
2453 REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2454 REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2455 REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2456 REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2457};
2458
2459static int proc_attr_dir_readdir(struct file * filp,
2460 void * dirent, filldir_t filldir)
2461{
2462 return proc_pident_readdir(filp,dirent,filldir,
2463 attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2464}
2465
2466static const struct file_operations proc_attr_dir_operations = {
2467 .read = generic_read_dir,
2468 .readdir = proc_attr_dir_readdir,
2469 .llseek = default_llseek,
2470};
2471
2472static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2473 struct dentry *dentry, struct nameidata *nd)
2474{
2475 return proc_pident_lookup(dir, dentry,
2476 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2477}
2478
2479static const struct inode_operations proc_attr_dir_inode_operations = {
2480 .lookup = proc_attr_dir_lookup,
2481 .getattr = pid_getattr,
2482 .setattr = proc_setattr,
2483};
2484
2485#endif
2486
2487#ifdef CONFIG_ELF_CORE
2488static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2489 size_t count, loff_t *ppos)
2490{
2491 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2492 struct mm_struct *mm;
2493 char buffer[PROC_NUMBUF];
2494 size_t len;
2495 int ret;
2496
2497 if (!task)
2498 return -ESRCH;
2499
2500 ret = 0;
2501 mm = get_task_mm(task);
2502 if (mm) {
2503 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2504 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2505 MMF_DUMP_FILTER_SHIFT));
2506 mmput(mm);
2507 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2508 }
2509
2510 put_task_struct(task);
2511
2512 return ret;
2513}
2514
2515static ssize_t proc_coredump_filter_write(struct file *file,
2516 const char __user *buf,
2517 size_t count,
2518 loff_t *ppos)
2519{
2520 struct task_struct *task;
2521 struct mm_struct *mm;
2522 char buffer[PROC_NUMBUF], *end;
2523 unsigned int val;
2524 int ret;
2525 int i;
2526 unsigned long mask;
2527
2528 ret = -EFAULT;
2529 memset(buffer, 0, sizeof(buffer));
2530 if (count > sizeof(buffer) - 1)
2531 count = sizeof(buffer) - 1;
2532 if (copy_from_user(buffer, buf, count))
2533 goto out_no_task;
2534
2535 ret = -EINVAL;
2536 val = (unsigned int)simple_strtoul(buffer, &end, 0);
2537 if (*end == '\n')
2538 end++;
2539 if (end - buffer == 0)
2540 goto out_no_task;
2541
2542 ret = -ESRCH;
2543 task = get_proc_task(file->f_dentry->d_inode);
2544 if (!task)
2545 goto out_no_task;
2546
2547 ret = end - buffer;
2548 mm = get_task_mm(task);
2549 if (!mm)
2550 goto out_no_mm;
2551
2552 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2553 if (val & mask)
2554 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2555 else
2556 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2557 }
2558
2559 mmput(mm);
2560 out_no_mm:
2561 put_task_struct(task);
2562 out_no_task:
2563 return ret;
2564}
2565
2566static const struct file_operations proc_coredump_filter_operations = {
2567 .read = proc_coredump_filter_read,
2568 .write = proc_coredump_filter_write,
2569 .llseek = generic_file_llseek,
2570};
2571#endif
2572
2573/*
2574 * /proc/self:
2575 */
2576static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2577 int buflen)
2578{
2579 struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2580 pid_t tgid = task_tgid_nr_ns(current, ns);
2581 char tmp[PROC_NUMBUF];
2582 if (!tgid)
2583 return -ENOENT;
2584 sprintf(tmp, "%d", tgid);
2585 return vfs_readlink(dentry,buffer,buflen,tmp);
2586}
2587
2588static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2589{
2590 struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2591 pid_t tgid = task_tgid_nr_ns(current, ns);
2592 char *name = ERR_PTR(-ENOENT);
2593 if (tgid) {
2594 name = __getname();
2595 if (!name)
2596 name = ERR_PTR(-ENOMEM);
2597 else
2598 sprintf(name, "%d", tgid);
2599 }
2600 nd_set_link(nd, name);
2601 return NULL;
2602}
2603
2604static void proc_self_put_link(struct dentry *dentry, struct nameidata *nd,
2605 void *cookie)
2606{
2607 char *s = nd_get_link(nd);
2608 if (!IS_ERR(s))
2609 __putname(s);
2610}
2611
2612static const struct inode_operations proc_self_inode_operations = {
2613 .readlink = proc_self_readlink,
2614 .follow_link = proc_self_follow_link,
2615 .put_link = proc_self_put_link,
2616};
2617
2618/*
2619 * proc base
2620 *
2621 * These are the directory entries in the root directory of /proc
2622 * that properly belong to the /proc filesystem, as they describe
2623 * describe something that is process related.
