Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2007 Oracle.  All rights reserved.
  4 * Copyright (C) 2014 Fujitsu.  All rights reserved.
  5 */
  6
  7#include <linux/kthread.h>
  8#include <linux/slab.h>
  9#include <linux/list.h>
 10#include <linux/spinlock.h>
 11#include <linux/freezer.h>
 
 12#include "async-thread.h"
 13#include "ctree.h"
 14
 15enum {
 16	WORK_DONE_BIT,
 17	WORK_ORDER_DONE_BIT,
 18};
 19
 20#define NO_THRESHOLD (-1)
 21#define DFT_THRESHOLD (32)
 22
 23struct btrfs_workqueue {
 24	struct workqueue_struct *normal_wq;
 25
 26	/* File system this workqueue services */
 27	struct btrfs_fs_info *fs_info;
 28
 29	/* List head pointing to ordered work list */
 30	struct list_head ordered_list;
 31
 32	/* Spinlock for ordered_list */
 33	spinlock_t list_lock;
 34
 35	/* Thresholding related variants */
 36	atomic_t pending;
 37
 38	/* Up limit of concurrency workers */
 39	int limit_active;
 40
 41	/* Current number of concurrency workers */
 42	int current_active;
 43
 44	/* Threshold to change current_active */
 45	int thresh;
 46	unsigned int count;
 47	spinlock_t thres_lock;
 48};
 49
 50struct btrfs_fs_info * __pure btrfs_workqueue_owner(const struct btrfs_workqueue *wq)
 51{
 52	return wq->fs_info;
 53}
 54
 55struct btrfs_fs_info * __pure btrfs_work_owner(const struct btrfs_work *work)
 56{
 57	return work->wq->fs_info;
 58}
 59
 60bool btrfs_workqueue_normal_congested(const struct btrfs_workqueue *wq)
 61{
 62	/*
 63	 * We could compare wq->pending with num_online_cpus()
 64	 * to support "thresh == NO_THRESHOLD" case, but it requires
 65	 * moving up atomic_inc/dec in thresh_queue/exec_hook. Let's
 66	 * postpone it until someone needs the support of that case.
 67	 */
 68	if (wq->thresh == NO_THRESHOLD)
 69		return false;
 70
 71	return atomic_read(&wq->pending) > wq->thresh * 2;
 72}
 73
 
 
 
 
 
 
 
 
 
 
 74struct btrfs_workqueue *btrfs_alloc_workqueue(struct btrfs_fs_info *fs_info,
 75					      const char *name, unsigned int flags,
 76					      int limit_active, int thresh)
 77{
 78	struct btrfs_workqueue *ret = kzalloc(sizeof(*ret), GFP_KERNEL);
 79
 80	if (!ret)
 81		return NULL;
 82
 83	ret->fs_info = fs_info;
 
 84	ret->limit_active = limit_active;
 85	atomic_set(&ret->pending, 0);
 86	if (thresh == 0)
 87		thresh = DFT_THRESHOLD;
 88	/* For low threshold, disabling threshold is a better choice */
 89	if (thresh < DFT_THRESHOLD) {
 90		ret->current_active = limit_active;
 91		ret->thresh = NO_THRESHOLD;
 92	} else {
 93		/*
 94		 * For threshold-able wq, let its concurrency grow on demand.
 95		 * Use minimal max_active at alloc time to reduce resource
 96		 * usage.
 97		 */
 98		ret->current_active = 1;
 99		ret->thresh = thresh;
100	}
101
102	ret->normal_wq = alloc_workqueue("btrfs-%s", flags, ret->current_active,
103					 name);
104	if (!ret->normal_wq) {
105		kfree(ret);
106		return NULL;
107	}
108
109	INIT_LIST_HEAD(&ret->ordered_list);
110	spin_lock_init(&ret->list_lock);
111	spin_lock_init(&ret->thres_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
112	trace_btrfs_workqueue_alloc(ret, name);
113	return ret;
114}
115
116/*
117 * Hook for threshold which will be called in btrfs_queue_work.
