Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/namei.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 */
   7
   8/*
   9 * Some corrections by tytso.
  10 */
  11
  12/* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
  13 * lookup logic.
  14 */
  15/* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
  16 */
  17
  18#include <linux/init.h>
  19#include <linux/export.h>
  20#include <linux/kernel.h>
  21#include <linux/slab.h>
 
  22#include <linux/fs.h>
 
  23#include <linux/namei.h>
  24#include <linux/pagemap.h>
  25#include <linux/sched/mm.h>
  26#include <linux/fsnotify.h>
  27#include <linux/personality.h>
  28#include <linux/security.h>
  29#include <linux/ima.h>
  30#include <linux/syscalls.h>
  31#include <linux/mount.h>
  32#include <linux/audit.h>
  33#include <linux/capability.h>
  34#include <linux/file.h>
  35#include <linux/fcntl.h>
  36#include <linux/device_cgroup.h>
  37#include <linux/fs_struct.h>
  38#include <linux/posix_acl.h>
  39#include <linux/hash.h>
  40#include <linux/bitops.h>
  41#include <linux/init_task.h>
  42#include <linux/uaccess.h>
  43
  44#include "internal.h"
  45#include "mount.h"
  46
  47/* [Feb-1997 T. Schoebel-Theuer]
  48 * Fundamental changes in the pathname lookup mechanisms (namei)
  49 * were necessary because of omirr.  The reason is that omirr needs
  50 * to know the _real_ pathname, not the user-supplied one, in case
  51 * of symlinks (and also when transname replacements occur).
  52 *
  53 * The new code replaces the old recursive symlink resolution with
  54 * an iterative one (in case of non-nested symlink chains).  It does
  55 * this with calls to <fs>_follow_link().
  56 * As a side effect, dir_namei(), _namei() and follow_link() are now 
  57 * replaced with a single function lookup_dentry() that can handle all 
  58 * the special cases of the former code.
  59 *
  60 * With the new dcache, the pathname is stored at each inode, at least as
  61 * long as the refcount of the inode is positive.  As a side effect, the
  62 * size of the dcache depends on the inode cache and thus is dynamic.
  63 *
  64 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
  65 * resolution to correspond with current state of the code.
  66 *
  67 * Note that the symlink resolution is not *completely* iterative.
  68 * There is still a significant amount of tail- and mid- recursion in
  69 * the algorithm.  Also, note that <fs>_readlink() is not used in
  70 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
  71 * may return different results than <fs>_follow_link().  Many virtual
  72 * filesystems (including /proc) exhibit this behavior.
  73 */
  74
  75/* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
  76 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
  77 * and the name already exists in form of a symlink, try to create the new
  78 * name indicated by the symlink. The old code always complained that the
  79 * name already exists, due to not following the symlink even if its target
  80 * is nonexistent.  The new semantics affects also mknod() and link() when
  81 * the name is a symlink pointing to a non-existent name.
  82 *
  83 * I don't know which semantics is the right one, since I have no access
  84 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
  85 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
  86 * "old" one. Personally, I think the new semantics is much more logical.
  87 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
  88 * file does succeed in both HP-UX and SunOs, but not in Solaris
  89 * and in the old Linux semantics.
  90 */
  91
  92/* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
  93 * semantics.  See the comments in "open_namei" and "do_link" below.
  94 *
  95 * [10-Sep-98 Alan Modra] Another symlink change.
  96 */
  97
  98/* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
  99 *	inside the path - always follow.
 100 *	in the last component in creation/removal/renaming - never follow.
 101 *	if LOOKUP_FOLLOW passed - follow.
 102 *	if the pathname has trailing slashes - follow.
 103 *	otherwise - don't follow.
 104 * (applied in that order).
 105 *
 106 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
 107 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
 108 * During the 2.4 we need to fix the userland stuff depending on it -
 109 * hopefully we will be able to get rid of that wart in 2.5. So far only
 110 * XEmacs seems to be relying on it...
 111 */
 112/*
 113 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
 114 * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
 115 * any extra contention...
 116 */
 117
 118/* In order to reduce some races, while at the same time doing additional
 119 * checking and hopefully speeding things up, we copy filenames to the
 120 * kernel data space before using them..
 121 *
 122 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
 123 * PATH_MAX includes the nul terminator --RR.
 124 */
 125
 126#define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
 127
 128struct filename *
 129getname_flags(const char __user *filename, int flags, int *empty)
 130{
 131	struct filename *result;
 132	char *kname;
 133	int len;
 134
 135	result = audit_reusename(filename);
 136	if (result)
 137		return result;
 138
 139	result = __getname();
 140	if (unlikely(!result))
 141		return ERR_PTR(-ENOMEM);
 142
 143	/*
 144	 * First, try to embed the struct filename inside the names_cache
 145	 * allocation
 146	 */
 147	kname = (char *)result->iname;
 148	result->name = kname;
 149
 150	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
 151	if (unlikely(len < 0)) {
 152		__putname(result);
 153		return ERR_PTR(len);
 
 
 
 
 
 
 
 
 
 
 
 154	}
 155
 156	/*
 157	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
 158	 * separate struct filename so we can dedicate the entire
 159	 * names_cache allocation for the pathname, and re-do the copy from
 160	 * userland.
 161	 */
 162	if (unlikely(len == EMBEDDED_NAME_MAX)) {
 163		const size_t size = offsetof(struct filename, iname[1]);
 164		kname = (char *)result;
 165
 166		/*
 167		 * size is chosen that way we to guarantee that
 168		 * result->iname[0] is within the same object and that
 169		 * kname can't be equal to result->iname, no matter what.
 170		 */
 171		result = kzalloc(size, GFP_KERNEL);
 172		if (unlikely(!result)) {
 173			__putname(kname);
 174			return ERR_PTR(-ENOMEM);
 175		}
 176		result->name = kname;
 177		len = strncpy_from_user(kname, filename, PATH_MAX);
 178		if (unlikely(len < 0)) {
 179			__putname(kname);
 180			kfree(result);
 181			return ERR_PTR(len);
 182		}
 
 
 
 
 
 
 183		if (unlikely(len == PATH_MAX)) {
 184			__putname(kname);
 185			kfree(result);
 186			return ERR_PTR(-ENAMETOOLONG);
 187		}
 188	}
 189
 190	result->refcnt = 1;
 191	/* The empty path is special. */
 192	if (unlikely(!len)) {
 193		if (empty)
 194			*empty = 1;
 195		if (!(flags & LOOKUP_EMPTY)) {
 196			putname(result);
 197			return ERR_PTR(-ENOENT);
 198		}
 199	}
 200
 201	result->uptr = filename;
 202	result->aname = NULL;
 203	audit_getname(result);
 204	return result;
 205}
 206
 207struct filename *
 208getname_uflags(const char __user *filename, int uflags)
 209{
 210	int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
 211
 212	return getname_flags(filename, flags, NULL);
 213}
 214
 215struct filename *
 216getname(const char __user * filename)
 217{
 218	return getname_flags(filename, 0, NULL);
 219}
 220
 221struct filename *
 222getname_kernel(const char * filename)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 223{
 224	struct filename *result;
 225	int len = strlen(filename) + 1;
 226
 227	result = __getname();
 228	if (unlikely(!result))
 229		return ERR_PTR(-ENOMEM);
 230
 231	if (len <= EMBEDDED_NAME_MAX) {
 232		result->name = (char *)result->iname;
 233	} else if (len <= PATH_MAX) {
 234		const size_t size = offsetof(struct filename, iname[1]);
 235		struct filename *tmp;
 236
 237		tmp = kmalloc(size, GFP_KERNEL);
 238		if (unlikely(!tmp)) {
 239			__putname(result);
 240			return ERR_PTR(-ENOMEM);
 241		}
 242		tmp->name = (char *)result;
 243		result = tmp;
 244	} else {
 245		__putname(result);
 246		return ERR_PTR(-ENAMETOOLONG);
 247	}
 248	memcpy((char *)result->name, filename, len);
 249	result->uptr = NULL;
 250	result->aname = NULL;
 251	result->refcnt = 1;
 252	audit_getname(result);
 253
 254	return result;
 255}
 
 256
 257void putname(struct filename *name)
 258{
 259	if (IS_ERR(name))
 260		return;
 261
 262	BUG_ON(name->refcnt <= 0);
 
 263
 264	if (--name->refcnt > 0)
 265		return;
 266
 267	if (name->name != name->iname) {
 268		__putname(name->name);
 269		kfree(name);
 270	} else
 271		__putname(name);
 272}
 
 273
 274/**
 275 * check_acl - perform ACL permission checking
 276 * @mnt_userns:	user namespace of the mount the inode was found from
 277 * @inode:	inode to check permissions on
 278 * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
 279 *
 280 * This function performs the ACL permission checking. Since this function
 281 * retrieve POSIX acls it needs to know whether it is called from a blocking or
 282 * non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
 283 *
 284 * If the inode has been found through an idmapped mount the user namespace of
 285 * the vfsmount must be passed through @mnt_userns. This function will then take
 286 * care to map the inode according to @mnt_userns before checking permissions.
 287 * On non-idmapped mounts or if permission checking is to be performed on the
 288 * raw inode simply passs init_user_ns.
 289 */
 290static int check_acl(struct user_namespace *mnt_userns,
 291		     struct inode *inode, int mask)
 292{
 293#ifdef CONFIG_FS_POSIX_ACL
 294	struct posix_acl *acl;
 295
 296	if (mask & MAY_NOT_BLOCK) {
 297		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
 298	        if (!acl)
 299	                return -EAGAIN;
 300		/* no ->get_inode_acl() calls in RCU mode... */
 301		if (is_uncached_acl(acl))
 302			return -ECHILD;
 303	        return posix_acl_permission(mnt_userns, inode, acl, mask);
 304	}
 305
 306	acl = get_inode_acl(inode, ACL_TYPE_ACCESS);
 307	if (IS_ERR(acl))
 308		return PTR_ERR(acl);
 309	if (acl) {
 310	        int error = posix_acl_permission(mnt_userns, inode, acl, mask);
 311	        posix_acl_release(acl);
 312	        return error;
 313	}
 314#endif
 315
 316	return -EAGAIN;
 317}
 318
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 319/**
 320 * acl_permission_check - perform basic UNIX permission checking
 321 * @mnt_userns:	user namespace of the mount the inode was found from
 322 * @inode:	inode to check permissions on
 323 * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
 324 *
 325 * This function performs the basic UNIX permission checking. Since this
 326 * function may retrieve POSIX acls it needs to know whether it is called from a
 327 * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
 328 *
 329 * If the inode has been found through an idmapped mount the user namespace of
 330 * the vfsmount must be passed through @mnt_userns. This function will then take
 331 * care to map the inode according to @mnt_userns before checking permissions.
 332 * On non-idmapped mounts or if permission checking is to be performed on the
 333 * raw inode simply passs init_user_ns.
 334 */
 335static int acl_permission_check(struct user_namespace *mnt_userns,
 336				struct inode *inode, int mask)
 337{
 338	unsigned int mode = inode->i_mode;
 339	vfsuid_t vfsuid;
 340
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 341	/* Are we the owner? If so, ACL's don't matter */
 342	vfsuid = i_uid_into_vfsuid(mnt_userns, inode);
 343	if (likely(vfsuid_eq_kuid(vfsuid, current_fsuid()))) {
 344		mask &= 7;
 345		mode >>= 6;
 346		return (mask & ~mode) ? -EACCES : 0;
 347	}
 348
 349	/* Do we have ACL's? */
 350	if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
 351		int error = check_acl(mnt_userns, inode, mask);
 352		if (error != -EAGAIN)
 353			return error;
 354	}
 355
 356	/* Only RWX matters for group/other mode bits */
 357	mask &= 7;
 358
 359	/*
 360	 * Are the group permissions different from
 361	 * the other permissions in the bits we care
 362	 * about? Need to check group ownership if so.
 363	 */
 364	if (mask & (mode ^ (mode >> 3))) {
 365		vfsgid_t vfsgid = i_gid_into_vfsgid(mnt_userns, inode);
 366		if (vfsgid_in_group_p(vfsgid))
 367			mode >>= 3;
 368	}
 369
 370	/* Bits in 'mode' clear that we require? */
 371	return (mask & ~mode) ? -EACCES : 0;
 372}
 373
 374/**
 375 * generic_permission -  check for access rights on a Posix-like filesystem
 376 * @mnt_userns:	user namespace of the mount the inode was found from
 377 * @inode:	inode to check access rights for
 378 * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
 379 *		%MAY_NOT_BLOCK ...)
 380 *
 381 * Used to check for read/write/execute permissions on a file.
 382 * We use "fsuid" for this, letting us set arbitrary permissions
 383 * for filesystem access without changing the "normal" uids which
 384 * are used for other things.
 385 *
 386 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
 387 * request cannot be satisfied (eg. requires blocking or too much complexity).
 388 * It would then be called again in ref-walk mode.
 389 *
 390 * If the inode has been found through an idmapped mount the user namespace of
 391 * the vfsmount must be passed through @mnt_userns. This function will then take
 392 * care to map the inode according to @mnt_userns before checking permissions.
 393 * On non-idmapped mounts or if permission checking is to be performed on the
 394 * raw inode simply passs init_user_ns.
 395 */
 396int generic_permission(struct user_namespace *mnt_userns, struct inode *inode,
 397		       int mask)
 398{
 399	int ret;
 400
 401	/*
 402	 * Do the basic permission checks.
 403	 */
 404	ret = acl_permission_check(mnt_userns, inode, mask);
 405	if (ret != -EACCES)
 406		return ret;
 407
 408	if (S_ISDIR(inode->i_mode)) {
 409		/* DACs are overridable for directories */
 410		if (!(mask & MAY_WRITE))
 411			if (capable_wrt_inode_uidgid(mnt_userns, inode,
 412						     CAP_DAC_READ_SEARCH))
 413				return 0;
 414		if (capable_wrt_inode_uidgid(mnt_userns, inode,
 415					     CAP_DAC_OVERRIDE))
 416			return 0;
 417		return -EACCES;
 418	}
 419
 420	/*
 421	 * Searching includes executable on directories, else just read.
 422	 */
 423	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
 424	if (mask == MAY_READ)
 425		if (capable_wrt_inode_uidgid(mnt_userns, inode,
 426					     CAP_DAC_READ_SEARCH))
 427			return 0;
 428	/*
 429	 * Read/write DACs are always overridable.
 430	 * Executable DACs are overridable when there is
 431	 * at least one exec bit set.
 432	 */
 433	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
 434		if (capable_wrt_inode_uidgid(mnt_userns, inode,
 435					     CAP_DAC_OVERRIDE))
 436			return 0;
 437
 438	return -EACCES;
 439}
 440EXPORT_SYMBOL(generic_permission);
 441
 442/**
 443 * do_inode_permission - UNIX permission checking
 444 * @mnt_userns:	user namespace of the mount the inode was found from
 445 * @inode:	inode to check permissions on
 446 * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
 447 *
 448 * We _really_ want to just do "generic_permission()" without
 449 * even looking at the inode->i_op values. So we keep a cache
 450 * flag in inode->i_opflags, that says "this has not special
 451 * permission function, use the fast case".
 452 */
 453static inline int do_inode_permission(struct user_namespace *mnt_userns,
 454				      struct inode *inode, int mask)
 455{
 456	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
 457		if (likely(inode->i_op->permission))
 458			return inode->i_op->permission(mnt_userns, inode, mask);
 459
 460		/* This gets set once for the inode lifetime */
 461		spin_lock(&inode->i_lock);
 462		inode->i_opflags |= IOP_FASTPERM;
 463		spin_unlock(&inode->i_lock);
 464	}
 465	return generic_permission(mnt_userns, inode, mask);
 466}
 467
 468/**
 469 * sb_permission - Check superblock-level permissions
 470 * @sb: Superblock of inode to check permission on
 471 * @inode: Inode to check permission on
 472 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
 473 *
 474 * Separate out file-system wide checks from inode-specific permission checks.
 475 */
 476static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
 477{
 478	if (unlikely(mask & MAY_WRITE)) {
 479		umode_t mode = inode->i_mode;
 480
 481		/* Nobody gets write access to a read-only fs. */
 482		if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
 483			return -EROFS;
 484	}
 485	return 0;
 486}
 487
 488/**
 489 * inode_permission - Check for access rights to a given inode
 490 * @mnt_userns:	User namespace of the mount the inode was found from
 491 * @inode:	Inode to check permission on
 492 * @mask:	Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
 493 *
 494 * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
 495 * this, letting us set arbitrary permissions for filesystem access without
 496 * changing the "normal" UIDs which are used for other things.
 497 *
 498 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
 499 */
 500int inode_permission(struct user_namespace *mnt_userns,
 501		     struct inode *inode, int mask)
 502{
 503	int retval;
 504
 505	retval = sb_permission(inode->i_sb, inode, mask);
 506	if (retval)
 507		return retval;
 508
 509	if (unlikely(mask & MAY_WRITE)) {
 510		/*
 511		 * Nobody gets write access to an immutable file.
 512		 */
 513		if (IS_IMMUTABLE(inode))
 514			return -EPERM;
 515
 516		/*
 517		 * Updating mtime will likely cause i_uid and i_gid to be
 518		 * written back improperly if their true value is unknown
 519		 * to the vfs.
 520		 */
 521		if (HAS_UNMAPPED_ID(mnt_userns, inode))
 522			return -EACCES;
 523	}
 524
 525	retval = do_inode_permission(mnt_userns, inode, mask);
 526	if (retval)
 527		return retval;
 528
 529	retval = devcgroup_inode_permission(inode, mask);
 530	if (retval)
 531		return retval;
 532
 533	return security_inode_permission(inode, mask);
 534}
 535EXPORT_SYMBOL(inode_permission);
 536
 537/**
 538 * path_get - get a reference to a path
 539 * @path: path to get the reference to
 540 *
 541 * Given a path increment the reference count to the dentry and the vfsmount.
 542 */
 543void path_get(const struct path *path)
 544{
 545	mntget(path->mnt);
 546	dget(path->dentry);
 547}
 548EXPORT_SYMBOL(path_get);
 549
 550/**
 551 * path_put - put a reference to a path
 552 * @path: path to put the reference to
 553 *
 554 * Given a path decrement the reference count to the dentry and the vfsmount.
 555 */
 556void path_put(const struct path *path)
 557{
 558	dput(path->dentry);
 559	mntput(path->mnt);
 560}
 561EXPORT_SYMBOL(path_put);
 562
 563#define EMBEDDED_LEVELS 2
 564struct nameidata {
 565	struct path	path;
 566	struct qstr	last;
 567	struct path	root;
 568	struct inode	*inode; /* path.dentry.d_inode */
 569	unsigned int	flags, state;
 570	unsigned	seq, next_seq, m_seq, r_seq;
 571	int		last_type;
 572	unsigned	depth;
 573	int		total_link_count;
 574	struct saved {
 575		struct path link;
 576		struct delayed_call done;
 577		const char *name;
 578		unsigned seq;
 579	} *stack, internal[EMBEDDED_LEVELS];
 580	struct filename	*name;
 
 581	struct nameidata *saved;
 582	unsigned	root_seq;
 583	int		dfd;
 584	vfsuid_t	dir_vfsuid;
 585	umode_t		dir_mode;
 586} __randomize_layout;
 587
 588#define ND_ROOT_PRESET 1
 589#define ND_ROOT_GRABBED 2
 590#define ND_JUMPED 4
 591
 592static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name)
 593{
 594	struct nameidata *old = current->nameidata;
 595	p->stack = p->internal;
 596	p->depth = 0;
 597	p->dfd = dfd;
 598	p->name = name;
 
 599	p->path.mnt = NULL;
 600	p->path.dentry = NULL;
 601	p->total_link_count = old ? old->total_link_count : 0;
 602	p->saved = old;
 603	current->nameidata = p;
 604}
 605
 606static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name,
 607			  const struct path *root)
 608{
 609	__set_nameidata(p, dfd, name);
 610	p->state = 0;
 611	if (unlikely(root)) {
 612		p->state = ND_ROOT_PRESET;
 613		p->root = *root;
 614	}
 615}
 616
 617static void restore_nameidata(void)
 618{
 619	struct nameidata *now = current->nameidata, *old = now->saved;
 620
 621	current->nameidata = old;
 622	if (old)
 623		old->total_link_count = now->total_link_count;
 624	if (now->stack != now->internal)
 625		kfree(now->stack);
 626}
 627
 628static bool nd_alloc_stack(struct nameidata *nd)
 629{
 630	struct saved *p;
 631
 632	p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
 633			 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
 634	if (unlikely(!p))
 635		return false;
 636	memcpy(p, nd->internal, sizeof(nd->internal));
 637	nd->stack = p;
 638	return true;
 639}
 640
 641/**
 642 * path_connected - Verify that a dentry is below mnt.mnt_root
 
 
 643 *
 644 * Rename can sometimes move a file or directory outside of a bind
 645 * mount, path_connected allows those cases to be detected.
 646 */
 647static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
 648{
 649	struct super_block *sb = mnt->mnt_sb;
 650
 651	/* Bind mounts can have disconnected paths */
 652	if (mnt->mnt_root == sb->s_root)
 653		return true;
 654
 655	return is_subdir(dentry, mnt->mnt_root);
 656}
 657
 658static void drop_links(struct nameidata *nd)
 659{
 660	int i = nd->depth;
 661	while (i--) {
 662		struct saved *last = nd->stack + i;
 663		do_delayed_call(&last->done);
 664		clear_delayed_call(&last->done);
 665	}
 666}
 667
 668static void leave_rcu(struct nameidata *nd)
 669{
 670	nd->flags &= ~LOOKUP_RCU;
 671	nd->seq = nd->next_seq = 0;
 672	rcu_read_unlock();
 673}
 674
 675static void terminate_walk(struct nameidata *nd)
 676{
 677	drop_links(nd);
 678	if (!(nd->flags & LOOKUP_RCU)) {
 679		int i;
 680		path_put(&nd->path);
 681		for (i = 0; i < nd->depth; i++)
 682			path_put(&nd->stack[i].link);
 683		if (nd->state & ND_ROOT_GRABBED) {
 684			path_put(&nd->root);
 685			nd->state &= ~ND_ROOT_GRABBED;
 686		}
 687	} else {
 688		leave_rcu(nd);
 689	}
 690	nd->depth = 0;
 691	nd->path.mnt = NULL;
 692	nd->path.dentry = NULL;
 693}
 694
 695/* path_put is needed afterwards regardless of success or failure */
 696static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
 697{
 698	int res = __legitimize_mnt(path->mnt, mseq);
 699	if (unlikely(res)) {
 700		if (res > 0)
 701			path->mnt = NULL;
 702		path->dentry = NULL;
 703		return false;
 704	}
 705	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
 706		path->dentry = NULL;
 707		return false;
 708	}
 709	return !read_seqcount_retry(&path->dentry->d_seq, seq);
 710}
 711
 712static inline bool legitimize_path(struct nameidata *nd,
 713			    struct path *path, unsigned seq)
 714{
 715	return __legitimize_path(path, seq, nd->m_seq);
 716}
 717
 718static bool legitimize_links(struct nameidata *nd)
 719{
 720	int i;
 721	if (unlikely(nd->flags & LOOKUP_CACHED)) {
 722		drop_links(nd);
 723		nd->depth = 0;
 724		return false;
 725	}
 726	for (i = 0; i < nd->depth; i++) {
 727		struct saved *last = nd->stack + i;
 728		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
 729			drop_links(nd);
 730			nd->depth = i + 1;
 731			return false;
 732		}
 733	}
 734	return true;
 735}
 736
 737static bool legitimize_root(struct nameidata *nd)
 738{
 739	/* Nothing to do if nd->root is zero or is managed by the VFS user. */
 740	if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET))
 741		return true;
 742	nd->state |= ND_ROOT_GRABBED;
 743	return legitimize_path(nd, &nd->root, nd->root_seq);
 744}
 745
 746/*
 747 * Path walking has 2 modes, rcu-walk and ref-walk (see
 748 * Documentation/filesystems/path-lookup.txt).  In situations when we can't
 749 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
 750 * normal reference counts on dentries and vfsmounts to transition to ref-walk
 751 * mode.  Refcounts are grabbed at the last known good point before rcu-walk
 752 * got stuck, so ref-walk may continue from there. If this is not successful
 753 * (eg. a seqcount has changed), then failure is returned and it's up to caller
 754 * to restart the path walk from the beginning in ref-walk mode.
 755 */
 756
 757/**
 758 * try_to_unlazy - try to switch to ref-walk mode.
 759 * @nd: nameidata pathwalk data
 760 * Returns: true on success, false on failure
 761 *
 762 * try_to_unlazy attempts to legitimize the current nd->path and nd->root
 763 * for ref-walk mode.
 764 * Must be called from rcu-walk context.
 765 * Nothing should touch nameidata between try_to_unlazy() failure and
 766 * terminate_walk().
 767 */
 768static bool try_to_unlazy(struct nameidata *nd)
 769{
 770	struct dentry *parent = nd->path.dentry;
 771
 772	BUG_ON(!(nd->flags & LOOKUP_RCU));
 773
 774	if (unlikely(!legitimize_links(nd)))
 775		goto out1;
 776	if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
 777		goto out;
 778	if (unlikely(!legitimize_root(nd)))
 779		goto out;
 780	leave_rcu(nd);
 781	BUG_ON(nd->inode != parent->d_inode);
 782	return true;
 783
 784out1:
 785	nd->path.mnt = NULL;
 786	nd->path.dentry = NULL;
 787out:
 788	leave_rcu(nd);
 789	return false;
 790}
 791
 792/**
 793 * try_to_unlazy_next - try to switch to ref-walk mode.
 794 * @nd: nameidata pathwalk data
 795 * @dentry: next dentry to step into
 796 * Returns: true on success, false on failure
 797 *
 798 * Similar to try_to_unlazy(), but here we have the next dentry already
 799 * picked by rcu-walk and want to legitimize that in addition to the current
 800 * nd->path and nd->root for ref-walk mode.  Must be called from rcu-walk context.
 801 * Nothing should touch nameidata between try_to_unlazy_next() failure and
 802 * terminate_walk().
 803 */
 804static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry)
 805{
 806	int res;
 807	BUG_ON(!(nd->flags & LOOKUP_RCU));
 808
 809	if (unlikely(!legitimize_links(nd)))
 810		goto out2;
 811	res = __legitimize_mnt(nd->path.mnt, nd->m_seq);
 812	if (unlikely(res)) {
 813		if (res > 0)
 814			goto out2;
 815		goto out1;
 816	}
 817	if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
 818		goto out1;
 819
 820	/*
 821	 * We need to move both the parent and the dentry from the RCU domain
 822	 * to be properly refcounted. And the sequence number in the dentry
 823	 * validates *both* dentry counters, since we checked the sequence
 824	 * number of the parent after we got the child sequence number. So we
 825	 * know the parent must still be valid if the child sequence number is
 826	 */
 827	if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
 828		goto out;
 829	if (read_seqcount_retry(&dentry->d_seq, nd->next_seq))
 830		goto out_dput;
 831	/*
 832	 * Sequence counts matched. Now make sure that the root is
 833	 * still valid and get it if required.
 834	 */
 835	if (unlikely(!legitimize_root(nd)))
 836		goto out_dput;
 837	leave_rcu(nd);
 838	return true;
 839
 840out2:
 841	nd->path.mnt = NULL;
 842out1:
 843	nd->path.dentry = NULL;
 844out:
 845	leave_rcu(nd);
 846	return false;
 847out_dput:
 848	leave_rcu(nd);
 849	dput(dentry);
 850	return false;
 851}
 852
 853static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
 854{
 855	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
 856		return dentry->d_op->d_revalidate(dentry, flags);
 857	else
 858		return 1;
 859}
 860
 861/**
 862 * complete_walk - successful completion of path walk
 863 * @nd:  pointer nameidata
 864 *
 865 * If we had been in RCU mode, drop out of it and legitimize nd->path.
 866 * Revalidate the final result, unless we'd already done that during
 867 * the path walk or the filesystem doesn't ask for it.  Return 0 on
 868 * success, -error on failure.  In case of failure caller does not
 869 * need to drop nd->path.
 870 */
 871static int complete_walk(struct nameidata *nd)
 872{
 873	struct dentry *dentry = nd->path.dentry;
 874	int status;
 875
 876	if (nd->flags & LOOKUP_RCU) {
 877		/*
 878		 * We don't want to zero nd->root for scoped-lookups or
 879		 * externally-managed nd->root.
 880		 */
 881		if (!(nd->state & ND_ROOT_PRESET))
 882			if (!(nd->flags & LOOKUP_IS_SCOPED))
 883				nd->root.mnt = NULL;
 884		nd->flags &= ~LOOKUP_CACHED;
 885		if (!try_to_unlazy(nd))
 886			return -ECHILD;
 887	}
 888
 889	if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
 890		/*
 891		 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
 892		 * ever step outside the root during lookup" and should already
 893		 * be guaranteed by the rest of namei, we want to avoid a namei
 894		 * BUG resulting in userspace being given a path that was not
 895		 * scoped within the root at some point during the lookup.
 896		 *
 897		 * So, do a final sanity-check to make sure that in the
 898		 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
 899		 * we won't silently return an fd completely outside of the
 900		 * requested root to userspace.
 901		 *
 902		 * Userspace could move the path outside the root after this
 903		 * check, but as discussed elsewhere this is not a concern (the
 904		 * resolved file was inside the root at some point).
 905		 */
 906		if (!path_is_under(&nd->path, &nd->root))
 907			return -EXDEV;
 908	}
 909
 910	if (likely(!(nd->state & ND_JUMPED)))
 911		return 0;
 912
 913	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
 914		return 0;
 915
 916	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
 917	if (status > 0)
 918		return 0;
 919
 920	if (!status)
 921		status = -ESTALE;
 922
 923	return status;
 924}
 925
 926static int set_root(struct nameidata *nd)
 927{
 928	struct fs_struct *fs = current->fs;
 929
 930	/*
 931	 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
 932	 * still have to ensure it doesn't happen because it will cause a breakout
 933	 * from the dirfd.
 934	 */
 935	if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
 936		return -ENOTRECOVERABLE;
 937
 938	if (nd->flags & LOOKUP_RCU) {
 939		unsigned seq;
 940
 941		do {
 942			seq = read_seqcount_begin(&fs->seq);
 943			nd->root = fs->root;
 944			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
 945		} while (read_seqcount_retry(&fs->seq, seq));
 946	} else {
 947		get_fs_root(fs, &nd->root);
 948		nd->state |= ND_ROOT_GRABBED;
 949	}
 950	return 0;
 951}
 952
 953static int nd_jump_root(struct nameidata *nd)
 954{
 955	if (unlikely(nd->flags & LOOKUP_BENEATH))
 956		return -EXDEV;
 957	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
 958		/* Absolute path arguments to path_init() are allowed. */
 959		if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
 960			return -EXDEV;
 961	}
 962	if (!nd->root.mnt) {
 963		int error = set_root(nd);
 964		if (error)
 965			return error;
 966	}
 967	if (nd->flags & LOOKUP_RCU) {
 968		struct dentry *d;
 969		nd->path = nd->root;
 970		d = nd->path.dentry;
 971		nd->inode = d->d_inode;
 972		nd->seq = nd->root_seq;
 973		if (read_seqcount_retry(&d->d_seq, nd->seq))
 974			return -ECHILD;
 975	} else {
 976		path_put(&nd->path);
 977		nd->path = nd->root;
 978		path_get(&nd->path);
 979		nd->inode = nd->path.dentry->d_inode;
 980	}
 981	nd->state |= ND_JUMPED;
 982	return 0;
 983}
 984
 985/*
 986 * Helper to directly jump to a known parsed path from ->get_link,
 987 * caller must have taken a reference to path beforehand.
 988 */
 989int nd_jump_link(const struct path *path)
 990{
 991	int error = -ELOOP;
 992	struct nameidata *nd = current->nameidata;
 993
 994	if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
 995		goto err;
 996
 997	error = -EXDEV;
 998	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
 999		if (nd->path.mnt != path->mnt)
1000			goto err;
1001	}
1002	/* Not currently safe for scoped-lookups. */
1003	if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
1004		goto err;
1005
1006	path_put(&nd->path);
1007	nd->path = *path;
1008	nd->inode = nd->path.dentry->d_inode;
1009	nd->state |= ND_JUMPED;
1010	return 0;
1011
1012err:
1013	path_put(path);
1014	return error;
1015}
1016
1017static inline void put_link(struct nameidata *nd)
1018{
1019	struct saved *last = nd->stack + --nd->depth;
1020	do_delayed_call(&last->done);
1021	if (!(nd->flags & LOOKUP_RCU))
1022		path_put(&last->link);
1023}
1024
1025static int sysctl_protected_symlinks __read_mostly;
1026static int sysctl_protected_hardlinks __read_mostly;
1027static int sysctl_protected_fifos __read_mostly;
1028static int sysctl_protected_regular __read_mostly;
1029
1030#ifdef CONFIG_SYSCTL
1031static struct ctl_table namei_sysctls[] = {
1032	{
1033		.procname	= "protected_symlinks",
1034		.data		= &sysctl_protected_symlinks,
1035		.maxlen		= sizeof(int),
1036		.mode		= 0644,
1037		.proc_handler	= proc_dointvec_minmax,
1038		.extra1		= SYSCTL_ZERO,
1039		.extra2		= SYSCTL_ONE,
1040	},
1041	{
1042		.procname	= "protected_hardlinks",
1043		.data		= &sysctl_protected_hardlinks,
1044		.maxlen		= sizeof(int),
1045		.mode		= 0644,
1046		.proc_handler	= proc_dointvec_minmax,
1047		.extra1		= SYSCTL_ZERO,
1048		.extra2		= SYSCTL_ONE,
1049	},
1050	{
1051		.procname	= "protected_fifos",
1052		.data		= &sysctl_protected_fifos,
1053		.maxlen		= sizeof(int),
1054		.mode		= 0644,
1055		.proc_handler	= proc_dointvec_minmax,
1056		.extra1		= SYSCTL_ZERO,
1057		.extra2		= SYSCTL_TWO,
1058	},
1059	{
1060		.procname	= "protected_regular",
1061		.data		= &sysctl_protected_regular,
1062		.maxlen		= sizeof(int),
1063		.mode		= 0644,
1064		.proc_handler	= proc_dointvec_minmax,
1065		.extra1		= SYSCTL_ZERO,
1066		.extra2		= SYSCTL_TWO,
1067	},
1068	{ }
1069};
1070
1071static int __init init_fs_namei_sysctls(void)
1072{
1073	register_sysctl_init("fs", namei_sysctls);
1074	return 0;
1075}
1076fs_initcall(init_fs_namei_sysctls);
1077
1078#endif /* CONFIG_SYSCTL */
1079
1080/**
1081 * may_follow_link - Check symlink following for unsafe situations
1082 * @nd: nameidata pathwalk data
 
1083 *
1084 * In the case of the sysctl_protected_symlinks sysctl being enabled,
1085 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
1086 * in a sticky world-writable directory. This is to protect privileged
1087 * processes from failing races against path names that may change out
1088 * from under them by way of other users creating malicious symlinks.
1089 * It will permit symlinks to be followed only when outside a sticky
1090 * world-writable directory, or when the uid of the symlink and follower
1091 * match, or when the directory owner matches the symlink's owner.
1092 *
1093 * Returns 0 if following the symlink is allowed, -ve on error.
1094 */
1095static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
1096{
1097	struct user_namespace *mnt_userns;
1098	vfsuid_t vfsuid;
1099
1100	if (!sysctl_protected_symlinks)
1101		return 0;
1102
1103	mnt_userns = mnt_user_ns(nd->path.mnt);
1104	vfsuid = i_uid_into_vfsuid(mnt_userns, inode);
1105	/* Allowed if owner and follower match. */
1106	if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
1107		return 0;
1108
1109	/* Allowed if parent directory not sticky and world-writable. */
1110	if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
1111		return 0;
1112
1113	/* Allowed if parent directory and link owner match. */
1114	if (vfsuid_valid(nd->dir_vfsuid) && vfsuid_eq(nd->dir_vfsuid, vfsuid))
1115		return 0;
1116
1117	if (nd->flags & LOOKUP_RCU)
1118		return -ECHILD;
1119
1120	audit_inode(nd->name, nd->stack[0].link.dentry, 0);
1121	audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
1122	return -EACCES;
1123}
1124
1125/**
1126 * safe_hardlink_source - Check for safe hardlink conditions
1127 * @mnt_userns:	user namespace of the mount the inode was found from
1128 * @inode: the source inode to hardlink from
1129 *
1130 * Return false if at least one of the following conditions:
1131 *    - inode is not a regular file
1132 *    - inode is setuid
1133 *    - inode is setgid and group-exec
1134 *    - access failure for read and write
1135 *
1136 * Otherwise returns true.
1137 */
1138static bool safe_hardlink_source(struct user_namespace *mnt_userns,
1139				 struct inode *inode)
1140{
1141	umode_t mode = inode->i_mode;
1142
1143	/* Special files should not get pinned to the filesystem. */
1144	if (!S_ISREG(mode))
1145		return false;
1146
1147	/* Setuid files should not get pinned to the filesystem. */
1148	if (mode & S_ISUID)
1149		return false;
1150
1151	/* Executable setgid files should not get pinned to the filesystem. */
1152	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1153		return false;
1154
1155	/* Hardlinking to unreadable or unwritable sources is dangerous. */
1156	if (inode_permission(mnt_userns, inode, MAY_READ | MAY_WRITE))
1157		return false;
1158
1159	return true;
1160}
1161
1162/**
1163 * may_linkat - Check permissions for creating a hardlink
1164 * @mnt_userns:	user namespace of the mount the inode was found from
1165 * @link: the source to hardlink from
1166 *
1167 * Block hardlink when all of:
1168 *  - sysctl_protected_hardlinks enabled
1169 *  - fsuid does not match inode
1170 *  - hardlink source is unsafe (see safe_hardlink_source() above)
1171 *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
1172 *
1173 * If the inode has been found through an idmapped mount the user namespace of
1174 * the vfsmount must be passed through @mnt_userns. This function will then take
1175 * care to map the inode according to @mnt_userns before checking permissions.
1176 * On non-idmapped mounts or if permission checking is to be performed on the
1177 * raw inode simply passs init_user_ns.
1178 *
1179 * Returns 0 if successful, -ve on error.
1180 */
1181int may_linkat(struct user_namespace *mnt_userns, const struct path *link)
1182{
1183	struct inode *inode = link->dentry->d_inode;
1184
1185	/* Inode writeback is not safe when the uid or gid are invalid. */
1186	if (!vfsuid_valid(i_uid_into_vfsuid(mnt_userns, inode)) ||
1187	    !vfsgid_valid(i_gid_into_vfsgid(mnt_userns, inode)))
1188		return -EOVERFLOW;
1189
1190	if (!sysctl_protected_hardlinks)
1191		return 0;
1192
1193	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1194	 * otherwise, it must be a safe source.
1195	 */
1196	if (safe_hardlink_source(mnt_userns, inode) ||
1197	    inode_owner_or_capable(mnt_userns, inode))
1198		return 0;
1199
1200	audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1201	return -EPERM;
1202}
1203
1204/**
1205 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1206 *			  should be allowed, or not, on files that already
1207 *			  exist.
1208 * @mnt_userns:	user namespace of the mount the inode was found from
1209 * @nd: nameidata pathwalk data
1210 * @inode: the inode of the file to open
1211 *
1212 * Block an O_CREAT open of a FIFO (or a regular file) when:
1213 *   - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1214 *   - the file already exists
1215 *   - we are in a sticky directory
1216 *   - we don't own the file
1217 *   - the owner of the directory doesn't own the file
1218 *   - the directory is world writable
1219 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1220 * the directory doesn't have to be world writable: being group writable will
1221 * be enough.
1222 *
1223 * If the inode has been found through an idmapped mount the user namespace of
1224 * the vfsmount must be passed through @mnt_userns. This function will then take
1225 * care to map the inode according to @mnt_userns before checking permissions.
1226 * On non-idmapped mounts or if permission checking is to be performed on the
1227 * raw inode simply passs init_user_ns.
1228 *
1229 * Returns 0 if the open is allowed, -ve on error.
1230 */
1231static int may_create_in_sticky(struct user_namespace *mnt_userns,
1232				struct nameidata *nd, struct inode *const inode)
1233{
1234	umode_t dir_mode = nd->dir_mode;
1235	vfsuid_t dir_vfsuid = nd->dir_vfsuid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1236
1237	if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1238	    (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1239	    likely(!(dir_mode & S_ISVTX)) ||
1240	    vfsuid_eq(i_uid_into_vfsuid(mnt_userns, inode), dir_vfsuid) ||
1241	    vfsuid_eq_kuid(i_uid_into_vfsuid(mnt_userns, inode), current_fsuid()))
1242		return 0;
1243
1244	if (likely(dir_mode & 0002) ||
1245	    (dir_mode & 0020 &&
1246	     ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1247	      (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1248		const char *operation = S_ISFIFO(inode->i_mode) ?
1249					"sticky_create_fifo" :
1250					"sticky_create_regular";
1251		audit_log_path_denied(AUDIT_ANOM_CREAT, operation);
1252		return -EACCES;
1253	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1254	return 0;
1255}
1256
1257/*
1258 * follow_up - Find the mountpoint of path's vfsmount
1259 *
1260 * Given a path, find the mountpoint of its source file system.
1261 * Replace @path with the path of the mountpoint in the parent mount.
1262 * Up is towards /.
1263 *
1264 * Return 1 if we went up a level and 0 if we were already at the
1265 * root.
1266 */
1267int follow_up(struct path *path)
1268{
1269	struct mount *mnt = real_mount(path->mnt);
1270	struct mount *parent;
1271	struct dentry *mountpoint;
1272
1273	read_seqlock_excl(&mount_lock);
1274	parent = mnt->mnt_parent;
1275	if (parent == mnt) {
1276		read_sequnlock_excl(&mount_lock);
1277		return 0;
1278	}
1279	mntget(&parent->mnt);
1280	mountpoint = dget(mnt->mnt_mountpoint);
1281	read_sequnlock_excl(&mount_lock);
1282	dput(path->dentry);
1283	path->dentry = mountpoint;
1284	mntput(path->mnt);
1285	path->mnt = &parent->mnt;
1286	return 1;
1287}
1288EXPORT_SYMBOL(follow_up);
1289
1290static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1291				  struct path *path, unsigned *seqp)
1292{
1293	while (mnt_has_parent(m)) {
1294		struct dentry *mountpoint = m->mnt_mountpoint;
1295
1296		m = m->mnt_parent;
1297		if (unlikely(root->dentry == mountpoint &&
1298			     root->mnt == &m->mnt))
1299			break;
1300		if (mountpoint != m->mnt.mnt_root) {
1301			path->mnt = &m->mnt;
1302			path->dentry = mountpoint;
1303			*seqp = read_seqcount_begin(&mountpoint->d_seq);
1304			return true;
1305		}
1306	}
1307	return false;
1308}
1309
1310static bool choose_mountpoint(struct mount *m, const struct path *root,
1311			      struct path *path)
1312{
1313	bool found;
1314
1315	rcu_read_lock();
1316	while (1) {
1317		unsigned seq, mseq = read_seqbegin(&mount_lock);
1318
1319		found = choose_mountpoint_rcu(m, root, path, &seq);
1320		if (unlikely(!found)) {
1321			if (!read_seqretry(&mount_lock, mseq))
1322				break;
1323		} else {
1324			if (likely(__legitimize_path(path, seq, mseq)))
1325				break;
1326			rcu_read_unlock();
1327			path_put(path);
1328			rcu_read_lock();
1329		}
1330	}
1331	rcu_read_unlock();
1332	return found;
1333}
1334
1335/*
1336 * Perform an automount
1337 * - return -EISDIR to tell follow_managed() to stop and return the path we
1338 *   were called with.
1339 */
1340static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1341{
1342	struct dentry *dentry = path->dentry;
1343
1344	/* We don't want to mount if someone's just doing a stat -
1345	 * unless they're stat'ing a directory and appended a '/' to
1346	 * the name.
1347	 *
1348	 * We do, however, want to mount if someone wants to open or
1349	 * create a file of any type under the mountpoint, wants to
1350	 * traverse through the mountpoint or wants to open the
1351	 * mounted directory.  Also, autofs may mark negative dentries
1352	 * as being automount points.  These will need the attentions
1353	 * of the daemon to instantiate them before they can be used.
1354	 */
1355	if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1356			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1357	    dentry->d_inode)
1358		return -EISDIR;
1359
1360	if (count && (*count)++ >= MAXSYMLINKS)
1361		return -ELOOP;
1362
1363	return finish_automount(dentry->d_op->d_automount(path), path);
1364}
1365
1366/*
1367 * mount traversal - out-of-line part.  One note on ->d_flags accesses -
1368 * dentries are pinned but not locked here, so negative dentry can go
1369 * positive right under us.  Use of smp_load_acquire() provides a barrier
1370 * sufficient for ->d_inode and ->d_flags consistency.
1371 */
1372static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1373			     int *count, unsigned lookup_flags)
1374{
1375	struct vfsmount *mnt = path->mnt;
1376	bool need_mntput = false;
1377	int ret = 0;
1378
1379	while (flags & DCACHE_MANAGED_DENTRY) {
1380		/* Allow the filesystem to manage the transit without i_mutex
1381		 * being held. */
1382		if (flags & DCACHE_MANAGE_TRANSIT) {
1383			ret = path->dentry->d_op->d_manage(path, false);
1384			flags = smp_load_acquire(&path->dentry->d_flags);
1385			if (ret < 0)
1386				break;
1387		}
1388
1389		if (flags & DCACHE_MOUNTED) {	// something's mounted on it..
1390			struct vfsmount *mounted = lookup_mnt(path);
1391			if (mounted) {		// ... in our namespace
1392				dput(path->dentry);
1393				if (need_mntput)
1394					mntput(path->mnt);
1395				path->mnt = mounted;
1396				path->dentry = dget(mounted->mnt_root);
1397				// here we know it's positive
1398				flags = path->dentry->d_flags;
1399				need_mntput = true;
1400				continue;
1401			}
1402		}
1403
1404		if (!(flags & DCACHE_NEED_AUTOMOUNT))
1405			break;
1406
1407		// uncovered automount point
1408		ret = follow_automount(path, count, lookup_flags);
1409		flags = smp_load_acquire(&path->dentry->d_flags);
1410		if (ret < 0)
1411			break;
1412	}
1413
1414	if (ret == -EISDIR)
1415		ret = 0;
1416	// possible if you race with several mount --move
1417	if (need_mntput && path->mnt == mnt)
1418		mntput(path->mnt);
1419	if (!ret && unlikely(d_flags_negative(flags)))
1420		ret = -ENOENT;
1421	*jumped = need_mntput;
1422	return ret;
1423}
1424
1425static inline int traverse_mounts(struct path *path, bool *jumped,
1426				  int *count, unsigned lookup_flags)
1427{
1428	unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1429
1430	/* fastpath */
1431	if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1432		*jumped = false;
1433		if (unlikely(d_flags_negative(flags)))
1434			return -ENOENT;
1435		return 0;
1436	}
1437	return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1438}
1439
1440int follow_down_one(struct path *path)
1441{
1442	struct vfsmount *mounted;
1443
1444	mounted = lookup_mnt(path);
1445	if (mounted) {
1446		dput(path->dentry);
1447		mntput(path->mnt);
1448		path->mnt = mounted;
1449		path->dentry = dget(mounted->mnt_root);
1450		return 1;
1451	}
1452	return 0;
1453}
1454EXPORT_SYMBOL(follow_down_one);
1455
1456/*
1457 * Follow down to the covering mount currently visible to userspace.  At each
1458 * point, the filesystem owning that dentry may be queried as to whether the
1459 * caller is permitted to proceed or not.
1460 */
1461int follow_down(struct path *path)
1462{
1463	struct vfsmount *mnt = path->mnt;
1464	bool jumped;
1465	int ret = traverse_mounts(path, &jumped, NULL, 0);
1466
1467	if (path->mnt != mnt)
1468		mntput(mnt);
1469	return ret;
1470}
1471EXPORT_SYMBOL(follow_down);
1472
1473/*
1474 * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1475 * we meet a managed dentry that would need blocking.
1476 */
1477static bool __follow_mount_rcu(struct nameidata *nd, struct path *path)
1478{
1479	struct dentry *dentry = path->dentry;
1480	unsigned int flags = dentry->d_flags;
1481
1482	if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1483		return true;
1484
1485	if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1486		return false;
1487
1488	for (;;) {
1489		/*
1490		 * Don't forget we might have a non-mountpoint managed dentry
1491		 * that wants to block transit.
1492		 */
1493		if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1494			int res = dentry->d_op->d_manage(path, true);
1495			if (res)
1496				return res == -EISDIR;
1497			flags = dentry->d_flags;
1498		}
1499
1500		if (flags & DCACHE_MOUNTED) {
1501			struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1502			if (mounted) {
1503				path->mnt = &mounted->mnt;
1504				dentry = path->dentry = mounted->mnt.mnt_root;
1505				nd->state |= ND_JUMPED;
1506				nd->next_seq = read_seqcount_begin(&dentry->d_seq);
1507				flags = dentry->d_flags;
1508				// makes sure that non-RCU pathwalk could reach
1509				// this state.
1510				if (read_seqretry(&mount_lock, nd->m_seq))
1511					return false;
1512				continue;
1513			}
1514			if (read_seqretry(&mount_lock, nd->m_seq))
1515				return false;
1516		}
1517		return !(flags & DCACHE_NEED_AUTOMOUNT);
1518	}
1519}
1520
1521static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1522			  struct path *path)
1523{
1524	bool jumped;
1525	int ret;
1526
1527	path->mnt = nd->path.mnt;
1528	path->dentry = dentry;
1529	if (nd->flags & LOOKUP_RCU) {
1530		unsigned int seq = nd->next_seq;
1531		if (likely(__follow_mount_rcu(nd, path)))
1532			return 0;
1533		// *path and nd->next_seq might've been clobbered
1534		path->mnt = nd->path.mnt;
1535		path->dentry = dentry;
1536		nd->next_seq = seq;
1537		if (!try_to_unlazy_next(nd, dentry))
1538			return -ECHILD;
1539	}
1540	ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1541	if (jumped) {
1542		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1543			ret = -EXDEV;
1544		else
1545			nd->state |= ND_JUMPED;
1546	}
1547	if (unlikely(ret)) {
1548		dput(path->dentry);
1549		if (path->mnt != nd->path.mnt)
1550			mntput(path->mnt);
1551	}
1552	return ret;
1553}
1554
1555/*
1556 * This looks up the name in dcache and possibly revalidates the found dentry.
1557 * NULL is returned if the dentry does not exist in the cache.
1558 */
1559static struct dentry *lookup_dcache(const struct qstr *name,
1560				    struct dentry *dir,
1561				    unsigned int flags)
1562{
1563	struct dentry *dentry = d_lookup(dir, name);
1564	if (dentry) {
1565		int error = d_revalidate(dentry, flags);
1566		if (unlikely(error <= 0)) {
1567			if (!error)
1568				d_invalidate(dentry);
1569			dput(dentry);
1570			return ERR_PTR(error);
1571		}
1572	}
1573	return dentry;
1574}
1575
1576/*
1577 * Parent directory has inode locked exclusive.  This is one
1578 * and only case when ->lookup() gets called on non in-lookup
1579 * dentries - as the matter of fact, this only gets called
1580 * when directory is guaranteed to have no in-lookup children
1581 * at all.
1582 */
1583static struct dentry *__lookup_hash(const struct qstr *name,
1584		struct dentry *base, unsigned int flags)
 
