Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/bio.h>
   7#include <linux/slab.h>
   8#include <linux/pagemap.h>
   9#include <linux/highmem.h>
  10#include <linux/sched/mm.h>
  11#include <crypto/hash.h>
  12#include "messages.h"
  13#include "misc.h"
  14#include "ctree.h"
  15#include "disk-io.h"
  16#include "transaction.h"
  17#include "bio.h"
  18#include "print-tree.h"
  19#include "compression.h"
  20#include "fs.h"
  21#include "accessors.h"
  22#include "file-item.h"
  23#include "super.h"
  24
  25#define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \
  26				   sizeof(struct btrfs_item) * 2) / \
  27				  size) - 1))
  28
  29#define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \
  30				       PAGE_SIZE))
  31
  32/*
  33 * Set inode's size according to filesystem options.
  34 *
  35 * @inode:      inode we want to update the disk_i_size for
  36 * @new_i_size: i_size we want to set to, 0 if we use i_size
  37 *
  38 * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read()
  39 * returns as it is perfectly fine with a file that has holes without hole file
  40 * extent items.
  41 *
  42 * However without NO_HOLES we need to only return the area that is contiguous
  43 * from the 0 offset of the file.  Otherwise we could end up adjust i_size up
  44 * to an extent that has a gap in between.
  45 *
  46 * Finally new_i_size should only be set in the case of truncate where we're not
  47 * ready to use i_size_read() as the limiter yet.
  48 */
  49void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size)
  50{
  51	struct btrfs_fs_info *fs_info = inode->root->fs_info;
  52	u64 start, end, i_size;
  53	int ret;
  54
  55	i_size = new_i_size ?: i_size_read(&inode->vfs_inode);
  56	if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
  57		inode->disk_i_size = i_size;
  58		return;
  59	}
  60
  61	spin_lock(&inode->lock);
  62	ret = find_contiguous_extent_bit(&inode->file_extent_tree, 0, &start,
  63					 &end, EXTENT_DIRTY);
  64	if (!ret && start == 0)
  65		i_size = min(i_size, end + 1);
  66	else
  67		i_size = 0;
  68	inode->disk_i_size = i_size;
  69	spin_unlock(&inode->lock);
  70}
  71
  72/*
  73 * Mark range within a file as having a new extent inserted.
  74 *
  75 * @inode: inode being modified
  76 * @start: start file offset of the file extent we've inserted
  77 * @len:   logical length of the file extent item
  78 *
  79 * Call when we are inserting a new file extent where there was none before.
  80 * Does not need to call this in the case where we're replacing an existing file
  81 * extent, however if not sure it's fine to call this multiple times.
  82 *
  83 * The start and len must match the file extent item, so thus must be sectorsize
  84 * aligned.
  85 */
  86int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
  87				      u64 len)
  88{
  89	if (len == 0)
  90		return 0;
  91
  92	ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize));
  93
  94	if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
  95		return 0;
  96	return set_extent_bits(&inode->file_extent_tree, start, start + len - 1,
  97			       EXTENT_DIRTY);
  98}
  99
 100/*
 101 * Mark an inode range as not having a backing extent.
 102 *
 103 * @inode: inode being modified
 104 * @start: start file offset of the file extent we've inserted
 105 * @len:   logical length of the file extent item
 106 *
 107 * Called when we drop a file extent, for example when we truncate.  Doesn't
 108 * need to be called for cases where we're replacing a file extent, like when
 109 * we've COWed a file extent.
 110 *
 111 * The start and len must match the file extent item, so thus must be sectorsize
 112 * aligned.
 113 */
 114int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
 115					u64 len)
 116{
 117	if (len == 0)
 118		return 0;
 119
 120	ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) ||
 121	       len == (u64)-1);
 122
 123	if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
 124		return 0;
 125	return clear_extent_bit(&inode->file_extent_tree, start,
 126				start + len - 1, EXTENT_DIRTY, NULL);
 127}
 128
 129static size_t bytes_to_csum_size(const struct btrfs_fs_info *fs_info, u32 bytes)
 130{
 131	ASSERT(IS_ALIGNED(bytes, fs_info->sectorsize));
 132
 133	return (bytes >> fs_info->sectorsize_bits) * fs_info->csum_size;
 134}
 135
 136static size_t csum_size_to_bytes(const struct btrfs_fs_info *fs_info, u32 csum_size)
 137{
 138	ASSERT(IS_ALIGNED(csum_size, fs_info->csum_size));
 139
 140	return (csum_size / fs_info->csum_size) << fs_info->sectorsize_bits;
 141}
 142
 143static inline u32 max_ordered_sum_bytes(const struct btrfs_fs_info *fs_info)
 144{
 145	u32 max_csum_size = round_down(PAGE_SIZE - sizeof(struct btrfs_ordered_sum),
 146				       fs_info->csum_size);
 147
 148	return csum_size_to_bytes(fs_info, max_csum_size);
 149}
 150
 151/*
 152 * Calculate the total size needed to allocate for an ordered sum structure
 153 * spanning @bytes in the file.
 154 */
 155static int btrfs_ordered_sum_size(struct btrfs_fs_info *fs_info, unsigned long bytes)
 156{
 157	return sizeof(struct btrfs_ordered_sum) + bytes_to_csum_size(fs_info, bytes);
 158}
 159
 160int btrfs_insert_hole_extent(struct btrfs_trans_handle *trans,
 161			     struct btrfs_root *root,
 162			     u64 objectid, u64 pos, u64 num_bytes)
 
 
 
 163{
 164	int ret = 0;
 165	struct btrfs_file_extent_item *item;
 166	struct btrfs_key file_key;
 167	struct btrfs_path *path;
 168	struct extent_buffer *leaf;
 169
 170	path = btrfs_alloc_path();
 171	if (!path)
 172		return -ENOMEM;
 173	file_key.objectid = objectid;
 174	file_key.offset = pos;
 175	file_key.type = BTRFS_EXTENT_DATA_KEY;
 176
 
 177	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
 178				      sizeof(*item));
 179	if (ret < 0)
 180		goto out;
 181	BUG_ON(ret); /* Can't happen */
 182	leaf = path->nodes[0];
 183	item = btrfs_item_ptr(leaf, path->slots[0],
 184			      struct btrfs_file_extent_item);
 185	btrfs_set_file_extent_disk_bytenr(leaf, item, 0);
 186	btrfs_set_file_extent_disk_num_bytes(leaf, item, 0);
 187	btrfs_set_file_extent_offset(leaf, item, 0);
 188	btrfs_set_file_extent_num_bytes(leaf, item, num_bytes);
 189	btrfs_set_file_extent_ram_bytes(leaf, item, num_bytes);
 190	btrfs_set_file_extent_generation(leaf, item, trans->transid);
 191	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
 192	btrfs_set_file_extent_compression(leaf, item, 0);
 193	btrfs_set_file_extent_encryption(leaf, item, 0);
 194	btrfs_set_file_extent_other_encoding(leaf, item, 0);
 195
 196	btrfs_mark_buffer_dirty(leaf);
 197out:
 198	btrfs_free_path(path);
 199	return ret;
 200}
 201
 202static struct btrfs_csum_item *
 203btrfs_lookup_csum(struct btrfs_trans_handle *trans,
 204		  struct btrfs_root *root,
 205		  struct btrfs_path *path,
 206		  u64 bytenr, int cow)
 207{
 208	struct btrfs_fs_info *fs_info = root->fs_info;
 209	int ret;
 210	struct btrfs_key file_key;
 211	struct btrfs_key found_key;
 212	struct btrfs_csum_item *item;
 213	struct extent_buffer *leaf;
 214	u64 csum_offset = 0;
 215	const u32 csum_size = fs_info->csum_size;
 
 216	int csums_in_item;
 217
 218	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
 219	file_key.offset = bytenr;
 220	file_key.type = BTRFS_EXTENT_CSUM_KEY;
 221	ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow);
 222	if (ret < 0)
 223		goto fail;
 224	leaf = path->nodes[0];
 225	if (ret > 0) {
 226		ret = 1;
 227		if (path->slots[0] == 0)
 228			goto fail;
 229		path->slots[0]--;
 230		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
 231		if (found_key.type != BTRFS_EXTENT_CSUM_KEY)
 232			goto fail;
 233
 234		csum_offset = (bytenr - found_key.offset) >>
 235				fs_info->sectorsize_bits;
 236		csums_in_item = btrfs_item_size(leaf, path->slots[0]);
 237		csums_in_item /= csum_size;
 238
 239		if (csum_offset == csums_in_item) {
 240			ret = -EFBIG;
 241			goto fail;
 242		} else if (csum_offset > csums_in_item) {
 243			goto fail;
 244		}
 245	}
 246	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
 247	item = (struct btrfs_csum_item *)((unsigned char *)item +
 248					  csum_offset * csum_size);
 249	return item;
 250fail:
 251	if (ret > 0)
 252		ret = -ENOENT;
 253	return ERR_PTR(ret);
 254}
 255
 
 256int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
 257			     struct btrfs_root *root,
 258			     struct btrfs_path *path, u64 objectid,
 259			     u64 offset, int mod)
 260{
 
