Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/bio.h>
7#include <linux/slab.h>
8#include <linux/pagemap.h>
9#include <linux/highmem.h>
10#include <linux/sched/mm.h>
11#include <crypto/hash.h>
12#include "messages.h"
13#include "misc.h"
14#include "ctree.h"
15#include "disk-io.h"
16#include "transaction.h"
17#include "bio.h"
18#include "print-tree.h"
19#include "compression.h"
20#include "fs.h"
21#include "accessors.h"
22#include "file-item.h"
23#include "super.h"
24
25#define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \
26 sizeof(struct btrfs_item) * 2) / \
27 size) - 1))
28
29#define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \
30 PAGE_SIZE))
31
32/*
33 * Set inode's size according to filesystem options.
34 *
35 * @inode: inode we want to update the disk_i_size for
36 * @new_i_size: i_size we want to set to, 0 if we use i_size
37 *
38 * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read()
39 * returns as it is perfectly fine with a file that has holes without hole file
40 * extent items.
41 *
42 * However without NO_HOLES we need to only return the area that is contiguous
43 * from the 0 offset of the file. Otherwise we could end up adjust i_size up
44 * to an extent that has a gap in between.
45 *
46 * Finally new_i_size should only be set in the case of truncate where we're not
47 * ready to use i_size_read() as the limiter yet.
48 */
49void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size)
50{
51 struct btrfs_fs_info *fs_info = inode->root->fs_info;
52 u64 start, end, i_size;
53 int ret;
54
55 i_size = new_i_size ?: i_size_read(&inode->vfs_inode);
56 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
57 inode->disk_i_size = i_size;
58 return;
59 }
60
61 spin_lock(&inode->lock);
62 ret = find_contiguous_extent_bit(&inode->file_extent_tree, 0, &start,
63 &end, EXTENT_DIRTY);
64 if (!ret && start == 0)
65 i_size = min(i_size, end + 1);
66 else
67 i_size = 0;
68 inode->disk_i_size = i_size;
69 spin_unlock(&inode->lock);
70}
71
72/*
73 * Mark range within a file as having a new extent inserted.
74 *
75 * @inode: inode being modified
76 * @start: start file offset of the file extent we've inserted
77 * @len: logical length of the file extent item
78 *
79 * Call when we are inserting a new file extent where there was none before.
80 * Does not need to call this in the case where we're replacing an existing file
81 * extent, however if not sure it's fine to call this multiple times.
82 *
83 * The start and len must match the file extent item, so thus must be sectorsize
84 * aligned.
85 */
86int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
87 u64 len)
88{
89 if (len == 0)
90 return 0;
91
92 ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize));
93
94 if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
95 return 0;
96 return set_extent_bits(&inode->file_extent_tree, start, start + len - 1,
97 EXTENT_DIRTY);
98}
99
100/*
101 * Mark an inode range as not having a backing extent.
102 *
103 * @inode: inode being modified
104 * @start: start file offset of the file extent we've inserted
105 * @len: logical length of the file extent item
106 *
107 * Called when we drop a file extent, for example when we truncate. Doesn't
108 * need to be called for cases where we're replacing a file extent, like when
109 * we've COWed a file extent.
110 *
111 * The start and len must match the file extent item, so thus must be sectorsize
112 * aligned.
113 */
114int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
115 u64 len)
116{
117 if (len == 0)
118 return 0;
119
120 ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) ||
121 len == (u64)-1);
122
123 if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
124 return 0;
125 return clear_extent_bit(&inode->file_extent_tree, start,
126 start + len - 1, EXTENT_DIRTY, NULL);
127}
128
129static size_t bytes_to_csum_size(const struct btrfs_fs_info *fs_info, u32 bytes)
130{
131 ASSERT(IS_ALIGNED(bytes, fs_info->sectorsize));
132
133 return (bytes >> fs_info->sectorsize_bits) * fs_info->csum_size;
134}
135
136static size_t csum_size_to_bytes(const struct btrfs_fs_info *fs_info, u32 csum_size)
137{
138 ASSERT(IS_ALIGNED(csum_size, fs_info->csum_size));
139
140 return (csum_size / fs_info->csum_size) << fs_info->sectorsize_bits;
141}
142
143static inline u32 max_ordered_sum_bytes(const struct btrfs_fs_info *fs_info)
144{
145 u32 max_csum_size = round_down(PAGE_SIZE - sizeof(struct btrfs_ordered_sum),
146 fs_info->csum_size);
147
148 return csum_size_to_bytes(fs_info, max_csum_size);
149}
150
151/*
152 * Calculate the total size needed to allocate for an ordered sum structure
153 * spanning @bytes in the file.
154 */
155static int btrfs_ordered_sum_size(struct btrfs_fs_info *fs_info, unsigned long bytes)
156{
157 return sizeof(struct btrfs_ordered_sum) + bytes_to_csum_size(fs_info, bytes);
158}
159
160int btrfs_insert_hole_extent(struct btrfs_trans_handle *trans,
161 struct btrfs_root *root,
162 u64 objectid, u64 pos, u64 num_bytes)
163{
164 int ret = 0;
165 struct btrfs_file_extent_item *item;
166 struct btrfs_key file_key;
167 struct btrfs_path *path;
168 struct extent_buffer *leaf;
169
170 path = btrfs_alloc_path();
171 if (!path)
172 return -ENOMEM;
173 file_key.objectid = objectid;
174 file_key.offset = pos;
175 file_key.type = BTRFS_EXTENT_DATA_KEY;
176
177 ret = btrfs_insert_empty_item(trans, root, path, &file_key,
178 sizeof(*item));
179 if (ret < 0)
180 goto out;
181 BUG_ON(ret); /* Can't happen */
182 leaf = path->nodes[0];
183 item = btrfs_item_ptr(leaf, path->slots[0],
184 struct btrfs_file_extent_item);
185 btrfs_set_file_extent_disk_bytenr(leaf, item, 0);
186 btrfs_set_file_extent_disk_num_bytes(leaf, item, 0);
187 btrfs_set_file_extent_offset(leaf, item, 0);
188 btrfs_set_file_extent_num_bytes(leaf, item, num_bytes);
189 btrfs_set_file_extent_ram_bytes(leaf, item, num_bytes);
190 btrfs_set_file_extent_generation(leaf, item, trans->transid);
191 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
192 btrfs_set_file_extent_compression(leaf, item, 0);
193 btrfs_set_file_extent_encryption(leaf, item, 0);
194 btrfs_set_file_extent_other_encoding(leaf, item, 0);
195
196 btrfs_mark_buffer_dirty(leaf);
197out:
198 btrfs_free_path(path);
199 return ret;
200}
201
202static struct btrfs_csum_item *
203btrfs_lookup_csum(struct btrfs_trans_handle *trans,
204 struct btrfs_root *root,
205 struct btrfs_path *path,
206 u64 bytenr, int cow)
207{
208 struct btrfs_fs_info *fs_info = root->fs_info;
209 int ret;
210 struct btrfs_key file_key;
211 struct btrfs_key found_key;
212 struct btrfs_csum_item *item;
213 struct extent_buffer *leaf;
214 u64 csum_offset = 0;
215 const u32 csum_size = fs_info->csum_size;
216 int csums_in_item;
217
218 file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
219 file_key.offset = bytenr;
220 file_key.type = BTRFS_EXTENT_CSUM_KEY;
221 ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow);
222 if (ret < 0)
223 goto fail;
224 leaf = path->nodes[0];
225 if (ret > 0) {
226 ret = 1;
227 if (path->slots[0] == 0)
228 goto fail;
229 path->slots[0]--;
230 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
231 if (found_key.type != BTRFS_EXTENT_CSUM_KEY)
232 goto fail;
233
234 csum_offset = (bytenr - found_key.offset) >>
235 fs_info->sectorsize_bits;
236 csums_in_item = btrfs_item_size(leaf, path->slots[0]);
237 csums_in_item /= csum_size;
238
239 if (csum_offset == csums_in_item) {
240 ret = -EFBIG;
241 goto fail;
242 } else if (csum_offset > csums_in_item) {
243 goto fail;
244 }
245 }
246 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
247 item = (struct btrfs_csum_item *)((unsigned char *)item +
248 csum_offset * csum_size);
249 return item;
250fail:
251 if (ret > 0)
252 ret = -ENOENT;
253 return ERR_PTR(ret);
254}
255
256int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
257 struct btrfs_root *root,
258 struct btrfs_path *path, u64 objectid,
259 u64 offset, int mod)
260{
261 struct btrfs_key file_key;
262 int ins_len = mod < 0 ? -1 : 0;
263 int cow = mod != 0;
264
265 file_key.objectid = objectid;
266 file_key.offset = offset;
267 file_key.type = BTRFS_EXTENT_DATA_KEY;
268
269 return btrfs_search_slot(trans, root, &file_key, path, ins_len, cow);
270}
271
272/*
273 * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and
274 * store the result to @dst.
275 *
276 * Return >0 for the number of sectors we found.
277 * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum
278 * for it. Caller may want to try next sector until one range is hit.
279 * Return <0 for fatal error.
280 */
281static int search_csum_tree(struct btrfs_fs_info *fs_info,
282 struct btrfs_path *path, u64 disk_bytenr,
283 u64 len, u8 *dst)
284{
285 struct btrfs_root *csum_root;
286 struct btrfs_csum_item *item = NULL;
287 struct btrfs_key key;
288 const u32 sectorsize = fs_info->sectorsize;
289 const u32 csum_size = fs_info->csum_size;
290 u32 itemsize;
291 int ret;
292 u64 csum_start;
293 u64 csum_len;
294
295 ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) &&
296 IS_ALIGNED(len, sectorsize));
297
298 /* Check if the current csum item covers disk_bytenr */
299 if (path->nodes[0]) {
300 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
301 struct btrfs_csum_item);
302 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
303 itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
304
305 csum_start = key.offset;
306 csum_len = (itemsize / csum_size) * sectorsize;
307
308 if (in_range(disk_bytenr, csum_start, csum_len))
309 goto found;
310 }
311
312 /* Current item doesn't contain the desired range, search again */
313 btrfs_release_path(path);
314 csum_root = btrfs_csum_root(fs_info, disk_bytenr);
315 item = btrfs_lookup_csum(NULL, csum_root, path, disk_bytenr, 0);
316 if (IS_ERR(item)) {
317 ret = PTR_ERR(item);
318 goto out;
319 }
320 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
321 itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
322
323 csum_start = key.offset;
324 csum_len = (itemsize / csum_size) * sectorsize;
325 ASSERT(in_range(disk_bytenr, csum_start, csum_len));
326
327found:
328 ret = (min(csum_start + csum_len, disk_bytenr + len) -
329 disk_bytenr) >> fs_info->sectorsize_bits;
330 read_extent_buffer(path->nodes[0], dst, (unsigned long)item,
331 ret * csum_size);
332out:
333 if (ret == -ENOENT || ret == -EFBIG)
334 ret = 0;
335 return ret;
336}
337
338/*
339 * Locate the file_offset of @cur_disk_bytenr of a @bio.
340 *
341 * Bio of btrfs represents read range of
342 * [bi_sector << 9, bi_sector << 9 + bi_size).
343 * Knowing this, we can iterate through each bvec to locate the page belong to
344 * @cur_disk_bytenr and get the file offset.
345 *
346 * @inode is used to determine if the bvec page really belongs to @inode.