1585{
1586	struct dentry *dentry = lookup_dcache(name, base, flags);
1587	struct dentry *old;
1588	struct inode *dir = base->d_inode;
1589
1590	if (dentry)
1591		return dentry;
1592
1593	/* Don't create child dentry for a dead directory. */
1594	if (unlikely(IS_DEADDIR(dir)))
1595		return ERR_PTR(-ENOENT);
1596
1597	dentry = d_alloc(base, name);
1598	if (unlikely(!dentry))
1599		return ERR_PTR(-ENOMEM);
1600
1601	old = dir->i_op->lookup(dir, dentry, flags);
1602	if (unlikely(old)) {
1603		dput(dentry);
1604		dentry = old;
1605	}
1606	return dentry;
1607}
 
1608
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1609static struct dentry *lookup_fast(struct nameidata *nd)
1610{
1611	struct dentry *dentry, *parent = nd->path.dentry;
1612	int status = 1;
1613
1614	/*
1615	 * Rename seqlock is not required here because in the off chance
1616	 * of a false negative due to a concurrent rename, the caller is
1617	 * going to fall back to non-racy lookup.
1618	 */
1619	if (nd->flags & LOOKUP_RCU) {
1620		dentry = __d_lookup_rcu(parent, &nd->last, &nd->next_seq);
1621		if (unlikely(!dentry)) {
1622			if (!try_to_unlazy(nd))
1623				return ERR_PTR(-ECHILD);
1624			return NULL;
1625		}
1626
1627		/*
1628		 * This sequence count validates that the parent had no
1629		 * changes while we did the lookup of the dentry above.
1630		 */
1631		if (read_seqcount_retry(&parent->d_seq, nd->seq))
1632			return ERR_PTR(-ECHILD);
1633
1634		status = d_revalidate(dentry, nd->flags);
1635		if (likely(status > 0))
1636			return dentry;
1637		if (!try_to_unlazy_next(nd, dentry))
1638			return ERR_PTR(-ECHILD);
1639		if (status == -ECHILD)
1640			/* we'd been told to redo it in non-rcu mode */
1641			status = d_revalidate(dentry, nd->flags);
1642	} else {
1643		dentry = __d_lookup(parent, &nd->last);
1644		if (unlikely(!dentry))
1645			return NULL;
1646		status = d_revalidate(dentry, nd->flags);
1647	}
1648	if (unlikely(status <= 0)) {
1649		if (!status)
1650			d_invalidate(dentry);
1651		dput(dentry);
1652		return ERR_PTR(status);
1653	}
1654	return dentry;
1655}
1656
1657/* Fast lookup failed, do it the slow way */
1658static struct dentry *__lookup_slow(const struct qstr *name,
1659				    struct dentry *dir,
1660				    unsigned int flags)
1661{
1662	struct dentry *dentry, *old;
1663	struct inode *inode = dir->d_inode;
1664	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1665
1666	/* Don't go there if it's already dead */
1667	if (unlikely(IS_DEADDIR(inode)))
1668		return ERR_PTR(-ENOENT);
1669again:
1670	dentry = d_alloc_parallel(dir, name, &wq);
1671	if (IS_ERR(dentry))
1672		return dentry;
1673	if (unlikely(!d_in_lookup(dentry))) {
1674		int error = d_revalidate(dentry, flags);
1675		if (unlikely(error <= 0)) {
1676			if (!error) {
1677				d_invalidate(dentry);
1678				dput(dentry);
1679				goto again;
1680			}
1681			dput(dentry);
1682			dentry = ERR_PTR(error);
1683		}
1684	} else {
1685		old = inode->i_op->lookup(inode, dentry, flags);
1686		d_lookup_done(dentry);
1687		if (unlikely(old)) {
1688			dput(dentry);
1689			dentry = old;
1690		}
1691	}
1692	return dentry;
1693}
1694
1695static struct dentry *lookup_slow(const struct qstr *name,
1696				  struct dentry *dir,
1697				  unsigned int flags)
1698{
1699	struct inode *inode = dir->d_inode;
1700	struct dentry *res;
1701	inode_lock_shared(inode);
1702	res = __lookup_slow(name, dir, flags);
1703	inode_unlock_shared(inode);
1704	return res;
1705}
1706
1707static inline int may_lookup(struct user_namespace *mnt_userns,
1708			     struct nameidata *nd)
1709{
1710	if (nd->flags & LOOKUP_RCU) {
1711		int err = inode_permission(mnt_userns, nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1712		if (err != -ECHILD || !try_to_unlazy(nd))
1713			return err;
1714	}
1715	return inode_permission(mnt_userns, nd->inode, MAY_EXEC);
 
 
 
 
 
 
 
 
 
 
 
 
 
1716}
1717
1718static int reserve_stack(struct nameidata *nd, struct path *link)
1719{
1720	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1721		return -ELOOP;
1722
1723	if (likely(nd->depth != EMBEDDED_LEVELS))
1724		return 0;
1725	if (likely(nd->stack != nd->internal))
1726		return 0;
1727	if (likely(nd_alloc_stack(nd)))
1728		return 0;
1729
1730	if (nd->flags & LOOKUP_RCU) {
1731		// we need to grab link before we do unlazy.  And we can't skip
1732		// unlazy even if we fail to grab the link - cleanup needs it
1733		bool grabbed_link = legitimize_path(nd, link, nd->next_seq);
1734
1735		if (!try_to_unlazy(nd) || !grabbed_link)
1736			return -ECHILD;
1737
1738		if (nd_alloc_stack(nd))
1739			return 0;
1740	}
1741	return -ENOMEM;
1742}
1743
1744enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1745
1746static const char *pick_link(struct nameidata *nd, struct path *link,
1747		     struct inode *inode, int flags)
1748{
1749	struct saved *last;
1750	const char *res;
1751	int error = reserve_stack(nd, link);
1752
1753	if (unlikely(error)) {
1754		if (!(nd->flags & LOOKUP_RCU))
1755			path_put(link);
1756		return ERR_PTR(error);
1757	}
1758	last = nd->stack + nd->depth++;
1759	last->link = *link;
1760	clear_delayed_call(&last->done);
1761	last->seq = nd->next_seq;
1762
1763	if (flags & WALK_TRAILING) {
1764		error = may_follow_link(nd, inode);
1765		if (unlikely(error))
1766			return ERR_PTR(error);
1767	}
1768
1769	if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1770			unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1771		return ERR_PTR(-ELOOP);
1772
1773	if (!(nd->flags & LOOKUP_RCU)) {
1774		touch_atime(&last->link);
1775		cond_resched();
1776	} else if (atime_needs_update(&last->link, inode)) {
1777		if (!try_to_unlazy(nd))
1778			return ERR_PTR(-ECHILD);
1779		touch_atime(&last->link);
1780	}
1781
1782	error = security_inode_follow_link(link->dentry, inode,
1783					   nd->flags & LOOKUP_RCU);
1784	if (unlikely(error))
1785		return ERR_PTR(error);
1786
1787	res = READ_ONCE(inode->i_link);
1788	if (!res) {
1789		const char * (*get)(struct dentry *, struct inode *,
1790				struct delayed_call *);
1791		get = inode->i_op->get_link;
1792		if (nd->flags & LOOKUP_RCU) {
1793			res = get(NULL, inode, &last->done);
1794			if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd))
1795				res = get(link->dentry, inode, &last->done);
1796		} else {
1797			res = get(link->dentry, inode, &last->done);
1798		}
1799		if (!res)
1800			goto all_done;
1801		if (IS_ERR(res))
1802			return res;
1803	}
1804	if (*res == '/') {
1805		error = nd_jump_root(nd);
1806		if (unlikely(error))
1807			return ERR_PTR(error);
1808		while (unlikely(*++res == '/'))
1809			;
1810	}
1811	if (*res)
1812		return res;
1813all_done: // pure jump
1814	put_link(nd);
1815	return NULL;
1816}
1817
1818/*
1819 * Do we need to follow links? We _really_ want to be able
1820 * to do this check without having to look at inode->i_op,
1821 * so we keep a cache of "no, this doesn't need follow_link"
1822 * for the common case.
1823 *
1824 * NOTE: dentry must be what nd->next_seq had been sampled from.
1825 */
1826static const char *step_into(struct nameidata *nd, int flags,
1827		     struct dentry *dentry)
1828{
1829	struct path path;
1830	struct inode *inode;
1831	int err = handle_mounts(nd, dentry, &path);
1832
1833	if (err < 0)
1834		return ERR_PTR(err);
1835	inode = path.dentry->d_inode;
1836	if (likely(!d_is_symlink(path.dentry)) ||
1837	   ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1838	   (flags & WALK_NOFOLLOW)) {
1839		/* not a symlink or should not follow */
1840		if (nd->flags & LOOKUP_RCU) {
1841			if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1842				return ERR_PTR(-ECHILD);
1843			if (unlikely(!inode))
1844				return ERR_PTR(-ENOENT);
1845		} else {
1846			dput(nd->path.dentry);
1847			if (nd->path.mnt != path.mnt)
1848				mntput(nd->path.mnt);
1849		}
1850		nd->path = path;
1851		nd->inode = inode;
1852		nd->seq = nd->next_seq;
1853		return NULL;
1854	}
1855	if (nd->flags & LOOKUP_RCU) {
1856		/* make sure that d_is_symlink above matches inode */
1857		if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1858			return ERR_PTR(-ECHILD);
1859	} else {
1860		if (path.mnt == nd->path.mnt)
1861			mntget(path.mnt);
1862	}
1863	return pick_link(nd, &path, inode, flags);
1864}
1865
1866static struct dentry *follow_dotdot_rcu(struct nameidata *nd)
1867{
1868	struct dentry *parent, *old;
1869
1870	if (path_equal(&nd->path, &nd->root))
1871		goto in_root;
1872	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1873		struct path path;
1874		unsigned seq;
1875		if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
1876					   &nd->root, &path, &seq))
1877			goto in_root;
1878		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1879			return ERR_PTR(-ECHILD);
1880		nd->path = path;
1881		nd->inode = path.dentry->d_inode;
1882		nd->seq = seq;
1883		// makes sure that non-RCU pathwalk could reach this state
1884		if (read_seqretry(&mount_lock, nd->m_seq))
1885			return ERR_PTR(-ECHILD);
1886		/* we know that mountpoint was pinned */
1887	}
1888	old = nd->path.dentry;
1889	parent = old->d_parent;
1890	nd->next_seq = read_seqcount_begin(&parent->d_seq);
1891	// makes sure that non-RCU pathwalk could reach this state
1892	if (read_seqcount_retry(&old->d_seq, nd->seq))
1893		return ERR_PTR(-ECHILD);
1894	if (unlikely(!path_connected(nd->path.mnt, parent)))
1895		return ERR_PTR(-ECHILD);
1896	return parent;
1897in_root:
1898	if (read_seqretry(&mount_lock, nd->m_seq))
1899		return ERR_PTR(-ECHILD);
1900	if (unlikely(nd->flags & LOOKUP_BENEATH))
1901		return ERR_PTR(-ECHILD);
1902	nd->next_seq = nd->seq;
1903	return nd->path.dentry;
1904}
1905
1906static struct dentry *follow_dotdot(struct nameidata *nd)
1907{
1908	struct dentry *parent;
1909
1910	if (path_equal(&nd->path, &nd->root))
1911		goto in_root;
1912	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1913		struct path path;
1914
1915		if (!choose_mountpoint(real_mount(nd->path.mnt),
1916				       &nd->root, &path))
1917			goto in_root;
1918		path_put(&nd->path);
1919		nd->path = path;
1920		nd->inode = path.dentry->d_inode;
1921		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1922			return ERR_PTR(-EXDEV);
1923	}
1924	/* rare case of legitimate dget_parent()... */
1925	parent = dget_parent(nd->path.dentry);
1926	if (unlikely(!path_connected(nd->path.mnt, parent))) {
1927		dput(parent);
1928		return ERR_PTR(-ENOENT);
1929	}
1930	return parent;
1931
1932in_root:
1933	if (unlikely(nd->flags & LOOKUP_BENEATH))
1934		return ERR_PTR(-EXDEV);
1935	return dget(nd->path.dentry);
1936}
1937
1938static const char *handle_dots(struct nameidata *nd, int type)
1939{
1940	if (type == LAST_DOTDOT) {
1941		const char *error = NULL;
1942		struct dentry *parent;
1943
1944		if (!nd->root.mnt) {
1945			error = ERR_PTR(set_root(nd));
1946			if (error)
1947				return error;
1948		}
1949		if (nd->flags & LOOKUP_RCU)
1950			parent = follow_dotdot_rcu(nd);
1951		else
1952			parent = follow_dotdot(nd);
1953		if (IS_ERR(parent))
1954			return ERR_CAST(parent);
1955		error = step_into(nd, WALK_NOFOLLOW, parent);
1956		if (unlikely(error))
1957			return error;
1958
1959		if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
1960			/*
1961			 * If there was a racing rename or mount along our
1962			 * path, then we can't be sure that ".." hasn't jumped
1963			 * above nd->root (and so userspace should retry or use
1964			 * some fallback).
1965			 */
1966			smp_rmb();
1967			if (__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq))
1968				return ERR_PTR(-EAGAIN);
1969			if (__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq))
1970				return ERR_PTR(-EAGAIN);
1971		}
1972	}
1973	return NULL;
1974}
1975
1976static const char *walk_component(struct nameidata *nd, int flags)
1977{
1978	struct dentry *dentry;
1979	/*
1980	 * "." and ".." are special - ".." especially so because it has
1981	 * to be able to know about the current root directory and
1982	 * parent relationships.
1983	 */
1984	if (unlikely(nd->last_type != LAST_NORM)) {
1985		if (!(flags & WALK_MORE) && nd->depth)
1986			put_link(nd);
1987		return handle_dots(nd, nd->last_type);
1988	}
1989	dentry = lookup_fast(nd);
1990	if (IS_ERR(dentry))
1991		return ERR_CAST(dentry);
1992	if (unlikely(!dentry)) {
1993		dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
1994		if (IS_ERR(dentry))
1995			return ERR_CAST(dentry);
1996	}
1997	if (!(flags & WALK_MORE) && nd->depth)
1998		put_link(nd);
1999	return step_into(nd, flags, dentry);
2000}
2001
2002/*
2003 * We can do the critical dentry name comparison and hashing
2004 * operations one word at a time, but we are limited to:
2005 *
2006 * - Architectures with fast unaligned word accesses. We could
2007 *   do a "get_unaligned()" if this helps and is sufficiently
2008 *   fast.
2009 *
2010 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
2011 *   do not trap on the (extremely unlikely) case of a page
2012 *   crossing operation.
2013 *
2014 * - Furthermore, we need an efficient 64-bit compile for the
2015 *   64-bit case in order to generate the "number of bytes in
2016 *   the final mask". Again, that could be replaced with a
2017 *   efficient population count instruction or similar.
2018 */
2019#ifdef CONFIG_DCACHE_WORD_ACCESS
2020
2021#include <asm/word-at-a-time.h>
2022
2023#ifdef HASH_MIX
2024
2025/* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
2026
2027#elif defined(CONFIG_64BIT)
2028/*
2029 * Register pressure in the mixing function is an issue, particularly
2030 * on 32-bit x86, but almost any function requires one state value and
2031 * one temporary.  Instead, use a function designed for two state values
2032 * and no temporaries.
2033 *
2034 * This function cannot create a collision in only two iterations, so
2035 * we have two iterations to achieve avalanche.  In those two iterations,
2036 * we have six layers of mixing, which is enough to spread one bit's
2037 * influence out to 2^6 = 64 state bits.
2038 *
2039 * Rotate constants are scored by considering either 64 one-bit input
2040 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
2041 * probability of that delta causing a change to each of the 128 output
2042 * bits, using a sample of random initial states.
2043 *
2044 * The Shannon entropy of the computed probabilities is then summed
2045 * to produce a score.  Ideally, any input change has a 50% chance of
2046 * toggling any given output bit.
2047 *
2048 * Mixing scores (in bits) for (12,45):
2049 * Input delta: 1-bit      2-bit
2050 * 1 round:     713.3    42542.6
2051 * 2 rounds:   2753.7   140389.8
2052 * 3 rounds:   5954.1   233458.2
2053 * 4 rounds:   7862.6   256672.2
2054 * Perfect:    8192     258048
2055 *            (64*128) (64*63/2 * 128)
2056 */
2057#define HASH_MIX(x, y, a)	\
2058	(	x ^= (a),	\
2059	y ^= x,	x = rol64(x,12),\
2060	x += y,	y = rol64(y,45),\
2061	y *= 9			)
2062
2063/*
2064 * Fold two longs into one 32-bit hash value.  This must be fast, but
2065 * latency isn't quite as critical, as there is a fair bit of additional
2066 * work done before the hash value is used.
2067 */
2068static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2069{
2070	y ^= x * GOLDEN_RATIO_64;
2071	y *= GOLDEN_RATIO_64;
2072	return y >> 32;
2073}
2074
2075#else	/* 32-bit case */
2076
2077/*
2078 * Mixing scores (in bits) for (7,20):
2079 * Input delta: 1-bit      2-bit
2080 * 1 round:     330.3     9201.6
2081 * 2 rounds:   1246.4    25475.4
2082 * 3 rounds:   1907.1    31295.1
2083 * 4 rounds:   2042.3    31718.6
2084 * Perfect:    2048      31744
2085 *            (32*64)   (32*31/2 * 64)
2086 */
2087#define HASH_MIX(x, y, a)	\
2088	(	x ^= (a),	\
2089	y ^= x,	x = rol32(x, 7),\
2090	x += y,	y = rol32(y,20),\
2091	y *= 9			)
2092
2093static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2094{
2095	/* Use arch-optimized multiply if one exists */
2096	return __hash_32(y ^ __hash_32(x));
2097}
2098
2099#endif
2100
2101/*
2102 * Return the hash of a string of known length.  This is carfully
2103 * designed to match hash_name(), which is the more critical function.
2104 * In particular, we must end by hashing a final word containing 0..7
2105 * payload bytes, to match the way that hash_name() iterates until it
2106 * finds the delimiter after the name.
2107 */
2108unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2109{
2110	unsigned long a, x = 0, y = (unsigned long)salt;
2111
2112	for (;;) {
2113		if (!len)
2114			goto done;
2115		a = load_unaligned_zeropad(name);
2116		if (len < sizeof(unsigned long))
2117			break;
2118		HASH_MIX(x, y, a);
2119		name += sizeof(unsigned long);
2120		len -= sizeof(unsigned long);
2121	}
2122	x ^= a & bytemask_from_count(len);
2123done:
2124	return fold_hash(x, y);
2125}
2126EXPORT_SYMBOL(full_name_hash);
2127
2128/* Return the "hash_len" (hash and length) of a null-terminated string */
2129u64 hashlen_string(const void *salt, const char *name)
2130{
2131	unsigned long a = 0, x = 0, y = (unsigned long)salt;
2132	unsigned long adata, mask, len;
2133	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2134
2135	len = 0;
2136	goto inside;
2137
2138	do {
2139		HASH_MIX(x, y, a);
2140		len += sizeof(unsigned long);
2141inside:
2142		a = load_unaligned_zeropad(name+len);
2143	} while (!has_zero(a, &adata, &constants));
2144
2145	adata = prep_zero_mask(a, adata, &constants);
2146	mask = create_zero_mask(adata);
2147	x ^= a & zero_bytemask(mask);
2148
2149	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2150}
2151EXPORT_SYMBOL(hashlen_string);
2152
2153/*
2154 * Calculate the length and hash of the path component, and
2155 * return the "hash_len" as the result.
2156 */
2157static inline u64 hash_name(const void *salt, const char *name)
 
 
2158{
2159	unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
2160	unsigned long adata, bdata, mask, len;
2161	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2162
2163	len = 0;
2164	goto inside;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2165
 
 
2166	do {
2167		HASH_MIX(x, y, a);
2168		len += sizeof(unsigned long);
2169inside:
2170		a = load_unaligned_zeropad(name+len);
2171		b = a ^ REPEAT_BYTE('/');
2172	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2173
2174	adata = prep_zero_mask(a, adata, &constants);
2175	bdata = prep_zero_mask(b, bdata, &constants);
2176	mask = create_zero_mask(adata | bdata);
2177	x ^= a & zero_bytemask(mask);
2178
2179	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
 
 
 
 
 
2180}
2181
 
 
 
 
 
 
 
 
 
2182#else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2183
2184/* Return the hash of a string of known length */
2185unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2186{
2187	unsigned long hash = init_name_hash(salt);
2188	while (len--)
2189		hash = partial_name_hash((unsigned char)*name++, hash);
2190	return end_name_hash(hash);
2191}
2192EXPORT_SYMBOL(full_name_hash);
2193
2194/* Return the "hash_len" (hash and length) of a null-terminated string */
2195u64 hashlen_string(const void *salt, const char *name)
2196{
2197	unsigned long hash = init_name_hash(salt);
2198	unsigned long len = 0, c;
2199
2200	c = (unsigned char)*name;
2201	while (c) {
2202		len++;
2203		hash = partial_name_hash(c, hash);
2204		c = (unsigned char)name[len];
2205	}
2206	return hashlen_create(end_name_hash(hash), len);
2207}
2208EXPORT_SYMBOL(hashlen_string);
2209
2210/*
2211 * We know there's a real path component here of at least
2212 * one character.
2213 */
2214static inline u64 hash_name(const void *salt, const char *name)
2215{
2216	unsigned long hash = init_name_hash(salt);
2217	unsigned long len = 0, c;
2218
2219	c = (unsigned char)*name;
2220	do {
 
2221		len++;
2222		hash = partial_name_hash(c, hash);
2223		c = (unsigned char)name[len];
2224	} while (c && c != '/');
2225	return hashlen_create(end_name_hash(hash), len);
 
 
 
 
 
 
 
2226}
2227
2228#endif
2229
 
 
 
 
 
2230/*
2231 * Name resolution.
2232 * This is the basic name resolution function, turning a pathname into
2233 * the final dentry. We expect 'base' to be positive and a directory.
2234 *
2235 * Returns 0 and nd will have valid dentry and mnt on success.
2236 * Returns error and drops reference to input namei data on failure.
2237 */
2238static int link_path_walk(const char *name, struct nameidata *nd)
2239{
2240	int depth = 0; // depth <= nd->depth
2241	int err;
2242
2243	nd->last_type = LAST_ROOT;
2244	nd->flags |= LOOKUP_PARENT;
2245	if (IS_ERR(name))
2246		return PTR_ERR(name);
2247	while (*name=='/')
2248		name++;
2249	if (!*name) {
2250		nd->dir_mode = 0; // short-circuit the 'hardening' idiocy
2251		return 0;
2252	}
2253
2254	/* At this point we know we have a real path component. */
2255	for(;;) {
2256		struct user_namespace *mnt_userns;
2257		const char *link;
2258		u64 hash_len;
2259		int type;
2260
2261		mnt_userns = mnt_user_ns(nd->path.mnt);
2262		err = may_lookup(mnt_userns, nd);
2263		if (err)
2264			return err;
2265
2266		hash_len = hash_name(nd->path.dentry, name);
 
2267
2268		type = LAST_NORM;
2269		if (name[0] == '.') switch (hashlen_len(hash_len)) {
2270			case 2:
2271				if (name[1] == '.') {
2272					type = LAST_DOTDOT;
2273					nd->state |= ND_JUMPED;
2274				}
2275				break;
2276			case 1:
2277				type = LAST_DOT;
2278		}
2279		if (likely(type == LAST_NORM)) {
2280			struct dentry *parent = nd->path.dentry;
2281			nd->state &= ~ND_JUMPED;
 
 
2282			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2283				struct qstr this = { { .hash_len = hash_len }, .name = name };
2284				err = parent->d_op->d_hash(parent, &this);
2285				if (err < 0)
2286					return err;
2287				hash_len = this.hash_len;
2288				name = this.name;
2289			}
2290		}
2291
2292		nd->last.hash_len = hash_len;
2293		nd->last.name = name;
2294		nd->last_type = type;
2295
2296		name += hashlen_len(hash_len);
2297		if (!*name)
2298			goto OK;
2299		/*
2300		 * If it wasn't NUL, we know it was '/'. Skip that
2301		 * slash, and continue until no more slashes.
2302		 */
2303		do {
2304			name++;
2305		} while (unlikely(*name == '/'));
2306		if (unlikely(!*name)) {
2307OK:
2308			/* pathname or trailing symlink, done */
2309			if (!depth) {
2310				nd->dir_vfsuid = i_uid_into_vfsuid(mnt_userns, nd->inode);
2311				nd->dir_mode = nd->inode->i_mode;
2312				nd->flags &= ~LOOKUP_PARENT;
2313				return 0;
2314			}
2315			/* last component of nested symlink */
2316			name = nd->stack[--depth].name;
2317			link = walk_component(nd, 0);
2318		} else {
2319			/* not the last component */
2320			link = walk_component(nd, WALK_MORE);
2321		}
2322		if (unlikely(link)) {
2323			if (IS_ERR(link))
2324				return PTR_ERR(link);
2325			/* a symlink to follow */
2326			nd->stack[depth++].name = name;
2327			name = link;
2328			continue;
2329		}
2330		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2331			if (nd->flags & LOOKUP_RCU) {
2332				if (!try_to_unlazy(nd))
2333					return -ECHILD;
2334			}
2335			return -ENOTDIR;
2336		}
2337	}
2338}
2339
2340/* must be paired with terminate_walk() */
2341static const char *path_init(struct nameidata *nd, unsigned flags)
2342{
2343	int error;
2344	const char *s = nd->name->name;
2345
2346	/* LOOKUP_CACHED requires RCU, ask caller to retry */
2347	if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED)
2348		return ERR_PTR(-EAGAIN);
2349
2350	if (!*s)
2351		flags &= ~LOOKUP_RCU;
2352	if (flags & LOOKUP_RCU)
2353		rcu_read_lock();
2354	else
2355		nd->seq = nd->next_seq = 0;
2356
2357	nd->flags = flags;
2358	nd->state |= ND_JUMPED;
2359
2360	nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2361	nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2362	smp_rmb();
2363
2364	if (nd->state & ND_ROOT_PRESET) {
2365		struct dentry *root = nd->root.dentry;
2366		struct inode *inode = root->d_inode;
2367		if (*s && unlikely(!d_can_lookup(root)))
2368			return ERR_PTR(-ENOTDIR);
2369		nd->path = nd->root;
2370		nd->inode = inode;
2371		if (flags & LOOKUP_RCU) {
2372			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2373			nd->root_seq = nd->seq;
2374		} else {
2375			path_get(&nd->path);
2376		}
2377		return s;
2378	}
2379
2380	nd->root.mnt = NULL;
2381
2382	/* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2383	if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2384		error = nd_jump_root(nd);
2385		if (unlikely(error))
2386			return ERR_PTR(error);
2387		return s;
2388	}
2389
2390	/* Relative pathname -- get the starting-point it is relative to. */
2391	if (nd->dfd == AT_FDCWD) {
2392		if (flags & LOOKUP_RCU) {
2393			struct fs_struct *fs = current->fs;
2394			unsigned seq;
2395
2396			do {
2397				seq = read_seqcount_begin(&fs->seq);
2398				nd->path = fs->pwd;
2399				nd->inode = nd->path.dentry->d_inode;
2400				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2401			} while (read_seqcount_retry(&fs->seq, seq));
2402		} else {
2403			get_fs_pwd(current->fs, &nd->path);
2404			nd->inode = nd->path.dentry->d_inode;
2405		}
2406	} else {
2407		/* Caller must check execute permissions on the starting path component */
2408		struct fd f = fdget_raw(nd->dfd);
2409		struct dentry *dentry;
2410
2411		if (!f.file)
2412			return ERR_PTR(-EBADF);
2413
2414		dentry = f.file->f_path.dentry;
 
 
 
 
 
 
2415
2416		if (*s && unlikely(!d_can_lookup(dentry))) {
2417			fdput(f);
2418			return ERR_PTR(-ENOTDIR);
2419		}
2420
2421		nd->path = f.file->f_path;
2422		if (flags & LOOKUP_RCU) {
2423			nd->inode = nd->path.dentry->d_inode;
2424			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2425		} else {
2426			path_get(&nd->path);
2427			nd->inode = nd->path.dentry->d_inode;
2428		}
2429		fdput(f);
2430	}
2431
2432	/* For scoped-lookups we need to set the root to the dirfd as well. */
2433	if (flags & LOOKUP_IS_SCOPED) {
2434		nd->root = nd->path;
2435		if (flags & LOOKUP_RCU) {
2436			nd->root_seq = nd->seq;
2437		} else {
2438			path_get(&nd->root);
2439			nd->state |= ND_ROOT_GRABBED;
2440		}
2441	}
2442	return s;
2443}
2444
2445static inline const char *lookup_last(struct nameidata *nd)
2446{
2447	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2448		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2449
2450	return walk_component(nd, WALK_TRAILING);
2451}
2452
2453static int handle_lookup_down(struct nameidata *nd)
2454{
2455	if (!(nd->flags & LOOKUP_RCU))
2456		dget(nd->path.dentry);
2457	nd->next_seq = nd->seq;
2458	return PTR_ERR(step_into(nd, WALK_NOFOLLOW, nd->path.dentry));
2459}
2460
2461/* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2462static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2463{
2464	const char *s = path_init(nd, flags);
2465	int err;
2466
2467	if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2468		err = handle_lookup_down(nd);
2469		if (unlikely(err < 0))
2470			s = ERR_PTR(err);
2471	}
2472
2473	while (!(err = link_path_walk(s, nd)) &&
2474	       (s = lookup_last(nd)) != NULL)
2475		;
2476	if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2477		err = handle_lookup_down(nd);
2478		nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please...
2479	}
2480	if (!err)
2481		err = complete_walk(nd);
2482
2483	if (!err && nd->flags & LOOKUP_DIRECTORY)
2484		if (!d_can_lookup(nd->path.dentry))
2485			err = -ENOTDIR;
2486	if (!err) {
2487		*path = nd->path;
2488		nd->path.mnt = NULL;
2489		nd->path.dentry = NULL;
2490	}
2491	terminate_walk(nd);
2492	return err;
2493}
2494
2495int filename_lookup(int dfd, struct filename *name, unsigned flags,
2496		    struct path *path, struct path *root)
2497{
2498	int retval;
2499	struct nameidata nd;
2500	if (IS_ERR(name))
2501		return PTR_ERR(name);
2502	set_nameidata(&nd, dfd, name, root);
2503	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2504	if (unlikely(retval == -ECHILD))
2505		retval = path_lookupat(&nd, flags, path);
2506	if (unlikely(retval == -ESTALE))
2507		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2508
2509	if (likely(!retval))
2510		audit_inode(name, path->dentry,
2511			    flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2512	restore_nameidata();
2513	return retval;
2514}
2515
2516/* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2517static int path_parentat(struct nameidata *nd, unsigned flags,
2518				struct path *parent)
2519{
2520	const char *s = path_init(nd, flags);
2521	int err = link_path_walk(s, nd);
2522	if (!err)
2523		err = complete_walk(nd);
2524	if (!err) {
2525		*parent = nd->path;
2526		nd->path.mnt = NULL;
2527		nd->path.dentry = NULL;
2528	}
2529	terminate_walk(nd);
2530	return err;
2531}
2532
2533/* Note: this does not consume "name" */
2534static int filename_parentat(int dfd, struct filename *name,
2535			     unsigned int flags, struct path *parent,
2536			     struct qstr *last, int *type)
 
2537{
2538	int retval;
2539	struct nameidata nd;
2540
2541	if (IS_ERR(name))
2542		return PTR_ERR(name);
2543	set_nameidata(&nd, dfd, name, NULL);
2544	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2545	if (unlikely(retval == -ECHILD))
2546		retval = path_parentat(&nd, flags, parent);
2547	if (unlikely(retval == -ESTALE))
2548		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2549	if (likely(!retval)) {
2550		*last = nd.last;
2551		*type = nd.last_type;
2552		audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2553	}
2554	restore_nameidata();
2555	return retval;
2556}
2557
 
 
 
 
 
 
 
2558/* does lookup, returns the object with parent locked */
2559static struct dentry *__kern_path_locked(struct filename *name, struct path *path)
2560{
2561	struct dentry *d;
2562	struct qstr last;
2563	int type, error;
2564
2565	error = filename_parentat(AT_FDCWD, name, 0, path, &last, &type);
2566	if (error)
2567		return ERR_PTR(error);
2568	if (unlikely(type != LAST_NORM)) {
2569		path_put(path);
2570		return ERR_PTR(-EINVAL);
2571	}
2572	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2573	d = __lookup_hash(&last, path->dentry, 0);
2574	if (IS_ERR(d)) {
2575		inode_unlock(path->dentry->d_inode);
2576		path_put(path);
2577	}
2578	return d;
2579}
2580
2581struct dentry *kern_path_locked(const char *name, struct path *path)
2582{
2583	struct filename *filename = getname_kernel(name);
2584	struct dentry *res = __kern_path_locked(filename, path);
 
 
 
 
 
 
 
 
 
