Linux Audio

Check our new training course

Yocto distribution development and maintenance

Need a Yocto distribution for your embedded project?
Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2007 Oracle.  All rights reserved.
  4 * Copyright (C) 2014 Fujitsu.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  5 */
  6
  7#include <linux/kthread.h>
  8#include <linux/slab.h>
  9#include <linux/list.h>
 10#include <linux/spinlock.h>
 11#include <linux/freezer.h>
 12#include "async-thread.h"
 13#include "ctree.h"
 14
 15enum {
 16	WORK_DONE_BIT,
 17	WORK_ORDER_DONE_BIT,
 18};
 19
 20#define NO_THRESHOLD (-1)
 21#define DFT_THRESHOLD (32)
 22
 23struct btrfs_workqueue {
 24	struct workqueue_struct *normal_wq;
 25
 26	/* File system this workqueue services */
 27	struct btrfs_fs_info *fs_info;
 28
 29	/* List head pointing to ordered work list */
 30	struct list_head ordered_list;
 31
 32	/* Spinlock for ordered_list */
 33	spinlock_t list_lock;
 34
 35	/* Thresholding related variants */
 36	atomic_t pending;
 37
 38	/* Up limit of concurrency workers */
 39	int limit_active;
 40
 41	/* Current number of concurrency workers */
 42	int current_active;
 43
 44	/* Threshold to change current_active */
 45	int thresh;
 46	unsigned int count;
 47	spinlock_t thres_lock;
 48};
 49
 50struct btrfs_fs_info * __pure btrfs_workqueue_owner(const struct btrfs_workqueue *wq)
 51{
 52	return wq->fs_info;
 53}
 54
 55struct btrfs_fs_info * __pure btrfs_work_owner(const struct btrfs_work *work)
 56{
 57	return work->wq->fs_info;
 58}
 59
 60bool btrfs_workqueue_normal_congested(const struct btrfs_workqueue *wq)
 61{
 62	/*
 63	 * We could compare wq->pending with num_online_cpus()
 64	 * to support "thresh == NO_THRESHOLD" case, but it requires
 65	 * moving up atomic_inc/dec in thresh_queue/exec_hook. Let's
 66	 * postpone it until someone needs the support of that case.
 67	 */
 68	if (wq->thresh == NO_THRESHOLD)
 69		return false;
 70
 71	return atomic_read(&wq->pending) > wq->thresh * 2;
 72}
 73
 74struct btrfs_workqueue *btrfs_alloc_workqueue(struct btrfs_fs_info *fs_info,
 75					      const char *name, unsigned int flags,
 76					      int limit_active, int thresh)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 77{
 78	struct btrfs_workqueue *ret = kzalloc(sizeof(*ret), GFP_KERNEL);
 79
 80	if (!ret)
 81		return NULL;
 82
 83	ret->fs_info = fs_info;
 84	ret->limit_active = limit_active;
 85	atomic_set(&ret->pending, 0);
 86	if (thresh == 0)
 87		thresh = DFT_THRESHOLD;
 88	/* For low threshold, disabling threshold is a better choice */
 89	if (thresh < DFT_THRESHOLD) {
 90		ret->current_active = limit_active;
 91		ret->thresh = NO_THRESHOLD;
 92	} else {
 93		/*
 94		 * For threshold-able wq, let its concurrency grow on demand.
 95		 * Use minimal max_active at alloc time to reduce resource
 96		 * usage.
 97		 */
 98		ret->current_active = 1;
 99		ret->thresh = thresh;
100	}
101
102	ret->normal_wq = alloc_workqueue("btrfs-%s", flags, ret->current_active,
103					 name);
 
 
 
 
 
