Linux Audio

Check our new training course

Loading...
v6.2
   1/*
   2 * drivers/mmc/host/omap_hsmmc.c
   3 *
   4 * Driver for OMAP2430/3430 MMC controller.
   5 *
   6 * Copyright (C) 2007 Texas Instruments.
   7 *
   8 * Authors:
   9 *	Syed Mohammed Khasim	<x0khasim@ti.com>
  10 *	Madhusudhan		<madhu.cr@ti.com>
  11 *	Mohit Jalori		<mjalori@ti.com>
  12 *
  13 * This file is licensed under the terms of the GNU General Public License
  14 * version 2. This program is licensed "as is" without any warranty of any
  15 * kind, whether express or implied.
  16 */
  17
  18#include <linux/module.h>
  19#include <linux/init.h>
  20#include <linux/kernel.h>
  21#include <linux/debugfs.h>
  22#include <linux/dmaengine.h>
  23#include <linux/seq_file.h>
  24#include <linux/sizes.h>
  25#include <linux/interrupt.h>
  26#include <linux/delay.h>
  27#include <linux/dma-mapping.h>
  28#include <linux/platform_device.h>
  29#include <linux/timer.h>
  30#include <linux/clk.h>
  31#include <linux/of.h>
  32#include <linux/of_irq.h>
  33#include <linux/of_device.h>
  34#include <linux/mmc/host.h>
  35#include <linux/mmc/core.h>
  36#include <linux/mmc/mmc.h>
  37#include <linux/mmc/slot-gpio.h>
  38#include <linux/io.h>
  39#include <linux/irq.h>
  40#include <linux/regulator/consumer.h>
  41#include <linux/pinctrl/consumer.h>
  42#include <linux/pm_runtime.h>
  43#include <linux/pm_wakeirq.h>
  44#include <linux/platform_data/hsmmc-omap.h>
  45
  46/* OMAP HSMMC Host Controller Registers */
  47#define OMAP_HSMMC_SYSSTATUS	0x0014
  48#define OMAP_HSMMC_CON		0x002C
  49#define OMAP_HSMMC_SDMASA	0x0100
  50#define OMAP_HSMMC_BLK		0x0104
  51#define OMAP_HSMMC_ARG		0x0108
  52#define OMAP_HSMMC_CMD		0x010C
  53#define OMAP_HSMMC_RSP10	0x0110
  54#define OMAP_HSMMC_RSP32	0x0114
  55#define OMAP_HSMMC_RSP54	0x0118
  56#define OMAP_HSMMC_RSP76	0x011C
  57#define OMAP_HSMMC_DATA		0x0120
  58#define OMAP_HSMMC_PSTATE	0x0124
  59#define OMAP_HSMMC_HCTL		0x0128
  60#define OMAP_HSMMC_SYSCTL	0x012C
  61#define OMAP_HSMMC_STAT		0x0130
  62#define OMAP_HSMMC_IE		0x0134
  63#define OMAP_HSMMC_ISE		0x0138
  64#define OMAP_HSMMC_AC12		0x013C
  65#define OMAP_HSMMC_CAPA		0x0140
  66
  67#define VS18			(1 << 26)
  68#define VS30			(1 << 25)
  69#define HSS			(1 << 21)
  70#define SDVS18			(0x5 << 9)
  71#define SDVS30			(0x6 << 9)
  72#define SDVS33			(0x7 << 9)
  73#define SDVS_MASK		0x00000E00
  74#define SDVSCLR			0xFFFFF1FF
  75#define SDVSDET			0x00000400
  76#define AUTOIDLE		0x1
  77#define SDBP			(1 << 8)
  78#define DTO			0xe
  79#define ICE			0x1
  80#define ICS			0x2
  81#define CEN			(1 << 2)
  82#define CLKD_MAX		0x3FF		/* max clock divisor: 1023 */
  83#define CLKD_MASK		0x0000FFC0
  84#define CLKD_SHIFT		6
  85#define DTO_MASK		0x000F0000
  86#define DTO_SHIFT		16
  87#define INIT_STREAM		(1 << 1)
  88#define ACEN_ACMD23		(2 << 2)
  89#define DP_SELECT		(1 << 21)
  90#define DDIR			(1 << 4)
  91#define DMAE			0x1
  92#define MSBS			(1 << 5)
  93#define BCE			(1 << 1)
  94#define FOUR_BIT		(1 << 1)
  95#define HSPE			(1 << 2)
  96#define IWE			(1 << 24)
  97#define DDR			(1 << 19)
  98#define CLKEXTFREE		(1 << 16)
  99#define CTPL			(1 << 11)
 100#define DW8			(1 << 5)
 101#define OD			0x1
 102#define STAT_CLEAR		0xFFFFFFFF
 103#define INIT_STREAM_CMD		0x00000000
 104#define DUAL_VOLT_OCR_BIT	7
 105#define SRC			(1 << 25)
 106#define SRD			(1 << 26)
 107#define SOFTRESET		(1 << 1)
 108
 109/* PSTATE */
 110#define DLEV_DAT(x)		(1 << (20 + (x)))
 111
 112/* Interrupt masks for IE and ISE register */
 113#define CC_EN			(1 << 0)
 114#define TC_EN			(1 << 1)
 115#define BWR_EN			(1 << 4)
 116#define BRR_EN			(1 << 5)
 117#define CIRQ_EN			(1 << 8)
 118#define ERR_EN			(1 << 15)
 119#define CTO_EN			(1 << 16)
 120#define CCRC_EN			(1 << 17)
 121#define CEB_EN			(1 << 18)
 122#define CIE_EN			(1 << 19)
 123#define DTO_EN			(1 << 20)
 124#define DCRC_EN			(1 << 21)
 125#define DEB_EN			(1 << 22)
 126#define ACE_EN			(1 << 24)
 127#define CERR_EN			(1 << 28)
 128#define BADA_EN			(1 << 29)
 129
 130#define INT_EN_MASK (BADA_EN | CERR_EN | ACE_EN | DEB_EN | DCRC_EN |\
 131		DTO_EN | CIE_EN | CEB_EN | CCRC_EN | CTO_EN | \
 132		BRR_EN | BWR_EN | TC_EN | CC_EN)
 133
 134#define CNI	(1 << 7)
 135#define ACIE	(1 << 4)
 136#define ACEB	(1 << 3)
 137#define ACCE	(1 << 2)
 138#define ACTO	(1 << 1)
 139#define ACNE	(1 << 0)
 140
 141#define MMC_AUTOSUSPEND_DELAY	100
 142#define MMC_TIMEOUT_MS		20		/* 20 mSec */
 143#define MMC_TIMEOUT_US		20000		/* 20000 micro Sec */
 144#define OMAP_MMC_MIN_CLOCK	400000
 145#define OMAP_MMC_MAX_CLOCK	52000000
 146#define DRIVER_NAME		"omap_hsmmc"
 147
 148/*
 149 * One controller can have multiple slots, like on some omap boards using
 150 * omap.c controller driver. Luckily this is not currently done on any known
 151 * omap_hsmmc.c device.
 152 */
 153#define mmc_pdata(host)		host->pdata
 154
 155/*
 156 * MMC Host controller read/write API's
 157 */
 158#define OMAP_HSMMC_READ(base, reg)	\
 159	__raw_readl((base) + OMAP_HSMMC_##reg)
 160
 161#define OMAP_HSMMC_WRITE(base, reg, val) \
 162	__raw_writel((val), (base) + OMAP_HSMMC_##reg)
 163
 164struct omap_hsmmc_next {
 165	unsigned int	dma_len;
 166	s32		cookie;
 167};
 168
 169struct omap_hsmmc_host {
 170	struct	device		*dev;
 171	struct	mmc_host	*mmc;
 172	struct	mmc_request	*mrq;
 173	struct	mmc_command	*cmd;
 174	struct	mmc_data	*data;
 175	struct	clk		*fclk;
 176	struct	clk		*dbclk;
 177	struct	regulator	*pbias;
 178	bool			pbias_enabled;
 179	void	__iomem		*base;
 180	bool			vqmmc_enabled;
 181	resource_size_t		mapbase;
 182	spinlock_t		irq_lock; /* Prevent races with irq handler */
 183	unsigned int		dma_len;
 184	unsigned int		dma_sg_idx;
 185	unsigned char		bus_mode;
 186	unsigned char		power_mode;
 187	int			suspended;
 188	u32			con;
 189	u32			hctl;
 190	u32			sysctl;
 191	u32			capa;
 192	int			irq;
 193	int			wake_irq;
 194	int			use_dma, dma_ch;
 195	struct dma_chan		*tx_chan;
 196	struct dma_chan		*rx_chan;
 197	int			response_busy;
 198	int			context_loss;
 199	int			reqs_blocked;
 200	int			req_in_progress;
 201	unsigned long		clk_rate;
 202	unsigned int		flags;
 203#define AUTO_CMD23		(1 << 0)        /* Auto CMD23 support */
 204#define HSMMC_SDIO_IRQ_ENABLED	(1 << 1)        /* SDIO irq enabled */
 205	struct omap_hsmmc_next	next_data;
 206	struct	omap_hsmmc_platform_data	*pdata;
 207};
 208
 209struct omap_mmc_of_data {
 210	u32 reg_offset;
 211	u8 controller_flags;
 212};
 213
 214static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host);
 215
 216static int omap_hsmmc_enable_supply(struct mmc_host *mmc)
 217{
 218	int ret;
 219	struct omap_hsmmc_host *host = mmc_priv(mmc);
 220	struct mmc_ios *ios = &mmc->ios;
 221
 222	if (!IS_ERR(mmc->supply.vmmc)) {
 223		ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
 224		if (ret)
 225			return ret;
 226	}
 227
 228	/* Enable interface voltage rail, if needed */
 229	if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
 230		ret = regulator_enable(mmc->supply.vqmmc);
 231		if (ret) {
 232			dev_err(mmc_dev(mmc), "vmmc_aux reg enable failed\n");
 233			goto err_vqmmc;
 234		}
 235		host->vqmmc_enabled = true;
 236	}
 237
 238	return 0;
 239
 240err_vqmmc:
 241	if (!IS_ERR(mmc->supply.vmmc))
 242		mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
 243
 244	return ret;
 245}
 246
 247static int omap_hsmmc_disable_supply(struct mmc_host *mmc)
 248{
 249	int ret;
 250	int status;
 251	struct omap_hsmmc_host *host = mmc_priv(mmc);
 252
 253	if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
 254		ret = regulator_disable(mmc->supply.vqmmc);
 255		if (ret) {
 256			dev_err(mmc_dev(mmc), "vmmc_aux reg disable failed\n");
 257			return ret;
 258		}
 259		host->vqmmc_enabled = false;
 260	}
 261
 262	if (!IS_ERR(mmc->supply.vmmc)) {
 263		ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
 264		if (ret)
 265			goto err_set_ocr;
 266	}
 267
 268	return 0;
 269
 270err_set_ocr:
 271	if (!IS_ERR(mmc->supply.vqmmc)) {
 272		status = regulator_enable(mmc->supply.vqmmc);
 273		if (status)
 274			dev_err(mmc_dev(mmc), "vmmc_aux re-enable failed\n");
 275	}
 276
 277	return ret;
 278}
 279
 280static int omap_hsmmc_set_pbias(struct omap_hsmmc_host *host, bool power_on)
 281{
 282	int ret;
 283
 284	if (IS_ERR(host->pbias))
 285		return 0;
 286
 287	if (power_on) {
 288		if (!host->pbias_enabled) {
 289			ret = regulator_enable(host->pbias);
 290			if (ret) {
 291				dev_err(host->dev, "pbias reg enable fail\n");
 292				return ret;
 293			}
 294			host->pbias_enabled = true;
 295		}
 296	} else {
 297		if (host->pbias_enabled) {
 298			ret = regulator_disable(host->pbias);
 299			if (ret) {
 300				dev_err(host->dev, "pbias reg disable fail\n");
 301				return ret;
 302			}
 303			host->pbias_enabled = false;
 304		}
 305	}
 306
 307	return 0;
 308}
 309
 310static int omap_hsmmc_set_power(struct omap_hsmmc_host *host, int power_on)
 311{
 312	struct mmc_host *mmc = host->mmc;
 313	int ret = 0;
 314
 315	/*
 316	 * If we don't see a Vcc regulator, assume it's a fixed
 317	 * voltage always-on regulator.
 318	 */
 319	if (IS_ERR(mmc->supply.vmmc))
 320		return 0;
 321
 322	ret = omap_hsmmc_set_pbias(host, false);
 323	if (ret)
 324		return ret;
 325
 326	/*
 327	 * Assume Vcc regulator is used only to power the card ... OMAP
 328	 * VDDS is used to power the pins, optionally with a transceiver to
 329	 * support cards using voltages other than VDDS (1.8V nominal).  When a
 330	 * transceiver is used, DAT3..7 are muxed as transceiver control pins.
 331	 *
 332	 * In some cases this regulator won't support enable/disable;
 333	 * e.g. it's a fixed rail for a WLAN chip.
 334	 *
 335	 * In other cases vcc_aux switches interface power.  Example, for
 336	 * eMMC cards it represents VccQ.  Sometimes transceivers or SDIO
 337	 * chips/cards need an interface voltage rail too.