 261	struct btrfs_key file_key;
 262	int ins_len = mod < 0 ? -1 : 0;
 263	int cow = mod != 0;
 264
 265	file_key.objectid = objectid;
 266	file_key.offset = offset;
 267	file_key.type = BTRFS_EXTENT_DATA_KEY;
 268
 269	return btrfs_search_slot(trans, root, &file_key, path, ins_len, cow);
 270}
 271
 272/*
 273 * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and
 274 * store the result to @dst.
 275 *
 276 * Return >0 for the number of sectors we found.
 277 * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum
 278 * for it. Caller may want to try next sector until one range is hit.
 279 * Return <0 for fatal error.
 280 */
 281static int search_csum_tree(struct btrfs_fs_info *fs_info,
 282			    struct btrfs_path *path, u64 disk_bytenr,
 283			    u64 len, u8 *dst)
 284{
 285	struct btrfs_root *csum_root;
 286	struct btrfs_csum_item *item = NULL;
 287	struct btrfs_key key;
 288	const u32 sectorsize = fs_info->sectorsize;
 289	const u32 csum_size = fs_info->csum_size;
 290	u32 itemsize;
 291	int ret;
 292	u64 csum_start;
 293	u64 csum_len;
 294
 295	ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) &&
 296	       IS_ALIGNED(len, sectorsize));
 297
 298	/* Check if the current csum item covers disk_bytenr */
 299	if (path->nodes[0]) {
 300		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 301				      struct btrfs_csum_item);
 302		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
 303		itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
 304
 305		csum_start = key.offset;
 306		csum_len = (itemsize / csum_size) * sectorsize;
 307
 308		if (in_range(disk_bytenr, csum_start, csum_len))
 309			goto found;
 310	}
 311
 312	/* Current item doesn't contain the desired range, search again */
 313	btrfs_release_path(path);
 314	csum_root = btrfs_csum_root(fs_info, disk_bytenr);
 315	item = btrfs_lookup_csum(NULL, csum_root, path, disk_bytenr, 0);
 316	if (IS_ERR(item)) {
 317		ret = PTR_ERR(item);
 318		goto out;
 319	}
 320	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
 321	itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
 322
 323	csum_start = key.offset;
 324	csum_len = (itemsize / csum_size) * sectorsize;
 325	ASSERT(in_range(disk_bytenr, csum_start, csum_len));
 326
 327found:
 328	ret = (min(csum_start + csum_len, disk_bytenr + len) -
 329		   disk_bytenr) >> fs_info->sectorsize_bits;
 330	read_extent_buffer(path->nodes[0], dst, (unsigned long)item,
 331			ret * csum_size);
 332out:
 333	if (ret == -ENOENT || ret == -EFBIG)
 334		ret = 0;
 335	return ret;
 336}
 337
 338/*
 339 * Locate the file_offset of @cur_disk_bytenr of a @bio.
 340 *
 341 * Bio of btrfs represents read range of
 342 * [bi_sector << 9, bi_sector << 9 + bi_size).
 343 * Knowing this, we can iterate through each bvec to locate the page belong to
 344 * @cur_disk_bytenr and get the file offset.
 345 *
 346 * @inode is used to determine if the bvec page really belongs to @inode.
 347 *
 348 * Return 0 if we can't find the file offset
 349 * Return >0 if we find the file offset and restore it to @file_offset_ret
 350 */
 351static int search_file_offset_in_bio(struct bio *bio, struct inode *inode,
 352				     u64 disk_bytenr, u64 *file_offset_ret)
 353{
 354	struct bvec_iter iter;
 355	struct bio_vec bvec;
 356	u64 cur = bio->bi_iter.bi_sector << SECTOR_SHIFT;
 357	int ret = 0;
 358
 359	bio_for_each_segment(bvec, bio, iter) {
 360		struct page *page = bvec.bv_page;
 361
 362		if (cur > disk_bytenr)
 363			break;
 364		if (cur + bvec.bv_len <= disk_bytenr) {
 365			cur += bvec.bv_len;
 366			continue;
 367		}
 368		ASSERT(in_range(disk_bytenr, cur, bvec.bv_len));
 369		if (page->mapping && page->mapping->host &&
 370		    page->mapping->host == inode) {
 371			ret = 1;
 372			*file_offset_ret = page_offset(page) + bvec.bv_offset +
 373					   disk_bytenr - cur;
 374			break;
 375		}
 376	}
 377	return ret;
 378}
 379
 380/*
 381 * Lookup the checksum for the read bio in csum tree.
 382 *
 383 * @inode:  inode that the bio is for.
 384 * @bio:    bio to look up.
 385 * @dst:    Buffer of size nblocks * btrfs_super_csum_size() used to return
 386 *          checksum (nblocks = bio->bi_iter.bi_size / fs_info->sectorsize). If
 387 *          NULL, the checksum buffer is allocated and returned in
 388 *          btrfs_bio(bio)->csum instead.
 389 *
 390 * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise.
 391 */
 392blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst)
 393{
 394	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 395	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
 396	struct btrfs_bio *bbio = NULL;
 397	struct btrfs_path *path;
 398	const u32 sectorsize = fs_info->sectorsize;
 399	const u32 csum_size = fs_info->csum_size;
 400	u32 orig_len = bio->bi_iter.bi_size;
 401	u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
 402	u64 cur_disk_bytenr;
 403	u8 *csum;
 404	const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits;
 405	int count = 0;
 406	blk_status_t ret = BLK_STS_OK;
 407
 408	if ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) ||
 409	    test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state))
 410		return BLK_STS_OK;
 411
 412	/*
 413	 * This function is only called for read bio.
 414	 *
 415	 * This means two things:
 416	 * - All our csums should only be in csum tree
 417	 *   No ordered extents csums, as ordered extents are only for write
 418	 *   path.
 419	 * - No need to bother any other info from bvec
 420	 *   Since we're looking up csums, the only important info is the
 421	 *   disk_bytenr and the length, which can be extracted from bi_iter
 422	 *   directly.
 423	 */
 424	ASSERT(bio_op(bio) == REQ_OP_READ);
 425	path = btrfs_alloc_path();
 426	if (!path)
 427		return BLK_STS_RESOURCE;
 428
 429	if (!dst) {
 430		bbio = btrfs_bio(bio);
 431
 432		if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) {
 433			bbio->csum = kmalloc_array(nblocks, csum_size, GFP_NOFS);
 434			if (!bbio->csum) {
 435				btrfs_free_path(path);
 436				return BLK_STS_RESOURCE;
 437			}
 438		} else {
 439			bbio->csum = bbio->csum_inline;
 440		}
 441		csum = bbio->csum;
 442	} else {
 443		csum = dst;
 444	}
 445
 446	/*
 447	 * If requested number of sectors is larger than one leaf can contain,
 448	 * kick the readahead for csum tree.
 449	 */
 450	if (nblocks > fs_info->csums_per_leaf)
 451		path->reada = READA_FORWARD;
 452
 453	/*
 454	 * the free space stuff is only read when it hasn't been
 455	 * updated in the current transaction.  So, we can safely
 456	 * read from the commit root and sidestep a nasty deadlock
 457	 * between reading the free space cache and updating the csum tree.
 458	 */
 459	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
 460		path->search_commit_root = 1;
 461		path->skip_locking = 1;
 462	}
 463
 464	for (cur_disk_bytenr = orig_disk_bytenr;
 465	     cur_disk_bytenr < orig_disk_bytenr + orig_len;
 466	     cur_disk_bytenr += (count * sectorsize)) {
 467		u64 search_len = orig_disk_bytenr + orig_len - cur_disk_bytenr;
 468		unsigned int sector_offset;
 469		u8 *csum_dst;
 
 
 
 470
 471		/*
 472		 * Although both cur_disk_bytenr and orig_disk_bytenr is u64,
 473		 * we're calculating the offset to the bio start.
 474		 *
 475		 * Bio size is limited to UINT_MAX, thus unsigned int is large
 476		 * enough to contain the raw result, not to mention the right
 477		 * shifted result.
 478		 */
 479		ASSERT(cur_disk_bytenr - orig_disk_bytenr < UINT_MAX);
 480		sector_offset = (cur_disk_bytenr - orig_disk_bytenr) >>
 481				fs_info->sectorsize_bits;
 482		csum_dst = csum + sector_offset * csum_size;
 483
 484		count = search_csum_tree(fs_info, path, cur_disk_bytenr,
 485					 search_len, csum_dst);
 486		if (count < 0) {
 487			ret = errno_to_blk_status(count);
 488			if (bbio)
 489				btrfs_bio_free_csum(bbio);
 490			break;
 491		}
 
 
 
 
 
 
 
 
 
 
 
 492
 
 
 
 
 
 
 
 
 
 493		/*
 494		 * We didn't find a csum for this range.  We need to make sure
 495		 * we complain loudly about this, because we are not NODATASUM.
 496		 *
 497		 * However for the DATA_RELOC inode we could potentially be
 498		 * relocating data extents for a NODATASUM inode, so the inode
 499		 * itself won't be marked with NODATASUM, but the extent we're
 500		 * copying is in fact NODATASUM.  If we don't find a csum we
 501		 * assume this is the case.
 502		 */
 503		if (count == 0) {
 504			memset(csum_dst, 0, csum_size);
 505			count = 1;
 506
 507			if (BTRFS_I(inode)->root->root_key.objectid ==
 508			    BTRFS_DATA_RELOC_TREE_OBJECTID) {
 509				u64 file_offset;
 510				int ret;
 511
 512				ret = search_file_offset_in_bio(bio, inode,
 513						cur_disk_bytenr, &file_offset);
 514				if (ret)
 515					set_extent_bits(io_tree, file_offset,
 516						file_offset + sectorsize - 1,
 517						EXTENT_NODATASUM);
 518			} else {
 519				btrfs_warn_rl(fs_info,
 520			"csum hole found for disk bytenr range [%llu, %llu)",
 521				cur_disk_bytenr, cur_disk_bytenr + sectorsize);
 522			}
 523		}
 524	}
 525
 526	btrfs_free_path(path);
 527	return ret;
 
 
 
 
 
 
 528}
 529
 530int btrfs_lookup_csums_list(struct btrfs_root *root, u64 start, u64 end,
 531			    struct list_head *list, int search_commit,
 532			    bool nowait)
 
 
 
 
 
 533{
 534	struct btrfs_fs_info *fs_info = root->fs_info;
 535	struct btrfs_key key;
 536	struct btrfs_path *path;
 537	struct extent_buffer *leaf;
 538	struct btrfs_ordered_sum *sums;
 