 
104	if (!ret->normal_wq) {
105		kfree(ret);
106		return NULL;
107	}
108
109	INIT_LIST_HEAD(&ret->ordered_list);
110	spin_lock_init(&ret->list_lock);
111	spin_lock_init(&ret->thres_lock);
112	trace_btrfs_workqueue_alloc(ret, name);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
113	return ret;
114}
115
116/*
117 * Hook for threshold which will be called in btrfs_queue_work.
118 * This hook WILL be called in IRQ handler context,
119 * so workqueue_set_max_active MUST NOT be called in this hook
120 */
121static inline void thresh_queue_hook(struct btrfs_workqueue *wq)
122{
123	if (wq->thresh == NO_THRESHOLD)
124		return;
125	atomic_inc(&wq->pending);
126}
127
128/*
129 * Hook for threshold which will be called before executing the work,
130 * This hook is called in kthread content.
131 * So workqueue_set_max_active is called here.
132 */
133static inline void thresh_exec_hook(struct btrfs_workqueue *wq)
134{
135	int new_current_active;
136	long pending;
137	int need_change = 0;
138
139	if (wq->thresh == NO_THRESHOLD)
140		return;
141
142	atomic_dec(&wq->pending);
143	spin_lock(&wq->thres_lock);
144	/*
145	 * Use wq->count to limit the calling frequency of
146	 * workqueue_set_max_active.
147	 */
148	wq->count++;
149	wq->count %= (wq->thresh / 4);
150	if (!wq->count)
151		goto  out;
152	new_current_active = wq->current_active;
153
154	/*
155	 * pending may be changed later, but it's OK since we really
156	 * don't need it so accurate to calculate new_max_active.
157	 */
158	pending = atomic_read(&wq->pending);
159	if (pending > wq->thresh)
160		new_current_active++;
161	if (pending < wq->thresh / 2)
162		new_current_active--;
163	new_current_active = clamp_val(new_current_active, 1, wq->limit_active);
164	if (new_current_active != wq->current_active)  {
165		need_change = 1;
166		wq->current_active = new_current_active;
167	}
168out:
169	spin_unlock(&wq->thres_lock);
170
171	if (need_change) {
172		workqueue_set_max_active(wq->normal_wq, wq->current_active);
173	}
174}
175
176static void run_ordered_work(struct btrfs_workqueue *wq,
177			     struct btrfs_work *self)
178{
179	struct list_head *list = &wq->ordered_list;
180	struct btrfs_work *work;
181	spinlock_t *lock = &wq->list_lock;
182	unsigned long flags;
183	bool free_self = false;
184
185	while (1) {
186		spin_lock_irqsave(lock, flags);
187		if (list_empty(list))
188			break;
189		work = list_entry(list->next, struct btrfs_work,
190				  ordered_list);
191		if (!test_bit(WORK_DONE_BIT, &work->flags))
192			break;
193		/*
194		 * Orders all subsequent loads after reading WORK_DONE_BIT,
195		 * paired with the smp_mb__before_atomic in btrfs_work_helper
196		 * this guarantees that the ordered function will see all
197		 * updates from ordinary work function.
198		 */
199		smp_rmb();
200
201		/*
202		 * we are going to call the ordered done function, but
203		 * we leave the work item on the list as a barrier so
204		 * that later work items that are done don't have their
205		 * functions called before this one returns
206		 */
207		if (test_and_set_bit(WORK_ORDER_DONE_BIT, &work->flags))
208			break;
209		trace_btrfs_ordered_sched(work);
210		spin_unlock_irqrestore(lock, flags);
211		work->ordered_func(work);
212
213		/* now take the lock again and drop our item from the list */
214		spin_lock_irqsave(lock, flags);
215		list_del(&work->ordered_list);
216		spin_unlock_irqrestore(lock, flags);
217
218		if (work == self) {
219			/*
220			 * This is the work item that the worker is currently
221			 * executing.
222			 *
223			 * The kernel workqueue code guarantees non-reentrancy
224			 * of work items. I.e., if a work item with the same
225			 * address and work function is queued twice, the second
226			 * execution is blocked until the first one finishes. A
227			 * work item may be freed and recycled with the same
228			 * work function; the workqueue code assumes that the
229			 * original work item cannot depend on the recycled work
230			 * item in that case (see find_worker_executing_work()).
231			 *
232			 * Note that different types of Btrfs work can depend on
233			 * each other, and one type of work on one Btrfs
234			 * filesystem may even depend on the same type of work
235			 * on another Btrfs filesystem via, e.g., a loop device.
236			 * Therefore, we must not allow the current work item to
237			 * be recycled until we are really done, otherwise we
238			 * break the above assumption and can deadlock.
239			 */
240			free_self = true;
241		} else {
242			/*
243			 * We don't want to call the ordered free functions with
244			 * the lock held.
245			 */
246			work->ordered_free(work);
247			/* NB: work must not be dereferenced past this point. */
248			trace_btrfs_all_work_done(wq->fs_info, work);
249		}
250	}
251	spin_unlock_irqrestore(lock, flags);
252
253	if (free_self) {
254		self->ordered_free(self);
255		/* NB: self must not be dereferenced past this point. */
256		trace_btrfs_all_work_done(wq->fs_info, self);
257	}
258}
259
260static void btrfs_work_helper(struct work_struct *normal_work)
261{
262	struct btrfs_work *work = container_of(normal_work, struct btrfs_work,
263					       normal_work);
264	struct btrfs_workqueue *wq = work->wq;
265	int need_order = 0;
266
267	/*
268	 * We should not touch things inside work in the following cases:
269	 * 1) after work->func() if it has no ordered_free
270	 *    Since the struct is freed in work->func().
271	 * 2) after setting WORK_DONE_BIT
272	 *    The work may be freed in other threads almost instantly.
273	 * So we save the needed things here.
274	 */
275	if (work->ordered_func)
276		need_order = 1;
 