 338	 */
 339	if (power_on) {
 340		ret = omap_hsmmc_enable_supply(mmc);
 341		if (ret)
 342			return ret;
 343
 344		ret = omap_hsmmc_set_pbias(host, true);
 345		if (ret)
 346			goto err_set_voltage;
 347	} else {
 348		ret = omap_hsmmc_disable_supply(mmc);
 349		if (ret)
 350			return ret;
 351	}
 352
 353	return 0;
 354
 355err_set_voltage:
 356	omap_hsmmc_disable_supply(mmc);
 357
 358	return ret;
 359}
 360
 361static int omap_hsmmc_disable_boot_regulator(struct regulator *reg)
 362{
 363	int ret;
 364
 365	if (IS_ERR(reg))
 366		return 0;
 367
 368	if (regulator_is_enabled(reg)) {
 369		ret = regulator_enable(reg);
 370		if (ret)
 371			return ret;
 372
 373		ret = regulator_disable(reg);
 374		if (ret)
 375			return ret;
 376	}
 377
 378	return 0;
 379}
 380
 381static int omap_hsmmc_disable_boot_regulators(struct omap_hsmmc_host *host)
 382{
 383	struct mmc_host *mmc = host->mmc;
 384	int ret;
 385
 386	/*
 387	 * disable regulators enabled during boot and get the usecount
 388	 * right so that regulators can be enabled/disabled by checking
 389	 * the return value of regulator_is_enabled
 390	 */
 391	ret = omap_hsmmc_disable_boot_regulator(mmc->supply.vmmc);
 392	if (ret) {
 393		dev_err(host->dev, "fail to disable boot enabled vmmc reg\n");
 394		return ret;
 395	}
 396
 397	ret = omap_hsmmc_disable_boot_regulator(mmc->supply.vqmmc);
 398	if (ret) {
 399		dev_err(host->dev,
 400			"fail to disable boot enabled vmmc_aux reg\n");
 401		return ret;
 402	}
 403
 404	ret = omap_hsmmc_disable_boot_regulator(host->pbias);
 405	if (ret) {
 406		dev_err(host->dev,
 407			"failed to disable boot enabled pbias reg\n");
 408		return ret;
 409	}
 410
 411	return 0;
 412}
 413
 414static int omap_hsmmc_reg_get(struct omap_hsmmc_host *host)
 415{
 416	int ret;
 417	struct mmc_host *mmc = host->mmc;
 418
 419
 420	ret = mmc_regulator_get_supply(mmc);
 421	if (ret)
 422		return ret;
 423
 424	/* Allow an aux regulator */
 425	if (IS_ERR(mmc->supply.vqmmc)) {
 426		mmc->supply.vqmmc = devm_regulator_get_optional(host->dev,
 427								"vmmc_aux");
 428		if (IS_ERR(mmc->supply.vqmmc)) {
 429			ret = PTR_ERR(mmc->supply.vqmmc);
 430			if ((ret != -ENODEV) && host->dev->of_node)
 431				return ret;
 432			dev_dbg(host->dev, "unable to get vmmc_aux regulator %ld\n",
 433				PTR_ERR(mmc->supply.vqmmc));
 434		}
 435	}
 436
 437	host->pbias = devm_regulator_get_optional(host->dev, "pbias");
 438	if (IS_ERR(host->pbias)) {
 439		ret = PTR_ERR(host->pbias);
 440		if ((ret != -ENODEV) && host->dev->of_node) {
 441			dev_err(host->dev,
 442			"SD card detect fail? enable CONFIG_REGULATOR_PBIAS\n");
 443			return ret;
 444		}
 445		dev_dbg(host->dev, "unable to get pbias regulator %ld\n",
 446			PTR_ERR(host->pbias));
 447	}
 448
 449	/* For eMMC do not power off when not in sleep state */
 450	if (mmc_pdata(host)->no_regulator_off_init)
 451		return 0;
 452
 453	ret = omap_hsmmc_disable_boot_regulators(host);
 454	if (ret)
 455		return ret;
 456
 457	return 0;
 458}
 459
 460/*
 461 * Start clock to the card
 462 */
 463static void omap_hsmmc_start_clock(struct omap_hsmmc_host *host)
 464{
 465	OMAP_HSMMC_WRITE(host->base, SYSCTL,
 466		OMAP_HSMMC_READ(host->base, SYSCTL) | CEN);
 467}
 468
 469/*
 470 * Stop clock to the card
 471 */
 472static void omap_hsmmc_stop_clock(struct omap_hsmmc_host *host)
 473{
 474	OMAP_HSMMC_WRITE(host->base, SYSCTL,
 475		OMAP_HSMMC_READ(host->base, SYSCTL) & ~CEN);
 476	if ((OMAP_HSMMC_READ(host->base, SYSCTL) & CEN) != 0x0)
 477		dev_dbg(mmc_dev(host->mmc), "MMC Clock is not stopped\n");
 478}
 479
 480static void omap_hsmmc_enable_irq(struct omap_hsmmc_host *host,
 481				  struct mmc_command *cmd)
 482{
 483	u32 irq_mask = INT_EN_MASK;
 484	unsigned long flags;
 485
 486	if (host->use_dma)
 487		irq_mask &= ~(BRR_EN | BWR_EN);
 488
 489	/* Disable timeout for erases */
 490	if (cmd->opcode == MMC_ERASE)
 491		irq_mask &= ~DTO_EN;
 492
 493	spin_lock_irqsave(&host->irq_lock, flags);
 494	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
 495	OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
 496
 497	/* latch pending CIRQ, but don't signal MMC core */
 498	if (host->flags & HSMMC_SDIO_IRQ_ENABLED)
 499		irq_mask |= CIRQ_EN;
 500	OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
 501	spin_unlock_irqrestore(&host->irq_lock, flags);
 502}
 503
 504static void omap_hsmmc_disable_irq(struct omap_hsmmc_host *host)
 505{
 506	u32 irq_mask = 0;
 507	unsigned long flags;
 508
 509	spin_lock_irqsave(&host->irq_lock, flags);
 510	/* no transfer running but need to keep cirq if enabled */
 511	if (host->flags & HSMMC_SDIO_IRQ_ENABLED)
 512		irq_mask |= CIRQ_EN;
 513	OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
 514	OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
 515	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
 516	spin_unlock_irqrestore(&host->irq_lock, flags);
 517}
 518
 519/* Calculate divisor for the given clock frequency */
 520static u16 calc_divisor(struct omap_hsmmc_host *host, struct mmc_ios *ios)
 521{
 522	u16 dsor = 0;
 523
 524	if (ios->clock) {
 525		dsor = DIV_ROUND_UP(clk_get_rate(host->fclk), ios->clock);
 526		if (dsor > CLKD_MAX)
 527			dsor = CLKD_MAX;
 528	}
 529
 530	return dsor;
 531}
 532
 533static void omap_hsmmc_set_clock(struct omap_hsmmc_host *host)
 534{
 535	struct mmc_ios *ios = &host->mmc->ios;
 536	unsigned long regval;
 537	unsigned long timeout;
 538	unsigned long clkdiv;
 539
 540	dev_vdbg(mmc_dev(host->mmc), "Set clock to %uHz\n", ios->clock);
 541
 542	omap_hsmmc_stop_clock(host);
 543
 544	regval = OMAP_HSMMC_READ(host->base, SYSCTL);
 545	regval = regval & ~(CLKD_MASK | DTO_MASK);
 546	clkdiv = calc_divisor(host, ios);
 547	regval = regval | (clkdiv << 6) | (DTO << 16);
 548	OMAP_HSMMC_WRITE(host->base, SYSCTL, regval);
 549	OMAP_HSMMC_WRITE(host->base, SYSCTL,
 550		OMAP_HSMMC_READ(host->base, SYSCTL) | ICE);
 551
 552	/* Wait till the ICS bit is set */
 553	timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
 554	while ((OMAP_HSMMC_READ(host->base, SYSCTL) & ICS) != ICS
 555		&& time_before(jiffies, timeout))
 556		cpu_relax();
 557
 558	/*
 559	 * Enable High-Speed Support
 560	 * Pre-Requisites
 561	 *	- Controller should support High-Speed-Enable Bit
 562	 *	- Controller should not be using DDR Mode
 563	 *	- Controller should advertise that it supports High Speed
 564	 *	  in capabilities register
 565	 *	- MMC/SD clock coming out of controller > 25MHz
 566	 */
 567	if ((mmc_pdata(host)->features & HSMMC_HAS_HSPE_SUPPORT) &&
 568	    (ios->timing != MMC_TIMING_MMC_DDR52) &&
 569	    (ios->timing != MMC_TIMING_UHS_DDR50) &&
 570	    ((OMAP_HSMMC_READ(host->base, CAPA) & HSS) == HSS)) {
 571		regval = OMAP_HSMMC_READ(host->base, HCTL);
 572		if (clkdiv && (clk_get_rate(host->fclk)/clkdiv) > 25000000)
 573			regval |= HSPE;
 574		else
 575			regval &= ~HSPE;
 576
 577		OMAP_HSMMC_WRITE(host->base, HCTL, regval);
 578	}
 579
 580	omap_hsmmc_start_clock(host);
 581}
 582
 583static void omap_hsmmc_set_bus_width(struct omap_hsmmc_host *host)
 584{
 585	struct mmc_ios *ios = &host->mmc->ios;
 586	u32 con;
 587
 588	con = OMAP_HSMMC_READ(host->base, CON);
 589	if (ios->timing == MMC_TIMING_MMC_DDR52 ||
 590	    ios->timing == MMC_TIMING_UHS_DDR50)
 591		con |= DDR;	/* configure in DDR mode */
 592	else
 593		con &= ~DDR;
 594	switch (ios->bus_width) {
 595	case MMC_BUS_WIDTH_8:
 596		OMAP_HSMMC_WRITE(host->base, CON, con | DW8);
 597		break;
 598	case MMC_BUS_WIDTH_4:
 599		OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
 600		OMAP_HSMMC_WRITE(host->base, HCTL,
 601			OMAP_HSMMC_READ(host->base, HCTL) | FOUR_BIT);
 602		break;
 603	case MMC_BUS_WIDTH_1:
 604		OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
 605		OMAP_HSMMC_WRITE(host->base, HCTL,
 606			OMAP_HSMMC_READ(host->base, HCTL) & ~FOUR_BIT);
 607		break;
 608	}
 609}
 610
 611static void omap_hsmmc_set_bus_mode(struct omap_hsmmc_host *host)
 612{
 613	struct mmc_ios *ios = &host->mmc->ios;
 614	u32 con;
 615
 616	con = OMAP_HSMMC_READ(host->base, CON);
 617	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
 618		OMAP_HSMMC_WRITE(host->base, CON, con | OD);
 619	else
 620		OMAP_HSMMC_WRITE(host->base, CON, con & ~OD);
 621}
 622
 623#ifdef CONFIG_PM
 624
 625/*
 626 * Restore the MMC host context, if it was lost as result of a
 627 * power state change.
 628 */
 629static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host)
 630{
 631	struct mmc_ios *ios = &host->mmc->ios;
 632	u32 hctl, capa;
 633	unsigned long timeout;
 634
 635	if (host->con == OMAP_HSMMC_READ(host->base, CON) &&
 636	    host->hctl == OMAP_HSMMC_READ(host->base, HCTL) &&
 637	    host->sysctl == OMAP_HSMMC_READ(host->base, SYSCTL) &&
 638	    host->capa == OMAP_HSMMC_READ(host->base, CAPA))
 639		return 0;
 640
 641	host->context_loss++;
 642
 643	if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
 644		if (host->power_mode != MMC_POWER_OFF &&
 645		    (1 << ios->vdd) <= MMC_VDD_23_24)
 646			hctl = SDVS18;
 647		else
 648			hctl = SDVS30;
 649		capa = VS30 | VS18;
 650	} else {
 651		hctl = SDVS18;
 652		capa = VS18;
 653	}
 654
 655	if (host->mmc->caps & MMC_CAP_SDIO_IRQ)
 656		hctl |= IWE;
 657
 658	OMAP_HSMMC_WRITE(host->base, HCTL,
 659			OMAP_HSMMC_READ(host->base, HCTL) | hctl);
 660
 661	OMAP_HSMMC_WRITE(host->base, CAPA,
 662			OMAP_HSMMC_READ(host->base, CAPA) | capa);
 663
 664	OMAP_HSMMC_WRITE(host->base, HCTL,
 665			OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
 666
 667	timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
 668	while ((OMAP_HSMMC_READ(host->base, HCTL) & SDBP) != SDBP
 669		&& time_before(jiffies, timeout))
 670		;
 671
 672	OMAP_HSMMC_WRITE(host->base, ISE, 0);
 673	OMAP_HSMMC_WRITE(host->base, IE, 0);
 674	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
 675
 676	/* Do not initialize card-specific things if the power is off */
 677	if (host->power_mode == MMC_POWER_OFF)
 678		goto out;
 679
 680	omap_hsmmc_set_bus_width(host);
 681
 682	omap_hsmmc_set_clock(host);
 683
 684	omap_hsmmc_set_bus_mode(host);
 685
 686out:
 687	dev_dbg(mmc_dev(host->mmc), "context is restored: restore count %d\n",
 688		host->context_loss);
 689	return 0;
 690}
 691
 692/*
 693 * Save the MMC host context (store the number of power state changes so far).
 694 */
 695static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
 696{
 697	host->con =  OMAP_HSMMC_READ(host->base, CON);
 698	host->hctl = OMAP_HSMMC_READ(host->base, HCTL);
 699	host->sysctl =  OMAP_HSMMC_READ(host->base, SYSCTL);
 700	host->capa = OMAP_HSMMC_READ(host->base, CAPA);
 701}
 702
 703#else
 704
 705static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
 706{
 707}
 708
 709#endif
 710
 711/*
 712 * Send init stream sequence to card
 713 * before sending IDLE command
 714 */
 715static void send_init_stream(struct omap_hsmmc_host *host)
 716{
 717	int reg = 0;
 718	unsigned long timeout;
 719
 720	disable_irq(host->irq);
 721
 722	OMAP_HSMMC_WRITE(host->base, IE, INT_EN_MASK);
 723	OMAP_HSMMC_WRITE(host->base, CON,
 724		OMAP_HSMMC_READ(host->base, CON) | INIT_STREAM);
 725	OMAP_HSMMC_WRITE(host->base, CMD, INIT_STREAM_CMD);
 726
 727	timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
 728	while ((reg != CC_EN) && time_before(jiffies, timeout))
 729		reg = OMAP_HSMMC_READ(host->base, STAT) & CC_EN;
 730
 731	OMAP_HSMMC_WRITE(host->base, CON,
 732		OMAP_HSMMC_READ(host->base, CON) & ~INIT_STREAM);
 733
 734	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
 735	OMAP_HSMMC_READ(host->base, STAT);
 736
 737	enable_irq(host->irq);
 738}
 739
 740static ssize_t
 741omap_hsmmc_show_slot_name(struct device *dev, struct device_attribute *attr,
 742			char *buf)
 743{
 744	struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
 745	struct omap_hsmmc_host *host = mmc_priv(mmc);
 746
 747	return sprintf(buf, "%s\n", mmc_pdata(host)->name);
 748}
 749
 750static DEVICE_ATTR(slot_name, S_IRUGO, omap_hsmmc_show_slot_name, NULL);
 751
 752/*
 753 * Configure the response type and send the cmd.
 754 */
 755static void
 756omap_hsmmc_start_command(struct omap_hsmmc_host *host, struct mmc_command *cmd,
 757	struct mmc_data *data)
 758{
 759	int cmdreg = 0, resptype = 0, cmdtype = 0;
 760
 761	dev_vdbg(mmc_dev(host->mmc), "%s: CMD%d, argument 0x%08x\n",
 762		mmc_hostname(host->mmc), cmd->opcode, cmd->arg);
 763	host->cmd = cmd;
 764
 765	omap_hsmmc_enable_irq(host, cmd);
 766
 767	host->response_busy = 0;
 768	if (cmd->flags & MMC_RSP_PRESENT) {
 769		if (cmd->flags & MMC_RSP_136)
 770			resptype = 1;
 771		else if (cmd->flags & MMC_RSP_BUSY) {
 772			resptype = 3;
 773			host->response_busy = 1;
 774		} else
 775			resptype = 2;
 776	}
 777
 778	/*
 779	 * Unlike OMAP1 controller, the cmdtype does not seem to be based on
 780	 * ac, bc, adtc, bcr. Only commands ending an open ended transfer need
 781	 * a val of 0x3, rest 0x0.
 782	 */
 783	if (cmd == host->mrq->stop)
 784		cmdtype = 0x3;
 785
 786	cmdreg = (cmd->opcode << 24) | (resptype << 16) | (cmdtype << 22);
 787
 788	if ((host->flags & AUTO_CMD23) && mmc_op_multi(cmd->opcode) &&
 789	    host->mrq->sbc) {
 790		cmdreg |= ACEN_ACMD23;
 791		OMAP_HSMMC_WRITE(host->base, SDMASA, host->mrq->sbc->arg);
 792	}
 793	if (data) {
 794		cmdreg |= DP_SELECT | MSBS | BCE;
 795		if (data->flags & MMC_DATA_READ)
 796			cmdreg |= DDIR;
 797		else
 798			cmdreg &= ~(DDIR);
 799	}
 800
 801	if (host->use_dma)
 802		cmdreg |= DMAE;
 803
 804	host->req_in_progress = 1;
 805
 806	OMAP_HSMMC_WRITE(host->base, ARG, cmd->arg);
 807	OMAP_HSMMC_WRITE(host->base, CMD, cmdreg);
 808}
 809
 810static struct dma_chan *omap_hsmmc_get_dma_chan(struct omap_hsmmc_host *host,
 811	struct mmc_data *data)
 812{
 813	return data->flags & MMC_DATA_WRITE ? host->tx_chan : host->rx_chan;
 814}
 815
 816static void omap_hsmmc_request_done(struct omap_hsmmc_host *host, struct mmc_request *mrq)
 817{
 818	int dma_ch;
 819	unsigned long flags;
 820
 821	spin_lock_irqsave(&host->irq_lock, flags);
 822	host->req_in_progress = 0;
 823	dma_ch = host->dma_ch;
 824	spin_unlock_irqrestore(&host->irq_lock, flags);
 825
 826	omap_hsmmc_disable_irq(host);
 827	/* Do not complete the request if DMA is still in progress */
 828	if (mrq->data && host->use_dma && dma_ch != -1)
 829		return;
 830	host->mrq = NULL;
 831	mmc_request_done(host->mmc, mrq);
 832}
 833
 834/*
 835 * Notify the transfer complete to MMC core
 836 */
 837static void
 838omap_hsmmc_xfer_done(struct omap_hsmmc_host *host, struct mmc_data *data)
 839{
 840	if (!data) {
 841		struct mmc_request *mrq = host->mrq;
 842
 843		/* TC before CC from CMD6 - don't know why, but it happens */
 844		if (host->cmd && host->cmd->opcode == 6 &&
 845		    host->response_busy) {
 846			host->response_busy = 0;
 847			return;
 848		}
 849
 850		omap_hsmmc_request_done(host, mrq);
 851		return;
 852	}
 853
 854	host->data = NULL;
 855
 856	if (!data->error)
 857		data->bytes_xfered += data->blocks * (data->blksz);
 858	else
 859		data->bytes_xfered = 0;
 860
 861	if (data->stop && (data->error || !host->mrq->sbc))
 862		omap_hsmmc_start_command(host, data->stop, NULL);
 863	else
 864		omap_hsmmc_request_done(host, data->mrq);
 865}
 866
 867/*
 868 * Notify the core about command completion
 869 */
 870static void
 871omap_hsmmc_cmd_done(struct omap_hsmmc_host *host, struct mmc_command *cmd)
 872{
 873	if (host->mrq->sbc && (host->cmd == host->mrq->sbc) &&
 874	    !host->mrq->sbc->error && !(host->flags & AUTO_CMD23)) {
 875		host->cmd = NULL;
 876		omap_hsmmc_start_dma_transfer(host);
 877		omap_hsmmc_start_command(host, host->mrq->cmd,
 878						host->mrq->data);
 879		return;
 880	}
 881
 882	host->cmd = NULL;
 883
 884	if (cmd->flags & MMC_RSP_PRESENT) {
 885		if (cmd->flags & MMC_RSP_136) {
 886			/* response type 2 */
 887			cmd->resp[3] = OMAP_HSMMC_READ(host->base, RSP10);
 888			cmd->resp[2] = OMAP_HSMMC_READ(host->base, RSP32);
 889			cmd->resp[1] = OMAP_HSMMC_READ(host->base, RSP54);
 890			cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP76);
 891		} else {
 892			/* response types 1, 1b, 3, 4, 5, 6 */
 893			cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP10);
 894		}
 895	}
 896	if ((host->data == NULL && !host->response_busy) || cmd->error)
 897		omap_hsmmc_request_done(host, host->mrq);
 898}
 899
 900/*
 901 * DMA clean up for command errors
 902 */
 903static void omap_hsmmc_dma_cleanup(struct omap_hsmmc_host *host, int errno)
 904{
 905	int dma_ch;
 906	unsigned long flags;
 907
 908	host->data->error = errno;
 909
 910	spin_lock_irqsave(&host->irq_lock, flags);
 911	dma_ch = host->dma_ch;
 912	host->dma_ch = -1;
 913	spin_unlock_irqrestore(&host->irq_lock, flags);
 914
 915	if (host->use_dma && dma_ch != -1) {
 916		struct dma_chan *chan = omap_hsmmc_get_dma_chan(host, host->data);
 917
 918		dmaengine_terminate_all(chan);
 919		dma_unmap_sg(chan->device->dev,
 920			host->data->sg, host->data->sg_len,
 921			mmc_get_dma_dir(host->data));
 922
 923		host->data->host_cookie = 0;
 924	}
 925	host->data = NULL;
 926}
 927
 928/*
 929 * Readable error output
 930 */
 931#ifdef CONFIG_MMC_DEBUG
 932static void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host, u32 status)
 933{
 934	/* --- means reserved bit without definition at documentation */
 935	static const char *omap_hsmmc_status_bits[] = {
 936		"CC"  , "TC"  , "BGE", "---", "BWR" , "BRR" , "---" , "---" ,
 937		"CIRQ",	"OBI" , "---", "---", "---" , "---" , "---" , "ERRI",
 938		"CTO" , "CCRC", "CEB", "CIE", "DTO" , "DCRC", "DEB" , "---" ,
 939		"ACE" , "---" , "---", "---", "CERR", "BADA", "---" , "---"
 940	};
 941	char res[256];
 942	char *buf = res;
 943	int len, i;
 944
 945	len = sprintf(buf, "MMC IRQ 0x%x :", status);
 946	buf += len;
 947
 948	for (i = 0; i < ARRAY_SIZE(omap_hsmmc_status_bits); i++)
 949		if (status & (1 << i)) {
 950			len = sprintf(buf, " %s", omap_hsmmc_status_bits[i]);
 951			buf += len;
 952		}
 953
 954	dev_vdbg(mmc_dev(host->mmc), "%s\n", res);
 955}
 956#else
 957static inline void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host,
 958					     u32 status)
 959{
 960}
 961#endif  /* CONFIG_MMC_DEBUG */
 962
 963/*
 964 * MMC controller internal state machines reset
 965 *
 966 * Used to reset command or data internal state machines, using respectively
 967 *  SRC or SRD bit of SYSCTL register
 968 * Can be called from interrupt context
 969 */
 970static inline void omap_hsmmc_reset_controller_fsm(struct omap_hsmmc_host *host,
 971						   unsigned long bit)
 972{
 973	unsigned long i = 0;
 974	unsigned long limit = MMC_TIMEOUT_US;
 975
 976	OMAP_HSMMC_WRITE(host->base, SYSCTL,
 977			 OMAP_HSMMC_READ(host->base, SYSCTL) | bit);
 978
 979	/*
 980	 * OMAP4 ES2 and greater has an updated reset logic.