2624 */
2625static const struct pid_entry proc_base_stuff[] = {
2626 NOD("self", S_IFLNK|S_IRWXUGO,
2627 &proc_self_inode_operations, NULL, {}),
2628};
2629
2630static struct dentry *proc_base_instantiate(struct inode *dir,
2631 struct dentry *dentry, struct task_struct *task, const void *ptr)
2632{
2633 const struct pid_entry *p = ptr;
2634 struct inode *inode;
2635 struct proc_inode *ei;
2636 struct dentry *error;
2637
2638 /* Allocate the inode */
2639 error = ERR_PTR(-ENOMEM);
2640 inode = new_inode(dir->i_sb);
2641 if (!inode)
2642 goto out;
2643
2644 /* Initialize the inode */
2645 ei = PROC_I(inode);
2646 inode->i_ino = get_next_ino();
2647 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2648
2649 /*
2650 * grab the reference to the task.
2651 */
2652 ei->pid = get_task_pid(task, PIDTYPE_PID);
2653 if (!ei->pid)
2654 goto out_iput;
2655
2656 inode->i_mode = p->mode;
2657 if (S_ISDIR(inode->i_mode))
2658 inode->i_nlink = 2;
2659 if (S_ISLNK(inode->i_mode))
2660 inode->i_size = 64;
2661 if (p->iop)
2662 inode->i_op = p->iop;
2663 if (p->fop)
2664 inode->i_fop = p->fop;
2665 ei->op = p->op;
2666 d_add(dentry, inode);
2667 error = NULL;
2668out:
2669 return error;
2670out_iput:
2671 iput(inode);
2672 goto out;
2673}
2674
2675static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2676{
2677 struct dentry *error;
2678 struct task_struct *task = get_proc_task(dir);
2679 const struct pid_entry *p, *last;
2680
2681 error = ERR_PTR(-ENOENT);
2682
2683 if (!task)
2684 goto out_no_task;
2685
2686 /* Lookup the directory entry */
2687 last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2688 for (p = proc_base_stuff; p <= last; p++) {
2689 if (p->len != dentry->d_name.len)
2690 continue;
2691 if (!memcmp(dentry->d_name.name, p->name, p->len))
2692 break;
2693 }
2694 if (p > last)
2695 goto out;
2696
2697 error = proc_base_instantiate(dir, dentry, task, p);
2698
2699out:
2700 put_task_struct(task);
2701out_no_task:
2702 return error;
2703}
2704
2705static int proc_base_fill_cache(struct file *filp, void *dirent,
2706 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2707{
2708 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2709 proc_base_instantiate, task, p);
2710}
2711
2712#ifdef CONFIG_TASK_IO_ACCOUNTING
2713static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2714{
2715 struct task_io_accounting acct = task->ioac;
2716 unsigned long flags;
2717 int result;
2718
2719 result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2720 if (result)
2721 return result;
2722
2723 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
2724 result = -EACCES;
2725 goto out_unlock;
2726 }
2727
2728 if (whole && lock_task_sighand(task, &flags)) {
2729 struct task_struct *t = task;
2730
2731 task_io_accounting_add(&acct, &task->signal->ioac);
2732 while_each_thread(task, t)
2733 task_io_accounting_add(&acct, &t->ioac);
2734
2735 unlock_task_sighand(task, &flags);
2736 }
2737 result = sprintf(buffer,
2738 "rchar: %llu\n"
2739 "wchar: %llu\n"
2740 "syscr: %llu\n"
2741 "syscw: %llu\n"
2742 "read_bytes: %llu\n"
2743 "write_bytes: %llu\n"
2744 "cancelled_write_bytes: %llu\n",
2745 (unsigned long long)acct.rchar,
2746 (unsigned long long)acct.wchar,
2747 (unsigned long long)acct.syscr,
2748 (unsigned long long)acct.syscw,
2749 (unsigned long long)acct.read_bytes,
2750 (unsigned long long)acct.write_bytes,
2751 (unsigned long long)acct.cancelled_write_bytes);
2752out_unlock:
2753 mutex_unlock(&task->signal->cred_guard_mutex);
2754 return result;
2755}
2756
2757static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2758{
2759 return do_io_accounting(task, buffer, 0);
2760}
2761
2762static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2763{
2764 return do_io_accounting(task, buffer, 1);
2765}
2766#endif /* CONFIG_TASK_IO_ACCOUNTING */
2767
2768static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2769 struct pid *pid, struct task_struct *task)
2770{
2771 int err = lock_trace(task);
2772 if (!err) {
2773 seq_printf(m, "%08x\n", task->personality);
2774 unlock_trace(task);
2775 }
2776 return err;
2777}
2778
2779/*
2780 * Thread groups
2781 */
2782static const struct file_operations proc_task_operations;
2783static const struct inode_operations proc_task_inode_operations;
2784
2785static const struct pid_entry tgid_base_stuff[] = {
2786 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2787 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2788 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2789 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2790#ifdef CONFIG_NET
2791 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2792#endif
2793 REG("environ", S_IRUSR, proc_environ_operations),
2794 INF("auxv", S_IRUSR, proc_pid_auxv),
2795 ONE("status", S_IRUGO, proc_pid_status),
2796 ONE("personality", S_IRUGO, proc_pid_personality),
2797 INF("limits", S_IRUGO, proc_pid_limits),
2798#ifdef CONFIG_SCHED_DEBUG
2799 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2800#endif
2801#ifdef CONFIG_SCHED_AUTOGROUP
2802 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2803#endif
2804 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2805#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2806 INF("syscall", S_IRUGO, proc_pid_syscall),
2807#endif
2808 INF("cmdline", S_IRUGO, proc_pid_cmdline),
2809 ONE("stat", S_IRUGO, proc_tgid_stat),
2810 ONE("statm", S_IRUGO, proc_pid_statm),
2811 REG("maps", S_IRUGO, proc_maps_operations),
2812#ifdef CONFIG_NUMA
2813 REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
2814#endif
2815 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
2816 LNK("cwd", proc_cwd_link),
2817 LNK("root", proc_root_link),
2818 LNK("exe", proc_exe_link),
2819 REG("mounts", S_IRUGO, proc_mounts_operations),
2820 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
2821 REG("mountstats", S_IRUSR, proc_mountstats_operations),
2822#ifdef CONFIG_PROC_PAGE_MONITOR
2823 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2824 REG("smaps", S_IRUGO, proc_smaps_operations),
2825 REG("pagemap", S_IRUGO, proc_pagemap_operations),
2826#endif
2827#ifdef CONFIG_SECURITY
2828 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2829#endif
2830#ifdef CONFIG_KALLSYMS
2831 INF("wchan", S_IRUGO, proc_pid_wchan),
2832#endif
2833#ifdef CONFIG_STACKTRACE
2834 ONE("stack", S_IRUGO, proc_pid_stack),
2835#endif
2836#ifdef CONFIG_SCHEDSTATS
2837 INF("schedstat", S_IRUGO, proc_pid_schedstat),
2838#endif
2839#ifdef CONFIG_LATENCYTOP
2840 REG("latency", S_IRUGO, proc_lstats_operations),
2841#endif
2842#ifdef CONFIG_PROC_PID_CPUSET
2843 REG("cpuset", S_IRUGO, proc_cpuset_operations),
2844#endif
2845#ifdef CONFIG_CGROUPS
2846 REG("cgroup", S_IRUGO, proc_cgroup_operations),
2847#endif
2848 INF("oom_score", S_IRUGO, proc_oom_score),
2849 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2850 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2851#ifdef CONFIG_AUDITSYSCALL