277
278	trace_btrfs_work_sched(work);
279	thresh_exec_hook(wq);
280	work->func(work);
281	if (need_order) {
282		/*
283		 * Ensures all memory accesses done in the work function are
284		 * ordered before setting the WORK_DONE_BIT. Ensuring the thread
285		 * which is going to executed the ordered work sees them.
286		 * Pairs with the smp_rmb in run_ordered_work.
287		 */
288		smp_mb__before_atomic();
289		set_bit(WORK_DONE_BIT, &work->flags);
290		run_ordered_work(wq, work);
291	} else {
292		/* NB: work must not be dereferenced past this point. */
293		trace_btrfs_all_work_done(wq->fs_info, work);
294	}
 
 
295}
296
297void btrfs_init_work(struct btrfs_work *work, btrfs_func_t func,
298		     btrfs_func_t ordered_func, btrfs_func_t ordered_free)
 
 
299{
300	work->func = func;
301	work->ordered_func = ordered_func;
302	work->ordered_free = ordered_free;
303	INIT_WORK(&work->normal_work, btrfs_work_helper);
304	INIT_LIST_HEAD(&work->ordered_list);
305	work->flags = 0;
306}
307
308void btrfs_queue_work(struct btrfs_workqueue *wq, struct btrfs_work *work)
 
309{
310	unsigned long flags;
311
312	work->wq = wq;
313	thresh_queue_hook(wq);
314	if (work->ordered_func) {
315		spin_lock_irqsave(&wq->list_lock, flags);
316		list_add_tail(&work->ordered_list, &wq->ordered_list);
317		spin_unlock_irqrestore(&wq->list_lock, flags);
318	}
319	trace_btrfs_work_queued(work);
320	queue_work(wq->normal_wq, &work->normal_work);
321}
322
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
323void btrfs_destroy_workqueue(struct btrfs_workqueue *wq)
324{
325	if (!wq)
326		return;
327	destroy_workqueue(wq->normal_wq);
328	trace_btrfs_workqueue_destroy(wq);
 
329	kfree(wq);
330}
331
332void btrfs_workqueue_set_max(struct btrfs_workqueue *wq, int limit_active)
333{
334	if (wq)
335		wq->limit_active = limit_active;
 
 
 
336}
337
338void btrfs_flush_workqueue(struct btrfs_workqueue *wq)
339{
340	flush_workqueue(wq->normal_wq);
341}
v4.6
 
  1/*
  2 * Copyright (C) 2007 Oracle.  All rights reserved.
  3 * Copyright (C) 2014 Fujitsu.  All rights reserved.
  4 *
  5 * This program is free software; you can redistribute it and/or
  6 * modify it under the terms of the GNU General Public
  7 * License v2 as published by the Free Software Foundation.
  8 *
  9 * This program is distributed in the hope that it will be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 12 * General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public
 15 * License along with this program; if not, write to the
 16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 17 * Boston, MA 021110-1307, USA.
 18 */
 19
 20#include <linux/kthread.h>
 21#include <linux/slab.h>
 22#include <linux/list.h>
 23#include <linux/spinlock.h>
 24#include <linux/freezer.h>
 25#include "async-thread.h"
 26#include "ctree.h"
 27
 28#define WORK_DONE_BIT 0
 29#define WORK_ORDER_DONE_BIT 1
 30#define WORK_HIGH_PRIO_BIT 2
 