2585
2586	putname(filename);
2587	return res;
2588}
 
2589
2590int kern_path(const char *name, unsigned int flags, struct path *path)
2591{
2592	struct filename *filename = getname_kernel(name);
2593	int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL);
2594
2595	putname(filename);
2596	return ret;
2597
2598}
2599EXPORT_SYMBOL(kern_path);
2600
2601/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2602 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2603 * @dentry:  pointer to dentry of the base directory
2604 * @mnt: pointer to vfs mount of the base directory
2605 * @name: pointer to file name
2606 * @flags: lookup flags
2607 * @path: pointer to struct path to fill
2608 */
2609int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2610		    const char *name, unsigned int flags,
2611		    struct path *path)
2612{
2613	struct filename *filename;
2614	struct path root = {.mnt = mnt, .dentry = dentry};
2615	int ret;
2616
2617	filename = getname_kernel(name);
2618	/* the first argument of filename_lookup() is ignored with root */
2619	ret = filename_lookup(AT_FDCWD, filename, flags, path, &root);
2620	putname(filename);
2621	return ret;
2622}
2623EXPORT_SYMBOL(vfs_path_lookup);
2624
2625static int lookup_one_common(struct user_namespace *mnt_userns,
2626			     const char *name, struct dentry *base, int len,
2627			     struct qstr *this)
2628{
2629	this->name = name;
2630	this->len = len;
2631	this->hash = full_name_hash(base, name, len);
2632	if (!len)
2633		return -EACCES;
2634
2635	if (unlikely(name[0] == '.')) {
2636		if (len < 2 || (len == 2 && name[1] == '.'))
2637			return -EACCES;
2638	}
2639
2640	while (len--) {
2641		unsigned int c = *(const unsigned char *)name++;
2642		if (c == '/' || c == '\0')
2643			return -EACCES;
2644	}
2645	/*
2646	 * See if the low-level filesystem might want
2647	 * to use its own hash..
2648	 */
2649	if (base->d_flags & DCACHE_OP_HASH) {
2650		int err = base->d_op->d_hash(base, this);
2651		if (err < 0)
2652			return err;
2653	}
2654
2655	return inode_permission(mnt_userns, base->d_inode, MAY_EXEC);
2656}
2657
2658/**
2659 * try_lookup_one_len - filesystem helper to lookup single pathname component
2660 * @name:	pathname component to lookup
2661 * @base:	base directory to lookup from
2662 * @len:	maximum length @len should be interpreted to
2663 *
2664 * Look up a dentry by name in the dcache, returning NULL if it does not
2665 * currently exist.  The function does not try to create a dentry.
2666 *
2667 * Note that this routine is purely a helper for filesystem usage and should
2668 * not be called by generic code.
2669 *
2670 * The caller must hold base->i_mutex.
2671 */
2672struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2673{
2674	struct qstr this;
2675	int err;
2676
2677	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2678
2679	err = lookup_one_common(&init_user_ns, name, base, len, &this);
2680	if (err)
2681		return ERR_PTR(err);
2682
2683	return lookup_dcache(&this, base, 0);
2684}
2685EXPORT_SYMBOL(try_lookup_one_len);
2686
2687/**
2688 * lookup_one_len - filesystem helper to lookup single pathname component
2689 * @name:	pathname component to lookup
2690 * @base:	base directory to lookup from
2691 * @len:	maximum length @len should be interpreted to
2692 *
2693 * Note that this routine is purely a helper for filesystem usage and should
2694 * not be called by generic code.
2695 *
2696 * The caller must hold base->i_mutex.
2697 */
2698struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2699{
2700	struct dentry *dentry;
2701	struct qstr this;
2702	int err;
2703
2704	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2705
2706	err = lookup_one_common(&init_user_ns, name, base, len, &this);
2707	if (err)
2708		return ERR_PTR(err);
2709
2710	dentry = lookup_dcache(&this, base, 0);
2711	return dentry ? dentry : __lookup_slow(&this, base, 0);
2712}
2713EXPORT_SYMBOL(lookup_one_len);
2714
2715/**
2716 * lookup_one - filesystem helper to lookup single pathname component
2717 * @mnt_userns:	user namespace of the mount the lookup is performed from
2718 * @name:	pathname component to lookup
2719 * @base:	base directory to lookup from
2720 * @len:	maximum length @len should be interpreted to
2721 *
2722 * Note that this routine is purely a helper for filesystem usage and should
2723 * not be called by generic code.
2724 *
2725 * The caller must hold base->i_mutex.
2726 */
2727struct dentry *lookup_one(struct user_namespace *mnt_userns, const char *name,
2728			  struct dentry *base, int len)
2729{
2730	struct dentry *dentry;
2731	struct qstr this;
2732	int err;
2733
2734	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2735
2736	err = lookup_one_common(mnt_userns, name, base, len, &this);
2737	if (err)
2738		return ERR_PTR(err);
2739
2740	dentry = lookup_dcache(&this, base, 0);
2741	return dentry ? dentry : __lookup_slow(&this, base, 0);
2742}
2743EXPORT_SYMBOL(lookup_one);
2744
2745/**
2746 * lookup_one_unlocked - filesystem helper to lookup single pathname component
2747 * @mnt_userns:	idmapping of the mount the lookup is performed from
2748 * @name:	pathname component to lookup
2749 * @base:	base directory to lookup from
2750 * @len:	maximum length @len should be interpreted to
2751 *
2752 * Note that this routine is purely a helper for filesystem usage and should
2753 * not be called by generic code.
2754 *
2755 * Unlike lookup_one_len, it should be called without the parent
2756 * i_mutex held, and will take the i_mutex itself if necessary.
2757 */
2758struct dentry *lookup_one_unlocked(struct user_namespace *mnt_userns,
2759				   const char *name, struct dentry *base,
2760				   int len)
2761{
2762	struct qstr this;
2763	int err;
2764	struct dentry *ret;
2765
2766	err = lookup_one_common(mnt_userns, name, base, len, &this);
2767	if (err)
2768		return ERR_PTR(err);
2769
2770	ret = lookup_dcache(&this, base, 0);
2771	if (!ret)
2772		ret = lookup_slow(&this, base, 0);
2773	return ret;
2774}
2775EXPORT_SYMBOL(lookup_one_unlocked);
2776
2777/**
2778 * lookup_one_positive_unlocked - filesystem helper to lookup single
2779 *				  pathname component
2780 * @mnt_userns:	idmapping of the mount the lookup is performed from
2781 * @name:	pathname component to lookup
2782 * @base:	base directory to lookup from
2783 * @len:	maximum length @len should be interpreted to
2784 *
2785 * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns
2786 * known positive or ERR_PTR(). This is what most of the users want.
2787 *
2788 * Note that pinned negative with unlocked parent _can_ become positive at any
2789 * time, so callers of lookup_one_unlocked() need to be very careful; pinned
2790 * positives have >d_inode stable, so this one avoids such problems.
2791 *
2792 * Note that this routine is purely a helper for filesystem usage and should
2793 * not be called by generic code.
2794 *
2795 * The helper should be called without i_mutex held.
2796 */
2797struct dentry *lookup_one_positive_unlocked(struct user_namespace *mnt_userns,
2798					    const char *name,
2799					    struct dentry *base, int len)
2800{
2801	struct dentry *ret = lookup_one_unlocked(mnt_userns, name, base, len);
2802
2803	if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
2804		dput(ret);
2805		ret = ERR_PTR(-ENOENT);
2806	}
2807	return ret;
2808}
2809EXPORT_SYMBOL(lookup_one_positive_unlocked);
2810
2811/**
2812 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2813 * @name:	pathname component to lookup
2814 * @base:	base directory to lookup from
2815 * @len:	maximum length @len should be interpreted to
2816 *
2817 * Note that this routine is purely a helper for filesystem usage and should
2818 * not be called by generic code.
2819 *
2820 * Unlike lookup_one_len, it should be called without the parent
2821 * i_mutex held, and will take the i_mutex itself if necessary.
2822 */
2823struct dentry *lookup_one_len_unlocked(const char *name,
2824				       struct dentry *base, int len)
2825{
2826	return lookup_one_unlocked(&init_user_ns, name, base, len);
2827}
2828EXPORT_SYMBOL(lookup_one_len_unlocked);
2829
2830/*
2831 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
2832 * on negatives.  Returns known positive or ERR_PTR(); that's what
2833 * most of the users want.  Note that pinned negative with unlocked parent
2834 * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
2835 * need to be very careful; pinned positives have ->d_inode stable, so
2836 * this one avoids such problems.
2837 */
2838struct dentry *lookup_positive_unlocked(const char *name,
2839				       struct dentry *base, int len)
2840{
2841	return lookup_one_positive_unlocked(&init_user_ns, name, base, len);
2842}
2843EXPORT_SYMBOL(lookup_positive_unlocked);
2844
2845#ifdef CONFIG_UNIX98_PTYS
2846int path_pts(struct path *path)
2847{
2848	/* Find something mounted on "pts" in the same directory as
2849	 * the input path.
2850	 */
2851	struct dentry *parent = dget_parent(path->dentry);
2852	struct dentry *child;
2853	struct qstr this = QSTR_INIT("pts", 3);
2854
2855	if (unlikely(!path_connected(path->mnt, parent))) {
2856		dput(parent);
2857		return -ENOENT;
2858	}
2859	dput(path->dentry);
2860	path->dentry = parent;
2861	child = d_hash_and_lookup(parent, &this);
2862	if (!child)
2863		return -ENOENT;
2864
2865	path->dentry = child;
2866	dput(parent);
2867	follow_down(path);
2868	return 0;
2869}
2870#endif
2871
2872int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2873		 struct path *path, int *empty)
2874{
2875	struct filename *filename = getname_flags(name, flags, empty);
2876	int ret = filename_lookup(dfd, filename, flags, path, NULL);
2877
2878	putname(filename);
2879	return ret;
2880}
2881EXPORT_SYMBOL(user_path_at_empty);
2882
2883int __check_sticky(struct user_namespace *mnt_userns, struct inode *dir,
2884		   struct inode *inode)
2885{
2886	kuid_t fsuid = current_fsuid();
2887
2888	if (vfsuid_eq_kuid(i_uid_into_vfsuid(mnt_userns, inode), fsuid))
2889		return 0;
2890	if (vfsuid_eq_kuid(i_uid_into_vfsuid(mnt_userns, dir), fsuid))
2891		return 0;
2892	return !capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FOWNER);
2893}
2894EXPORT_SYMBOL(__check_sticky);
2895
2896/*
2897 *	Check whether we can remove a link victim from directory dir, check
2898 *  whether the type of victim is right.
2899 *  1. We can't do it if dir is read-only (done in permission())
2900 *  2. We should have write and exec permissions on dir
2901 *  3. We can't remove anything from append-only dir
2902 *  4. We can't do anything with immutable dir (done in permission())
2903 *  5. If the sticky bit on dir is set we should either
2904 *	a. be owner of dir, or
2905 *	b. be owner of victim, or
2906 *	c. have CAP_FOWNER capability
2907 *  6. If the victim is append-only or immutable we can't do antyhing with
2908 *     links pointing to it.
2909 *  7. If the victim has an unknown uid or gid we can't change the inode.
2910 *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2911 *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2912 * 10. We can't remove a root or mountpoint.
2913 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2914 *     nfs_async_unlink().
2915 */
2916static int may_delete(struct user_namespace *mnt_userns, struct inode *dir,
2917		      struct dentry *victim, bool isdir)
2918{
2919	struct inode *inode = d_backing_inode(victim);
2920	int error;
2921
2922	if (d_is_negative(victim))
2923		return -ENOENT;
2924	BUG_ON(!inode);
2925
2926	BUG_ON(victim->d_parent->d_inode != dir);
2927
2928	/* Inode writeback is not safe when the uid or gid are invalid. */
2929	if (!vfsuid_valid(i_uid_into_vfsuid(mnt_userns, inode)) ||
2930	    !vfsgid_valid(i_gid_into_vfsgid(mnt_userns, inode)))
2931		return -EOVERFLOW;
2932
2933	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2934
2935	error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
2936	if (error)
2937		return error;
2938	if (IS_APPEND(dir))
2939		return -EPERM;
2940
2941	if (check_sticky(mnt_userns, dir, inode) || IS_APPEND(inode) ||
2942	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) ||
2943	    HAS_UNMAPPED_ID(mnt_userns, inode))
2944		return -EPERM;
2945	if (isdir) {
2946		if (!d_is_dir(victim))
2947			return -ENOTDIR;
2948		if (IS_ROOT(victim))
2949			return -EBUSY;
2950	} else if (d_is_dir(victim))
2951		return -EISDIR;
2952	if (IS_DEADDIR(dir))
2953		return -ENOENT;
2954	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2955		return -EBUSY;
2956	return 0;
2957}
2958
2959/*	Check whether we can create an object with dentry child in directory
2960 *  dir.
2961 *  1. We can't do it if child already exists (open has special treatment for
2962 *     this case, but since we are inlined it's OK)
2963 *  2. We can't do it if dir is read-only (done in permission())
2964 *  3. We can't do it if the fs can't represent the fsuid or fsgid.
2965 *  4. We should have write and exec permissions on dir
2966 *  5. We can't do it if dir is immutable (done in permission())
2967 */
2968static inline int may_create(struct user_namespace *mnt_userns,
2969			     struct inode *dir, struct dentry *child)
2970{
2971	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2972	if (child->d_inode)
2973		return -EEXIST;
2974	if (IS_DEADDIR(dir))
2975		return -ENOENT;
2976	if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns))
2977		return -EOVERFLOW;
2978
2979	return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2980}
2981
2982/*
2983 * p1 and p2 should be directories on the same fs.
2984 */
2985struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2986{
2987	struct dentry *p;
2988
2989	if (p1 == p2) {
2990		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2991		return NULL;
2992	}
2993
2994	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
 
 
 
2995
2996	p = d_ancestor(p2, p1);
2997	if (p) {
 
 
 
 
 
 
 
2998		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2999		inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
3000		return p;
3001	}
 
 
 
3002
3003	p = d_ancestor(p1, p2);
3004	if (p) {
3005		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3006		inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
3007		return p;
3008	}
3009
3010	inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3011	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
 
 
 
 
 
 
 
 
 
 
 
 
3012	return NULL;
3013}
3014EXPORT_SYMBOL(lock_rename);
3015
3016void unlock_rename(struct dentry *p1, struct dentry *p2)
3017{
3018	inode_unlock(p1->d_inode);
3019	if (p1 != p2) {
3020		inode_unlock(p2->d_inode);
3021		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3022	}
3023}
3024EXPORT_SYMBOL(unlock_rename);
3025
3026/**
3027 * mode_strip_umask - handle vfs umask stripping
3028 * @dir:	parent directory of the new inode
3029 * @mode:	mode of the new inode to be created in @dir
3030 *
3031 * Umask stripping depends on whether or not the filesystem supports POSIX
3032 * ACLs. If the filesystem doesn't support it umask stripping is done directly
3033 * in here. If the filesystem does support POSIX ACLs umask stripping is
3034 * deferred until the filesystem calls posix_acl_create().
3035 *
3036 * Returns: mode
3037 */
3038static inline umode_t mode_strip_umask(const struct inode *dir, umode_t mode)
3039{
3040	if (!IS_POSIXACL(dir))
3041		mode &= ~current_umask();
3042	return mode;
3043}
3044
3045/**
3046 * vfs_prepare_mode - prepare the mode to be used for a new inode
3047 * @mnt_userns:		user namespace of the mount the inode was found from
3048 * @dir:	parent directory of the new inode
3049 * @mode:	mode of the new inode
3050 * @mask_perms:	allowed permission by the vfs
3051 * @type:	type of file to be created
3052 *
3053 * This helper consolidates and enforces vfs restrictions on the @mode of a new
3054 * object to be created.
3055 *
3056 * Umask stripping depends on whether the filesystem supports POSIX ACLs (see
3057 * the kernel documentation for mode_strip_umask()). Moving umask stripping
3058 * after setgid stripping allows the same ordering for both non-POSIX ACL and
3059 * POSIX ACL supporting filesystems.
3060 *
3061 * Note that it's currently valid for @type to be 0 if a directory is created.
3062 * Filesystems raise that flag individually and we need to check whether each
3063 * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a
3064 * non-zero type.
3065 *
3066 * Returns: mode to be passed to the filesystem
3067 */
3068static inline umode_t vfs_prepare_mode(struct user_namespace *mnt_userns,
3069				       const struct inode *dir, umode_t mode,
3070				       umode_t mask_perms, umode_t type)
3071{
3072	mode = mode_strip_sgid(mnt_userns, dir, mode);
3073	mode = mode_strip_umask(dir, mode);
3074
3075	/*
3076	 * Apply the vfs mandated allowed permission mask and set the type of
3077	 * file to be created before we call into the filesystem.
3078	 */
3079	mode &= (mask_perms & ~S_IFMT);
3080	mode |= (type & S_IFMT);
3081
3082	return mode;
3083}
3084
3085/**
3086 * vfs_create - create new file
3087 * @mnt_userns:	user namespace of the mount the inode was found from
3088 * @dir:	inode of @dentry
3089 * @dentry:	pointer to dentry of the base directory
3090 * @mode:	mode of the new file
3091 * @want_excl:	whether the file must not yet exist
3092 *
3093 * Create a new file.
3094 *
3095 * If the inode has been found through an idmapped mount the user namespace of
3096 * the vfsmount must be passed through @mnt_userns. This function will then take
3097 * care to map the inode according to @mnt_userns before checking permissions.
3098 * On non-idmapped mounts or if permission checking is to be performed on the
3099 * raw inode simply passs init_user_ns.
3100 */
3101int vfs_create(struct user_namespace *mnt_userns, struct inode *dir,
3102	       struct dentry *dentry, umode_t mode, bool want_excl)
3103{
3104	int error = may_create(mnt_userns, dir, dentry);
 
 
3105	if (error)
3106		return error;
3107
3108	if (!dir->i_op->create)
3109		return -EACCES;	/* shouldn't it be ENOSYS? */
3110
3111	mode = vfs_prepare_mode(mnt_userns, dir, mode, S_IALLUGO, S_IFREG);
3112	error = security_inode_create(dir, dentry, mode);
3113	if (error)
3114		return error;
3115	error = dir->i_op->create(mnt_userns, dir, dentry, mode, want_excl);
3116	if (!error)
3117		fsnotify_create(dir, dentry);
3118	return error;
3119}
3120EXPORT_SYMBOL(vfs_create);
3121
3122int vfs_mkobj(struct dentry *dentry, umode_t mode,
3123		int (*f)(struct dentry *, umode_t, void *),
3124		void *arg)
3125{
3126	struct inode *dir = dentry->d_parent->d_inode;
3127	int error = may_create(&init_user_ns, dir, dentry);
3128	if (error)
3129		return error;
3130
3131	mode &= S_IALLUGO;
3132	mode |= S_IFREG;
3133	error = security_inode_create(dir, dentry, mode);
3134	if (error)
3135		return error;
3136	error = f(dentry, mode, arg);
3137	if (!error)
3138		fsnotify_create(dir, dentry);
3139	return error;
3140}
3141EXPORT_SYMBOL(vfs_mkobj);
3142
3143bool may_open_dev(const struct path *path)
3144{
3145	return !(path->mnt->mnt_flags & MNT_NODEV) &&
3146		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
3147}
3148
3149static int may_open(struct user_namespace *mnt_userns, const struct path *path,
3150		    int acc_mode, int flag)
3151{
3152	struct dentry *dentry = path->dentry;
3153	struct inode *inode = dentry->d_inode;
3154	int error;
3155
3156	if (!inode)
3157		return -ENOENT;
3158
3159	switch (inode->i_mode & S_IFMT) {
3160	case S_IFLNK:
3161		return -ELOOP;
3162	case S_IFDIR:
3163		if (acc_mode & MAY_WRITE)
3164			return -EISDIR;
3165		if (acc_mode & MAY_EXEC)
3166			return -EACCES;
3167		break;
3168	case S_IFBLK:
3169	case S_IFCHR:
3170		if (!may_open_dev(path))
3171			return -EACCES;
3172		fallthrough;
3173	case S_IFIFO:
3174	case S_IFSOCK:
3175		if (acc_mode & MAY_EXEC)
3176			return -EACCES;
3177		flag &= ~O_TRUNC;
3178		break;
3179	case S_IFREG:
3180		if ((acc_mode & MAY_EXEC) && path_noexec(path))
3181			return -EACCES;
3182		break;
3183	}
3184
3185	error = inode_permission(mnt_userns, inode, MAY_OPEN | acc_mode);
3186	if (error)
3187		return error;
3188
3189	/*
3190	 * An append-only file must be opened in append mode for writing.
3191	 */
3192	if (IS_APPEND(inode)) {
3193		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
3194			return -EPERM;
3195		if (flag & O_TRUNC)
3196			return -EPERM;
3197	}
3198
3199	/* O_NOATIME can only be set by the owner or superuser */
3200	if (flag & O_NOATIME && !inode_owner_or_capable(mnt_userns, inode))
3201		return -EPERM;
3202
3203	return 0;
3204}
3205
3206static int handle_truncate(struct user_namespace *mnt_userns, struct file *filp)
3207{
3208	const struct path *path = &filp->f_path;
3209	struct inode *inode = path->dentry->d_inode;
3210	int error = get_write_access(inode);
3211	if (error)
3212		return error;
3213
3214	error = security_file_truncate(filp);
3215	if (!error) {
3216		error = do_truncate(mnt_userns, path->dentry, 0,
3217				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3218				    filp);
3219	}
3220	put_write_access(inode);
3221	return error;
3222}
3223
3224static inline int open_to_namei_flags(int flag)
3225{
3226	if ((flag & O_ACCMODE) == 3)
3227		flag--;
3228	return flag;
3229}
3230
3231static int may_o_create(struct user_namespace *mnt_userns,
3232			const struct path *dir, struct dentry *dentry,
3233			umode_t mode)
3234{
3235	int error = security_path_mknod(dir, dentry, mode, 0);
3236	if (error)
3237		return error;
3238
3239	if (!fsuidgid_has_mapping(dir->dentry->d_sb, mnt_userns))
3240		return -EOVERFLOW;
3241
3242	error = inode_permission(mnt_userns, dir->dentry->d_inode,
3243				 MAY_WRITE | MAY_EXEC);
3244	if (error)
3245		return error;
3246
3247	return security_inode_create(dir->dentry->d_inode, dentry, mode);
3248}
3249
3250/*
3251 * Attempt to atomically look up, create and open a file from a negative
3252 * dentry.
3253 *
3254 * Returns 0 if successful.  The file will have been created and attached to
3255 * @file by the filesystem calling finish_open().
3256 *
3257 * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3258 * be set.  The caller will need to perform the open themselves.  @path will
3259 * have been updated to point to the new dentry.  This may be negative.
3260 *
3261 * Returns an error code otherwise.
3262 */
3263static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
3264				  struct file *file,
3265				  int open_flag, umode_t mode)
3266{
3267	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3268	struct inode *dir =  nd->path.dentry->d_inode;
3269	int error;
3270
3271	if (nd->flags & LOOKUP_DIRECTORY)
3272		open_flag |= O_DIRECTORY;
3273
3274	file->f_path.dentry = DENTRY_NOT_SET;
3275	file->f_path.mnt = nd->path.mnt;
3276	error = dir->i_op->atomic_open(dir, dentry, file,
3277				       open_to_namei_flags(open_flag), mode);
3278	d_lookup_done(dentry);
3279	if (!error) {
3280		if (file->f_mode & FMODE_OPENED) {
3281			if (unlikely(dentry != file->f_path.dentry)) {
3282				dput(dentry);
3283				dentry = dget(file->f_path.dentry);
3284			}
3285		} else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3286			error = -EIO;
3287		} else {
3288			if (file->f_path.dentry) {
3289				dput(dentry);
3290				dentry = file->f_path.dentry;
3291			}
3292			if (unlikely(d_is_negative(dentry)))
3293				error = -ENOENT;
3294		}
3295	}
3296	if (error) {
3297		dput(dentry);
3298		dentry = ERR_PTR(error);
3299	}
3300	return dentry;
3301}
3302
3303/*
3304 * Look up and maybe create and open the last component.
3305 *
3306 * Must be called with parent locked (exclusive in O_CREAT case).
3307 *
3308 * Returns 0 on success, that is, if
3309 *  the file was successfully atomically created (if necessary) and opened, or
3310 *  the file was not completely opened at this time, though lookups and
3311 *  creations were performed.
3312 * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3313 * In the latter case dentry returned in @path might be negative if O_CREAT
3314 * hadn't been specified.
3315 *
3316 * An error code is returned on failure.
3317 */
3318static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3319				  const struct open_flags *op,
3320				  bool got_write)
3321{
3322	struct user_namespace *mnt_userns;
3323	struct dentry *dir = nd->path.dentry;
3324	struct inode *dir_inode = dir->d_inode;
3325	int open_flag = op->open_flag;
3326	struct dentry *dentry;
3327	int error, create_error = 0;
3328	umode_t mode = op->mode;
3329	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3330
3331	if (unlikely(IS_DEADDIR(dir_inode)))
3332		return ERR_PTR(-ENOENT);
3333
3334	file->f_mode &= ~FMODE_CREATED;
3335	dentry = d_lookup(dir, &nd->last);
3336	for (;;) {
3337		if (!dentry) {
3338			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3339			if (IS_ERR(dentry))
3340				return dentry;
3341		}
3342		if (d_in_lookup(dentry))
3343			break;
3344
3345		error = d_revalidate(dentry, nd->flags);
3346		if (likely(error > 0))
3347			break;
3348		if (error)
3349			goto out_dput;
3350		d_invalidate(dentry);
3351		dput(dentry);
3352		dentry = NULL;
3353	}
3354	if (dentry->d_inode) {
3355		/* Cached positive dentry: will open in f_op->open */
3356		return dentry;
3357	}
3358
 
 
 
3359	/*
3360	 * Checking write permission is tricky, bacuse we don't know if we are
3361	 * going to actually need it: O_CREAT opens should work as long as the
3362	 * file exists.  But checking existence breaks atomicity.  The trick is
3363	 * to check access and if not granted clear O_CREAT from the flags.
3364	 *
3365	 * Another problem is returing the "right" error value (e.g. for an
3366	 * O_EXCL open we want to return EEXIST not EROFS).
3367	 */
3368	if (unlikely(!got_write))
3369		open_flag &= ~O_TRUNC;
3370	mnt_userns = mnt_user_ns(nd->path.mnt);
3371	if (open_flag & O_CREAT) {
3372		if (open_flag & O_EXCL)
3373			open_flag &= ~O_TRUNC;
3374		mode = vfs_prepare_mode(mnt_userns, dir->d_inode, mode, mode, mode);
3375		if (likely(got_write))
3376			create_error = may_o_create(mnt_userns, &nd->path,
3377						    dentry, mode);
3378		else
3379			create_error = -EROFS;
3380	}
3381	if (create_error)
3382		open_flag &= ~O_CREAT;
3383	if (dir_inode->i_op->atomic_open) {
3384		dentry = atomic_open(nd, dentry, file, open_flag, mode);
3385		if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3386			dentry = ERR_PTR(create_error);
3387		return dentry;
3388	}
3389
3390	if (d_in_lookup(dentry)) {
3391		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3392							     nd->flags);
3393		d_lookup_done(dentry);
3394		if (unlikely(res)) {
3395			if (IS_ERR(res)) {
3396				error = PTR_ERR(res);
3397				goto out_dput;
3398			}
3399			dput(dentry);
3400			dentry = res;
3401		}
3402	}
3403
3404	/* Negative dentry, just create the file */
3405	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3406		file->f_mode |= FMODE_CREATED;
3407		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3408		if (!dir_inode->i_op->create) {
3409			error = -EACCES;
3410			goto out_dput;
3411		}
3412
3413		error = dir_inode->i_op->create(mnt_userns, dir_inode, dentry,
3414						mode, open_flag & O_EXCL);
3415		if (error)
3416			goto out_dput;
3417	}
3418	if (unlikely(create_error) && !dentry->d_inode) {
3419		error = create_error;
3420		goto out_dput;
3421	}
3422	return dentry;
3423
3424out_dput:
3425	dput(dentry);
3426	return ERR_PTR(error);
3427}
3428
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3429static const char *open_last_lookups(struct nameidata *nd,
3430		   struct file *file, const struct open_flags *op)
3431{
3432	struct dentry *dir = nd->path.dentry;
3433	int open_flag = op->open_flag;
3434	bool got_write = false;
3435	struct dentry *dentry;
3436	const char *res;
3437
3438	nd->flags |= op->intent;
3439
3440	if (nd->last_type != LAST_NORM) {
3441		if (nd->depth)
3442			put_link(nd);
3443		return handle_dots(nd, nd->last_type);
3444	}
3445
3446	if (!(open_flag & O_CREAT)) {
3447		if (nd->last.name[nd->last.len])
3448			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3449		/* we _can_ be in RCU mode here */
3450		dentry = lookup_fast(nd);
3451		if (IS_ERR(dentry))
3452			return ERR_CAST(dentry);
3453		if (likely(dentry))
3454			goto finish_lookup;
3455
3456		BUG_ON(nd->flags & LOOKUP_RCU);
 
 
3457	} else {
3458		/* create side of things */
3459		if (nd->flags & LOOKUP_RCU) {
3460			if (!try_to_unlazy(nd))
3461				return ERR_PTR(-ECHILD);
3462		}
3463		audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3464		/* trailing slashes? */
3465		if (unlikely(nd->last.name[nd->last.len]))
3466			return ERR_PTR(-EISDIR);
3467	}
3468
3469	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3470		got_write = !mnt_want_write(nd->path.mnt);
3471		/*
3472		 * do _not_ fail yet - we might not need that or fail with
3473		 * a different error; let lookup_open() decide; we'll be
3474		 * dropping this one anyway.
3475		 */
3476	}
3477	if (open_flag & O_CREAT)
3478		inode_lock(dir->d_inode);
3479	else
3480		inode_lock_shared(dir->d_inode);
3481	dentry = lookup_open(nd, file, op, got_write);
3482	if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED))
3483		fsnotify_create(dir->d_inode, dentry);
 
 
 
 
3484	if (open_flag & O_CREAT)
3485		inode_unlock(dir->d_inode);
3486	else
3487		inode_unlock_shared(dir->d_inode);
3488
3489	if (got_write)
3490		mnt_drop_write(nd->path.mnt);
3491
3492	if (IS_ERR(dentry))
3493		return ERR_CAST(dentry);
3494
3495	if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3496		dput(nd->path.dentry);
3497		nd->path.dentry = dentry;
3498		return NULL;
3499	}
3500
3501finish_lookup:
3502	if (nd->depth)
3503		put_link(nd);
3504	res = step_into(nd, WALK_TRAILING, dentry);
3505	if (unlikely(res))
3506		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3507	return res;
3508}
3509
3510/*
3511 * Handle the last step of open()
3512 */
3513static int do_open(struct nameidata *nd,
3514		   struct file *file, const struct open_flags *op)
3515{
3516	struct user_namespace *mnt_userns;
3517	int open_flag = op->open_flag;
3518	bool do_truncate;
3519	int acc_mode;
3520	int error;
3521
3522	if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3523		error = complete_walk(nd);
3524		if (error)
3525			return error;
3526	}
3527	if (!(file->f_mode & FMODE_CREATED))
3528		audit_inode(nd->name, nd->path.dentry, 0);
3529	mnt_userns = mnt_user_ns(nd->path.mnt);
3530	if (open_flag & O_CREAT) {
3531		if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3532			return -EEXIST;
3533		if (d_is_dir(nd->path.dentry))
3534			return -EISDIR;
3535		error = may_create_in_sticky(mnt_userns, nd,
3536					     d_backing_inode(nd->path.dentry));
3537		if (unlikely(error))
3538			return error;
3539	}
3540	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3541		return -ENOTDIR;
3542
3543	do_truncate = false;
3544	acc_mode = op->acc_mode;
3545	if (file->f_mode & FMODE_CREATED) {
3546		/* Don't check for write permission, don't truncate */
3547		open_flag &= ~O_TRUNC;
3548		acc_mode = 0;
3549	} else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3550		error = mnt_want_write(nd->path.mnt);
3551		if (error)
3552			return error;
3553		do_truncate = true;
3554	}
3555	error = may_open(mnt_userns, &nd->path, acc_mode, open_flag);
3556	if (!error && !(file->f_mode & FMODE_OPENED))
3557		error = vfs_open(&nd->path, file);
3558	if (!error)
3559		error = ima_file_check(file, op->acc_mode);
3560	if (!error && do_truncate)
3561		error = handle_truncate(mnt_userns, file);
3562	if (unlikely(error > 0)) {
3563		WARN_ON(1);
3564		error = -EINVAL;
3565	}
3566	if (do_truncate)
3567		mnt_drop_write(nd->path.mnt);
3568	return error;
3569}
3570
3571/**
3572 * vfs_tmpfile - create tmpfile
3573 * @mnt_userns:	user namespace of the mount the inode was found from
3574 * @dentry:	pointer to dentry of the base directory
 
3575 * @mode:	mode of the new tmpfile
3576 * @open_flag:	flags
3577 *
3578 * Create a temporary file.
3579 *
3580 * If the inode has been found through an idmapped mount the user namespace of
3581 * the vfsmount must be passed through @mnt_userns. This function will then take
3582 * care to map the inode according to @mnt_userns before checking permissions.
3583 * On non-idmapped mounts or if permission checking is to be performed on the
3584 * raw inode simply passs init_user_ns.
3585 */
3586static int vfs_tmpfile(struct user_namespace *mnt_userns,
3587		       const struct path *parentpath,
3588		       struct file *file, umode_t mode)
3589{
3590	struct dentry *child;
3591	struct inode *dir = d_inode(parentpath->dentry);
3592	struct inode *inode;
3593	int error;
3594	int open_flag = file->f_flags;
3595
3596	/* we want directory to be writable */
3597	error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
3598	if (error)
3599		return error;
3600	if (!dir->i_op->tmpfile)
3601		return -EOPNOTSUPP;
3602	child = d_alloc(parentpath->dentry, &slash_name);
3603	if (unlikely(!child))
3604		return -ENOMEM;
3605	file->f_path.mnt = parentpath->mnt;
3606	file->f_path.dentry = child;
3607	mode = vfs_prepare_mode(mnt_userns, dir, mode, mode, mode);
3608	error = dir->i_op->tmpfile(mnt_userns, dir, file, mode);
3609	dput(child);
 
 
3610	if (error)
3611		return error;
3612	/* Don't check for other permissions, the inode was just created */
3613	error = may_open(mnt_userns, &file->f_path, 0, file->f_flags);
3614	if (error)
3615		return error;
3616	inode = file_inode(file);
3617	if (!(open_flag & O_EXCL)) {
3618		spin_lock(&inode->i_lock);
3619		inode->i_state |= I_LINKABLE;
3620		spin_unlock(&inode->i_lock);
3621	}
3622	ima_post_create_tmpfile(mnt_userns, inode);
3623	return 0;
3624}
3625
3626/**
3627 * vfs_tmpfile_open - open a tmpfile for kernel internal use
3628 * @mnt_userns:	user namespace of the mount the inode was found from
3629 * @parentpath:	path of the base directory
3630 * @mode:	mode of the new tmpfile
3631 * @open_flag:	flags
3632 * @cred:	credentials for open
3633 *
3634 * Create and open a temporary file.  The file is not accounted in nr_files,
3635 * hence this is only for kernel internal use, and must not be installed into
3636 * file tables or such.
3637 */
3638struct file *vfs_tmpfile_open(struct user_namespace *mnt_userns,
3639			  const struct path *parentpath,
3640			  umode_t mode, int open_flag, const struct cred *cred)
 
3641{
3642	struct file *file;
3643	int error;
3644
3645	file = alloc_empty_file_noaccount(open_flag, cred);
3646	if (!IS_ERR(file)) {
3647		error = vfs_tmpfile(mnt_userns, parentpath, file, mode);
3648		if (error) {
3649			fput(file);
3650			file = ERR_PTR(error);
3651		}
 
3652	}
3653	return file;
3654}
3655EXPORT_SYMBOL(vfs_tmpfile_open);
3656
3657static int do_tmpfile(struct nameidata *nd, unsigned flags,
3658		const struct open_flags *op,
3659		struct file *file)
3660{
3661	struct user_namespace *mnt_userns;
3662	struct path path;
3663	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3664
3665	if (unlikely(error))
3666		return error;
3667	error = mnt_want_write(path.mnt);
3668	if (unlikely(error))
3669		goto out;
3670	mnt_userns = mnt_user_ns(path.mnt);
3671	error = vfs_tmpfile(mnt_userns, &path, file, op->mode);
3672	if (error)
3673		goto out2;
3674	audit_inode(nd->name, file->f_path.dentry, 0);
3675out2:
3676	mnt_drop_write(path.mnt);
3677out:
3678	path_put(&path);
3679	return error;
3680}
3681
3682static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3683{
3684	struct path path;
3685	int error = path_lookupat(nd, flags, &path);
3686	if (!error) {
3687		audit_inode(nd->name, path.dentry, 0);
3688		error = vfs_open(&path, file);
3689		path_put(&path);
3690	}
3691	return error;
3692}
3693
3694static struct file *path_openat(struct nameidata *nd,
3695			const struct open_flags *op, unsigned flags)
3696{
3697	struct file *file;
3698	int error;
3699
3700	file = alloc_empty_file(op->open_flag, current_cred());
3701	if (IS_ERR(file))
3702		return file;
3703
3704	if (unlikely(file->f_flags & __O_TMPFILE)) {
3705		error = do_tmpfile(nd, flags, op, file);
3706	} else if (unlikely(file->f_flags & O_PATH)) {
3707		error = do_o_path(nd, flags, file);
3708	} else {
3709		const char *s = path_init(nd, flags);
3710		while (!(error = link_path_walk(s, nd)) &&
3711		       (s = open_last_lookups(nd, file, op)) != NULL)
3712			;
3713		if (!error)
3714			error = do_open(nd, file, op);
3715		terminate_walk(nd);
3716	}
3717	if (likely(!error)) {
3718		if (likely(file->f_mode & FMODE_OPENED))
3719			return file;
3720		WARN_ON(1);
3721		error = -EINVAL;
3722	}
3723	fput(file);
3724	if (error == -EOPENSTALE) {
3725		if (flags & LOOKUP_RCU)
3726			error = -ECHILD;
3727		else
3728			error = -ESTALE;
3729	}
3730	return ERR_PTR(error);
3731}
3732
3733struct file *do_filp_open(int dfd, struct filename *pathname,
3734		const struct open_flags *op)
3735{
3736	struct nameidata nd;
3737	int flags = op->lookup_flags;
3738	struct file *filp;
3739
3740	set_nameidata(&nd, dfd, pathname, NULL);
3741	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3742	if (unlikely(filp == ERR_PTR(-ECHILD)))
3743		filp = path_openat(&nd, op, flags);
3744	if (unlikely(filp == ERR_PTR(-ESTALE)))
3745		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3746	restore_nameidata();
3747	return filp;
3748}
3749
3750struct file *do_file_open_root(const struct path *root,
3751		const char *name, const struct open_flags *op)
3752{
3753	struct nameidata nd;
3754	struct file *file;
3755	struct filename *filename;
3756	int flags = op->lookup_flags;
3757
3758	if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN)
3759		return ERR_PTR(-ELOOP);
3760
3761	filename = getname_kernel(name);
3762	if (IS_ERR(filename))
3763		return ERR_CAST(filename);
3764
3765	set_nameidata(&nd, -1, filename, root);
3766	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3767	if (unlikely(file == ERR_PTR(-ECHILD)))
3768		file = path_openat(&nd, op, flags);
3769	if (unlikely(file == ERR_PTR(-ESTALE)))
3770		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3771	restore_nameidata();
3772	putname(filename);
3773	return file;
3774}
3775
3776static struct dentry *filename_create(int dfd, struct filename *name,
3777				      struct path *path, unsigned int lookup_flags)
3778{
3779	struct dentry *dentry = ERR_PTR(-EEXIST);
3780	struct qstr last;
3781	bool want_dir = lookup_flags & LOOKUP_DIRECTORY;
3782	unsigned int reval_flag = lookup_flags & LOOKUP_REVAL;
3783	unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL;
3784	int type;
3785	int err2;
3786	int error;
3787
3788	error = filename_parentat(dfd, name, reval_flag, path, &last, &type);
3789	if (error)
3790		return ERR_PTR(error);
3791
3792	/*
3793	 * Yucky last component or no last component at all?
3794	 * (foo/., foo/.., /////)
3795	 */
3796	if (unlikely(type != LAST_NORM))
3797		goto out;
3798
3799	/* don't fail immediately if it's r/o, at least try to report other errors */
3800	err2 = mnt_want_write(path->mnt);
3801	/*
3802	 * Do the final lookup.  Suppress 'create' if there is a trailing
3803	 * '/', and a directory wasn't requested.
3804	 */
3805	if (last.name[last.len] && !want_dir)
3806		create_flags = 0;
3807	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3808	dentry = __lookup_hash(&last, path->dentry, reval_flag | create_flags);
 
3809	if (IS_ERR(dentry))
3810		goto unlock;
3811
3812	error = -EEXIST;
3813	if (d_is_positive(dentry))
3814		goto fail;
3815
3816	/*
3817	 * Special case - lookup gave negative, but... we had foo/bar/
3818	 * From the vfs_mknod() POV we just have a negative dentry -
3819	 * all is fine. Let's be bastards - you had / on the end, you've
3820	 * been asking for (non-existent) directory. -ENOENT for you.
3821	 */
3822	if (unlikely(!create_flags)) {
3823		error = -ENOENT;
3824		goto fail;
3825	}
3826	if (unlikely(err2)) {
3827		error = err2;
3828		goto fail;
3829	}
3830	return dentry;
3831fail:
3832	dput(dentry);
3833	dentry = ERR_PTR(error);
3834unlock:
3835	inode_unlock(path->dentry->d_inode);
3836	if (!err2)
3837		mnt_drop_write(path->mnt);
3838out:
3839	path_put(path);
3840	return dentry;
3841}
3842
3843struct dentry *kern_path_create(int dfd, const char *pathname,
3844				struct path *path, unsigned int lookup_flags)
3845{
3846	struct filename *filename = getname_kernel(pathname);
3847	struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
3848
3849	putname(filename);
3850	return res;
3851}
3852EXPORT_SYMBOL(kern_path_create);
3853
3854void done_path_create(struct path *path, struct dentry *dentry)
3855{
3856	dput(dentry);
3857	inode_unlock(path->dentry->d_inode);
3858	mnt_drop_write(path->mnt);
3859	path_put(path);
3860}
3861EXPORT_SYMBOL(done_path_create);
3862
3863inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3864				struct path *path, unsigned int lookup_flags)
3865{
3866	struct filename *filename = getname(pathname);
3867	struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
3868
3869	putname(filename);
3870	return res;
3871}
3872EXPORT_SYMBOL(user_path_create);
3873
3874/**
3875 * vfs_mknod - create device node or file
3876 * @mnt_userns:	user namespace of the mount the inode was found from
3877 * @dir:	inode of @dentry
3878 * @dentry:	pointer to dentry of the base directory
3879 * @mode:	mode of the new device node or file
3880 * @dev:	device number of device to create
3881 *
3882 * Create a device node or file.
3883 *
3884 * If the inode has been found through an idmapped mount the user namespace of
3885 * the vfsmount must be passed through @mnt_userns. This function will then take
3886 * care to map the inode according to @mnt_userns before checking permissions.
3887 * On non-idmapped mounts or if permission checking is to be performed on the
3888 * raw inode simply passs init_user_ns.
3889 */
3890int vfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
3891	      struct dentry *dentry, umode_t mode, dev_t dev)
3892{
3893	bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
3894	int error = may_create(mnt_userns, dir, dentry);
3895
3896	if (error)
3897		return error;
3898
3899	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
3900	    !capable(CAP_MKNOD))
3901		return -EPERM;
3902
3903	if (!dir->i_op->mknod)
3904		return -EPERM;
3905
3906	mode = vfs_prepare_mode(mnt_userns, dir, mode, mode, mode);
3907	error = devcgroup_inode_mknod(mode, dev);
3908	if (error)
3909		return error;
3910
3911	error = security_inode_mknod(dir, dentry, mode, dev);
3912	if (error)
3913		return error;
3914
3915	error = dir->i_op->mknod(mnt_userns, dir, dentry, mode, dev);
3916	if (!error)
3917		fsnotify_create(dir, dentry);
3918	return error;
3919}
3920EXPORT_SYMBOL(vfs_mknod);
3921
3922static int may_mknod(umode_t mode)
3923{
3924	switch (mode & S_IFMT) {
3925	case S_IFREG:
3926	case S_IFCHR:
3927	case S_IFBLK:
3928	case S_IFIFO:
3929	case S_IFSOCK:
3930	case 0: /* zero mode translates to S_IFREG */
3931		return 0;
3932	case S_IFDIR:
3933		return -EPERM;
3934	default:
3935		return -EINVAL;
3936	}
3937}
3938
3939static int do_mknodat(int dfd, struct filename *name, umode_t mode,
3940		unsigned int dev)
3941{
3942	struct user_namespace *mnt_userns;
3943	struct dentry *dentry;
3944	struct path path;
3945	int error;
3946	unsigned int lookup_flags = 0;
3947
3948	error = may_mknod(mode);
3949	if (error)
3950		goto out1;
3951retry:
3952	dentry = filename_create(dfd, name, &path, lookup_flags);
3953	error = PTR_ERR(dentry);
3954	if (IS_ERR(dentry))
3955		goto out1;
3956
3957	error = security_path_mknod(&path, dentry,
3958			mode_strip_umask(path.dentry->d_inode, mode), dev);
3959	if (error)
3960		goto out2;
3961
3962	mnt_userns = mnt_user_ns(path.mnt);
3963	switch (mode & S_IFMT) {
3964		case 0: case S_IFREG:
3965			error = vfs_create(mnt_userns, path.dentry->d_inode,
3966					   dentry, mode, true);
3967			if (!error)
3968				ima_post_path_mknod(mnt_userns, dentry);
3969			break;
3970		case S_IFCHR: case S_IFBLK:
3971			error = vfs_mknod(mnt_userns, path.dentry->d_inode,
3972					  dentry, mode, new_decode_dev(dev));
3973			break;
3974		case S_IFIFO: case S_IFSOCK:
3975			error = vfs_mknod(mnt_userns, path.dentry->d_inode,
3976					  dentry, mode, 0);
3977			break;
3978	}
3979out2:
3980	done_path_create(&path, dentry);
3981	if (retry_estale(error, lookup_flags)) {
3982		lookup_flags |= LOOKUP_REVAL;
3983		goto retry;
3984	}
3985out1:
3986	putname(name);
3987	return error;
3988}
3989
3990SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3991		unsigned int, dev)
3992{
3993	return do_mknodat(dfd, getname(filename), mode, dev);
3994}
3995
3996SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3997{
3998	return do_mknodat(AT_FDCWD, getname(filename), mode, dev);
3999}
4000
4001/**
4002 * vfs_mkdir - create directory
4003 * @mnt_userns:	user namespace of the mount the inode was found from
4004 * @dir:	inode of @dentry
4005 * @dentry:	pointer to dentry of the base directory
4006 * @mode:	mode of the new directory
4007 *
4008 * Create a directory.
4009 *
4010 * If the inode has been found through an idmapped mount the user namespace of
4011 * the vfsmount must be passed through @mnt_userns. This function will then take
4012 * care to map the inode according to @mnt_userns before checking permissions.
4013 * On non-idmapped mounts or if permission checking is to be performed on the
4014 * raw inode simply passs init_user_ns.
4015 */
4016int vfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
4017	      struct dentry *dentry, umode_t mode)
4018{
4019	int error = may_create(mnt_userns, dir, dentry);
4020	unsigned max_links = dir->i_sb->s_max_links;
4021
 