118 * This hook WILL be called in IRQ handler context,
119 * so workqueue_set_max_active MUST NOT be called in this hook
120 */
121static inline void thresh_queue_hook(struct btrfs_workqueue *wq)
122{
123	if (wq->thresh == NO_THRESHOLD)
124		return;
125	atomic_inc(&wq->pending);
126}
127
128/*
129 * Hook for threshold which will be called before executing the work,
130 * This hook is called in kthread content.
131 * So workqueue_set_max_active is called here.
132 */
133static inline void thresh_exec_hook(struct btrfs_workqueue *wq)
134{
135	int new_current_active;
136	long pending;
137	int need_change = 0;
138
139	if (wq->thresh == NO_THRESHOLD)
140		return;
141
142	atomic_dec(&wq->pending);
143	spin_lock(&wq->thres_lock);
144	/*
145	 * Use wq->count to limit the calling frequency of
146	 * workqueue_set_max_active.
147	 */
148	wq->count++;
149	wq->count %= (wq->thresh / 4);
150	if (!wq->count)
151		goto  out;
152	new_current_active = wq->current_active;
153
154	/*
155	 * pending may be changed later, but it's OK since we really
156	 * don't need it so accurate to calculate new_max_active.
157	 */
158	pending = atomic_read(&wq->pending);
159	if (pending > wq->thresh)
160		new_current_active++;
161	if (pending < wq->thresh / 2)
162		new_current_active--;
163	new_current_active = clamp_val(new_current_active, 1, wq->limit_active);
164	if (new_current_active != wq->current_active)  {
165		need_change = 1;
166		wq->current_active = new_current_active;
167	}
168out:
169	spin_unlock(&wq->thres_lock);
170
171	if (need_change) {
172		workqueue_set_max_active(wq->normal_wq, wq->current_active);
173	}
174}
175
176static void run_ordered_work(struct btrfs_workqueue *wq,
177			     struct btrfs_work *self)
178{
179	struct list_head *list = &wq->ordered_list;
180	struct btrfs_work *work;
181	spinlock_t *lock = &wq->list_lock;
182	unsigned long flags;
183	bool free_self = false;
184
185	while (1) {
186		spin_lock_irqsave(lock, flags);
187		if (list_empty(list))
188			break;
189		work = list_entry(list->next, struct btrfs_work,
190				  ordered_list);
191		if (!test_bit(WORK_DONE_BIT, &work->flags))
192			break;
193		/*
194		 * Orders all subsequent loads after reading WORK_DONE_BIT,
195		 * paired with the smp_mb__before_atomic in btrfs_work_helper
196		 * this guarantees that the ordered function will see all
197		 * updates from ordinary work function.
198		 */
199		smp_rmb();
200
201		/*
202		 * we are going to call the ordered done function, but
203		 * we leave the work item on the list as a barrier so
204		 * that later work items that are done don't have their
205		 * functions called before this one returns
206		 */
207		if (test_and_set_bit(WORK_ORDER_DONE_BIT, &work->flags))
208			break;
209		trace_btrfs_ordered_sched(work);
210		spin_unlock_irqrestore(lock, flags);
211		work->ordered_func(work);
212
213		/* now take the lock again and drop our item from the list */
214		spin_lock_irqsave(lock, flags);
215		list_del(&work->ordered_list);
216		spin_unlock_irqrestore(lock, flags);
217
218		if (work == self) {
219			/*
220			 * This is the work item that the worker is currently
221			 * executing.
222			 *
223			 * The kernel workqueue code guarantees non-reentrancy
224			 * of work items. I.e., if a work item with the same
225			 * address and work function is queued twice, the second
226			 * execution is blocked until the first one finishes. A
227			 * work item may be freed and recycled with the same
228			 * work function; the workqueue code assumes that the
229			 * original work item cannot depend on the recycled work
230			 * item in that case (see find_worker_executing_work()).
231			 *
232			 * Note that different types of Btrfs work can depend on
233			 * each other, and one type of work on one Btrfs
234			 * filesystem may even depend on the same type of work
235			 * on another Btrfs filesystem via, e.g., a loop device.
236			 * Therefore, we must not allow the current work item to
237			 * be recycled until we are really done, otherwise we
238			 * break the above assumption and can deadlock.