2852 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
2853 REG("sessionid", S_IRUGO, proc_sessionid_operations),
2854#endif
2855#ifdef CONFIG_FAULT_INJECTION
2856 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2857#endif
2858#ifdef CONFIG_ELF_CORE
2859 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2860#endif
2861#ifdef CONFIG_TASK_IO_ACCOUNTING
2862 INF("io", S_IRUSR, proc_tgid_io_accounting),
2863#endif
2864#ifdef CONFIG_HARDWALL
2865 INF("hardwall", S_IRUGO, proc_pid_hardwall),
2866#endif
2867};
2868
2869static int proc_tgid_base_readdir(struct file * filp,
2870 void * dirent, filldir_t filldir)
2871{
2872 return proc_pident_readdir(filp,dirent,filldir,
2873 tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2874}
2875
2876static const struct file_operations proc_tgid_base_operations = {
2877 .read = generic_read_dir,
2878 .readdir = proc_tgid_base_readdir,
2879 .llseek = default_llseek,
2880};
2881
2882static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2883 return proc_pident_lookup(dir, dentry,
2884 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2885}
2886
2887static const struct inode_operations proc_tgid_base_inode_operations = {
2888 .lookup = proc_tgid_base_lookup,
2889 .getattr = pid_getattr,
2890 .setattr = proc_setattr,
2891};
2892
2893static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2894{
2895 struct dentry *dentry, *leader, *dir;
2896 char buf[PROC_NUMBUF];
2897 struct qstr name;
2898
2899 name.name = buf;
2900 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2901 dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2902 if (dentry) {
2903 shrink_dcache_parent(dentry);
2904 d_drop(dentry);
2905 dput(dentry);
2906 }
2907
2908 name.name = buf;
2909 name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2910 leader = d_hash_and_lookup(mnt->mnt_root, &name);
2911 if (!leader)
2912 goto out;
2913
2914 name.name = "task";
2915 name.len = strlen(name.name);
2916 dir = d_hash_and_lookup(leader, &name);
2917 if (!dir)
2918 goto out_put_leader;
2919
2920 name.name = buf;
2921 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2922 dentry = d_hash_and_lookup(dir, &name);
2923 if (dentry) {
2924 shrink_dcache_parent(dentry);
2925 d_drop(dentry);
2926 dput(dentry);
2927 }
2928
2929 dput(dir);
2930out_put_leader:
2931 dput(leader);
2932out:
2933 return;
2934}
2935
2936/**
2937 * proc_flush_task - Remove dcache entries for @task from the /proc dcache.
2938 * @task: task that should be flushed.
2939 *
2940 * When flushing dentries from proc, one needs to flush them from global
2941 * proc (proc_mnt) and from all the namespaces' procs this task was seen
2942 * in. This call is supposed to do all of this job.
2943 *
2944 * Looks in the dcache for
2945 * /proc/@pid
2946 * /proc/@tgid/task/@pid
2947 * if either directory is present flushes it and all of it'ts children
2948 * from the dcache.
2949 *
2950 * It is safe and reasonable to cache /proc entries for a task until
2951 * that task exits. After that they just clog up the dcache with
2952 * useless entries, possibly causing useful dcache entries to be
2953 * flushed instead. This routine is proved to flush those useless
2954 * dcache entries at process exit time.
2955 *
2956 * NOTE: This routine is just an optimization so it does not guarantee
2957 * that no dcache entries will exist at process exit time it
2958 * just makes it very unlikely that any will persist.