 981	 * Monitor a 0->1 transition first
 982	 */
 983	if (mmc_pdata(host)->features & HSMMC_HAS_UPDATED_RESET) {
 984		while ((!(OMAP_HSMMC_READ(host->base, SYSCTL) & bit))
 985					&& (i++ < limit))
 986			udelay(1);
 987	}
 988	i = 0;
 989
 990	while ((OMAP_HSMMC_READ(host->base, SYSCTL) & bit) &&
 991		(i++ < limit))
 992		udelay(1);
 993
 994	if (OMAP_HSMMC_READ(host->base, SYSCTL) & bit)
 995		dev_err(mmc_dev(host->mmc),
 996			"Timeout waiting on controller reset in %s\n",
 997			__func__);
 998}
 999
1000static void hsmmc_command_incomplete(struct omap_hsmmc_host *host,
1001					int err, int end_cmd)
1002{
1003	if (end_cmd) {
1004		omap_hsmmc_reset_controller_fsm(host, SRC);
1005		if (host->cmd)
1006			host->cmd->error = err;
1007	}
1008
1009	if (host->data) {
1010		omap_hsmmc_reset_controller_fsm(host, SRD);
1011		omap_hsmmc_dma_cleanup(host, err);
1012	} else if (host->mrq && host->mrq->cmd)
1013		host->mrq->cmd->error = err;
1014}
1015
1016static void omap_hsmmc_do_irq(struct omap_hsmmc_host *host, int status)
1017{
1018	struct mmc_data *data;
1019	int end_cmd = 0, end_trans = 0;
1020	int error = 0;
1021
1022	data = host->data;
1023	dev_vdbg(mmc_dev(host->mmc), "IRQ Status is %x\n", status);
1024
1025	if (status & ERR_EN) {
1026		omap_hsmmc_dbg_report_irq(host, status);
1027
1028		if (status & (CTO_EN | CCRC_EN | CEB_EN))
1029			end_cmd = 1;
1030		if (host->data || host->response_busy) {
1031			end_trans = !end_cmd;
1032			host->response_busy = 0;
1033		}
1034		if (status & (CTO_EN | DTO_EN))
1035			hsmmc_command_incomplete(host, -ETIMEDOUT, end_cmd);
1036		else if (status & (CCRC_EN | DCRC_EN | DEB_EN | CEB_EN |
1037				   BADA_EN))
1038			hsmmc_command_incomplete(host, -EILSEQ, end_cmd);
1039
1040		if (status & ACE_EN) {
1041			u32 ac12;
1042			ac12 = OMAP_HSMMC_READ(host->base, AC12);
1043			if (!(ac12 & ACNE) && host->mrq->sbc) {
1044				end_cmd = 1;
1045				if (ac12 & ACTO)
1046					error =  -ETIMEDOUT;
1047				else if (ac12 & (ACCE | ACEB | ACIE))
1048					error = -EILSEQ;
1049				host->mrq->sbc->error = error;
1050				hsmmc_command_incomplete(host, error, end_cmd);
1051			}
1052			dev_dbg(mmc_dev(host->mmc), "AC12 err: 0x%x\n", ac12);
1053		}
1054	}
1055
1056	OMAP_HSMMC_WRITE(host->base, STAT, status);
1057	if (end_cmd || ((status & CC_EN) && host->cmd))
1058		omap_hsmmc_cmd_done(host, host->cmd);
1059	if ((end_trans || (status & TC_EN)) && host->mrq)
1060		omap_hsmmc_xfer_done(host, data);
1061}
1062
1063/*
1064 * MMC controller IRQ handler
1065 */
1066static irqreturn_t omap_hsmmc_irq(int irq, void *dev_id)
1067{
1068	struct omap_hsmmc_host *host = dev_id;
1069	int status;
1070
1071	status = OMAP_HSMMC_READ(host->base, STAT);
1072	while (status & (INT_EN_MASK | CIRQ_EN)) {
1073		if (host->req_in_progress)
1074			omap_hsmmc_do_irq(host, status);
1075
1076		if (status & CIRQ_EN)
1077			mmc_signal_sdio_irq(host->mmc);
1078
1079		/* Flush posted write */
1080		status = OMAP_HSMMC_READ(host->base, STAT);
1081	}
1082
1083	return IRQ_HANDLED;
1084}
1085
1086static void set_sd_bus_power(struct omap_hsmmc_host *host)
1087{
1088	unsigned long i;
1089
1090	OMAP_HSMMC_WRITE(host->base, HCTL,
1091			 OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
1092	for (i = 0; i < loops_per_jiffy; i++) {
1093		if (OMAP_HSMMC_READ(host->base, HCTL) & SDBP)
1094			break;
1095		cpu_relax();
1096	}
1097}
1098
1099/*
1100 * Switch MMC interface voltage ... only relevant for MMC1.
1101 *
1102 * MMC2 and MMC3 use fixed 1.8V levels, and maybe a transceiver.
1103 * The MMC2 transceiver controls are used instead of DAT4..DAT7.
1104 * Some chips, like eMMC ones, use internal transceivers.
1105 */
1106static int omap_hsmmc_switch_opcond(struct omap_hsmmc_host *host, int vdd)
1107{
1108	u32 reg_val = 0;
1109	int ret;
1110
1111	/* Disable the clocks */
1112	clk_disable_unprepare(host->dbclk);
1113
1114	/* Turn the power off */
1115	ret = omap_hsmmc_set_power(host, 0);
1116
1117	/* Turn the power ON with given VDD 1.8 or 3.0v */
1118	if (!ret)
1119		ret = omap_hsmmc_set_power(host, 1);
1120	clk_prepare_enable(host->dbclk);
1121
1122	if (ret != 0)
1123		goto err;
1124
1125	OMAP_HSMMC_WRITE(host->base, HCTL,
1126		OMAP_HSMMC_READ(host->base, HCTL) & SDVSCLR);
1127	reg_val = OMAP_HSMMC_READ(host->base, HCTL);
1128
1129	/*
1130	 * If a MMC dual voltage card is detected, the set_ios fn calls
1131	 * this fn with VDD bit set for 1.8V. Upon card removal from the
1132	 * slot, omap_hsmmc_set_ios sets the VDD back to 3V on MMC_POWER_OFF.
1133	 *
1134	 * Cope with a bit of slop in the range ... per data sheets:
1135	 *  - "1.8V" for vdds_mmc1/vdds_mmc1a can be up to 2.45V max,
1136	 *    but recommended values are 1.71V to 1.89V
1137	 *  - "3.0V" for vdds_mmc1/vdds_mmc1a can be up to 3.5V max,
1138	 *    but recommended values are 2.7V to 3.3V
1139	 *
1140	 * Board setup code shouldn't permit anything very out-of-range.
1141	 * TWL4030-family VMMC1 and VSIM regulators are fine (avoiding the
1142	 * middle range) but VSIM can't power DAT4..DAT7 at more than 3V.
1143	 */
1144	if ((1 << vdd) <= MMC_VDD_23_24)
1145		reg_val |= SDVS18;
1146	else
1147		reg_val |= SDVS30;
1148
1149	OMAP_HSMMC_WRITE(host->base, HCTL, reg_val);
1150	set_sd_bus_power(host);
1151
1152	return 0;
1153err:
1154	dev_err(mmc_dev(host->mmc), "Unable to switch operating voltage\n");
1155	return ret;
1156}
1157
1158static void omap_hsmmc_dma_callback(void *param)
1159{
1160	struct omap_hsmmc_host *host = param;
1161	struct dma_chan *chan;
1162	struct mmc_data *data;
1163	int req_in_progress;
1164
1165	spin_lock_irq(&host->irq_lock);
1166	if (host->dma_ch < 0) {
1167		spin_unlock_irq(&host->irq_lock);
1168		return;
1169	}
1170
1171	data = host->mrq->data;
1172	chan = omap_hsmmc_get_dma_chan(host, data);
1173	if (!data->host_cookie)
1174		dma_unmap_sg(chan->device->dev,
1175			     data->sg, data->sg_len,
1176			     mmc_get_dma_dir(data));
1177
1178	req_in_progress = host->req_in_progress;
1179	host->dma_ch = -1;
1180	spin_unlock_irq(&host->irq_lock);
1181
1182	/* If DMA has finished after TC, complete the request */
1183	if (!req_in_progress) {
1184		struct mmc_request *mrq = host->mrq;
1185
1186		host->mrq = NULL;
1187		mmc_request_done(host->mmc, mrq);
1188	}
1189}
1190
1191static int omap_hsmmc_pre_dma_transfer(struct omap_hsmmc_host *host,
1192				       struct mmc_data *data,
1193				       struct omap_hsmmc_next *next,
1194				       struct dma_chan *chan)
1195{
1196	int dma_len;
1197
1198	if (!next && data->host_cookie &&
1199	    data->host_cookie != host->next_data.cookie) {
1200		dev_warn(host->dev, "[%s] invalid cookie: data->host_cookie %d"
1201		       " host->next_data.cookie %d\n",
1202		       __func__, data->host_cookie, host->next_data.cookie);
1203		data->host_cookie = 0;
1204	}
1205
1206	/* Check if next job is already prepared */
1207	if (next || data->host_cookie != host->next_data.cookie) {
1208		dma_len = dma_map_sg(chan->device->dev, data->sg, data->sg_len,
1209				     mmc_get_dma_dir(data));
1210
1211	} else {
1212		dma_len = host->next_data.dma_len;
1213		host->next_data.dma_len = 0;
1214	}
1215
1216
1217	if (dma_len == 0)
1218		return -EINVAL;
1219
1220	if (next) {
1221		next->dma_len = dma_len;
1222		data->host_cookie = ++next->cookie < 0 ? 1 : next->cookie;
1223	} else
1224		host->dma_len = dma_len;
1225
1226	return 0;
1227}
1228
1229/*
1230 * Routine to configure and start DMA for the MMC card
1231 */
1232static int omap_hsmmc_setup_dma_transfer(struct omap_hsmmc_host *host,
1233					struct mmc_request *req)
1234{
1235	struct dma_async_tx_descriptor *tx;
1236	int ret = 0, i;
1237	struct mmc_data *data = req->data;
1238	struct dma_chan *chan;
1239	struct dma_slave_config cfg = {
1240		.src_addr = host->mapbase + OMAP_HSMMC_DATA,
1241		.dst_addr = host->mapbase + OMAP_HSMMC_DATA,
1242		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
1243		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
1244		.src_maxburst = data->blksz / 4,
1245		.dst_maxburst = data->blksz / 4,
1246	};
1247
1248	/* Sanity check: all the SG entries must be aligned by block size. */
1249	for (i = 0; i < data->sg_len; i++) {
1250		struct scatterlist *sgl;
1251
1252		sgl = data->sg + i;
1253		if (sgl->length % data->blksz)
1254			return -EINVAL;
1255	}
1256	if ((data->blksz % 4) != 0)
1257		/* REVISIT: The MMC buffer increments only when MSB is written.
1258		 * Return error for blksz which is non multiple of four.
1259		 */
1260		return -EINVAL;
1261
1262	BUG_ON(host->dma_ch != -1);
1263
1264	chan = omap_hsmmc_get_dma_chan(host, data);
1265
1266	ret = dmaengine_slave_config(chan, &cfg);
1267	if (ret)
1268		return ret;
1269
1270	ret = omap_hsmmc_pre_dma_transfer(host, data, NULL, chan);
1271	if (ret)
1272		return ret;
1273
1274	tx = dmaengine_prep_slave_sg(chan, data->sg, data->sg_len,
1275		data->flags & MMC_DATA_WRITE ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
1276		DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1277	if (!tx) {
1278		dev_err(mmc_dev(host->mmc), "prep_slave_sg() failed\n");
1279		/* FIXME: cleanup */
1280		return -1;
1281	}
1282
1283	tx->callback = omap_hsmmc_dma_callback;
1284	tx->callback_param = host;
1285
1286	/* Does not fail */
1287	dmaengine_submit(tx);
1288
1289	host->dma_ch = 1;
1290
1291	return 0;
1292}
1293
1294static void set_data_timeout(struct omap_hsmmc_host *host,
1295			     unsigned long long timeout_ns,
1296			     unsigned int timeout_clks)
1297{
1298	unsigned long long timeout = timeout_ns;
1299	unsigned int cycle_ns;
1300	uint32_t reg, clkd, dto = 0;
1301
1302	reg = OMAP_HSMMC_READ(host->base, SYSCTL);
1303	clkd = (reg & CLKD_MASK) >> CLKD_SHIFT;
1304	if (clkd == 0)
1305		clkd = 1;
1306
1307	cycle_ns = 1000000000 / (host->clk_rate / clkd);
1308	do_div(timeout, cycle_ns);
1309	timeout += timeout_clks;
1310	if (timeout) {
1311		while ((timeout & 0x80000000) == 0) {
1312			dto += 1;
1313			timeout <<= 1;
1314		}
1315		dto = 31 - dto;
1316		timeout <<= 1;
1317		if (timeout && dto)
1318			dto += 1;
1319		if (dto >= 13)
1320			dto -= 13;
1321		else
1322			dto = 0;
1323		if (dto > 14)
1324			dto = 14;
1325	}
1326
1327	reg &= ~DTO_MASK;
1328	reg |= dto << DTO_SHIFT;
1329	OMAP_HSMMC_WRITE(host->base, SYSCTL, reg);
1330}
1331
1332static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host)
1333{
1334	struct mmc_request *req = host->mrq;
1335	struct dma_chan *chan;
1336
1337	if (!req->data)
1338		return;
1339	OMAP_HSMMC_WRITE(host->base, BLK, (req->data->blksz)
1340				| (req->data->blocks << 16));
1341	set_data_timeout(host, req->data->timeout_ns,
1342				req->data->timeout_clks);
1343	chan = omap_hsmmc_get_dma_chan(host, req->data);
1344	dma_async_issue_pending(chan);
1345}
1346
1347/*
1348 * Configure block length for MMC/SD cards and initiate the transfer.