347 *
348 * Return 0 if we can't find the file offset
349 * Return >0 if we find the file offset and restore it to @file_offset_ret
350 */
351static int search_file_offset_in_bio(struct bio *bio, struct inode *inode,
352 u64 disk_bytenr, u64 *file_offset_ret)
353{
354 struct bvec_iter iter;
355 struct bio_vec bvec;
356 u64 cur = bio->bi_iter.bi_sector << SECTOR_SHIFT;
357 int ret = 0;
358
359 bio_for_each_segment(bvec, bio, iter) {
360 struct page *page = bvec.bv_page;
361
362 if (cur > disk_bytenr)
363 break;
364 if (cur + bvec.bv_len <= disk_bytenr) {
365 cur += bvec.bv_len;
366 continue;
367 }
368 ASSERT(in_range(disk_bytenr, cur, bvec.bv_len));
369 if (page->mapping && page->mapping->host &&
370 page->mapping->host == inode) {
371 ret = 1;
372 *file_offset_ret = page_offset(page) + bvec.bv_offset +
373 disk_bytenr - cur;
374 break;
375 }
376 }
377 return ret;
378}
379
380/*
381 * Lookup the checksum for the read bio in csum tree.
382 *
383 * @inode: inode that the bio is for.
384 * @bio: bio to look up.
385 * @dst: Buffer of size nblocks * btrfs_super_csum_size() used to return
386 * checksum (nblocks = bio->bi_iter.bi_size / fs_info->sectorsize). If
387 * NULL, the checksum buffer is allocated and returned in
388 * btrfs_bio(bio)->csum instead.
389 *
390 * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise.
391 */
392blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst)
393{
394 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
395 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
396 struct btrfs_bio *bbio = NULL;
397 struct btrfs_path *path;
398 const u32 sectorsize = fs_info->sectorsize;
399 const u32 csum_size = fs_info->csum_size;
400 u32 orig_len = bio->bi_iter.bi_size;
401 u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
402 u64 cur_disk_bytenr;
403 u8 *csum;
404 const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits;
405 int count = 0;
406 blk_status_t ret = BLK_STS_OK;
407
408 if ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) ||
409 test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state))
410 return BLK_STS_OK;
411
412 /*
413 * This function is only called for read bio.
414 *
415 * This means two things:
416 * - All our csums should only be in csum tree
417 * No ordered extents csums, as ordered extents are only for write
418 * path.
419 * - No need to bother any other info from bvec
420 * Since we're looking up csums, the only important info is the
421 * disk_bytenr and the length, which can be extracted from bi_iter
422 * directly.
423 */
424 ASSERT(bio_op(bio) == REQ_OP_READ);
425 path = btrfs_alloc_path();
426 if (!path)
427 return BLK_STS_RESOURCE;
428
429 if (!dst) {
430 bbio = btrfs_bio(bio);
431
432 if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) {
433 bbio->csum = kmalloc_array(nblocks, csum_size, GFP_NOFS);
434 if (!bbio->csum) {
435 btrfs_free_path(path);
436 return BLK_STS_RESOURCE;
437 }
438 } else {
439 bbio->csum = bbio->csum_inline;
440 }
441 csum = bbio->csum;
442 } else {
443 csum = dst;
444 }
445
446 /*
447 * If requested number of sectors is larger than one leaf can contain,
448 * kick the readahead for csum tree.
449 */
450 if (nblocks > fs_info->csums_per_leaf)
451 path->reada = READA_FORWARD;
452
453 /*
454 * the free space stuff is only read when it hasn't been
455 * updated in the current transaction. So, we can safely
456 * read from the commit root and sidestep a nasty deadlock
457 * between reading the free space cache and updating the csum tree.
458 */
459 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
460 path->search_commit_root = 1;
461 path->skip_locking = 1;
462 }
463
464 for (cur_disk_bytenr = orig_disk_bytenr;
465 cur_disk_bytenr < orig_disk_bytenr + orig_len;
466 cur_disk_bytenr += (count * sectorsize)) {
467 u64 search_len = orig_disk_bytenr + orig_len - cur_disk_bytenr;
468 unsigned int sector_offset;
469 u8 *csum_dst;
470
471 /*
472 * Although both cur_disk_bytenr and orig_disk_bytenr is u64,
473 * we're calculating the offset to the bio start.
474 *
475 * Bio size is limited to UINT_MAX, thus unsigned int is large
476 * enough to contain the raw result, not to mention the right
477 * shifted result.
478 */
479 ASSERT(cur_disk_bytenr - orig_disk_bytenr < UINT_MAX);
480 sector_offset = (cur_disk_bytenr - orig_disk_bytenr) >>
481 fs_info->sectorsize_bits;
482 csum_dst = csum + sector_offset * csum_size;
483
484 count = search_csum_tree(fs_info, path, cur_disk_bytenr,
485 search_len, csum_dst);
486 if (count < 0) {
487 ret = errno_to_blk_status(count);
488 if (bbio)
489 btrfs_bio_free_csum(bbio);
490 break;
491 }
492
493 /*
494 * We didn't find a csum for this range. We need to make sure
495 * we complain loudly about this, because we are not NODATASUM.
496 *
497 * However for the DATA_RELOC inode we could potentially be
498 * relocating data extents for a NODATASUM inode, so the inode
499 * itself won't be marked with NODATASUM, but the extent we're
500 * copying is in fact NODATASUM. If we don't find a csum we
501 * assume this is the case.
502 */
503 if (count == 0) {
504 memset(csum_dst, 0, csum_size);
505 count = 1;
506
507 if (BTRFS_I(inode)->root->root_key.objectid ==
508 BTRFS_DATA_RELOC_TREE_OBJECTID) {
509 u64 file_offset;
510 int ret;
511
512 ret = search_file_offset_in_bio(bio, inode,
513 cur_disk_bytenr, &file_offset);
514 if (ret)
515 set_extent_bits(io_tree, file_offset,
516 file_offset + sectorsize - 1,
517 EXTENT_NODATASUM);
518 } else {
519 btrfs_warn_rl(fs_info,
520 "csum hole found for disk bytenr range [%llu, %llu)",
521 cur_disk_bytenr, cur_disk_bytenr + sectorsize);
522 }
523 }
524 }
525
526 btrfs_free_path(path);
527 return ret;
528}
529
530int btrfs_lookup_csums_list(struct btrfs_root *root, u64 start, u64 end,
531 struct list_head *list, int search_commit,
532 bool nowait)
533{
534 struct btrfs_fs_info *fs_info = root->fs_info;
535 struct btrfs_key key;
536 struct btrfs_path *path;
537 struct extent_buffer *leaf;
538 struct btrfs_ordered_sum *sums;
539 struct btrfs_csum_item *item;
540 LIST_HEAD(tmplist);
541 int ret;
542
543 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
544 IS_ALIGNED(end + 1, fs_info->sectorsize));
545
546 path = btrfs_alloc_path();
547 if (!path)
548 return -ENOMEM;
549
550 path->nowait = nowait;
551 if (search_commit) {
552 path->skip_locking = 1;
553 path->reada = READA_FORWARD;
554 path->search_commit_root = 1;
555 }
556
557 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
558 key.offset = start;
559 key.type = BTRFS_EXTENT_CSUM_KEY;
560
561 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
562 if (ret < 0)
563 goto fail;
564 if (ret > 0 && path->slots[0] > 0) {
565 leaf = path->nodes[0];
566 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
567
568 /*
569 * There are two cases we can hit here for the previous csum
570 * item:
571 *
572 * |<- search range ->|
573 * |<- csum item ->|
574 *
575 * Or
576 * |<- search range ->|
577 * |<- csum item ->|
578 *
579 * Check if the previous csum item covers the leading part of
580 * the search range. If so we have to start from previous csum
581 * item.
582 */
583 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
584 key.type == BTRFS_EXTENT_CSUM_KEY) {
585 if (bytes_to_csum_size(fs_info, start - key.offset) <
586 btrfs_item_size(leaf, path->slots[0] - 1))
587 path->slots[0]--;
588 }
589 }
590
591 while (start <= end) {
592 u64 csum_end;
593
594 leaf = path->nodes[0];
595 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
596 ret = btrfs_next_leaf(root, path);
597 if (ret < 0)
598 goto fail;
599 if (ret > 0)
600 break;
601 leaf = path->nodes[0];
602 }
603
604 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
605 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
606 key.type != BTRFS_EXTENT_CSUM_KEY ||
607 key.offset > end)
608 break;
609
610 if (key.offset > start)
611 start = key.offset;
612
613 csum_end = key.offset + csum_size_to_bytes(fs_info,
614 btrfs_item_size(leaf, path->slots[0]));
615 if (csum_end <= start) {
616 path->slots[0]++;
617 continue;
618 }
619
620 csum_end = min(csum_end, end + 1);
621 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
622 struct btrfs_csum_item);
623 while (start < csum_end) {
624 unsigned long offset;
625 size_t size;
626
627 size = min_t(size_t, csum_end - start,
628 max_ordered_sum_bytes(fs_info));
629 sums = kzalloc(btrfs_ordered_sum_size(fs_info, size),
630 GFP_NOFS);
631 if (!sums) {
632 ret = -ENOMEM;
633 goto fail;
634 }
635
636 sums->bytenr = start;
637 sums->len = (int)size;
638
639 offset = bytes_to_csum_size(fs_info, start - key.offset);
640
641 read_extent_buffer(path->nodes[0],
642 sums->sums,
643 ((unsigned long)item) + offset,
644 bytes_to_csum_size(fs_info, size));
645
646 start += size;
647 list_add_tail(&sums->list, &tmplist);
648 }
649 path->slots[0]++;
650 }
651 ret = 0;
652fail:
653 while (ret < 0 && !list_empty(&tmplist)) {
654 sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list);
655 list_del(&sums->list);
656 kfree(sums);
657 }
658 list_splice_tail(&tmplist, list);
659
660 btrfs_free_path(path);
661 return ret;
662}
663
664/*
665 * Do the same work as btrfs_lookup_csums_list(), the difference is in how
666 * we return the result.
667 *
668 * This version will set the corresponding bits in @csum_bitmap to represent
669 * that there is a csum found.
670 * Each bit represents a sector. Thus caller should ensure @csum_buf passed
671 * in is large enough to contain all csums.
672 */
673int btrfs_lookup_csums_bitmap(struct btrfs_root *root, u64 start, u64 end,
674 u8 *csum_buf, unsigned long *csum_bitmap)
675{
676 struct btrfs_fs_info *fs_info = root->fs_info;
677 struct btrfs_key key;
678 struct btrfs_path *path;
679 struct extent_buffer *leaf;
680 struct btrfs_csum_item *item;
681 const u64 orig_start = start;
682 int ret;
683
684 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
685 IS_ALIGNED(end + 1, fs_info->sectorsize));
686
687 path = btrfs_alloc_path();
688 if (!path)
689 return -ENOMEM;
690
691 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
692 key.type = BTRFS_EXTENT_CSUM_KEY;
693 key.offset = start;
694
695 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
696 if (ret < 0)
697 goto fail;
698 if (ret > 0 && path->slots[0] > 0) {
699 leaf = path->nodes[0];
700 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
701
702 /*
703 * There are two cases we can hit here for the previous csum
704 * item:
705 *
706 * |<- search range ->|
707 * |<- csum item ->|
708 *
709 * Or
710 * |<- search range ->|
711 * |<- csum item ->|
712 *
713 * Check if the previous csum item covers the leading part of
714 * the search range. If so we have to start from previous csum
715 * item.