 539	struct btrfs_csum_item *item;
 540	LIST_HEAD(tmplist);
 541	int ret;
 542
 543	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
 544	       IS_ALIGNED(end + 1, fs_info->sectorsize));
 545
 546	path = btrfs_alloc_path();
 547	if (!path)
 548		return -ENOMEM;
 549
 550	path->nowait = nowait;
 551	if (search_commit) {
 552		path->skip_locking = 1;
 553		path->reada = READA_FORWARD;
 554		path->search_commit_root = 1;
 555	}
 556
 557	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
 558	key.offset = start;
 559	key.type = BTRFS_EXTENT_CSUM_KEY;
 560
 561	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 562	if (ret < 0)
 563		goto fail;
 564	if (ret > 0 && path->slots[0] > 0) {
 565		leaf = path->nodes[0];
 566		btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
 567
 568		/*
 569		 * There are two cases we can hit here for the previous csum
 570		 * item:
 571		 *
 572		 *		|<- search range ->|
 573		 *	|<- csum item ->|
 574		 *
 575		 * Or
 576		 *				|<- search range ->|
 577		 *	|<- csum item ->|
 578		 *
 579		 * Check if the previous csum item covers the leading part of
 580		 * the search range.  If so we have to start from previous csum
 581		 * item.
 582		 */
 583		if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
 584		    key.type == BTRFS_EXTENT_CSUM_KEY) {
 585			if (bytes_to_csum_size(fs_info, start - key.offset) <
 586			    btrfs_item_size(leaf, path->slots[0] - 1))
 
 
 587				path->slots[0]--;
 588		}
 589	}
 590
 591	while (start <= end) {
 592		u64 csum_end;
 593
 594		leaf = path->nodes[0];
 595		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 596			ret = btrfs_next_leaf(root, path);
 597			if (ret < 0)
 598				goto fail;
 599			if (ret > 0)
 600				break;
 601			leaf = path->nodes[0];
 602		}
 603
 604		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 605		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
 606		    key.type != BTRFS_EXTENT_CSUM_KEY ||
 607		    key.offset > end)
 608			break;
 609
 610		if (key.offset > start)
 611			start = key.offset;
 612
 613		csum_end = key.offset + csum_size_to_bytes(fs_info,
 614					btrfs_item_size(leaf, path->slots[0]));
 615		if (csum_end <= start) {
 616			path->slots[0]++;
 617			continue;
 618		}
 619
 620		csum_end = min(csum_end, end + 1);
 621		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 622				      struct btrfs_csum_item);
 623		while (start < csum_end) {
 624			unsigned long offset;
 625			size_t size;
 626
 627			size = min_t(size_t, csum_end - start,
 628				     max_ordered_sum_bytes(fs_info));
 629			sums = kzalloc(btrfs_ordered_sum_size(fs_info, size),
 630				       GFP_NOFS);
 631			if (!sums) {
 632				ret = -ENOMEM;
 633				goto fail;
 634			}
 635
 636			sums->bytenr = start;
 637			sums->len = (int)size;
 638
 639			offset = bytes_to_csum_size(fs_info, start - key.offset);
 640
 641			read_extent_buffer(path->nodes[0],
 642					   sums->sums,
 643					   ((unsigned long)item) + offset,
 644					   bytes_to_csum_size(fs_info, size));
 645
 646			start += size;
 647			list_add_tail(&sums->list, &tmplist);
 648		}
 649		path->slots[0]++;
 650	}
 651	ret = 0;
 652fail:
 653	while (ret < 0 && !list_empty(&tmplist)) {
 654		sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list);
 655		list_del(&sums->list);
 656		kfree(sums);
 657	}
 658	list_splice_tail(&tmplist, list);
 659
 660	btrfs_free_path(path);
 661	return ret;
 662}
 663
 664/*
 665 * Do the same work as btrfs_lookup_csums_list(), the difference is in how
 666 * we return the result.
 667 *
 668 * This version will set the corresponding bits in @csum_bitmap to represent
 669 * that there is a csum found.
 670 * Each bit represents a sector. Thus caller should ensure @csum_buf passed
 671 * in is large enough to contain all csums.
 672 */
 673int btrfs_lookup_csums_bitmap(struct btrfs_root *root, u64 start, u64 end,
 674			      u8 *csum_buf, unsigned long *csum_bitmap)
 675{
 676	struct btrfs_fs_info *fs_info = root->fs_info;
 677	struct btrfs_key key;
 678	struct btrfs_path *path;
 679	struct extent_buffer *leaf;
 680	struct btrfs_csum_item *item;
 681	const u64 orig_start = start;
 682	int ret;
 683
 684	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
 685	       IS_ALIGNED(end + 1, fs_info->sectorsize));
 686
 687	path = btrfs_alloc_path();
 688	if (!path)
 689		return -ENOMEM;
 690
 691	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
 692	key.type = BTRFS_EXTENT_CSUM_KEY;
 693	key.offset = start;
 694
 695	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 696	if (ret < 0)
 697		goto fail;
 698	if (ret > 0 && path->slots[0] > 0) {
 699		leaf = path->nodes[0];
 700		btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
 701
 702		/*
 703		 * There are two cases we can hit here for the previous csum
 704		 * item:
 705		 *
 706		 *		|<- search range ->|
 707		 *	|<- csum item ->|
 708		 *
 709		 * Or
 710		 *				|<- search range ->|
 711		 *	|<- csum item ->|
 712		 *
 713		 * Check if the previous csum item covers the leading part of
 714		 * the search range.  If so we have to start from previous csum
 715		 * item.
 716		 */
 717		if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
 718		    key.type == BTRFS_EXTENT_CSUM_KEY) {
 719			if (bytes_to_csum_size(fs_info, start - key.offset) <
 720			    btrfs_item_size(leaf, path->slots[0] - 1))
 721				path->slots[0]--;
 722		}
 723	}
 724
 725	while (start <= end) {
 726		u64 csum_end;
 727
 728		leaf = path->nodes[0];
 729		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 730			ret = btrfs_next_leaf(root, path);
 731			if (ret < 0)
 732				goto fail;
 733			if (ret > 0)
 734				break;
 735			leaf = path->nodes[0];
 736		}
 737
 738		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 739		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
 740		    key.type != BTRFS_EXTENT_CSUM_KEY ||
 741		    key.offset > end)
 742			break;
 743
 744		if (key.offset > start)
 745			start = key.offset;
 746
 747		csum_end = key.offset + csum_size_to_bytes(fs_info,
 748					btrfs_item_size(leaf, path->slots[0]));
 749		if (csum_end <= start) {
 750			path->slots[0]++;
 751			continue;
 752		}
 753
 754		csum_end = min(csum_end, end + 1);
 755		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 756				      struct btrfs_csum_item);
 757		while (start < csum_end) {
 758			unsigned long offset;
 759			size_t size;
 760			u8 *csum_dest = csum_buf + bytes_to_csum_size(fs_info,
 761						start - orig_start);
 762
 763			size = min_t(size_t, csum_end - start, end + 1 - start);
 764
 765			offset = bytes_to_csum_size(fs_info, start - key.offset);
 766
 767			read_extent_buffer(path->nodes[0], csum_dest,
 768					   ((unsigned long)item) + offset,
 769					   bytes_to_csum_size(fs_info, size));
 770
 771			bitmap_set(csum_bitmap,
 772				(start - orig_start) >> fs_info->sectorsize_bits,
 773				size >> fs_info->sectorsize_bits);
 774
 775			start += size;
 
 
 
 
 
 
 
 
 
 
 
 
 776		}
 777		path->slots[0]++;
 778	}
 779	ret = 0;
 780fail:
 781	btrfs_free_path(path);
 782	return ret;
 783}
 784
 785/*
 786 * Calculate checksums of the data contained inside a bio.
 787 *
 788 * @inode:	 Owner of the data inside the bio
 789 * @bio:	 Contains the data to be checksummed
 790 * @offset:      If (u64)-1, @bio may contain discontiguous bio vecs, so the
 791 *               file offsets are determined from the page offsets in the bio.
 792 *               Otherwise, this is the starting file offset of the bio vecs in
 793 *               @bio, which must be contiguous.
 794 * @one_ordered: If true, @bio only refers to one ordered extent.
 795 */
 796blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio,
 797				u64 offset, bool one_ordered)
 798{
 799	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 800	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 801	struct btrfs_ordered_sum *sums;
 802	struct btrfs_ordered_extent *ordered = NULL;
 803	const bool use_page_offsets = (offset == (u64)-1);
 804	char *data;
 805	struct bvec_iter iter;
 806	struct bio_vec bvec;
 807	int index;
 808	unsigned int blockcount;
 809	unsigned long total_bytes = 0;
 810	unsigned long this_sum_bytes = 0;
 811	int i;
 812	unsigned nofs_flag;
 813
 814	nofs_flag = memalloc_nofs_save();
 815	sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size),
 816		       GFP_KERNEL);
 817	memalloc_nofs_restore(nofs_flag);
 818
 
 
 819	if (!sums)
 820		return BLK_STS_RESOURCE;
 821
 822	sums->len = bio->bi_iter.bi_size;
 
 
 823	INIT_LIST_HEAD(&sums->list);
 824
 825	sums->bytenr = bio->bi_iter.bi_sector << 9;
 826	index = 0;
 
 
 827
 828	shash->tfm = fs_info->csum_shash;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 829
 830	bio_for_each_segment(bvec, bio, iter) {
 831		if (use_page_offsets)
 832			offset = page_offset(bvec.bv_page) + bvec.bv_offset;
 833
 834		if (!ordered) {
 
 
 