1349 */
1350static int
1351omap_hsmmc_prepare_data(struct omap_hsmmc_host *host, struct mmc_request *req)
1352{
1353	int ret;
1354	unsigned long long timeout;
1355
1356	host->data = req->data;
1357
1358	if (req->data == NULL) {
1359		OMAP_HSMMC_WRITE(host->base, BLK, 0);
1360		if (req->cmd->flags & MMC_RSP_BUSY) {
1361			timeout = req->cmd->busy_timeout * NSEC_PER_MSEC;
1362
1363			/*
1364			 * Set an arbitrary 100ms data timeout for commands with
1365			 * busy signal and no indication of busy_timeout.
1366			 */
1367			if (!timeout)
1368				timeout = 100000000U;
1369
1370			set_data_timeout(host, timeout, 0);
1371		}
1372		return 0;
1373	}
1374
1375	if (host->use_dma) {
1376		ret = omap_hsmmc_setup_dma_transfer(host, req);
1377		if (ret != 0) {
1378			dev_err(mmc_dev(host->mmc), "MMC start dma failure\n");
1379			return ret;
1380		}
1381	}
1382	return 0;
1383}
1384
1385static void omap_hsmmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq,
1386				int err)
1387{
1388	struct omap_hsmmc_host *host = mmc_priv(mmc);
1389	struct mmc_data *data = mrq->data;
1390
1391	if (host->use_dma && data->host_cookie) {
1392		struct dma_chan *c = omap_hsmmc_get_dma_chan(host, data);
1393
1394		dma_unmap_sg(c->device->dev, data->sg, data->sg_len,
1395			     mmc_get_dma_dir(data));
1396		data->host_cookie = 0;
1397	}
1398}
1399
1400static void omap_hsmmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq)
1401{
1402	struct omap_hsmmc_host *host = mmc_priv(mmc);
1403
1404	if (mrq->data->host_cookie) {
1405		mrq->data->host_cookie = 0;
1406		return ;
1407	}
1408
1409	if (host->use_dma) {
1410		struct dma_chan *c = omap_hsmmc_get_dma_chan(host, mrq->data);
1411
1412		if (omap_hsmmc_pre_dma_transfer(host, mrq->data,
1413						&host->next_data, c))
1414			mrq->data->host_cookie = 0;
1415	}
1416}
1417
1418/*
1419 * Request function. for read/write operation
1420 */
1421static void omap_hsmmc_request(struct mmc_host *mmc, struct mmc_request *req)
1422{
1423	struct omap_hsmmc_host *host = mmc_priv(mmc);
1424	int err;
1425
1426	BUG_ON(host->req_in_progress);
1427	BUG_ON(host->dma_ch != -1);
1428	if (host->reqs_blocked)
1429		host->reqs_blocked = 0;
1430	WARN_ON(host->mrq != NULL);
1431	host->mrq = req;
1432	host->clk_rate = clk_get_rate(host->fclk);
1433	err = omap_hsmmc_prepare_data(host, req);
1434	if (err) {
1435		req->cmd->error = err;
1436		if (req->data)
1437			req->data->error = err;
1438		host->mrq = NULL;
1439		mmc_request_done(mmc, req);
1440		return;
1441	}
1442	if (req->sbc && !(host->flags & AUTO_CMD23)) {
1443		omap_hsmmc_start_command(host, req->sbc, NULL);
1444		return;
1445	}
1446
1447	omap_hsmmc_start_dma_transfer(host);
1448	omap_hsmmc_start_command(host, req->cmd, req->data);
1449}
1450
1451/* Routine to configure clock values. Exposed API to core */
1452static void omap_hsmmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1453{
1454	struct omap_hsmmc_host *host = mmc_priv(mmc);
1455	int do_send_init_stream = 0;
1456
1457	if (ios->power_mode != host->power_mode) {
1458		switch (ios->power_mode) {
1459		case MMC_POWER_OFF:
1460			omap_hsmmc_set_power(host, 0);
1461			break;
1462		case MMC_POWER_UP:
1463			omap_hsmmc_set_power(host, 1);
1464			break;
1465		case MMC_POWER_ON:
1466			do_send_init_stream = 1;
1467			break;
1468		}
1469		host->power_mode = ios->power_mode;
1470	}
1471
1472	/* FIXME: set registers based only on changes to ios */
1473
1474	omap_hsmmc_set_bus_width(host);
1475
1476	if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
1477		/* Only MMC1 can interface at 3V without some flavor
1478		 * of external transceiver; but they all handle 1.8V.
1479		 */
1480		if ((OMAP_HSMMC_READ(host->base, HCTL) & SDVSDET) &&
1481			(ios->vdd == DUAL_VOLT_OCR_BIT)) {
1482				/*
1483				 * The mmc_select_voltage fn of the core does
1484				 * not seem to set the power_mode to
1485				 * MMC_POWER_UP upon recalculating the voltage.
1486				 * vdd 1.8v.
1487				 */
1488			if (omap_hsmmc_switch_opcond(host, ios->vdd) != 0)
1489				dev_dbg(mmc_dev(host->mmc),
1490						"Switch operation failed\n");
1491		}
1492	}
1493
1494	omap_hsmmc_set_clock(host);
1495
1496	if (do_send_init_stream)
1497		send_init_stream(host);
1498
1499	omap_hsmmc_set_bus_mode(host);
1500}
1501
1502static void omap_hsmmc_enable_sdio_irq(struct mmc_host *mmc, int enable)
1503{
1504	struct omap_hsmmc_host *host = mmc_priv(mmc);
1505	u32 irq_mask, con;
1506	unsigned long flags;
1507
1508	spin_lock_irqsave(&host->irq_lock, flags);
1509
1510	con = OMAP_HSMMC_READ(host->base, CON);
1511	irq_mask = OMAP_HSMMC_READ(host->base, ISE);
1512	if (enable) {
1513		host->flags |= HSMMC_SDIO_IRQ_ENABLED;
1514		irq_mask |= CIRQ_EN;
1515		con |= CTPL | CLKEXTFREE;
1516	} else {
1517		host->flags &= ~HSMMC_SDIO_IRQ_ENABLED;
1518		irq_mask &= ~CIRQ_EN;
1519		con &= ~(CTPL | CLKEXTFREE);
1520	}
1521	OMAP_HSMMC_WRITE(host->base, CON, con);
1522	OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
1523
1524	/*
1525	 * if enable, piggy back detection on current request
1526	 * but always disable immediately
1527	 */
1528	if (!host->req_in_progress || !enable)
1529		OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
1530
1531	/* flush posted write */
1532	OMAP_HSMMC_READ(host->base, IE);
1533
1534	spin_unlock_irqrestore(&host->irq_lock, flags);
1535}
1536
1537static int omap_hsmmc_configure_wake_irq(struct omap_hsmmc_host *host)
1538{
1539	int ret;
1540
1541	/*
1542	 * For omaps with wake-up path, wakeirq will be irq from pinctrl and
1543	 * for other omaps, wakeirq will be from GPIO (dat line remuxed to
1544	 * gpio). wakeirq is needed to detect sdio irq in runtime suspend state
1545	 * with functional clock disabled.
1546	 */
1547	if (!host->dev->of_node || !host->wake_irq)
1548		return -ENODEV;
1549
1550	ret = dev_pm_set_dedicated_wake_irq(host->dev, host->wake_irq);
1551	if (ret) {
1552		dev_err(mmc_dev(host->mmc), "Unable to request wake IRQ\n");
1553		goto err;
1554	}
1555
1556	/*
1557	 * Some omaps don't have wake-up path from deeper idle states
1558	 * and need to remux SDIO DAT1 to GPIO for wake-up from idle.
1559	 */
1560	if (host->pdata->controller_flags & OMAP_HSMMC_SWAKEUP_MISSING) {
1561		struct pinctrl *p = devm_pinctrl_get(host->dev);
1562		if (IS_ERR(p)) {
1563			ret = PTR_ERR(p);
1564			goto err_free_irq;
1565		}
1566
1567		if (IS_ERR(pinctrl_lookup_state(p, PINCTRL_STATE_IDLE))) {
1568			dev_info(host->dev, "missing idle pinctrl state\n");
1569			devm_pinctrl_put(p);
1570			ret = -EINVAL;
1571			goto err_free_irq;
1572		}
1573		devm_pinctrl_put(p);
1574	}
1575
1576	OMAP_HSMMC_WRITE(host->base, HCTL,
1577			 OMAP_HSMMC_READ(host->base, HCTL) | IWE);
1578	return 0;
1579
1580err_free_irq:
1581	dev_pm_clear_wake_irq(host->dev);
1582err:
1583	dev_warn(host->dev, "no SDIO IRQ support, falling back to polling\n");
1584	host->wake_irq = 0;
1585	return ret;
1586}
1587
1588static void omap_hsmmc_conf_bus_power(struct omap_hsmmc_host *host)
1589{
1590	u32 hctl, capa, value;
1591
1592	/* Only MMC1 supports 3.0V */
1593	if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
1594		hctl = SDVS30;
1595		capa = VS30 | VS18;
1596	} else {
1597		hctl = SDVS18;
1598		capa = VS18;
1599	}
1600
1601	value = OMAP_HSMMC_READ(host->base, HCTL) & ~SDVS_MASK;
1602	OMAP_HSMMC_WRITE(host->base, HCTL, value | hctl);
1603
1604	value = OMAP_HSMMC_READ(host->base, CAPA);
1605	OMAP_HSMMC_WRITE(host->base, CAPA, value | capa);
1606
1607	/* Set SD bus power bit */
1608	set_sd_bus_power(host);
1609}
1610
1611static int omap_hsmmc_multi_io_quirk(struct mmc_card *card,
1612				     unsigned int direction, int blk_size)
1613{
1614	/* This controller can't do multiblock reads due to hw bugs */
1615	if (direction == MMC_DATA_READ)
1616		return 1;
1617
1618	return blk_size;
1619}
1620
1621static struct mmc_host_ops omap_hsmmc_ops = {
1622	.post_req = omap_hsmmc_post_req,
1623	.pre_req = omap_hsmmc_pre_req,
1624	.request = omap_hsmmc_request,
1625	.set_ios = omap_hsmmc_set_ios,
1626	.get_cd = mmc_gpio_get_cd,
1627	.get_ro = mmc_gpio_get_ro,
1628	.enable_sdio_irq = omap_hsmmc_enable_sdio_irq,
1629};
1630
1631#ifdef CONFIG_DEBUG_FS
1632
1633static int mmc_regs_show(struct seq_file *s, void *data)
1634{
1635	struct mmc_host *mmc = s->private;
1636	struct omap_hsmmc_host *host = mmc_priv(mmc);
1637
1638	seq_printf(s, "mmc%d:\n", mmc->index);
1639	seq_printf(s, "sdio irq mode\t%s\n",
1640		   (mmc->caps & MMC_CAP_SDIO_IRQ) ? "interrupt" : "polling");
1641
1642	if (mmc->caps & MMC_CAP_SDIO_IRQ) {
1643		seq_printf(s, "sdio irq \t%s\n",
1644			   (host->flags & HSMMC_SDIO_IRQ_ENABLED) ?  "enabled"
1645			   : "disabled");
1646	}
1647	seq_printf(s, "ctx_loss:\t%d\n", host->context_loss);
1648
1649	pm_runtime_get_sync(host->dev);
1650	seq_puts(s, "\nregs:\n");
1651	seq_printf(s, "CON:\t\t0x%08x\n",
1652			OMAP_HSMMC_READ(host->base, CON));
1653	seq_printf(s, "PSTATE:\t\t0x%08x\n",
1654		   OMAP_HSMMC_READ(host->base, PSTATE));
1655	seq_printf(s, "HCTL:\t\t0x%08x\n",
1656			OMAP_HSMMC_READ(host->base, HCTL));
1657	seq_printf(s, "SYSCTL:\t\t0x%08x\n",
1658			OMAP_HSMMC_READ(host->base, SYSCTL));
1659	seq_printf(s, "IE:\t\t0x%08x\n",
1660			OMAP_HSMMC_READ(host->base, IE));
1661	seq_printf(s, "ISE:\t\t0x%08x\n",
1662			OMAP_HSMMC_READ(host->base, ISE));
1663	seq_printf(s, "CAPA:\t\t0x%08x\n",
1664			OMAP_HSMMC_READ(host->base, CAPA));
1665
1666	pm_runtime_mark_last_busy(host->dev);
1667	pm_runtime_put_autosuspend(host->dev);
1668
1669	return 0;
1670}
1671
1672DEFINE_SHOW_ATTRIBUTE(mmc_regs);
1673
1674static void omap_hsmmc_debugfs(struct mmc_host *mmc)
1675{
1676	if (mmc->debugfs_root)
1677		debugfs_create_file("regs", S_IRUSR, mmc->debugfs_root,
1678			mmc, &mmc_regs_fops);
1679}
1680
1681#else
1682
1683static void omap_hsmmc_debugfs(struct mmc_host *mmc)
1684{
1685}
1686
1687#endif
1688
1689#ifdef CONFIG_OF
1690static const struct omap_mmc_of_data omap3_pre_es3_mmc_of_data = {
1691	/* See 35xx errata 2.1.1.128 in SPRZ278F */
1692	.controller_flags = OMAP_HSMMC_BROKEN_MULTIBLOCK_READ,
1693};
1694
1695static const struct omap_mmc_of_data omap4_mmc_of_data = {
1696	.reg_offset = 0x100,
1697};
1698static const struct omap_mmc_of_data am33xx_mmc_of_data = {
1699	.reg_offset = 0x100,
1700	.controller_flags = OMAP_HSMMC_SWAKEUP_MISSING,
1701};
1702
1703static const struct of_device_id omap_mmc_of_match[] = {
1704	{
1705		.compatible = "ti,omap2-hsmmc",
1706	},
1707	{
1708		.compatible = "ti,omap3-pre-es3-hsmmc",
1709		.data = &omap3_pre_es3_mmc_of_data,
1710	},
1711	{
1712		.compatible = "ti,omap3-hsmmc",
1713	},
1714	{
1715		.compatible = "ti,omap4-hsmmc",
1716		.data = &omap4_mmc_of_data,
1717	},
1718	{
1719		.compatible = "ti,am33xx-hsmmc",
1720		.data = &am33xx_mmc_of_data,
1721	},
1722	{},
1723};
1724MODULE_DEVICE_TABLE(of, omap_mmc_of_match);
1725
1726static struct omap_hsmmc_platform_data *of_get_hsmmc_pdata(struct device *dev)
1727{
1728	struct omap_hsmmc_platform_data *pdata, *legacy;
1729	struct device_node *np = dev->of_node;
1730
1731	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1732	if (!pdata)
1733		return ERR_PTR(-ENOMEM); /* out of memory */
1734
1735	legacy = dev_get_platdata(dev);
1736	if (legacy && legacy->name)
1737		pdata->name = legacy->name;
1738
1739	if (of_find_property(np, "ti,dual-volt", NULL))
1740		pdata->controller_flags |= OMAP_HSMMC_SUPPORTS_DUAL_VOLT;
1741
1742	if (of_find_property(np, "ti,non-removable", NULL)) {
1743		pdata->nonremovable = true;
1744		pdata->no_regulator_off_init = true;
1745	}
1746
1747	if (of_find_property(np, "ti,needs-special-reset", NULL))
1748		pdata->features |= HSMMC_HAS_UPDATED_RESET;
1749
1750	if (of_find_property(np, "ti,needs-special-hs-handling", NULL))
1751		pdata->features |= HSMMC_HAS_HSPE_SUPPORT;
1752
1753	return pdata;
1754}
1755#else
1756static inline struct omap_hsmmc_platform_data
1757			*of_get_hsmmc_pdata(struct device *dev)
1758{
1759	return ERR_PTR(-EINVAL);
1760}
1761#endif
1762
1763static int omap_hsmmc_probe(struct platform_device *pdev)
1764{
1765	struct omap_hsmmc_platform_data *pdata = pdev->dev.platform_data;
1766	struct mmc_host *mmc;
1767	struct omap_hsmmc_host *host = NULL;
1768	struct resource *res;
1769	int ret, irq;
1770	const struct of_device_id *match;
1771	const struct omap_mmc_of_data *data;
1772	void __iomem *base;
1773
1774	match = of_match_device(of_match_ptr(omap_mmc_of_match), &pdev->dev);
1775	if (match) {
1776		pdata = of_get_hsmmc_pdata(&pdev->dev);
1777
1778		if (IS_ERR(pdata))
1779			return PTR_ERR(pdata);
1780
1781		if (match->data) {
1782			data = match->data;
1783			pdata->reg_offset = data->reg_offset;
1784			pdata->controller_flags |= data->controller_flags;
1785		}
1786	}
1787
1788	if (pdata == NULL) {
1789		dev_err(&pdev->dev, "Platform Data is missing\n");
1790		return -ENXIO;
1791	}
1792
1793	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1794	irq = platform_get_irq(pdev, 0);
1795	if (res == NULL || irq < 0)
1796		return -ENXIO;
1797
1798	base = devm_ioremap_resource(&pdev->dev, res);
1799	if (IS_ERR(base))
1800		return PTR_ERR(base);
1801
1802	mmc = mmc_alloc_host(sizeof(struct omap_hsmmc_host), &pdev->dev);
1803	if (!mmc) {
1804		ret = -ENOMEM;
1805		goto err;
1806	}
1807
1808	ret = mmc_of_parse(mmc);
1809	if (ret)
1810		goto err1;
1811
1812	host		= mmc_priv(mmc);
1813	host->mmc	= mmc;
1814	host->pdata	= pdata;
1815	host->dev	= &pdev->dev;
1816	host->use_dma	= 1;
1817	host->dma_ch	= -1;
1818	host->irq	= irq;
1819	host->mapbase	= res->start + pdata->reg_offset;
1820	host->base	= base + pdata->reg_offset;
1821	host->power_mode = MMC_POWER_OFF;
1822	host->next_data.cookie = 1;
1823	host->pbias_enabled = false;
1824	host->vqmmc_enabled = false;
1825
1826	platform_set_drvdata(pdev, host);
1827
1828	if (pdev->dev.of_node)
1829		host->wake_irq = irq_of_parse_and_map(pdev->dev.of_node, 1);
1830
1831	mmc->ops	= &omap_hsmmc_ops;
1832
1833	mmc->f_min = OMAP_MMC_MIN_CLOCK;
1834
1835	if (pdata->max_freq > 0)
1836		mmc->f_max = pdata->max_freq;
1837	else if (mmc->f_max == 0)
1838		mmc->f_max = OMAP_MMC_MAX_CLOCK;
1839
1840	spin_lock_init(&host->irq_lock);
1841
1842	host->fclk = devm_clk_get(&pdev->dev, "fck");
1843	if (IS_ERR(host->fclk)) {
1844		ret = PTR_ERR(host->fclk);
1845		host->fclk = NULL;
1846		goto err1;
1847	}
1848
1849	if (host->pdata->controller_flags & OMAP_HSMMC_BROKEN_MULTIBLOCK_READ) {
1850		dev_info(&pdev->dev, "multiblock reads disabled due to 35xx erratum 2.1.1.128; MMC read performance may suffer\n");
1851		omap_hsmmc_ops.multi_io_quirk = omap_hsmmc_multi_io_quirk;
1852	}
1853
1854	device_init_wakeup(&pdev->dev, true);
1855	pm_runtime_enable(host->dev);
1856	pm_runtime_get_sync(host->dev);
1857	pm_runtime_set_autosuspend_delay(host->dev, MMC_AUTOSUSPEND_DELAY);
1858	pm_runtime_use_autosuspend(host->dev);
1859
1860	omap_hsmmc_context_save(host);
1861
1862	host->dbclk = devm_clk_get(&pdev->dev, "mmchsdb_fck");
1863	/*
1864	 * MMC can still work without debounce clock.