716 */
717 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
718 key.type == BTRFS_EXTENT_CSUM_KEY) {
719 if (bytes_to_csum_size(fs_info, start - key.offset) <
720 btrfs_item_size(leaf, path->slots[0] - 1))
721 path->slots[0]--;
722 }
723 }
724
725 while (start <= end) {
726 u64 csum_end;
727
728 leaf = path->nodes[0];
729 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
730 ret = btrfs_next_leaf(root, path);
731 if (ret < 0)
732 goto fail;
733 if (ret > 0)
734 break;
735 leaf = path->nodes[0];
736 }
737
738 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
739 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
740 key.type != BTRFS_EXTENT_CSUM_KEY ||
741 key.offset > end)
742 break;
743
744 if (key.offset > start)
745 start = key.offset;
746
747 csum_end = key.offset + csum_size_to_bytes(fs_info,
748 btrfs_item_size(leaf, path->slots[0]));
749 if (csum_end <= start) {
750 path->slots[0]++;
751 continue;
752 }
753
754 csum_end = min(csum_end, end + 1);
755 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
756 struct btrfs_csum_item);
757 while (start < csum_end) {
758 unsigned long offset;
759 size_t size;
760 u8 *csum_dest = csum_buf + bytes_to_csum_size(fs_info,
761 start - orig_start);
762
763 size = min_t(size_t, csum_end - start, end + 1 - start);
764
765 offset = bytes_to_csum_size(fs_info, start - key.offset);
766
767 read_extent_buffer(path->nodes[0], csum_dest,
768 ((unsigned long)item) + offset,
769 bytes_to_csum_size(fs_info, size));
770
771 bitmap_set(csum_bitmap,
772 (start - orig_start) >> fs_info->sectorsize_bits,
773 size >> fs_info->sectorsize_bits);
774
775 start += size;
776 }
777 path->slots[0]++;
778 }
779 ret = 0;
780fail:
781 btrfs_free_path(path);
782 return ret;
783}
784
785/*
786 * Calculate checksums of the data contained inside a bio.
787 *
788 * @inode: Owner of the data inside the bio
789 * @bio: Contains the data to be checksummed
790 * @offset: If (u64)-1, @bio may contain discontiguous bio vecs, so the
791 * file offsets are determined from the page offsets in the bio.
792 * Otherwise, this is the starting file offset of the bio vecs in
793 * @bio, which must be contiguous.
794 * @one_ordered: If true, @bio only refers to one ordered extent.
795 */
796blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio,
797 u64 offset, bool one_ordered)
798{
799 struct btrfs_fs_info *fs_info = inode->root->fs_info;
800 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
801 struct btrfs_ordered_sum *sums;
802 struct btrfs_ordered_extent *ordered = NULL;
803 const bool use_page_offsets = (offset == (u64)-1);
804 char *data;
805 struct bvec_iter iter;
806 struct bio_vec bvec;
807 int index;
808 unsigned int blockcount;
809 unsigned long total_bytes = 0;
810 unsigned long this_sum_bytes = 0;
811 int i;
812 unsigned nofs_flag;
813
814 nofs_flag = memalloc_nofs_save();
815 sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size),
816 GFP_KERNEL);
817 memalloc_nofs_restore(nofs_flag);
818
819 if (!sums)
820 return BLK_STS_RESOURCE;
821
822 sums->len = bio->bi_iter.bi_size;
823 INIT_LIST_HEAD(&sums->list);
824
825 sums->bytenr = bio->bi_iter.bi_sector << 9;
826 index = 0;
827
828 shash->tfm = fs_info->csum_shash;
829
830 bio_for_each_segment(bvec, bio, iter) {
831 if (use_page_offsets)
832 offset = page_offset(bvec.bv_page) + bvec.bv_offset;
833
834 if (!ordered) {
835 ordered = btrfs_lookup_ordered_extent(inode, offset);
836 /*
837 * The bio range is not covered by any ordered extent,
838 * must be a code logic error.
839 */
840 if (unlikely(!ordered)) {
841 WARN(1, KERN_WARNING
842 "no ordered extent for root %llu ino %llu offset %llu\n",
843 inode->root->root_key.objectid,
844 btrfs_ino(inode), offset);
845 kvfree(sums);
846 return BLK_STS_IOERR;
847 }
848 }
849
850 blockcount = BTRFS_BYTES_TO_BLKS(fs_info,
851 bvec.bv_len + fs_info->sectorsize
852 - 1);
853
854 for (i = 0; i < blockcount; i++) {
855 if (!one_ordered &&
856 !in_range(offset, ordered->file_offset,
857 ordered->num_bytes)) {
858 unsigned long bytes_left;
859
860 sums->len = this_sum_bytes;
861 this_sum_bytes = 0;
862 btrfs_add_ordered_sum(ordered, sums);
863 btrfs_put_ordered_extent(ordered);
864
865 bytes_left = bio->bi_iter.bi_size - total_bytes;
866
867 nofs_flag = memalloc_nofs_save();
868 sums = kvzalloc(btrfs_ordered_sum_size(fs_info,
869 bytes_left), GFP_KERNEL);
870 memalloc_nofs_restore(nofs_flag);
871 BUG_ON(!sums); /* -ENOMEM */
872 sums->len = bytes_left;
873 ordered = btrfs_lookup_ordered_extent(inode,
874 offset);
875 ASSERT(ordered); /* Logic error */
876 sums->bytenr = (bio->bi_iter.bi_sector << 9)
877 + total_bytes;
878 index = 0;
879 }
880
881 data = bvec_kmap_local(&bvec);
882 crypto_shash_digest(shash,
883 data + (i * fs_info->sectorsize),
884 fs_info->sectorsize,
885 sums->sums + index);
886 kunmap_local(data);
887 index += fs_info->csum_size;
888 offset += fs_info->sectorsize;
889 this_sum_bytes += fs_info->sectorsize;
890 total_bytes += fs_info->sectorsize;
891 }
892
893 }
894 this_sum_bytes = 0;
895 btrfs_add_ordered_sum(ordered, sums);
896 btrfs_put_ordered_extent(ordered);
897 return 0;
898}
899
900/*
901 * Remove one checksum overlapping a range.
902 *
903 * This expects the key to describe the csum pointed to by the path, and it
904 * expects the csum to overlap the range [bytenr, len]
905 *
906 * The csum should not be entirely contained in the range and the range should
907 * not be entirely contained in the csum.
908 *
909 * This calls btrfs_truncate_item with the correct args based on the overlap,
910 * and fixes up the key as required.
911 */
912static noinline void truncate_one_csum(struct btrfs_fs_info *fs_info,
913 struct btrfs_path *path,
914 struct btrfs_key *key,
915 u64 bytenr, u64 len)
916{
917 struct extent_buffer *leaf;
918 const u32 csum_size = fs_info->csum_size;
919 u64 csum_end;
920 u64 end_byte = bytenr + len;
921 u32 blocksize_bits = fs_info->sectorsize_bits;
922
923 leaf = path->nodes[0];
924 csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
925 csum_end <<= blocksize_bits;
926 csum_end += key->offset;
927
928 if (key->offset < bytenr && csum_end <= end_byte) {
929 /*
930 * [ bytenr - len ]
931 * [ ]
932 * [csum ]
933 * A simple truncate off the end of the item
934 */
935 u32 new_size = (bytenr - key->offset) >> blocksize_bits;
936 new_size *= csum_size;
937 btrfs_truncate_item(path, new_size, 1);
938 } else if (key->offset >= bytenr && csum_end > end_byte &&
939 end_byte > key->offset) {
940 /*
941 * [ bytenr - len ]
942 * [ ]
943 * [csum ]
944 * we need to truncate from the beginning of the csum
945 */
946 u32 new_size = (csum_end - end_byte) >> blocksize_bits;
947 new_size *= csum_size;
948
949 btrfs_truncate_item(path, new_size, 0);
950
951 key->offset = end_byte;
952 btrfs_set_item_key_safe(fs_info, path, key);
953 } else {
954 BUG();
955 }
956}
957
958/*
959 * Delete the csum items from the csum tree for a given range of bytes.
960 */
961int btrfs_del_csums(struct btrfs_trans_handle *trans,
962 struct btrfs_root *root, u64 bytenr, u64 len)
963{
964 struct btrfs_fs_info *fs_info = trans->fs_info;
965 struct btrfs_path *path;
966 struct btrfs_key key;
967 u64 end_byte = bytenr + len;
968 u64 csum_end;
969 struct extent_buffer *leaf;
970 int ret = 0;
971 const u32 csum_size = fs_info->csum_size;
972 u32 blocksize_bits = fs_info->sectorsize_bits;
973
974 ASSERT(root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID ||
975 root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
976
977 path = btrfs_alloc_path();
978 if (!path)
979 return -ENOMEM;
980
981 while (1) {
982 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
983 key.offset = end_byte - 1;
984 key.type = BTRFS_EXTENT_CSUM_KEY;
985
986 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
987 if (ret > 0) {
988 ret = 0;
989 if (path->slots[0] == 0)
990 break;
991 path->slots[0]--;
992 } else if (ret < 0) {
993 break;
994 }
995
996 leaf = path->nodes[0];
997 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
998
999 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1000 key.type != BTRFS_EXTENT_CSUM_KEY) {
1001 break;
1002 }
1003
1004 if (key.offset >= end_byte)
1005 break;
1006
1007 csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
1008 csum_end <<= blocksize_bits;
1009 csum_end += key.offset;
1010
1011 /* this csum ends before we start, we're done */
1012 if (csum_end <= bytenr)
1013 break;
1014
1015 /* delete the entire item, it is inside our range */
1016 if (key.offset >= bytenr && csum_end <= end_byte) {
1017 int del_nr = 1;
1018
1019 /*
1020 * Check how many csum items preceding this one in this
1021 * leaf correspond to our range and then delete them all
1022 * at once.
1023 */
1024 if (key.offset > bytenr && path->slots[0] > 0) {
1025 int slot = path->slots[0] - 1;
1026
1027 while (slot >= 0) {
1028 struct btrfs_key pk;
1029
1030 btrfs_item_key_to_cpu(leaf, &pk, slot);
1031 if (pk.offset < bytenr ||
1032 pk.type != BTRFS_EXTENT_CSUM_KEY ||
1033 pk.objectid !=
1034 BTRFS_EXTENT_CSUM_OBJECTID)
1035 break;
1036 path->slots[0] = slot;
1037 del_nr++;
1038 key.offset = pk.offset;
1039 slot--;
1040 }
1041 }
1042 ret = btrfs_del_items(trans, root, path,
1043 path->slots[0], del_nr);
1044 if (ret)
1045 break;
1046 if (key.offset == bytenr)
1047 break;
1048 } else if (key.offset < bytenr && csum_end > end_byte) {
1049 unsigned long offset;
1050 unsigned long shift_len;
1051 unsigned long item_offset;
1052 /*
1053 * [ bytenr - len ]
1054 * [csum ]
1055 *
1056 * Our bytes are in the middle of the csum,
1057 * we need to split this item and insert a new one.
1058 *
1059 * But we can't drop the path because the
1060 * csum could change, get removed, extended etc.
1061 *
1062 * The trick here is the max size of a csum item leaves
1063 * enough room in the tree block for a single
1064 * item header. So, we split the item in place,
1065 * adding a new header pointing to the existing
1066 * bytes. Then we loop around again and we have
1067 * a nicely formed csum item that we can neatly
1068 * truncate.