 
 835			ordered = btrfs_lookup_ordered_extent(inode, offset);
 836			/*
 837			 * The bio range is not covered by any ordered extent,
 838			 * must be a code logic error.
 839			 */
 840			if (unlikely(!ordered)) {
 841				WARN(1, KERN_WARNING
 842			"no ordered extent for root %llu ino %llu offset %llu\n",
 843				     inode->root->root_key.objectid,
 844				     btrfs_ino(inode), offset);
 845				kvfree(sums);
 846				return BLK_STS_IOERR;
 847			}
 848		}
 849
 850		blockcount = BTRFS_BYTES_TO_BLKS(fs_info,
 851						 bvec.bv_len + fs_info->sectorsize
 852						 - 1);
 853
 854		for (i = 0; i < blockcount; i++) {
 855			if (!one_ordered &&
 856			    !in_range(offset, ordered->file_offset,
 857				      ordered->num_bytes)) {
 858				unsigned long bytes_left;
 859
 860				sums->len = this_sum_bytes;
 861				this_sum_bytes = 0;
 862				btrfs_add_ordered_sum(ordered, sums);
 863				btrfs_put_ordered_extent(ordered);
 864
 865				bytes_left = bio->bi_iter.bi_size - total_bytes;
 866
 867				nofs_flag = memalloc_nofs_save();
 868				sums = kvzalloc(btrfs_ordered_sum_size(fs_info,
 869						      bytes_left), GFP_KERNEL);
 870				memalloc_nofs_restore(nofs_flag);
 871				BUG_ON(!sums); /* -ENOMEM */
 872				sums->len = bytes_left;
 873				ordered = btrfs_lookup_ordered_extent(inode,
 874								offset);
 875				ASSERT(ordered); /* Logic error */
 876				sums->bytenr = (bio->bi_iter.bi_sector << 9)
 877					+ total_bytes;
 878				index = 0;
 879			}
 880
 881			data = bvec_kmap_local(&bvec);
 882			crypto_shash_digest(shash,
 883					    data + (i * fs_info->sectorsize),
 884					    fs_info->sectorsize,
 885					    sums->sums + index);
 886			kunmap_local(data);
 887			index += fs_info->csum_size;
 888			offset += fs_info->sectorsize;
 889			this_sum_bytes += fs_info->sectorsize;
 890			total_bytes += fs_info->sectorsize;
 891		}
 892
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 893	}
 894	this_sum_bytes = 0;
 895	btrfs_add_ordered_sum(ordered, sums);
 896	btrfs_put_ordered_extent(ordered);
 897	return 0;
 898}
 899
 900/*
 901 * Remove one checksum overlapping a range.
 902 *
 903 * This expects the key to describe the csum pointed to by the path, and it
 904 * expects the csum to overlap the range [bytenr, len]
 905 *
 906 * The csum should not be entirely contained in the range and the range should
 907 * not be entirely contained in the csum.
 908 *
 909 * This calls btrfs_truncate_item with the correct args based on the overlap,
 910 * and fixes up the key as required.
 911 */
 912static noinline void truncate_one_csum(struct btrfs_fs_info *fs_info,
 913				       struct btrfs_path *path,
 914				       struct btrfs_key *key,
 915				       u64 bytenr, u64 len)
 916{
 917	struct extent_buffer *leaf;
 918	const u32 csum_size = fs_info->csum_size;
 
 919	u64 csum_end;
 920	u64 end_byte = bytenr + len;
 921	u32 blocksize_bits = fs_info->sectorsize_bits;
 
 922
 923	leaf = path->nodes[0];
 924	csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
 925	csum_end <<= blocksize_bits;
 926	csum_end += key->offset;
 927
 928	if (key->offset < bytenr && csum_end <= end_byte) {
 929		/*
 930		 *         [ bytenr - len ]
 931		 *         [   ]
 932		 *   [csum     ]
 933		 *   A simple truncate off the end of the item
 934		 */
 935		u32 new_size = (bytenr - key->offset) >> blocksize_bits;
 936		new_size *= csum_size;
 937		btrfs_truncate_item(path, new_size, 1);
 938	} else if (key->offset >= bytenr && csum_end > end_byte &&
 939		   end_byte > key->offset) {
 940		/*
 941		 *         [ bytenr - len ]
 942		 *                 [ ]
 943		 *                 [csum     ]
 944		 * we need to truncate from the beginning of the csum
 945		 */
 946		u32 new_size = (csum_end - end_byte) >> blocksize_bits;
 947		new_size *= csum_size;
 948
 949		btrfs_truncate_item(path, new_size, 0);
 950
 951		key->offset = end_byte;
 952		btrfs_set_item_key_safe(fs_info, path, key);
 
 953	} else {
 954		BUG();
 955	}
 
 956}
 957
 958/*
 959 * Delete the csum items from the csum tree for a given range of bytes.
 
 960 */
 961int btrfs_del_csums(struct btrfs_trans_handle *trans,
 962		    struct btrfs_root *root, u64 bytenr, u64 len)
 963{
 964	struct btrfs_fs_info *fs_info = trans->fs_info;
 965	struct btrfs_path *path;
 966	struct btrfs_key key;
 967	u64 end_byte = bytenr + len;
 968	u64 csum_end;
 969	struct extent_buffer *leaf;
 970	int ret = 0;
 971	const u32 csum_size = fs_info->csum_size;
 972	u32 blocksize_bits = fs_info->sectorsize_bits;
 
 973
 974	ASSERT(root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID ||
 975	       root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
 976
 977	path = btrfs_alloc_path();
 978	if (!path)
 979		return -ENOMEM;
 980
 981	while (1) {
 982		key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
 983		key.offset = end_byte - 1;
 984		key.type = BTRFS_EXTENT_CSUM_KEY;
 985
 
 986		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 987		if (ret > 0) {
 988			ret = 0;
 989			if (path->slots[0] == 0)
 990				break;
 991			path->slots[0]--;
 992		} else if (ret < 0) {
 993			break;
 994		}
 995
 996		leaf = path->nodes[0];
 997		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 998
 999		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1000		    key.type != BTRFS_EXTENT_CSUM_KEY) {
1001			break;
1002		}
1003
1004		if (key.offset >= end_byte)
1005			break;
1006
1007		csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
1008		csum_end <<= blocksize_bits;
1009		csum_end += key.offset;
1010
1011		/* this csum ends before we start, we're done */
1012		if (csum_end <= bytenr)
1013			break;
1014
1015		/* delete the entire item, it is inside our range */
1016		if (key.offset >= bytenr && csum_end <= end_byte) {
1017			int del_nr = 1;
1018
1019			/*
1020			 * Check how many csum items preceding this one in this
1021			 * leaf correspond to our range and then delete them all
1022			 * at once.
1023			 */
1024			if (key.offset > bytenr && path->slots[0] > 0) {
1025				int slot = path->slots[0] - 1;
1026
1027				while (slot >= 0) {
1028					struct btrfs_key pk;
1029
1030					btrfs_item_key_to_cpu(leaf, &pk, slot);
1031					if (pk.offset < bytenr ||
1032					    pk.type != BTRFS_EXTENT_CSUM_KEY ||
1033					    pk.objectid !=
1034					    BTRFS_EXTENT_CSUM_OBJECTID)
1035						break;
1036					path->slots[0] = slot;
1037					del_nr++;
1038					key.offset = pk.offset;
1039					slot--;
1040				}
1041			}
1042			ret = btrfs_del_items(trans, root, path,
1043					      path->slots[0], del_nr);
1044			if (ret)
1045				break;
1046			if (key.offset == bytenr)
1047				break;
1048		} else if (key.offset < bytenr && csum_end > end_byte) {
1049			unsigned long offset;
1050			unsigned long shift_len;
1051			unsigned long item_offset;
1052			/*
1053			 *        [ bytenr - len ]
1054			 *     [csum                ]
1055			 *
1056			 * Our bytes are in the middle of the csum,
1057			 * we need to split this item and insert a new one.
1058			 *
1059			 * But we can't drop the path because the
1060			 * csum could change, get removed, extended etc.
1061			 *
1062			 * The trick here is the max size of a csum item leaves
1063			 * enough room in the tree block for a single
1064			 * item header.  So, we split the item in place,
1065			 * adding a new header pointing to the existing
1066			 * bytes.  Then we loop around again and we have
1067			 * a nicely formed csum item that we can neatly
1068			 * truncate.
1069			 */
1070			offset = (bytenr - key.offset) >> blocksize_bits;
1071			offset *= csum_size;
1072
1073			shift_len = (len >> blocksize_bits) * csum_size;
1074
1075			item_offset = btrfs_item_ptr_offset(leaf,
1076							    path->slots[0]);
1077
1078			memzero_extent_buffer(leaf, item_offset + offset,
1079					     shift_len);
1080			key.offset = bytenr;
1081
1082			/*
1083			 * btrfs_split_item returns -EAGAIN when the
1084			 * item changed size or key
1085			 */
1086			ret = btrfs_split_item(trans, root, path, &key, offset);
1087			if (ret && ret != -EAGAIN) {
1088				btrfs_abort_transaction(trans, ret);
1089				break;
1090			}
1091			ret = 0;
1092
1093			key.offset = end_byte - 1;
1094		} else {
1095			truncate_one_csum(fs_info, path, &key, bytenr, len);
 
 
1096			if (key.offset < bytenr)
1097				break;
1098		}
1099		btrfs_release_path(path);
1100	}
 
 
1101	btrfs_free_path(path);
1102	return ret;
1103}
1104
1105static int find_next_csum_offset(struct btrfs_root *root,
1106				 struct btrfs_path *path,
1107				 u64 *next_offset)
1108{
1109	const u32 nritems = btrfs_header_nritems(path->nodes[0]);
1110	struct btrfs_key found_key;
1111	int slot = path->slots[0] + 1;
1112	int ret;
1113
1114	if (nritems == 0 || slot >= nritems) {
1115		ret = btrfs_next_leaf(root, path);
1116		if (ret < 0) {
1117			return ret;
1118		} else if (ret > 0) {
1119			*next_offset = (u64)-1;
1120			return 0;
1121		}
1122		slot = path->slots[0];
1123	}
1124
1125	btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);
1126
1127	if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1128	    found_key.type != BTRFS_EXTENT_CSUM_KEY)
1129		*next_offset = (u64)-1;
1130	else
1131		*next_offset = found_key.offset;
1132
1133	return 0;
1134}
1135
1136int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
1137			   struct btrfs_root *root,
1138			   struct btrfs_ordered_sum *sums)
1139{
1140	struct btrfs_fs_info *fs_info = root->fs_info;
 
1141	struct btrfs_key file_key;
1142	struct btrfs_key found_key;
 
 
 
1143	struct btrfs_path *path;
1144	struct btrfs_csum_item *item;
1145	struct btrfs_csum_item *item_end;
1146	struct extent_buffer *leaf = NULL;
1147	u64 next_offset;
1148	u64 total_bytes = 0;
1149	u64 csum_offset;
1150	u64 bytenr;
 
1151	u32 ins_size;
1152	int index = 0;
1153	int found_next;
1154	int ret;
1155	const u32 csum_size = fs_info->csum_size;
1156
1157	path = btrfs_alloc_path();
1158	if (!path)
1159		return -ENOMEM;
 