2959 */
2960
2961void proc_flush_task(struct task_struct *task)
2962{
2963 int i;
2964 struct pid *pid, *tgid;
2965 struct upid *upid;
2966
2967 pid = task_pid(task);
2968 tgid = task_tgid(task);
2969
2970 for (i = 0; i <= pid->level; i++) {
2971 upid = &pid->numbers[i];
2972 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2973 tgid->numbers[i].nr);
2974 }
2975
2976 upid = &pid->numbers[pid->level];
2977 if (upid->nr == 1)
2978 pid_ns_release_proc(upid->ns);
2979}
2980
2981static struct dentry *proc_pid_instantiate(struct inode *dir,
2982 struct dentry * dentry,
2983 struct task_struct *task, const void *ptr)
2984{
2985 struct dentry *error = ERR_PTR(-ENOENT);
2986 struct inode *inode;
2987
2988 inode = proc_pid_make_inode(dir->i_sb, task);
2989 if (!inode)
2990 goto out;
2991
2992 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2993 inode->i_op = &proc_tgid_base_inode_operations;
2994 inode->i_fop = &proc_tgid_base_operations;
2995 inode->i_flags|=S_IMMUTABLE;
2996
2997 inode->i_nlink = 2 + pid_entry_count_dirs(tgid_base_stuff,
2998 ARRAY_SIZE(tgid_base_stuff));
2999
3000 d_set_d_op(dentry, &pid_dentry_operations);
3001
3002 d_add(dentry, inode);
3003 /* Close the race of the process dying before we return the dentry */
3004 if (pid_revalidate(dentry, NULL))
3005 error = NULL;
3006out:
3007 return error;
3008}
3009
3010struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3011{
3012 struct dentry *result;
3013 struct task_struct *task;
3014 unsigned tgid;
3015 struct pid_namespace *ns;
3016
3017 result = proc_base_lookup(dir, dentry);
3018 if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
3019 goto out;
3020
3021 tgid = name_to_int(dentry);
3022 if (tgid == ~0U)
3023 goto out;
3024
3025 ns = dentry->d_sb->s_fs_info;
3026 rcu_read_lock();
3027 task = find_task_by_pid_ns(tgid, ns);
3028 if (task)
3029 get_task_struct(task);
3030 rcu_read_unlock();
3031 if (!task)
3032 goto out;
3033
3034 result = proc_pid_instantiate(dir, dentry, task, NULL);
3035 put_task_struct(task);
3036out:
3037 return result;
3038}
3039
3040/*
3041 * Find the first task with tgid >= tgid
3042 *
3043 */
3044struct tgid_iter {
3045 unsigned int tgid;
3046 struct task_struct *task;
3047};
3048static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3049{
3050 struct pid *pid;
3051
3052 if (iter.task)
3053 put_task_struct(iter.task);
3054 rcu_read_lock();
3055retry:
3056 iter.task = NULL;
3057 pid = find_ge_pid(iter.tgid, ns);
3058 if (pid) {
3059 iter.tgid = pid_nr_ns(pid, ns);
3060 iter.task = pid_task(pid, PIDTYPE_PID);
3061 /* What we to know is if the pid we have find is the
3062 * pid of a thread_group_leader. Testing for task
3063 * being a thread_group_leader is the obvious thing
3064 * todo but there is a window when it fails, due to
3065 * the pid transfer logic in de_thread.
3066 *
3067 * So we perform the straight forward test of seeing
3068 * if the pid we have found is the pid of a thread
3069 * group leader, and don't worry if the task we have
3070 * found doesn't happen to be a thread group leader.
3071 * As we don't care in the case of readdir.