4022	if (error)
4023		return error;
4024
4025	if (!dir->i_op->mkdir)
4026		return -EPERM;
4027
4028	mode = vfs_prepare_mode(mnt_userns, dir, mode, S_IRWXUGO | S_ISVTX, 0);
4029	error = security_inode_mkdir(dir, dentry, mode);
4030	if (error)
4031		return error;
4032
4033	if (max_links && dir->i_nlink >= max_links)
4034		return -EMLINK;
4035
4036	error = dir->i_op->mkdir(mnt_userns, dir, dentry, mode);
4037	if (!error)
4038		fsnotify_mkdir(dir, dentry);
4039	return error;
4040}
4041EXPORT_SYMBOL(vfs_mkdir);
4042
4043int do_mkdirat(int dfd, struct filename *name, umode_t mode)
4044{
4045	struct dentry *dentry;
4046	struct path path;
4047	int error;
4048	unsigned int lookup_flags = LOOKUP_DIRECTORY;
4049
4050retry:
4051	dentry = filename_create(dfd, name, &path, lookup_flags);
4052	error = PTR_ERR(dentry);
4053	if (IS_ERR(dentry))
4054		goto out_putname;
4055
4056	error = security_path_mkdir(&path, dentry,
4057			mode_strip_umask(path.dentry->d_inode, mode));
4058	if (!error) {
4059		struct user_namespace *mnt_userns;
4060		mnt_userns = mnt_user_ns(path.mnt);
4061		error = vfs_mkdir(mnt_userns, path.dentry->d_inode, dentry,
4062				  mode);
4063	}
4064	done_path_create(&path, dentry);
4065	if (retry_estale(error, lookup_flags)) {
4066		lookup_flags |= LOOKUP_REVAL;
4067		goto retry;
4068	}
4069out_putname:
4070	putname(name);
4071	return error;
4072}
4073
4074SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
4075{
4076	return do_mkdirat(dfd, getname(pathname), mode);
4077}
4078
4079SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
4080{
4081	return do_mkdirat(AT_FDCWD, getname(pathname), mode);
4082}
4083
4084/**
4085 * vfs_rmdir - remove directory
4086 * @mnt_userns:	user namespace of the mount the inode was found from
4087 * @dir:	inode of @dentry
4088 * @dentry:	pointer to dentry of the base directory
4089 *
4090 * Remove a directory.
4091 *
4092 * If the inode has been found through an idmapped mount the user namespace of
4093 * the vfsmount must be passed through @mnt_userns. This function will then take
4094 * care to map the inode according to @mnt_userns before checking permissions.
4095 * On non-idmapped mounts or if permission checking is to be performed on the
4096 * raw inode simply passs init_user_ns.
4097 */
4098int vfs_rmdir(struct user_namespace *mnt_userns, struct inode *dir,
4099		     struct dentry *dentry)
4100{
4101	int error = may_delete(mnt_userns, dir, dentry, 1);
4102
4103	if (error)
4104		return error;
4105
4106	if (!dir->i_op->rmdir)
4107		return -EPERM;
4108
4109	dget(dentry);
4110	inode_lock(dentry->d_inode);
4111
4112	error = -EBUSY;
4113	if (is_local_mountpoint(dentry) ||
4114	    (dentry->d_inode->i_flags & S_KERNEL_FILE))
4115		goto out;
4116
4117	error = security_inode_rmdir(dir, dentry);
4118	if (error)
4119		goto out;
4120
4121	error = dir->i_op->rmdir(dir, dentry);
4122	if (error)
4123		goto out;
4124
4125	shrink_dcache_parent(dentry);
4126	dentry->d_inode->i_flags |= S_DEAD;
4127	dont_mount(dentry);
4128	detach_mounts(dentry);
4129
4130out:
4131	inode_unlock(dentry->d_inode);
4132	dput(dentry);
4133	if (!error)
4134		d_delete_notify(dir, dentry);
4135	return error;
4136}
4137EXPORT_SYMBOL(vfs_rmdir);
4138
4139int do_rmdir(int dfd, struct filename *name)
4140{
4141	struct user_namespace *mnt_userns;
4142	int error;
4143	struct dentry *dentry;
4144	struct path path;
4145	struct qstr last;
4146	int type;
4147	unsigned int lookup_flags = 0;
4148retry:
4149	error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4150	if (error)
4151		goto exit1;
4152
4153	switch (type) {
4154	case LAST_DOTDOT:
4155		error = -ENOTEMPTY;
4156		goto exit2;
4157	case LAST_DOT:
4158		error = -EINVAL;
4159		goto exit2;
4160	case LAST_ROOT:
4161		error = -EBUSY;
4162		goto exit2;
4163	}
4164
4165	error = mnt_want_write(path.mnt);
4166	if (error)
4167		goto exit2;
4168
4169	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4170	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4171	error = PTR_ERR(dentry);
4172	if (IS_ERR(dentry))
4173		goto exit3;
4174	if (!dentry->d_inode) {
4175		error = -ENOENT;
4176		goto exit4;
4177	}
4178	error = security_path_rmdir(&path, dentry);
4179	if (error)
4180		goto exit4;
4181	mnt_userns = mnt_user_ns(path.mnt);
4182	error = vfs_rmdir(mnt_userns, path.dentry->d_inode, dentry);
4183exit4:
4184	dput(dentry);
4185exit3:
4186	inode_unlock(path.dentry->d_inode);
4187	mnt_drop_write(path.mnt);
4188exit2:
4189	path_put(&path);
4190	if (retry_estale(error, lookup_flags)) {
4191		lookup_flags |= LOOKUP_REVAL;
4192		goto retry;
4193	}
4194exit1:
4195	putname(name);
4196	return error;
4197}
4198
4199SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
4200{
4201	return do_rmdir(AT_FDCWD, getname(pathname));
4202}
4203
4204/**
4205 * vfs_unlink - unlink a filesystem object
4206 * @mnt_userns:	user namespace of the mount the inode was found from
4207 * @dir:	parent directory
4208 * @dentry:	victim
4209 * @delegated_inode: returns victim inode, if the inode is delegated.
4210 *
4211 * The caller must hold dir->i_mutex.
4212 *
4213 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
4214 * return a reference to the inode in delegated_inode.  The caller
4215 * should then break the delegation on that inode and retry.  Because
4216 * breaking a delegation may take a long time, the caller should drop
4217 * dir->i_mutex before doing so.
4218 *
4219 * Alternatively, a caller may pass NULL for delegated_inode.  This may
4220 * be appropriate for callers that expect the underlying filesystem not
4221 * to be NFS exported.
4222 *
4223 * If the inode has been found through an idmapped mount the user namespace of
4224 * the vfsmount must be passed through @mnt_userns. This function will then take
4225 * care to map the inode according to @mnt_userns before checking permissions.
4226 * On non-idmapped mounts or if permission checking is to be performed on the
4227 * raw inode simply passs init_user_ns.
4228 */
4229int vfs_unlink(struct user_namespace *mnt_userns, struct inode *dir,
4230	       struct dentry *dentry, struct inode **delegated_inode)
4231{
4232	struct inode *target = dentry->d_inode;
4233	int error = may_delete(mnt_userns, dir, dentry, 0);
4234
4235	if (error)
4236		return error;
4237
4238	if (!dir->i_op->unlink)
4239		return -EPERM;
4240
4241	inode_lock(target);
4242	if (IS_SWAPFILE(target))
4243		error = -EPERM;
4244	else if (is_local_mountpoint(dentry))
4245		error = -EBUSY;
4246	else {
4247		error = security_inode_unlink(dir, dentry);
4248		if (!error) {
4249			error = try_break_deleg(target, delegated_inode);
4250			if (error)
4251				goto out;
4252			error = dir->i_op->unlink(dir, dentry);
4253			if (!error) {
4254				dont_mount(dentry);
4255				detach_mounts(dentry);
4256			}
4257		}
4258	}
4259out:
4260	inode_unlock(target);
4261
4262	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
4263	if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) {
4264		fsnotify_unlink(dir, dentry);
4265	} else if (!error) {
4266		fsnotify_link_count(target);
4267		d_delete_notify(dir, dentry);
4268	}
4269
4270	return error;
4271}
4272EXPORT_SYMBOL(vfs_unlink);
4273
4274/*
4275 * Make sure that the actual truncation of the file will occur outside its
4276 * directory's i_mutex.  Truncate can take a long time if there is a lot of
4277 * writeout happening, and we don't want to prevent access to the directory
4278 * while waiting on the I/O.
4279 */
4280int do_unlinkat(int dfd, struct filename *name)
4281{
4282	int error;
4283	struct dentry *dentry;
4284	struct path path;
4285	struct qstr last;
4286	int type;
4287	struct inode *inode = NULL;
4288	struct inode *delegated_inode = NULL;
4289	unsigned int lookup_flags = 0;
4290retry:
4291	error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4292	if (error)
4293		goto exit1;
4294
4295	error = -EISDIR;
4296	if (type != LAST_NORM)
4297		goto exit2;
4298
4299	error = mnt_want_write(path.mnt);
4300	if (error)
4301		goto exit2;
4302retry_deleg:
4303	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4304	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4305	error = PTR_ERR(dentry);
4306	if (!IS_ERR(dentry)) {
4307		struct user_namespace *mnt_userns;
4308
4309		/* Why not before? Because we want correct error value */
4310		if (last.name[last.len])
4311			goto slashes;
4312		inode = dentry->d_inode;
4313		if (d_is_negative(dentry))
4314			goto slashes;
4315		ihold(inode);
4316		error = security_path_unlink(&path, dentry);
4317		if (error)
4318			goto exit3;
4319		mnt_userns = mnt_user_ns(path.mnt);
4320		error = vfs_unlink(mnt_userns, path.dentry->d_inode, dentry,
4321				   &delegated_inode);
4322exit3:
4323		dput(dentry);
4324	}
4325	inode_unlock(path.dentry->d_inode);
4326	if (inode)
4327		iput(inode);	/* truncate the inode here */
4328	inode = NULL;
4329	if (delegated_inode) {
4330		error = break_deleg_wait(&delegated_inode);
4331		if (!error)
4332			goto retry_deleg;
4333	}
4334	mnt_drop_write(path.mnt);
4335exit2:
4336	path_put(&path);
4337	if (retry_estale(error, lookup_flags)) {
4338		lookup_flags |= LOOKUP_REVAL;
4339		inode = NULL;
4340		goto retry;
4341	}
4342exit1:
4343	putname(name);
4344	return error;
4345
4346slashes:
4347	if (d_is_negative(dentry))
4348		error = -ENOENT;
4349	else if (d_is_dir(dentry))
4350		error = -EISDIR;
4351	else
4352		error = -ENOTDIR;
4353	goto exit3;
4354}
4355
4356SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4357{
4358	if ((flag & ~AT_REMOVEDIR) != 0)
4359		return -EINVAL;
4360
4361	if (flag & AT_REMOVEDIR)
4362		return do_rmdir(dfd, getname(pathname));
4363	return do_unlinkat(dfd, getname(pathname));
4364}
4365
4366SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4367{
4368	return do_unlinkat(AT_FDCWD, getname(pathname));
4369}
4370
4371/**
4372 * vfs_symlink - create symlink
4373 * @mnt_userns:	user namespace of the mount the inode was found from
4374 * @dir:	inode of @dentry
4375 * @dentry:	pointer to dentry of the base directory
4376 * @oldname:	name of the file to link to
4377 *
4378 * Create a symlink.
4379 *
4380 * If the inode has been found through an idmapped mount the user namespace of
4381 * the vfsmount must be passed through @mnt_userns. This function will then take
4382 * care to map the inode according to @mnt_userns before checking permissions.
4383 * On non-idmapped mounts or if permission checking is to be performed on the
4384 * raw inode simply passs init_user_ns.
4385 */
4386int vfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
4387		struct dentry *dentry, const char *oldname)
4388{
4389	int error = may_create(mnt_userns, dir, dentry);
4390
 
4391	if (error)
4392		return error;
4393
4394	if (!dir->i_op->symlink)
4395		return -EPERM;
4396
4397	error = security_inode_symlink(dir, dentry, oldname);
4398	if (error)
4399		return error;
4400
4401	error = dir->i_op->symlink(mnt_userns, dir, dentry, oldname);
4402	if (!error)
4403		fsnotify_create(dir, dentry);
4404	return error;
4405}
4406EXPORT_SYMBOL(vfs_symlink);
4407
4408int do_symlinkat(struct filename *from, int newdfd, struct filename *to)
4409{
4410	int error;
4411	struct dentry *dentry;
4412	struct path path;
4413	unsigned int lookup_flags = 0;
4414
4415	if (IS_ERR(from)) {
4416		error = PTR_ERR(from);
4417		goto out_putnames;
4418	}
4419retry:
4420	dentry = filename_create(newdfd, to, &path, lookup_flags);
4421	error = PTR_ERR(dentry);
4422	if (IS_ERR(dentry))
4423		goto out_putnames;
4424
4425	error = security_path_symlink(&path, dentry, from->name);
4426	if (!error) {
4427		struct user_namespace *mnt_userns;
4428
4429		mnt_userns = mnt_user_ns(path.mnt);
4430		error = vfs_symlink(mnt_userns, path.dentry->d_inode, dentry,
4431				    from->name);
4432	}
4433	done_path_create(&path, dentry);
4434	if (retry_estale(error, lookup_flags)) {
4435		lookup_flags |= LOOKUP_REVAL;
4436		goto retry;
4437	}
4438out_putnames:
4439	putname(to);
4440	putname(from);
4441	return error;
4442}
4443
4444SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4445		int, newdfd, const char __user *, newname)
4446{
4447	return do_symlinkat(getname(oldname), newdfd, getname(newname));
4448}
4449
4450SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4451{
4452	return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname));
4453}
4454
4455/**
4456 * vfs_link - create a new link
4457 * @old_dentry:	object to be linked
4458 * @mnt_userns:	the user namespace of the mount
4459 * @dir:	new parent
4460 * @new_dentry:	where to create the new link
4461 * @delegated_inode: returns inode needing a delegation break
4462 *
4463 * The caller must hold dir->i_mutex
4464 *
4465 * If vfs_link discovers a delegation on the to-be-linked file in need
4466 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4467 * inode in delegated_inode.  The caller should then break the delegation
4468 * and retry.  Because breaking a delegation may take a long time, the
4469 * caller should drop the i_mutex before doing so.
4470 *
4471 * Alternatively, a caller may pass NULL for delegated_inode.  This may
4472 * be appropriate for callers that expect the underlying filesystem not
4473 * to be NFS exported.
4474 *
4475 * If the inode has been found through an idmapped mount the user namespace of
4476 * the vfsmount must be passed through @mnt_userns. This function will then take
4477 * care to map the inode according to @mnt_userns before checking permissions.
4478 * On non-idmapped mounts or if permission checking is to be performed on the
4479 * raw inode simply passs init_user_ns.
4480 */
4481int vfs_link(struct dentry *old_dentry, struct user_namespace *mnt_userns,
4482	     struct inode *dir, struct dentry *new_dentry,
4483	     struct inode **delegated_inode)
4484{
4485	struct inode *inode = old_dentry->d_inode;
4486	unsigned max_links = dir->i_sb->s_max_links;
4487	int error;
4488
4489	if (!inode)
4490		return -ENOENT;
4491
4492	error = may_create(mnt_userns, dir, new_dentry);
4493	if (error)
4494		return error;
4495
4496	if (dir->i_sb != inode->i_sb)
4497		return -EXDEV;
4498
4499	/*
4500	 * A link to an append-only or immutable file cannot be created.
4501	 */
4502	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4503		return -EPERM;
4504	/*
4505	 * Updating the link count will likely cause i_uid and i_gid to
4506	 * be writen back improperly if their true value is unknown to
4507	 * the vfs.
4508	 */
4509	if (HAS_UNMAPPED_ID(mnt_userns, inode))
4510		return -EPERM;
4511	if (!dir->i_op->link)
4512		return -EPERM;
4513	if (S_ISDIR(inode->i_mode))
4514		return -EPERM;
4515
4516	error = security_inode_link(old_dentry, dir, new_dentry);
4517	if (error)
4518		return error;
4519
4520	inode_lock(inode);
4521	/* Make sure we don't allow creating hardlink to an unlinked file */
4522	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4523		error =  -ENOENT;
4524	else if (max_links && inode->i_nlink >= max_links)
4525		error = -EMLINK;
4526	else {
4527		error = try_break_deleg(inode, delegated_inode);
4528		if (!error)
4529			error = dir->i_op->link(old_dentry, dir, new_dentry);
4530	}
4531
4532	if (!error && (inode->i_state & I_LINKABLE)) {
4533		spin_lock(&inode->i_lock);
4534		inode->i_state &= ~I_LINKABLE;
4535		spin_unlock(&inode->i_lock);
4536	}
4537	inode_unlock(inode);
4538	if (!error)
4539		fsnotify_link(dir, inode, new_dentry);
4540	return error;
4541}
4542EXPORT_SYMBOL(vfs_link);
4543
4544/*
4545 * Hardlinks are often used in delicate situations.  We avoid
4546 * security-related surprises by not following symlinks on the
4547 * newname.  --KAB
4548 *
4549 * We don't follow them on the oldname either to be compatible
4550 * with linux 2.0, and to avoid hard-linking to directories
4551 * and other special files.  --ADM
4552 */
4553int do_linkat(int olddfd, struct filename *old, int newdfd,
4554	      struct filename *new, int flags)
4555{
4556	struct user_namespace *mnt_userns;
4557	struct dentry *new_dentry;
4558	struct path old_path, new_path;
4559	struct inode *delegated_inode = NULL;
4560	int how = 0;
4561	int error;
4562
4563	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) {
4564		error = -EINVAL;
4565		goto out_putnames;
4566	}
4567	/*
4568	 * To use null names we require CAP_DAC_READ_SEARCH
 
4569	 * This ensures that not everyone will be able to create
4570	 * handlink using the passed filedescriptor.
4571	 */
4572	if (flags & AT_EMPTY_PATH && !capable(CAP_DAC_READ_SEARCH)) {
4573		error = -ENOENT;
4574		goto out_putnames;
4575	}
4576
4577	if (flags & AT_SYMLINK_FOLLOW)
4578		how |= LOOKUP_FOLLOW;
4579retry:
4580	error = filename_lookup(olddfd, old, how, &old_path, NULL);
4581	if (error)
4582		goto out_putnames;
4583
4584	new_dentry = filename_create(newdfd, new, &new_path,
4585					(how & LOOKUP_REVAL));
4586	error = PTR_ERR(new_dentry);
4587	if (IS_ERR(new_dentry))
4588		goto out_putpath;
4589
4590	error = -EXDEV;
4591	if (old_path.mnt != new_path.mnt)
4592		goto out_dput;
4593	mnt_userns = mnt_user_ns(new_path.mnt);
4594	error = may_linkat(mnt_userns, &old_path);
4595	if (unlikely(error))
4596		goto out_dput;
4597	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4598	if (error)
4599		goto out_dput;
4600	error = vfs_link(old_path.dentry, mnt_userns, new_path.dentry->d_inode,
4601			 new_dentry, &delegated_inode);
4602out_dput:
4603	done_path_create(&new_path, new_dentry);
4604	if (delegated_inode) {
4605		error = break_deleg_wait(&delegated_inode);
4606		if (!error) {
4607			path_put(&old_path);
4608			goto retry;
4609		}
4610	}
4611	if (retry_estale(error, how)) {
4612		path_put(&old_path);
4613		how |= LOOKUP_REVAL;
4614		goto retry;
4615	}
4616out_putpath:
4617	path_put(&old_path);
4618out_putnames:
4619	putname(old);
4620	putname(new);
4621
4622	return error;
4623}
4624
4625SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4626		int, newdfd, const char __user *, newname, int, flags)
4627{
4628	return do_linkat(olddfd, getname_uflags(oldname, flags),
4629		newdfd, getname(newname), flags);
4630}
4631
4632SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4633{
4634	return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0);
4635}
4636
4637/**
4638 * vfs_rename - rename a filesystem object
4639 * @rd:		pointer to &struct renamedata info
4640 *
4641 * The caller must hold multiple mutexes--see lock_rename()).
4642 *
4643 * If vfs_rename discovers a delegation in need of breaking at either
4644 * the source or destination, it will return -EWOULDBLOCK and return a
4645 * reference to the inode in delegated_inode.  The caller should then
4646 * break the delegation and retry.  Because breaking a delegation may
4647 * take a long time, the caller should drop all locks before doing
4648 * so.
4649 *
4650 * Alternatively, a caller may pass NULL for delegated_inode.  This may
4651 * be appropriate for callers that expect the underlying filesystem not
4652 * to be NFS exported.
4653 *
4654 * The worst of all namespace operations - renaming directory. "Perverted"
4655 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4656 * Problems:
4657 *
4658 *	a) we can get into loop creation.
4659 *	b) race potential - two innocent renames can create a loop together.
4660 *	   That's where 4.4 screws up. Current fix: serialization on
4661 *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4662 *	   story.
4663 *	c) we have to lock _four_ objects - parents and victim (if it exists),
4664 *	   and source (if it is not a directory).
 
4665 *	   And that - after we got ->i_mutex on parents (until then we don't know
4666 *	   whether the target exists).  Solution: try to be smart with locking
4667 *	   order for inodes.  We rely on the fact that tree topology may change
4668 *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4669 *	   move will be locked.  Thus we can rank directories by the tree
4670 *	   (ancestors first) and rank all non-directories after them.
4671 *	   That works since everybody except rename does "lock parent, lookup,
4672 *	   lock child" and rename is under ->s_vfs_rename_mutex.
4673 *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4674 *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4675 *	   we'd better make sure that there's no link(2) for them.
4676 *	d) conversion from fhandle to dentry may come in the wrong moment - when
4677 *	   we are removing the target. Solution: we will have to grab ->i_mutex
4678 *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4679 *	   ->i_mutex on parents, which works but leads to some truly excessive
4680 *	   locking].
4681 */
4682int vfs_rename(struct renamedata *rd)
4683{
4684	int error;
4685	struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir;
4686	struct dentry *old_dentry = rd->old_dentry;
4687	struct dentry *new_dentry = rd->new_dentry;
4688	struct inode **delegated_inode = rd->delegated_inode;
4689	unsigned int flags = rd->flags;
4690	bool is_dir = d_is_dir(old_dentry);
4691	struct inode *source = old_dentry->d_inode;
4692	struct inode *target = new_dentry->d_inode;
4693	bool new_is_dir = false;
4694	unsigned max_links = new_dir->i_sb->s_max_links;
4695	struct name_snapshot old_name;
 
4696
4697	if (source == target)
4698		return 0;
4699
4700	error = may_delete(rd->old_mnt_userns, old_dir, old_dentry, is_dir);
4701	if (error)
4702		return error;
4703
4704	if (!target) {
4705		error = may_create(rd->new_mnt_userns, new_dir, new_dentry);
4706	} else {
4707		new_is_dir = d_is_dir(new_dentry);
4708
4709		if (!(flags & RENAME_EXCHANGE))
4710			error = may_delete(rd->new_mnt_userns, new_dir,
4711					   new_dentry, is_dir);
4712		else
4713			error = may_delete(rd->new_mnt_userns, new_dir,
4714					   new_dentry, new_is_dir);
4715	}
4716	if (error)
4717		return error;
4718
4719	if (!old_dir->i_op->rename)
4720		return -EPERM;
4721
4722	/*
4723	 * If we are going to change the parent - check write permissions,
4724	 * we'll need to flip '..'.
4725	 */
4726	if (new_dir != old_dir) {
4727		if (is_dir) {
4728			error = inode_permission(rd->old_mnt_userns, source,
4729						 MAY_WRITE);
4730			if (error)
4731				return error;
4732		}
4733		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4734			error = inode_permission(rd->new_mnt_userns, target,
4735						 MAY_WRITE);
4736			if (error)
4737				return error;
4738		}
4739	}
4740
4741	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4742				      flags);
4743	if (error)
4744		return error;
4745
4746	take_dentry_name_snapshot(&old_name, old_dentry);
4747	dget(new_dentry);
4748	if (!is_dir || (flags & RENAME_EXCHANGE))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4749		lock_two_nondirectories(source, target);
4750	else if (target)
4751		inode_lock(target);
4752
4753	error = -EPERM;
4754	if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target)))
4755		goto out;
4756
4757	error = -EBUSY;
4758	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4759		goto out;
4760
4761	if (max_links && new_dir != old_dir) {
4762		error = -EMLINK;
4763		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4764			goto out;
4765		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4766		    old_dir->i_nlink >= max_links)
4767			goto out;
4768	}
4769	if (!is_dir) {
4770		error = try_break_deleg(source, delegated_inode);
4771		if (error)
4772			goto out;
4773	}
4774	if (target && !new_is_dir) {
4775		error = try_break_deleg(target, delegated_inode);
4776		if (error)
4777			goto out;
4778	}
4779	error = old_dir->i_op->rename(rd->new_mnt_userns, old_dir, old_dentry,
4780				      new_dir, new_dentry, flags);
4781	if (error)
4782		goto out;
4783
4784	if (!(flags & RENAME_EXCHANGE) && target) {
4785		if (is_dir) {
4786			shrink_dcache_parent(new_dentry);
4787			target->i_flags |= S_DEAD;
4788		}
4789		dont_mount(new_dentry);
4790		detach_mounts(new_dentry);
4791	}
4792	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4793		if (!(flags & RENAME_EXCHANGE))
4794			d_move(old_dentry, new_dentry);
4795		else
4796			d_exchange(old_dentry, new_dentry);
4797	}
4798out:
4799	if (!is_dir || (flags & RENAME_EXCHANGE))
4800		unlock_two_nondirectories(source, target);
4801	else if (target)
4802		inode_unlock(target);
4803	dput(new_dentry);
4804	if (!error) {
4805		fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4806			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4807		if (flags & RENAME_EXCHANGE) {
4808			fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4809				      new_is_dir, NULL, new_dentry);
4810		}
4811	}
4812	release_dentry_name_snapshot(&old_name);
4813
4814	return error;
4815}
4816EXPORT_SYMBOL(vfs_rename);
4817
4818int do_renameat2(int olddfd, struct filename *from, int newdfd,
4819		 struct filename *to, unsigned int flags)
4820{
4821	struct renamedata rd;
4822	struct dentry *old_dentry, *new_dentry;
4823	struct dentry *trap;
4824	struct path old_path, new_path;
4825	struct qstr old_last, new_last;
4826	int old_type, new_type;
4827	struct inode *delegated_inode = NULL;
4828	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4829	bool should_retry = false;
4830	int error = -EINVAL;
4831
4832	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4833		goto put_names;
4834
4835	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4836	    (flags & RENAME_EXCHANGE))
4837		goto put_names;
4838
4839	if (flags & RENAME_EXCHANGE)
4840		target_flags = 0;
4841
4842retry:
4843	error = filename_parentat(olddfd, from, lookup_flags, &old_path,
4844				  &old_last, &old_type);
4845	if (error)
4846		goto put_names;
4847
4848	error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last,
4849				  &new_type);
4850	if (error)
4851		goto exit1;
4852
4853	error = -EXDEV;
4854	if (old_path.mnt != new_path.mnt)
4855		goto exit2;
4856
4857	error = -EBUSY;
4858	if (old_type != LAST_NORM)
4859		goto exit2;
4860
4861	if (flags & RENAME_NOREPLACE)
4862		error = -EEXIST;
4863	if (new_type != LAST_NORM)
4864		goto exit2;
4865
4866	error = mnt_want_write(old_path.mnt);
4867	if (error)
4868		goto exit2;
4869
4870retry_deleg:
4871	trap = lock_rename(new_path.dentry, old_path.dentry);
 
 
 
 
4872
4873	old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
 
4874	error = PTR_ERR(old_dentry);
4875	if (IS_ERR(old_dentry))
4876		goto exit3;
4877	/* source must exist */
4878	error = -ENOENT;
4879	if (d_is_negative(old_dentry))
4880		goto exit4;
4881	new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
 
4882	error = PTR_ERR(new_dentry);
4883	if (IS_ERR(new_dentry))
4884		goto exit4;
4885	error = -EEXIST;
4886	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4887		goto exit5;
4888	if (flags & RENAME_EXCHANGE) {
4889		error = -ENOENT;
4890		if (d_is_negative(new_dentry))
4891			goto exit5;
4892
4893		if (!d_is_dir(new_dentry)) {
4894			error = -ENOTDIR;
4895			if (new_last.name[new_last.len])
4896				goto exit5;
4897		}
4898	}
4899	/* unless the source is a directory trailing slashes give -ENOTDIR */
4900	if (!d_is_dir(old_dentry)) {
4901		error = -ENOTDIR;
4902		if (old_last.name[old_last.len])
4903			goto exit5;
4904		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4905			goto exit5;
4906	}
4907	/* source should not be ancestor of target */
4908	error = -EINVAL;
4909	if (old_dentry == trap)
4910		goto exit5;
4911	/* target should not be an ancestor of source */
4912	if (!(flags & RENAME_EXCHANGE))
4913		error = -ENOTEMPTY;
4914	if (new_dentry == trap)
4915		goto exit5;
4916
4917	error = security_path_rename(&old_path, old_dentry,
4918				     &new_path, new_dentry, flags);
4919	if (error)
4920		goto exit5;
4921
4922	rd.old_dir	   = old_path.dentry->d_inode;
4923	rd.old_dentry	   = old_dentry;
4924	rd.old_mnt_userns  = mnt_user_ns(old_path.mnt);
4925	rd.new_dir	   = new_path.dentry->d_inode;
4926	rd.new_dentry	   = new_dentry;
4927	rd.new_mnt_userns  = mnt_user_ns(new_path.mnt);
4928	rd.delegated_inode = &delegated_inode;
4929	rd.flags	   = flags;
4930	error = vfs_rename(&rd);
4931exit5:
4932	dput(new_dentry);
4933exit4:
4934	dput(old_dentry);
4935exit3:
4936	unlock_rename(new_path.dentry, old_path.dentry);
 
4937	if (delegated_inode) {
4938		error = break_deleg_wait(&delegated_inode);
4939		if (!error)
4940			goto retry_deleg;
4941	}
4942	mnt_drop_write(old_path.mnt);
4943exit2:
4944	if (retry_estale(error, lookup_flags))
4945		should_retry = true;
4946	path_put(&new_path);
4947exit1:
4948	path_put(&old_path);
4949	if (should_retry) {
4950		should_retry = false;
4951		lookup_flags |= LOOKUP_REVAL;
4952		goto retry;
4953	}
4954put_names:
4955	putname(from);
4956	putname(to);
4957	return error;
4958}
4959
4960SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4961		int, newdfd, const char __user *, newname, unsigned int, flags)
4962{
4963	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
4964				flags);
4965}
4966
4967SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4968		int, newdfd, const char __user *, newname)
4969{
4970	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
4971				0);
4972}
4973
4974SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4975{
4976	return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD,
4977				getname(newname), 0);
4978}
4979
4980int readlink_copy(char __user *buffer, int buflen, const char *link)
4981{
4982	int len = PTR_ERR(link);
4983	if (IS_ERR(link))
4984		goto out;
4985
4986	len = strlen(link);
4987	if (len > (unsigned) buflen)
4988		len = buflen;
4989	if (copy_to_user(buffer, link, len))
4990		len = -EFAULT;
4991out:
4992	return len;
4993}
4994
4995/**
4996 * vfs_readlink - copy symlink body into userspace buffer
4997 * @dentry: dentry on which to get symbolic link
4998 * @buffer: user memory pointer
4999 * @buflen: size of buffer
5000 *
5001 * Does not touch atime.  That's up to the caller if necessary
5002 *
5003 * Does not call security hook.
5004 */
5005int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5006{
5007	struct inode *inode = d_inode(dentry);
5008	DEFINE_DELAYED_CALL(done);
5009	const char *link;
5010	int res;
5011
5012	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
5013		if (unlikely(inode->i_op->readlink))
5014			return inode->i_op->readlink(dentry, buffer, buflen);
5015
5016		if (!d_is_symlink(dentry))
5017			return -EINVAL;
5018
5019		spin_lock(&inode->i_lock);
5020		inode->i_opflags |= IOP_DEFAULT_READLINK;
5021		spin_unlock(&inode->i_lock);
5022	}
5023
5024	link = READ_ONCE(inode->i_link);
5025	if (!link) {
5026		link = inode->i_op->get_link(dentry, inode, &done);
5027		if (IS_ERR(link))
5028			return PTR_ERR(link);
5029	}
5030	res = readlink_copy(buffer, buflen, link);
5031	do_delayed_call(&done);
5032	return res;
5033}
5034EXPORT_SYMBOL(vfs_readlink);
5035
5036/**
5037 * vfs_get_link - get symlink body
5038 * @dentry: dentry on which to get symbolic link
5039 * @done: caller needs to free returned data with this
5040 *
5041 * Calls security hook and i_op->get_link() on the supplied inode.
5042 *
5043 * It does not touch atime.  That's up to the caller if necessary.
5044 *
5045 * Does not work on "special" symlinks like /proc/$$/fd/N
5046 */
5047const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
5048{
5049	const char *res = ERR_PTR(-EINVAL);
5050	struct inode *inode = d_inode(dentry);
5051
5052	if (d_is_symlink(dentry)) {
5053		res = ERR_PTR(security_inode_readlink(dentry));
5054		if (!res)
5055			res = inode->i_op->get_link(dentry, inode, done);
5056	}
5057	return res;
5058}
5059EXPORT_SYMBOL(vfs_get_link);
5060
5061/* get the link contents into pagecache */
5062const char *page_get_link(struct dentry *dentry, struct inode *inode,
5063			  struct delayed_call *callback)
5064{
5065	char *kaddr;
5066	struct page *page;
5067	struct address_space *mapping = inode->i_mapping;
5068
5069	if (!dentry) {
5070		page = find_get_page(mapping, 0);
5071		if (!page)
5072			return ERR_PTR(-ECHILD);
5073		if (!PageUptodate(page)) {
5074			put_page(page);
5075			return ERR_PTR(-ECHILD);
5076		}
5077	} else {
5078		page = read_mapping_page(mapping, 0, NULL);
5079		if (IS_ERR(page))
5080			return (char*)page;
5081	}
5082	set_delayed_call(callback, page_put_link, page);
5083	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
5084	kaddr = page_address(page);
5085	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
5086	return kaddr;
5087}
5088
5089EXPORT_SYMBOL(page_get_link);
5090
5091void page_put_link(void *arg)
5092{
5093	put_page(arg);
5094}
5095EXPORT_SYMBOL(page_put_link);
5096
5097int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5098{
5099	DEFINE_DELAYED_CALL(done);
5100	int res = readlink_copy(buffer, buflen,
5101				page_get_link(dentry, d_inode(dentry),
5102					      &done));
5103	do_delayed_call(&done);
5104	return res;
5105}
5106EXPORT_SYMBOL(page_readlink);
5107
5108int page_symlink(struct inode *inode, const char *symname, int len)
5109{
5110	struct address_space *mapping = inode->i_mapping;
5111	const struct address_space_operations *aops = mapping->a_ops;
5112	bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS);
5113	struct page *page;
5114	void *fsdata = NULL;
5115	int err;
5116	unsigned int flags;
5117
5118retry:
5119	if (nofs)
5120		flags = memalloc_nofs_save();
5121	err = aops->write_begin(NULL, mapping, 0, len-1, &page, &fsdata);
5122	if (nofs)
5123		memalloc_nofs_restore(flags);
5124	if (err)
5125		goto fail;
5126
5127	memcpy(page_address(page), symname, len-1);
5128
5129	err = aops->write_end(NULL, mapping, 0, len-1, len-1,
5130							page, fsdata);
5131	if (err < 0)
5132		goto fail;
5133	if (err < len-1)
5134		goto retry;
5135
5136	mark_inode_dirty(inode);
5137	return 0;
5138fail:
5139	return err;
5140}
5141EXPORT_SYMBOL(page_symlink);
5142
5143const struct inode_operations page_symlink_inode_operations = {
5144	.get_link	= page_get_link,
5145};
5146EXPORT_SYMBOL(page_symlink_inode_operations);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/namei.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 */
   7
   8/*
   9 * Some corrections by tytso.
  10 */
  11
  12/* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
  13 * lookup logic.
  14 */
  15/* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
  16 */
  17
  18#include <linux/init.h>
  19#include <linux/export.h>
 
  20#include <linux/slab.h>
  21#include <linux/wordpart.h>
  22#include <linux/fs.h>
  23#include <linux/filelock.h>
  24#include <linux/namei.h>
  25#include <linux/pagemap.h>
  26#include <linux/sched/mm.h>
  27#include <linux/fsnotify.h>
  28#include <linux/personality.h>
  29#include <linux/security.h>
 
  30#include <linux/syscalls.h>
  31#include <linux/mount.h>
  32#include <linux/audit.h>
  33#include <linux/capability.h>
  34#include <linux/file.h>
  35#include <linux/fcntl.h>
  36#include <linux/device_cgroup.h>
  37#include <linux/fs_struct.h>
  38#include <linux/posix_acl.h>
  39#include <linux/hash.h>
  40#include <linux/bitops.h>
  41#include <linux/init_task.h>
  42#include <linux/uaccess.h>
  43
  44#include "internal.h"
  45#include "mount.h"
  46
  47/* [Feb-1997 T. Schoebel-Theuer]
  48 * Fundamental changes in the pathname lookup mechanisms (namei)
  49 * were necessary because of omirr.  The reason is that omirr needs
  50 * to know the _real_ pathname, not the user-supplied one, in case
  51 * of symlinks (and also when transname replacements occur).
  52 *
  53 * The new code replaces the old recursive symlink resolution with
  54 * an iterative one (in case of non-nested symlink chains).  It does
  55 * this with calls to <fs>_follow_link().
  56 * As a side effect, dir_namei(), _namei() and follow_link() are now 
  57 * replaced with a single function lookup_dentry() that can handle all 
  58 * the special cases of the former code.
  59 *
  60 * With the new dcache, the pathname is stored at each inode, at least as
  61 * long as the refcount of the inode is positive.  As a side effect, the
  62 * size of the dcache depends on the inode cache and thus is dynamic.
  63 *
  64 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
  65 * resolution to correspond with current state of the code.
  66 *
  67 * Note that the symlink resolution is not *completely* iterative.
  68 * There is still a significant amount of tail- and mid- recursion in
  69 * the algorithm.  Also, note that <fs>_readlink() is not used in
  70 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
  71 * may return different results than <fs>_follow_link().  Many virtual
  72 * filesystems (including /proc) exhibit this behavior.
  73 */
  74
  75/* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
  76 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
  77 * and the name already exists in form of a symlink, try to create the new
  78 * name indicated by the symlink. The old code always complained that the
  79 * name already exists, due to not following the symlink even if its target
  80 * is nonexistent.  The new semantics affects also mknod() and link() when
  81 * the name is a symlink pointing to a non-existent name.
  82 *
  83 * I don't know which semantics is the right one, since I have no access
  84 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
  85 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
  86 * "old" one. Personally, I think the new semantics is much more logical.
  87 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
  88 * file does succeed in both HP-UX and SunOs, but not in Solaris
  89 * and in the old Linux semantics.
  90 */
  91
  92/* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
  93 * semantics.  See the comments in "open_namei" and "do_link" below.
  94 *
  95 * [10-Sep-98 Alan Modra] Another symlink change.
  96 */
  97
  98/* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
  99 *	inside the path - always follow.
 100 *	in the last component in creation/removal/renaming - never follow.
 101 *	if LOOKUP_FOLLOW passed - follow.
 102 *	if the pathname has trailing slashes - follow.
 103 *	otherwise - don't follow.
 104 * (applied in that order).
 105 *
 106 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
 107 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
 108 * During the 2.4 we need to fix the userland stuff depending on it -
 109 * hopefully we will be able to get rid of that wart in 2.5. So far only
 110 * XEmacs seems to be relying on it...
 111 */
 112/*
 113 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
 114 * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
 115 * any extra contention...
 116 */
 117
 118/* In order to reduce some races, while at the same time doing additional
 119 * checking and hopefully speeding things up, we copy filenames to the
 120 * kernel data space before using them..
 121 *
 122 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
 123 * PATH_MAX includes the nul terminator --RR.
 124 */
 125
 126#define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
 127
 128struct filename *
 129getname_flags(const char __user *filename, int flags)
 130{
 131	struct filename *result;
 132	char *kname;
 133	int len;
 134
 135	result = audit_reusename(filename);
 136	if (result)
 137		return result;
 138
 139	result = __getname();
 140	if (unlikely(!result))
 141		return ERR_PTR(-ENOMEM);
 142
 143	/*
 144	 * First, try to embed the struct filename inside the names_cache
 145	 * allocation
 146	 */
 147	kname = (char *)result->iname;
 148	result->name = kname;
 149
 150	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
 151	/*
 152	 * Handle both empty path and copy failure in one go.
 153	 */
 154	if (unlikely(len <= 0)) {
 155		if (unlikely(len < 0)) {
 156			__putname(result);
 157			return ERR_PTR(len);
 158		}
 159
 160		/* The empty path is special. */
 161		if (!(flags & LOOKUP_EMPTY)) {
 162			__putname(result);
 163			return ERR_PTR(-ENOENT);
 164		}
 165	}
 166
 167	/*
 168	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
 169	 * separate struct filename so we can dedicate the entire
 170	 * names_cache allocation for the pathname, and re-do the copy from
 171	 * userland.
 172	 */
 173	if (unlikely(len == EMBEDDED_NAME_MAX)) {
 174		const size_t size = offsetof(struct filename, iname[1]);
 175		kname = (char *)result;
 176
 177		/*
 178		 * size is chosen that way we to guarantee that
 179		 * result->iname[0] is within the same object and that
 180		 * kname can't be equal to result->iname, no matter what.
 181		 */
 182		result = kzalloc(size, GFP_KERNEL);
 183		if (unlikely(!result)) {
 184			__putname(kname);
 185			return ERR_PTR(-ENOMEM);
 186		}
 187		result->name = kname;
 188		len = strncpy_from_user(kname, filename, PATH_MAX);
 189		if (unlikely(len < 0)) {
 190			__putname(kname);
 191			kfree(result);
 192			return ERR_PTR(len);
 193		}
 194		/* The empty path is special. */
 195		if (unlikely(!len) && !(flags & LOOKUP_EMPTY)) {
 196			__putname(kname);
 197			kfree(result);
 198			return ERR_PTR(-ENOENT);
 199		}
 200		if (unlikely(len == PATH_MAX)) {
 201			__putname(kname);
 202			kfree(result);
 203			return ERR_PTR(-ENAMETOOLONG);
 204		}
 205	}
 206
 207	atomic_set(&result->refcnt, 1);
 