239			 */
240			free_self = true;
241		} else {
242			/*
243			 * We don't want to call the ordered free functions with
244			 * the lock held.
245			 */
246			work->ordered_free(work);
247			/* NB: work must not be dereferenced past this point. */
248			trace_btrfs_all_work_done(wq->fs_info, work);
249		}
250	}
251	spin_unlock_irqrestore(lock, flags);
252
253	if (free_self) {
254		self->ordered_free(self);
255		/* NB: self must not be dereferenced past this point. */
256		trace_btrfs_all_work_done(wq->fs_info, self);
257	}
258}
259
260static void btrfs_work_helper(struct work_struct *normal_work)
261{
262	struct btrfs_work *work = container_of(normal_work, struct btrfs_work,
263					       normal_work);
264	struct btrfs_workqueue *wq = work->wq;
265	int need_order = 0;
266
267	/*
268	 * We should not touch things inside work in the following cases:
269	 * 1) after work->func() if it has no ordered_free
270	 *    Since the struct is freed in work->func().
271	 * 2) after setting WORK_DONE_BIT
272	 *    The work may be freed in other threads almost instantly.
273	 * So we save the needed things here.
274	 */
275	if (work->ordered_func)
276		need_order = 1;
277
278	trace_btrfs_work_sched(work);
279	thresh_exec_hook(wq);
280	work->func(work);
281	if (need_order) {
282		/*
283		 * Ensures all memory accesses done in the work function are
284		 * ordered before setting the WORK_DONE_BIT. Ensuring the thread
285		 * which is going to executed the ordered work sees them.
286		 * Pairs with the smp_rmb in run_ordered_work.
287		 */
288		smp_mb__before_atomic();
289		set_bit(WORK_DONE_BIT, &work->flags);
290		run_ordered_work(wq, work);
291	} else {
292		/* NB: work must not be dereferenced past this point. */
293		trace_btrfs_all_work_done(wq->fs_info, work);
294	}
295}
296
297void btrfs_init_work(struct btrfs_work *work, btrfs_func_t func,
298		     btrfs_func_t ordered_func, btrfs_func_t ordered_free)
299{
300	work->func = func;
301	work->ordered_func = ordered_func;
302	work->ordered_free = ordered_free;
303	INIT_WORK(&work->normal_work, btrfs_work_helper);
304	INIT_LIST_HEAD(&work->ordered_list);
305	work->flags = 0;
306}
307
308void btrfs_queue_work(struct btrfs_workqueue *wq, struct btrfs_work *work)
309{
310	unsigned long flags;
311
312	work->wq = wq;
313	thresh_queue_hook(wq);
314	if (work->ordered_func) {
315		spin_lock_irqsave(&wq->list_lock, flags);
316		list_add_tail(&work->ordered_list, &wq->ordered_list);
317		spin_unlock_irqrestore(&wq->list_lock, flags);
318	}
319	trace_btrfs_work_queued(work);
320	queue_work(wq->normal_wq, &work->normal_work);
321}
322
323void btrfs_destroy_workqueue(struct btrfs_workqueue *wq)
324{
325	if (!wq)
326		return;
327	destroy_workqueue(wq->normal_wq);
328	trace_btrfs_workqueue_destroy(wq);
329	kfree(wq);
330}
331
332void btrfs_workqueue_set_max(struct btrfs_workqueue *wq, int limit_active)
333{
334	if (wq)
335		wq->limit_active = limit_active;
336}
337
338void btrfs_flush_workqueue(struct btrfs_workqueue *wq)
339{
340	flush_workqueue(wq->normal_wq);
341}
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2007 Oracle.  All rights reserved.
  4 * Copyright (C) 2014 Fujitsu.  All rights reserved.