3072 */
3073 if (!iter.task || !has_group_leader_pid(iter.task)) {
3074 iter.tgid += 1;
3075 goto retry;
3076 }
3077 get_task_struct(iter.task);
3078 }
3079 rcu_read_unlock();
3080 return iter;
3081}
3082
3083#define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
3084
3085static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3086 struct tgid_iter iter)
3087{
3088 char name[PROC_NUMBUF];
3089 int len = snprintf(name, sizeof(name), "%d", iter.tgid);
3090 return proc_fill_cache(filp, dirent, filldir, name, len,
3091 proc_pid_instantiate, iter.task, NULL);
3092}
3093
3094/* for the /proc/ directory itself, after non-process stuff has been done */
3095int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
3096{
3097 unsigned int nr;
3098 struct task_struct *reaper;
3099 struct tgid_iter iter;
3100 struct pid_namespace *ns;
3101
3102 if (filp->f_pos >= PID_MAX_LIMIT + TGID_OFFSET)
3103 goto out_no_task;
3104 nr = filp->f_pos - FIRST_PROCESS_ENTRY;
3105
3106 reaper = get_proc_task(filp->f_path.dentry->d_inode);
3107 if (!reaper)
3108 goto out_no_task;
3109
3110 for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
3111 const struct pid_entry *p = &proc_base_stuff[nr];
3112 if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
3113 goto out;
3114 }
3115
3116 ns = filp->f_dentry->d_sb->s_fs_info;
3117 iter.task = NULL;
3118 iter.tgid = filp->f_pos - TGID_OFFSET;
3119 for (iter = next_tgid(ns, iter);
3120 iter.task;
3121 iter.tgid += 1, iter = next_tgid(ns, iter)) {
3122 filp->f_pos = iter.tgid + TGID_OFFSET;
3123 if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
3124 put_task_struct(iter.task);
3125 goto out;
3126 }
3127 }
3128 filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
3129out:
3130 put_task_struct(reaper);
3131out_no_task:
3132 return 0;
3133}
3134
3135/*
3136 * Tasks
3137 */
3138static const struct pid_entry tid_base_stuff[] = {
3139 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3140 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3141 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3142 REG("environ", S_IRUSR, proc_environ_operations),
3143 INF("auxv", S_IRUSR, proc_pid_auxv),
3144 ONE("status", S_IRUGO, proc_pid_status),
3145 ONE("personality", S_IRUGO, proc_pid_personality),
3146 INF("limits", S_IRUGO, proc_pid_limits),
3147#ifdef CONFIG_SCHED_DEBUG
3148 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3149#endif
3150 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3151#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3152 INF("syscall", S_IRUGO, proc_pid_syscall),
3153#endif
3154 INF("cmdline", S_IRUGO, proc_pid_cmdline),
3155 ONE("stat", S_IRUGO, proc_tid_stat),
3156 ONE("statm", S_IRUGO, proc_pid_statm),
3157 REG("maps", S_IRUGO, proc_maps_operations),
3158#ifdef CONFIG_NUMA
3159 REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
3160#endif
3161 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3162 LNK("cwd", proc_cwd_link),
3163 LNK("root", proc_root_link),
3164 LNK("exe", proc_exe_link),
3165 REG("mounts", S_IRUGO, proc_mounts_operations),
3166 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3167#ifdef CONFIG_PROC_PAGE_MONITOR
3168 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3169 REG("smaps", S_IRUGO, proc_smaps_operations),
3170 REG("pagemap", S_IRUGO, proc_pagemap_operations),
3171#endif
3172#ifdef CONFIG_SECURITY
3173 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3174#endif
3175#ifdef CONFIG_KALLSYMS
3176 INF("wchan", S_IRUGO, proc_pid_wchan),
3177#endif
3178#ifdef CONFIG_STACKTRACE
3179 ONE("stack", S_IRUGO, proc_pid_stack),
3180#endif
3181#ifdef CONFIG_SCHEDSTATS
3182 INF("schedstat", S_IRUGO, proc_pid_schedstat),
3183#endif
3184#ifdef CONFIG_LATENCYTOP
3185 REG("latency", S_IRUGO, proc_lstats_operations),
3186#endif
3187#ifdef CONFIG_PROC_PID_CPUSET
3188 REG("cpuset", S_IRUGO, proc_cpuset_operations),
3189#endif
3190#ifdef CONFIG_CGROUPS
3191 REG("cgroup", S_IRUGO, proc_cgroup_operations),
3192#endif
3193 INF("oom_score", S_IRUGO, proc_oom_score),
3194 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