 
 
 
 
 
 
 
 
 
 208	result->uptr = filename;
 209	result->aname = NULL;
 210	audit_getname(result);
 211	return result;
 212}
 213
 214struct filename *getname_uflags(const char __user *filename, int uflags)
 
 215{
 216	int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
 217
 218	return getname_flags(filename, flags);
 219}
 220
 221struct filename *getname(const char __user * filename)
 
 222{
 223	return getname_flags(filename, 0);
 224}
 225
 226struct filename *__getname_maybe_null(const char __user *pathname)
 227{
 228	struct filename *name;
 229	char c;
 230
 231	/* try to save on allocations; loss on um, though */
 232	if (get_user(c, pathname))
 233		return ERR_PTR(-EFAULT);
 234	if (!c)
 235		return NULL;
 236
 237	name = getname_flags(pathname, LOOKUP_EMPTY);
 238	if (!IS_ERR(name) && !(name->name[0])) {
 239		putname(name);
 240		name = NULL;
 241	}
 242	return name;
 243}
 244
 245struct filename *getname_kernel(const char * filename)
 246{
 247	struct filename *result;
 248	int len = strlen(filename) + 1;
 249
 250	result = __getname();
 251	if (unlikely(!result))
 252		return ERR_PTR(-ENOMEM);
 253
 254	if (len <= EMBEDDED_NAME_MAX) {
 255		result->name = (char *)result->iname;
 256	} else if (len <= PATH_MAX) {
 257		const size_t size = offsetof(struct filename, iname[1]);
 258		struct filename *tmp;
 259
 260		tmp = kmalloc(size, GFP_KERNEL);
 261		if (unlikely(!tmp)) {
 262			__putname(result);
 263			return ERR_PTR(-ENOMEM);
 264		}
 265		tmp->name = (char *)result;
 266		result = tmp;
 267	} else {
 268		__putname(result);
 269		return ERR_PTR(-ENAMETOOLONG);
 270	}
 271	memcpy((char *)result->name, filename, len);
 272	result->uptr = NULL;
 273	result->aname = NULL;
 274	atomic_set(&result->refcnt, 1);
 275	audit_getname(result);
 276
 277	return result;
 278}
 279EXPORT_SYMBOL(getname_kernel);
 280
 281void putname(struct filename *name)
 282{
 283	if (IS_ERR_OR_NULL(name))
 284		return;
 285
 286	if (WARN_ON_ONCE(!atomic_read(&name->refcnt)))
 287		return;
 288
 289	if (!atomic_dec_and_test(&name->refcnt))
 290		return;
 291
 292	if (name->name != name->iname) {
 293		__putname(name->name);
 294		kfree(name);
 295	} else
 296		__putname(name);
 297}
 298EXPORT_SYMBOL(putname);
 299
 300/**
 301 * check_acl - perform ACL permission checking
 302 * @idmap:	idmap of the mount the inode was found from
 303 * @inode:	inode to check permissions on
 304 * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
 305 *
 306 * This function performs the ACL permission checking. Since this function
 307 * retrieve POSIX acls it needs to know whether it is called from a blocking or
 308 * non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
 309 *
 310 * If the inode has been found through an idmapped mount the idmap of
 311 * the vfsmount must be passed through @idmap. This function will then take
 312 * care to map the inode according to @idmap before checking permissions.
 313 * On non-idmapped mounts or if permission checking is to be performed on the
 314 * raw inode simply pass @nop_mnt_idmap.
 315 */
 316static int check_acl(struct mnt_idmap *idmap,
 317		     struct inode *inode, int mask)
 318{
 319#ifdef CONFIG_FS_POSIX_ACL
 320	struct posix_acl *acl;
 321
 322	if (mask & MAY_NOT_BLOCK) {
 323		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
 324	        if (!acl)
 325	                return -EAGAIN;
 326		/* no ->get_inode_acl() calls in RCU mode... */
 327		if (is_uncached_acl(acl))
 328			return -ECHILD;
 329	        return posix_acl_permission(idmap, inode, acl, mask);
 330	}
 331
 332	acl = get_inode_acl(inode, ACL_TYPE_ACCESS);
 333	if (IS_ERR(acl))
 334		return PTR_ERR(acl);
 335	if (acl) {
 336	        int error = posix_acl_permission(idmap, inode, acl, mask);
 337	        posix_acl_release(acl);
 338	        return error;
 339	}
 340#endif
 341
 342	return -EAGAIN;
 343}
 344
 345/*
 346 * Very quick optimistic "we know we have no ACL's" check.
 347 *
 348 * Note that this is purely for ACL_TYPE_ACCESS, and purely
 349 * for the "we have cached that there are no ACLs" case.
 350 *
 351 * If this returns true, we know there are no ACLs. But if
 352 * it returns false, we might still not have ACLs (it could
 353 * be the is_uncached_acl() case).
 354 */
 355static inline bool no_acl_inode(struct inode *inode)
 356{
 357#ifdef CONFIG_FS_POSIX_ACL
 358	return likely(!READ_ONCE(inode->i_acl));
 359#else
 360	return true;
 361#endif
 362}
 363
 364/**
 365 * acl_permission_check - perform basic UNIX permission checking
 366 * @idmap:	idmap of the mount the inode was found from
 367 * @inode:	inode to check permissions on
 368 * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
 369 *
 370 * This function performs the basic UNIX permission checking. Since this
 371 * function may retrieve POSIX acls it needs to know whether it is called from a
 372 * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
 373 *
 374 * If the inode has been found through an idmapped mount the idmap of
 375 * the vfsmount must be passed through @idmap. This function will then take
 376 * care to map the inode according to @idmap before checking permissions.
 377 * On non-idmapped mounts or if permission checking is to be performed on the
 378 * raw inode simply pass @nop_mnt_idmap.
 379 */
 380static int acl_permission_check(struct mnt_idmap *idmap,
 381				struct inode *inode, int mask)
 382{
 383	unsigned int mode = inode->i_mode;
 384	vfsuid_t vfsuid;
 385
 386	/*
 387	 * Common cheap case: everybody has the requested
 388	 * rights, and there are no ACLs to check. No need
 389	 * to do any owner/group checks in that case.
 390	 *
 391	 *  - 'mask&7' is the requested permission bit set
 392	 *  - multiplying by 0111 spreads them out to all of ugo
 393	 *  - '& ~mode' looks for missing inode permission bits
 394	 *  - the '!' is for "no missing permissions"
 395	 *
 396	 * After that, we just need to check that there are no
 397	 * ACL's on the inode - do the 'IS_POSIXACL()' check last
 398	 * because it will dereference the ->i_sb pointer and we
 399	 * want to avoid that if at all possible.
 400	 */
 401	if (!((mask & 7) * 0111 & ~mode)) {
 402		if (no_acl_inode(inode))
 403			return 0;
 404		if (!IS_POSIXACL(inode))
 405			return 0;
 406	}
 407
 408	/* Are we the owner? If so, ACL's don't matter */
 409	vfsuid = i_uid_into_vfsuid(idmap, inode);
 410	if (likely(vfsuid_eq_kuid(vfsuid, current_fsuid()))) {
 411		mask &= 7;
 412		mode >>= 6;
 413		return (mask & ~mode) ? -EACCES : 0;
 414	}
 415
 416	/* Do we have ACL's? */
 417	if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
 418		int error = check_acl(idmap, inode, mask);
 419		if (error != -EAGAIN)
 420			return error;
 421	}
 422
 423	/* Only RWX matters for group/other mode bits */
 424	mask &= 7;
 425
 426	/*
 427	 * Are the group permissions different from
 428	 * the other permissions in the bits we care
 429	 * about? Need to check group ownership if so.
 430	 */
 431	if (mask & (mode ^ (mode >> 3))) {
 432		vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode);
 433		if (vfsgid_in_group_p(vfsgid))
 434			mode >>= 3;
 435	}
 436
 437	/* Bits in 'mode' clear that we require? */
 438	return (mask & ~mode) ? -EACCES : 0;
 439}
 440
 441/**
 442 * generic_permission -  check for access rights on a Posix-like filesystem
 443 * @idmap:	idmap of the mount the inode was found from
 444 * @inode:	inode to check access rights for
 445 * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
 446 *		%MAY_NOT_BLOCK ...)
 447 *
 448 * Used to check for read/write/execute permissions on a file.
 449 * We use "fsuid" for this, letting us set arbitrary permissions
 450 * for filesystem access without changing the "normal" uids which
 451 * are used for other things.
 452 *
 453 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
 454 * request cannot be satisfied (eg. requires blocking or too much complexity).
 455 * It would then be called again in ref-walk mode.
 456 *
 457 * If the inode has been found through an idmapped mount the idmap of
 458 * the vfsmount must be passed through @idmap. This function will then take
 459 * care to map the inode according to @idmap before checking permissions.
 460 * On non-idmapped mounts or if permission checking is to be performed on the
 461 * raw inode simply pass @nop_mnt_idmap.
 462 */
 463int generic_permission(struct mnt_idmap *idmap, struct inode *inode,
 464		       int mask)
 465{
 466	int ret;
 467
 468	/*
 469	 * Do the basic permission checks.
 470	 */
 471	ret = acl_permission_check(idmap, inode, mask);
 472	if (ret != -EACCES)
 473		return ret;
 474
 475	if (S_ISDIR(inode->i_mode)) {
 476		/* DACs are overridable for directories */
 477		if (!(mask & MAY_WRITE))
 478			if (capable_wrt_inode_uidgid(idmap, inode,
 479						     CAP_DAC_READ_SEARCH))
 480				return 0;
 481		if (capable_wrt_inode_uidgid(idmap, inode,
 482					     CAP_DAC_OVERRIDE))
 483			return 0;
 484		return -EACCES;
 485	}
 486
 487	/*
 488	 * Searching includes executable on directories, else just read.
 489	 */
 490	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
 491	if (mask == MAY_READ)
 492		if (capable_wrt_inode_uidgid(idmap, inode,
 493					     CAP_DAC_READ_SEARCH))
 494			return 0;
 495	/*
 496	 * Read/write DACs are always overridable.
 497	 * Executable DACs are overridable when there is
 498	 * at least one exec bit set.
 499	 */
 500	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
 501		if (capable_wrt_inode_uidgid(idmap, inode,
 502					     CAP_DAC_OVERRIDE))
 503			return 0;
 504
 505	return -EACCES;
 506}
 507EXPORT_SYMBOL(generic_permission);
 508
 509/**
 510 * do_inode_permission - UNIX permission checking
 511 * @idmap:	idmap of the mount the inode was found from
 512 * @inode:	inode to check permissions on
 513 * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
 514 *
 515 * We _really_ want to just do "generic_permission()" without
 516 * even looking at the inode->i_op values. So we keep a cache
 517 * flag in inode->i_opflags, that says "this has not special
 518 * permission function, use the fast case".
 519 */
 520static inline int do_inode_permission(struct mnt_idmap *idmap,
 521				      struct inode *inode, int mask)
 522{
 523	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
 524		if (likely(inode->i_op->permission))
 525			return inode->i_op->permission(idmap, inode, mask);
 526
 527		/* This gets set once for the inode lifetime */
 528		spin_lock(&inode->i_lock);
 529		inode->i_opflags |= IOP_FASTPERM;
 530		spin_unlock(&inode->i_lock);
 531	}
 532	return generic_permission(idmap, inode, mask);
 533}
 534
 535/**
 536 * sb_permission - Check superblock-level permissions
 537 * @sb: Superblock of inode to check permission on
 538 * @inode: Inode to check permission on
 539 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
 540 *
 541 * Separate out file-system wide checks from inode-specific permission checks.
 542 */
 543static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
 544{
 545	if (unlikely(mask & MAY_WRITE)) {
 546		umode_t mode = inode->i_mode;
 547
 548		/* Nobody gets write access to a read-only fs. */
 549		if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
 550			return -EROFS;
 551	}
 552	return 0;
 553}
 554
 555/**
 556 * inode_permission - Check for access rights to a given inode
 557 * @idmap:	idmap of the mount the inode was found from
 558 * @inode:	Inode to check permission on
 559 * @mask:	Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
 560 *
 561 * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
 562 * this, letting us set arbitrary permissions for filesystem access without
 563 * changing the "normal" UIDs which are used for other things.
 564 *
 565 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
 566 */
 567int inode_permission(struct mnt_idmap *idmap,
 568		     struct inode *inode, int mask)
 569{
 570	int retval;
 571
 572	retval = sb_permission(inode->i_sb, inode, mask);
 573	if (retval)
 574		return retval;
 575
 576	if (unlikely(mask & MAY_WRITE)) {
 577		/*
 578		 * Nobody gets write access to an immutable file.
 579		 */
 580		if (IS_IMMUTABLE(inode))
 581			return -EPERM;
 582
 583		/*
 584		 * Updating mtime will likely cause i_uid and i_gid to be
 585		 * written back improperly if their true value is unknown
 586		 * to the vfs.
 587		 */
 588		if (HAS_UNMAPPED_ID(idmap, inode))
 589			return -EACCES;
 590	}
 591
 592	retval = do_inode_permission(idmap, inode, mask);
 593	if (retval)
 594		return retval;
 595
 596	retval = devcgroup_inode_permission(inode, mask);
 597	if (retval)
 598		return retval;
 599
 600	return security_inode_permission(inode, mask);
 601}
 602EXPORT_SYMBOL(inode_permission);
 603
 604/**
 605 * path_get - get a reference to a path
 606 * @path: path to get the reference to
 607 *
 608 * Given a path increment the reference count to the dentry and the vfsmount.
 609 */
 610void path_get(const struct path *path)
 611{
 612	mntget(path->mnt);
 613	dget(path->dentry);
 614}
 615EXPORT_SYMBOL(path_get);
 616
 617/**
 618 * path_put - put a reference to a path
 619 * @path: path to put the reference to
 620 *
 621 * Given a path decrement the reference count to the dentry and the vfsmount.
 622 */
 623void path_put(const struct path *path)
 624{
 625	dput(path->dentry);
 626	mntput(path->mnt);
 627}
 628EXPORT_SYMBOL(path_put);
 629
 630#define EMBEDDED_LEVELS 2
 631struct nameidata {
 632	struct path	path;
 633	struct qstr	last;
 634	struct path	root;
 635	struct inode	*inode; /* path.dentry.d_inode */
 636	unsigned int	flags, state;
 637	unsigned	seq, next_seq, m_seq, r_seq;
 638	int		last_type;
 639	unsigned	depth;
 640	int		total_link_count;
 641	struct saved {
 642		struct path link;
 643		struct delayed_call done;
 644		const char *name;
 645		unsigned seq;
 646	} *stack, internal[EMBEDDED_LEVELS];
 647	struct filename	*name;
 648	const char *pathname;
 649	struct nameidata *saved;
 650	unsigned	root_seq;
 651	int		dfd;
 652	vfsuid_t	dir_vfsuid;
 653	umode_t		dir_mode;
 654} __randomize_layout;
 655
 656#define ND_ROOT_PRESET 1
 657#define ND_ROOT_GRABBED 2
 658#define ND_JUMPED 4
 659
 660static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name)
 661{
 662	struct nameidata *old = current->nameidata;
 663	p->stack = p->internal;
 664	p->depth = 0;
 665	p->dfd = dfd;
 666	p->name = name;
 667	p->pathname = likely(name) ? name->name : "";
 668	p->path.mnt = NULL;
 669	p->path.dentry = NULL;
 670	p->total_link_count = old ? old->total_link_count : 0;
 671	p->saved = old;
 672	current->nameidata = p;
 673}
 674
 675static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name,
 676			  const struct path *root)
 677{
 678	__set_nameidata(p, dfd, name);
 679	p->state = 0;
 680	if (unlikely(root)) {
 681		p->state = ND_ROOT_PRESET;
 682		p->root = *root;
 683	}
 684}
 685
 686static void restore_nameidata(void)
 687{
 688	struct nameidata *now = current->nameidata, *old = now->saved;
 689
 690	current->nameidata = old;
 691	if (old)
 692		old->total_link_count = now->total_link_count;
 693	if (now->stack != now->internal)
 694		kfree(now->stack);
 695}
 696
 697static bool nd_alloc_stack(struct nameidata *nd)
 698{
 699	struct saved *p;
 700
 701	p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
 702			 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
 703	if (unlikely(!p))
 704		return false;
 705	memcpy(p, nd->internal, sizeof(nd->internal));
 706	nd->stack = p;
 707	return true;
 708}
 709
 710/**
 711 * path_connected - Verify that a dentry is below mnt.mnt_root
 712 * @mnt: The mountpoint to check.
 713 * @dentry: The dentry to check.
 714 *
 715 * Rename can sometimes move a file or directory outside of a bind
 716 * mount, path_connected allows those cases to be detected.
 717 */
 718static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
 719{
 720	struct super_block *sb = mnt->mnt_sb;
 721
 722	/* Bind mounts can have disconnected paths */
 723	if (mnt->mnt_root == sb->s_root)
 724		return true;
 725
 726	return is_subdir(dentry, mnt->mnt_root);
 727}
 728
 729static void drop_links(struct nameidata *nd)
 730{
 731	int i = nd->depth;
 732	while (i--) {
 733		struct saved *last = nd->stack + i;
 734		do_delayed_call(&last->done);
 735		clear_delayed_call(&last->done);
 736	}
 737}
 738
 739static void leave_rcu(struct nameidata *nd)
 740{
 741	nd->flags &= ~LOOKUP_RCU;
 742	nd->seq = nd->next_seq = 0;
 743	rcu_read_unlock();
 744}
 745
 746static void terminate_walk(struct nameidata *nd)
 747{
 748	drop_links(nd);
 749	if (!(nd->flags & LOOKUP_RCU)) {
 750		int i;
 751		path_put(&nd->path);
 752		for (i = 0; i < nd->depth; i++)
 753			path_put(&nd->stack[i].link);
 754		if (nd->state & ND_ROOT_GRABBED) {
 755			path_put(&nd->root);
 756			nd->state &= ~ND_ROOT_GRABBED;
 757		}
 758	} else {
 759		leave_rcu(nd);
 760	}
 761	nd->depth = 0;
 762	nd->path.mnt = NULL;
 763	nd->path.dentry = NULL;
 764}
 765
 766/* path_put is needed afterwards regardless of success or failure */
 767static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
 768{
 769	int res = __legitimize_mnt(path->mnt, mseq);
 770	if (unlikely(res)) {
 771		if (res > 0)
 772			path->mnt = NULL;
 773		path->dentry = NULL;
 774		return false;
 775	}
 776	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
 777		path->dentry = NULL;
 778		return false;
 779	}
 780	return !read_seqcount_retry(&path->dentry->d_seq, seq);
 781}
 782
 783static inline bool legitimize_path(struct nameidata *nd,
 784			    struct path *path, unsigned seq)
 785{
 786	return __legitimize_path(path, seq, nd->m_seq);
 787}
 788
 789static bool legitimize_links(struct nameidata *nd)
 790{
 791	int i;
 792	if (unlikely(nd->flags & LOOKUP_CACHED)) {
 793		drop_links(nd);
 794		nd->depth = 0;
 795		return false;
 796	}
 797	for (i = 0; i < nd->depth; i++) {
 798		struct saved *last = nd->stack + i;
 799		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
 800			drop_links(nd);
 801			nd->depth = i + 1;
 802			return false;
 803		}
 804	}
 805	return true;
 806}
 807
 808static bool legitimize_root(struct nameidata *nd)
 809{
 810	/* Nothing to do if nd->root is zero or is managed by the VFS user. */
 811	if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET))
 812		return true;
 813	nd->state |= ND_ROOT_GRABBED;
 814	return legitimize_path(nd, &nd->root, nd->root_seq);
 815}
 816
 817/*
 818 * Path walking has 2 modes, rcu-walk and ref-walk (see
 819 * Documentation/filesystems/path-lookup.txt).  In situations when we can't
 820 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
 821 * normal reference counts on dentries and vfsmounts to transition to ref-walk
 822 * mode.  Refcounts are grabbed at the last known good point before rcu-walk
 823 * got stuck, so ref-walk may continue from there. If this is not successful
 824 * (eg. a seqcount has changed), then failure is returned and it's up to caller
 825 * to restart the path walk from the beginning in ref-walk mode.
 826 */
 827
 828/**
 829 * try_to_unlazy - try to switch to ref-walk mode.
 830 * @nd: nameidata pathwalk data
 831 * Returns: true on success, false on failure
 832 *
 833 * try_to_unlazy attempts to legitimize the current nd->path and nd->root
 834 * for ref-walk mode.
 835 * Must be called from rcu-walk context.
 836 * Nothing should touch nameidata between try_to_unlazy() failure and
 837 * terminate_walk().
 838 */
 839static bool try_to_unlazy(struct nameidata *nd)
 840{
 841	struct dentry *parent = nd->path.dentry;
 842
 843	BUG_ON(!(nd->flags & LOOKUP_RCU));
 844
 845	if (unlikely(!legitimize_links(nd)))
 846		goto out1;
 847	if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
 848		goto out;
 849	if (unlikely(!legitimize_root(nd)))
 850		goto out;
 851	leave_rcu(nd);
 852	BUG_ON(nd->inode != parent->d_inode);
 853	return true;
 854
 855out1:
 856	nd->path.mnt = NULL;
 857	nd->path.dentry = NULL;
 858out:
 859	leave_rcu(nd);
 860	return false;
 861}
 862
 863/**
 864 * try_to_unlazy_next - try to switch to ref-walk mode.
 865 * @nd: nameidata pathwalk data
 866 * @dentry: next dentry to step into
 867 * Returns: true on success, false on failure
 868 *
 869 * Similar to try_to_unlazy(), but here we have the next dentry already
 870 * picked by rcu-walk and want to legitimize that in addition to the current
 871 * nd->path and nd->root for ref-walk mode.  Must be called from rcu-walk context.
 872 * Nothing should touch nameidata between try_to_unlazy_next() failure and
 873 * terminate_walk().
 874 */
 875static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry)
 876{
 877	int res;
 878	BUG_ON(!(nd->flags & LOOKUP_RCU));
 879
 880	if (unlikely(!legitimize_links(nd)))
 881		goto out2;
 882	res = __legitimize_mnt(nd->path.mnt, nd->m_seq);
 883	if (unlikely(res)) {
 884		if (res > 0)
 885			goto out2;
 886		goto out1;
 887	}
 888	if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
 889		goto out1;
 890
 891	/*
 892	 * We need to move both the parent and the dentry from the RCU domain
 893	 * to be properly refcounted. And the sequence number in the dentry
 894	 * validates *both* dentry counters, since we checked the sequence
 895	 * number of the parent after we got the child sequence number. So we
 896	 * know the parent must still be valid if the child sequence number is
 897	 */
 898	if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
 899		goto out;
 900	if (read_seqcount_retry(&dentry->d_seq, nd->next_seq))
 901		goto out_dput;
 902	/*
 903	 * Sequence counts matched. Now make sure that the root is
 904	 * still valid and get it if required.
 905	 */
 906	if (unlikely(!legitimize_root(nd)))
 907		goto out_dput;
 908	leave_rcu(nd);
 909	return true;
 910
 911out2:
 912	nd->path.mnt = NULL;
 913out1:
 914	nd->path.dentry = NULL;
 915out:
 916	leave_rcu(nd);
 917	return false;
 918out_dput:
 919	leave_rcu(nd);
 920	dput(dentry);
 921	return false;
 922}
 923
 924static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
 925{
 926	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
 927		return dentry->d_op->d_revalidate(dentry, flags);
 928	else
 929		return 1;
 930}
 931
 932/**
 933 * complete_walk - successful completion of path walk
 934 * @nd:  pointer nameidata
 935 *
 936 * If we had been in RCU mode, drop out of it and legitimize nd->path.
 937 * Revalidate the final result, unless we'd already done that during
 938 * the path walk or the filesystem doesn't ask for it.  Return 0 on
 939 * success, -error on failure.  In case of failure caller does not
 940 * need to drop nd->path.
 941 */
 942static int complete_walk(struct nameidata *nd)
 943{
 944	struct dentry *dentry = nd->path.dentry;
 945	int status;
 946
 947	if (nd->flags & LOOKUP_RCU) {
 948		/*
 949		 * We don't want to zero nd->root for scoped-lookups or
 950		 * externally-managed nd->root.
 951		 */
 952		if (!(nd->state & ND_ROOT_PRESET))
 953			if (!(nd->flags & LOOKUP_IS_SCOPED))
 954				nd->root.mnt = NULL;
 955		nd->flags &= ~LOOKUP_CACHED;
 956		if (!try_to_unlazy(nd))
 957			return -ECHILD;
 958	}
 959
 960	if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
 961		/*
 962		 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
 963		 * ever step outside the root during lookup" and should already
 964		 * be guaranteed by the rest of namei, we want to avoid a namei
 965		 * BUG resulting in userspace being given a path that was not
 966		 * scoped within the root at some point during the lookup.
 967		 *
 968		 * So, do a final sanity-check to make sure that in the
 969		 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
 970		 * we won't silently return an fd completely outside of the
 971		 * requested root to userspace.
 972		 *
 973		 * Userspace could move the path outside the root after this
 974		 * check, but as discussed elsewhere this is not a concern (the
 975		 * resolved file was inside the root at some point).
 976		 */
 977		if (!path_is_under(&nd->path, &nd->root))
 978			return -EXDEV;
 979	}
 980
 981	if (likely(!(nd->state & ND_JUMPED)))
 982		return 0;
 983
 984	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
 985		return 0;
 986
 987	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
 988	if (status > 0)
 989		return 0;
 990
 991	if (!status)
 992		status = -ESTALE;
 993
 994	return status;
 995}
 996
 997static int set_root(struct nameidata *nd)
 998{
 999	struct fs_struct *fs = current->fs;
1000
1001	/*
1002	 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
1003	 * still have to ensure it doesn't happen because it will cause a breakout
1004	 * from the dirfd.
1005	 */
1006	if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
1007		return -ENOTRECOVERABLE;
1008
1009	if (nd->flags & LOOKUP_RCU) {
1010		unsigned seq;
1011
1012		do {
1013			seq = read_seqcount_begin(&fs->seq);
1014			nd->root = fs->root;
1015			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
1016		} while (read_seqcount_retry(&fs->seq, seq));
1017	} else {
1018		get_fs_root(fs, &nd->root);
1019		nd->state |= ND_ROOT_GRABBED;
1020	}
1021	return 0;
1022}
1023
1024static int nd_jump_root(struct nameidata *nd)
1025{
1026	if (unlikely(nd->flags & LOOKUP_BENEATH))
1027		return -EXDEV;
1028	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
1029		/* Absolute path arguments to path_init() are allowed. */
1030		if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
1031			return -EXDEV;
1032	}
1033	if (!nd->root.mnt) {
1034		int error = set_root(nd);
1035		if (error)
1036			return error;
1037	}
1038	if (nd->flags & LOOKUP_RCU) {
1039		struct dentry *d;
1040		nd->path = nd->root;
1041		d = nd->path.dentry;
1042		nd->inode = d->d_inode;
1043		nd->seq = nd->root_seq;
1044		if (read_seqcount_retry(&d->d_seq, nd->seq))
1045			return -ECHILD;
1046	} else {
1047		path_put(&nd->path);
1048		nd->path = nd->root;
1049		path_get(&nd->path);
1050		nd->inode = nd->path.dentry->d_inode;
1051	}
1052	nd->state |= ND_JUMPED;
1053	return 0;
1054}
1055
1056/*
1057 * Helper to directly jump to a known parsed path from ->get_link,
1058 * caller must have taken a reference to path beforehand.
1059 */
1060int nd_jump_link(const struct path *path)
1061{
1062	int error = -ELOOP;
1063	struct nameidata *nd = current->nameidata;
1064
1065	if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
1066		goto err;
1067
1068	error = -EXDEV;
1069	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
1070		if (nd->path.mnt != path->mnt)
1071			goto err;
1072	}
1073	/* Not currently safe for scoped-lookups. */
1074	if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
1075		goto err;
1076
1077	path_put(&nd->path);
1078	nd->path = *path;
1079	nd->inode = nd->path.dentry->d_inode;
1080	nd->state |= ND_JUMPED;
1081	return 0;
1082
1083err:
1084	path_put(path);
1085	return error;
1086}
1087
1088static inline void put_link(struct nameidata *nd)
1089{
1090	struct saved *last = nd->stack + --nd->depth;
1091	do_delayed_call(&last->done);
1092	if (!(nd->flags & LOOKUP_RCU))
1093		path_put(&last->link);
1094}
1095
1096static int sysctl_protected_symlinks __read_mostly;
1097static int sysctl_protected_hardlinks __read_mostly;
1098static int sysctl_protected_fifos __read_mostly;
1099static int sysctl_protected_regular __read_mostly;
1100
1101#ifdef CONFIG_SYSCTL
1102static struct ctl_table namei_sysctls[] = {
1103	{
1104		.procname	= "protected_symlinks",
1105		.data		= &sysctl_protected_symlinks,
1106		.maxlen		= sizeof(int),
1107		.mode		= 0644,
1108		.proc_handler	= proc_dointvec_minmax,
1109		.extra1		= SYSCTL_ZERO,
1110		.extra2		= SYSCTL_ONE,
1111	},
1112	{
1113		.procname	= "protected_hardlinks",
1114		.data		= &sysctl_protected_hardlinks,
1115		.maxlen		= sizeof(int),
1116		.mode		= 0644,
1117		.proc_handler	= proc_dointvec_minmax,
1118		.extra1		= SYSCTL_ZERO,
1119		.extra2		= SYSCTL_ONE,
1120	},
1121	{
1122		.procname	= "protected_fifos",
1123		.data		= &sysctl_protected_fifos,
1124		.maxlen		= sizeof(int),
1125		.mode		= 0644,
1126		.proc_handler	= proc_dointvec_minmax,
1127		.extra1		= SYSCTL_ZERO,
1128		.extra2		= SYSCTL_TWO,
1129	},
1130	{
1131		.procname	= "protected_regular",
1132		.data		= &sysctl_protected_regular,
1133		.maxlen		= sizeof(int),
1134		.mode		= 0644,
1135		.proc_handler	= proc_dointvec_minmax,
1136		.extra1		= SYSCTL_ZERO,
1137		.extra2		= SYSCTL_TWO,
1138	},
 
1139};
1140
1141static int __init init_fs_namei_sysctls(void)
1142{
1143	register_sysctl_init("fs", namei_sysctls);
1144	return 0;
1145}
1146fs_initcall(init_fs_namei_sysctls);
1147
1148#endif /* CONFIG_SYSCTL */
1149
1150/**
1151 * may_follow_link - Check symlink following for unsafe situations
1152 * @nd: nameidata pathwalk data
1153 * @inode: Used for idmapping.
1154 *
1155 * In the case of the sysctl_protected_symlinks sysctl being enabled,
1156 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
1157 * in a sticky world-writable directory. This is to protect privileged
1158 * processes from failing races against path names that may change out
1159 * from under them by way of other users creating malicious symlinks.
1160 * It will permit symlinks to be followed only when outside a sticky
1161 * world-writable directory, or when the uid of the symlink and follower
1162 * match, or when the directory owner matches the symlink's owner.
1163 *
1164 * Returns 0 if following the symlink is allowed, -ve on error.
1165 */
1166static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
1167{
1168	struct mnt_idmap *idmap;
1169	vfsuid_t vfsuid;
1170
1171	if (!sysctl_protected_symlinks)
1172		return 0;
1173
1174	idmap = mnt_idmap(nd->path.mnt);
1175	vfsuid = i_uid_into_vfsuid(idmap, inode);
1176	/* Allowed if owner and follower match. */
1177	if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
1178		return 0;
1179
1180	/* Allowed if parent directory not sticky and world-writable. */
1181	if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
1182		return 0;
1183
1184	/* Allowed if parent directory and link owner match. */
1185	if (vfsuid_valid(nd->dir_vfsuid) && vfsuid_eq(nd->dir_vfsuid, vfsuid))
1186		return 0;
1187
1188	if (nd->flags & LOOKUP_RCU)
1189		return -ECHILD;
1190
1191	audit_inode(nd->name, nd->stack[0].link.dentry, 0);
1192	audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
1193	return -EACCES;
1194}
1195
1196/**
1197 * safe_hardlink_source - Check for safe hardlink conditions
1198 * @idmap: idmap of the mount the inode was found from
1199 * @inode: the source inode to hardlink from
1200 *
1201 * Return false if at least one of the following conditions:
1202 *    - inode is not a regular file
1203 *    - inode is setuid
1204 *    - inode is setgid and group-exec
1205 *    - access failure for read and write
1206 *
1207 * Otherwise returns true.
1208 */
1209static bool safe_hardlink_source(struct mnt_idmap *idmap,
1210				 struct inode *inode)
1211{
1212	umode_t mode = inode->i_mode;
1213
1214	/* Special files should not get pinned to the filesystem. */
1215	if (!S_ISREG(mode))
1216		return false;
1217
1218	/* Setuid files should not get pinned to the filesystem. */
1219	if (mode & S_ISUID)
1220		return false;
1221
1222	/* Executable setgid files should not get pinned to the filesystem. */
1223	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1224		return false;
1225
1226	/* Hardlinking to unreadable or unwritable sources is dangerous. */
1227	if (inode_permission(idmap, inode, MAY_READ | MAY_WRITE))
1228		return false;
1229
1230	return true;
1231}
1232
1233/**
1234 * may_linkat - Check permissions for creating a hardlink
1235 * @idmap: idmap of the mount the inode was found from
1236 * @link:  the source to hardlink from
1237 *
1238 * Block hardlink when all of:
1239 *  - sysctl_protected_hardlinks enabled
1240 *  - fsuid does not match inode
1241 *  - hardlink source is unsafe (see safe_hardlink_source() above)
1242 *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
1243 *
1244 * If the inode has been found through an idmapped mount the idmap of
1245 * the vfsmount must be passed through @idmap. This function will then take
1246 * care to map the inode according to @idmap before checking permissions.
1247 * On non-idmapped mounts or if permission checking is to be performed on the
1248 * raw inode simply pass @nop_mnt_idmap.
1249 *
1250 * Returns 0 if successful, -ve on error.
1251 */
1252int may_linkat(struct mnt_idmap *idmap, const struct path *link)
1253{
1254	struct inode *inode = link->dentry->d_inode;
1255
1256	/* Inode writeback is not safe when the uid or gid are invalid. */
1257	if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
1258	    !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
1259		return -EOVERFLOW;
1260
1261	if (!sysctl_protected_hardlinks)
1262		return 0;
1263
1264	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1265	 * otherwise, it must be a safe source.
1266	 */
1267	if (safe_hardlink_source(idmap, inode) ||
1268	    inode_owner_or_capable(idmap, inode))
1269		return 0;
1270
1271	audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1272	return -EPERM;
1273}
1274
1275/**
1276 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1277 *			  should be allowed, or not, on files that already
1278 *			  exist.
1279 * @idmap: idmap of the mount the inode was found from
1280 * @nd: nameidata pathwalk data
1281 * @inode: the inode of the file to open
1282 *
1283 * Block an O_CREAT open of a FIFO (or a regular file) when:
1284 *   - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1285 *   - the file already exists
1286 *   - we are in a sticky directory
1287 *   - we don't own the file
1288 *   - the owner of the directory doesn't own the file
1289 *   - the directory is world writable
1290 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1291 * the directory doesn't have to be world writable: being group writable will
1292 * be enough.
1293 *
1294 * If the inode has been found through an idmapped mount the idmap of
1295 * the vfsmount must be passed through @idmap. This function will then take
1296 * care to map the inode according to @idmap before checking permissions.
1297 * On non-idmapped mounts or if permission checking is to be performed on the
1298 * raw inode simply pass @nop_mnt_idmap.
1299 *
1300 * Returns 0 if the open is allowed, -ve on error.
1301 */
1302static int may_create_in_sticky(struct mnt_idmap *idmap, struct nameidata *nd,
1303				struct inode *const inode)
1304{
1305	umode_t dir_mode = nd->dir_mode;
1306	vfsuid_t dir_vfsuid = nd->dir_vfsuid, i_vfsuid;
1307
1308	if (likely(!(dir_mode & S_ISVTX)))
1309		return 0;
1310
1311	if (S_ISREG(inode->i_mode) && !sysctl_protected_regular)
1312		return 0;
1313
1314	if (S_ISFIFO(inode->i_mode) && !sysctl_protected_fifos)
1315		return 0;
1316
1317	i_vfsuid = i_uid_into_vfsuid(idmap, inode);
1318
1319	if (vfsuid_eq(i_vfsuid, dir_vfsuid))
1320		return 0;
1321
1322	if (vfsuid_eq_kuid(i_vfsuid, current_fsuid()))
 
 
 
 
1323		return 0;
1324
1325	if (likely(dir_mode & 0002)) {
1326		audit_log_path_denied(AUDIT_ANOM_CREAT, "sticky_create");
 
 
 
 
 