1865	 */
1866	if (IS_ERR(host->dbclk)) {
1867		host->dbclk = NULL;
1868	} else if (clk_prepare_enable(host->dbclk) != 0) {
1869		dev_warn(mmc_dev(host->mmc), "Failed to enable debounce clk\n");
1870		host->dbclk = NULL;
1871	}
1872
1873	/* Set this to a value that allows allocating an entire descriptor
1874	 * list within a page (zero order allocation). */
1875	mmc->max_segs = 64;
1876
1877	mmc->max_blk_size = 512;       /* Block Length at max can be 1024 */
1878	mmc->max_blk_count = 0xFFFF;    /* No. of Blocks is 16 bits */
1879	mmc->max_req_size = mmc->max_blk_size * mmc->max_blk_count;
1880
1881	mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED |
1882		     MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_CMD23;
1883
1884	mmc->caps |= mmc_pdata(host)->caps;
1885	if (mmc->caps & MMC_CAP_8_BIT_DATA)
1886		mmc->caps |= MMC_CAP_4_BIT_DATA;
1887
1888	if (mmc_pdata(host)->nonremovable)
1889		mmc->caps |= MMC_CAP_NONREMOVABLE;
1890
1891	mmc->pm_caps |= mmc_pdata(host)->pm_caps;
1892
1893	omap_hsmmc_conf_bus_power(host);
1894
1895	host->rx_chan = dma_request_chan(&pdev->dev, "rx");
1896	if (IS_ERR(host->rx_chan)) {
1897		dev_err(mmc_dev(host->mmc), "RX DMA channel request failed\n");
1898		ret = PTR_ERR(host->rx_chan);
1899		goto err_irq;
1900	}
1901
1902	host->tx_chan = dma_request_chan(&pdev->dev, "tx");
1903	if (IS_ERR(host->tx_chan)) {
1904		dev_err(mmc_dev(host->mmc), "TX DMA channel request failed\n");
1905		ret = PTR_ERR(host->tx_chan);
1906		goto err_irq;
1907	}
1908
1909	/*
1910	 * Limit the maximum segment size to the lower of the request size
1911	 * and the DMA engine device segment size limits.  In reality, with
1912	 * 32-bit transfers, the DMA engine can do longer segments than this
1913	 * but there is no way to represent that in the DMA model - if we
1914	 * increase this figure here, we get warnings from the DMA API debug.
1915	 */
1916	mmc->max_seg_size = min3(mmc->max_req_size,
1917			dma_get_max_seg_size(host->rx_chan->device->dev),
1918			dma_get_max_seg_size(host->tx_chan->device->dev));
1919
1920	/* Request IRQ for MMC operations */
1921	ret = devm_request_irq(&pdev->dev, host->irq, omap_hsmmc_irq, 0,
1922			mmc_hostname(mmc), host);
1923	if (ret) {
1924		dev_err(mmc_dev(host->mmc), "Unable to grab HSMMC IRQ\n");
1925		goto err_irq;
1926	}
1927
1928	ret = omap_hsmmc_reg_get(host);
1929	if (ret)
1930		goto err_irq;
1931
1932	if (!mmc->ocr_avail)
1933		mmc->ocr_avail = mmc_pdata(host)->ocr_mask;
1934
1935	omap_hsmmc_disable_irq(host);
1936
1937	/*
1938	 * For now, only support SDIO interrupt if we have a separate
1939	 * wake-up interrupt configured from device tree. This is because
1940	 * the wake-up interrupt is needed for idle state and some
1941	 * platforms need special quirks. And we don't want to add new
1942	 * legacy mux platform init code callbacks any longer as we
1943	 * are moving to DT based booting anyways.
1944	 */
1945	ret = omap_hsmmc_configure_wake_irq(host);
1946	if (!ret)
1947		mmc->caps |= MMC_CAP_SDIO_IRQ;
1948
1949	ret = mmc_add_host(mmc);
1950	if (ret)
1951		goto err_irq;
1952
1953	if (mmc_pdata(host)->name != NULL) {
1954		ret = device_create_file(&mmc->class_dev, &dev_attr_slot_name);
1955		if (ret < 0)
1956			goto err_slot_name;
1957	}
1958
1959	omap_hsmmc_debugfs(mmc);
1960	pm_runtime_mark_last_busy(host->dev);
1961	pm_runtime_put_autosuspend(host->dev);
1962
1963	return 0;
1964
1965err_slot_name:
1966	mmc_remove_host(mmc);
1967err_irq:
1968	device_init_wakeup(&pdev->dev, false);
1969	if (!IS_ERR_OR_NULL(host->tx_chan))
1970		dma_release_channel(host->tx_chan);
1971	if (!IS_ERR_OR_NULL(host->rx_chan))
1972		dma_release_channel(host->rx_chan);
1973	pm_runtime_dont_use_autosuspend(host->dev);
1974	pm_runtime_put_sync(host->dev);
1975	pm_runtime_disable(host->dev);
1976	clk_disable_unprepare(host->dbclk);
1977err1:
1978	mmc_free_host(mmc);
1979err:
1980	return ret;
1981}
1982
1983static int omap_hsmmc_remove(struct platform_device *pdev)
1984{
1985	struct omap_hsmmc_host *host = platform_get_drvdata(pdev);
1986
1987	pm_runtime_get_sync(host->dev);
1988	mmc_remove_host(host->mmc);
1989
1990	dma_release_channel(host->tx_chan);
1991	dma_release_channel(host->rx_chan);
1992
1993	dev_pm_clear_wake_irq(host->dev);
1994	pm_runtime_dont_use_autosuspend(host->dev);
1995	pm_runtime_put_sync(host->dev);
1996	pm_runtime_disable(host->dev);
1997	device_init_wakeup(&pdev->dev, false);
1998	clk_disable_unprepare(host->dbclk);
1999
2000	mmc_free_host(host->mmc);
2001
2002	return 0;
2003}
2004
2005#ifdef CONFIG_PM_SLEEP
2006static int omap_hsmmc_suspend(struct device *dev)
2007{
2008	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2009
2010	if (!host)
2011		return 0;
2012
2013	pm_runtime_get_sync(host->dev);
2014
2015	if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER)) {
2016		OMAP_HSMMC_WRITE(host->base, ISE, 0);
2017		OMAP_HSMMC_WRITE(host->base, IE, 0);
2018		OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2019		OMAP_HSMMC_WRITE(host->base, HCTL,
2020				OMAP_HSMMC_READ(host->base, HCTL) & ~SDBP);
2021	}
2022
2023	clk_disable_unprepare(host->dbclk);
2024
2025	pm_runtime_put_sync(host->dev);
2026	return 0;
2027}
2028
2029/* Routine to resume the MMC device */
2030static int omap_hsmmc_resume(struct device *dev)
2031{
2032	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2033
2034	if (!host)
2035		return 0;
2036
2037	pm_runtime_get_sync(host->dev);
2038
2039	clk_prepare_enable(host->dbclk);
2040
2041	if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER))
2042		omap_hsmmc_conf_bus_power(host);
2043
2044	pm_runtime_mark_last_busy(host->dev);
2045	pm_runtime_put_autosuspend(host->dev);
2046	return 0;
2047}
2048#endif
2049
2050#ifdef CONFIG_PM
2051static int omap_hsmmc_runtime_suspend(struct device *dev)
2052{
2053	struct omap_hsmmc_host *host;
2054	unsigned long flags;
2055	int ret = 0;
2056
2057	host = dev_get_drvdata(dev);
2058	omap_hsmmc_context_save(host);
2059	dev_dbg(dev, "disabled\n");
2060
2061	spin_lock_irqsave(&host->irq_lock, flags);
2062	if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
2063	    (host->flags & HSMMC_SDIO_IRQ_ENABLED)) {
2064		/* disable sdio irq handling to prevent race */
2065		OMAP_HSMMC_WRITE(host->base, ISE, 0);
2066		OMAP_HSMMC_WRITE(host->base, IE, 0);
2067
2068		if (!(OMAP_HSMMC_READ(host->base, PSTATE) & DLEV_DAT(1))) {
2069			/*
2070			 * dat1 line low, pending sdio irq
2071			 * race condition: possible irq handler running on
2072			 * multi-core, abort
2073			 */
2074			dev_dbg(dev, "pending sdio irq, abort suspend\n");
2075			OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2076			OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN);
2077			OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN);
2078			pm_runtime_mark_last_busy(dev);
2079			ret = -EBUSY;
2080			goto abort;
2081		}
2082
2083		pinctrl_pm_select_idle_state(dev);
2084	} else {
2085		pinctrl_pm_select_idle_state(dev);
2086	}
2087
2088abort:
2089	spin_unlock_irqrestore(&host->irq_lock, flags);
2090	return ret;
2091}
2092
2093static int omap_hsmmc_runtime_resume(struct device *dev)
2094{
2095	struct omap_hsmmc_host *host;
2096	unsigned long flags;
2097
2098	host = dev_get_drvdata(dev);
2099	omap_hsmmc_context_restore(host);
2100	dev_dbg(dev, "enabled\n");
2101
2102	spin_lock_irqsave(&host->irq_lock, flags);
2103	if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
2104	    (host->flags & HSMMC_SDIO_IRQ_ENABLED)) {
2105
2106		pinctrl_select_default_state(host->dev);
2107
2108		/* irq lost, if pinmux incorrect */
2109		OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2110		OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN);
2111		OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN);
2112	} else {
2113		pinctrl_select_default_state(host->dev);
2114	}
2115	spin_unlock_irqrestore(&host->irq_lock, flags);
2116	return 0;
2117}
2118#endif
2119
2120static const struct dev_pm_ops omap_hsmmc_dev_pm_ops = {
2121	SET_SYSTEM_SLEEP_PM_OPS(omap_hsmmc_suspend, omap_hsmmc_resume)
2122	SET_RUNTIME_PM_OPS(omap_hsmmc_runtime_suspend, omap_hsmmc_runtime_resume, NULL)
2123};
2124
2125static struct platform_driver omap_hsmmc_driver = {
2126	.probe		= omap_hsmmc_probe,
2127	.remove		= omap_hsmmc_remove,
2128	.driver		= {
2129		.name = DRIVER_NAME,
2130		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
2131		.pm = &omap_hsmmc_dev_pm_ops,
2132		.of_match_table = of_match_ptr(omap_mmc_of_match),
2133	},
2134};
2135
2136module_platform_driver(omap_hsmmc_driver);
2137MODULE_DESCRIPTION("OMAP High Speed Multimedia Card driver");
2138MODULE_LICENSE("GPL");
2139MODULE_ALIAS("platform:" DRIVER_NAME);
2140MODULE_AUTHOR("Texas Instruments Inc");
v6.13.7
   1/*
   2 * drivers/mmc/host/omap_hsmmc.c
   3 *
   4 * Driver for OMAP2430/3430 MMC controller.
   5 *
   6 * Copyright (C) 2007 Texas Instruments.
   7 *
   8 * Authors:
   9 *	Syed Mohammed Khasim	<x0khasim@ti.com>
  10 *	Madhusudhan		<madhu.cr@ti.com>
  11 *	Mohit Jalori		<mjalori@ti.com>
  12 *
  13 * This file is licensed under the terms of the GNU General Public License
  14 * version 2. This program is licensed "as is" without any warranty of any
  15 * kind, whether express or implied.