  5 */
  6
  7#include <linux/kthread.h>
  8#include <linux/slab.h>
  9#include <linux/list.h>
 10#include <linux/spinlock.h>
 11#include <linux/freezer.h>
 12#include <trace/events/btrfs.h>
 13#include "async-thread.h"
 
 14
 15enum {
 16	WORK_DONE_BIT,
 17	WORK_ORDER_DONE_BIT,
 18};
 19
 20#define NO_THRESHOLD (-1)
 21#define DFT_THRESHOLD (32)
 22
 23struct btrfs_workqueue {
 24	struct workqueue_struct *normal_wq;
 25
 26	/* File system this workqueue services */
 27	struct btrfs_fs_info *fs_info;
 28
 29	/* List head pointing to ordered work list */
 30	struct list_head ordered_list;
 31
 32	/* Spinlock for ordered_list */
 33	spinlock_t list_lock;
 34
 35	/* Thresholding related variants */
 36	atomic_t pending;
 37
 38	/* Up limit of concurrency workers */
 39	int limit_active;
 40
 41	/* Current number of concurrency workers */
 42	int current_active;
 43
 44	/* Threshold to change current_active */
 45	int thresh;
 46	unsigned int count;
 47	spinlock_t thres_lock;
 48};
 49
 50struct btrfs_fs_info * __pure btrfs_workqueue_owner(const struct btrfs_workqueue *wq)
 51{
 52	return wq->fs_info;
 53}
 54
 55struct btrfs_fs_info * __pure btrfs_work_owner(const struct btrfs_work *work)
 56{
 57	return work->wq->fs_info;
 58}
 59
 60bool btrfs_workqueue_normal_congested(const struct btrfs_workqueue *wq)
 61{
 62	/*
 63	 * We could compare wq->pending with num_online_cpus()
 64	 * to support "thresh == NO_THRESHOLD" case, but it requires
 65	 * moving up atomic_inc/dec in thresh_queue/exec_hook. Let's
 66	 * postpone it until someone needs the support of that case.
 67	 */
 68	if (wq->thresh == NO_THRESHOLD)
 69		return false;
 70
 71	return atomic_read(&wq->pending) > wq->thresh * 2;
 72}
 73
 74static void btrfs_init_workqueue(struct btrfs_workqueue *wq,
 75				 struct btrfs_fs_info *fs_info)
 76{
 77	wq->fs_info = fs_info;
 78	atomic_set(&wq->pending, 0);
 79	INIT_LIST_HEAD(&wq->ordered_list);
 80	spin_lock_init(&wq->list_lock);
 81	spin_lock_init(&wq->thres_lock);
 82}
 83
 84struct btrfs_workqueue *btrfs_alloc_workqueue(struct btrfs_fs_info *fs_info,
 85					      const char *name, unsigned int flags,
 86					      int limit_active, int thresh)
 87{
 88	struct btrfs_workqueue *ret = kzalloc(sizeof(*ret), GFP_KERNEL);
 89
 90	if (!ret)
 91		return NULL;
 92
 93	btrfs_init_workqueue(ret, fs_info);
 94
 95	ret->limit_active = limit_active;
 
 96	if (thresh == 0)
 97		thresh = DFT_THRESHOLD;
 98	/* For low threshold, disabling threshold is a better choice */
 99	if (thresh < DFT_THRESHOLD) {
100		ret->current_active = limit_active;
101		ret->thresh = NO_THRESHOLD;
102	} else {
103		/*
104		 * For threshold-able wq, let its concurrency grow on demand.
105		 * Use minimal max_active at alloc time to reduce resource
106		 * usage.
107		 */
108		ret->current_active = 1;
109		ret->thresh = thresh;
110	}
111
112	ret->normal_wq = alloc_workqueue("btrfs-%s", flags, ret->current_active,
113					 name);
114	if (!ret->normal_wq) {
115		kfree(ret);
116		return NULL;
117	}
118
119	trace_btrfs_workqueue_alloc(ret, name);
120	return ret;
121}
122
123struct btrfs_workqueue *btrfs_alloc_ordered_workqueue(
124				struct btrfs_fs_info *fs_info, const char *name,
125				unsigned int flags)
126{
127	struct btrfs_workqueue *ret;
128
129	ret = kzalloc(sizeof(*ret), GFP_KERNEL);
130	if (!ret)
131		return NULL;
132
133	btrfs_init_workqueue(ret, fs_info);
134
135	/* Ordered workqueues don't allow @max_active adjustments. */
136	ret->limit_active = 1;
137	ret->current_active = 1;
138	ret->thresh = NO_THRESHOLD;
139
140	ret->normal_wq = alloc_ordered_workqueue("btrfs-%s", flags, name);
141	if (!ret->normal_wq) {
142		kfree(ret);
143		return NULL;
144	}
145
146	trace_btrfs_workqueue_alloc(ret, name);
147	return ret;
148}
149
150/*
151 * Hook for threshold which will be called in btrfs_queue_work.