 
1327		return -EACCES;
1328	}
1329
1330	if (dir_mode & 0020) {
1331		if (sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) {
1332			audit_log_path_denied(AUDIT_ANOM_CREAT,
1333					      "sticky_create_fifo");
1334			return -EACCES;
1335		}
1336
1337		if (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode)) {
1338			audit_log_path_denied(AUDIT_ANOM_CREAT,
1339					      "sticky_create_regular");
1340			return -EACCES;
1341		}
1342	}
1343
1344	return 0;
1345}
1346
1347/*
1348 * follow_up - Find the mountpoint of path's vfsmount
1349 *
1350 * Given a path, find the mountpoint of its source file system.
1351 * Replace @path with the path of the mountpoint in the parent mount.
1352 * Up is towards /.
1353 *
1354 * Return 1 if we went up a level and 0 if we were already at the
1355 * root.
1356 */
1357int follow_up(struct path *path)
1358{
1359	struct mount *mnt = real_mount(path->mnt);
1360	struct mount *parent;
1361	struct dentry *mountpoint;
1362
1363	read_seqlock_excl(&mount_lock);
1364	parent = mnt->mnt_parent;
1365	if (parent == mnt) {
1366		read_sequnlock_excl(&mount_lock);
1367		return 0;
1368	}
1369	mntget(&parent->mnt);
1370	mountpoint = dget(mnt->mnt_mountpoint);
1371	read_sequnlock_excl(&mount_lock);
1372	dput(path->dentry);
1373	path->dentry = mountpoint;
1374	mntput(path->mnt);
1375	path->mnt = &parent->mnt;
1376	return 1;
1377}
1378EXPORT_SYMBOL(follow_up);
1379
1380static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1381				  struct path *path, unsigned *seqp)
1382{
1383	while (mnt_has_parent(m)) {
1384		struct dentry *mountpoint = m->mnt_mountpoint;
1385
1386		m = m->mnt_parent;
1387		if (unlikely(root->dentry == mountpoint &&
1388			     root->mnt == &m->mnt))
1389			break;
1390		if (mountpoint != m->mnt.mnt_root) {
1391			path->mnt = &m->mnt;
1392			path->dentry = mountpoint;
1393			*seqp = read_seqcount_begin(&mountpoint->d_seq);
1394			return true;
1395		}
1396	}
1397	return false;
1398}
1399
1400static bool choose_mountpoint(struct mount *m, const struct path *root,
1401			      struct path *path)
1402{
1403	bool found;
1404
1405	rcu_read_lock();
1406	while (1) {
1407		unsigned seq, mseq = read_seqbegin(&mount_lock);
1408
1409		found = choose_mountpoint_rcu(m, root, path, &seq);
1410		if (unlikely(!found)) {
1411			if (!read_seqretry(&mount_lock, mseq))
1412				break;
1413		} else {
1414			if (likely(__legitimize_path(path, seq, mseq)))
1415				break;
1416			rcu_read_unlock();
1417			path_put(path);
1418			rcu_read_lock();
1419		}
1420	}
1421	rcu_read_unlock();
1422	return found;
1423}
1424
1425/*
1426 * Perform an automount
1427 * - return -EISDIR to tell follow_managed() to stop and return the path we
1428 *   were called with.
1429 */
1430static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1431{
1432	struct dentry *dentry = path->dentry;
1433
1434	/* We don't want to mount if someone's just doing a stat -
1435	 * unless they're stat'ing a directory and appended a '/' to
1436	 * the name.
1437	 *
1438	 * We do, however, want to mount if someone wants to open or
1439	 * create a file of any type under the mountpoint, wants to
1440	 * traverse through the mountpoint or wants to open the
1441	 * mounted directory.  Also, autofs may mark negative dentries
1442	 * as being automount points.  These will need the attentions
1443	 * of the daemon to instantiate them before they can be used.
1444	 */
1445	if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1446			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1447	    dentry->d_inode)
1448		return -EISDIR;
1449
1450	if (count && (*count)++ >= MAXSYMLINKS)
1451		return -ELOOP;
1452
1453	return finish_automount(dentry->d_op->d_automount(path), path);
1454}
1455
1456/*
1457 * mount traversal - out-of-line part.  One note on ->d_flags accesses -
1458 * dentries are pinned but not locked here, so negative dentry can go
1459 * positive right under us.  Use of smp_load_acquire() provides a barrier
1460 * sufficient for ->d_inode and ->d_flags consistency.
1461 */
1462static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1463			     int *count, unsigned lookup_flags)
1464{
1465	struct vfsmount *mnt = path->mnt;
1466	bool need_mntput = false;
1467	int ret = 0;
1468
1469	while (flags & DCACHE_MANAGED_DENTRY) {
1470		/* Allow the filesystem to manage the transit without i_mutex
1471		 * being held. */
1472		if (flags & DCACHE_MANAGE_TRANSIT) {
1473			ret = path->dentry->d_op->d_manage(path, false);
1474			flags = smp_load_acquire(&path->dentry->d_flags);
1475			if (ret < 0)
1476				break;
1477		}
1478
1479		if (flags & DCACHE_MOUNTED) {	// something's mounted on it..
1480			struct vfsmount *mounted = lookup_mnt(path);
1481			if (mounted) {		// ... in our namespace
1482				dput(path->dentry);
1483				if (need_mntput)
1484					mntput(path->mnt);
1485				path->mnt = mounted;
1486				path->dentry = dget(mounted->mnt_root);
1487				// here we know it's positive
1488				flags = path->dentry->d_flags;
1489				need_mntput = true;
1490				continue;
1491			}
1492		}
1493
1494		if (!(flags & DCACHE_NEED_AUTOMOUNT))
1495			break;
1496
1497		// uncovered automount point
1498		ret = follow_automount(path, count, lookup_flags);
1499		flags = smp_load_acquire(&path->dentry->d_flags);
1500		if (ret < 0)
1501			break;
1502	}
1503
1504	if (ret == -EISDIR)
1505		ret = 0;
1506	// possible if you race with several mount --move
1507	if (need_mntput && path->mnt == mnt)
1508		mntput(path->mnt);
1509	if (!ret && unlikely(d_flags_negative(flags)))
1510		ret = -ENOENT;
1511	*jumped = need_mntput;
1512	return ret;
1513}
1514
1515static inline int traverse_mounts(struct path *path, bool *jumped,
1516				  int *count, unsigned lookup_flags)
1517{
1518	unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1519
1520	/* fastpath */
1521	if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1522		*jumped = false;
1523		if (unlikely(d_flags_negative(flags)))
1524			return -ENOENT;
1525		return 0;
1526	}
1527	return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1528}
1529
1530int follow_down_one(struct path *path)
1531{
1532	struct vfsmount *mounted;
1533
1534	mounted = lookup_mnt(path);
1535	if (mounted) {
1536		dput(path->dentry);
1537		mntput(path->mnt);
1538		path->mnt = mounted;
1539		path->dentry = dget(mounted->mnt_root);
1540		return 1;
1541	}
1542	return 0;
1543}
1544EXPORT_SYMBOL(follow_down_one);
1545
1546/*
1547 * Follow down to the covering mount currently visible to userspace.  At each
1548 * point, the filesystem owning that dentry may be queried as to whether the
1549 * caller is permitted to proceed or not.
1550 */
1551int follow_down(struct path *path, unsigned int flags)
1552{
1553	struct vfsmount *mnt = path->mnt;
1554	bool jumped;
1555	int ret = traverse_mounts(path, &jumped, NULL, flags);
1556
1557	if (path->mnt != mnt)
1558		mntput(mnt);
1559	return ret;
1560}
1561EXPORT_SYMBOL(follow_down);
1562
1563/*
1564 * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1565 * we meet a managed dentry that would need blocking.
1566 */
1567static bool __follow_mount_rcu(struct nameidata *nd, struct path *path)
1568{
1569	struct dentry *dentry = path->dentry;
1570	unsigned int flags = dentry->d_flags;
1571
1572	if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1573		return true;
1574
1575	if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1576		return false;
1577
1578	for (;;) {
1579		/*
1580		 * Don't forget we might have a non-mountpoint managed dentry
1581		 * that wants to block transit.
1582		 */
1583		if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1584			int res = dentry->d_op->d_manage(path, true);
1585			if (res)
1586				return res == -EISDIR;
1587			flags = dentry->d_flags;
1588		}
1589
1590		if (flags & DCACHE_MOUNTED) {
1591			struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1592			if (mounted) {
1593				path->mnt = &mounted->mnt;
1594				dentry = path->dentry = mounted->mnt.mnt_root;
1595				nd->state |= ND_JUMPED;
1596				nd->next_seq = read_seqcount_begin(&dentry->d_seq);
1597				flags = dentry->d_flags;
1598				// makes sure that non-RCU pathwalk could reach
1599				// this state.
1600				if (read_seqretry(&mount_lock, nd->m_seq))
1601					return false;
1602				continue;
1603			}
1604			if (read_seqretry(&mount_lock, nd->m_seq))
1605				return false;
1606		}
1607		return !(flags & DCACHE_NEED_AUTOMOUNT);
1608	}
1609}
1610
1611static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1612			  struct path *path)
1613{
1614	bool jumped;
1615	int ret;
1616
1617	path->mnt = nd->path.mnt;
1618	path->dentry = dentry;
1619	if (nd->flags & LOOKUP_RCU) {
1620		unsigned int seq = nd->next_seq;
1621		if (likely(__follow_mount_rcu(nd, path)))
1622			return 0;
1623		// *path and nd->next_seq might've been clobbered
1624		path->mnt = nd->path.mnt;
1625		path->dentry = dentry;
1626		nd->next_seq = seq;
1627		if (!try_to_unlazy_next(nd, dentry))
1628			return -ECHILD;
1629	}
1630	ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1631	if (jumped) {
1632		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1633			ret = -EXDEV;
1634		else
1635			nd->state |= ND_JUMPED;
1636	}
1637	if (unlikely(ret)) {
1638		dput(path->dentry);
1639		if (path->mnt != nd->path.mnt)
1640			mntput(path->mnt);
1641	}
1642	return ret;
1643}
1644
1645/*
1646 * This looks up the name in dcache and possibly revalidates the found dentry.
1647 * NULL is returned if the dentry does not exist in the cache.
1648 */
1649static struct dentry *lookup_dcache(const struct qstr *name,
1650				    struct dentry *dir,
1651				    unsigned int flags)
1652{
1653	struct dentry *dentry = d_lookup(dir, name);
1654	if (dentry) {
1655		int error = d_revalidate(dentry, flags);
1656		if (unlikely(error <= 0)) {
1657			if (!error)
1658				d_invalidate(dentry);
1659			dput(dentry);
1660			return ERR_PTR(error);
1661		}
1662	}
1663	return dentry;
1664}
1665
1666/*
1667 * Parent directory has inode locked exclusive.  This is one
1668 * and only case when ->lookup() gets called on non in-lookup
1669 * dentries - as the matter of fact, this only gets called
1670 * when directory is guaranteed to have no in-lookup children
1671 * at all.
1672 */
1673struct dentry *lookup_one_qstr_excl(const struct qstr *name,
1674				    struct dentry *base,
1675				    unsigned int flags)
1676{
1677	struct dentry *dentry = lookup_dcache(name, base, flags);
1678	struct dentry *old;
1679	struct inode *dir = base->d_inode;
1680
1681	if (dentry)
1682		return dentry;
1683
1684	/* Don't create child dentry for a dead directory. */
1685	if (unlikely(IS_DEADDIR(dir)))
1686		return ERR_PTR(-ENOENT);
1687
1688	dentry = d_alloc(base, name);
1689	if (unlikely(!dentry))
1690		return ERR_PTR(-ENOMEM);
1691
1692	old = dir->i_op->lookup(dir, dentry, flags);
1693	if (unlikely(old)) {
1694		dput(dentry);
1695		dentry = old;
1696	}
1697	return dentry;
1698}
1699EXPORT_SYMBOL(lookup_one_qstr_excl);
1700
1701/**
1702 * lookup_fast - do fast lockless (but racy) lookup of a dentry
1703 * @nd: current nameidata
1704 *
1705 * Do a fast, but racy lookup in the dcache for the given dentry, and
1706 * revalidate it. Returns a valid dentry pointer or NULL if one wasn't
1707 * found. On error, an ERR_PTR will be returned.
1708 *
1709 * If this function returns a valid dentry and the walk is no longer
1710 * lazy, the dentry will carry a reference that must later be put. If
1711 * RCU mode is still in force, then this is not the case and the dentry
1712 * must be legitimized before use. If this returns NULL, then the walk
1713 * will no longer be in RCU mode.
1714 */
1715static struct dentry *lookup_fast(struct nameidata *nd)
1716{
1717	struct dentry *dentry, *parent = nd->path.dentry;
1718	int status = 1;
1719
1720	/*
1721	 * Rename seqlock is not required here because in the off chance
1722	 * of a false negative due to a concurrent rename, the caller is
1723	 * going to fall back to non-racy lookup.
1724	 */
1725	if (nd->flags & LOOKUP_RCU) {
1726		dentry = __d_lookup_rcu(parent, &nd->last, &nd->next_seq);
1727		if (unlikely(!dentry)) {
1728			if (!try_to_unlazy(nd))
1729				return ERR_PTR(-ECHILD);
1730			return NULL;
1731		}
1732
1733		/*
1734		 * This sequence count validates that the parent had no
1735		 * changes while we did the lookup of the dentry above.
1736		 */
1737		if (read_seqcount_retry(&parent->d_seq, nd->seq))
1738			return ERR_PTR(-ECHILD);
1739
1740		status = d_revalidate(dentry, nd->flags);
1741		if (likely(status > 0))
1742			return dentry;
1743		if (!try_to_unlazy_next(nd, dentry))
1744			return ERR_PTR(-ECHILD);
1745		if (status == -ECHILD)
1746			/* we'd been told to redo it in non-rcu mode */
1747			status = d_revalidate(dentry, nd->flags);
1748	} else {
1749		dentry = __d_lookup(parent, &nd->last);
1750		if (unlikely(!dentry))
1751			return NULL;
1752		status = d_revalidate(dentry, nd->flags);
1753	}
1754	if (unlikely(status <= 0)) {
1755		if (!status)
1756			d_invalidate(dentry);
1757		dput(dentry);
1758		return ERR_PTR(status);
1759	}
1760	return dentry;
1761}
1762
1763/* Fast lookup failed, do it the slow way */
1764static struct dentry *__lookup_slow(const struct qstr *name,
1765				    struct dentry *dir,
1766				    unsigned int flags)
1767{
1768	struct dentry *dentry, *old;
1769	struct inode *inode = dir->d_inode;
1770	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1771
1772	/* Don't go there if it's already dead */
1773	if (unlikely(IS_DEADDIR(inode)))
1774		return ERR_PTR(-ENOENT);
1775again:
1776	dentry = d_alloc_parallel(dir, name, &wq);
1777	if (IS_ERR(dentry))
1778		return dentry;
1779	if (unlikely(!d_in_lookup(dentry))) {
1780		int error = d_revalidate(dentry, flags);
1781		if (unlikely(error <= 0)) {
1782			if (!error) {
1783				d_invalidate(dentry);
1784				dput(dentry);
1785				goto again;
1786			}
1787			dput(dentry);
1788			dentry = ERR_PTR(error);
1789		}
1790	} else {
1791		old = inode->i_op->lookup(inode, dentry, flags);
1792		d_lookup_done(dentry);
1793		if (unlikely(old)) {
1794			dput(dentry);
1795			dentry = old;
1796		}
1797	}
1798	return dentry;
1799}
1800
1801static struct dentry *lookup_slow(const struct qstr *name,
1802				  struct dentry *dir,
1803				  unsigned int flags)
1804{
1805	struct inode *inode = dir->d_inode;
1806	struct dentry *res;
1807	inode_lock_shared(inode);
1808	res = __lookup_slow(name, dir, flags);
1809	inode_unlock_shared(inode);
1810	return res;
1811}
1812
1813static inline int may_lookup(struct mnt_idmap *idmap,
1814			     struct nameidata *restrict nd)
1815{
1816	int err, mask;
1817
1818	mask = nd->flags & LOOKUP_RCU ? MAY_NOT_BLOCK : 0;
1819	err = inode_permission(idmap, nd->inode, mask | MAY_EXEC);
1820	if (likely(!err))
1821		return 0;
1822
1823	// If we failed, and we weren't in LOOKUP_RCU, it's final
1824	if (!(nd->flags & LOOKUP_RCU))
1825		return err;
1826
1827	// Drop out of RCU mode to make sure it wasn't transient
1828	if (!try_to_unlazy(nd))
1829		return -ECHILD;	// redo it all non-lazy
1830
1831	if (err != -ECHILD)	// hard error
1832		return err;
1833
1834	return inode_permission(idmap, nd->inode, MAY_EXEC);
1835}
1836
1837static int reserve_stack(struct nameidata *nd, struct path *link)
1838{
1839	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1840		return -ELOOP;
1841
1842	if (likely(nd->depth != EMBEDDED_LEVELS))
1843		return 0;
1844	if (likely(nd->stack != nd->internal))
1845		return 0;
1846	if (likely(nd_alloc_stack(nd)))
1847		return 0;
1848
1849	if (nd->flags & LOOKUP_RCU) {
1850		// we need to grab link before we do unlazy.  And we can't skip
1851		// unlazy even if we fail to grab the link - cleanup needs it
1852		bool grabbed_link = legitimize_path(nd, link, nd->next_seq);
1853
1854		if (!try_to_unlazy(nd) || !grabbed_link)
1855			return -ECHILD;
1856
1857		if (nd_alloc_stack(nd))
1858			return 0;
1859	}
1860	return -ENOMEM;
1861}
1862
1863enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1864
1865static const char *pick_link(struct nameidata *nd, struct path *link,
1866		     struct inode *inode, int flags)
1867{
1868	struct saved *last;
1869	const char *res;
1870	int error = reserve_stack(nd, link);
1871
1872	if (unlikely(error)) {
1873		if (!(nd->flags & LOOKUP_RCU))
1874			path_put(link);
1875		return ERR_PTR(error);
1876	}
1877	last = nd->stack + nd->depth++;
1878	last->link = *link;
1879	clear_delayed_call(&last->done);
1880	last->seq = nd->next_seq;
1881
1882	if (flags & WALK_TRAILING) {
1883		error = may_follow_link(nd, inode);
1884		if (unlikely(error))
1885			return ERR_PTR(error);
1886	}
1887
1888	if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1889			unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1890		return ERR_PTR(-ELOOP);
1891
1892	if (!(nd->flags & LOOKUP_RCU)) {
1893		touch_atime(&last->link);
1894		cond_resched();
1895	} else if (atime_needs_update(&last->link, inode)) {
1896		if (!try_to_unlazy(nd))
1897			return ERR_PTR(-ECHILD);
1898		touch_atime(&last->link);
1899	}
1900
1901	error = security_inode_follow_link(link->dentry, inode,
1902					   nd->flags & LOOKUP_RCU);
1903	if (unlikely(error))
1904		return ERR_PTR(error);
1905
1906	res = READ_ONCE(inode->i_link);
1907	if (!res) {
1908		const char * (*get)(struct dentry *, struct inode *,
1909				struct delayed_call *);
1910		get = inode->i_op->get_link;
1911		if (nd->flags & LOOKUP_RCU) {
1912			res = get(NULL, inode, &last->done);
1913			if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd))
1914				res = get(link->dentry, inode, &last->done);
1915		} else {
1916			res = get(link->dentry, inode, &last->done);
1917		}
1918		if (!res)
1919			goto all_done;
1920		if (IS_ERR(res))
1921			return res;
1922	}
1923	if (*res == '/') {
1924		error = nd_jump_root(nd);
1925		if (unlikely(error))
1926			return ERR_PTR(error);
1927		while (unlikely(*++res == '/'))
1928			;
1929	}
1930	if (*res)
1931		return res;
1932all_done: // pure jump
1933	put_link(nd);
1934	return NULL;
1935}
1936
1937/*
1938 * Do we need to follow links? We _really_ want to be able
1939 * to do this check without having to look at inode->i_op,
1940 * so we keep a cache of "no, this doesn't need follow_link"
1941 * for the common case.
1942 *
1943 * NOTE: dentry must be what nd->next_seq had been sampled from.
1944 */
1945static const char *step_into(struct nameidata *nd, int flags,
1946		     struct dentry *dentry)
1947{
1948	struct path path;
1949	struct inode *inode;
1950	int err = handle_mounts(nd, dentry, &path);
1951
1952	if (err < 0)
1953		return ERR_PTR(err);
1954	inode = path.dentry->d_inode;
1955	if (likely(!d_is_symlink(path.dentry)) ||
1956	   ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1957	   (flags & WALK_NOFOLLOW)) {
1958		/* not a symlink or should not follow */
1959		if (nd->flags & LOOKUP_RCU) {
1960			if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1961				return ERR_PTR(-ECHILD);
1962			if (unlikely(!inode))
1963				return ERR_PTR(-ENOENT);
1964		} else {
1965			dput(nd->path.dentry);
1966			if (nd->path.mnt != path.mnt)
1967				mntput(nd->path.mnt);
1968		}
1969		nd->path = path;
1970		nd->inode = inode;
1971		nd->seq = nd->next_seq;
1972		return NULL;
1973	}
1974	if (nd->flags & LOOKUP_RCU) {
1975		/* make sure that d_is_symlink above matches inode */
1976		if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1977			return ERR_PTR(-ECHILD);
1978	} else {
1979		if (path.mnt == nd->path.mnt)
1980			mntget(path.mnt);
1981	}
1982	return pick_link(nd, &path, inode, flags);
1983}
1984
1985static struct dentry *follow_dotdot_rcu(struct nameidata *nd)
1986{
1987	struct dentry *parent, *old;
1988
1989	if (path_equal(&nd->path, &nd->root))
1990		goto in_root;
1991	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1992		struct path path;
1993		unsigned seq;
1994		if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
1995					   &nd->root, &path, &seq))
1996			goto in_root;
1997		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1998			return ERR_PTR(-ECHILD);
1999		nd->path = path;
2000		nd->inode = path.dentry->d_inode;
2001		nd->seq = seq;
2002		// makes sure that non-RCU pathwalk could reach this state
2003		if (read_seqretry(&mount_lock, nd->m_seq))
2004			return ERR_PTR(-ECHILD);
2005		/* we know that mountpoint was pinned */
2006	}
2007	old = nd->path.dentry;
2008	parent = old->d_parent;
2009	nd->next_seq = read_seqcount_begin(&parent->d_seq);
2010	// makes sure that non-RCU pathwalk could reach this state
2011	if (read_seqcount_retry(&old->d_seq, nd->seq))
2012		return ERR_PTR(-ECHILD);
2013	if (unlikely(!path_connected(nd->path.mnt, parent)))
2014		return ERR_PTR(-ECHILD);
2015	return parent;
2016in_root:
2017	if (read_seqretry(&mount_lock, nd->m_seq))
2018		return ERR_PTR(-ECHILD);
2019	if (unlikely(nd->flags & LOOKUP_BENEATH))
2020		return ERR_PTR(-ECHILD);
2021	nd->next_seq = nd->seq;
2022	return nd->path.dentry;
2023}
2024
2025static struct dentry *follow_dotdot(struct nameidata *nd)
2026{
2027	struct dentry *parent;
2028
2029	if (path_equal(&nd->path, &nd->root))
2030		goto in_root;
2031	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
2032		struct path path;
2033
2034		if (!choose_mountpoint(real_mount(nd->path.mnt),
2035				       &nd->root, &path))
2036			goto in_root;
2037		path_put(&nd->path);
2038		nd->path = path;
2039		nd->inode = path.dentry->d_inode;
2040		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
2041			return ERR_PTR(-EXDEV);
2042	}
2043	/* rare case of legitimate dget_parent()... */
2044	parent = dget_parent(nd->path.dentry);
2045	if (unlikely(!path_connected(nd->path.mnt, parent))) {
2046		dput(parent);
2047		return ERR_PTR(-ENOENT);
2048	}
2049	return parent;
2050
2051in_root:
2052	if (unlikely(nd->flags & LOOKUP_BENEATH))
2053		return ERR_PTR(-EXDEV);
2054	return dget(nd->path.dentry);
2055}
2056
2057static const char *handle_dots(struct nameidata *nd, int type)
2058{
2059	if (type == LAST_DOTDOT) {
2060		const char *error = NULL;
2061		struct dentry *parent;
2062
2063		if (!nd->root.mnt) {
2064			error = ERR_PTR(set_root(nd));
2065			if (error)
2066				return error;
2067		}
2068		if (nd->flags & LOOKUP_RCU)
2069			parent = follow_dotdot_rcu(nd);
2070		else
2071			parent = follow_dotdot(nd);
2072		if (IS_ERR(parent))
2073			return ERR_CAST(parent);
2074		error = step_into(nd, WALK_NOFOLLOW, parent);
2075		if (unlikely(error))
2076			return error;
2077
2078		if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
2079			/*
2080			 * If there was a racing rename or mount along our
2081			 * path, then we can't be sure that ".." hasn't jumped
2082			 * above nd->root (and so userspace should retry or use
2083			 * some fallback).
2084			 */
2085			smp_rmb();
2086			if (__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq))
2087				return ERR_PTR(-EAGAIN);
2088			if (__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq))
2089				return ERR_PTR(-EAGAIN);
2090		}
2091	}
2092	return NULL;
2093}
2094
2095static const char *walk_component(struct nameidata *nd, int flags)
2096{
2097	struct dentry *dentry;
2098	/*
2099	 * "." and ".." are special - ".." especially so because it has
2100	 * to be able to know about the current root directory and
2101	 * parent relationships.
2102	 */
2103	if (unlikely(nd->last_type != LAST_NORM)) {
2104		if (!(flags & WALK_MORE) && nd->depth)
2105			put_link(nd);
2106		return handle_dots(nd, nd->last_type);
2107	}
2108	dentry = lookup_fast(nd);
2109	if (IS_ERR(dentry))
2110		return ERR_CAST(dentry);
2111	if (unlikely(!dentry)) {
2112		dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
2113		if (IS_ERR(dentry))
2114			return ERR_CAST(dentry);
2115	}
2116	if (!(flags & WALK_MORE) && nd->depth)
2117		put_link(nd);
2118	return step_into(nd, flags, dentry);
2119}
2120
2121/*
2122 * We can do the critical dentry name comparison and hashing
2123 * operations one word at a time, but we are limited to:
2124 *
2125 * - Architectures with fast unaligned word accesses. We could
2126 *   do a "get_unaligned()" if this helps and is sufficiently
2127 *   fast.
2128 *
2129 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
2130 *   do not trap on the (extremely unlikely) case of a page
2131 *   crossing operation.
2132 *
2133 * - Furthermore, we need an efficient 64-bit compile for the
2134 *   64-bit case in order to generate the "number of bytes in
2135 *   the final mask". Again, that could be replaced with a
2136 *   efficient population count instruction or similar.
2137 */
2138#ifdef CONFIG_DCACHE_WORD_ACCESS
2139
2140#include <asm/word-at-a-time.h>
2141
2142#ifdef HASH_MIX
2143
2144/* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
2145
2146#elif defined(CONFIG_64BIT)
2147/*
2148 * Register pressure in the mixing function is an issue, particularly
2149 * on 32-bit x86, but almost any function requires one state value and
2150 * one temporary.  Instead, use a function designed for two state values
2151 * and no temporaries.
2152 *
2153 * This function cannot create a collision in only two iterations, so
2154 * we have two iterations to achieve avalanche.  In those two iterations,
2155 * we have six layers of mixing, which is enough to spread one bit's
2156 * influence out to 2^6 = 64 state bits.
2157 *
2158 * Rotate constants are scored by considering either 64 one-bit input
2159 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
2160 * probability of that delta causing a change to each of the 128 output
2161 * bits, using a sample of random initial states.
2162 *
2163 * The Shannon entropy of the computed probabilities is then summed
2164 * to produce a score.  Ideally, any input change has a 50% chance of
2165 * toggling any given output bit.
2166 *
2167 * Mixing scores (in bits) for (12,45):
2168 * Input delta: 1-bit      2-bit
2169 * 1 round:     713.3    42542.6
2170 * 2 rounds:   2753.7   140389.8
2171 * 3 rounds:   5954.1   233458.2
2172 * 4 rounds:   7862.6   256672.2
2173 * Perfect:    8192     258048
2174 *            (64*128) (64*63/2 * 128)
2175 */
2176#define HASH_MIX(x, y, a)	\
2177	(	x ^= (a),	\
2178	y ^= x,	x = rol64(x,12),\
2179	x += y,	y = rol64(y,45),\
2180	y *= 9			)
2181
2182/*
2183 * Fold two longs into one 32-bit hash value.  This must be fast, but
2184 * latency isn't quite as critical, as there is a fair bit of additional
2185 * work done before the hash value is used.
2186 */
2187static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2188{
2189	y ^= x * GOLDEN_RATIO_64;
2190	y *= GOLDEN_RATIO_64;
2191	return y >> 32;
2192}
2193
2194#else	/* 32-bit case */
2195
2196/*
2197 * Mixing scores (in bits) for (7,20):
2198 * Input delta: 1-bit      2-bit
2199 * 1 round:     330.3     9201.6
2200 * 2 rounds:   1246.4    25475.4
2201 * 3 rounds:   1907.1    31295.1
2202 * 4 rounds:   2042.3    31718.6
2203 * Perfect:    2048      31744
2204 *            (32*64)   (32*31/2 * 64)
2205 */
2206#define HASH_MIX(x, y, a)	\
2207	(	x ^= (a),	\
2208	y ^= x,	x = rol32(x, 7),\
2209	x += y,	y = rol32(y,20),\
2210	y *= 9			)
2211
2212static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2213{
2214	/* Use arch-optimized multiply if one exists */
2215	return __hash_32(y ^ __hash_32(x));
2216}
2217
2218#endif
2219
2220/*
2221 * Return the hash of a string of known length.  This is carfully
2222 * designed to match hash_name(), which is the more critical function.
2223 * In particular, we must end by hashing a final word containing 0..7
2224 * payload bytes, to match the way that hash_name() iterates until it
2225 * finds the delimiter after the name.
2226 */
2227unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2228{
2229	unsigned long a, x = 0, y = (unsigned long)salt;
2230
2231	for (;;) {
2232		if (!len)
2233			goto done;
2234		a = load_unaligned_zeropad(name);
2235		if (len < sizeof(unsigned long))
2236			break;
2237		HASH_MIX(x, y, a);
2238		name += sizeof(unsigned long);
2239		len -= sizeof(unsigned long);
2240	}
2241	x ^= a & bytemask_from_count(len);
2242done:
2243	return fold_hash(x, y);
2244}
2245EXPORT_SYMBOL(full_name_hash);
2246
2247/* Return the "hash_len" (hash and length) of a null-terminated string */
2248u64 hashlen_string(const void *salt, const char *name)
2249{
2250	unsigned long a = 0, x = 0, y = (unsigned long)salt;
2251	unsigned long adata, mask, len;
2252	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2253
2254	len = 0;
2255	goto inside;
2256
2257	do {
2258		HASH_MIX(x, y, a);
2259		len += sizeof(unsigned long);
2260inside:
2261		a = load_unaligned_zeropad(name+len);
2262	} while (!has_zero(a, &adata, &constants));
2263
2264	adata = prep_zero_mask(a, adata, &constants);
2265	mask = create_zero_mask(adata);
2266	x ^= a & zero_bytemask(mask);
2267
2268	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2269}
2270EXPORT_SYMBOL(hashlen_string);
2271
2272/*
2273 * Calculate the length and hash of the path component, and
2274 * return the length as the result.
2275 */
2276static inline const char *hash_name(struct nameidata *nd,
2277				    const char *name,
2278				    unsigned long *lastword)
2279{
2280	unsigned long a, b, x, y = (unsigned long)nd->path.dentry;
2281	unsigned long adata, bdata, mask, len;
2282	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2283
2284	/*
2285	 * The first iteration is special, because it can result in
2286	 * '.' and '..' and has no mixing other than the final fold.
2287	 */
2288	a = load_unaligned_zeropad(name);
2289	b = a ^ REPEAT_BYTE('/');
2290	if (has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)) {
2291		adata = prep_zero_mask(a, adata, &constants);
2292		bdata = prep_zero_mask(b, bdata, &constants);
2293		mask = create_zero_mask(adata | bdata);
2294		a &= zero_bytemask(mask);
2295		*lastword = a;
2296		len = find_zero(mask);
2297		nd->last.hash = fold_hash(a, y);
2298		nd->last.len = len;
2299		return name + len;
2300	}
2301
2302	len = 0;
2303	x = 0;
2304	do {
2305		HASH_MIX(x, y, a);
2306		len += sizeof(unsigned long);
 
2307		a = load_unaligned_zeropad(name+len);
2308		b = a ^ REPEAT_BYTE('/');
2309	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2310
2311	adata = prep_zero_mask(a, adata, &constants);
2312	bdata = prep_zero_mask(b, bdata, &constants);
2313	mask = create_zero_mask(adata | bdata);
2314	a &= zero_bytemask(mask);
2315	x ^= a;
2316	len += find_zero(mask);
2317	*lastword = 0;		// Multi-word components cannot be DOT or DOTDOT
2318
2319	nd->last.hash = fold_hash(x, y);
2320	nd->last.len = len;
2321	return name + len;
2322}
2323
2324/*
2325 * Note that the 'last' word is always zero-masked, but
2326 * was loaded as a possibly big-endian word.
2327 */
2328#ifdef __BIG_ENDIAN
2329  #define LAST_WORD_IS_DOT	(0x2eul << (BITS_PER_LONG-8))
2330  #define LAST_WORD_IS_DOTDOT	(0x2e2eul << (BITS_PER_LONG-16))
2331#endif
2332
2333#else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2334
2335/* Return the hash of a string of known length */
2336unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2337{
2338	unsigned long hash = init_name_hash(salt);
2339	while (len--)
2340		hash = partial_name_hash((unsigned char)*name++, hash);
2341	return end_name_hash(hash);
2342}
2343EXPORT_SYMBOL(full_name_hash);
2344
2345/* Return the "hash_len" (hash and length) of a null-terminated string */
2346u64 hashlen_string(const void *salt, const char *name)
2347{
2348	unsigned long hash = init_name_hash(salt);
2349	unsigned long len = 0, c;
2350
2351	c = (unsigned char)*name;
2352	while (c) {
2353		len++;
2354		hash = partial_name_hash(c, hash);
2355		c = (unsigned char)name[len];
2356	}
2357	return hashlen_create(end_name_hash(hash), len);
2358}
2359EXPORT_SYMBOL(hashlen_string);
2360
2361/*
2362 * We know there's a real path component here of at least
2363 * one character.
2364 */
2365static inline const char *hash_name(struct nameidata *nd, const char *name, unsigned long *lastword)
2366{
2367	unsigned long hash = init_name_hash(nd->path.dentry);
2368	unsigned long len = 0, c, last = 0;
2369
2370	c = (unsigned char)*name;
2371	do {
2372		last = (last << 8) + c;
2373		len++;
2374		hash = partial_name_hash(c, hash);
2375		c = (unsigned char)name[len];
2376	} while (c && c != '/');
2377
2378	// This is reliable for DOT or DOTDOT, since the component
2379	// cannot contain NUL characters - top bits being zero means
2380	// we cannot have had any other pathnames.
2381	*lastword = last;
2382	nd->last.hash = end_name_hash(hash);
2383	nd->last.len = len;
2384	return name + len;
2385}
2386
2387#endif
2388
2389#ifndef LAST_WORD_IS_DOT
2390  #define LAST_WORD_IS_DOT	0x2e
2391  #define LAST_WORD_IS_DOTDOT	0x2e2e
2392#endif
2393
2394/*
2395 * Name resolution.
2396 * This is the basic name resolution function, turning a pathname into
2397 * the final dentry. We expect 'base' to be positive and a directory.
2398 *
2399 * Returns 0 and nd will have valid dentry and mnt on success.
2400 * Returns error and drops reference to input namei data on failure.
2401 */
2402static int link_path_walk(const char *name, struct nameidata *nd)
2403{
2404	int depth = 0; // depth <= nd->depth
2405	int err;
2406
2407	nd->last_type = LAST_ROOT;
2408	nd->flags |= LOOKUP_PARENT;
2409	if (IS_ERR(name))
2410		return PTR_ERR(name);
2411	while (*name=='/')
2412		name++;
2413	if (!*name) {
2414		nd->dir_mode = 0; // short-circuit the 'hardening' idiocy
2415		return 0;
2416	}
2417
2418	/* At this point we know we have a real path component. */
2419	for(;;) {
2420		struct mnt_idmap *idmap;
2421		const char *link;
2422		unsigned long lastword;
 
2423
2424		idmap = mnt_idmap(nd->path.mnt);
2425		err = may_lookup(idmap, nd);
2426		if (err)
2427			return err;
2428
2429		nd->last.name = name;
2430		name = hash_name(nd, name, &lastword);
2431
2432		switch(lastword) {
2433		case LAST_WORD_IS_DOTDOT:
2434			nd->last_type = LAST_DOTDOT;
2435			nd->state |= ND_JUMPED;
2436			break;
2437
2438		case LAST_WORD_IS_DOT:
2439			nd->last_type = LAST_DOT;
2440			break;
2441
2442		default:
2443			nd->last_type = LAST_NORM;
 
2444			nd->state &= ~ND_JUMPED;
2445
2446			struct dentry *parent = nd->path.dentry;
2447			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2448				err = parent->d_op->d_hash(parent, &nd->last);
 
2449				if (err < 0)
2450					return err;
 
 
2451			}
2452		}
2453
 
 
 
 
 
2454		if (!*name)
2455			goto OK;
2456		/*
2457		 * If it wasn't NUL, we know it was '/'. Skip that
2458		 * slash, and continue until no more slashes.
2459		 */
2460		do {
2461			name++;
2462		} while (unlikely(*name == '/'));
2463		if (unlikely(!*name)) {
2464OK:
2465			/* pathname or trailing symlink, done */
2466			if (!depth) {
2467				nd->dir_vfsuid = i_uid_into_vfsuid(idmap, nd->inode);
2468				nd->dir_mode = nd->inode->i_mode;
2469				nd->flags &= ~LOOKUP_PARENT;
2470				return 0;
2471			}
2472			/* last component of nested symlink */
2473			name = nd->stack[--depth].name;
2474			link = walk_component(nd, 0);
2475		} else {
2476			/* not the last component */
2477			link = walk_component(nd, WALK_MORE);
2478		}
2479		if (unlikely(link)) {
2480			if (IS_ERR(link))
2481				return PTR_ERR(link);
2482			/* a symlink to follow */
2483			nd->stack[depth++].name = name;
2484			name = link;
2485			continue;
2486		}
2487		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2488			if (nd->flags & LOOKUP_RCU) {
2489				if (!try_to_unlazy(nd))
2490					return -ECHILD;
2491			}
2492			return -ENOTDIR;
2493		}
2494	}
2495}
2496
2497/* must be paired with terminate_walk() */
2498static const char *path_init(struct nameidata *nd, unsigned flags)
2499{
2500	int error;
2501	const char *s = nd->pathname;
2502
2503	/* LOOKUP_CACHED requires RCU, ask caller to retry */
2504	if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED)
2505		return ERR_PTR(-EAGAIN);
2506
2507	if (!*s)
2508		flags &= ~LOOKUP_RCU;
2509	if (flags & LOOKUP_RCU)
2510		rcu_read_lock();
2511	else
2512		nd->seq = nd->next_seq = 0;
2513
2514	nd->flags = flags;
2515	nd->state |= ND_JUMPED;
2516
2517	nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2518	nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2519	smp_rmb();
2520
2521	if (nd->state & ND_ROOT_PRESET) {
2522		struct dentry *root = nd->root.dentry;
2523		struct inode *inode = root->d_inode;
2524		if (*s && unlikely(!d_can_lookup(root)))
2525			return ERR_PTR(-ENOTDIR);
2526		nd->path = nd->root;
2527		nd->inode = inode;
2528		if (flags & LOOKUP_RCU) {
2529			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2530			nd->root_seq = nd->seq;
2531		} else {
2532			path_get(&nd->path);
2533		}
2534		return s;
2535	}
2536
2537	nd->root.mnt = NULL;
2538
2539	/* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2540	if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2541		error = nd_jump_root(nd);
2542		if (unlikely(error))
2543			return ERR_PTR(error);
2544		return s;
2545	}
2546
2547	/* Relative pathname -- get the starting-point it is relative to. */
2548	if (nd->dfd == AT_FDCWD) {
2549		if (flags & LOOKUP_RCU) {
2550			struct fs_struct *fs = current->fs;
2551			unsigned seq;
2552
2553			do {
2554				seq = read_seqcount_begin(&fs->seq);
2555				nd->path = fs->pwd;
2556				nd->inode = nd->path.dentry->d_inode;
2557				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2558			} while (read_seqcount_retry(&fs->seq, seq));
2559		} else {
2560			get_fs_pwd(current->fs, &nd->path);
2561			nd->inode = nd->path.dentry->d_inode;
2562		}
2563	} else {
2564		/* Caller must check execute permissions on the starting path component */
2565		CLASS(fd_raw, f)(nd->dfd);
2566		struct dentry *dentry;
2567
2568		if (fd_empty(f))
2569			return ERR_PTR(-EBADF);
2570
2571		if (flags & LOOKUP_LINKAT_EMPTY) {
2572			if (fd_file(f)->f_cred != current_cred() &&
2573			    !ns_capable(fd_file(f)->f_cred->user_ns, CAP_DAC_READ_SEARCH))
2574				return ERR_PTR(-ENOENT);
2575		}
2576
2577		dentry = fd_file(f)->f_path.dentry;
2578
2579		if (*s && unlikely(!d_can_lookup(dentry)))
 
2580			return ERR_PTR(-ENOTDIR);
 
2581
2582		nd->path = fd_file(f)->f_path;
2583		if (flags & LOOKUP_RCU) {
2584			nd->inode = nd->path.dentry->d_inode;
2585			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2586		} else {
2587			path_get(&nd->path);
2588			nd->inode = nd->path.dentry->d_inode;
2589		}
 
2590	}
2591
2592	/* For scoped-lookups we need to set the root to the dirfd as well. */
2593	if (flags & LOOKUP_IS_SCOPED) {
2594		nd->root = nd->path;
2595		if (flags & LOOKUP_RCU) {
2596			nd->root_seq = nd->seq;
2597		} else {
2598			path_get(&nd->root);
2599			nd->state |= ND_ROOT_GRABBED;
2600		}
2601	}
2602	return s;
2603}
2604
2605static inline const char *lookup_last(struct nameidata *nd)
2606{
2607	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2608		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2609
2610	return walk_component(nd, WALK_TRAILING);
2611}
2612
2613static int handle_lookup_down(struct nameidata *nd)
2614{
2615	if (!(nd->flags & LOOKUP_RCU))
2616		dget(nd->path.dentry);
2617	nd->next_seq = nd->seq;
2618	return PTR_ERR(step_into(nd, WALK_NOFOLLOW, nd->path.dentry));
2619}
2620
2621/* Returns 0 and nd will be valid on success; Returns error, otherwise. */
2622static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2623{
2624	const char *s = path_init(nd, flags);
2625	int err;
2626
2627	if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2628		err = handle_lookup_down(nd);
2629		if (unlikely(err < 0))
2630			s = ERR_PTR(err);
2631	}
2632
2633	while (!(err = link_path_walk(s, nd)) &&
2634	       (s = lookup_last(nd)) != NULL)
2635		;
2636	if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2637		err = handle_lookup_down(nd);
2638		nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please...
2639	}
2640	if (!err)
2641		err = complete_walk(nd);
2642
2643	if (!err && nd->flags & LOOKUP_DIRECTORY)
2644		if (!d_can_lookup(nd->path.dentry))
2645			err = -ENOTDIR;
2646	if (!err) {
2647		*path = nd->path;
2648		nd->path.mnt = NULL;
2649		nd->path.dentry = NULL;
2650	}
2651	terminate_walk(nd);
2652	return err;
2653}
2654
2655int filename_lookup(int dfd, struct filename *name, unsigned flags,
2656		    struct path *path, struct path *root)
2657{
2658	int retval;
2659	struct nameidata nd;
2660	if (IS_ERR(name))
2661		return PTR_ERR(name);
2662	set_nameidata(&nd, dfd, name, root);
2663	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2664	if (unlikely(retval == -ECHILD))
2665		retval = path_lookupat(&nd, flags, path);
2666	if (unlikely(retval == -ESTALE))
2667		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2668
2669	if (likely(!retval))
2670		audit_inode(name, path->dentry,
2671			    flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2672	restore_nameidata();
2673	return retval;
2674}
2675
2676/* Returns 0 and nd will be valid on success; Returns error, otherwise. */
2677static int path_parentat(struct nameidata *nd, unsigned flags,
2678				struct path *parent)
2679{
2680	const char *s = path_init(nd, flags);
2681	int err = link_path_walk(s, nd);
2682	if (!err)
2683		err = complete_walk(nd);
2684	if (!err) {
2685		*parent = nd->path;
2686		nd->path.mnt = NULL;
2687		nd->path.dentry = NULL;
2688	}
2689	terminate_walk(nd);
2690	return err;
2691}
2692
2693/* Note: this does not consume "name" */
2694static int __filename_parentat(int dfd, struct filename *name,
2695			       unsigned int flags, struct path *parent,
2696			       struct qstr *last, int *type,
2697			       const struct path *root)
2698{
2699	int retval;
2700	struct nameidata nd;
2701
2702	if (IS_ERR(name))
2703		return PTR_ERR(name);
2704	set_nameidata(&nd, dfd, name, root);
2705	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2706	if (unlikely(retval == -ECHILD))
2707		retval = path_parentat(&nd, flags, parent);
2708	if (unlikely(retval == -ESTALE))
2709		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2710	if (likely(!retval)) {
2711		*last = nd.last;
2712		*type = nd.last_type;
2713		audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2714	}
2715	restore_nameidata();
2716	return retval;
2717}
2718
2719static int filename_parentat(int dfd, struct filename *name,
2720			     unsigned int flags, struct path *parent,
2721			     struct qstr *last, int *type)
2722{
2723	return __filename_parentat(dfd, name, flags, parent, last, type, NULL);
2724}
2725
2726/* does lookup, returns the object with parent locked */
2727static struct dentry *__kern_path_locked(int dfd, struct filename *name, struct path *path)
2728{
2729	struct dentry *d;
2730	struct qstr last;
2731	int type, error;
2732
2733	error = filename_parentat(dfd, name, 0, path, &last, &type);
2734	if (error)
2735		return ERR_PTR(error);
2736	if (unlikely(type != LAST_NORM)) {
2737		path_put(path);
2738		return ERR_PTR(-EINVAL);
2739	}
2740	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2741	d = lookup_one_qstr_excl(&last, path->dentry, 0);
2742	if (IS_ERR(d)) {
2743		inode_unlock(path->dentry->d_inode);
2744		path_put(path);
2745	}
2746	return d;
2747}
2748
2749struct dentry *kern_path_locked(const char *name, struct path *path)
2750{
2751	struct filename *filename = getname_kernel(name);
2752	struct dentry *res = __kern_path_locked(AT_FDCWD, filename, path);
2753
2754	putname(filename);
2755	return res;
2756}
2757
2758struct dentry *user_path_locked_at(int dfd, const char __user *name, struct path *path)
2759{
2760	struct filename *filename = getname(name);
2761	struct dentry *res = __kern_path_locked(dfd, filename, path);
2762
2763	putname(filename);
2764	return res;
2765}
2766EXPORT_SYMBOL(user_path_locked_at);
2767
2768int kern_path(const char *name, unsigned int flags, struct path *path)
2769{
2770	struct filename *filename = getname_kernel(name);
2771	int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL);
2772
2773	putname(filename);
2774	return ret;
2775
2776}
2777EXPORT_SYMBOL(kern_path);
2778
2779/**
2780 * vfs_path_parent_lookup - lookup a parent path relative to a dentry-vfsmount pair
2781 * @filename: filename structure
2782 * @flags: lookup flags
2783 * @parent: pointer to struct path to fill
2784 * @last: last component
2785 * @type: type of the last component
2786 * @root: pointer to struct path of the base directory
2787 */
2788int vfs_path_parent_lookup(struct filename *filename, unsigned int flags,
2789			   struct path *parent, struct qstr *last, int *type,
2790			   const struct path *root)
2791{
2792	return  __filename_parentat(AT_FDCWD, filename, flags, parent, last,
2793				    type, root);
2794}
2795EXPORT_SYMBOL(vfs_path_parent_lookup);
2796
2797/**
2798 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2799 * @dentry:  pointer to dentry of the base directory
2800 * @mnt: pointer to vfs mount of the base directory
2801 * @name: pointer to file name
2802 * @flags: lookup flags
2803 * @path: pointer to struct path to fill
2804 */
2805int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2806		    const char *name, unsigned int flags,
2807		    struct path *path)
2808{
2809	struct filename *filename;
2810	struct path root = {.mnt = mnt, .dentry = dentry};
2811	int ret;
2812
2813	filename = getname_kernel(name);
2814	/* the first argument of filename_lookup() is ignored with root */
2815	ret = filename_lookup(AT_FDCWD, filename, flags, path, &root);
2816	putname(filename);
2817	return ret;
2818}
2819EXPORT_SYMBOL(vfs_path_lookup);
2820
2821static int lookup_one_common(struct mnt_idmap *idmap,
2822			     const char *name, struct dentry *base, int len,
2823			     struct qstr *this)
2824{
2825	this->name = name;
2826	this->len = len;
2827	this->hash = full_name_hash(base, name, len);
2828	if (!len)
2829		return -EACCES;
2830
2831	if (is_dot_dotdot(name, len))
2832		return -EACCES;
 