1069 */
1070 offset = (bytenr - key.offset) >> blocksize_bits;
1071 offset *= csum_size;
1072
1073 shift_len = (len >> blocksize_bits) * csum_size;
1074
1075 item_offset = btrfs_item_ptr_offset(leaf,
1076 path->slots[0]);
1077
1078 memzero_extent_buffer(leaf, item_offset + offset,
1079 shift_len);
1080 key.offset = bytenr;
1081
1082 /*
1083 * btrfs_split_item returns -EAGAIN when the
1084 * item changed size or key
1085 */
1086 ret = btrfs_split_item(trans, root, path, &key, offset);
1087 if (ret && ret != -EAGAIN) {
1088 btrfs_abort_transaction(trans, ret);
1089 break;
1090 }
1091 ret = 0;
1092
1093 key.offset = end_byte - 1;
1094 } else {
1095 truncate_one_csum(fs_info, path, &key, bytenr, len);
1096 if (key.offset < bytenr)
1097 break;
1098 }
1099 btrfs_release_path(path);
1100 }
1101 btrfs_free_path(path);
1102 return ret;
1103}
1104
1105static int find_next_csum_offset(struct btrfs_root *root,
1106 struct btrfs_path *path,
1107 u64 *next_offset)
1108{
1109 const u32 nritems = btrfs_header_nritems(path->nodes[0]);
1110 struct btrfs_key found_key;
1111 int slot = path->slots[0] + 1;
1112 int ret;
1113
1114 if (nritems == 0 || slot >= nritems) {
1115 ret = btrfs_next_leaf(root, path);
1116 if (ret < 0) {
1117 return ret;
1118 } else if (ret > 0) {
1119 *next_offset = (u64)-1;
1120 return 0;
1121 }
1122 slot = path->slots[0];
1123 }
1124
1125 btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);
1126
1127 if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1128 found_key.type != BTRFS_EXTENT_CSUM_KEY)
1129 *next_offset = (u64)-1;
1130 else
1131 *next_offset = found_key.offset;
1132
1133 return 0;
1134}
1135
1136int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
1137 struct btrfs_root *root,
1138 struct btrfs_ordered_sum *sums)
1139{
1140 struct btrfs_fs_info *fs_info = root->fs_info;
1141 struct btrfs_key file_key;
1142 struct btrfs_key found_key;
1143 struct btrfs_path *path;
1144 struct btrfs_csum_item *item;
1145 struct btrfs_csum_item *item_end;
1146 struct extent_buffer *leaf = NULL;
1147 u64 next_offset;
1148 u64 total_bytes = 0;
1149 u64 csum_offset;
1150 u64 bytenr;
1151 u32 ins_size;
1152 int index = 0;
1153 int found_next;
1154 int ret;
1155 const u32 csum_size = fs_info->csum_size;
1156
1157 path = btrfs_alloc_path();
1158 if (!path)
1159 return -ENOMEM;
1160again:
1161 next_offset = (u64)-1;
1162 found_next = 0;
1163 bytenr = sums->bytenr + total_bytes;
1164 file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1165 file_key.offset = bytenr;
1166 file_key.type = BTRFS_EXTENT_CSUM_KEY;
1167
1168 item = btrfs_lookup_csum(trans, root, path, bytenr, 1);
1169 if (!IS_ERR(item)) {
1170 ret = 0;
1171 leaf = path->nodes[0];
1172 item_end = btrfs_item_ptr(leaf, path->slots[0],
1173 struct btrfs_csum_item);
1174 item_end = (struct btrfs_csum_item *)((char *)item_end +
1175 btrfs_item_size(leaf, path->slots[0]));
1176 goto found;
1177 }
1178 ret = PTR_ERR(item);
1179 if (ret != -EFBIG && ret != -ENOENT)
1180 goto out;
1181
1182 if (ret == -EFBIG) {
1183 u32 item_size;
1184 /* we found one, but it isn't big enough yet */
1185 leaf = path->nodes[0];
1186 item_size = btrfs_item_size(leaf, path->slots[0]);
1187 if ((item_size / csum_size) >=
1188 MAX_CSUM_ITEMS(fs_info, csum_size)) {
1189 /* already at max size, make a new one */
1190 goto insert;
1191 }
1192 } else {
1193 /* We didn't find a csum item, insert one. */
1194 ret = find_next_csum_offset(root, path, &next_offset);
1195 if (ret < 0)
1196 goto out;
1197 found_next = 1;
1198 goto insert;
1199 }
1200
1201 /*
1202 * At this point, we know the tree has a checksum item that ends at an
1203 * offset matching the start of the checksum range we want to insert.
1204 * We try to extend that item as much as possible and then add as many
1205 * checksums to it as they fit.
1206 *
1207 * First check if the leaf has enough free space for at least one
1208 * checksum. If it has go directly to the item extension code, otherwise
1209 * release the path and do a search for insertion before the extension.
1210 */
1211 if (btrfs_leaf_free_space(leaf) >= csum_size) {
1212 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1213 csum_offset = (bytenr - found_key.offset) >>
1214 fs_info->sectorsize_bits;
1215 goto extend_csum;
1216 }
1217
1218 btrfs_release_path(path);
1219 path->search_for_extension = 1;
1220 ret = btrfs_search_slot(trans, root, &file_key, path,
1221 csum_size, 1);
1222 path->search_for_extension = 0;
1223 if (ret < 0)
1224 goto out;
1225
1226 if (ret > 0) {
1227 if (path->slots[0] == 0)
1228 goto insert;
1229 path->slots[0]--;
1230 }
1231
1232 leaf = path->nodes[0];
1233 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1234 csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits;
1235
1236 if (found_key.type != BTRFS_EXTENT_CSUM_KEY ||
1237 found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1238 csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) {
1239 goto insert;
1240 }
1241
1242extend_csum:
1243 if (csum_offset == btrfs_item_size(leaf, path->slots[0]) /
1244 csum_size) {
1245 int extend_nr;
1246 u64 tmp;
1247 u32 diff;
1248
1249 tmp = sums->len - total_bytes;
1250 tmp >>= fs_info->sectorsize_bits;
1251 WARN_ON(tmp < 1);
1252 extend_nr = max_t(int, 1, tmp);
1253
1254 /*
1255 * A log tree can already have checksum items with a subset of
1256 * the checksums we are trying to log. This can happen after
1257 * doing a sequence of partial writes into prealloc extents and
1258 * fsyncs in between, with a full fsync logging a larger subrange
1259 * of an extent for which a previous fast fsync logged a smaller
1260 * subrange. And this happens in particular due to merging file
1261 * extent items when we complete an ordered extent for a range
1262 * covered by a prealloc extent - this is done at
1263 * btrfs_mark_extent_written().
1264 *
1265 * So if we try to extend the previous checksum item, which has
1266 * a range that ends at the start of the range we want to insert,
1267 * make sure we don't extend beyond the start offset of the next
1268 * checksum item. If we are at the last item in the leaf, then
1269 * forget the optimization of extending and add a new checksum
1270 * item - it is not worth the complexity of releasing the path,
1271 * getting the first key for the next leaf, repeat the btree
1272 * search, etc, because log trees are temporary anyway and it
1273 * would only save a few bytes of leaf space.
1274 */
1275 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
1276 if (path->slots[0] + 1 >=
1277 btrfs_header_nritems(path->nodes[0])) {
1278 ret = find_next_csum_offset(root, path, &next_offset);
1279 if (ret < 0)
1280 goto out;
1281 found_next = 1;
1282 goto insert;
1283 }
1284
1285 ret = find_next_csum_offset(root, path, &next_offset);
1286 if (ret < 0)
1287 goto out;
1288
1289 tmp = (next_offset - bytenr) >> fs_info->sectorsize_bits;
1290 if (tmp <= INT_MAX)
1291 extend_nr = min_t(int, extend_nr, tmp);
1292 }
1293
1294 diff = (csum_offset + extend_nr) * csum_size;
1295 diff = min(diff,
1296 MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size);
1297
1298 diff = diff - btrfs_item_size(leaf, path->slots[0]);
1299 diff = min_t(u32, btrfs_leaf_free_space(leaf), diff);
1300 diff /= csum_size;
1301 diff *= csum_size;
1302
1303 btrfs_extend_item(path, diff);
1304 ret = 0;
1305 goto csum;
1306 }
1307
1308insert:
1309 btrfs_release_path(path);
1310 csum_offset = 0;
1311 if (found_next) {
1312 u64 tmp;
1313
1314 tmp = sums->len - total_bytes;
1315 tmp >>= fs_info->sectorsize_bits;
1316 tmp = min(tmp, (next_offset - file_key.offset) >>
1317 fs_info->sectorsize_bits);
1318
1319 tmp = max_t(u64, 1, tmp);
1320 tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size));
1321 ins_size = csum_size * tmp;
1322 } else {
1323 ins_size = csum_size;
1324 }
1325 ret = btrfs_insert_empty_item(trans, root, path, &file_key,
1326 ins_size);
1327 if (ret < 0)
1328 goto out;
1329 if (WARN_ON(ret != 0))
1330 goto out;
1331 leaf = path->nodes[0];
1332csum:
1333 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
1334 item_end = (struct btrfs_csum_item *)((unsigned char *)item +
1335 btrfs_item_size(leaf, path->slots[0]));
1336 item = (struct btrfs_csum_item *)((unsigned char *)item +
1337 csum_offset * csum_size);
1338found:
1339 ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits;
1340 ins_size *= csum_size;
1341 ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item,
1342 ins_size);
1343 write_extent_buffer(leaf, sums->sums + index, (unsigned long)item,
1344 ins_size);
1345
1346 index += ins_size;
1347 ins_size /= csum_size;
1348 total_bytes += ins_size * fs_info->sectorsize;
1349
1350 btrfs_mark_buffer_dirty(path->nodes[0]);
1351 if (total_bytes < sums->len) {
1352 btrfs_release_path(path);
1353 cond_resched();
1354 goto again;
1355 }
1356out:
1357 btrfs_free_path(path);
1358 return ret;
1359}
1360
1361void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
1362 const struct btrfs_path *path,
1363 struct btrfs_file_extent_item *fi,
1364 struct extent_map *em)
1365{
1366 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1367 struct btrfs_root *root = inode->root;
1368 struct extent_buffer *leaf = path->nodes[0];
1369 const int slot = path->slots[0];
1370 struct btrfs_key key;
1371 u64 extent_start, extent_end;
1372 u64 bytenr;
1373 u8 type = btrfs_file_extent_type(leaf, fi);
1374 int compress_type = btrfs_file_extent_compression(leaf, fi);
1375
1376 btrfs_item_key_to_cpu(leaf, &key, slot);
1377 extent_start = key.offset;
1378 extent_end = btrfs_file_extent_end(path);
1379 em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1380 em->generation = btrfs_file_extent_generation(leaf, fi);
1381 if (type == BTRFS_FILE_EXTENT_REG ||
1382 type == BTRFS_FILE_EXTENT_PREALLOC) {
1383 em->start = extent_start;
1384 em->len = extent_end - extent_start;
1385 em->orig_start = extent_start -
1386 btrfs_file_extent_offset(leaf, fi);
1387 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
1388 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1389 if (bytenr == 0) {
1390 em->block_start = EXTENT_MAP_HOLE;
1391 return;
1392 }
1393 if (compress_type != BTRFS_COMPRESS_NONE) {
1394 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1395 em->compress_type = compress_type;
1396 em->block_start = bytenr;
1397 em->block_len = em->orig_block_len;
1398 } else {
1399 bytenr += btrfs_file_extent_offset(leaf, fi);
1400 em->block_start = bytenr;
1401 em->block_len = em->len;
1402 if (type == BTRFS_FILE_EXTENT_PREALLOC)
1403 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
1404 }
1405 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
1406 em->block_start = EXTENT_MAP_INLINE;
1407 em->start = extent_start;
1408 em->len = extent_end - extent_start;
1409 /*
1410 * Initialize orig_start and block_len with the same values
1411 * as in inode.c:btrfs_get_extent().