3195 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3196#ifdef CONFIG_AUDITSYSCALL
3197 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3198 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3199#endif
3200#ifdef CONFIG_FAULT_INJECTION
3201 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3202#endif
3203#ifdef CONFIG_TASK_IO_ACCOUNTING
3204 INF("io", S_IRUSR, proc_tid_io_accounting),
3205#endif
3206#ifdef CONFIG_HARDWALL
3207 INF("hardwall", S_IRUGO, proc_pid_hardwall),
3208#endif
3209};
3210
3211static int proc_tid_base_readdir(struct file * filp,
3212 void * dirent, filldir_t filldir)
3213{
3214 return proc_pident_readdir(filp,dirent,filldir,
3215 tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
3216}
3217
3218static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
3219 return proc_pident_lookup(dir, dentry,
3220 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3221}
3222
3223static const struct file_operations proc_tid_base_operations = {
3224 .read = generic_read_dir,
3225 .readdir = proc_tid_base_readdir,
3226 .llseek = default_llseek,
3227};
3228
3229static const struct inode_operations proc_tid_base_inode_operations = {
3230 .lookup = proc_tid_base_lookup,
3231 .getattr = pid_getattr,
3232 .setattr = proc_setattr,
3233};
3234
3235static struct dentry *proc_task_instantiate(struct inode *dir,
3236 struct dentry *dentry, struct task_struct *task, const void *ptr)
3237{
3238 struct dentry *error = ERR_PTR(-ENOENT);
3239 struct inode *inode;
3240 inode = proc_pid_make_inode(dir->i_sb, task);
3241
3242 if (!inode)
3243 goto out;
3244 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3245 inode->i_op = &proc_tid_base_inode_operations;
3246 inode->i_fop = &proc_tid_base_operations;
3247 inode->i_flags|=S_IMMUTABLE;
3248
3249 inode->i_nlink = 2 + pid_entry_count_dirs(tid_base_stuff,
3250 ARRAY_SIZE(tid_base_stuff));
3251
3252 d_set_d_op(dentry, &pid_dentry_operations);
3253
3254 d_add(dentry, inode);
3255 /* Close the race of the process dying before we return the dentry */
3256 if (pid_revalidate(dentry, NULL))
3257 error = NULL;
3258out:
3259 return error;
3260}
3261
3262static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3263{
3264 struct dentry *result = ERR_PTR(-ENOENT);
3265 struct task_struct *task;
3266 struct task_struct *leader = get_proc_task(dir);
3267 unsigned tid;
3268 struct pid_namespace *ns;
3269
3270 if (!leader)
3271 goto out_no_task;
3272
3273 tid = name_to_int(dentry);
3274 if (tid == ~0U)
3275 goto out;
3276
3277 ns = dentry->d_sb->s_fs_info;
3278 rcu_read_lock();
3279 task = find_task_by_pid_ns(tid, ns);
3280 if (task)
3281 get_task_struct(task);
3282 rcu_read_unlock();
3283 if (!task)
3284 goto out;
3285 if (!same_thread_group(leader, task))
3286 goto out_drop_task;
3287
3288 result = proc_task_instantiate(dir, dentry, task, NULL);
3289out_drop_task:
3290 put_task_struct(task);
3291out:
3292 put_task_struct(leader);
3293out_no_task:
3294 return result;
3295}
3296
3297/*
3298 * Find the first tid of a thread group to return to user space.
3299 *
3300 * Usually this is just the thread group leader, but if the users
3301 * buffer was too small or there was a seek into the middle of the
3302 * directory we have more work todo.
3303 *
3304 * In the case of a short read we start with find_task_by_pid.
3305 *
3306 * In the case of a seek we start with the leader and walk nr
3307 * threads past it.
3308 */
3309static struct task_struct *first_tid(struct task_struct *leader,
3310 int tid, int nr, struct pid_namespace *ns)
3311{
3312 struct task_struct *pos;
3313
3314 rcu_read_lock();
3315 /* Attempt to start with the pid of a thread */
3316 if (tid && (nr > 0)) {
3317 pos = find_task_by_pid_ns(tid, ns);
3318 if (pos && (pos->group_leader == leader))
3319 goto found;
3320 }
3321
3322 /* If nr exceeds the number of threads there is nothing todo */
3323 pos = NULL;
3324 if (nr && nr >= get_nr_threads(leader))
3325 goto out;
3326
3327 /* If we haven't found our starting place yet start
3328 * with the leader and walk nr threads forward.