 
1160again:
1161	next_offset = (u64)-1;
1162	found_next = 0;
1163	bytenr = sums->bytenr + total_bytes;
1164	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1165	file_key.offset = bytenr;
1166	file_key.type = BTRFS_EXTENT_CSUM_KEY;
 
1167
1168	item = btrfs_lookup_csum(trans, root, path, bytenr, 1);
1169	if (!IS_ERR(item)) {
1170		ret = 0;
1171		leaf = path->nodes[0];
1172		item_end = btrfs_item_ptr(leaf, path->slots[0],
1173					  struct btrfs_csum_item);
1174		item_end = (struct btrfs_csum_item *)((char *)item_end +
1175			   btrfs_item_size(leaf, path->slots[0]));
1176		goto found;
1177	}
1178	ret = PTR_ERR(item);
1179	if (ret != -EFBIG && ret != -ENOENT)
1180		goto out;
1181
1182	if (ret == -EFBIG) {
1183		u32 item_size;
1184		/* we found one, but it isn't big enough yet */
1185		leaf = path->nodes[0];
1186		item_size = btrfs_item_size(leaf, path->slots[0]);
1187		if ((item_size / csum_size) >=
1188		    MAX_CSUM_ITEMS(fs_info, csum_size)) {
1189			/* already at max size, make a new one */
1190			goto insert;
1191		}
1192	} else {
1193		/* We didn't find a csum item, insert one. */
1194		ret = find_next_csum_offset(root, path, &next_offset);
1195		if (ret < 0)
1196			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1197		found_next = 1;
1198		goto insert;
1199	}
1200
1201	/*
1202	 * At this point, we know the tree has a checksum item that ends at an
1203	 * offset matching the start of the checksum range we want to insert.
1204	 * We try to extend that item as much as possible and then add as many
1205	 * checksums to it as they fit.
1206	 *
1207	 * First check if the leaf has enough free space for at least one
1208	 * checksum. If it has go directly to the item extension code, otherwise
1209	 * release the path and do a search for insertion before the extension.
1210	 */
1211	if (btrfs_leaf_free_space(leaf) >= csum_size) {
1212		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1213		csum_offset = (bytenr - found_key.offset) >>
1214			fs_info->sectorsize_bits;
1215		goto extend_csum;
1216	}
1217
1218	btrfs_release_path(path);
1219	path->search_for_extension = 1;
1220	ret = btrfs_search_slot(trans, root, &file_key, path,
1221				csum_size, 1);
1222	path->search_for_extension = 0;
1223	if (ret < 0)
1224		goto out;
1225
1226	if (ret > 0) {
1227		if (path->slots[0] == 0)
1228			goto insert;
1229		path->slots[0]--;
1230	}
1231
1232	leaf = path->nodes[0];
1233	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1234	csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits;
 
1235
1236	if (found_key.type != BTRFS_EXTENT_CSUM_KEY ||
1237	    found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1238	    csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) {
1239		goto insert;
1240	}
1241
1242extend_csum:
1243	if (csum_offset == btrfs_item_size(leaf, path->slots[0]) /
1244	    csum_size) {
1245		int extend_nr;
1246		u64 tmp;
1247		u32 diff;
1248
1249		tmp = sums->len - total_bytes;
1250		tmp >>= fs_info->sectorsize_bits;
1251		WARN_ON(tmp < 1);
1252		extend_nr = max_t(int, 1, tmp);
1253
1254		/*
1255		 * A log tree can already have checksum items with a subset of
1256		 * the checksums we are trying to log. This can happen after
1257		 * doing a sequence of partial writes into prealloc extents and
1258		 * fsyncs in between, with a full fsync logging a larger subrange
1259		 * of an extent for which a previous fast fsync logged a smaller
1260		 * subrange. And this happens in particular due to merging file
1261		 * extent items when we complete an ordered extent for a range
1262		 * covered by a prealloc extent - this is done at
1263		 * btrfs_mark_extent_written().
1264		 *
1265		 * So if we try to extend the previous checksum item, which has
1266		 * a range that ends at the start of the range we want to insert,
1267		 * make sure we don't extend beyond the start offset of the next
1268		 * checksum item. If we are at the last item in the leaf, then
1269		 * forget the optimization of extending and add a new checksum
1270		 * item - it is not worth the complexity of releasing the path,
1271		 * getting the first key for the next leaf, repeat the btree
1272		 * search, etc, because log trees are temporary anyway and it
1273		 * would only save a few bytes of leaf space.
1274		 */
1275		if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
1276			if (path->slots[0] + 1 >=
1277			    btrfs_header_nritems(path->nodes[0])) {
1278				ret = find_next_csum_offset(root, path, &next_offset);
1279				if (ret < 0)
1280					goto out;
1281				found_next = 1;
1282				goto insert;
1283			}
1284
1285			ret = find_next_csum_offset(root, path, &next_offset);
1286			if (ret < 0)
1287				goto out;
1288
1289			tmp = (next_offset - bytenr) >> fs_info->sectorsize_bits;
1290			if (tmp <= INT_MAX)
1291				extend_nr = min_t(int, extend_nr, tmp);
1292		}
1293
1294		diff = (csum_offset + extend_nr) * csum_size;
1295		diff = min(diff,
1296			   MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size);
1297
1298		diff = diff - btrfs_item_size(leaf, path->slots[0]);
1299		diff = min_t(u32, btrfs_leaf_free_space(leaf), diff);
1300		diff /= csum_size;
1301		diff *= csum_size;
1302
1303		btrfs_extend_item(path, diff);
1304		ret = 0;
1305		goto csum;
1306	}
1307
1308insert:
1309	btrfs_release_path(path);
1310	csum_offset = 0;
1311	if (found_next) {
1312		u64 tmp;
 
 
1313
1314		tmp = sums->len - total_bytes;
1315		tmp >>= fs_info->sectorsize_bits;
1316		tmp = min(tmp, (next_offset - file_key.offset) >>
1317					 fs_info->sectorsize_bits);
1318
1319		tmp = max_t(u64, 1, tmp);
1320		tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size));
 
 
 
 
1321		ins_size = csum_size * tmp;
1322	} else {
1323		ins_size = csum_size;
1324	}
 
1325	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
1326				      ins_size);
 
1327	if (ret < 0)
1328		goto out;
1329	if (WARN_ON(ret != 0))
1330		goto out;
1331	leaf = path->nodes[0];
 
1332csum:
 
1333	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
1334	item_end = (struct btrfs_csum_item *)((unsigned char *)item +
1335				      btrfs_item_size(leaf, path->slots[0]));
1336	item = (struct btrfs_csum_item *)((unsigned char *)item +
1337					  csum_offset * csum_size);
1338found:
1339	ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits;
1340	ins_size *= csum_size;
1341	ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item,
1342			      ins_size);
1343	write_extent_buffer(leaf, sums->sums + index, (unsigned long)item,
1344			    ins_size);
1345
1346	index += ins_size;
1347	ins_size /= csum_size;
1348	total_bytes += ins_size * fs_info->sectorsize;
 
 
 
 
 
 
 
 
1349
1350	btrfs_mark_buffer_dirty(path->nodes[0]);
1351	if (total_bytes < sums->len) {
1352		btrfs_release_path(path);
1353		cond_resched();
1354		goto again;
1355	}
1356out:
1357	btrfs_free_path(path);
1358	return ret;
1359}
1360
1361void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
1362				     const struct btrfs_path *path,
1363				     struct btrfs_file_extent_item *fi,
1364				     struct extent_map *em)
1365{
1366	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1367	struct btrfs_root *root = inode->root;
1368	struct extent_buffer *leaf = path->nodes[0];
1369	const int slot = path->slots[0];
1370	struct btrfs_key key;
1371	u64 extent_start, extent_end;
1372	u64 bytenr;
1373	u8 type = btrfs_file_extent_type(leaf, fi);
1374	int compress_type = btrfs_file_extent_compression(leaf, fi);
1375
1376	btrfs_item_key_to_cpu(leaf, &key, slot);
1377	extent_start = key.offset;
1378	extent_end = btrfs_file_extent_end(path);
1379	em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1380	em->generation = btrfs_file_extent_generation(leaf, fi);
1381	if (type == BTRFS_FILE_EXTENT_REG ||
1382	    type == BTRFS_FILE_EXTENT_PREALLOC) {
1383		em->start = extent_start;
1384		em->len = extent_end - extent_start;
1385		em->orig_start = extent_start -
1386			btrfs_file_extent_offset(leaf, fi);
1387		em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
1388		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1389		if (bytenr == 0) {
1390			em->block_start = EXTENT_MAP_HOLE;
1391			return;
1392		}
1393		if (compress_type != BTRFS_COMPRESS_NONE) {
1394			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1395			em->compress_type = compress_type;
1396			em->block_start = bytenr;
1397			em->block_len = em->orig_block_len;
1398		} else {
1399			bytenr += btrfs_file_extent_offset(leaf, fi);
1400			em->block_start = bytenr;
1401			em->block_len = em->len;
1402			if (type == BTRFS_FILE_EXTENT_PREALLOC)
1403				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
1404		}
1405	} else if (type == BTRFS_FILE_EXTENT_INLINE) {
1406		em->block_start = EXTENT_MAP_INLINE;
1407		em->start = extent_start;
1408		em->len = extent_end - extent_start;
1409		/*
1410		 * Initialize orig_start and block_len with the same values
1411		 * as in inode.c:btrfs_get_extent().
1412		 */
1413		em->orig_start = EXTENT_MAP_HOLE;
1414		em->block_len = (u64)-1;
1415		em->compress_type = compress_type;
1416		if (compress_type != BTRFS_COMPRESS_NONE)
1417			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1418	} else {
1419		btrfs_err(fs_info,
1420			  "unknown file extent item type %d, inode %llu, offset %llu, "
1421			  "root %llu", type, btrfs_ino(inode), extent_start,
1422			  root->root_key.objectid);
1423	}
1424}
1425
1426/*
1427 * Returns the end offset (non inclusive) of the file extent item the given path
1428 * points to. If it points to an inline extent, the returned offset is rounded
1429 * up to the sector size.
1430 */
1431u64 btrfs_file_extent_end(const struct btrfs_path *path)
1432{
1433	const struct extent_buffer *leaf = path->nodes[0];
1434	const int slot = path->slots[0];
1435	struct btrfs_file_extent_item *fi;
1436	struct btrfs_key key;
1437	u64 end;
1438
1439	btrfs_item_key_to_cpu(leaf, &key, slot);
1440	ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
1441	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1442
1443	if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) {
1444		end = btrfs_file_extent_ram_bytes(leaf, fi);
1445		end = ALIGN(key.offset + end, leaf->fs_info->sectorsize);
1446	} else {
1447		end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1448	}
1449
1450	return end;
 