1412 */
1413 em->orig_start = EXTENT_MAP_HOLE;
1414 em->block_len = (u64)-1;
1415 em->compress_type = compress_type;
1416 if (compress_type != BTRFS_COMPRESS_NONE)
1417 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1418 } else {
1419 btrfs_err(fs_info,
1420 "unknown file extent item type %d, inode %llu, offset %llu, "
1421 "root %llu", type, btrfs_ino(inode), extent_start,
1422 root->root_key.objectid);
1423 }
1424}
1425
1426/*
1427 * Returns the end offset (non inclusive) of the file extent item the given path
1428 * points to. If it points to an inline extent, the returned offset is rounded
1429 * up to the sector size.
1430 */
1431u64 btrfs_file_extent_end(const struct btrfs_path *path)
1432{
1433 const struct extent_buffer *leaf = path->nodes[0];
1434 const int slot = path->slots[0];
1435 struct btrfs_file_extent_item *fi;
1436 struct btrfs_key key;
1437 u64 end;
1438
1439 btrfs_item_key_to_cpu(leaf, &key, slot);
1440 ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
1441 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1442
1443 if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) {
1444 end = btrfs_file_extent_ram_bytes(leaf, fi);
1445 end = ALIGN(key.offset + end, leaf->fs_info->sectorsize);
1446 } else {
1447 end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1448 }
1449
1450 return end;
1451}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/bio.h>
7#include <linux/slab.h>
8#include <linux/pagemap.h>
9#include <linux/highmem.h>
10#include <linux/sched/mm.h>
11#include <crypto/hash.h>
12#include "messages.h"
13#include "ctree.h"
14#include "disk-io.h"
15#include "transaction.h"
16#include "bio.h"
17#include "compression.h"
18#include "fs.h"
19#include "accessors.h"
20#include "file-item.h"
21
22#define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \
23 sizeof(struct btrfs_item) * 2) / \
24 size) - 1))
25
26#define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \
27 PAGE_SIZE))
28
29/*
30 * Set inode's size according to filesystem options.
31 *
32 * @inode: inode we want to update the disk_i_size for
33 * @new_i_size: i_size we want to set to, 0 if we use i_size
34 *
35 * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read()
36 * returns as it is perfectly fine with a file that has holes without hole file
37 * extent items.
38 *
39 * However without NO_HOLES we need to only return the area that is contiguous
40 * from the 0 offset of the file. Otherwise we could end up adjust i_size up
41 * to an extent that has a gap in between.
42 *
43 * Finally new_i_size should only be set in the case of truncate where we're not
44 * ready to use i_size_read() as the limiter yet.
45 */
46void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size)
47{
48 u64 start, end, i_size;
49 int ret;
50
51 spin_lock(&inode->lock);
52 i_size = new_i_size ?: i_size_read(&inode->vfs_inode);
53 if (!inode->file_extent_tree) {
54 inode->disk_i_size = i_size;
55 goto out_unlock;
56 }
57
58 ret = find_contiguous_extent_bit(inode->file_extent_tree, 0, &start,
59 &end, EXTENT_DIRTY);
60 if (!ret && start == 0)
61 i_size = min(i_size, end + 1);
62 else
63 i_size = 0;
64 inode->disk_i_size = i_size;
65out_unlock:
66 spin_unlock(&inode->lock);
67}
68
69/*
70 * Mark range within a file as having a new extent inserted.
71 *
72 * @inode: inode being modified
73 * @start: start file offset of the file extent we've inserted
74 * @len: logical length of the file extent item
75 *
76 * Call when we are inserting a new file extent where there was none before.
77 * Does not need to call this in the case where we're replacing an existing file
78 * extent, however if not sure it's fine to call this multiple times.
79 *
80 * The start and len must match the file extent item, so thus must be sectorsize
81 * aligned.
82 */
83int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
84 u64 len)
85{
86 if (!inode->file_extent_tree)
87 return 0;
88
89 if (len == 0)
90 return 0;
91
92 ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize));
93
94 return set_extent_bit(inode->file_extent_tree, start, start + len - 1,
95 EXTENT_DIRTY, NULL);
96}
97
98/*
99 * Mark an inode range as not having a backing extent.
100 *
101 * @inode: inode being modified
102 * @start: start file offset of the file extent we've inserted
103 * @len: logical length of the file extent item
104 *
105 * Called when we drop a file extent, for example when we truncate. Doesn't
106 * need to be called for cases where we're replacing a file extent, like when
107 * we've COWed a file extent.
108 *
109 * The start and len must match the file extent item, so thus must be sectorsize
110 * aligned.
111 */
112int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
113 u64 len)
114{
115 if (!inode->file_extent_tree)
116 return 0;
117
118 if (len == 0)
119 return 0;
120
121 ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) ||
122 len == (u64)-1);
123
124 return clear_extent_bit(inode->file_extent_tree, start,
125 start + len - 1, EXTENT_DIRTY, NULL);
126}
127
128static size_t bytes_to_csum_size(const struct btrfs_fs_info *fs_info, u32 bytes)
129{
130 ASSERT(IS_ALIGNED(bytes, fs_info->sectorsize));
131
132 return (bytes >> fs_info->sectorsize_bits) * fs_info->csum_size;
133}
134
135static size_t csum_size_to_bytes(const struct btrfs_fs_info *fs_info, u32 csum_size)
136{
137 ASSERT(IS_ALIGNED(csum_size, fs_info->csum_size));
138
139 return (csum_size / fs_info->csum_size) << fs_info->sectorsize_bits;
140}
141
142static inline u32 max_ordered_sum_bytes(const struct btrfs_fs_info *fs_info)
143{
144 u32 max_csum_size = round_down(PAGE_SIZE - sizeof(struct btrfs_ordered_sum),
145 fs_info->csum_size);
146
147 return csum_size_to_bytes(fs_info, max_csum_size);
148}
149
150/*
151 * Calculate the total size needed to allocate for an ordered sum structure
152 * spanning @bytes in the file.
153 */
154static int btrfs_ordered_sum_size(const struct btrfs_fs_info *fs_info, unsigned long bytes)
155{
156 return sizeof(struct btrfs_ordered_sum) + bytes_to_csum_size(fs_info, bytes);
157}
158
159int btrfs_insert_hole_extent(struct btrfs_trans_handle *trans,
160 struct btrfs_root *root,
161 u64 objectid, u64 pos, u64 num_bytes)
162{
163 int ret = 0;
164 struct btrfs_file_extent_item *item;
165 struct btrfs_key file_key;
166 struct btrfs_path *path;
167 struct extent_buffer *leaf;
168
169 path = btrfs_alloc_path();
170 if (!path)
171 return -ENOMEM;
172 file_key.objectid = objectid;
173 file_key.offset = pos;
174 file_key.type = BTRFS_EXTENT_DATA_KEY;
175
176 ret = btrfs_insert_empty_item(trans, root, path, &file_key,
177 sizeof(*item));
178 if (ret < 0)
179 goto out;
180 leaf = path->nodes[0];
181 item = btrfs_item_ptr(leaf, path->slots[0],
182 struct btrfs_file_extent_item);
183 btrfs_set_file_extent_disk_bytenr(leaf, item, 0);
184 btrfs_set_file_extent_disk_num_bytes(leaf, item, 0);
185 btrfs_set_file_extent_offset(leaf, item, 0);
186 btrfs_set_file_extent_num_bytes(leaf, item, num_bytes);
187 btrfs_set_file_extent_ram_bytes(leaf, item, num_bytes);
188 btrfs_set_file_extent_generation(leaf, item, trans->transid);
189 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
190 btrfs_set_file_extent_compression(leaf, item, 0);
191 btrfs_set_file_extent_encryption(leaf, item, 0);
192 btrfs_set_file_extent_other_encoding(leaf, item, 0);
193
194 btrfs_mark_buffer_dirty(trans, leaf);
195out:
196 btrfs_free_path(path);
197 return ret;
198}
199
200static struct btrfs_csum_item *
201btrfs_lookup_csum(struct btrfs_trans_handle *trans,
202 struct btrfs_root *root,
203 struct btrfs_path *path,
204 u64 bytenr, int cow)
205{
206 struct btrfs_fs_info *fs_info = root->fs_info;
207 int ret;
208 struct btrfs_key file_key;
209 struct btrfs_key found_key;
210 struct btrfs_csum_item *item;
211 struct extent_buffer *leaf;
212 u64 csum_offset = 0;
213 const u32 csum_size = fs_info->csum_size;
214 int csums_in_item;
215
216 file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
217 file_key.offset = bytenr;
218 file_key.type = BTRFS_EXTENT_CSUM_KEY;
219 ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow);
220 if (ret < 0)
221 goto fail;
222 leaf = path->nodes[0];
223 if (ret > 0) {
224 ret = 1;
225 if (path->slots[0] == 0)
226 goto fail;
227 path->slots[0]--;
228 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
229 if (found_key.type != BTRFS_EXTENT_CSUM_KEY)
230 goto fail;
231
232 csum_offset = (bytenr - found_key.offset) >>
233 fs_info->sectorsize_bits;
234 csums_in_item = btrfs_item_size(leaf, path->slots[0]);
235 csums_in_item /= csum_size;
236
237 if (csum_offset == csums_in_item) {
238 ret = -EFBIG;
239 goto fail;
240 } else if (csum_offset > csums_in_item) {
241 goto fail;
242 }
243 }
244 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
245 item = (struct btrfs_csum_item *)((unsigned char *)item +
246 csum_offset * csum_size);
247 return item;
248fail:
249 if (ret > 0)
250 ret = -ENOENT;
251 return ERR_PTR(ret);
252}
253
254int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
255 struct btrfs_root *root,
256 struct btrfs_path *path, u64 objectid,
257 u64 offset, int mod)
258{
259 struct btrfs_key file_key;
260 int ins_len = mod < 0 ? -1 : 0;
261 int cow = mod != 0;
262
263 file_key.objectid = objectid;
264 file_key.offset = offset;
265 file_key.type = BTRFS_EXTENT_DATA_KEY;
266
267 return btrfs_search_slot(trans, root, &file_key, path, ins_len, cow);
268}
269
270/*
271 * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and
272 * store the result to @dst.
273 *
274 * Return >0 for the number of sectors we found.
275 * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum
276 * for it. Caller may want to try next sector until one range is hit.
277 * Return <0 for fatal error.