3329 */
3330 for (pos = leader; nr > 0; --nr) {
3331 pos = next_thread(pos);
3332 if (pos == leader) {
3333 pos = NULL;
3334 goto out;
3335 }
3336 }
3337found:
3338 get_task_struct(pos);
3339out:
3340 rcu_read_unlock();
3341 return pos;
3342}
3343
3344/*
3345 * Find the next thread in the thread list.
3346 * Return NULL if there is an error or no next thread.
3347 *
3348 * The reference to the input task_struct is released.
3349 */
3350static struct task_struct *next_tid(struct task_struct *start)
3351{
3352 struct task_struct *pos = NULL;
3353 rcu_read_lock();
3354 if (pid_alive(start)) {
3355 pos = next_thread(start);
3356 if (thread_group_leader(pos))
3357 pos = NULL;
3358 else
3359 get_task_struct(pos);
3360 }
3361 rcu_read_unlock();
3362 put_task_struct(start);
3363 return pos;
3364}
3365
3366static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3367 struct task_struct *task, int tid)
3368{
3369 char name[PROC_NUMBUF];
3370 int len = snprintf(name, sizeof(name), "%d", tid);
3371 return proc_fill_cache(filp, dirent, filldir, name, len,
3372 proc_task_instantiate, task, NULL);
3373}
3374
3375/* for the /proc/TGID/task/ directories */
3376static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3377{
3378 struct dentry *dentry = filp->f_path.dentry;
3379 struct inode *inode = dentry->d_inode;
3380 struct task_struct *leader = NULL;
3381 struct task_struct *task;
3382 int retval = -ENOENT;
3383 ino_t ino;
3384 int tid;
3385 struct pid_namespace *ns;
3386
3387 task = get_proc_task(inode);
3388 if (!task)
3389 goto out_no_task;
3390 rcu_read_lock();
3391 if (pid_alive(task)) {
3392 leader = task->group_leader;
3393 get_task_struct(leader);
3394 }
3395 rcu_read_unlock();
3396 put_task_struct(task);
3397 if (!leader)
3398 goto out_no_task;
3399 retval = 0;
3400
3401 switch ((unsigned long)filp->f_pos) {
3402 case 0:
3403 ino = inode->i_ino;
3404 if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3405 goto out;
3406 filp->f_pos++;
3407 /* fall through */
3408 case 1:
3409 ino = parent_ino(dentry);
3410 if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3411 goto out;
3412 filp->f_pos++;
3413 /* fall through */
3414 }
3415
3416 /* f_version caches the tgid value that the last readdir call couldn't
3417 * return. lseek aka telldir automagically resets f_version to 0.
3418 */
3419 ns = filp->f_dentry->d_sb->s_fs_info;
3420 tid = (int)filp->f_version;
3421 filp->f_version = 0;
3422 for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3423 task;
3424 task = next_tid(task), filp->f_pos++) {
3425 tid = task_pid_nr_ns(task, ns);
3426 if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3427 /* returning this tgid failed, save it as the first
3428 * pid for the next readir call */
3429 filp->f_version = (u64)tid;
3430 put_task_struct(task);
3431 break;
3432 }
3433 }
3434out:
3435 put_task_struct(leader);
3436out_no_task:
3437 return retval;
3438}
3439
3440static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3441{
3442 struct inode *inode = dentry->d_inode;
3443 struct task_struct *p = get_proc_task(inode);
3444 generic_fillattr(inode, stat);
3445
3446 if (p) {
3447 stat->nlink += get_nr_threads(p);
3448 put_task_struct(p);
3449 }
3450
3451 return 0;
3452}
3453
3454static const struct inode_operations proc_task_inode_operations = {
3455 .lookup = proc_task_lookup,
3456 .getattr = proc_task_getattr,
3457 .setattr = proc_setattr,
3458};
3459
3460static const struct file_operations proc_task_operations = {
3461 .read = generic_read_dir,
3462 .readdir = proc_task_readdir,
3463 .llseek = default_llseek,
3464};