  16 */
  17
  18#include <linux/module.h>
  19#include <linux/init.h>
  20#include <linux/kernel.h>
  21#include <linux/debugfs.h>
  22#include <linux/dmaengine.h>
  23#include <linux/seq_file.h>
  24#include <linux/sizes.h>
  25#include <linux/interrupt.h>
  26#include <linux/delay.h>
  27#include <linux/dma-mapping.h>
  28#include <linux/platform_device.h>
  29#include <linux/timer.h>
  30#include <linux/clk.h>
  31#include <linux/of.h>
  32#include <linux/of_irq.h>
  33#include <linux/of_device.h>
  34#include <linux/mmc/host.h>
  35#include <linux/mmc/core.h>
  36#include <linux/mmc/mmc.h>
  37#include <linux/mmc/slot-gpio.h>
  38#include <linux/io.h>
  39#include <linux/irq.h>
  40#include <linux/regulator/consumer.h>
  41#include <linux/pinctrl/consumer.h>
  42#include <linux/pm_runtime.h>
  43#include <linux/pm_wakeirq.h>
  44#include <linux/platform_data/hsmmc-omap.h>
  45
  46/* OMAP HSMMC Host Controller Registers */
  47#define OMAP_HSMMC_SYSSTATUS	0x0014
  48#define OMAP_HSMMC_CON		0x002C
  49#define OMAP_HSMMC_SDMASA	0x0100
  50#define OMAP_HSMMC_BLK		0x0104
  51#define OMAP_HSMMC_ARG		0x0108
  52#define OMAP_HSMMC_CMD		0x010C
  53#define OMAP_HSMMC_RSP10	0x0110
  54#define OMAP_HSMMC_RSP32	0x0114
  55#define OMAP_HSMMC_RSP54	0x0118
  56#define OMAP_HSMMC_RSP76	0x011C
  57#define OMAP_HSMMC_DATA		0x0120
  58#define OMAP_HSMMC_PSTATE	0x0124
  59#define OMAP_HSMMC_HCTL		0x0128
  60#define OMAP_HSMMC_SYSCTL	0x012C
  61#define OMAP_HSMMC_STAT		0x0130
  62#define OMAP_HSMMC_IE		0x0134
  63#define OMAP_HSMMC_ISE		0x0138
  64#define OMAP_HSMMC_AC12		0x013C
  65#define OMAP_HSMMC_CAPA		0x0140
  66
  67#define VS18			(1 << 26)
  68#define VS30			(1 << 25)
  69#define HSS			(1 << 21)
  70#define SDVS18			(0x5 << 9)
  71#define SDVS30			(0x6 << 9)
  72#define SDVS33			(0x7 << 9)
  73#define SDVS_MASK		0x00000E00
  74#define SDVSCLR			0xFFFFF1FF
  75#define SDVSDET			0x00000400
  76#define AUTOIDLE		0x1
  77#define SDBP			(1 << 8)
  78#define DTO			0xe
  79#define ICE			0x1
  80#define ICS			0x2
  81#define CEN			(1 << 2)
  82#define CLKD_MAX		0x3FF		/* max clock divisor: 1023 */
  83#define CLKD_MASK		0x0000FFC0
  84#define CLKD_SHIFT		6
  85#define DTO_MASK		0x000F0000
  86#define DTO_SHIFT		16
  87#define INIT_STREAM		(1 << 1)
  88#define ACEN_ACMD23		(2 << 2)
  89#define DP_SELECT		(1 << 21)
  90#define DDIR			(1 << 4)
  91#define DMAE			0x1
  92#define MSBS			(1 << 5)
  93#define BCE			(1 << 1)
  94#define FOUR_BIT		(1 << 1)
  95#define HSPE			(1 << 2)
  96#define IWE			(1 << 24)
  97#define DDR			(1 << 19)
  98#define CLKEXTFREE		(1 << 16)
  99#define CTPL			(1 << 11)
 100#define DW8			(1 << 5)
 101#define OD			0x1
 102#define STAT_CLEAR		0xFFFFFFFF
 103#define INIT_STREAM_CMD		0x00000000
 104#define DUAL_VOLT_OCR_BIT	7
 105#define SRC			(1 << 25)
 106#define SRD			(1 << 26)
 107#define SOFTRESET		(1 << 1)
 108
 109/* PSTATE */
 110#define DLEV_DAT(x)		(1 << (20 + (x)))
 111
 112/* Interrupt masks for IE and ISE register */
 113#define CC_EN			(1 << 0)
 114#define TC_EN			(1 << 1)
 115#define BWR_EN			(1 << 4)
 116#define BRR_EN			(1 << 5)
 117#define CIRQ_EN			(1 << 8)
 118#define ERR_EN			(1 << 15)
 119#define CTO_EN			(1 << 16)
 120#define CCRC_EN			(1 << 17)
 121#define CEB_EN			(1 << 18)
 122#define CIE_EN			(1 << 19)
 123#define DTO_EN			(1 << 20)
 124#define DCRC_EN			(1 << 21)
 125#define DEB_EN			(1 << 22)
 126#define ACE_EN			(1 << 24)
 127#define CERR_EN			(1 << 28)
 128#define BADA_EN			(1 << 29)
 129
 130#define INT_EN_MASK (BADA_EN | CERR_EN | ACE_EN | DEB_EN | DCRC_EN |\
 131		DTO_EN | CIE_EN | CEB_EN | CCRC_EN | CTO_EN | \
 132		BRR_EN | BWR_EN | TC_EN | CC_EN)
 133
 134#define CNI	(1 << 7)
 135#define ACIE	(1 << 4)
 136#define ACEB	(1 << 3)
 137#define ACCE	(1 << 2)
 138#define ACTO	(1 << 1)
 139#define ACNE	(1 << 0)
 140
 141#define MMC_AUTOSUSPEND_DELAY	100
 142#define MMC_TIMEOUT_MS		20		/* 20 mSec */
 143#define MMC_TIMEOUT_US		20000		/* 20000 micro Sec */
 144#define OMAP_MMC_MIN_CLOCK	400000
 145#define OMAP_MMC_MAX_CLOCK	52000000
 146#define DRIVER_NAME		"omap_hsmmc"
 147
 148/*
 149 * One controller can have multiple slots, like on some omap boards using
 150 * omap.c controller driver. Luckily this is not currently done on any known
 151 * omap_hsmmc.c device.
 152 */
 153#define mmc_pdata(host)		host->pdata
 154
 155/*
 156 * MMC Host controller read/write API's
 157 */
 158#define OMAP_HSMMC_READ(base, reg)	\
 159	__raw_readl((base) + OMAP_HSMMC_##reg)
 160
 161#define OMAP_HSMMC_WRITE(base, reg, val) \
 162	__raw_writel((val), (base) + OMAP_HSMMC_##reg)
 163
 164struct omap_hsmmc_next {
 165	unsigned int	dma_len;
 166	s32		cookie;
 167};
 168
 169struct omap_hsmmc_host {
 170	struct	device		*dev;
 171	struct	mmc_host	*mmc;
 172	struct	mmc_request	*mrq;
 173	struct	mmc_command	*cmd;
 174	struct	mmc_data	*data;
 175	struct	clk		*fclk;
 176	struct	clk		*dbclk;
 177	struct	regulator	*pbias;
 178	bool			pbias_enabled;
 179	void	__iomem		*base;
 180	bool			vqmmc_enabled;
 181	resource_size_t		mapbase;
 182	spinlock_t		irq_lock; /* Prevent races with irq handler */
 183	unsigned int		dma_len;
 184	unsigned int		dma_sg_idx;
 185	unsigned char		bus_mode;
 186	unsigned char		power_mode;
 187	int			suspended;
 188	u32			con;
 189	u32			hctl;
 190	u32			sysctl;
 191	u32			capa;
 192	int			irq;
 193	int			wake_irq;
 194	int			use_dma, dma_ch;
 195	struct dma_chan		*tx_chan;
 196	struct dma_chan		*rx_chan;
 197	int			response_busy;
 198	int			context_loss;
 199	int			reqs_blocked;
 200	int			req_in_progress;
 201	unsigned long		clk_rate;
 202	unsigned int		flags;
 203#define AUTO_CMD23		(1 << 0)        /* Auto CMD23 support */
 204#define HSMMC_SDIO_IRQ_ENABLED	(1 << 1)        /* SDIO irq enabled */
 205	struct omap_hsmmc_next	next_data;
 206	struct	omap_hsmmc_platform_data	*pdata;
 207};
 208
 209struct omap_mmc_of_data {
 210	u32 reg_offset;
 211	u8 controller_flags;
 212};
 213
 214static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host);
 215
 216static int omap_hsmmc_enable_supply(struct mmc_host *mmc)
 217{
 218	int ret;
 219	struct omap_hsmmc_host *host = mmc_priv(mmc);
 220	struct mmc_ios *ios = &mmc->ios;
 221
 222	if (!IS_ERR(mmc->supply.vmmc)) {
 223		ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
 224		if (ret)
 225			return ret;
 226	}
 227
 228	/* Enable interface voltage rail, if needed */
 229	if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
 230		ret = regulator_enable(mmc->supply.vqmmc);
 231		if (ret) {
 232			dev_err(mmc_dev(mmc), "vmmc_aux reg enable failed\n");
 233			goto err_vqmmc;
 234		}
 235		host->vqmmc_enabled = true;
 236	}
 237
 238	return 0;
 239
 240err_vqmmc:
 241	if (!IS_ERR(mmc->supply.vmmc))
 242		mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
 243
 244	return ret;
 245}
 246
 247static int omap_hsmmc_disable_supply(struct mmc_host *mmc)
 248{
 249	int ret;
 250	int status;
 251	struct omap_hsmmc_host *host = mmc_priv(mmc);
 252
 253	if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
 254		ret = regulator_disable(mmc->supply.vqmmc);
 255		if (ret) {
 256			dev_err(mmc_dev(mmc), "vmmc_aux reg disable failed\n");
 257			return ret;
 258		}
 259		host->vqmmc_enabled = false;
 260	}
 261
 262	if (!IS_ERR(mmc->supply.vmmc)) {
 263		ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
 264		if (ret)
 265			goto err_set_ocr;
 266	}
 267
 268	return 0;
 269
 270err_set_ocr:
 271	if (!IS_ERR(mmc->supply.vqmmc)) {
 272		status = regulator_enable(mmc->supply.vqmmc);
 273		if (status)
 274			dev_err(mmc_dev(mmc), "vmmc_aux re-enable failed\n");
 275	}
 276
 277	return ret;
 278}
 279
 280static int omap_hsmmc_set_pbias(struct omap_hsmmc_host *host, bool power_on)
 281{
 282	int ret;
 283
 284	if (IS_ERR(host->pbias))
 285		return 0;
 286
 287	if (power_on) {
 288		if (!host->pbias_enabled) {
 289			ret = regulator_enable(host->pbias);
 290			if (ret) {
 291				dev_err(host->dev, "pbias reg enable fail\n");
 292				return ret;
 293			}
 294			host->pbias_enabled = true;
 295		}
 296	} else {
 297		if (host->pbias_enabled) {
 298			ret = regulator_disable(host->pbias);
 299			if (ret) {
 300				dev_err(host->dev, "pbias reg disable fail\n");
 301				return ret;
 302			}
 303			host->pbias_enabled = false;
 304		}
 305	}
 306
 307	return 0;
 308}
 309
 310static int omap_hsmmc_set_power(struct omap_hsmmc_host *host, int power_on)
 311{
 312	struct mmc_host *mmc = host->mmc;
 313	int ret = 0;
 314
 315	/*
 316	 * If we don't see a Vcc regulator, assume it's a fixed
 317	 * voltage always-on regulator.
 318	 */
 319	if (IS_ERR(mmc->supply.vmmc))
 320		return 0;
 321
 322	ret = omap_hsmmc_set_pbias(host, false);
 323	if (ret)
 324		return ret;
 325
 326	/*
 327	 * Assume Vcc regulator is used only to power the card ... OMAP
 328	 * VDDS is used to power the pins, optionally with a transceiver to
 329	 * support cards using voltages other than VDDS (1.8V nominal).  When a
 330	 * transceiver is used, DAT3..7 are muxed as transceiver control pins.
 331	 *
 332	 * In some cases this regulator won't support enable/disable;
 333	 * e.g. it's a fixed rail for a WLAN chip.
 334	 *
 335	 * In other cases vcc_aux switches interface power.  Example, for
 336	 * eMMC cards it represents VccQ.  Sometimes transceivers or SDIO
 337	 * chips/cards need an interface voltage rail too.
 338	 */
 339	if (power_on) {
 340		ret = omap_hsmmc_enable_supply(mmc);
 341		if (ret)
 342			return ret;
 343
 344		ret = omap_hsmmc_set_pbias(host, true);
 345		if (ret)
 346			goto err_set_voltage;
 347	} else {
 348		ret = omap_hsmmc_disable_supply(mmc);
 349		if (ret)
 350			return ret;
 351	}
 352
 353	return 0;
 354
 355err_set_voltage:
 356	omap_hsmmc_disable_supply(mmc);
 357
 358	return ret;
 359}
 360
 361static int omap_hsmmc_disable_boot_regulator(struct regulator *reg)
 362{
 363	int ret;
 364
 365	if (IS_ERR(reg))
 366		return 0;
 367
 368	if (regulator_is_enabled(reg)) {
 369		ret = regulator_enable(reg);
 370		if (ret)
 371			return ret;
 372
 373		ret = regulator_disable(reg);
 374		if (ret)
 375			return ret;
 376	}
 377
 378	return 0;
 379}
 380
 381static int omap_hsmmc_disable_boot_regulators(struct omap_hsmmc_host *host)
 382{
 383	struct mmc_host *mmc = host->mmc;
 384	int ret;
 385
 386	/*
 387	 * disable regulators enabled during boot and get the usecount
 388	 * right so that regulators can be enabled/disabled by checking
 389	 * the return value of regulator_is_enabled
 390	 */
 391	ret = omap_hsmmc_disable_boot_regulator(mmc->supply.vmmc);
 392	if (ret) {
 393		dev_err(host->dev, "fail to disable boot enabled vmmc reg\n");
 394		return ret;
 395	}
 396
 397	ret = omap_hsmmc_disable_boot_regulator(mmc->supply.vqmmc);
 398	if (ret) {
 399		dev_err(host->dev,
 400			"fail to disable boot enabled vmmc_aux reg\n");
 401		return ret;
 402	}
 403
 404	ret = omap_hsmmc_disable_boot_regulator(host->pbias);
 405	if (ret) {
 406		dev_err(host->dev,
 407			"failed to disable boot enabled pbias reg\n");
 408		return ret;
 409	}
 410
 411	return 0;
 412}
 413
 414static int omap_hsmmc_reg_get(struct omap_hsmmc_host *host)
 415{
 416	int ret;
 417	struct mmc_host *mmc = host->mmc;
 418
 419
 420	ret = mmc_regulator_get_supply(mmc);
 421	if (ret)
 422		return ret;
 423
 424	/* Allow an aux regulator */
 425	if (IS_ERR(mmc->supply.vqmmc)) {
 426		mmc->supply.vqmmc = devm_regulator_get_optional(host->dev,
 427								"vmmc_aux");
 428		if (IS_ERR(mmc->supply.vqmmc)) {
 429			ret = PTR_ERR(mmc->supply.vqmmc);
 430			if ((ret != -ENODEV) && host->dev->of_node)
 431				return ret;
 432			dev_dbg(host->dev, "unable to get vmmc_aux regulator %ld\n",
 433				PTR_ERR(mmc->supply.vqmmc));
 434		}
 435	}
 436
 437	host->pbias = devm_regulator_get_optional(host->dev, "pbias");
 438	if (IS_ERR(host->pbias)) {
 439		ret = PTR_ERR(host->pbias);
 440		if ((ret != -ENODEV) && host->dev->of_node) {
 441			dev_err(host->dev,
 442			"SD card detect fail? enable CONFIG_REGULATOR_PBIAS\n");
 443			return ret;
 444		}
 445		dev_dbg(host->dev, "unable to get pbias regulator %ld\n",
 446			PTR_ERR(host->pbias));
 447	}
 448
 449	/* For eMMC do not power off when not in sleep state */
 450	if (mmc_pdata(host)->no_regulator_off_init)
 451		return 0;
 452
 453	ret = omap_hsmmc_disable_boot_regulators(host);
 454	if (ret)
 455		return ret;
 456
 457	return 0;
 458}
 459
 460/*
 461 * Start clock to the card
 462 */
 463static void omap_hsmmc_start_clock(struct omap_hsmmc_host *host)
 464{
 465	OMAP_HSMMC_WRITE(host->base, SYSCTL,
 466		OMAP_HSMMC_READ(host->base, SYSCTL) | CEN);
 467}
 468
 469/*
 470 * Stop clock to the card
 471 */
 472static void omap_hsmmc_stop_clock(struct omap_hsmmc_host *host)
 473{
 474	OMAP_HSMMC_WRITE(host->base, SYSCTL,
 475		OMAP_HSMMC_READ(host->base, SYSCTL) & ~CEN);
 476	if ((OMAP_HSMMC_READ(host->base, SYSCTL) & CEN) != 0x0)
 477		dev_dbg(mmc_dev(host->mmc), "MMC Clock is not stopped\n");
 478}
 479
 480static void omap_hsmmc_enable_irq(struct omap_hsmmc_host *host,
 481				  struct mmc_command *cmd)
 482{
 483	u32 irq_mask = INT_EN_MASK;
 484	unsigned long flags;
 485
 486	if (host->use_dma)
 487		irq_mask &= ~(BRR_EN | BWR_EN);
 488
 489	/* Disable timeout for erases */
 490	if (cmd->opcode == MMC_ERASE)
 491		irq_mask &= ~DTO_EN;
 492
 493	spin_lock_irqsave(&host->irq_lock, flags);
 494	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
 495	OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
 496
 497	/* latch pending CIRQ, but don't signal MMC core */
 498	if (host->flags & HSMMC_SDIO_IRQ_ENABLED)
 499		irq_mask |= CIRQ_EN;
 500	OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
 501	spin_unlock_irqrestore(&host->irq_lock, flags);
 502}
 503
 504static void omap_hsmmc_disable_irq(struct omap_hsmmc_host *host)
 505{
 506	u32 irq_mask = 0;
 507	unsigned long flags;
 508
 509	spin_lock_irqsave(&host->irq_lock, flags);
 510	/* no transfer running but need to keep cirq if enabled */
 511	if (host->flags & HSMMC_SDIO_IRQ_ENABLED)
 512		irq_mask |= CIRQ_EN;
 513	OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
 514	OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
 515	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
 516	spin_unlock_irqrestore(&host->irq_lock, flags);
 517}
 518
 519/* Calculate divisor for the given clock frequency */
 520static u16 calc_divisor(struct omap_hsmmc_host *host, struct mmc_ios *ios)
 521{
 522	u16 dsor = 0;
 523
 524	if (ios->clock) {
 525		dsor = DIV_ROUND_UP(clk_get_rate(host->fclk), ios->clock);
 526		if (dsor > CLKD_MAX)
 527			dsor = CLKD_MAX;
 528	}
 529
 530	return dsor;
 531}
 532
 533static void omap_hsmmc_set_clock(struct omap_hsmmc_host *host)
 534{
 535	struct mmc_ios *ios = &host->mmc->ios;
 536	unsigned long regval;
 537	unsigned long timeout;
 538	unsigned long clkdiv;
 539
 540	dev_vdbg(mmc_dev(host->mmc), "Set clock to %uHz\n", ios->clock);
 541
 542	omap_hsmmc_stop_clock(host);
 543
 544	regval = OMAP_HSMMC_READ(host->base, SYSCTL);
 545	regval = regval & ~(CLKD_MASK | DTO_MASK);
 546	clkdiv = calc_divisor(host, ios);
 547	regval = regval | (clkdiv << 6) | (DTO << 16);
 548	OMAP_HSMMC_WRITE(host->base, SYSCTL, regval);
 549	OMAP_HSMMC_WRITE(host->base, SYSCTL,
 550		OMAP_HSMMC_READ(host->base, SYSCTL) | ICE);
 551
 552	/* Wait till the ICS bit is set */
 553	timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
 554	while ((OMAP_HSMMC_READ(host->base, SYSCTL) & ICS) != ICS
 555		&& time_before(jiffies, timeout))
 556		cpu_relax();
 557
 558	/*
 559	 * Enable High-Speed Support
 560	 * Pre-Requisites
 561	 *	- Controller should support High-Speed-Enable Bit
 562	 *	- Controller should not be using DDR Mode
 563	 *	- Controller should advertise that it supports High Speed
 564	 *	  in capabilities register
 565	 *	- MMC/SD clock coming out of controller > 25MHz
 566	 */
 567	if ((mmc_pdata(host)->features & HSMMC_HAS_HSPE_SUPPORT) &&
 568	    (ios->timing != MMC_TIMING_MMC_DDR52) &&
 569	    (ios->timing != MMC_TIMING_UHS_DDR50) &&
 570	    ((OMAP_HSMMC_READ(host->base, CAPA) & HSS) == HSS)) {
 571		regval = OMAP_HSMMC_READ(host->base, HCTL);
 572		if (clkdiv && (clk_get_rate(host->fclk)/clkdiv) > 25000000)
 573			regval |= HSPE;
 574		else
 575			regval &= ~HSPE;
 576
 577		OMAP_HSMMC_WRITE(host->base, HCTL, regval);
 578	}
 579
 580	omap_hsmmc_start_clock(host);
 581}
 582
 583static void omap_hsmmc_set_bus_width(struct omap_hsmmc_host *host)
 584{
 585	struct mmc_ios *ios = &host->mmc->ios;
 586	u32 con;
 587
 588	con = OMAP_HSMMC_READ(host->base, CON);
 589	if (ios->timing == MMC_TIMING_MMC_DDR52 ||
 590	    ios->timing == MMC_TIMING_UHS_DDR50)
 591		con |= DDR;	/* configure in DDR mode */
 592	else
 593		con &= ~DDR;
 594	switch (ios->bus_width) {
 595	case MMC_BUS_WIDTH_8:
 596		OMAP_HSMMC_WRITE(host->base, CON, con | DW8);
 597		break;
 598	case MMC_BUS_WIDTH_4:
 599		OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
 600		OMAP_HSMMC_WRITE(host->base, HCTL,
 601			OMAP_HSMMC_READ(host->base, HCTL) | FOUR_BIT);
 602		break;
 603	case MMC_BUS_WIDTH_1:
 604		OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
 605		OMAP_HSMMC_WRITE(host->base, HCTL,
 606			OMAP_HSMMC_READ(host->base, HCTL) & ~FOUR_BIT);
 607		break;
 608	}
 609}
 610
 611static void omap_hsmmc_set_bus_mode(struct omap_hsmmc_host *host)
 612{
 613	struct mmc_ios *ios = &host->mmc->ios;
 614	u32 con;
 615
 616	con = OMAP_HSMMC_READ(host->base, CON);
 617	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
 618		OMAP_HSMMC_WRITE(host->base, CON, con | OD);
 619	else
 620		OMAP_HSMMC_WRITE(host->base, CON, con & ~OD);
 621}
 622
 623#ifdef CONFIG_PM
 624
 625/*
 626 * Restore the MMC host context, if it was lost as result of a
 627 * power state change.