278 */
279static int search_csum_tree(struct btrfs_fs_info *fs_info,
280 struct btrfs_path *path, u64 disk_bytenr,
281 u64 len, u8 *dst)
282{
283 struct btrfs_root *csum_root;
284 struct btrfs_csum_item *item = NULL;
285 struct btrfs_key key;
286 const u32 sectorsize = fs_info->sectorsize;
287 const u32 csum_size = fs_info->csum_size;
288 u32 itemsize;
289 int ret;
290 u64 csum_start;
291 u64 csum_len;
292
293 ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) &&
294 IS_ALIGNED(len, sectorsize));
295
296 /* Check if the current csum item covers disk_bytenr */
297 if (path->nodes[0]) {
298 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
299 struct btrfs_csum_item);
300 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
301 itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
302
303 csum_start = key.offset;
304 csum_len = (itemsize / csum_size) * sectorsize;
305
306 if (in_range(disk_bytenr, csum_start, csum_len))
307 goto found;
308 }
309
310 /* Current item doesn't contain the desired range, search again */
311 btrfs_release_path(path);
312 csum_root = btrfs_csum_root(fs_info, disk_bytenr);
313 item = btrfs_lookup_csum(NULL, csum_root, path, disk_bytenr, 0);
314 if (IS_ERR(item)) {
315 ret = PTR_ERR(item);
316 goto out;
317 }
318 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
319 itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
320
321 csum_start = key.offset;
322 csum_len = (itemsize / csum_size) * sectorsize;
323 ASSERT(in_range(disk_bytenr, csum_start, csum_len));
324
325found:
326 ret = (min(csum_start + csum_len, disk_bytenr + len) -
327 disk_bytenr) >> fs_info->sectorsize_bits;
328 read_extent_buffer(path->nodes[0], dst, (unsigned long)item,
329 ret * csum_size);
330out:
331 if (ret == -ENOENT || ret == -EFBIG)
332 ret = 0;
333 return ret;
334}
335
336/*
337 * Lookup the checksum for the read bio in csum tree.
338 *
339 * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise.
340 */
341blk_status_t btrfs_lookup_bio_sums(struct btrfs_bio *bbio)
342{
343 struct btrfs_inode *inode = bbio->inode;
344 struct btrfs_fs_info *fs_info = inode->root->fs_info;
345 struct bio *bio = &bbio->bio;
346 struct btrfs_path *path;
347 const u32 sectorsize = fs_info->sectorsize;
348 const u32 csum_size = fs_info->csum_size;
349 u32 orig_len = bio->bi_iter.bi_size;
350 u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
351 const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits;
352 blk_status_t ret = BLK_STS_OK;
353 u32 bio_offset = 0;
354
355 if ((inode->flags & BTRFS_INODE_NODATASUM) ||
356 test_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state))
357 return BLK_STS_OK;
358
359 /*
360 * This function is only called for read bio.
361 *
362 * This means two things:
363 * - All our csums should only be in csum tree
364 * No ordered extents csums, as ordered extents are only for write
365 * path.
366 * - No need to bother any other info from bvec
367 * Since we're looking up csums, the only important info is the
368 * disk_bytenr and the length, which can be extracted from bi_iter
369 * directly.
370 */
371 ASSERT(bio_op(bio) == REQ_OP_READ);
372 path = btrfs_alloc_path();
373 if (!path)
374 return BLK_STS_RESOURCE;
375
376 if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) {
377 bbio->csum = kmalloc_array(nblocks, csum_size, GFP_NOFS);
378 if (!bbio->csum) {
379 btrfs_free_path(path);
380 return BLK_STS_RESOURCE;
381 }
382 } else {
383 bbio->csum = bbio->csum_inline;
384 }
385
386 /*
387 * If requested number of sectors is larger than one leaf can contain,
388 * kick the readahead for csum tree.
389 */
390 if (nblocks > fs_info->csums_per_leaf)
391 path->reada = READA_FORWARD;
392
393 /*
394 * the free space stuff is only read when it hasn't been
395 * updated in the current transaction. So, we can safely
396 * read from the commit root and sidestep a nasty deadlock
397 * between reading the free space cache and updating the csum tree.
398 */
399 if (btrfs_is_free_space_inode(inode)) {
400 path->search_commit_root = 1;
401 path->skip_locking = 1;
402 }
403
404 while (bio_offset < orig_len) {
405 int count;
406 u64 cur_disk_bytenr = orig_disk_bytenr + bio_offset;
407 u8 *csum_dst = bbio->csum +
408 (bio_offset >> fs_info->sectorsize_bits) * csum_size;
409
410 count = search_csum_tree(fs_info, path, cur_disk_bytenr,
411 orig_len - bio_offset, csum_dst);
412 if (count < 0) {
413 ret = errno_to_blk_status(count);
414 if (bbio->csum != bbio->csum_inline)
415 kfree(bbio->csum);
416 bbio->csum = NULL;
417 break;
418 }
419
420 /*
421 * We didn't find a csum for this range. We need to make sure
422 * we complain loudly about this, because we are not NODATASUM.
423 *
424 * However for the DATA_RELOC inode we could potentially be
425 * relocating data extents for a NODATASUM inode, so the inode
426 * itself won't be marked with NODATASUM, but the extent we're
427 * copying is in fact NODATASUM. If we don't find a csum we
428 * assume this is the case.
429 */
430 if (count == 0) {
431 memset(csum_dst, 0, csum_size);
432 count = 1;
433
434 if (btrfs_root_id(inode->root) == BTRFS_DATA_RELOC_TREE_OBJECTID) {
435 u64 file_offset = bbio->file_offset + bio_offset;
436
437 set_extent_bit(&inode->io_tree, file_offset,
438 file_offset + sectorsize - 1,
439 EXTENT_NODATASUM, NULL);
440 } else {
441 btrfs_warn_rl(fs_info,
442 "csum hole found for disk bytenr range [%llu, %llu)",
443 cur_disk_bytenr, cur_disk_bytenr + sectorsize);
444 }
445 }
446 bio_offset += count * sectorsize;
447 }
448
449 btrfs_free_path(path);
450 return ret;
451}
452
453/*
454 * Search for checksums for a given logical range.
455 *
456 * @root: The root where to look for checksums.
457 * @start: Logical address of target checksum range.
458 * @end: End offset (inclusive) of the target checksum range.
459 * @list: List for adding each checksum that was found.
460 * Can be NULL in case the caller only wants to check if
461 * there any checksums for the range.
462 * @nowait: Indicate if the search must be non-blocking or not.
463 *
464 * Return < 0 on error, 0 if no checksums were found, or 1 if checksums were
465 * found.
466 */
467int btrfs_lookup_csums_list(struct btrfs_root *root, u64 start, u64 end,
468 struct list_head *list, bool nowait)
469{
470 struct btrfs_fs_info *fs_info = root->fs_info;
471 struct btrfs_key key;
472 struct btrfs_path *path;
473 struct extent_buffer *leaf;
474 struct btrfs_ordered_sum *sums;
475 struct btrfs_csum_item *item;
476 int ret;
477 bool found_csums = false;
478
479 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
480 IS_ALIGNED(end + 1, fs_info->sectorsize));
481
482 path = btrfs_alloc_path();
483 if (!path)
484 return -ENOMEM;
485
486 path->nowait = nowait;
487
488 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
489 key.offset = start;
490 key.type = BTRFS_EXTENT_CSUM_KEY;
491
492 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
493 if (ret < 0)
494 goto out;
495 if (ret > 0 && path->slots[0] > 0) {
496 leaf = path->nodes[0];
497 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
498
499 /*
500 * There are two cases we can hit here for the previous csum
501 * item:
502 *
503 * |<- search range ->|
504 * |<- csum item ->|
505 *
506 * Or
507 * |<- search range ->|
508 * |<- csum item ->|
509 *
510 * Check if the previous csum item covers the leading part of
511 * the search range. If so we have to start from previous csum
512 * item.
513 */
514 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
515 key.type == BTRFS_EXTENT_CSUM_KEY) {
516 if (bytes_to_csum_size(fs_info, start - key.offset) <
517 btrfs_item_size(leaf, path->slots[0] - 1))
518 path->slots[0]--;
519 }
520 }
521
522 while (start <= end) {
523 u64 csum_end;
524
525 leaf = path->nodes[0];
526 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
527 ret = btrfs_next_leaf(root, path);
528 if (ret < 0)
529 goto out;
530 if (ret > 0)
531 break;
532 leaf = path->nodes[0];
533 }
534
535 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
536 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
537 key.type != BTRFS_EXTENT_CSUM_KEY ||
538 key.offset > end)
539 break;
540
541 if (key.offset > start)
542 start = key.offset;
543
544 csum_end = key.offset + csum_size_to_bytes(fs_info,
545 btrfs_item_size(leaf, path->slots[0]));
546 if (csum_end <= start) {
547 path->slots[0]++;
548 continue;
549 }
550
551 found_csums = true;
552 if (!list)
553 goto out;
554
555 csum_end = min(csum_end, end + 1);
556 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
557 struct btrfs_csum_item);
558 while (start < csum_end) {
559 unsigned long offset;
560 size_t size;
561
562 size = min_t(size_t, csum_end - start,
563 max_ordered_sum_bytes(fs_info));
564 sums = kzalloc(btrfs_ordered_sum_size(fs_info, size),
565 GFP_NOFS);
566 if (!sums) {
567 ret = -ENOMEM;
568 goto out;
569 }
570
571 sums->logical = start;
572 sums->len = size;
573
574 offset = bytes_to_csum_size(fs_info, start - key.offset);
575
576 read_extent_buffer(path->nodes[0],
577 sums->sums,
578 ((unsigned long)item) + offset,
579 bytes_to_csum_size(fs_info, size));
580
581 start += size;
582 list_add_tail(&sums->list, list);
583 }
584 path->slots[0]++;
585 }
586out:
587 btrfs_free_path(path);
588 if (ret < 0) {
589 if (list) {
590 struct btrfs_ordered_sum *tmp_sums;
591
592 list_for_each_entry_safe(sums, tmp_sums, list, list)
593 kfree(sums);
594 }
595
596 return ret;
597 }
598
599 return found_csums ? 1 : 0;
600}
601
602/*
603 * Do the same work as btrfs_lookup_csums_list(), the difference is in how
604 * we return the result.
605 *
606 * This version will set the corresponding bits in @csum_bitmap to represent
607 * that there is a csum found.
608 * Each bit represents a sector. Thus caller should ensure @csum_buf passed
609 * in is large enough to contain all csums.
610 */
611int btrfs_lookup_csums_bitmap(struct btrfs_root *root, struct btrfs_path *path,
612 u64 start, u64 end, u8 *csum_buf,
613 unsigned long *csum_bitmap)
614{
615 struct btrfs_fs_info *fs_info = root->fs_info;
616 struct btrfs_key key;
617 struct extent_buffer *leaf;
618 struct btrfs_csum_item *item;
619 const u64 orig_start = start;
620 bool free_path = false;
621 int ret;
622
623 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
624 IS_ALIGNED(end + 1, fs_info->sectorsize));
625
626 if (!path) {
627 path = btrfs_alloc_path();
628 if (!path)
629 return -ENOMEM;
630 free_path = true;
631 }
632
633 /* Check if we can reuse the previous path. */
634 if (path->nodes[0]) {
635 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
636
637 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
638 key.type == BTRFS_EXTENT_CSUM_KEY &&
639 key.offset <= start)
640 goto search_forward;
641 btrfs_release_path(path);
642 }
643
644 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
645 key.type = BTRFS_EXTENT_CSUM_KEY;
646 key.offset = start;
647
648 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
649 if (ret < 0)
650 goto fail;
651 if (ret > 0 && path->slots[0] > 0) {
652 leaf = path->nodes[0];
653 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
654
655 /*
656 * There are two cases we can hit here for the previous csum
657 * item:
658 *
659 * |<- search range ->|
660 * |<- csum item ->|
661 *
662 * Or
663 * |<- search range ->|
664 * |<- csum item ->|
665 *
666 * Check if the previous csum item covers the leading part of
667 * the search range. If so we have to start from previous csum
668 * item.