 31
 32#define NO_THRESHOLD (-1)
 33#define DFT_THRESHOLD (32)
 34
 35struct __btrfs_workqueue {
 36	struct workqueue_struct *normal_wq;
 
 
 
 
 37	/* List head pointing to ordered work list */
 38	struct list_head ordered_list;
 39
 40	/* Spinlock for ordered_list */
 41	spinlock_t list_lock;
 42
 43	/* Thresholding related variants */
 44	atomic_t pending;
 45
 46	/* Up limit of concurrency workers */
 47	int limit_active;
 48
 49	/* Current number of concurrency workers */
 50	int current_active;
 51
 52	/* Threshold to change current_active */
 53	int thresh;
 54	unsigned int count;
 55	spinlock_t thres_lock;
 56};
 57
 58struct btrfs_workqueue {
 59	struct __btrfs_workqueue *normal;
 60	struct __btrfs_workqueue *high;
 61};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 62
 63static void normal_work_helper(struct btrfs_work *work);
 
 64
 65#define BTRFS_WORK_HELPER(name)					\
 66void btrfs_##name(struct work_struct *arg)				\
 67{									\
 68	struct btrfs_work *work = container_of(arg, struct btrfs_work,	\
 69					       normal_work);		\
 70	normal_work_helper(work);					\
 71}
 72
 73BTRFS_WORK_HELPER(worker_helper);
 74BTRFS_WORK_HELPER(delalloc_helper);
 75BTRFS_WORK_HELPER(flush_delalloc_helper);
 76BTRFS_WORK_HELPER(cache_helper);
 77BTRFS_WORK_HELPER(submit_helper);
 78BTRFS_WORK_HELPER(fixup_helper);
 79BTRFS_WORK_HELPER(endio_helper);
 80BTRFS_WORK_HELPER(endio_meta_helper);
 81BTRFS_WORK_HELPER(endio_meta_write_helper);
 82BTRFS_WORK_HELPER(endio_raid56_helper);
 83BTRFS_WORK_HELPER(endio_repair_helper);
 84BTRFS_WORK_HELPER(rmw_helper);
 85BTRFS_WORK_HELPER(endio_write_helper);
 86BTRFS_WORK_HELPER(freespace_write_helper);
 87BTRFS_WORK_HELPER(delayed_meta_helper);
 88BTRFS_WORK_HELPER(readahead_helper);
 89BTRFS_WORK_HELPER(qgroup_rescan_helper);
 90BTRFS_WORK_HELPER(extent_refs_helper);
 91BTRFS_WORK_HELPER(scrub_helper);
 92BTRFS_WORK_HELPER(scrubwrc_helper);
 93BTRFS_WORK_HELPER(scrubnc_helper);
 94BTRFS_WORK_HELPER(scrubparity_helper);
 95
 96static struct __btrfs_workqueue *
 97__btrfs_alloc_workqueue(const char *name, unsigned int flags, int limit_active,
 98			 int thresh)
 99{
100	struct __btrfs_workqueue *ret = kzalloc(sizeof(*ret), GFP_KERNEL);
101
102	if (!ret)
103		return NULL;
104
 