1451}
v3.1
 
  1/*
  2 * Copyright (C) 2007 Oracle.  All rights reserved.
  3 *
  4 * This program is free software; you can redistribute it and/or
  5 * modify it under the terms of the GNU General Public
  6 * License v2 as published by the Free Software Foundation.
  7 *
  8 * This program is distributed in the hope that it will be useful,
  9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 11 * General Public License for more details.
 12 *
 13 * You should have received a copy of the GNU General Public
 14 * License along with this program; if not, write to the
 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 16 * Boston, MA 021110-1307, USA.
 17 */
 18
 19#include <linux/bio.h>
 20#include <linux/slab.h>
 21#include <linux/pagemap.h>
 22#include <linux/highmem.h>
 
 
 
 
 23#include "ctree.h"
 24#include "disk-io.h"
 25#include "transaction.h"
 
 26#include "print-tree.h"
 
 
 
 
 
 27
 28#define MAX_CSUM_ITEMS(r, size) ((((BTRFS_LEAF_DATA_SIZE(r) - \
 29				   sizeof(struct btrfs_item) * 2) / \
 30				  size) - 1))
 31
 32#define MAX_ORDERED_SUM_BYTES(r) ((PAGE_SIZE - \
 33				   sizeof(struct btrfs_ordered_sum)) / \
 34				   sizeof(struct btrfs_sector_sum) * \
 35				   (r)->sectorsize - (r)->sectorsize)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 36
 37int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
 
 
 
 
 
 
 
 
 
 
 
 
 38			     struct btrfs_root *root,
 39			     u64 objectid, u64 pos,
 40			     u64 disk_offset, u64 disk_num_bytes,
 41			     u64 num_bytes, u64 offset, u64 ram_bytes,
 42			     u8 compression, u8 encryption, u16 other_encoding)
 43{
 44	int ret = 0;
 45	struct btrfs_file_extent_item *item;
 46	struct btrfs_key file_key;
 47	struct btrfs_path *path;
 48	struct extent_buffer *leaf;
 49
 50	path = btrfs_alloc_path();
 51	if (!path)
 52		return -ENOMEM;
 53	file_key.objectid = objectid;
 54	file_key.offset = pos;
 55	btrfs_set_key_type(&file_key, BTRFS_EXTENT_DATA_KEY);
 56
 57	path->leave_spinning = 1;
 58	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
 59				      sizeof(*item));
 60	if (ret < 0)
 61		goto out;
 62	BUG_ON(ret);
 63	leaf = path->nodes[0];
 64	item = btrfs_item_ptr(leaf, path->slots[0],
 65			      struct btrfs_file_extent_item);
 66	btrfs_set_file_extent_disk_bytenr(leaf, item, disk_offset);
 67	btrfs_set_file_extent_disk_num_bytes(leaf, item, disk_num_bytes);
 68	btrfs_set_file_extent_offset(leaf, item, offset);
 69	btrfs_set_file_extent_num_bytes(leaf, item, num_bytes);
 70	btrfs_set_file_extent_ram_bytes(leaf, item, ram_bytes);
 71	btrfs_set_file_extent_generation(leaf, item, trans->transid);
 72	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
 73	btrfs_set_file_extent_compression(leaf, item, compression);
 74	btrfs_set_file_extent_encryption(leaf, item, encryption);
 75	btrfs_set_file_extent_other_encoding(leaf, item, other_encoding);
 76
 77	btrfs_mark_buffer_dirty(leaf);
 78out:
 79	btrfs_free_path(path);
 80	return ret;
 81}
 82
 83struct btrfs_csum_item *btrfs_lookup_csum(struct btrfs_trans_handle *trans,
 84					  struct btrfs_root *root,
 85					  struct btrfs_path *path,
 86					  u64 bytenr, int cow)
 
 87{
 
 88	int ret;
 89	struct btrfs_key file_key;
 90	struct btrfs_key found_key;
 91	struct btrfs_csum_item *item;
 92	struct extent_buffer *leaf;
 93	u64 csum_offset = 0;
 94	u16 csum_size =
 95		btrfs_super_csum_size(&root->fs_info->super_copy);
 96	int csums_in_item;
 97
 98	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
 99	file_key.offset = bytenr;
100	btrfs_set_key_type(&file_key, BTRFS_EXTENT_CSUM_KEY);
101	ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow);
102	if (ret < 0)
103		goto fail;
104	leaf = path->nodes[0];
105	if (ret > 0) {
106		ret = 1;
107		if (path->slots[0] == 0)
108			goto fail;
109		path->slots[0]--;
110		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
111		if (btrfs_key_type(&found_key) != BTRFS_EXTENT_CSUM_KEY)
112			goto fail;
113
114		csum_offset = (bytenr - found_key.offset) >>
115				root->fs_info->sb->s_blocksize_bits;
116		csums_in_item = btrfs_item_size_nr(leaf, path->slots[0]);
117		csums_in_item /= csum_size;
118
119		if (csum_offset >= csums_in_item) {
120			ret = -EFBIG;
121			goto fail;
 
 
122		}
123	}
124	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
125	item = (struct btrfs_csum_item *)((unsigned char *)item +
126					  csum_offset * csum_size);
127	return item;
128fail:
129	if (ret > 0)
130		ret = -ENOENT;
131	return ERR_PTR(ret);
132}
133
134
135int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
136			     struct btrfs_root *root,
137			     struct btrfs_path *path, u64 objectid,
138			     u64 offset, int mod)
139{
140	int ret;
141	struct btrfs_key file_key;
142	int ins_len = mod < 0 ? -1 : 0;
143	int cow = mod != 0;
144
145	file_key.objectid = objectid;
146	file_key.offset = offset;
147	btrfs_set_key_type(&file_key, BTRFS_EXTENT_DATA_KEY);
148	ret = btrfs_search_slot(trans, root, &file_key, path, ins_len, cow);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
149	return ret;
150}
151
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
152
153static int __btrfs_lookup_bio_sums(struct btrfs_root *root,
154				   struct inode *inode, struct bio *bio,
155				   u64 logical_offset, u32 *dst, int dio)
156{
157	u32 sum;
158	struct bio_vec *bvec = bio->bi_io_vec;
159	int bio_index = 0;
160	u64 offset = 0;
161	u64 item_start_offset = 0;
162	u64 item_last_offset = 0;
163	u64 disk_bytenr;
164	u32 diff;
165	u16 csum_size =
166		btrfs_super_csum_size(&root->fs_info->super_copy);
167	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
168	struct btrfs_path *path;
169	struct btrfs_csum_item *item = NULL;
170	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
 
 
 
 
 
 
 
 
 
 
 
171
 
 
 
 
 
 
 
 
 
 
 
 
 
172	path = btrfs_alloc_path();
173	if (!path)
174		return -ENOMEM;
175	if (bio->bi_size > PAGE_CACHE_SIZE * 8)
176		path->reada = 2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
177
178	WARN_ON(bio->bi_vcnt <= 0);
 
 
 
 
 
179
180	/*
181	 * the free space stuff is only read when it hasn't been
182	 * updated in the current transaction.  So, we can safely
183	 * read from the commit root and sidestep a nasty deadlock
184	 * between reading the free space cache and updating the csum tree.
185	 */
186	if (btrfs_is_free_space_inode(root, inode)) {
187		path->search_commit_root = 1;
188		path->skip_locking = 1;
189	}
190
191	disk_bytenr = (u64)bio->bi_sector << 9;
192	if (dio)
193		offset = logical_offset;
194	while (bio_index < bio->bi_vcnt) {
195		if (!dio)
196			offset = page_offset(bvec->bv_page) + bvec->bv_offset;
197		ret = btrfs_find_ordered_sum(inode, offset, disk_bytenr, &sum);
198		if (ret == 0)
199			goto found;
200
201		if (!item || disk_bytenr < item_start_offset ||
202		    disk_bytenr >= item_last_offset) {
203			struct btrfs_key found_key;
204			u32 item_size;
205
206			if (item)
207				btrfs_release_path(path);
208			item = btrfs_lookup_csum(NULL, root->fs_info->csum_root,
209						 path, disk_bytenr, 0);
210			if (IS_ERR(item)) {
211				ret = PTR_ERR(item);
212				if (ret == -ENOENT || ret == -EFBIG)
213					ret = 0;
214				sum = 0;
215				if (BTRFS_I(inode)->root->root_key.objectid ==
216				    BTRFS_DATA_RELOC_TREE_OBJECTID) {
217					set_extent_bits(io_tree, offset,
218						offset + bvec->bv_len - 1,
219						EXTENT_NODATASUM, GFP_NOFS);
220				} else {
221					printk(KERN_INFO "btrfs no csum found "
222					       "for inode %llu start %llu\n",
223					       (unsigned long long)
224					       btrfs_ino(inode),
225					       (unsigned long long)offset);
226				}
227				item = NULL;
228				btrfs_release_path(path);
229				goto found;
230			}
231			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
232					      path->slots[0]);
233
234			item_start_offset = found_key.offset;
235			item_size = btrfs_item_size_nr(path->nodes[0],
236						       path->slots[0]);
237			item_last_offset = item_start_offset +
238				(item_size / csum_size) *
239				root->sectorsize;
240			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
241					      struct btrfs_csum_item);
242		}
243		/*
244		 * this byte range must be able to fit inside
245		 * a single leaf so it will also fit inside a u32
 