 
2833
2834	while (len--) {
2835		unsigned int c = *(const unsigned char *)name++;
2836		if (c == '/' || c == '\0')
2837			return -EACCES;
2838	}
2839	/*
2840	 * See if the low-level filesystem might want
2841	 * to use its own hash..
2842	 */
2843	if (base->d_flags & DCACHE_OP_HASH) {
2844		int err = base->d_op->d_hash(base, this);
2845		if (err < 0)
2846			return err;
2847	}
2848
2849	return inode_permission(idmap, base->d_inode, MAY_EXEC);
2850}
2851
2852/**
2853 * try_lookup_one_len - filesystem helper to lookup single pathname component
2854 * @name:	pathname component to lookup
2855 * @base:	base directory to lookup from
2856 * @len:	maximum length @len should be interpreted to
2857 *
2858 * Look up a dentry by name in the dcache, returning NULL if it does not
2859 * currently exist.  The function does not try to create a dentry.
2860 *
2861 * Note that this routine is purely a helper for filesystem usage and should
2862 * not be called by generic code.
2863 *
2864 * The caller must hold base->i_mutex.
2865 */
2866struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2867{
2868	struct qstr this;
2869	int err;
2870
2871	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2872
2873	err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this);
2874	if (err)
2875		return ERR_PTR(err);
2876
2877	return lookup_dcache(&this, base, 0);
2878}
2879EXPORT_SYMBOL(try_lookup_one_len);
2880
2881/**
2882 * lookup_one_len - filesystem helper to lookup single pathname component
2883 * @name:	pathname component to lookup
2884 * @base:	base directory to lookup from
2885 * @len:	maximum length @len should be interpreted to
2886 *
2887 * Note that this routine is purely a helper for filesystem usage and should
2888 * not be called by generic code.
2889 *
2890 * The caller must hold base->i_mutex.
2891 */
2892struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2893{
2894	struct dentry *dentry;
2895	struct qstr this;
2896	int err;
2897
2898	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2899
2900	err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this);
2901	if (err)
2902		return ERR_PTR(err);
2903
2904	dentry = lookup_dcache(&this, base, 0);
2905	return dentry ? dentry : __lookup_slow(&this, base, 0);
2906}
2907EXPORT_SYMBOL(lookup_one_len);
2908
2909/**
2910 * lookup_one - filesystem helper to lookup single pathname component
2911 * @idmap:	idmap of the mount the lookup is performed from
2912 * @name:	pathname component to lookup
2913 * @base:	base directory to lookup from
2914 * @len:	maximum length @len should be interpreted to
2915 *
2916 * Note that this routine is purely a helper for filesystem usage and should
2917 * not be called by generic code.
2918 *
2919 * The caller must hold base->i_mutex.
2920 */
2921struct dentry *lookup_one(struct mnt_idmap *idmap, const char *name,
2922			  struct dentry *base, int len)
2923{
2924	struct dentry *dentry;
2925	struct qstr this;
2926	int err;
2927
2928	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2929
2930	err = lookup_one_common(idmap, name, base, len, &this);
2931	if (err)
2932		return ERR_PTR(err);
2933
2934	dentry = lookup_dcache(&this, base, 0);
2935	return dentry ? dentry : __lookup_slow(&this, base, 0);
2936}
2937EXPORT_SYMBOL(lookup_one);
2938
2939/**
2940 * lookup_one_unlocked - filesystem helper to lookup single pathname component
2941 * @idmap:	idmap of the mount the lookup is performed from
2942 * @name:	pathname component to lookup
2943 * @base:	base directory to lookup from
2944 * @len:	maximum length @len should be interpreted to
2945 *
2946 * Note that this routine is purely a helper for filesystem usage and should
2947 * not be called by generic code.
2948 *
2949 * Unlike lookup_one_len, it should be called without the parent
2950 * i_mutex held, and will take the i_mutex itself if necessary.
2951 */
2952struct dentry *lookup_one_unlocked(struct mnt_idmap *idmap,
2953				   const char *name, struct dentry *base,
2954				   int len)
2955{
2956	struct qstr this;
2957	int err;
2958	struct dentry *ret;
2959
2960	err = lookup_one_common(idmap, name, base, len, &this);
2961	if (err)
2962		return ERR_PTR(err);
2963
2964	ret = lookup_dcache(&this, base, 0);
2965	if (!ret)
2966		ret = lookup_slow(&this, base, 0);
2967	return ret;
2968}
2969EXPORT_SYMBOL(lookup_one_unlocked);
2970
2971/**
2972 * lookup_one_positive_unlocked - filesystem helper to lookup single
2973 *				  pathname component
2974 * @idmap:	idmap of the mount the lookup is performed from
2975 * @name:	pathname component to lookup
2976 * @base:	base directory to lookup from
2977 * @len:	maximum length @len should be interpreted to
2978 *
2979 * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns
2980 * known positive or ERR_PTR(). This is what most of the users want.
2981 *
2982 * Note that pinned negative with unlocked parent _can_ become positive at any
2983 * time, so callers of lookup_one_unlocked() need to be very careful; pinned
2984 * positives have >d_inode stable, so this one avoids such problems.
2985 *
2986 * Note that this routine is purely a helper for filesystem usage and should
2987 * not be called by generic code.
2988 *
2989 * The helper should be called without i_mutex held.
2990 */
2991struct dentry *lookup_one_positive_unlocked(struct mnt_idmap *idmap,
2992					    const char *name,
2993					    struct dentry *base, int len)
2994{
2995	struct dentry *ret = lookup_one_unlocked(idmap, name, base, len);
2996
2997	if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
2998		dput(ret);
2999		ret = ERR_PTR(-ENOENT);
3000	}
3001	return ret;
3002}
3003EXPORT_SYMBOL(lookup_one_positive_unlocked);
3004
3005/**
3006 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
3007 * @name:	pathname component to lookup
3008 * @base:	base directory to lookup from
3009 * @len:	maximum length @len should be interpreted to
3010 *
3011 * Note that this routine is purely a helper for filesystem usage and should
3012 * not be called by generic code.
3013 *
3014 * Unlike lookup_one_len, it should be called without the parent
3015 * i_mutex held, and will take the i_mutex itself if necessary.
3016 */
3017struct dentry *lookup_one_len_unlocked(const char *name,
3018				       struct dentry *base, int len)
3019{
3020	return lookup_one_unlocked(&nop_mnt_idmap, name, base, len);
3021}
3022EXPORT_SYMBOL(lookup_one_len_unlocked);
3023
3024/*
3025 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
3026 * on negatives.  Returns known positive or ERR_PTR(); that's what
3027 * most of the users want.  Note that pinned negative with unlocked parent
3028 * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
3029 * need to be very careful; pinned positives have ->d_inode stable, so
3030 * this one avoids such problems.
3031 */
3032struct dentry *lookup_positive_unlocked(const char *name,
3033				       struct dentry *base, int len)
3034{
3035	return lookup_one_positive_unlocked(&nop_mnt_idmap, name, base, len);
3036}
3037EXPORT_SYMBOL(lookup_positive_unlocked);
3038
3039#ifdef CONFIG_UNIX98_PTYS
3040int path_pts(struct path *path)
3041{
3042	/* Find something mounted on "pts" in the same directory as
3043	 * the input path.
3044	 */
3045	struct dentry *parent = dget_parent(path->dentry);
3046	struct dentry *child;
3047	struct qstr this = QSTR_INIT("pts", 3);
3048
3049	if (unlikely(!path_connected(path->mnt, parent))) {
3050		dput(parent);
3051		return -ENOENT;
3052	}
3053	dput(path->dentry);
3054	path->dentry = parent;
3055	child = d_hash_and_lookup(parent, &this);
3056	if (IS_ERR_OR_NULL(child))
3057		return -ENOENT;
3058
3059	path->dentry = child;
3060	dput(parent);
3061	follow_down(path, 0);
3062	return 0;
3063}
3064#endif
3065
3066int user_path_at(int dfd, const char __user *name, unsigned flags,
3067		 struct path *path)
3068{
3069	struct filename *filename = getname_flags(name, flags);
3070	int ret = filename_lookup(dfd, filename, flags, path, NULL);
3071
3072	putname(filename);
3073	return ret;
3074}
3075EXPORT_SYMBOL(user_path_at);
3076
3077int __check_sticky(struct mnt_idmap *idmap, struct inode *dir,
3078		   struct inode *inode)
3079{
3080	kuid_t fsuid = current_fsuid();
3081
3082	if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), fsuid))
3083		return 0;
3084	if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, dir), fsuid))
3085		return 0;
3086	return !capable_wrt_inode_uidgid(idmap, inode, CAP_FOWNER);
3087}
3088EXPORT_SYMBOL(__check_sticky);
3089
3090/*
3091 *	Check whether we can remove a link victim from directory dir, check
3092 *  whether the type of victim is right.
3093 *  1. We can't do it if dir is read-only (done in permission())
3094 *  2. We should have write and exec permissions on dir
3095 *  3. We can't remove anything from append-only dir
3096 *  4. We can't do anything with immutable dir (done in permission())
3097 *  5. If the sticky bit on dir is set we should either
3098 *	a. be owner of dir, or
3099 *	b. be owner of victim, or
3100 *	c. have CAP_FOWNER capability
3101 *  6. If the victim is append-only or immutable we can't do antyhing with
3102 *     links pointing to it.
3103 *  7. If the victim has an unknown uid or gid we can't change the inode.
3104 *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
3105 *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
3106 * 10. We can't remove a root or mountpoint.
3107 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
3108 *     nfs_async_unlink().
3109 */
3110static int may_delete(struct mnt_idmap *idmap, struct inode *dir,
3111		      struct dentry *victim, bool isdir)
3112{
3113	struct inode *inode = d_backing_inode(victim);
3114	int error;
3115
3116	if (d_is_negative(victim))
3117		return -ENOENT;
3118	BUG_ON(!inode);
3119
3120	BUG_ON(victim->d_parent->d_inode != dir);
3121
3122	/* Inode writeback is not safe when the uid or gid are invalid. */
3123	if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
3124	    !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
3125		return -EOVERFLOW;
3126
3127	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
3128
3129	error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3130	if (error)
3131		return error;
3132	if (IS_APPEND(dir))
3133		return -EPERM;
3134
3135	if (check_sticky(idmap, dir, inode) || IS_APPEND(inode) ||
3136	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) ||
3137	    HAS_UNMAPPED_ID(idmap, inode))
3138		return -EPERM;
3139	if (isdir) {
3140		if (!d_is_dir(victim))
3141			return -ENOTDIR;
3142		if (IS_ROOT(victim))
3143			return -EBUSY;
3144	} else if (d_is_dir(victim))
3145		return -EISDIR;
3146	if (IS_DEADDIR(dir))
3147		return -ENOENT;
3148	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
3149		return -EBUSY;
3150	return 0;
3151}
3152
3153/*	Check whether we can create an object with dentry child in directory
3154 *  dir.
3155 *  1. We can't do it if child already exists (open has special treatment for
3156 *     this case, but since we are inlined it's OK)
3157 *  2. We can't do it if dir is read-only (done in permission())
3158 *  3. We can't do it if the fs can't represent the fsuid or fsgid.
3159 *  4. We should have write and exec permissions on dir
3160 *  5. We can't do it if dir is immutable (done in permission())
3161 */
3162static inline int may_create(struct mnt_idmap *idmap,
3163			     struct inode *dir, struct dentry *child)
3164{
3165	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
3166	if (child->d_inode)
3167		return -EEXIST;
3168	if (IS_DEADDIR(dir))
3169		return -ENOENT;
3170	if (!fsuidgid_has_mapping(dir->i_sb, idmap))
3171		return -EOVERFLOW;
3172
3173	return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3174}
3175
3176// p1 != p2, both are on the same filesystem, ->s_vfs_rename_mutex is held
3177static struct dentry *lock_two_directories(struct dentry *p1, struct dentry *p2)
3178{
3179	struct dentry *p = p1, *q = p2, *r;
3180
3181	while ((r = p->d_parent) != p2 && r != p)
3182		p = r;
3183	if (r == p2) {
3184		// p is a child of p2 and an ancestor of p1 or p1 itself
3185		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3186		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT2);
3187		return p;
3188	}
3189	// p is the root of connected component that contains p1
3190	// p2 does not occur on the path from p to p1
3191	while ((r = q->d_parent) != p1 && r != p && r != q)
3192		q = r;
3193	if (r == p1) {
3194		// q is a child of p1 and an ancestor of p2 or p2 itself
3195		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3196		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3197		return q;
3198	} else if (likely(r == p)) {
3199		// both p2 and p1 are descendents of p
3200		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3201		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3202		return NULL;
3203	} else { // no common ancestor at the time we'd been called
3204		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3205		return ERR_PTR(-EXDEV);
3206	}
3207}
3208
3209/*
3210 * p1 and p2 should be directories on the same fs.
3211 */
3212struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
3213{
 
 
3214	if (p1 == p2) {
3215		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3216		return NULL;
3217	}
3218
3219	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
3220	return lock_two_directories(p1, p2);
3221}
3222EXPORT_SYMBOL(lock_rename);
3223
3224/*
3225 * c1 and p2 should be on the same fs.
3226 */
3227struct dentry *lock_rename_child(struct dentry *c1, struct dentry *p2)
3228{
3229	if (READ_ONCE(c1->d_parent) == p2) {
3230		/*
3231		 * hopefully won't need to touch ->s_vfs_rename_mutex at all.
3232		 */
3233		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3234		/*
3235		 * now that p2 is locked, nobody can move in or out of it,
3236		 * so the test below is safe.
3237		 */
3238		if (likely(c1->d_parent == p2))
3239			return NULL;
3240
3241		/*
3242		 * c1 got moved out of p2 while we'd been taking locks;
3243		 * unlock and fall back to slow case.
3244		 */
3245		inode_unlock(p2->d_inode);
3246	}
3247
3248	mutex_lock(&c1->d_sb->s_vfs_rename_mutex);
3249	/*
3250	 * nobody can move out of any directories on this fs.
3251	 */
3252	if (likely(c1->d_parent != p2))
3253		return lock_two_directories(c1->d_parent, p2);
3254
3255	/*
3256	 * c1 got moved into p2 while we were taking locks;
3257	 * we need p2 locked and ->s_vfs_rename_mutex unlocked,
3258	 * for consistency with lock_rename().
3259	 */
3260	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3261	mutex_unlock(&c1->d_sb->s_vfs_rename_mutex);
3262	return NULL;
3263}
3264EXPORT_SYMBOL(lock_rename_child);
3265
3266void unlock_rename(struct dentry *p1, struct dentry *p2)
3267{
3268	inode_unlock(p1->d_inode);
3269	if (p1 != p2) {
3270		inode_unlock(p2->d_inode);
3271		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3272	}
3273}
3274EXPORT_SYMBOL(unlock_rename);
3275
3276/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3277 * vfs_prepare_mode - prepare the mode to be used for a new inode
3278 * @idmap:	idmap of the mount the inode was found from
3279 * @dir:	parent directory of the new inode
3280 * @mode:	mode of the new inode
3281 * @mask_perms:	allowed permission by the vfs
3282 * @type:	type of file to be created
3283 *
3284 * This helper consolidates and enforces vfs restrictions on the @mode of a new
3285 * object to be created.
3286 *
3287 * Umask stripping depends on whether the filesystem supports POSIX ACLs (see
3288 * the kernel documentation for mode_strip_umask()). Moving umask stripping
3289 * after setgid stripping allows the same ordering for both non-POSIX ACL and
3290 * POSIX ACL supporting filesystems.
3291 *
3292 * Note that it's currently valid for @type to be 0 if a directory is created.
3293 * Filesystems raise that flag individually and we need to check whether each
3294 * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a
3295 * non-zero type.
3296 *
3297 * Returns: mode to be passed to the filesystem
3298 */
3299static inline umode_t vfs_prepare_mode(struct mnt_idmap *idmap,
3300				       const struct inode *dir, umode_t mode,
3301				       umode_t mask_perms, umode_t type)
3302{
3303	mode = mode_strip_sgid(idmap, dir, mode);
3304	mode = mode_strip_umask(dir, mode);
3305
3306	/*
3307	 * Apply the vfs mandated allowed permission mask and set the type of
3308	 * file to be created before we call into the filesystem.
3309	 */
3310	mode &= (mask_perms & ~S_IFMT);
3311	mode |= (type & S_IFMT);
3312
3313	return mode;
3314}
3315
3316/**
3317 * vfs_create - create new file
3318 * @idmap:	idmap of the mount the inode was found from
3319 * @dir:	inode of the parent directory
3320 * @dentry:	dentry of the child file
3321 * @mode:	mode of the child file
3322 * @want_excl:	whether the file must not yet exist
3323 *
3324 * Create a new file.
3325 *
3326 * If the inode has been found through an idmapped mount the idmap of
3327 * the vfsmount must be passed through @idmap. This function will then take
3328 * care to map the inode according to @idmap before checking permissions.
3329 * On non-idmapped mounts or if permission checking is to be performed on the
3330 * raw inode simply pass @nop_mnt_idmap.
3331 */
3332int vfs_create(struct mnt_idmap *idmap, struct inode *dir,
3333	       struct dentry *dentry, umode_t mode, bool want_excl)
3334{
3335	int error;
3336
3337	error = may_create(idmap, dir, dentry);
3338	if (error)
3339		return error;
3340
3341	if (!dir->i_op->create)
3342		return -EACCES;	/* shouldn't it be ENOSYS? */
3343
3344	mode = vfs_prepare_mode(idmap, dir, mode, S_IALLUGO, S_IFREG);
3345	error = security_inode_create(dir, dentry, mode);
3346	if (error)
3347		return error;
3348	error = dir->i_op->create(idmap, dir, dentry, mode, want_excl);
3349	if (!error)
3350		fsnotify_create(dir, dentry);
3351	return error;
3352}
3353EXPORT_SYMBOL(vfs_create);
3354
3355int vfs_mkobj(struct dentry *dentry, umode_t mode,
3356		int (*f)(struct dentry *, umode_t, void *),
3357		void *arg)
3358{
3359	struct inode *dir = dentry->d_parent->d_inode;
3360	int error = may_create(&nop_mnt_idmap, dir, dentry);
3361	if (error)
3362		return error;
3363
3364	mode &= S_IALLUGO;
3365	mode |= S_IFREG;
3366	error = security_inode_create(dir, dentry, mode);
3367	if (error)
3368		return error;
3369	error = f(dentry, mode, arg);
3370	if (!error)
3371		fsnotify_create(dir, dentry);
3372	return error;
3373}
3374EXPORT_SYMBOL(vfs_mkobj);
3375
3376bool may_open_dev(const struct path *path)
3377{
3378	return !(path->mnt->mnt_flags & MNT_NODEV) &&
3379		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
3380}
3381
3382static int may_open(struct mnt_idmap *idmap, const struct path *path,
3383		    int acc_mode, int flag)
3384{
3385	struct dentry *dentry = path->dentry;
3386	struct inode *inode = dentry->d_inode;
3387	int error;
3388
3389	if (!inode)
3390		return -ENOENT;
3391
3392	switch (inode->i_mode & S_IFMT) {
3393	case S_IFLNK:
3394		return -ELOOP;
3395	case S_IFDIR:
3396		if (acc_mode & MAY_WRITE)
3397			return -EISDIR;
3398		if (acc_mode & MAY_EXEC)
3399			return -EACCES;
3400		break;
3401	case S_IFBLK:
3402	case S_IFCHR:
3403		if (!may_open_dev(path))
3404			return -EACCES;
3405		fallthrough;
3406	case S_IFIFO:
3407	case S_IFSOCK:
3408		if (acc_mode & MAY_EXEC)
3409			return -EACCES;
3410		flag &= ~O_TRUNC;
3411		break;
3412	case S_IFREG:
3413		if ((acc_mode & MAY_EXEC) && path_noexec(path))
3414			return -EACCES;
3415		break;
3416	}
3417
3418	error = inode_permission(idmap, inode, MAY_OPEN | acc_mode);
3419	if (error)
3420		return error;
3421
3422	/*
3423	 * An append-only file must be opened in append mode for writing.
3424	 */
3425	if (IS_APPEND(inode)) {
3426		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
3427			return -EPERM;
3428		if (flag & O_TRUNC)
3429			return -EPERM;
3430	}
3431
3432	/* O_NOATIME can only be set by the owner or superuser */
3433	if (flag & O_NOATIME && !inode_owner_or_capable(idmap, inode))
3434		return -EPERM;
3435
3436	return 0;
3437}
3438
3439static int handle_truncate(struct mnt_idmap *idmap, struct file *filp)
3440{
3441	const struct path *path = &filp->f_path;
3442	struct inode *inode = path->dentry->d_inode;
3443	int error = get_write_access(inode);
3444	if (error)
3445		return error;
3446
3447	error = security_file_truncate(filp);
3448	if (!error) {
3449		error = do_truncate(idmap, path->dentry, 0,
3450				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3451				    filp);
3452	}
3453	put_write_access(inode);
3454	return error;
3455}
3456
3457static inline int open_to_namei_flags(int flag)
3458{
3459	if ((flag & O_ACCMODE) == 3)
3460		flag--;
3461	return flag;
3462}
3463
3464static int may_o_create(struct mnt_idmap *idmap,
3465			const struct path *dir, struct dentry *dentry,
3466			umode_t mode)
3467{
3468	int error = security_path_mknod(dir, dentry, mode, 0);
3469	if (error)
3470		return error;
3471
3472	if (!fsuidgid_has_mapping(dir->dentry->d_sb, idmap))
3473		return -EOVERFLOW;
3474
3475	error = inode_permission(idmap, dir->dentry->d_inode,
3476				 MAY_WRITE | MAY_EXEC);
3477	if (error)
3478		return error;
3479
3480	return security_inode_create(dir->dentry->d_inode, dentry, mode);
3481}
3482
3483/*
3484 * Attempt to atomically look up, create and open a file from a negative
3485 * dentry.
3486 *
3487 * Returns 0 if successful.  The file will have been created and attached to
3488 * @file by the filesystem calling finish_open().
3489 *
3490 * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3491 * be set.  The caller will need to perform the open themselves.  @path will
3492 * have been updated to point to the new dentry.  This may be negative.
3493 *
3494 * Returns an error code otherwise.
3495 */
3496static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
3497				  struct file *file,
3498				  int open_flag, umode_t mode)
3499{
3500	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3501	struct inode *dir =  nd->path.dentry->d_inode;
3502	int error;
3503
3504	if (nd->flags & LOOKUP_DIRECTORY)
3505		open_flag |= O_DIRECTORY;
3506
3507	file->f_path.dentry = DENTRY_NOT_SET;
3508	file->f_path.mnt = nd->path.mnt;
3509	error = dir->i_op->atomic_open(dir, dentry, file,
3510				       open_to_namei_flags(open_flag), mode);
3511	d_lookup_done(dentry);
3512	if (!error) {
3513		if (file->f_mode & FMODE_OPENED) {
3514			if (unlikely(dentry != file->f_path.dentry)) {
3515				dput(dentry);
3516				dentry = dget(file->f_path.dentry);
3517			}
3518		} else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3519			error = -EIO;
3520		} else {
3521			if (file->f_path.dentry) {
3522				dput(dentry);
3523				dentry = file->f_path.dentry;
3524			}
3525			if (unlikely(d_is_negative(dentry)))
3526				error = -ENOENT;
3527		}
3528	}
3529	if (error) {
3530		dput(dentry);
3531		dentry = ERR_PTR(error);
3532	}
3533	return dentry;
3534}
3535
3536/*
3537 * Look up and maybe create and open the last component.
3538 *
3539 * Must be called with parent locked (exclusive in O_CREAT case).
3540 *
3541 * Returns 0 on success, that is, if
3542 *  the file was successfully atomically created (if necessary) and opened, or
3543 *  the file was not completely opened at this time, though lookups and
3544 *  creations were performed.
3545 * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3546 * In the latter case dentry returned in @path might be negative if O_CREAT
3547 * hadn't been specified.
3548 *
3549 * An error code is returned on failure.
3550 */
3551static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3552				  const struct open_flags *op,
3553				  bool got_write)
3554{
3555	struct mnt_idmap *idmap;
3556	struct dentry *dir = nd->path.dentry;
3557	struct inode *dir_inode = dir->d_inode;
3558	int open_flag = op->open_flag;
3559	struct dentry *dentry;
3560	int error, create_error = 0;
3561	umode_t mode = op->mode;
3562	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3563
3564	if (unlikely(IS_DEADDIR(dir_inode)))
3565		return ERR_PTR(-ENOENT);
3566
3567	file->f_mode &= ~FMODE_CREATED;
3568	dentry = d_lookup(dir, &nd->last);
3569	for (;;) {
3570		if (!dentry) {
3571			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3572			if (IS_ERR(dentry))
3573				return dentry;
3574		}
3575		if (d_in_lookup(dentry))
3576			break;
3577
3578		error = d_revalidate(dentry, nd->flags);
3579		if (likely(error > 0))
3580			break;
3581		if (error)
3582			goto out_dput;
3583		d_invalidate(dentry);
3584		dput(dentry);
3585		dentry = NULL;
3586	}
3587	if (dentry->d_inode) {
3588		/* Cached positive dentry: will open in f_op->open */
3589		return dentry;
3590	}
3591
3592	if (open_flag & O_CREAT)
3593		audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3594
3595	/*
3596	 * Checking write permission is tricky, bacuse we don't know if we are
3597	 * going to actually need it: O_CREAT opens should work as long as the
3598	 * file exists.  But checking existence breaks atomicity.  The trick is
3599	 * to check access and if not granted clear O_CREAT from the flags.
3600	 *
3601	 * Another problem is returing the "right" error value (e.g. for an
3602	 * O_EXCL open we want to return EEXIST not EROFS).
3603	 */
3604	if (unlikely(!got_write))
3605		open_flag &= ~O_TRUNC;
3606	idmap = mnt_idmap(nd->path.mnt);
3607	if (open_flag & O_CREAT) {
3608		if (open_flag & O_EXCL)
3609			open_flag &= ~O_TRUNC;
3610		mode = vfs_prepare_mode(idmap, dir->d_inode, mode, mode, mode);
3611		if (likely(got_write))
3612			create_error = may_o_create(idmap, &nd->path,
3613						    dentry, mode);
3614		else
3615			create_error = -EROFS;
3616	}
3617	if (create_error)
3618		open_flag &= ~O_CREAT;
3619	if (dir_inode->i_op->atomic_open) {
3620		dentry = atomic_open(nd, dentry, file, open_flag, mode);
3621		if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3622			dentry = ERR_PTR(create_error);
3623		return dentry;
3624	}
3625
3626	if (d_in_lookup(dentry)) {
3627		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3628							     nd->flags);
3629		d_lookup_done(dentry);
3630		if (unlikely(res)) {
3631			if (IS_ERR(res)) {
3632				error = PTR_ERR(res);
3633				goto out_dput;
3634			}
3635			dput(dentry);
3636			dentry = res;
3637		}
3638	}
3639
3640	/* Negative dentry, just create the file */
3641	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3642		file->f_mode |= FMODE_CREATED;
3643		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3644		if (!dir_inode->i_op->create) {
3645			error = -EACCES;
3646			goto out_dput;
3647		}
3648
3649		error = dir_inode->i_op->create(idmap, dir_inode, dentry,
3650						mode, open_flag & O_EXCL);
3651		if (error)
3652			goto out_dput;
3653	}
3654	if (unlikely(create_error) && !dentry->d_inode) {
3655		error = create_error;
3656		goto out_dput;
3657	}
3658	return dentry;
3659
3660out_dput:
3661	dput(dentry);
3662	return ERR_PTR(error);
3663}
3664
3665static inline bool trailing_slashes(struct nameidata *nd)
3666{
3667	return (bool)nd->last.name[nd->last.len];
3668}
3669
3670static struct dentry *lookup_fast_for_open(struct nameidata *nd, int open_flag)
3671{
3672	struct dentry *dentry;
3673
3674	if (open_flag & O_CREAT) {
3675		if (trailing_slashes(nd))
3676			return ERR_PTR(-EISDIR);
3677
3678		/* Don't bother on an O_EXCL create */
3679		if (open_flag & O_EXCL)
3680			return NULL;
3681	}
3682
3683	if (trailing_slashes(nd))
3684		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3685
3686	dentry = lookup_fast(nd);
3687	if (IS_ERR_OR_NULL(dentry))
3688		return dentry;
3689
3690	if (open_flag & O_CREAT) {
3691		/* Discard negative dentries. Need inode_lock to do the create */
3692		if (!dentry->d_inode) {
3693			if (!(nd->flags & LOOKUP_RCU))
3694				dput(dentry);
3695			dentry = NULL;
3696		}
3697	}
3698	return dentry;
3699}
3700
3701static const char *open_last_lookups(struct nameidata *nd,
3702		   struct file *file, const struct open_flags *op)
3703{
3704	struct dentry *dir = nd->path.dentry;
3705	int open_flag = op->open_flag;
3706	bool got_write = false;
3707	struct dentry *dentry;
3708	const char *res;
3709
3710	nd->flags |= op->intent;
3711
3712	if (nd->last_type != LAST_NORM) {
3713		if (nd->depth)
3714			put_link(nd);
3715		return handle_dots(nd, nd->last_type);
3716	}
3717
3718	/* We _can_ be in RCU mode here */
3719	dentry = lookup_fast_for_open(nd, open_flag);
3720	if (IS_ERR(dentry))
3721		return ERR_CAST(dentry);
3722
3723	if (likely(dentry))
3724		goto finish_lookup;
 
 
3725
3726	if (!(open_flag & O_CREAT)) {
3727		if (WARN_ON_ONCE(nd->flags & LOOKUP_RCU))
3728			return ERR_PTR(-ECHILD);
3729	} else {
 
3730		if (nd->flags & LOOKUP_RCU) {
3731			if (!try_to_unlazy(nd))
3732				return ERR_PTR(-ECHILD);
3733		}
 
 
 
 
3734	}
3735
3736	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3737		got_write = !mnt_want_write(nd->path.mnt);
3738		/*
3739		 * do _not_ fail yet - we might not need that or fail with
3740		 * a different error; let lookup_open() decide; we'll be
3741		 * dropping this one anyway.
3742		 */
3743	}
3744	if (open_flag & O_CREAT)
3745		inode_lock(dir->d_inode);
3746	else
3747		inode_lock_shared(dir->d_inode);
3748	dentry = lookup_open(nd, file, op, got_write);
3749	if (!IS_ERR(dentry)) {
3750		if (file->f_mode & FMODE_CREATED)
3751			fsnotify_create(dir->d_inode, dentry);
3752		if (file->f_mode & FMODE_OPENED)
3753			fsnotify_open(file);
3754	}
3755	if (open_flag & O_CREAT)
3756		inode_unlock(dir->d_inode);
3757	else
3758		inode_unlock_shared(dir->d_inode);
3759
3760	if (got_write)
3761		mnt_drop_write(nd->path.mnt);
3762
3763	if (IS_ERR(dentry))
3764		return ERR_CAST(dentry);
3765
3766	if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3767		dput(nd->path.dentry);
3768		nd->path.dentry = dentry;
3769		return NULL;
3770	}
3771
3772finish_lookup:
3773	if (nd->depth)
3774		put_link(nd);
3775	res = step_into(nd, WALK_TRAILING, dentry);
3776	if (unlikely(res))
3777		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3778	return res;
3779}
3780
3781/*
3782 * Handle the last step of open()
3783 */
3784static int do_open(struct nameidata *nd,
3785		   struct file *file, const struct open_flags *op)
3786{
3787	struct mnt_idmap *idmap;
3788	int open_flag = op->open_flag;
3789	bool do_truncate;
3790	int acc_mode;
3791	int error;
3792
3793	if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3794		error = complete_walk(nd);
3795		if (error)
3796			return error;
3797	}
3798	if (!(file->f_mode & FMODE_CREATED))
3799		audit_inode(nd->name, nd->path.dentry, 0);
3800	idmap = mnt_idmap(nd->path.mnt);
3801	if (open_flag & O_CREAT) {
3802		if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3803			return -EEXIST;
3804		if (d_is_dir(nd->path.dentry))
3805			return -EISDIR;
3806		error = may_create_in_sticky(idmap, nd,
3807					     d_backing_inode(nd->path.dentry));
3808		if (unlikely(error))
3809			return error;
3810	}
3811	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3812		return -ENOTDIR;
3813
3814	do_truncate = false;
3815	acc_mode = op->acc_mode;
3816	if (file->f_mode & FMODE_CREATED) {
3817		/* Don't check for write permission, don't truncate */
3818		open_flag &= ~O_TRUNC;
3819		acc_mode = 0;
3820	} else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3821		error = mnt_want_write(nd->path.mnt);
3822		if (error)
3823			return error;
3824		do_truncate = true;
3825	}
3826	error = may_open(idmap, &nd->path, acc_mode, open_flag);
3827	if (!error && !(file->f_mode & FMODE_OPENED))
3828		error = vfs_open(&nd->path, file);
3829	if (!error)
3830		error = security_file_post_open(file, op->acc_mode);
3831	if (!error && do_truncate)
3832		error = handle_truncate(idmap, file);
3833	if (unlikely(error > 0)) {
3834		WARN_ON(1);
3835		error = -EINVAL;
3836	}
3837	if (do_truncate)
3838		mnt_drop_write(nd->path.mnt);
3839	return error;
3840}
3841
3842/**
3843 * vfs_tmpfile - create tmpfile
3844 * @idmap:	idmap of the mount the inode was found from
3845 * @parentpath:	pointer to the path of the base directory
3846 * @file:	file descriptor of the new tmpfile
3847 * @mode:	mode of the new tmpfile
 
3848 *
3849 * Create a temporary file.
3850 *
3851 * If the inode has been found through an idmapped mount the idmap of
3852 * the vfsmount must be passed through @idmap. This function will then take
3853 * care to map the inode according to @idmap before checking permissions.
3854 * On non-idmapped mounts or if permission checking is to be performed on the
3855 * raw inode simply pass @nop_mnt_idmap.
3856 */
3857int vfs_tmpfile(struct mnt_idmap *idmap,
3858		const struct path *parentpath,
3859		struct file *file, umode_t mode)
3860{
3861	struct dentry *child;
3862	struct inode *dir = d_inode(parentpath->dentry);
3863	struct inode *inode;
3864	int error;
3865	int open_flag = file->f_flags;
3866
3867	/* we want directory to be writable */
3868	error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3869	if (error)
3870		return error;
3871	if (!dir->i_op->tmpfile)
3872		return -EOPNOTSUPP;
3873	child = d_alloc(parentpath->dentry, &slash_name);
3874	if (unlikely(!child))
3875		return -ENOMEM;
3876	file->f_path.mnt = parentpath->mnt;
3877	file->f_path.dentry = child;
3878	mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
3879	error = dir->i_op->tmpfile(idmap, dir, file, mode);
3880	dput(child);
3881	if (file->f_mode & FMODE_OPENED)
3882		fsnotify_open(file);
3883	if (error)
3884		return error;
3885	/* Don't check for other permissions, the inode was just created */
3886	error = may_open(idmap, &file->f_path, 0, file->f_flags);
3887	if (error)
3888		return error;
3889	inode = file_inode(file);
3890	if (!(open_flag & O_EXCL)) {
3891		spin_lock(&inode->i_lock);
3892		inode->i_state |= I_LINKABLE;
3893		spin_unlock(&inode->i_lock);
3894	}
3895	security_inode_post_create_tmpfile(idmap, inode);
3896	return 0;
3897}
3898
3899/**
3900 * kernel_tmpfile_open - open a tmpfile for kernel internal use
3901 * @idmap:	idmap of the mount the inode was found from
3902 * @parentpath:	path of the base directory
3903 * @mode:	mode of the new tmpfile
3904 * @open_flag:	flags
3905 * @cred:	credentials for open
3906 *
3907 * Create and open a temporary file.  The file is not accounted in nr_files,
3908 * hence this is only for kernel internal use, and must not be installed into
3909 * file tables or such.
3910 */
3911struct file *kernel_tmpfile_open(struct mnt_idmap *idmap,
3912				 const struct path *parentpath,
3913				 umode_t mode, int open_flag,
3914				 const struct cred *cred)
3915{
3916	struct file *file;
3917	int error;
3918
3919	file = alloc_empty_file_noaccount(open_flag, cred);
3920	if (IS_ERR(file))
3921		return file;
3922
3923	error = vfs_tmpfile(idmap, parentpath, file, mode);
3924	if (error) {
3925		fput(file);
3926		file = ERR_PTR(error);
3927	}
3928	return file;
3929}
3930EXPORT_SYMBOL(kernel_tmpfile_open);
3931
3932static int do_tmpfile(struct nameidata *nd, unsigned flags,
3933		const struct open_flags *op,
3934		struct file *file)
3935{
 
3936	struct path path;
3937	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3938
3939	if (unlikely(error))
3940		return error;
3941	error = mnt_want_write(path.mnt);
3942	if (unlikely(error))
3943		goto out;
3944	error = vfs_tmpfile(mnt_idmap(path.mnt), &path, file, op->mode);
 