105	ret->limit_active = limit_active;
106	atomic_set(&ret->pending, 0);
107	if (thresh == 0)
108		thresh = DFT_THRESHOLD;
109	/* For low threshold, disabling threshold is a better choice */
110	if (thresh < DFT_THRESHOLD) {
111		ret->current_active = limit_active;
112		ret->thresh = NO_THRESHOLD;
113	} else {
114		/*
115		 * For threshold-able wq, let its concurrency grow on demand.
116		 * Use minimal max_active at alloc time to reduce resource
117		 * usage.
118		 */
119		ret->current_active = 1;
120		ret->thresh = thresh;
121	}
122
123	if (flags & WQ_HIGHPRI)
124		ret->normal_wq = alloc_workqueue("%s-%s-high", flags,
125						 ret->current_active, "btrfs",
126						 name);
127	else
128		ret->normal_wq = alloc_workqueue("%s-%s", flags,
129						 ret->current_active, "btrfs",
130						 name);
131	if (!ret->normal_wq) {
132		kfree(ret);
133		return NULL;
134	}
135
136	INIT_LIST_HEAD(&ret->ordered_list);
137	spin_lock_init(&ret->list_lock);
138	spin_lock_init(&ret->thres_lock);
139	trace_btrfs_workqueue_alloc(ret, name, flags & WQ_HIGHPRI);
140	return ret;
141}
142
143static inline void
144__btrfs_destroy_workqueue(struct __btrfs_workqueue *wq);
145
146struct btrfs_workqueue *btrfs_alloc_workqueue(const char *name,
147					      unsigned int flags,
148					      int limit_active,
149					      int thresh)
150{
151	struct btrfs_workqueue *ret = kzalloc(sizeof(*ret), GFP_KERNEL);
152
153	if (!ret)
154		return NULL;
155
156	ret->normal = __btrfs_alloc_workqueue(name, flags & ~WQ_HIGHPRI,
157					      limit_active, thresh);
158	if (!ret->normal) {
159		kfree(ret);
160		return NULL;
161	}
162
163	if (flags & WQ_HIGHPRI) {
164		ret->high = __btrfs_alloc_workqueue(name, flags, limit_active,
165						    thresh);
166		if (!ret->high) {
167			__btrfs_destroy_workqueue(ret->normal);
168			kfree(ret);
169			return NULL;
170		}
171	}
172	return ret;
173}
174
175/*
176 * Hook for threshold which will be called in btrfs_queue_work.
177 * This hook WILL be called in IRQ handler context,
178 * so workqueue_set_max_active MUST NOT be called in this hook
179 */
180static inline void thresh_queue_hook(struct __btrfs_workqueue *wq)
181{
182	if (wq->thresh == NO_THRESHOLD)
183		return;
184	atomic_inc(&wq->pending);
185}
186
187/*
188 * Hook for threshold which will be called before executing the work,
189 * This hook is called in kthread content.
190 * So workqueue_set_max_active is called here.
191 */
192static inline void thresh_exec_hook(struct __btrfs_workqueue *wq)
193{
194	int new_current_active;
195	long pending;
196	int need_change = 0;
197
198	if (wq->thresh == NO_THRESHOLD)
199		return;
200
201	atomic_dec(&wq->pending);
202	spin_lock(&wq->thres_lock);
203	/*
204	 * Use wq->count to limit the calling frequency of
205	 * workqueue_set_max_active.
206	 */
207	wq->count++;
208	wq->count %= (wq->thresh / 4);
209	if (!wq->count)
210		goto  out;
211	new_current_active = wq->current_active;
212
213	/*
214	 * pending may be changed later, but it's OK since we really
215	 * don't need it so accurate to calculate new_max_active.
216	 */
217	pending = atomic_read(&wq->pending);
218	if (pending > wq->thresh)
219		new_current_active++;
220	if (pending < wq->thresh / 2)
221		new_current_active--;
222	new_current_active = clamp_val(new_current_active, 1, wq->limit_active);
223	if (new_current_active != wq->current_active)  {
224		need_change = 1;
225		wq->current_active = new_current_active;
226	}
227out:
228	spin_unlock(&wq->thres_lock);
229
230	if (need_change) {
231		workqueue_set_max_active(wq->normal_wq, wq->current_active);
232	}
233}
234
235static void run_ordered_work(struct __btrfs_workqueue *wq)
 
236{
237	struct list_head *list = &wq->ordered_list;
238	struct btrfs_work *work;
239	spinlock_t *lock = &wq->list_lock;
240	unsigned long flags;
 
241
242	while (1) {
243		spin_lock_irqsave(lock, flags);
244		if (list_empty(list))
245			break;
246		work = list_entry(list->next, struct btrfs_work,
247				  ordered_list);
248		if (!test_bit(WORK_DONE_BIT, &work->flags))
249			break;
 
 
 
 
 
 
 