 628 */
 629static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host)
 630{
 631	struct mmc_ios *ios = &host->mmc->ios;
 632	u32 hctl, capa;
 633	unsigned long timeout;
 634
 635	if (host->con == OMAP_HSMMC_READ(host->base, CON) &&
 636	    host->hctl == OMAP_HSMMC_READ(host->base, HCTL) &&
 637	    host->sysctl == OMAP_HSMMC_READ(host->base, SYSCTL) &&
 638	    host->capa == OMAP_HSMMC_READ(host->base, CAPA))
 639		return 0;
 640
 641	host->context_loss++;
 642
 643	if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
 644		if (host->power_mode != MMC_POWER_OFF &&
 645		    (1 << ios->vdd) <= MMC_VDD_23_24)
 646			hctl = SDVS18;
 647		else
 648			hctl = SDVS30;
 649		capa = VS30 | VS18;
 650	} else {
 651		hctl = SDVS18;
 652		capa = VS18;
 653	}
 654
 655	if (host->mmc->caps & MMC_CAP_SDIO_IRQ)
 656		hctl |= IWE;
 657
 658	OMAP_HSMMC_WRITE(host->base, HCTL,
 659			OMAP_HSMMC_READ(host->base, HCTL) | hctl);
 660
 661	OMAP_HSMMC_WRITE(host->base, CAPA,
 662			OMAP_HSMMC_READ(host->base, CAPA) | capa);
 663
 664	OMAP_HSMMC_WRITE(host->base, HCTL,
 665			OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
 666
 667	timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
 668	while ((OMAP_HSMMC_READ(host->base, HCTL) & SDBP) != SDBP
 669		&& time_before(jiffies, timeout))
 670		;
 671
 672	OMAP_HSMMC_WRITE(host->base, ISE, 0);
 673	OMAP_HSMMC_WRITE(host->base, IE, 0);
 674	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
 675
 676	/* Do not initialize card-specific things if the power is off */
 677	if (host->power_mode == MMC_POWER_OFF)
 678		goto out;
 679
 680	omap_hsmmc_set_bus_width(host);
 681
 682	omap_hsmmc_set_clock(host);
 683
 684	omap_hsmmc_set_bus_mode(host);
 685
 686out:
 687	dev_dbg(mmc_dev(host->mmc), "context is restored: restore count %d\n",
 688		host->context_loss);
 689	return 0;
 690}
 691
 692/*
 693 * Save the MMC host context (store the number of power state changes so far).
 694 */
 695static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
 696{
 697	host->con =  OMAP_HSMMC_READ(host->base, CON);
 698	host->hctl = OMAP_HSMMC_READ(host->base, HCTL);
 699	host->sysctl =  OMAP_HSMMC_READ(host->base, SYSCTL);
 700	host->capa = OMAP_HSMMC_READ(host->base, CAPA);
 701}
 702
 703#else
 704
 705static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
 706{
 707}
 708
 709#endif
 710
 711/*
 712 * Send init stream sequence to card
 713 * before sending IDLE command
 714 */
 715static void send_init_stream(struct omap_hsmmc_host *host)
 716{
 717	int reg = 0;
 718	unsigned long timeout;
 719
 720	disable_irq(host->irq);
 721
 722	OMAP_HSMMC_WRITE(host->base, IE, INT_EN_MASK);
 723	OMAP_HSMMC_WRITE(host->base, CON,
 724		OMAP_HSMMC_READ(host->base, CON) | INIT_STREAM);
 725	OMAP_HSMMC_WRITE(host->base, CMD, INIT_STREAM_CMD);
 726
 727	timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
 728	while ((reg != CC_EN) && time_before(jiffies, timeout))
 729		reg = OMAP_HSMMC_READ(host->base, STAT) & CC_EN;
 730
 731	OMAP_HSMMC_WRITE(host->base, CON,
 732		OMAP_HSMMC_READ(host->base, CON) & ~INIT_STREAM);
 733
 734	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
 735	OMAP_HSMMC_READ(host->base, STAT);
 736
 737	enable_irq(host->irq);
 738}
 739
 740static ssize_t
 741omap_hsmmc_show_slot_name(struct device *dev, struct device_attribute *attr,
 742			char *buf)
 743{
 744	struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
 745	struct omap_hsmmc_host *host = mmc_priv(mmc);
 746
 747	return sprintf(buf, "%s\n", mmc_pdata(host)->name);
 748}
 749
 750static DEVICE_ATTR(slot_name, S_IRUGO, omap_hsmmc_show_slot_name, NULL);
 751
 752/*
 753 * Configure the response type and send the cmd.
 754 */
 755static void
 756omap_hsmmc_start_command(struct omap_hsmmc_host *host, struct mmc_command *cmd,
 757	struct mmc_data *data)
 758{
 759	int cmdreg = 0, resptype = 0, cmdtype = 0;
 760
 761	dev_vdbg(mmc_dev(host->mmc), "%s: CMD%d, argument 0x%08x\n",
 762		mmc_hostname(host->mmc), cmd->opcode, cmd->arg);
 763	host->cmd = cmd;
 764
 765	omap_hsmmc_enable_irq(host, cmd);
 766
 767	host->response_busy = 0;
 768	if (cmd->flags & MMC_RSP_PRESENT) {
 769		if (cmd->flags & MMC_RSP_136)
 770			resptype = 1;
 771		else if (cmd->flags & MMC_RSP_BUSY) {
 772			resptype = 3;
 773			host->response_busy = 1;
 774		} else
 775			resptype = 2;
 776	}
 777
 778	/*
 779	 * Unlike OMAP1 controller, the cmdtype does not seem to be based on
 780	 * ac, bc, adtc, bcr. Only commands ending an open ended transfer need
 781	 * a val of 0x3, rest 0x0.
 782	 */
 783	if (cmd == host->mrq->stop)
 784		cmdtype = 0x3;
 785
 786	cmdreg = (cmd->opcode << 24) | (resptype << 16) | (cmdtype << 22);
 787
 788	if ((host->flags & AUTO_CMD23) && mmc_op_multi(cmd->opcode) &&
 789	    host->mrq->sbc) {
 790		cmdreg |= ACEN_ACMD23;
 791		OMAP_HSMMC_WRITE(host->base, SDMASA, host->mrq->sbc->arg);
 792	}
 793	if (data) {
 794		cmdreg |= DP_SELECT | MSBS | BCE;
 795		if (data->flags & MMC_DATA_READ)
 796			cmdreg |= DDIR;
 797		else
 798			cmdreg &= ~(DDIR);
 799	}
 800
 801	if (host->use_dma)
 802		cmdreg |= DMAE;
 803
 804	host->req_in_progress = 1;
 805
 806	OMAP_HSMMC_WRITE(host->base, ARG, cmd->arg);
 807	OMAP_HSMMC_WRITE(host->base, CMD, cmdreg);
 808}
 809
 810static struct dma_chan *omap_hsmmc_get_dma_chan(struct omap_hsmmc_host *host,
 811	struct mmc_data *data)
 812{
 813	return data->flags & MMC_DATA_WRITE ? host->tx_chan : host->rx_chan;
 814}
 815
 816static void omap_hsmmc_request_done(struct omap_hsmmc_host *host, struct mmc_request *mrq)
 817{
 818	int dma_ch;
 819	unsigned long flags;
 820
 821	spin_lock_irqsave(&host->irq_lock, flags);
 822	host->req_in_progress = 0;
 823	dma_ch = host->dma_ch;
 824	spin_unlock_irqrestore(&host->irq_lock, flags);
 825
 826	omap_hsmmc_disable_irq(host);
 827	/* Do not complete the request if DMA is still in progress */
 828	if (mrq->data && host->use_dma && dma_ch != -1)
 829		return;
 830	host->mrq = NULL;
 831	mmc_request_done(host->mmc, mrq);
 832}
 833
 834/*
 835 * Notify the transfer complete to MMC core
 836 */
 837static void
 838omap_hsmmc_xfer_done(struct omap_hsmmc_host *host, struct mmc_data *data)
 839{
 840	if (!data) {
 841		struct mmc_request *mrq = host->mrq;
 842
 843		/* TC before CC from CMD6 - don't know why, but it happens */
 844		if (host->cmd && host->cmd->opcode == 6 &&
 845		    host->response_busy) {
 846			host->response_busy = 0;
 847			return;
 848		}
 849
 850		omap_hsmmc_request_done(host, mrq);
 851		return;
 852	}
 853
 854	host->data = NULL;
 855
 856	if (!data->error)
 857		data->bytes_xfered += data->blocks * (data->blksz);
 858	else
 859		data->bytes_xfered = 0;
 860
 861	if (data->stop && (data->error || !host->mrq->sbc))
 862		omap_hsmmc_start_command(host, data->stop, NULL);
 863	else
 864		omap_hsmmc_request_done(host, data->mrq);
 865}
 866
 867/*
 868 * Notify the core about command completion
 869 */
 870static void
 871omap_hsmmc_cmd_done(struct omap_hsmmc_host *host, struct mmc_command *cmd)
 872{
 873	if (host->mrq->sbc && (host->cmd == host->mrq->sbc) &&
 874	    !host->mrq->sbc->error && !(host->flags & AUTO_CMD23)) {
 875		host->cmd = NULL;
 876		omap_hsmmc_start_dma_transfer(host);
 877		omap_hsmmc_start_command(host, host->mrq->cmd,
 878						host->mrq->data);
 879		return;
 880	}
 881
 882	host->cmd = NULL;
 883
 884	if (cmd->flags & MMC_RSP_PRESENT) {
 885		if (cmd->flags & MMC_RSP_136) {
 886			/* response type 2 */
 887			cmd->resp[3] = OMAP_HSMMC_READ(host->base, RSP10);
 888			cmd->resp[2] = OMAP_HSMMC_READ(host->base, RSP32);
 889			cmd->resp[1] = OMAP_HSMMC_READ(host->base, RSP54);
 890			cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP76);
 891		} else {
 892			/* response types 1, 1b, 3, 4, 5, 6 */
 893			cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP10);
 894		}
 895	}
 896	if ((host->data == NULL && !host->response_busy) || cmd->error)
 897		omap_hsmmc_request_done(host, host->mrq);
 898}
 899
 900/*
 901 * DMA clean up for command errors
 902 */
 903static void omap_hsmmc_dma_cleanup(struct omap_hsmmc_host *host, int errno)
 904{
 905	int dma_ch;
 906	unsigned long flags;
 907
 908	host->data->error = errno;
 909
 910	spin_lock_irqsave(&host->irq_lock, flags);
 911	dma_ch = host->dma_ch;
 912	host->dma_ch = -1;
 913	spin_unlock_irqrestore(&host->irq_lock, flags);
 914
 915	if (host->use_dma && dma_ch != -1) {
 916		struct dma_chan *chan = omap_hsmmc_get_dma_chan(host, host->data);
 917
 918		dmaengine_terminate_all(chan);
 919		dma_unmap_sg(chan->device->dev,
 920			host->data->sg, host->data->sg_len,
 921			mmc_get_dma_dir(host->data));
 922
 923		host->data->host_cookie = 0;
 924	}
 925	host->data = NULL;
 926}
 927
 928/*
 929 * Readable error output
 930 */
 931#ifdef CONFIG_MMC_DEBUG
 932static void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host, u32 status)
 933{
 934	/* --- means reserved bit without definition at documentation */
 935	static const char *omap_hsmmc_status_bits[] = {
 936		"CC"  , "TC"  , "BGE", "---", "BWR" , "BRR" , "---" , "---" ,
 937		"CIRQ",	"OBI" , "---", "---", "---" , "---" , "---" , "ERRI",
 938		"CTO" , "CCRC", "CEB", "CIE", "DTO" , "DCRC", "DEB" , "---" ,
 939		"ACE" , "---" , "---", "---", "CERR", "BADA", "---" , "---"
 940	};
 941	char res[256];
 942	char *buf = res;
 943	int len, i;
 944
 945	len = sprintf(buf, "MMC IRQ 0x%x :", status);
 946	buf += len;
 947
 948	for (i = 0; i < ARRAY_SIZE(omap_hsmmc_status_bits); i++)
 949		if (status & (1 << i)) {
 950			len = sprintf(buf, " %s", omap_hsmmc_status_bits[i]);
 951			buf += len;
 952		}
 953
 954	dev_vdbg(mmc_dev(host->mmc), "%s\n", res);
 955}
 956#else
 957static inline void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host,
 958					     u32 status)
 959{
 960}
 961#endif  /* CONFIG_MMC_DEBUG */
 962
 963/*
 964 * MMC controller internal state machines reset
 965 *
 966 * Used to reset command or data internal state machines, using respectively
 967 *  SRC or SRD bit of SYSCTL register
 968 * Can be called from interrupt context
 969 */
 970static inline void omap_hsmmc_reset_controller_fsm(struct omap_hsmmc_host *host,
 971						   unsigned long bit)
 972{
 973	unsigned long i = 0;
 974	unsigned long limit = MMC_TIMEOUT_US;
 975
 976	OMAP_HSMMC_WRITE(host->base, SYSCTL,
 977			 OMAP_HSMMC_READ(host->base, SYSCTL) | bit);
 978
 979	/*
 980	 * OMAP4 ES2 and greater has an updated reset logic.