3945	if (error)
3946		goto out2;
3947	audit_inode(nd->name, file->f_path.dentry, 0);
3948out2:
3949	mnt_drop_write(path.mnt);
3950out:
3951	path_put(&path);
3952	return error;
3953}
3954
3955static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3956{
3957	struct path path;
3958	int error = path_lookupat(nd, flags, &path);
3959	if (!error) {
3960		audit_inode(nd->name, path.dentry, 0);
3961		error = vfs_open(&path, file);
3962		path_put(&path);
3963	}
3964	return error;
3965}
3966
3967static struct file *path_openat(struct nameidata *nd,
3968			const struct open_flags *op, unsigned flags)
3969{
3970	struct file *file;
3971	int error;
3972
3973	file = alloc_empty_file(op->open_flag, current_cred());
3974	if (IS_ERR(file))
3975		return file;
3976
3977	if (unlikely(file->f_flags & __O_TMPFILE)) {
3978		error = do_tmpfile(nd, flags, op, file);
3979	} else if (unlikely(file->f_flags & O_PATH)) {
3980		error = do_o_path(nd, flags, file);
3981	} else {
3982		const char *s = path_init(nd, flags);
3983		while (!(error = link_path_walk(s, nd)) &&
3984		       (s = open_last_lookups(nd, file, op)) != NULL)
3985			;
3986		if (!error)
3987			error = do_open(nd, file, op);
3988		terminate_walk(nd);
3989	}
3990	if (likely(!error)) {
3991		if (likely(file->f_mode & FMODE_OPENED))
3992			return file;
3993		WARN_ON(1);
3994		error = -EINVAL;
3995	}
3996	fput(file);
3997	if (error == -EOPENSTALE) {
3998		if (flags & LOOKUP_RCU)
3999			error = -ECHILD;
4000		else
4001			error = -ESTALE;
4002	}
4003	return ERR_PTR(error);
4004}
4005
4006struct file *do_filp_open(int dfd, struct filename *pathname,
4007		const struct open_flags *op)
4008{
4009	struct nameidata nd;
4010	int flags = op->lookup_flags;
4011	struct file *filp;
4012
4013	set_nameidata(&nd, dfd, pathname, NULL);
4014	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
4015	if (unlikely(filp == ERR_PTR(-ECHILD)))
4016		filp = path_openat(&nd, op, flags);
4017	if (unlikely(filp == ERR_PTR(-ESTALE)))
4018		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
4019	restore_nameidata();
4020	return filp;
4021}
4022
4023struct file *do_file_open_root(const struct path *root,
4024		const char *name, const struct open_flags *op)
4025{
4026	struct nameidata nd;
4027	struct file *file;
4028	struct filename *filename;
4029	int flags = op->lookup_flags;
4030
4031	if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN)
4032		return ERR_PTR(-ELOOP);
4033
4034	filename = getname_kernel(name);
4035	if (IS_ERR(filename))
4036		return ERR_CAST(filename);
4037
4038	set_nameidata(&nd, -1, filename, root);
4039	file = path_openat(&nd, op, flags | LOOKUP_RCU);
4040	if (unlikely(file == ERR_PTR(-ECHILD)))
4041		file = path_openat(&nd, op, flags);
4042	if (unlikely(file == ERR_PTR(-ESTALE)))
4043		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
4044	restore_nameidata();
4045	putname(filename);
4046	return file;
4047}
4048
4049static struct dentry *filename_create(int dfd, struct filename *name,
4050				      struct path *path, unsigned int lookup_flags)
4051{
4052	struct dentry *dentry = ERR_PTR(-EEXIST);
4053	struct qstr last;
4054	bool want_dir = lookup_flags & LOOKUP_DIRECTORY;
4055	unsigned int reval_flag = lookup_flags & LOOKUP_REVAL;
4056	unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL;
4057	int type;
4058	int err2;
4059	int error;
4060
4061	error = filename_parentat(dfd, name, reval_flag, path, &last, &type);
4062	if (error)
4063		return ERR_PTR(error);
4064
4065	/*
4066	 * Yucky last component or no last component at all?
4067	 * (foo/., foo/.., /////)
4068	 */
4069	if (unlikely(type != LAST_NORM))
4070		goto out;
4071
4072	/* don't fail immediately if it's r/o, at least try to report other errors */
4073	err2 = mnt_want_write(path->mnt);
4074	/*
4075	 * Do the final lookup.  Suppress 'create' if there is a trailing
4076	 * '/', and a directory wasn't requested.
4077	 */
4078	if (last.name[last.len] && !want_dir)
4079		create_flags = 0;
4080	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
4081	dentry = lookup_one_qstr_excl(&last, path->dentry,
4082				      reval_flag | create_flags);
4083	if (IS_ERR(dentry))
4084		goto unlock;
4085
4086	error = -EEXIST;
4087	if (d_is_positive(dentry))
4088		goto fail;
4089
4090	/*
4091	 * Special case - lookup gave negative, but... we had foo/bar/
4092	 * From the vfs_mknod() POV we just have a negative dentry -
4093	 * all is fine. Let's be bastards - you had / on the end, you've
4094	 * been asking for (non-existent) directory. -ENOENT for you.
4095	 */
4096	if (unlikely(!create_flags)) {
4097		error = -ENOENT;
4098		goto fail;
4099	}
4100	if (unlikely(err2)) {
4101		error = err2;
4102		goto fail;
4103	}
4104	return dentry;
4105fail:
4106	dput(dentry);
4107	dentry = ERR_PTR(error);
4108unlock:
4109	inode_unlock(path->dentry->d_inode);
4110	if (!err2)
4111		mnt_drop_write(path->mnt);
4112out:
4113	path_put(path);
4114	return dentry;
4115}
4116
4117struct dentry *kern_path_create(int dfd, const char *pathname,
4118				struct path *path, unsigned int lookup_flags)
4119{
4120	struct filename *filename = getname_kernel(pathname);
4121	struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
4122
4123	putname(filename);
4124	return res;
4125}
4126EXPORT_SYMBOL(kern_path_create);
4127
4128void done_path_create(struct path *path, struct dentry *dentry)
4129{
4130	dput(dentry);
4131	inode_unlock(path->dentry->d_inode);
4132	mnt_drop_write(path->mnt);
4133	path_put(path);
4134}
4135EXPORT_SYMBOL(done_path_create);
4136
4137inline struct dentry *user_path_create(int dfd, const char __user *pathname,
4138				struct path *path, unsigned int lookup_flags)
4139{
4140	struct filename *filename = getname(pathname);
4141	struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
4142
4143	putname(filename);
4144	return res;
4145}
4146EXPORT_SYMBOL(user_path_create);
4147
4148/**
4149 * vfs_mknod - create device node or file
4150 * @idmap:	idmap of the mount the inode was found from
4151 * @dir:	inode of the parent directory
4152 * @dentry:	dentry of the child device node
4153 * @mode:	mode of the child device node
4154 * @dev:	device number of device to create
4155 *
4156 * Create a device node or file.
4157 *
4158 * If the inode has been found through an idmapped mount the idmap of
4159 * the vfsmount must be passed through @idmap. This function will then take
4160 * care to map the inode according to @idmap before checking permissions.
4161 * On non-idmapped mounts or if permission checking is to be performed on the
4162 * raw inode simply pass @nop_mnt_idmap.
4163 */
4164int vfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
4165	      struct dentry *dentry, umode_t mode, dev_t dev)
4166{
4167	bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
4168	int error = may_create(idmap, dir, dentry);
4169
4170	if (error)
4171		return error;
4172
4173	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
4174	    !capable(CAP_MKNOD))
4175		return -EPERM;
4176
4177	if (!dir->i_op->mknod)
4178		return -EPERM;
4179
4180	mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
4181	error = devcgroup_inode_mknod(mode, dev);
4182	if (error)
4183		return error;
4184
4185	error = security_inode_mknod(dir, dentry, mode, dev);
4186	if (error)
4187		return error;
4188
4189	error = dir->i_op->mknod(idmap, dir, dentry, mode, dev);
4190	if (!error)
4191		fsnotify_create(dir, dentry);
4192	return error;
4193}
4194EXPORT_SYMBOL(vfs_mknod);
4195
4196static int may_mknod(umode_t mode)
4197{
4198	switch (mode & S_IFMT) {
4199	case S_IFREG:
4200	case S_IFCHR:
4201	case S_IFBLK:
4202	case S_IFIFO:
4203	case S_IFSOCK:
4204	case 0: /* zero mode translates to S_IFREG */
4205		return 0;
4206	case S_IFDIR:
4207		return -EPERM;
4208	default:
4209		return -EINVAL;
4210	}
4211}
4212
4213static int do_mknodat(int dfd, struct filename *name, umode_t mode,
4214		unsigned int dev)
4215{
4216	struct mnt_idmap *idmap;
4217	struct dentry *dentry;
4218	struct path path;
4219	int error;
4220	unsigned int lookup_flags = 0;
4221
4222	error = may_mknod(mode);
4223	if (error)
4224		goto out1;
4225retry:
4226	dentry = filename_create(dfd, name, &path, lookup_flags);
4227	error = PTR_ERR(dentry);
4228	if (IS_ERR(dentry))
4229		goto out1;
4230
4231	error = security_path_mknod(&path, dentry,
4232			mode_strip_umask(path.dentry->d_inode, mode), dev);
4233	if (error)
4234		goto out2;
4235
4236	idmap = mnt_idmap(path.mnt);
4237	switch (mode & S_IFMT) {
4238		case 0: case S_IFREG:
4239			error = vfs_create(idmap, path.dentry->d_inode,
4240					   dentry, mode, true);
4241			if (!error)
4242				security_path_post_mknod(idmap, dentry);
4243			break;
4244		case S_IFCHR: case S_IFBLK:
4245			error = vfs_mknod(idmap, path.dentry->d_inode,
4246					  dentry, mode, new_decode_dev(dev));
4247			break;
4248		case S_IFIFO: case S_IFSOCK:
4249			error = vfs_mknod(idmap, path.dentry->d_inode,
4250					  dentry, mode, 0);
4251			break;
4252	}
4253out2:
4254	done_path_create(&path, dentry);
4255	if (retry_estale(error, lookup_flags)) {
4256		lookup_flags |= LOOKUP_REVAL;
4257		goto retry;
4258	}
4259out1:
4260	putname(name);
4261	return error;
4262}
4263
4264SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
4265		unsigned int, dev)
4266{
4267	return do_mknodat(dfd, getname(filename), mode, dev);
4268}
4269
4270SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
4271{
4272	return do_mknodat(AT_FDCWD, getname(filename), mode, dev);
4273}
4274
4275/**
4276 * vfs_mkdir - create directory
4277 * @idmap:	idmap of the mount the inode was found from
4278 * @dir:	inode of the parent directory
4279 * @dentry:	dentry of the child directory
4280 * @mode:	mode of the child directory
4281 *
4282 * Create a directory.
4283 *
4284 * If the inode has been found through an idmapped mount the idmap of
4285 * the vfsmount must be passed through @idmap. This function will then take
4286 * care to map the inode according to @idmap before checking permissions.
4287 * On non-idmapped mounts or if permission checking is to be performed on the
4288 * raw inode simply pass @nop_mnt_idmap.
4289 */
4290int vfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
4291	      struct dentry *dentry, umode_t mode)
4292{
4293	int error;
4294	unsigned max_links = dir->i_sb->s_max_links;
4295
4296	error = may_create(idmap, dir, dentry);
4297	if (error)
4298		return error;
4299
4300	if (!dir->i_op->mkdir)
4301		return -EPERM;
4302
4303	mode = vfs_prepare_mode(idmap, dir, mode, S_IRWXUGO | S_ISVTX, 0);
4304	error = security_inode_mkdir(dir, dentry, mode);
4305	if (error)
4306		return error;
4307
4308	if (max_links && dir->i_nlink >= max_links)
4309		return -EMLINK;
4310
4311	error = dir->i_op->mkdir(idmap, dir, dentry, mode);
4312	if (!error)
4313		fsnotify_mkdir(dir, dentry);
4314	return error;
4315}
4316EXPORT_SYMBOL(vfs_mkdir);
4317
4318int do_mkdirat(int dfd, struct filename *name, umode_t mode)
4319{
4320	struct dentry *dentry;
4321	struct path path;
4322	int error;
4323	unsigned int lookup_flags = LOOKUP_DIRECTORY;
4324
4325retry:
4326	dentry = filename_create(dfd, name, &path, lookup_flags);
4327	error = PTR_ERR(dentry);
4328	if (IS_ERR(dentry))
4329		goto out_putname;
4330
4331	error = security_path_mkdir(&path, dentry,
4332			mode_strip_umask(path.dentry->d_inode, mode));
4333	if (!error) {
4334		error = vfs_mkdir(mnt_idmap(path.mnt), path.dentry->d_inode,
4335				  dentry, mode);
 
 
4336	}
4337	done_path_create(&path, dentry);
4338	if (retry_estale(error, lookup_flags)) {
4339		lookup_flags |= LOOKUP_REVAL;
4340		goto retry;
4341	}
4342out_putname:
4343	putname(name);
4344	return error;
4345}
4346
4347SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
4348{
4349	return do_mkdirat(dfd, getname(pathname), mode);
4350}
4351
4352SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
4353{
4354	return do_mkdirat(AT_FDCWD, getname(pathname), mode);
4355}
4356
4357/**
4358 * vfs_rmdir - remove directory
4359 * @idmap:	idmap of the mount the inode was found from
4360 * @dir:	inode of the parent directory
4361 * @dentry:	dentry of the child directory
4362 *
4363 * Remove a directory.
4364 *
4365 * If the inode has been found through an idmapped mount the idmap of
4366 * the vfsmount must be passed through @idmap. This function will then take
4367 * care to map the inode according to @idmap before checking permissions.
4368 * On non-idmapped mounts or if permission checking is to be performed on the
4369 * raw inode simply pass @nop_mnt_idmap.
4370 */
4371int vfs_rmdir(struct mnt_idmap *idmap, struct inode *dir,
4372		     struct dentry *dentry)
4373{
4374	int error = may_delete(idmap, dir, dentry, 1);
4375
4376	if (error)
4377		return error;
4378
4379	if (!dir->i_op->rmdir)
4380		return -EPERM;
4381
4382	dget(dentry);
4383	inode_lock(dentry->d_inode);
4384
4385	error = -EBUSY;
4386	if (is_local_mountpoint(dentry) ||
4387	    (dentry->d_inode->i_flags & S_KERNEL_FILE))
4388		goto out;
4389
4390	error = security_inode_rmdir(dir, dentry);
4391	if (error)
4392		goto out;
4393
4394	error = dir->i_op->rmdir(dir, dentry);
4395	if (error)
4396		goto out;
4397
4398	shrink_dcache_parent(dentry);
4399	dentry->d_inode->i_flags |= S_DEAD;
4400	dont_mount(dentry);
4401	detach_mounts(dentry);
4402
4403out:
4404	inode_unlock(dentry->d_inode);
4405	dput(dentry);
4406	if (!error)
4407		d_delete_notify(dir, dentry);
4408	return error;
4409}
4410EXPORT_SYMBOL(vfs_rmdir);
4411
4412int do_rmdir(int dfd, struct filename *name)
4413{
 
4414	int error;
4415	struct dentry *dentry;
4416	struct path path;
4417	struct qstr last;
4418	int type;
4419	unsigned int lookup_flags = 0;
4420retry:
4421	error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4422	if (error)
4423		goto exit1;
4424
4425	switch (type) {
4426	case LAST_DOTDOT:
4427		error = -ENOTEMPTY;
4428		goto exit2;
4429	case LAST_DOT:
4430		error = -EINVAL;
4431		goto exit2;
4432	case LAST_ROOT:
4433		error = -EBUSY;
4434		goto exit2;
4435	}
4436
4437	error = mnt_want_write(path.mnt);
4438	if (error)
4439		goto exit2;
4440
4441	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4442	dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4443	error = PTR_ERR(dentry);
4444	if (IS_ERR(dentry))
4445		goto exit3;
4446	if (!dentry->d_inode) {
4447		error = -ENOENT;
4448		goto exit4;
4449	}
4450	error = security_path_rmdir(&path, dentry);
4451	if (error)
4452		goto exit4;
4453	error = vfs_rmdir(mnt_idmap(path.mnt), path.dentry->d_inode, dentry);
 
4454exit4:
4455	dput(dentry);
4456exit3:
4457	inode_unlock(path.dentry->d_inode);
4458	mnt_drop_write(path.mnt);
4459exit2:
4460	path_put(&path);
4461	if (retry_estale(error, lookup_flags)) {
4462		lookup_flags |= LOOKUP_REVAL;
4463		goto retry;
4464	}
4465exit1:
4466	putname(name);
4467	return error;
4468}
4469
4470SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
4471{
4472	return do_rmdir(AT_FDCWD, getname(pathname));
4473}
4474
4475/**
4476 * vfs_unlink - unlink a filesystem object
4477 * @idmap:	idmap of the mount the inode was found from
4478 * @dir:	parent directory
4479 * @dentry:	victim
4480 * @delegated_inode: returns victim inode, if the inode is delegated.
4481 *
4482 * The caller must hold dir->i_mutex.
4483 *
4484 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
4485 * return a reference to the inode in delegated_inode.  The caller
4486 * should then break the delegation on that inode and retry.  Because
4487 * breaking a delegation may take a long time, the caller should drop
4488 * dir->i_mutex before doing so.
4489 *
4490 * Alternatively, a caller may pass NULL for delegated_inode.  This may
4491 * be appropriate for callers that expect the underlying filesystem not
4492 * to be NFS exported.
4493 *
4494 * If the inode has been found through an idmapped mount the idmap of
4495 * the vfsmount must be passed through @idmap. This function will then take
4496 * care to map the inode according to @idmap before checking permissions.
4497 * On non-idmapped mounts or if permission checking is to be performed on the
4498 * raw inode simply pass @nop_mnt_idmap.
4499 */
4500int vfs_unlink(struct mnt_idmap *idmap, struct inode *dir,
4501	       struct dentry *dentry, struct inode **delegated_inode)
4502{
4503	struct inode *target = dentry->d_inode;
4504	int error = may_delete(idmap, dir, dentry, 0);
4505
4506	if (error)
4507		return error;
4508
4509	if (!dir->i_op->unlink)
4510		return -EPERM;
4511
4512	inode_lock(target);
4513	if (IS_SWAPFILE(target))
4514		error = -EPERM;
4515	else if (is_local_mountpoint(dentry))
4516		error = -EBUSY;
4517	else {
4518		error = security_inode_unlink(dir, dentry);
4519		if (!error) {
4520			error = try_break_deleg(target, delegated_inode);
4521			if (error)
4522				goto out;
4523			error = dir->i_op->unlink(dir, dentry);
4524			if (!error) {
4525				dont_mount(dentry);
4526				detach_mounts(dentry);
4527			}
4528		}
4529	}
4530out:
4531	inode_unlock(target);
4532
4533	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
4534	if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) {
4535		fsnotify_unlink(dir, dentry);
4536	} else if (!error) {
4537		fsnotify_link_count(target);
4538		d_delete_notify(dir, dentry);
4539	}
4540
4541	return error;
4542}
4543EXPORT_SYMBOL(vfs_unlink);
4544
4545/*
4546 * Make sure that the actual truncation of the file will occur outside its
4547 * directory's i_mutex.  Truncate can take a long time if there is a lot of
4548 * writeout happening, and we don't want to prevent access to the directory
4549 * while waiting on the I/O.
4550 */
4551int do_unlinkat(int dfd, struct filename *name)
4552{
4553	int error;
4554	struct dentry *dentry;
4555	struct path path;
4556	struct qstr last;
4557	int type;
4558	struct inode *inode = NULL;
4559	struct inode *delegated_inode = NULL;
4560	unsigned int lookup_flags = 0;
4561retry:
4562	error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4563	if (error)
4564		goto exit1;
4565
4566	error = -EISDIR;
4567	if (type != LAST_NORM)
4568		goto exit2;
4569
4570	error = mnt_want_write(path.mnt);
4571	if (error)
4572		goto exit2;
4573retry_deleg:
4574	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4575	dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4576	error = PTR_ERR(dentry);
4577	if (!IS_ERR(dentry)) {
 
4578
4579		/* Why not before? Because we want correct error value */
4580		if (last.name[last.len] || d_is_negative(dentry))
4581			goto slashes;
4582		inode = dentry->d_inode;
 
 
4583		ihold(inode);
4584		error = security_path_unlink(&path, dentry);
4585		if (error)
4586			goto exit3;
4587		error = vfs_unlink(mnt_idmap(path.mnt), path.dentry->d_inode,
4588				   dentry, &delegated_inode);
 
4589exit3:
4590		dput(dentry);
4591	}
4592	inode_unlock(path.dentry->d_inode);
4593	if (inode)
4594		iput(inode);	/* truncate the inode here */
4595	inode = NULL;
4596	if (delegated_inode) {
4597		error = break_deleg_wait(&delegated_inode);
4598		if (!error)
4599			goto retry_deleg;
4600	}
4601	mnt_drop_write(path.mnt);
4602exit2:
4603	path_put(&path);
4604	if (retry_estale(error, lookup_flags)) {
4605		lookup_flags |= LOOKUP_REVAL;
4606		inode = NULL;
4607		goto retry;
4608	}
4609exit1:
4610	putname(name);
4611	return error;
4612
4613slashes:
4614	if (d_is_negative(dentry))
4615		error = -ENOENT;
4616	else if (d_is_dir(dentry))
4617		error = -EISDIR;
4618	else
4619		error = -ENOTDIR;
4620	goto exit3;
4621}
4622
4623SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4624{
4625	if ((flag & ~AT_REMOVEDIR) != 0)
4626		return -EINVAL;
4627
4628	if (flag & AT_REMOVEDIR)
4629		return do_rmdir(dfd, getname(pathname));
4630	return do_unlinkat(dfd, getname(pathname));
4631}
4632
4633SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4634{
4635	return do_unlinkat(AT_FDCWD, getname(pathname));
4636}
4637
4638/**
4639 * vfs_symlink - create symlink
4640 * @idmap:	idmap of the mount the inode was found from
4641 * @dir:	inode of the parent directory
4642 * @dentry:	dentry of the child symlink file
4643 * @oldname:	name of the file to link to
4644 *
4645 * Create a symlink.
4646 *
4647 * If the inode has been found through an idmapped mount the idmap of
4648 * the vfsmount must be passed through @idmap. This function will then take
4649 * care to map the inode according to @idmap before checking permissions.
4650 * On non-idmapped mounts or if permission checking is to be performed on the
4651 * raw inode simply pass @nop_mnt_idmap.
4652 */
4653int vfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
4654		struct dentry *dentry, const char *oldname)
4655{
4656	int error;
4657
4658	error = may_create(idmap, dir, dentry);
4659	if (error)
4660		return error;
4661
4662	if (!dir->i_op->symlink)
4663		return -EPERM;
4664
4665	error = security_inode_symlink(dir, dentry, oldname);
4666	if (error)
4667		return error;
4668
4669	error = dir->i_op->symlink(idmap, dir, dentry, oldname);
4670	if (!error)
4671		fsnotify_create(dir, dentry);
4672	return error;
4673}
4674EXPORT_SYMBOL(vfs_symlink);
4675
4676int do_symlinkat(struct filename *from, int newdfd, struct filename *to)
4677{
4678	int error;
4679	struct dentry *dentry;
4680	struct path path;
4681	unsigned int lookup_flags = 0;
4682
4683	if (IS_ERR(from)) {
4684		error = PTR_ERR(from);
4685		goto out_putnames;
4686	}
4687retry:
4688	dentry = filename_create(newdfd, to, &path, lookup_flags);
4689	error = PTR_ERR(dentry);
4690	if (IS_ERR(dentry))
4691		goto out_putnames;
4692
4693	error = security_path_symlink(&path, dentry, from->name);
4694	if (!error)
4695		error = vfs_symlink(mnt_idmap(path.mnt), path.dentry->d_inode,
4696				    dentry, from->name);
 
 
 
 
4697	done_path_create(&path, dentry);
4698	if (retry_estale(error, lookup_flags)) {
4699		lookup_flags |= LOOKUP_REVAL;
4700		goto retry;
4701	}
4702out_putnames:
4703	putname(to);
4704	putname(from);
4705	return error;
4706}
4707
4708SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4709		int, newdfd, const char __user *, newname)
4710{
4711	return do_symlinkat(getname(oldname), newdfd, getname(newname));
4712}
4713
4714SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4715{
4716	return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname));
4717}
4718
4719/**
4720 * vfs_link - create a new link
4721 * @old_dentry:	object to be linked
4722 * @idmap:	idmap of the mount
4723 * @dir:	new parent
4724 * @new_dentry:	where to create the new link
4725 * @delegated_inode: returns inode needing a delegation break
4726 *
4727 * The caller must hold dir->i_mutex
4728 *
4729 * If vfs_link discovers a delegation on the to-be-linked file in need
4730 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4731 * inode in delegated_inode.  The caller should then break the delegation
4732 * and retry.  Because breaking a delegation may take a long time, the
4733 * caller should drop the i_mutex before doing so.
4734 *
4735 * Alternatively, a caller may pass NULL for delegated_inode.  This may
4736 * be appropriate for callers that expect the underlying filesystem not
4737 * to be NFS exported.
4738 *
4739 * If the inode has been found through an idmapped mount the idmap of
4740 * the vfsmount must be passed through @idmap. This function will then take
4741 * care to map the inode according to @idmap before checking permissions.
4742 * On non-idmapped mounts or if permission checking is to be performed on the
4743 * raw inode simply pass @nop_mnt_idmap.
4744 */
4745int vfs_link(struct dentry *old_dentry, struct mnt_idmap *idmap,
4746	     struct inode *dir, struct dentry *new_dentry,
4747	     struct inode **delegated_inode)
4748{
4749	struct inode *inode = old_dentry->d_inode;
4750	unsigned max_links = dir->i_sb->s_max_links;
4751	int error;
4752
4753	if (!inode)
4754		return -ENOENT;
4755
4756	error = may_create(idmap, dir, new_dentry);
4757	if (error)
4758		return error;
4759
4760	if (dir->i_sb != inode->i_sb)
4761		return -EXDEV;
4762
4763	/*
4764	 * A link to an append-only or immutable file cannot be created.
4765	 */
4766	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4767		return -EPERM;
4768	/*
4769	 * Updating the link count will likely cause i_uid and i_gid to
4770	 * be writen back improperly if their true value is unknown to
4771	 * the vfs.
4772	 */
4773	if (HAS_UNMAPPED_ID(idmap, inode))
4774		return -EPERM;
4775	if (!dir->i_op->link)
4776		return -EPERM;
4777	if (S_ISDIR(inode->i_mode))
4778		return -EPERM;
4779
4780	error = security_inode_link(old_dentry, dir, new_dentry);
4781	if (error)
4782		return error;
4783
4784	inode_lock(inode);
4785	/* Make sure we don't allow creating hardlink to an unlinked file */
4786	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4787		error =  -ENOENT;
4788	else if (max_links && inode->i_nlink >= max_links)
4789		error = -EMLINK;
4790	else {
4791		error = try_break_deleg(inode, delegated_inode);
4792		if (!error)
4793			error = dir->i_op->link(old_dentry, dir, new_dentry);
4794	}
4795
4796	if (!error && (inode->i_state & I_LINKABLE)) {
4797		spin_lock(&inode->i_lock);
4798		inode->i_state &= ~I_LINKABLE;
4799		spin_unlock(&inode->i_lock);
4800	}
4801	inode_unlock(inode);
4802	if (!error)
4803		fsnotify_link(dir, inode, new_dentry);
4804	return error;
4805}
4806EXPORT_SYMBOL(vfs_link);
4807
4808/*
4809 * Hardlinks are often used in delicate situations.  We avoid
4810 * security-related surprises by not following symlinks on the
4811 * newname.  --KAB
4812 *
4813 * We don't follow them on the oldname either to be compatible
4814 * with linux 2.0, and to avoid hard-linking to directories
4815 * and other special files.  --ADM
4816 */
4817int do_linkat(int olddfd, struct filename *old, int newdfd,
4818	      struct filename *new, int flags)
4819{
4820	struct mnt_idmap *idmap;
4821	struct dentry *new_dentry;
4822	struct path old_path, new_path;
4823	struct inode *delegated_inode = NULL;
4824	int how = 0;
4825	int error;
4826
4827	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) {
4828		error = -EINVAL;
4829		goto out_putnames;
4830	}
4831	/*
4832	 * To use null names we require CAP_DAC_READ_SEARCH or
4833	 * that the open-time creds of the dfd matches current.
4834	 * This ensures that not everyone will be able to create
4835	 * a hardlink using the passed file descriptor.
4836	 */
4837	if (flags & AT_EMPTY_PATH)
4838		how |= LOOKUP_LINKAT_EMPTY;
 
 
4839
4840	if (flags & AT_SYMLINK_FOLLOW)
4841		how |= LOOKUP_FOLLOW;
4842retry:
4843	error = filename_lookup(olddfd, old, how, &old_path, NULL);
4844	if (error)
4845		goto out_putnames;
4846
4847	new_dentry = filename_create(newdfd, new, &new_path,
4848					(how & LOOKUP_REVAL));
4849	error = PTR_ERR(new_dentry);
4850	if (IS_ERR(new_dentry))
4851		goto out_putpath;
4852
4853	error = -EXDEV;
4854	if (old_path.mnt != new_path.mnt)
4855		goto out_dput;
4856	idmap = mnt_idmap(new_path.mnt);
4857	error = may_linkat(idmap, &old_path);
4858	if (unlikely(error))
4859		goto out_dput;
4860	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4861	if (error)
4862		goto out_dput;
4863	error = vfs_link(old_path.dentry, idmap, new_path.dentry->d_inode,
4864			 new_dentry, &delegated_inode);
4865out_dput:
4866	done_path_create(&new_path, new_dentry);
4867	if (delegated_inode) {
4868		error = break_deleg_wait(&delegated_inode);
4869		if (!error) {
4870			path_put(&old_path);
4871			goto retry;
4872		}
4873	}
4874	if (retry_estale(error, how)) {
4875		path_put(&old_path);
4876		how |= LOOKUP_REVAL;
4877		goto retry;
4878	}
4879out_putpath:
4880	path_put(&old_path);
4881out_putnames:
4882	putname(old);
4883	putname(new);
4884
4885	return error;
4886}
4887
4888SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4889		int, newdfd, const char __user *, newname, int, flags)
4890{
4891	return do_linkat(olddfd, getname_uflags(oldname, flags),
4892		newdfd, getname(newname), flags);
4893}
4894
4895SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4896{
4897	return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0);
4898}
4899
4900/**
4901 * vfs_rename - rename a filesystem object
4902 * @rd:		pointer to &struct renamedata info
4903 *
4904 * The caller must hold multiple mutexes--see lock_rename()).
4905 *
4906 * If vfs_rename discovers a delegation in need of breaking at either
4907 * the source or destination, it will return -EWOULDBLOCK and return a
4908 * reference to the inode in delegated_inode.  The caller should then
4909 * break the delegation and retry.  Because breaking a delegation may
4910 * take a long time, the caller should drop all locks before doing
4911 * so.
4912 *
4913 * Alternatively, a caller may pass NULL for delegated_inode.  This may
4914 * be appropriate for callers that expect the underlying filesystem not
4915 * to be NFS exported.
4916 *
4917 * The worst of all namespace operations - renaming directory. "Perverted"
4918 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4919 * Problems:
4920 *
4921 *	a) we can get into loop creation.
4922 *	b) race potential - two innocent renames can create a loop together.
4923 *	   That's where 4.4BSD screws up. Current fix: serialization on
4924 *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4925 *	   story.
4926 *	c) we may have to lock up to _four_ objects - parents and victim (if it exists),
4927 *	   and source (if it's a non-directory or a subdirectory that moves to
4928 *	   different parent).
4929 *	   And that - after we got ->i_mutex on parents (until then we don't know
4930 *	   whether the target exists).  Solution: try to be smart with locking
4931 *	   order for inodes.  We rely on the fact that tree topology may change
4932 *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4933 *	   move will be locked.  Thus we can rank directories by the tree
4934 *	   (ancestors first) and rank all non-directories after them.
4935 *	   That works since everybody except rename does "lock parent, lookup,
4936 *	   lock child" and rename is under ->s_vfs_rename_mutex.
4937 *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4938 *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4939 *	   we'd better make sure that there's no link(2) for them.
4940 *	d) conversion from fhandle to dentry may come in the wrong moment - when
4941 *	   we are removing the target. Solution: we will have to grab ->i_mutex
4942 *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4943 *	   ->i_mutex on parents, which works but leads to some truly excessive
4944 *	   locking].
4945 */
4946int vfs_rename(struct renamedata *rd)
4947{
4948	int error;
4949	struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir;
4950	struct dentry *old_dentry = rd->old_dentry;
4951	struct dentry *new_dentry = rd->new_dentry;
4952	struct inode **delegated_inode = rd->delegated_inode;
4953	unsigned int flags = rd->flags;
4954	bool is_dir = d_is_dir(old_dentry);
4955	struct inode *source = old_dentry->d_inode;
4956	struct inode *target = new_dentry->d_inode;
4957	bool new_is_dir = false;
4958	unsigned max_links = new_dir->i_sb->s_max_links;
4959	struct name_snapshot old_name;
4960	bool lock_old_subdir, lock_new_subdir;
4961
4962	if (source == target)
4963		return 0;
4964
4965	error = may_delete(rd->old_mnt_idmap, old_dir, old_dentry, is_dir);
4966	if (error)
4967		return error;
4968
4969	if (!target) {
4970		error = may_create(rd->new_mnt_idmap, new_dir, new_dentry);
4971	} else {
4972		new_is_dir = d_is_dir(new_dentry);
4973
4974		if (!(flags & RENAME_EXCHANGE))
4975			error = may_delete(rd->new_mnt_idmap, new_dir,
4976					   new_dentry, is_dir);
4977		else
4978			error = may_delete(rd->new_mnt_idmap, new_dir,
4979					   new_dentry, new_is_dir);
4980	}
4981	if (error)
4982		return error;
4983
4984	if (!old_dir->i_op->rename)
4985		return -EPERM;
4986
4987	/*
4988	 * If we are going to change the parent - check write permissions,
4989	 * we'll need to flip '..'.
4990	 */
4991	if (new_dir != old_dir) {
4992		if (is_dir) {
4993			error = inode_permission(rd->old_mnt_idmap, source,
4994						 MAY_WRITE);
4995			if (error)
4996				return error;
4997		}
4998		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4999			error = inode_permission(rd->new_mnt_idmap, target,
5000						 MAY_WRITE);
5001			if (error)
5002				return error;
5003		}
5004	}
5005
5006	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
5007				      flags);
5008	if (error)
5009		return error;
5010
5011	take_dentry_name_snapshot(&old_name, old_dentry);
5012	dget(new_dentry);
5013	/*
5014	 * Lock children.
5015	 * The source subdirectory needs to be locked on cross-directory
5016	 * rename or cross-directory exchange since its parent changes.
5017	 * The target subdirectory needs to be locked on cross-directory
5018	 * exchange due to parent change and on any rename due to becoming
5019	 * a victim.
5020	 * Non-directories need locking in all cases (for NFS reasons);
5021	 * they get locked after any subdirectories (in inode address order).
5022	 *
5023	 * NOTE: WE ONLY LOCK UNRELATED DIRECTORIES IN CROSS-DIRECTORY CASE.
5024	 * NEVER, EVER DO THAT WITHOUT ->s_vfs_rename_mutex.
5025	 */
5026	lock_old_subdir = new_dir != old_dir;
5027	lock_new_subdir = new_dir != old_dir || !(flags & RENAME_EXCHANGE);
5028	if (is_dir) {
5029		if (lock_old_subdir)
5030			inode_lock_nested(source, I_MUTEX_CHILD);
5031		if (target && (!new_is_dir || lock_new_subdir))
5032			inode_lock(target);
5033	} else if (new_is_dir) {
5034		if (lock_new_subdir)
5035			inode_lock_nested(target, I_MUTEX_CHILD);
5036		inode_lock(source);
5037	} else {
5038		lock_two_nondirectories(source, target);
5039	}
 
5040
5041	error = -EPERM;
5042	if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target)))
5043		goto out;
5044
5045	error = -EBUSY;
5046	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
5047		goto out;
5048
5049	if (max_links && new_dir != old_dir) {
5050		error = -EMLINK;
5051		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
5052			goto out;
5053		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
5054		    old_dir->i_nlink >= max_links)
5055			goto out;
5056	}
5057	if (!is_dir) {
5058		error = try_break_deleg(source, delegated_inode);
5059		if (error)
5060			goto out;
5061	}
5062	if (target && !new_is_dir) {
5063		error = try_break_deleg(target, delegated_inode);
5064		if (error)
5065			goto out;
5066	}
5067	error = old_dir->i_op->rename(rd->new_mnt_idmap, old_dir, old_dentry,
5068				      new_dir, new_dentry, flags);
5069	if (error)
5070		goto out;
5071
5072	if (!(flags & RENAME_EXCHANGE) && target) {
5073		if (is_dir) {
5074			shrink_dcache_parent(new_dentry);
5075			target->i_flags |= S_DEAD;
5076		}
5077		dont_mount(new_dentry);
5078		detach_mounts(new_dentry);
5079	}
5080	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
5081		if (!(flags & RENAME_EXCHANGE))
5082			d_move(old_dentry, new_dentry);
5083		else
5084			d_exchange(old_dentry, new_dentry);
5085	}
5086out:
5087	if (!is_dir || lock_old_subdir)
5088		inode_unlock(source);
5089	if (target && (!new_is_dir || lock_new_subdir))
5090		inode_unlock(target);
5091	dput(new_dentry);
5092	if (!error) {
5093		fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
5094			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
5095		if (flags & RENAME_EXCHANGE) {
5096			fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
5097				      new_is_dir, NULL, new_dentry);
5098		}
5099	}
5100	release_dentry_name_snapshot(&old_name);
5101
5102	return error;
5103}
5104EXPORT_SYMBOL(vfs_rename);
5105
5106int do_renameat2(int olddfd, struct filename *from, int newdfd,
5107		 struct filename *to, unsigned int flags)
5108{
5109	struct renamedata rd;
5110	struct dentry *old_dentry, *new_dentry;
5111	struct dentry *trap;
5112	struct path old_path, new_path;
5113	struct qstr old_last, new_last;
5114	int old_type, new_type;
5115	struct inode *delegated_inode = NULL;
5116	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
5117	bool should_retry = false;
5118	int error = -EINVAL;
5119
5120	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
5121		goto put_names;
5122
5123	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
5124	    (flags & RENAME_EXCHANGE))
5125		goto put_names;
5126
5127	if (flags & RENAME_EXCHANGE)
5128		target_flags = 0;
5129
5130retry:
5131	error = filename_parentat(olddfd, from, lookup_flags, &old_path,
5132				  &old_last, &old_type);
5133	if (error)
5134		goto put_names;
5135
5136	error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last,
5137				  &new_type);
5138	if (error)
5139		goto exit1;
5140
5141	error = -EXDEV;
5142	if (old_path.mnt != new_path.mnt)
5143		goto exit2;
5144
5145	error = -EBUSY;
5146	if (old_type != LAST_NORM)
5147		goto exit2;
5148
5149	if (flags & RENAME_NOREPLACE)
5150		error = -EEXIST;
5151	if (new_type != LAST_NORM)
5152		goto exit2;
5153
5154	error = mnt_want_write(old_path.mnt);
5155	if (error)
5156		goto exit2;
5157
5158retry_deleg:
5159	trap = lock_rename(new_path.dentry, old_path.dentry);
5160	if (IS_ERR(trap)) {
5161		error = PTR_ERR(trap);
5162		goto exit_lock_rename;
5163	}
5164
5165	old_dentry = lookup_one_qstr_excl(&old_last, old_path.dentry,
5166					  lookup_flags);
5167	error = PTR_ERR(old_dentry);
5168	if (IS_ERR(old_dentry))
5169		goto exit3;
5170	/* source must exist */
5171	error = -ENOENT;
5172	if (d_is_negative(old_dentry))
5173		goto exit4;
5174	new_dentry = lookup_one_qstr_excl(&new_last, new_path.dentry,
5175					  lookup_flags | target_flags);
5176	error = PTR_ERR(new_dentry);
5177	if (IS_ERR(new_dentry))
5178		goto exit4;
5179	error = -EEXIST;
5180	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
5181		goto exit5;
5182	if (flags & RENAME_EXCHANGE) {
5183		error = -ENOENT;
5184		if (d_is_negative(new_dentry))
5185			goto exit5;
5186
5187		if (!d_is_dir(new_dentry)) {
5188			error = -ENOTDIR;
5189			if (new_last.name[new_last.len])
5190				goto exit5;
5191		}
5192	}
5193	/* unless the source is a directory trailing slashes give -ENOTDIR */
5194	if (!d_is_dir(old_dentry)) {
5195		error = -ENOTDIR;
5196		if (old_last.name[old_last.len])
5197			goto exit5;
5198		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
5199			goto exit5;
5200	}
5201	/* source should not be ancestor of target */
5202	error = -EINVAL;
5203	if (old_dentry == trap)
5204		goto exit5;
5205	/* target should not be an ancestor of source */
5206	if (!(flags & RENAME_EXCHANGE))
5207		error = -ENOTEMPTY;
5208	if (new_dentry == trap)
5209		goto exit5;
5210
5211	error = security_path_rename(&old_path, old_dentry,
5212				     &new_path, new_dentry, flags);
5213	if (error)
5214		goto exit5;
5215
5216	rd.old_dir	   = old_path.dentry->d_inode;
5217	rd.old_dentry	   = old_dentry;
5218	rd.old_mnt_idmap   = mnt_idmap(old_path.mnt);
5219	rd.new_dir	   = new_path.dentry->d_inode;
5220	rd.new_dentry	   = new_dentry;
5221	rd.new_mnt_idmap   = mnt_idmap(new_path.mnt);
5222	rd.delegated_inode = &delegated_inode;
5223	rd.flags	   = flags;
5224	error = vfs_rename(&rd);
5225exit5:
5226	dput(new_dentry);
5227exit4:
5228	dput(old_dentry);
5229exit3:
5230	unlock_rename(new_path.dentry, old_path.dentry);
5231exit_lock_rename:
5232	if (delegated_inode) {
5233		error = break_deleg_wait(&delegated_inode);
5234		if (!error)
5235			goto retry_deleg;
5236	}
5237	mnt_drop_write(old_path.mnt);
5238exit2:
5239	if (retry_estale(error, lookup_flags))
5240		should_retry = true;
5241	path_put(&new_path);
5242exit1:
5243	path_put(&old_path);
5244	if (should_retry) {
5245		should_retry = false;
5246		lookup_flags |= LOOKUP_REVAL;
5247		goto retry;
5248	}
5249put_names:
5250	putname(from);
5251	putname(to);
5252	return error;
5253}
5254
5255SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
5256		int, newdfd, const char __user *, newname, unsigned int, flags)
5257{
5258	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5259				flags);
5260}
5261
5262SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
5263		int, newdfd, const char __user *, newname)
5264{
5265	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5266				0);
5267}
5268
5269SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
5270{
5271	return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD,
5272				getname(newname), 0);
5273}
5274
5275int readlink_copy(char __user *buffer, int buflen, const char *link)
5276{
5277	int len = PTR_ERR(link);
5278	if (IS_ERR(link))
5279		goto out;
5280
5281	len = strlen(link);
5282	if (len > (unsigned) buflen)
5283		len = buflen;
5284	if (copy_to_user(buffer, link, len))
5285		len = -EFAULT;
5286out:
5287	return len;
5288}
5289
5290/**
5291 * vfs_readlink - copy symlink body into userspace buffer
5292 * @dentry: dentry on which to get symbolic link
5293 * @buffer: user memory pointer
5294 * @buflen: size of buffer
5295 *
5296 * Does not touch atime.  That's up to the caller if necessary
5297 *
5298 * Does not call security hook.
5299 */
5300int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5301{
5302	struct inode *inode = d_inode(dentry);
5303	DEFINE_DELAYED_CALL(done);
5304	const char *link;
5305	int res;
5306
5307	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
5308		if (unlikely(inode->i_op->readlink))
5309			return inode->i_op->readlink(dentry, buffer, buflen);
5310
5311		if (!d_is_symlink(dentry))
5312			return -EINVAL;
5313
5314		spin_lock(&inode->i_lock);
5315		inode->i_opflags |= IOP_DEFAULT_READLINK;
5316		spin_unlock(&inode->i_lock);
5317	}
5318
5319	link = READ_ONCE(inode->i_link);
5320	if (!link) {
5321		link = inode->i_op->get_link(dentry, inode, &done);
5322		if (IS_ERR(link))
5323			return PTR_ERR(link);
5324	}
5325	res = readlink_copy(buffer, buflen, link);
5326	do_delayed_call(&done);
5327	return res;
5328}
5329EXPORT_SYMBOL(vfs_readlink);
5330
5331/**
5332 * vfs_get_link - get symlink body
5333 * @dentry: dentry on which to get symbolic link
5334 * @done: caller needs to free returned data with this
5335 *
5336 * Calls security hook and i_op->get_link() on the supplied inode.
5337 *
5338 * It does not touch atime.  That's up to the caller if necessary.
5339 *
5340 * Does not work on "special" symlinks like /proc/$$/fd/N
5341 */
5342const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
5343{
5344	const char *res = ERR_PTR(-EINVAL);
5345	struct inode *inode = d_inode(dentry);
5346
5347	if (d_is_symlink(dentry)) {
5348		res = ERR_PTR(security_inode_readlink(dentry));
5349		if (!res)
5350			res = inode->i_op->get_link(dentry, inode, done);
5351	}
5352	return res;
5353}
5354EXPORT_SYMBOL(vfs_get_link);
5355
5356/* get the link contents into pagecache */
5357const char *page_get_link(struct dentry *dentry, struct inode *inode,
5358			  struct delayed_call *callback)
5359{
5360	char *kaddr;
5361	struct page *page;
5362	struct address_space *mapping = inode->i_mapping;
5363
5364	if (!dentry) {
5365		page = find_get_page(mapping, 0);
5366		if (!page)
5367			return ERR_PTR(-ECHILD);
5368		if (!PageUptodate(page)) {
5369			put_page(page);
5370			return ERR_PTR(-ECHILD);
5371		}
5372	} else {
5373		page = read_mapping_page(mapping, 0, NULL);
5374		if (IS_ERR(page))
5375			return (char*)page;
5376	}
5377	set_delayed_call(callback, page_put_link, page);
5378	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
5379	kaddr = page_address(page);
5380	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
5381	return kaddr;
5382}
5383
5384EXPORT_SYMBOL(page_get_link);
5385
5386void page_put_link(void *arg)
5387{
5388	put_page(arg);
5389}
5390EXPORT_SYMBOL(page_put_link);
5391
5392int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5393{
5394	DEFINE_DELAYED_CALL(done);
5395	int res = readlink_copy(buffer, buflen,
5396				page_get_link(dentry, d_inode(dentry),
5397					      &done));
5398	do_delayed_call(&done);
5399	return res;
5400}
5401EXPORT_SYMBOL(page_readlink);
5402
5403int page_symlink(struct inode *inode, const char *symname, int len)
5404{
5405	struct address_space *mapping = inode->i_mapping;
5406	const struct address_space_operations *aops = mapping->a_ops;
5407	bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS);
5408	struct folio *folio;
5409	void *fsdata = NULL;
5410	int err;
5411	unsigned int flags;
5412
5413retry:
5414	if (nofs)
5415		flags = memalloc_nofs_save();
5416	err = aops->write_begin(NULL, mapping, 0, len-1, &folio, &fsdata);
5417	if (nofs)
5418		memalloc_nofs_restore(flags);
5419	if (err)
5420		goto fail;
5421
5422	memcpy(folio_address(folio), symname, len - 1);
5423
5424	err = aops->write_end(NULL, mapping, 0, len - 1, len - 1,
5425						folio, fsdata);
5426	if (err < 0)
5427		goto fail;
5428	if (err < len-1)
5429		goto retry;
5430
5431	mark_inode_dirty(inode);
5432	return 0;
5433fail:
5434	return err;
5435}
5436EXPORT_SYMBOL(page_symlink);
5437
5438const struct inode_operations page_symlink_inode_operations = {
5439	.get_link	= page_get_link,
5440};
5441EXPORT_SYMBOL(page_symlink_inode_operations);