250
251		/*
252		 * we are going to call the ordered done function, but
253		 * we leave the work item on the list as a barrier so
254		 * that later work items that are done don't have their
255		 * functions called before this one returns
256		 */
257		if (test_and_set_bit(WORK_ORDER_DONE_BIT, &work->flags))
258			break;
259		trace_btrfs_ordered_sched(work);
260		spin_unlock_irqrestore(lock, flags);
261		work->ordered_func(work);
262
263		/* now take the lock again and drop our item from the list */
264		spin_lock_irqsave(lock, flags);
265		list_del(&work->ordered_list);
266		spin_unlock_irqrestore(lock, flags);
267
268		/*
269		 * we don't want to call the ordered free functions
270		 * with the lock held though
271		 */
272		work->ordered_free(work);
273		trace_btrfs_all_work_done(work);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
274	}
275	spin_unlock_irqrestore(lock, flags);
 
 
 
 
 
 
276}
277
278static void normal_work_helper(struct btrfs_work *work)
279{
280	struct __btrfs_workqueue *wq;
 
 
281	int need_order = 0;
282
283	/*
284	 * We should not touch things inside work in the following cases:
285	 * 1) after work->func() if it has no ordered_free
286	 *    Since the struct is freed in work->func().
287	 * 2) after setting WORK_DONE_BIT
288	 *    The work may be freed in other threads almost instantly.
289	 * So we save the needed things here.
290	 */
291	if (work->ordered_func)
292		need_order = 1;
293	wq = work->wq;
294
295	trace_btrfs_work_sched(work);
296	thresh_exec_hook(wq);
297	work->func(work);
298	if (need_order) {
 
 
 
 
 
 
 
299		set_bit(WORK_DONE_BIT, &work->flags);
300		run_ordered_work(wq);
 
 
 
301	}
302	if (!need_order)
303		trace_btrfs_all_work_done(work);
304}
305
306void btrfs_init_work(struct btrfs_work *work, btrfs_work_func_t uniq_func,
307		     btrfs_func_t func,
308		     btrfs_func_t ordered_func,
309		     btrfs_func_t ordered_free)
310{
311	work->func = func;
312	work->ordered_func = ordered_func;
313	work->ordered_free = ordered_free;
314	INIT_WORK(&work->normal_work, uniq_func);
315	INIT_LIST_HEAD(&work->ordered_list);
316	work->flags = 0;
317}
318
319static inline void __btrfs_queue_work(struct __btrfs_workqueue *wq,
320				      struct btrfs_work *work)
321{
322	unsigned long flags;
323
324	work->wq = wq;
325	thresh_queue_hook(wq);
326	if (work->ordered_func) {
327		spin_lock_irqsave(&wq->list_lock, flags);
328		list_add_tail(&work->ordered_list, &wq->ordered_list);
329		spin_unlock_irqrestore(&wq->list_lock, flags);
330	}
331	trace_btrfs_work_queued(work);
332	queue_work(wq->normal_wq, &work->normal_work);
333}
334
335void btrfs_queue_work(struct btrfs_workqueue *wq,
336		      struct btrfs_work *work)
337{
338	struct __btrfs_workqueue *dest_wq;
339
340	if (test_bit(WORK_HIGH_PRIO_BIT, &work->flags) && wq->high)
341		dest_wq = wq->high;
342	else
343		dest_wq = wq->normal;
344	__btrfs_queue_work(dest_wq, work);
345}
346
347static inline void
348__btrfs_destroy_workqueue(struct __btrfs_workqueue *wq)
349{
350	destroy_workqueue(wq->normal_wq);
351	trace_btrfs_workqueue_destroy(wq);
352	kfree(wq);
353}
354
355void btrfs_destroy_workqueue(struct btrfs_workqueue *wq)
356{
357	if (!wq)
358		return;
359	if (wq->high)
360		__btrfs_destroy_workqueue(wq->high);
361	__btrfs_destroy_workqueue(wq->normal);
362	kfree(wq);
363}
364
365void btrfs_workqueue_set_max(struct btrfs_workqueue *wq, int limit_active)
366{
367	if (!wq)
368		return;
369	wq->normal->limit_active = limit_active;
370	if (wq->high)
371		wq->high->limit_active = limit_active;
372}
373
374void btrfs_set_work_high_priority(struct btrfs_work *work)
375{
376	set_bit(WORK_HIGH_PRIO_BIT, &work->flags);
377}