152 * This hook WILL be called in IRQ handler context,
153 * so workqueue_set_max_active MUST NOT be called in this hook
154 */
155static inline void thresh_queue_hook(struct btrfs_workqueue *wq)
156{
157	if (wq->thresh == NO_THRESHOLD)
158		return;
159	atomic_inc(&wq->pending);
160}
161
162/*
163 * Hook for threshold which will be called before executing the work,
164 * This hook is called in kthread content.
165 * So workqueue_set_max_active is called here.
166 */
167static inline void thresh_exec_hook(struct btrfs_workqueue *wq)
168{
169	int new_current_active;
170	long pending;
171	int need_change = 0;
172
173	if (wq->thresh == NO_THRESHOLD)
174		return;
175
176	atomic_dec(&wq->pending);
177	spin_lock(&wq->thres_lock);
178	/*
179	 * Use wq->count to limit the calling frequency of
180	 * workqueue_set_max_active.
181	 */
182	wq->count++;
183	wq->count %= (wq->thresh / 4);
184	if (!wq->count)
185		goto  out;
186	new_current_active = wq->current_active;
187
188	/*
189	 * pending may be changed later, but it's OK since we really
190	 * don't need it so accurate to calculate new_max_active.
191	 */
192	pending = atomic_read(&wq->pending);
193	if (pending > wq->thresh)
194		new_current_active++;
195	if (pending < wq->thresh / 2)
196		new_current_active--;
197	new_current_active = clamp_val(new_current_active, 1, wq->limit_active);
198	if (new_current_active != wq->current_active)  {
199		need_change = 1;
200		wq->current_active = new_current_active;
201	}
202out:
203	spin_unlock(&wq->thres_lock);
204
205	if (need_change) {
206		workqueue_set_max_active(wq->normal_wq, wq->current_active);
207	}
208}
209
210static void run_ordered_work(struct btrfs_workqueue *wq,
211			     struct btrfs_work *self)
212{
213	struct list_head *list = &wq->ordered_list;
214	struct btrfs_work *work;
215	spinlock_t *lock = &wq->list_lock;
216	unsigned long flags;
217	bool free_self = false;
218
219	while (1) {
220		spin_lock_irqsave(lock, flags);
221		if (list_empty(list))
222			break;
223		work = list_entry(list->next, struct btrfs_work,
224				  ordered_list);
225		if (!test_bit(WORK_DONE_BIT, &work->flags))
226			break;
227		/*
228		 * Orders all subsequent loads after reading WORK_DONE_BIT,
229		 * paired with the smp_mb__before_atomic in btrfs_work_helper
230		 * this guarantees that the ordered function will see all
231		 * updates from ordinary work function.
232		 */
233		smp_rmb();
234
235		/*
236		 * we are going to call the ordered done function, but
237		 * we leave the work item on the list as a barrier so
238		 * that later work items that are done don't have their
239		 * functions called before this one returns
240		 */
241		if (test_and_set_bit(WORK_ORDER_DONE_BIT, &work->flags))
242			break;
243		trace_btrfs_ordered_sched(work);
244		spin_unlock_irqrestore(lock, flags);
245		work->ordered_func(work, false);
246
247		/* now take the lock again and drop our item from the list */
248		spin_lock_irqsave(lock, flags);
249		list_del(&work->ordered_list);
250		spin_unlock_irqrestore(lock, flags);
251
252		if (work == self) {
253			/*
254			 * This is the work item that the worker is currently
255			 * executing.
256			 *
257			 * The kernel workqueue code guarantees non-reentrancy
258			 * of work items. I.e., if a work item with the same
259			 * address and work function is queued twice, the second
260			 * execution is blocked until the first one finishes. A
261			 * work item may be freed and recycled with the same
262			 * work function; the workqueue code assumes that the
263			 * original work item cannot depend on the recycled work
264			 * item in that case (see find_worker_executing_work()).