 
 
 
 
 
246		 */
247		diff = disk_bytenr - item_start_offset;
248		diff = diff / root->sectorsize;
249		diff = diff * csum_size;
250
251		read_extent_buffer(path->nodes[0], &sum,
252				   ((unsigned long)item) + diff,
253				   csum_size);
254found:
255		if (dst)
256			*dst++ = sum;
257		else
258			set_state_private(io_tree, offset, sum);
259		disk_bytenr += bvec->bv_len;
260		offset += bvec->bv_len;
261		bio_index++;
262		bvec++;
 
 
 
 
 
263	}
 
264	btrfs_free_path(path);
265	return 0;
266}
267
268int btrfs_lookup_bio_sums(struct btrfs_root *root, struct inode *inode,
269			  struct bio *bio, u32 *dst)
270{
271	return __btrfs_lookup_bio_sums(root, inode, bio, 0, dst, 0);
272}
273
274int btrfs_lookup_bio_sums_dio(struct btrfs_root *root, struct inode *inode,
275			      struct bio *bio, u64 offset, u32 *dst)
276{
277	return __btrfs_lookup_bio_sums(root, inode, bio, offset, dst, 1);
278}
279
280int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
281			     struct list_head *list, int search_commit)
282{
 
283	struct btrfs_key key;
284	struct btrfs_path *path;
285	struct extent_buffer *leaf;
286	struct btrfs_ordered_sum *sums;
287	struct btrfs_sector_sum *sector_sum;
288	struct btrfs_csum_item *item;
289	unsigned long offset;
290	int ret;
291	size_t size;
292	u64 csum_end;
293	u16 csum_size = btrfs_super_csum_size(&root->fs_info->super_copy);
294
295	path = btrfs_alloc_path();
296	if (!path)
297		return -ENOMEM;
298
 
299	if (search_commit) {
300		path->skip_locking = 1;
301		path->reada = 2;
302		path->search_commit_root = 1;
303	}
304
305	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
306	key.offset = start;
307	key.type = BTRFS_EXTENT_CSUM_KEY;
308
309	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
310	if (ret < 0)
311		goto fail;
312	if (ret > 0 && path->slots[0] > 0) {
313		leaf = path->nodes[0];
314		btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
315		if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
316		    key.type == BTRFS_EXTENT_CSUM_KEY) {
317			offset = (start - key.offset) >>
318				 root->fs_info->sb->s_blocksize_bits;
319			if (offset * csum_size <
320			    btrfs_item_size_nr(leaf, path->slots[0] - 1))
321				path->slots[0]--;
322		}
323	}
324
325	while (start <= end) {
 
 
326		leaf = path->nodes[0];
327		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
328			ret = btrfs_next_leaf(root, path);
329			if (ret < 0)
330				goto fail;
331			if (ret > 0)
332				break;
333			leaf = path->nodes[0];
334		}
335
336		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
337		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
338		    key.type != BTRFS_EXTENT_CSUM_KEY)
 
339			break;
340
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
341		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
342		if (key.offset > end)
 
 
343			break;
344
345		if (key.offset > start)
346			start = key.offset;
347
348		size = btrfs_item_size_nr(leaf, path->slots[0]);
349		csum_end = key.offset + (size / csum_size) * root->sectorsize;
350		if (csum_end <= start) {
351			path->slots[0]++;
352			continue;
353		}
354
355		csum_end = min(csum_end, end + 1);
356		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
357				      struct btrfs_csum_item);
358		while (start < csum_end) {
359			size = min_t(size_t, csum_end - start,
360					MAX_ORDERED_SUM_BYTES(root));
361			sums = kzalloc(btrfs_ordered_sum_size(root, size),
362					GFP_NOFS);
363			BUG_ON(!sums);
 
 
 
364
365			sector_sum = sums->sums;
366			sums->bytenr = start;
367			sums->len = size;
368
369			offset = (start - key.offset) >>
370				root->fs_info->sb->s_blocksize_bits;
371			offset *= csum_size;
372
373			while (size > 0) {
374				read_extent_buffer(path->nodes[0],
375						&sector_sum->sum,
376						((unsigned long)item) +
377						offset, csum_size);
378				sector_sum->bytenr = start;
379
380				size -= root->sectorsize;
381				start += root->sectorsize;
382				offset += csum_size;
383				sector_sum++;
384			}
385			list_add_tail(&sums->list, list);
386		}
387		path->slots[0]++;
388	}
389	ret = 0;
390fail:
391	btrfs_free_path(path);
392	return ret;
393}
394
395int btrfs_csum_one_bio(struct btrfs_root *root, struct inode *inode,
396		       struct bio *bio, u64 file_start, int contig)
 
 
 
 
 
 
 
 
 
 
 
397{
 
 
398	struct btrfs_ordered_sum *sums;
399	struct btrfs_sector_sum *sector_sum;
400	struct btrfs_ordered_extent *ordered;
401	char *data;
402	struct bio_vec *bvec = bio->bi_io_vec;
403	int bio_index = 0;
 
 
404	unsigned long total_bytes = 0;
405	unsigned long this_sum_bytes = 0;
406	u64 offset;
407	u64 disk_bytenr;
 
 
 
 
 
408
409	WARN_ON(bio->bi_vcnt <= 0);
410	sums = kzalloc(btrfs_ordered_sum_size(root, bio->bi_size), GFP_NOFS);
411	if (!sums)
412		return -ENOMEM;
413
414	sector_sum = sums->sums;
415	disk_bytenr = (u64)bio->bi_sector << 9;
416	sums->len = bio->bi_size;
417	INIT_LIST_HEAD(&sums->list);
418
419	if (contig)
420		offset = file_start;
421	else
422		offset = page_offset(bvec->bv_page) + bvec->bv_offset;
423
424	ordered = btrfs_lookup_ordered_extent(inode, offset);
425	BUG_ON(!ordered);
426	sums->bytenr = ordered->start;
427
428	while (bio_index < bio->bi_vcnt) {
429		if (!contig)
430			offset = page_offset(bvec->bv_page) + bvec->bv_offset;
431
432		if (!contig && (offset >= ordered->file_offset + ordered->len ||
433		    offset < ordered->file_offset)) {
434			unsigned long bytes_left;
435			sums->len = this_sum_bytes;
436			this_sum_bytes = 0;
437			btrfs_add_ordered_sum(inode, ordered, sums);
438			btrfs_put_ordered_extent(ordered);
439
440			bytes_left = bio->bi_size - total_bytes;
 
 
441
442			sums = kzalloc(btrfs_ordered_sum_size(root, bytes_left),
443				       GFP_NOFS);
444			BUG_ON(!sums);
445			sector_sum = sums->sums;
446			sums->len = bytes_left;
447			ordered = btrfs_lookup_ordered_extent(inode, offset);
448			BUG_ON(!ordered);
449			sums->bytenr = ordered->start;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
450		}
451
452		data = kmap_atomic(bvec->bv_page, KM_USER0);
453		sector_sum->sum = ~(u32)0;
454		sector_sum->sum = btrfs_csum_data(root,
455						  data + bvec->bv_offset,
456						  sector_sum->sum,
457						  bvec->bv_len);
458		kunmap_atomic(data, KM_USER0);
459		btrfs_csum_final(sector_sum->sum,
460				 (char *)&sector_sum->sum);
461		sector_sum->bytenr = disk_bytenr;
462
463		sector_sum++;
464		bio_index++;
465		total_bytes += bvec->bv_len;
466		this_sum_bytes += bvec->bv_len;
467		disk_bytenr += bvec->bv_len;
468		offset += bvec->bv_len;
469		bvec++;
470	}
471	this_sum_bytes = 0;
472	btrfs_add_ordered_sum(inode, ordered, sums);
473	btrfs_put_ordered_extent(ordered);
474	return 0;
475}
476
477/*
478 * helper function for csum removal, this expects the
479 * key to describe the csum pointed to by the path, and it expects
480 * the csum to overlap the range [bytenr, len]
481 *
482 * The csum should not be entirely contained in the range and the
483 * range should not be entirely contained in the csum.
484 *
485 * This calls btrfs_truncate_item with the correct args based on the
486 * overlap, and fixes up the key as required.
487 */
488static noinline int truncate_one_csum(struct btrfs_trans_handle *trans,
489				      struct btrfs_root *root,
490				      struct btrfs_path *path,
491				      struct btrfs_key *key,
492				      u64 bytenr, u64 len)
493{
494	struct extent_buffer *leaf;
495	u16 csum_size =
496		btrfs_super_csum_size(&root->fs_info->super_copy);
497	u64 csum_end;
498	u64 end_byte = bytenr + len;
499	u32 blocksize_bits = root->fs_info->sb->s_blocksize_bits;
500	int ret;
501
502	leaf = path->nodes[0];
503	csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size;
504	csum_end <<= root->fs_info->sb->s_blocksize_bits;
505	csum_end += key->offset;
506
507	if (key->offset < bytenr && csum_end <= end_byte) {
508		/*
509		 *         [ bytenr - len ]
510		 *         [   ]
511		 *   [csum     ]
512		 *   A simple truncate off the end of the item
513		 */
514		u32 new_size = (bytenr - key->offset) >> blocksize_bits;
515		new_size *= csum_size;
516		ret = btrfs_truncate_item(trans, root, path, new_size, 1);
517	} else if (key->offset >= bytenr && csum_end > end_byte &&
518		   end_byte > key->offset) {
519		/*
520		 *         [ bytenr - len ]
521		 *                 [ ]
522		 *                 [csum     ]
523		 * we need to truncate from the beginning of the csum
524		 */
525		u32 new_size = (csum_end - end_byte) >> blocksize_bits;
526		new_size *= csum_size;
527
528		ret = btrfs_truncate_item(trans, root, path, new_size, 0);
529
530		key->offset = end_byte;
531		ret = btrfs_set_item_key_safe(trans, root, path, key);
532		BUG_ON(ret);
533	} else {
534		BUG();
535	}
536	return 0;
537}
538
539/*
540 * deletes the csum items from the csum tree for a given
541 * range of bytes.
542 */
543int btrfs_del_csums(struct btrfs_trans_handle *trans,
544		    struct btrfs_root *root, u64 bytenr, u64 len)
545{
 