669 */
670 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
671 key.type == BTRFS_EXTENT_CSUM_KEY) {
672 if (bytes_to_csum_size(fs_info, start - key.offset) <
673 btrfs_item_size(leaf, path->slots[0] - 1))
674 path->slots[0]--;
675 }
676 }
677
678search_forward:
679 while (start <= end) {
680 u64 csum_end;
681
682 leaf = path->nodes[0];
683 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
684 ret = btrfs_next_leaf(root, path);
685 if (ret < 0)
686 goto fail;
687 if (ret > 0)
688 break;
689 leaf = path->nodes[0];
690 }
691
692 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
693 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
694 key.type != BTRFS_EXTENT_CSUM_KEY ||
695 key.offset > end)
696 break;
697
698 if (key.offset > start)
699 start = key.offset;
700
701 csum_end = key.offset + csum_size_to_bytes(fs_info,
702 btrfs_item_size(leaf, path->slots[0]));
703 if (csum_end <= start) {
704 path->slots[0]++;
705 continue;
706 }
707
708 csum_end = min(csum_end, end + 1);
709 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
710 struct btrfs_csum_item);
711 while (start < csum_end) {
712 unsigned long offset;
713 size_t size;
714 u8 *csum_dest = csum_buf + bytes_to_csum_size(fs_info,
715 start - orig_start);
716
717 size = min_t(size_t, csum_end - start, end + 1 - start);
718
719 offset = bytes_to_csum_size(fs_info, start - key.offset);
720
721 read_extent_buffer(path->nodes[0], csum_dest,
722 ((unsigned long)item) + offset,
723 bytes_to_csum_size(fs_info, size));
724
725 bitmap_set(csum_bitmap,
726 (start - orig_start) >> fs_info->sectorsize_bits,
727 size >> fs_info->sectorsize_bits);
728
729 start += size;
730 }
731 path->slots[0]++;
732 }
733 ret = 0;
734fail:
735 if (free_path)
736 btrfs_free_path(path);
737 return ret;
738}
739
740/*
741 * Calculate checksums of the data contained inside a bio.
742 */
743blk_status_t btrfs_csum_one_bio(struct btrfs_bio *bbio)
744{
745 struct btrfs_ordered_extent *ordered = bbio->ordered;
746 struct btrfs_inode *inode = bbio->inode;
747 struct btrfs_fs_info *fs_info = inode->root->fs_info;
748 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
749 struct bio *bio = &bbio->bio;
750 struct btrfs_ordered_sum *sums;
751 char *data;
752 struct bvec_iter iter;
753 struct bio_vec bvec;
754 int index;
755 unsigned int blockcount;
756 int i;
757 unsigned nofs_flag;
758
759 nofs_flag = memalloc_nofs_save();
760 sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size),
761 GFP_KERNEL);
762 memalloc_nofs_restore(nofs_flag);
763
764 if (!sums)
765 return BLK_STS_RESOURCE;
766
767 sums->len = bio->bi_iter.bi_size;
768 INIT_LIST_HEAD(&sums->list);
769
770 sums->logical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
771 index = 0;
772
773 shash->tfm = fs_info->csum_shash;
774
775 bio_for_each_segment(bvec, bio, iter) {
776 blockcount = BTRFS_BYTES_TO_BLKS(fs_info,
777 bvec.bv_len + fs_info->sectorsize
778 - 1);
779
780 for (i = 0; i < blockcount; i++) {
781 data = bvec_kmap_local(&bvec);
782 crypto_shash_digest(shash,
783 data + (i * fs_info->sectorsize),
784 fs_info->sectorsize,
785 sums->sums + index);
786 kunmap_local(data);
787 index += fs_info->csum_size;
788 }
789
790 }
791
792 bbio->sums = sums;
793 btrfs_add_ordered_sum(ordered, sums);
794 return 0;
795}
796
797/*
798 * Nodatasum I/O on zoned file systems still requires an btrfs_ordered_sum to
799 * record the updated logical address on Zone Append completion.
800 * Allocate just the structure with an empty sums array here for that case.
801 */
802blk_status_t btrfs_alloc_dummy_sum(struct btrfs_bio *bbio)
803{
804 bbio->sums = kmalloc(sizeof(*bbio->sums), GFP_NOFS);
805 if (!bbio->sums)
806 return BLK_STS_RESOURCE;
807 bbio->sums->len = bbio->bio.bi_iter.bi_size;
808 bbio->sums->logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
809 btrfs_add_ordered_sum(bbio->ordered, bbio->sums);
810 return 0;
811}
812
813/*
814 * Remove one checksum overlapping a range.
815 *
816 * This expects the key to describe the csum pointed to by the path, and it
817 * expects the csum to overlap the range [bytenr, len]
818 *
819 * The csum should not be entirely contained in the range and the range should
820 * not be entirely contained in the csum.
821 *
822 * This calls btrfs_truncate_item with the correct args based on the overlap,
823 * and fixes up the key as required.
824 */
825static noinline void truncate_one_csum(struct btrfs_trans_handle *trans,
826 struct btrfs_path *path,
827 struct btrfs_key *key,
828 u64 bytenr, u64 len)
829{
830 struct btrfs_fs_info *fs_info = trans->fs_info;
831 struct extent_buffer *leaf;
832 const u32 csum_size = fs_info->csum_size;
833 u64 csum_end;
834 u64 end_byte = bytenr + len;
835 u32 blocksize_bits = fs_info->sectorsize_bits;
836
837 leaf = path->nodes[0];
838 csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
839 csum_end <<= blocksize_bits;
840 csum_end += key->offset;
841
842 if (key->offset < bytenr && csum_end <= end_byte) {
843 /*
844 * [ bytenr - len ]
845 * [ ]
846 * [csum ]
847 * A simple truncate off the end of the item
848 */
849 u32 new_size = (bytenr - key->offset) >> blocksize_bits;
850 new_size *= csum_size;
851 btrfs_truncate_item(trans, path, new_size, 1);
852 } else if (key->offset >= bytenr && csum_end > end_byte &&
853 end_byte > key->offset) {
854 /*
855 * [ bytenr - len ]
856 * [ ]
857 * [csum ]
858 * we need to truncate from the beginning of the csum
859 */
860 u32 new_size = (csum_end - end_byte) >> blocksize_bits;
861 new_size *= csum_size;
862
863 btrfs_truncate_item(trans, path, new_size, 0);
864
865 key->offset = end_byte;
866 btrfs_set_item_key_safe(trans, path, key);
867 } else {
868 BUG();
869 }
870}
871
872/*
873 * Delete the csum items from the csum tree for a given range of bytes.
874 */
875int btrfs_del_csums(struct btrfs_trans_handle *trans,
876 struct btrfs_root *root, u64 bytenr, u64 len)
877{
878 struct btrfs_fs_info *fs_info = trans->fs_info;
879 struct btrfs_path *path;
880 struct btrfs_key key;
881 u64 end_byte = bytenr + len;
882 u64 csum_end;
883 struct extent_buffer *leaf;
884 int ret = 0;
885 const u32 csum_size = fs_info->csum_size;
886 u32 blocksize_bits = fs_info->sectorsize_bits;
887
888 ASSERT(btrfs_root_id(root) == BTRFS_CSUM_TREE_OBJECTID ||
889 btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID);
890
891 path = btrfs_alloc_path();
892 if (!path)
893 return -ENOMEM;
894
895 while (1) {
896 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
897 key.offset = end_byte - 1;
898 key.type = BTRFS_EXTENT_CSUM_KEY;
899
900 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
901 if (ret > 0) {
902 ret = 0;
903 if (path->slots[0] == 0)
904 break;
905 path->slots[0]--;
906 } else if (ret < 0) {
907 break;
908 }
909
910 leaf = path->nodes[0];
911 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
912
913 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
914 key.type != BTRFS_EXTENT_CSUM_KEY) {
915 break;
916 }
917
918 if (key.offset >= end_byte)
919 break;
920
921 csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
922 csum_end <<= blocksize_bits;
923 csum_end += key.offset;
924
925 /* this csum ends before we start, we're done */
926 if (csum_end <= bytenr)
927 break;
928
929 /* delete the entire item, it is inside our range */
930 if (key.offset >= bytenr && csum_end <= end_byte) {
931 int del_nr = 1;
932
933 /*
934 * Check how many csum items preceding this one in this
935 * leaf correspond to our range and then delete them all
936 * at once.
937 */
938 if (key.offset > bytenr && path->slots[0] > 0) {
939 int slot = path->slots[0] - 1;
940
941 while (slot >= 0) {
942 struct btrfs_key pk;
943
944 btrfs_item_key_to_cpu(leaf, &pk, slot);
945 if (pk.offset < bytenr ||
946 pk.type != BTRFS_EXTENT_CSUM_KEY ||
947 pk.objectid !=
948 BTRFS_EXTENT_CSUM_OBJECTID)
949 break;
950 path->slots[0] = slot;
951 del_nr++;
952 key.offset = pk.offset;
953 slot--;
954 }
955 }
956 ret = btrfs_del_items(trans, root, path,
957 path->slots[0], del_nr);
958 if (ret)
959 break;
960 if (key.offset == bytenr)
961 break;
962 } else if (key.offset < bytenr && csum_end > end_byte) {
963 unsigned long offset;
964 unsigned long shift_len;
965 unsigned long item_offset;
966 /*
967 * [ bytenr - len ]
968 * [csum ]
969 *
970 * Our bytes are in the middle of the csum,
971 * we need to split this item and insert a new one.
972 *
973 * But we can't drop the path because the
974 * csum could change, get removed, extended etc.
975 *
976 * The trick here is the max size of a csum item leaves
977 * enough room in the tree block for a single
978 * item header. So, we split the item in place,
979 * adding a new header pointing to the existing
980 * bytes. Then we loop around again and we have
981 * a nicely formed csum item that we can neatly
982 * truncate.