265			 *
266			 * Note that different types of Btrfs work can depend on
267			 * each other, and one type of work on one Btrfs
268			 * filesystem may even depend on the same type of work
269			 * on another Btrfs filesystem via, e.g., a loop device.
270			 * Therefore, we must not allow the current work item to
271			 * be recycled until we are really done, otherwise we
272			 * break the above assumption and can deadlock.
273			 */
274			free_self = true;
275		} else {
276			/*
277			 * We don't want to call the ordered free functions with
278			 * the lock held.
279			 */
280			work->ordered_func(work, true);
281			/* NB: work must not be dereferenced past this point. */
282			trace_btrfs_all_work_done(wq->fs_info, work);
283		}
284	}
285	spin_unlock_irqrestore(lock, flags);
286
287	if (free_self) {
288		self->ordered_func(self, true);
289		/* NB: self must not be dereferenced past this point. */
290		trace_btrfs_all_work_done(wq->fs_info, self);
291	}
292}
293
294static void btrfs_work_helper(struct work_struct *normal_work)
295{
296	struct btrfs_work *work = container_of(normal_work, struct btrfs_work,
297					       normal_work);
298	struct btrfs_workqueue *wq = work->wq;
299	int need_order = 0;
300
301	/*
302	 * We should not touch things inside work in the following cases:
303	 * 1) after work->func() if it has no ordered_func(..., true) to free
304	 *    Since the struct is freed in work->func().
305	 * 2) after setting WORK_DONE_BIT
306	 *    The work may be freed in other threads almost instantly.
307	 * So we save the needed things here.
308	 */
309	if (work->ordered_func)
310		need_order = 1;
311
312	trace_btrfs_work_sched(work);
313	thresh_exec_hook(wq);
314	work->func(work);
315	if (need_order) {
316		/*
317		 * Ensures all memory accesses done in the work function are
318		 * ordered before setting the WORK_DONE_BIT. Ensuring the thread
319		 * which is going to executed the ordered work sees them.
320		 * Pairs with the smp_rmb in run_ordered_work.
321		 */
322		smp_mb__before_atomic();
323		set_bit(WORK_DONE_BIT, &work->flags);
324		run_ordered_work(wq, work);
325	} else {
326		/* NB: work must not be dereferenced past this point. */
327		trace_btrfs_all_work_done(wq->fs_info, work);
328	}
329}
330
331void btrfs_init_work(struct btrfs_work *work, btrfs_func_t func,
332		     btrfs_ordered_func_t ordered_func)
333{
334	work->func = func;
335	work->ordered_func = ordered_func;
 
336	INIT_WORK(&work->normal_work, btrfs_work_helper);
337	INIT_LIST_HEAD(&work->ordered_list);
338	work->flags = 0;
339}
340
341void btrfs_queue_work(struct btrfs_workqueue *wq, struct btrfs_work *work)
342{
343	unsigned long flags;
344
345	work->wq = wq;
346	thresh_queue_hook(wq);
347	if (work->ordered_func) {
348		spin_lock_irqsave(&wq->list_lock, flags);
349		list_add_tail(&work->ordered_list, &wq->ordered_list);
350		spin_unlock_irqrestore(&wq->list_lock, flags);
351	}
352	trace_btrfs_work_queued(work);
353	queue_work(wq->normal_wq, &work->normal_work);
354}
355
356void btrfs_destroy_workqueue(struct btrfs_workqueue *wq)
357{
358	if (!wq)
359		return;
360	destroy_workqueue(wq->normal_wq);
361	trace_btrfs_workqueue_destroy(wq);
362	kfree(wq);
363}
364
365void btrfs_workqueue_set_max(struct btrfs_workqueue *wq, int limit_active)
366{
367	if (wq)
368		wq->limit_active = limit_active;
369}
370
371void btrfs_flush_workqueue(struct btrfs_workqueue *wq)
372{
373	flush_workqueue(wq->normal_wq);
374}