546	struct btrfs_path *path;
547	struct btrfs_key key;
548	u64 end_byte = bytenr + len;
549	u64 csum_end;
550	struct extent_buffer *leaf;
551	int ret;
552	u16 csum_size =
553		btrfs_super_csum_size(&root->fs_info->super_copy);
554	int blocksize_bits = root->fs_info->sb->s_blocksize_bits;
555
556	root = root->fs_info->csum_root;
 
557
558	path = btrfs_alloc_path();
559	if (!path)
560		return -ENOMEM;
561
562	while (1) {
563		key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
564		key.offset = end_byte - 1;
565		key.type = BTRFS_EXTENT_CSUM_KEY;
566
567		path->leave_spinning = 1;
568		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
569		if (ret > 0) {
 
570			if (path->slots[0] == 0)
571				break;
572			path->slots[0]--;
573		} else if (ret < 0) {
574			break;
575		}
576
577		leaf = path->nodes[0];
578		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
579
580		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
581		    key.type != BTRFS_EXTENT_CSUM_KEY) {
582			break;
583		}
584
585		if (key.offset >= end_byte)
586			break;
587
588		csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size;
589		csum_end <<= blocksize_bits;
590		csum_end += key.offset;
591
592		/* this csum ends before we start, we're done */
593		if (csum_end <= bytenr)
594			break;
595
596		/* delete the entire item, it is inside our range */
597		if (key.offset >= bytenr && csum_end <= end_byte) {
598			ret = btrfs_del_item(trans, root, path);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
599			if (ret)
600				goto out;
601			if (key.offset == bytenr)
602				break;
603		} else if (key.offset < bytenr && csum_end > end_byte) {
604			unsigned long offset;
605			unsigned long shift_len;
606			unsigned long item_offset;
607			/*
608			 *        [ bytenr - len ]
609			 *     [csum                ]
610			 *
611			 * Our bytes are in the middle of the csum,
612			 * we need to split this item and insert a new one.
613			 *
614			 * But we can't drop the path because the
615			 * csum could change, get removed, extended etc.
616			 *
617			 * The trick here is the max size of a csum item leaves
618			 * enough room in the tree block for a single
619			 * item header.  So, we split the item in place,
620			 * adding a new header pointing to the existing
621			 * bytes.  Then we loop around again and we have
622			 * a nicely formed csum item that we can neatly
623			 * truncate.
624			 */
625			offset = (bytenr - key.offset) >> blocksize_bits;
626			offset *= csum_size;
627
628			shift_len = (len >> blocksize_bits) * csum_size;
629
630			item_offset = btrfs_item_ptr_offset(leaf,
631							    path->slots[0]);
632
633			memset_extent_buffer(leaf, 0, item_offset + offset,
634					     shift_len);
635			key.offset = bytenr;
636
637			/*
638			 * btrfs_split_item returns -EAGAIN when the
639			 * item changed size or key
640			 */
641			ret = btrfs_split_item(trans, root, path, &key, offset);
642			BUG_ON(ret && ret != -EAGAIN);
 
 
 
 
643
644			key.offset = end_byte - 1;
645		} else {
646			ret = truncate_one_csum(trans, root, path,
647						&key, bytenr, len);
648			BUG_ON(ret);
649			if (key.offset < bytenr)
650				break;
651		}
652		btrfs_release_path(path);
653	}
654	ret = 0;
655out:
656	btrfs_free_path(path);
657	return ret;
658}
659
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
660int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
661			   struct btrfs_root *root,
662			   struct btrfs_ordered_sum *sums)
663{
664	u64 bytenr;
665	int ret;
666	struct btrfs_key file_key;
667	struct btrfs_key found_key;
668	u64 next_offset;
669	u64 total_bytes = 0;
670	int found_next;
671	struct btrfs_path *path;
672	struct btrfs_csum_item *item;
673	struct btrfs_csum_item *item_end;
674	struct extent_buffer *leaf = NULL;
 
 
675	u64 csum_offset;
676	struct btrfs_sector_sum *sector_sum;
677	u32 nritems;
678	u32 ins_size;
679	u16 csum_size =
680		btrfs_super_csum_size(&root->fs_info->super_copy);
 
 
681
682	path = btrfs_alloc_path();
683	if (!path)
684		return -ENOMEM;
685
686	sector_sum = sums->sums;
687again:
688	next_offset = (u64)-1;
689	found_next = 0;
 
690	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
691	file_key.offset = sector_sum->bytenr;
692	bytenr = sector_sum->bytenr;
693	btrfs_set_key_type(&file_key, BTRFS_EXTENT_CSUM_KEY);
694
695	item = btrfs_lookup_csum(trans, root, path, sector_sum->bytenr, 1);
696	if (!IS_ERR(item)) {
 
697		leaf = path->nodes[0];
698		ret = 0;
 
 
 
699		goto found;
700	}
701	ret = PTR_ERR(item);
702	if (ret != -EFBIG && ret != -ENOENT)
703		goto fail_unlock;
704
705	if (ret == -EFBIG) {
706		u32 item_size;
707		/* we found one, but it isn't big enough yet */
708		leaf = path->nodes[0];
709		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
710		if ((item_size / csum_size) >=
711		    MAX_CSUM_ITEMS(root, csum_size)) {
712			/* already at max size, make a new one */
713			goto insert;
714		}
715	} else {
716		int slot = path->slots[0] + 1;
717		/* we didn't find a csum item, insert one */
718		nritems = btrfs_header_nritems(path->nodes[0]);
719		if (path->slots[0] >= nritems - 1) {
720			ret = btrfs_next_leaf(root, path);
721			if (ret == 1)
722				found_next = 1;
723			if (ret != 0)
724				goto insert;
725			slot = 0;
726		}
727		btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);
728		if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
729		    found_key.type != BTRFS_EXTENT_CSUM_KEY) {
730			found_next = 1;
731			goto insert;
732		}
733		next_offset = found_key.offset;
734		found_next = 1;
735		goto insert;
736	}
737
738	/*
739	 * at this point, we know the tree has an item, but it isn't big
740	 * enough yet to put our csum in.  Grow it
 
 
 
 
 
 
741	 */
 
 
 
 
 
 
 
742	btrfs_release_path(path);
 
743	ret = btrfs_search_slot(trans, root, &file_key, path,
744				csum_size, 1);
 
745	if (ret < 0)
746		goto fail_unlock;
747
748	if (ret > 0) {
749		if (path->slots[0] == 0)
750			goto insert;
751		path->slots[0]--;
752	}
753
754	leaf = path->nodes[0];
755	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
756	csum_offset = (bytenr - found_key.offset) >>
757			root->fs_info->sb->s_blocksize_bits;
758
759	if (btrfs_key_type(&found_key) != BTRFS_EXTENT_CSUM_KEY ||
760	    found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
761	    csum_offset >= MAX_CSUM_ITEMS(root, csum_size)) {
762		goto insert;
763	}
764
765	if (csum_offset >= btrfs_item_size_nr(leaf, path->slots[0]) /
 
766	    csum_size) {
767		u32 diff = (csum_offset + 1) * csum_size;
 
 
 
 
 
 
 
768
769		/*
770		 * is the item big enough already?  we dropped our lock
771		 * before and need to recheck
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
772		 */
773		if (diff < btrfs_item_size_nr(leaf, path->slots[0]))
774			goto csum;
 
 
 
 
 
 
 
 
 
 
 
775
776		diff = diff - btrfs_item_size_nr(leaf, path->slots[0]);
777		if (diff != csum_size)
778			goto insert;
 
 
 
 
 
 
 
 
 
 
779
780		ret = btrfs_extend_item(trans, root, path, diff);
 
781		goto csum;
782	}
783
784insert:
785	btrfs_release_path(path);
786	csum_offset = 0;
787	if (found_next) {
788		u64 tmp = total_bytes + root->sectorsize;
789		u64 next_sector = sector_sum->bytenr;
790		struct btrfs_sector_sum *next = sector_sum + 1;
791
792		while (tmp < sums->len) {
793			if (next_sector + root->sectorsize != next->bytenr)
794				break;
795			tmp += root->sectorsize;
796			next_sector = next->bytenr;
797			next++;
798		}
799		tmp = min(tmp, next_offset - file_key.offset);
800		tmp >>= root->fs_info->sb->s_blocksize_bits;
801		tmp = max((u64)1, tmp);
802		tmp = min(tmp, (u64)MAX_CSUM_ITEMS(root, csum_size));
803		ins_size = csum_size * tmp;
804	} else {
805		ins_size = csum_size;
806	}
807	path->leave_spinning = 1;
808	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
809				      ins_size);
810	path->leave_spinning = 0;
811	if (ret < 0)
812		goto fail_unlock;
813	if (ret != 0) {
814		WARN_ON(1);
815		goto fail_unlock;
816	}
817csum:
818	leaf = path->nodes[0];
819	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
820	ret = 0;
 
821	item = (struct btrfs_csum_item *)((unsigned char *)item +
822					  csum_offset * csum_size);
823found:
824	item_end = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
825	item_end = (struct btrfs_csum_item *)((unsigned char *)item_end +
826				      btrfs_item_size_nr(leaf, path->slots[0]));
827next_sector:
828
829	write_extent_buffer(leaf, &sector_sum->sum, (unsigned long)item, csum_size);
830
831	total_bytes += root->sectorsize;
832	sector_sum++;
833	if (total_bytes < sums->len) {
834		item = (struct btrfs_csum_item *)((char *)item +
835						  csum_size);
836		if (item < item_end && bytenr + PAGE_CACHE_SIZE ==
837		    sector_sum->bytenr) {
838			bytenr = sector_sum->bytenr;
839			goto next_sector;
840		}
841	}
842
843	btrfs_mark_buffer_dirty(path->nodes[0]);
844	if (total_bytes < sums->len) {
845		btrfs_release_path(path);
846		cond_resched();
847		goto again;
848	}
849out:
850	btrfs_free_path(path);
851	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
852
853fail_unlock:
854	goto out;
855}