983 */
984 offset = (bytenr - key.offset) >> blocksize_bits;
985 offset *= csum_size;
986
987 shift_len = (len >> blocksize_bits) * csum_size;
988
989 item_offset = btrfs_item_ptr_offset(leaf,
990 path->slots[0]);
991
992 memzero_extent_buffer(leaf, item_offset + offset,
993 shift_len);
994 key.offset = bytenr;
995
996 /*
997 * btrfs_split_item returns -EAGAIN when the
998 * item changed size or key
999 */
1000 ret = btrfs_split_item(trans, root, path, &key, offset);
1001 if (ret && ret != -EAGAIN) {
1002 btrfs_abort_transaction(trans, ret);
1003 break;
1004 }
1005 ret = 0;
1006
1007 key.offset = end_byte - 1;
1008 } else {
1009 truncate_one_csum(trans, path, &key, bytenr, len);
1010 if (key.offset < bytenr)
1011 break;
1012 }
1013 btrfs_release_path(path);
1014 }
1015 btrfs_free_path(path);
1016 return ret;
1017}
1018
1019static int find_next_csum_offset(struct btrfs_root *root,
1020 struct btrfs_path *path,
1021 u64 *next_offset)
1022{
1023 const u32 nritems = btrfs_header_nritems(path->nodes[0]);
1024 struct btrfs_key found_key;
1025 int slot = path->slots[0] + 1;
1026 int ret;
1027
1028 if (nritems == 0 || slot >= nritems) {
1029 ret = btrfs_next_leaf(root, path);
1030 if (ret < 0) {
1031 return ret;
1032 } else if (ret > 0) {
1033 *next_offset = (u64)-1;
1034 return 0;
1035 }
1036 slot = path->slots[0];
1037 }
1038
1039 btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);
1040
1041 if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1042 found_key.type != BTRFS_EXTENT_CSUM_KEY)
1043 *next_offset = (u64)-1;
1044 else
1045 *next_offset = found_key.offset;
1046
1047 return 0;
1048}
1049
1050int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
1051 struct btrfs_root *root,
1052 struct btrfs_ordered_sum *sums)
1053{
1054 struct btrfs_fs_info *fs_info = root->fs_info;
1055 struct btrfs_key file_key;
1056 struct btrfs_key found_key;
1057 struct btrfs_path *path;
1058 struct btrfs_csum_item *item;
1059 struct btrfs_csum_item *item_end;
1060 struct extent_buffer *leaf = NULL;
1061 u64 next_offset;
1062 u64 total_bytes = 0;
1063 u64 csum_offset;
1064 u64 bytenr;
1065 u32 ins_size;
1066 int index = 0;
1067 int found_next;
1068 int ret;
1069 const u32 csum_size = fs_info->csum_size;
1070
1071 path = btrfs_alloc_path();
1072 if (!path)
1073 return -ENOMEM;
1074again:
1075 next_offset = (u64)-1;
1076 found_next = 0;
1077 bytenr = sums->logical + total_bytes;
1078 file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1079 file_key.offset = bytenr;
1080 file_key.type = BTRFS_EXTENT_CSUM_KEY;
1081
1082 item = btrfs_lookup_csum(trans, root, path, bytenr, 1);
1083 if (!IS_ERR(item)) {
1084 ret = 0;
1085 leaf = path->nodes[0];
1086 item_end = btrfs_item_ptr(leaf, path->slots[0],
1087 struct btrfs_csum_item);
1088 item_end = (struct btrfs_csum_item *)((char *)item_end +
1089 btrfs_item_size(leaf, path->slots[0]));
1090 goto found;
1091 }
1092 ret = PTR_ERR(item);
1093 if (ret != -EFBIG && ret != -ENOENT)
1094 goto out;
1095
1096 if (ret == -EFBIG) {
1097 u32 item_size;
1098 /* we found one, but it isn't big enough yet */
1099 leaf = path->nodes[0];
1100 item_size = btrfs_item_size(leaf, path->slots[0]);
1101 if ((item_size / csum_size) >=
1102 MAX_CSUM_ITEMS(fs_info, csum_size)) {
1103 /* already at max size, make a new one */
1104 goto insert;
1105 }
1106 } else {
1107 /* We didn't find a csum item, insert one. */
1108 ret = find_next_csum_offset(root, path, &next_offset);
1109 if (ret < 0)
1110 goto out;
1111 found_next = 1;
1112 goto insert;
1113 }
1114
1115 /*
1116 * At this point, we know the tree has a checksum item that ends at an
1117 * offset matching the start of the checksum range we want to insert.
1118 * We try to extend that item as much as possible and then add as many
1119 * checksums to it as they fit.
1120 *
1121 * First check if the leaf has enough free space for at least one
1122 * checksum. If it has go directly to the item extension code, otherwise
1123 * release the path and do a search for insertion before the extension.
1124 */
1125 if (btrfs_leaf_free_space(leaf) >= csum_size) {
1126 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1127 csum_offset = (bytenr - found_key.offset) >>
1128 fs_info->sectorsize_bits;
1129 goto extend_csum;
1130 }
1131
1132 btrfs_release_path(path);
1133 path->search_for_extension = 1;
1134 ret = btrfs_search_slot(trans, root, &file_key, path,
1135 csum_size, 1);
1136 path->search_for_extension = 0;
1137 if (ret < 0)
1138 goto out;
1139
1140 if (ret > 0) {
1141 if (path->slots[0] == 0)
1142 goto insert;
1143 path->slots[0]--;
1144 }
1145
1146 leaf = path->nodes[0];
1147 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1148 csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits;
1149
1150 if (found_key.type != BTRFS_EXTENT_CSUM_KEY ||
1151 found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1152 csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) {
1153 goto insert;
1154 }
1155
1156extend_csum:
1157 if (csum_offset == btrfs_item_size(leaf, path->slots[0]) /
1158 csum_size) {
1159 int extend_nr;
1160 u64 tmp;
1161 u32 diff;
1162
1163 tmp = sums->len - total_bytes;
1164 tmp >>= fs_info->sectorsize_bits;
1165 WARN_ON(tmp < 1);
1166 extend_nr = max_t(int, 1, tmp);
1167
1168 /*
1169 * A log tree can already have checksum items with a subset of
1170 * the checksums we are trying to log. This can happen after
1171 * doing a sequence of partial writes into prealloc extents and
1172 * fsyncs in between, with a full fsync logging a larger subrange
1173 * of an extent for which a previous fast fsync logged a smaller
1174 * subrange. And this happens in particular due to merging file
1175 * extent items when we complete an ordered extent for a range
1176 * covered by a prealloc extent - this is done at
1177 * btrfs_mark_extent_written().
1178 *
1179 * So if we try to extend the previous checksum item, which has
1180 * a range that ends at the start of the range we want to insert,
1181 * make sure we don't extend beyond the start offset of the next
1182 * checksum item. If we are at the last item in the leaf, then
1183 * forget the optimization of extending and add a new checksum
1184 * item - it is not worth the complexity of releasing the path,
1185 * getting the first key for the next leaf, repeat the btree
1186 * search, etc, because log trees are temporary anyway and it
1187 * would only save a few bytes of leaf space.
1188 */
1189 if (btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID) {
1190 if (path->slots[0] + 1 >=
1191 btrfs_header_nritems(path->nodes[0])) {
1192 ret = find_next_csum_offset(root, path, &next_offset);
1193 if (ret < 0)
1194 goto out;
1195 found_next = 1;
1196 goto insert;
1197 }
1198
1199 ret = find_next_csum_offset(root, path, &next_offset);
1200 if (ret < 0)
1201 goto out;
1202
1203 tmp = (next_offset - bytenr) >> fs_info->sectorsize_bits;
1204 if (tmp <= INT_MAX)
1205 extend_nr = min_t(int, extend_nr, tmp);
1206 }
1207
1208 diff = (csum_offset + extend_nr) * csum_size;
1209 diff = min(diff,
1210 MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size);
1211
1212 diff = diff - btrfs_item_size(leaf, path->slots[0]);
1213 diff = min_t(u32, btrfs_leaf_free_space(leaf), diff);
1214 diff /= csum_size;
1215 diff *= csum_size;
1216
1217 btrfs_extend_item(trans, path, diff);
1218 ret = 0;
1219 goto csum;
1220 }
1221
1222insert:
1223 btrfs_release_path(path);
1224 csum_offset = 0;
1225 if (found_next) {
1226 u64 tmp;
1227
1228 tmp = sums->len - total_bytes;
1229 tmp >>= fs_info->sectorsize_bits;
1230 tmp = min(tmp, (next_offset - file_key.offset) >>
1231 fs_info->sectorsize_bits);
1232
1233 tmp = max_t(u64, 1, tmp);
1234 tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size));
1235 ins_size = csum_size * tmp;
1236 } else {
1237 ins_size = csum_size;
1238 }
1239 ret = btrfs_insert_empty_item(trans, root, path, &file_key,
1240 ins_size);
1241 if (ret < 0)
1242 goto out;
1243 leaf = path->nodes[0];
1244csum:
1245 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
1246 item_end = (struct btrfs_csum_item *)((unsigned char *)item +
1247 btrfs_item_size(leaf, path->slots[0]));
1248 item = (struct btrfs_csum_item *)((unsigned char *)item +
1249 csum_offset * csum_size);
1250found:
1251 ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits;
1252 ins_size *= csum_size;
1253 ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item,
1254 ins_size);
1255 write_extent_buffer(leaf, sums->sums + index, (unsigned long)item,
1256 ins_size);
1257
1258 index += ins_size;
1259 ins_size /= csum_size;
1260 total_bytes += ins_size * fs_info->sectorsize;
1261
1262 btrfs_mark_buffer_dirty(trans, path->nodes[0]);
1263 if (total_bytes < sums->len) {
1264 btrfs_release_path(path);
1265 cond_resched();
1266 goto again;
1267 }
1268out:
1269 btrfs_free_path(path);
1270 return ret;
1271}
1272
1273void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
1274 const struct btrfs_path *path,
1275 const struct btrfs_file_extent_item *fi,
1276 struct extent_map *em)
1277{
1278 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1279 struct btrfs_root *root = inode->root;
1280 struct extent_buffer *leaf = path->nodes[0];
1281 const int slot = path->slots[0];
1282 struct btrfs_key key;
1283 u64 extent_start;
1284 u8 type = btrfs_file_extent_type(leaf, fi);
1285 int compress_type = btrfs_file_extent_compression(leaf, fi);
1286
1287 btrfs_item_key_to_cpu(leaf, &key, slot);
1288 extent_start = key.offset;
1289 em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1290 em->generation = btrfs_file_extent_generation(leaf, fi);
1291 if (type == BTRFS_FILE_EXTENT_REG ||
1292 type == BTRFS_FILE_EXTENT_PREALLOC) {
1293 const u64 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1294
1295 em->start = extent_start;
1296 em->len = btrfs_file_extent_end(path) - extent_start;
1297 if (disk_bytenr == 0) {
1298 em->disk_bytenr = EXTENT_MAP_HOLE;
1299 em->disk_num_bytes = 0;
1300 em->offset = 0;
1301 return;
1302 }
1303 em->disk_bytenr = disk_bytenr;
1304 em->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1305 em->offset = btrfs_file_extent_offset(leaf, fi);
1306 if (compress_type != BTRFS_COMPRESS_NONE) {
1307 extent_map_set_compression(em, compress_type);
1308 } else {
1309 /*
1310 * Older kernels can create regular non-hole data
1311 * extents with ram_bytes smaller than disk_num_bytes.
1312 * Not a big deal, just always use disk_num_bytes
1313 * for ram_bytes.
1314 */
1315 em->ram_bytes = em->disk_num_bytes;
1316 if (type == BTRFS_FILE_EXTENT_PREALLOC)
1317 em->flags |= EXTENT_FLAG_PREALLOC;
1318 }
1319 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
1320 /* Tree-checker has ensured this. */
1321 ASSERT(extent_start == 0);
1322
1323 em->disk_bytenr = EXTENT_MAP_INLINE;
1324 em->start = 0;
1325 em->len = fs_info->sectorsize;
1326 em->offset = 0;
1327 extent_map_set_compression(em, compress_type);
1328 } else {
1329 btrfs_err(fs_info,
1330 "unknown file extent item type %d, inode %llu, offset %llu, "
1331 "root %llu", type, btrfs_ino(inode), extent_start,
1332 btrfs_root_id(root));
1333 }
1334}
1335
1336/*
1337 * Returns the end offset (non inclusive) of the file extent item the given path
1338 * points to. If it points to an inline extent, the returned offset is rounded
1339 * up to the sector size.
1340 */
1341u64 btrfs_file_extent_end(const struct btrfs_path *path)
1342{
1343 const struct extent_buffer *leaf = path->nodes[0];
1344 const int slot = path->slots[0];
1345 struct btrfs_file_extent_item *fi;
1346 struct btrfs_key key;
1347 u64 end;
1348
1349 btrfs_item_key_to_cpu(leaf, &key, slot);
1350 ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
1351 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1352
1353 if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE)
1354 end = leaf->fs_info->sectorsize;
1355 else
1356 end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1357
1358 return end;
1359}