 981	 * Monitor a 0->1 transition first
 982	 */
 983	if (mmc_pdata(host)->features & HSMMC_HAS_UPDATED_RESET) {
 984		while ((!(OMAP_HSMMC_READ(host->base, SYSCTL) & bit))
 985					&& (i++ < limit))
 986			udelay(1);
 987	}
 988	i = 0;
 989
 990	while ((OMAP_HSMMC_READ(host->base, SYSCTL) & bit) &&
 991		(i++ < limit))
 992		udelay(1);
 993
 994	if (OMAP_HSMMC_READ(host->base, SYSCTL) & bit)
 995		dev_err(mmc_dev(host->mmc),
 996			"Timeout waiting on controller reset in %s\n",
 997			__func__);
 998}
 999
1000static void hsmmc_command_incomplete(struct omap_hsmmc_host *host,
1001					int err, int end_cmd)
1002{
1003	if (end_cmd) {
1004		omap_hsmmc_reset_controller_fsm(host, SRC);
1005		if (host->cmd)
1006			host->cmd->error = err;
1007	}
1008
1009	if (host->data) {
1010		omap_hsmmc_reset_controller_fsm(host, SRD);
1011		omap_hsmmc_dma_cleanup(host, err);
1012	} else if (host->mrq && host->mrq->cmd)
1013		host->mrq->cmd->error = err;
1014}
1015
1016static void omap_hsmmc_do_irq(struct omap_hsmmc_host *host, int status)
1017{
1018	struct mmc_data *data;
1019	int end_cmd = 0, end_trans = 0;
1020	int error = 0;
1021
1022	data = host->data;
1023	dev_vdbg(mmc_dev(host->mmc), "IRQ Status is %x\n", status);
1024
1025	if (status & ERR_EN) {
1026		omap_hsmmc_dbg_report_irq(host, status);
1027
1028		if (status & (CTO_EN | CCRC_EN | CEB_EN))
1029			end_cmd = 1;
1030		if (host->data || host->response_busy) {
1031			end_trans = !end_cmd;
1032			host->response_busy = 0;
1033		}
1034		if (status & (CTO_EN | DTO_EN))
1035			hsmmc_command_incomplete(host, -ETIMEDOUT, end_cmd);
1036		else if (status & (CCRC_EN | DCRC_EN | DEB_EN | CEB_EN |
1037				   BADA_EN))
1038			hsmmc_command_incomplete(host, -EILSEQ, end_cmd);
1039
1040		if (status & ACE_EN) {
1041			u32 ac12;
1042			ac12 = OMAP_HSMMC_READ(host->base, AC12);
1043			if (!(ac12 & ACNE) && host->mrq->sbc) {
1044				end_cmd = 1;
1045				if (ac12 & ACTO)
1046					error =  -ETIMEDOUT;
1047				else if (ac12 & (ACCE | ACEB | ACIE))
1048					error = -EILSEQ;
1049				host->mrq->sbc->error = error;
1050				hsmmc_command_incomplete(host, error, end_cmd);
1051			}
1052			dev_dbg(mmc_dev(host->mmc), "AC12 err: 0x%x\n", ac12);
1053		}
1054	}
1055
1056	OMAP_HSMMC_WRITE(host->base, STAT, status);
1057	if (end_cmd || ((status & CC_EN) && host->cmd))
1058		omap_hsmmc_cmd_done(host, host->cmd);
1059	if ((end_trans || (status & TC_EN)) && host->mrq)
1060		omap_hsmmc_xfer_done(host, data);
1061}
1062
1063/*
1064 * MMC controller IRQ handler
1065 */
1066static irqreturn_t omap_hsmmc_irq(int irq, void *dev_id)
1067{
1068	struct omap_hsmmc_host *host = dev_id;
1069	int status;
1070
1071	status = OMAP_HSMMC_READ(host->base, STAT);
1072	while (status & (INT_EN_MASK | CIRQ_EN)) {
1073		if (host->req_in_progress)
1074			omap_hsmmc_do_irq(host, status);
1075
1076		if (status & CIRQ_EN)
1077			mmc_signal_sdio_irq(host->mmc);
1078
1079		/* Flush posted write */
1080		status = OMAP_HSMMC_READ(host->base, STAT);
1081	}
1082
1083	return IRQ_HANDLED;
1084}
1085
1086static void set_sd_bus_power(struct omap_hsmmc_host *host)
1087{
1088	unsigned long i;
1089
1090	OMAP_HSMMC_WRITE(host->base, HCTL,
1091			 OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
1092	for (i = 0; i < loops_per_jiffy; i++) {
1093		if (OMAP_HSMMC_READ(host->base, HCTL) & SDBP)
1094			break;
1095		cpu_relax();
1096	}
1097}
1098
1099/*
1100 * Switch MMC interface voltage ... only relevant for MMC1.
1101 *
1102 * MMC2 and MMC3 use fixed 1.8V levels, and maybe a transceiver.
1103 * The MMC2 transceiver controls are used instead of DAT4..DAT7.
1104 * Some chips, like eMMC ones, use internal transceivers.
1105 */
1106static int omap_hsmmc_switch_opcond(struct omap_hsmmc_host *host, int vdd)
1107{
1108	u32 reg_val = 0;
1109	int ret;
1110
1111	/* Disable the clocks */
1112	clk_disable_unprepare(host->dbclk);
1113
1114	/* Turn the power off */
1115	ret = omap_hsmmc_set_power(host, 0);
1116
1117	/* Turn the power ON with given VDD 1.8 or 3.0v */
1118	if (!ret)
1119		ret = omap_hsmmc_set_power(host, 1);
1120	clk_prepare_enable(host->dbclk);
1121
1122	if (ret != 0)
1123		goto err;
1124
1125	OMAP_HSMMC_WRITE(host->base, HCTL,
1126		OMAP_HSMMC_READ(host->base, HCTL) & SDVSCLR);
1127	reg_val = OMAP_HSMMC_READ(host->base, HCTL);
1128
1129	/*
1130	 * If a MMC dual voltage card is detected, the set_ios fn calls
1131	 * this fn with VDD bit set for 1.8V. Upon card removal from the
1132	 * slot, omap_hsmmc_set_ios sets the VDD back to 3V on MMC_POWER_OFF.
1133	 *
1134	 * Cope with a bit of slop in the range ... per data sheets:
1135	 *  - "1.8V" for vdds_mmc1/vdds_mmc1a can be up to 2.45V max,
1136	 *    but recommended values are 1.71V to 1.89V
1137	 *  - "3.0V" for vdds_mmc1/vdds_mmc1a can be up to 3.5V max,
1138	 *    but recommended values are 2.7V to 3.3V
1139	 *
1140	 * Board setup code shouldn't permit anything very out-of-range.
1141	 * TWL4030-family VMMC1 and VSIM regulators are fine (avoiding the
1142	 * middle range) but VSIM can't power DAT4..DAT7 at more than 3V.
1143	 */
1144	if ((1 << vdd) <= MMC_VDD_23_24)
1145		reg_val |= SDVS18;
1146	else
1147		reg_val |= SDVS30;
1148
1149	OMAP_HSMMC_WRITE(host->base, HCTL, reg_val);
1150	set_sd_bus_power(host);
1151
1152	return 0;
1153err:
1154	dev_err(mmc_dev(host->mmc), "Unable to switch operating voltage\n");
1155	return ret;
1156}
1157
1158static void omap_hsmmc_dma_callback(void *param)
1159{
1160	struct omap_hsmmc_host *host = param;
1161	struct dma_chan *chan;
1162	struct mmc_data *data;
1163	int req_in_progress;
1164
1165	spin_lock_irq(&host->irq_lock);
1166	if (host->dma_ch < 0) {
1167		spin_unlock_irq(&host->irq_lock);
1168		return;
1169	}
1170
1171	data = host->mrq->data;
1172	chan = omap_hsmmc_get_dma_chan(host, data);
1173	if (!data->host_cookie)
1174		dma_unmap_sg(chan->device->dev,
1175			     data->sg, data->sg_len,
1176			     mmc_get_dma_dir(data));
1177
1178	req_in_progress = host->req_in_progress;
1179	host->dma_ch = -1;
1180	spin_unlock_irq(&host->irq_lock);
1181
1182	/* If DMA has finished after TC, complete the request */
1183	if (!req_in_progress) {
1184		struct mmc_request *mrq = host->mrq;
1185
1186		host->mrq = NULL;
1187		mmc_request_done(host->mmc, mrq);
1188	}
1189}
1190
1191static int omap_hsmmc_pre_dma_transfer(struct omap_hsmmc_host *host,
1192				       struct mmc_data *data,
1193				       struct omap_hsmmc_next *next,
1194				       struct dma_chan *chan)
1195{
1196	int dma_len;
1197
1198	if (!next && data->host_cookie &&
1199	    data->host_cookie != host->next_data.cookie) {
1200		dev_warn(host->dev, "[%s] invalid cookie: data->host_cookie %d"
1201		       " host->next_data.cookie %d\n",
1202		       __func__, data->host_cookie, host->next_data.cookie);
1203		data->host_cookie = 0;
1204	}
1205
1206	/* Check if next job is already prepared */
1207	if (next || data->host_cookie != host->next_data.cookie) {
1208		dma_len = dma_map_sg(chan->device->dev, data->sg, data->sg_len,
1209				     mmc_get_dma_dir(data));
1210
1211	} else {
1212		dma_len = host->next_data.dma_len;
1213		host->next_data.dma_len = 0;
1214	}
1215
1216
1217	if (dma_len == 0)
1218		return -EINVAL;
1219
1220	if (next) {
1221		next->dma_len = dma_len;
1222		data->host_cookie = ++next->cookie < 0 ? 1 : next->cookie;
1223	} else
1224		host->dma_len = dma_len;
1225
1226	return 0;
1227}
1228
1229/*
1230 * Routine to configure and start DMA for the MMC card
1231 */
1232static int omap_hsmmc_setup_dma_transfer(struct omap_hsmmc_host *host,
1233					struct mmc_request *req)
1234{
1235	struct dma_async_tx_descriptor *tx;
1236	int ret = 0, i;
1237	struct mmc_data *data = req->data;
1238	struct dma_chan *chan;
1239	struct dma_slave_config cfg = {
1240		.src_addr = host->mapbase + OMAP_HSMMC_DATA,
1241		.dst_addr = host->mapbase + OMAP_HSMMC_DATA,
1242		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
1243		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
1244		.src_maxburst = data->blksz / 4,
1245		.dst_maxburst = data->blksz / 4,
1246	};
1247
1248	/* Sanity check: all the SG entries must be aligned by block size. */
1249	for (i = 0; i < data->sg_len; i++) {
1250		struct scatterlist *sgl;
1251
1252		sgl = data->sg + i;
1253		if (sgl->length % data->blksz)
1254			return -EINVAL;
1255	}
1256	if ((data->blksz % 4) != 0)
1257		/* REVISIT: The MMC buffer increments only when MSB is written.
1258		 * Return error for blksz which is non multiple of four.
1259		 */
1260		return -EINVAL;
1261
1262	BUG_ON(host->dma_ch != -1);
1263
1264	chan = omap_hsmmc_get_dma_chan(host, data);
1265
1266	ret = dmaengine_slave_config(chan, &cfg);
1267	if (ret)
1268		return ret;
1269
1270	ret = omap_hsmmc_pre_dma_transfer(host, data, NULL, chan);
1271	if (ret)
1272		return ret;
1273
1274	tx = dmaengine_prep_slave_sg(chan, data->sg, data->sg_len,
1275		data->flags & MMC_DATA_WRITE ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
1276		DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1277	if (!tx) {
1278		dev_err(mmc_dev(host->mmc), "prep_slave_sg() failed\n");
1279		/* FIXME: cleanup */
1280		return -1;
1281	}
1282
1283	tx->callback = omap_hsmmc_dma_callback;
1284	tx->callback_param = host;
1285
1286	/* Does not fail */
1287	dmaengine_submit(tx);
1288
1289	host->dma_ch = 1;
1290
1291	return 0;
1292}
1293
1294static void set_data_timeout(struct omap_hsmmc_host *host,
1295			     unsigned long long timeout_ns,
1296			     unsigned int timeout_clks)
1297{
1298	unsigned long long timeout = timeout_ns;
1299	unsigned int cycle_ns;
1300	uint32_t reg, clkd, dto = 0;
1301
1302	reg = OMAP_HSMMC_READ(host->base, SYSCTL);
1303	clkd = (reg & CLKD_MASK) >> CLKD_SHIFT;
1304	if (clkd == 0)
1305		clkd = 1;
1306
1307	cycle_ns = 1000000000 / (host->clk_rate / clkd);
1308	do_div(timeout, cycle_ns);
1309	timeout += timeout_clks;
1310	if (timeout) {
1311		while ((timeout & 0x80000000) == 0) {
1312			dto += 1;
1313			timeout <<= 1;
1314		}
1315		dto = 31 - dto;
1316		timeout <<= 1;
1317		if (timeout && dto)
1318			dto += 1;
1319		if (dto >= 13)
1320			dto -= 13;
1321		else
1322			dto = 0;
1323		if (dto > 14)
1324			dto = 14;
1325	}
1326
1327	reg &= ~DTO_MASK;
1328	reg |= dto << DTO_SHIFT;
1329	OMAP_HSMMC_WRITE(host->base, SYSCTL, reg);
1330}
1331
1332static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host)
1333{
1334	struct mmc_request *req = host->mrq;
1335	struct dma_chan *chan;
1336
1337	if (!req->data)
1338		return;
1339	OMAP_HSMMC_WRITE(host->base, BLK, (req->data->blksz)
1340				| (req->data->blocks << 16));
1341	set_data_timeout(host, req->data->timeout_ns,
1342				req->data->timeout_clks);
1343	chan = omap_hsmmc_get_dma_chan(host, req->data);
1344	dma_async_issue_pending(chan);
1345}
1346
1347/*
1348 * Configure block length for MMC/SD cards and initiate the transfer.
1349 */
1350static int
1351omap_hsmmc_prepare_data(struct omap_hsmmc_host *host, struct mmc_request *req)
1352{
1353	int ret;
1354	unsigned long long timeout;
1355
1356	host->data = req->data;
1357
1358	if (req->data == NULL) {
1359		OMAP_HSMMC_WRITE(host->base, BLK, 0);
1360		if (req->cmd->flags & MMC_RSP_BUSY) {
1361			timeout = req->cmd->busy_timeout * NSEC_PER_MSEC;
1362
1363			/*
1364			 * Set an arbitrary 100ms data timeout for commands with
1365			 * busy signal and no indication of busy_timeout.
1366			 */
1367			if (!timeout)
1368				timeout = 100000000U;
1369
1370			set_data_timeout(host, timeout, 0);
1371		}
1372		return 0;
1373	}
1374
1375	if (host->use_dma) {
1376		ret = omap_hsmmc_setup_dma_transfer(host, req);
1377		if (ret != 0) {
1378			dev_err(mmc_dev(host->mmc), "MMC start dma failure\n");
1379			return ret;
1380		}
1381	}
1382	return 0;
1383}
1384
1385static void omap_hsmmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq,
1386				int err)
1387{
1388	struct omap_hsmmc_host *host = mmc_priv(mmc);
1389	struct mmc_data *data = mrq->data;
1390
1391	if (host->use_dma && data->host_cookie) {
1392		struct dma_chan *c = omap_hsmmc_get_dma_chan(host, data);
1393
1394		dma_unmap_sg(c->device->dev, data->sg, data->sg_len,
1395			     mmc_get_dma_dir(data));
1396		data->host_cookie = 0;
1397	}
1398}
1399
1400static void omap_hsmmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq)
1401{
1402	struct omap_hsmmc_host *host = mmc_priv(mmc);
1403
1404	if (mrq->data->host_cookie) {
1405		mrq->data->host_cookie = 0;
1406		return ;
1407	}
1408
1409	if (host->use_dma) {
1410		struct dma_chan *c = omap_hsmmc_get_dma_chan(host, mrq->data);
1411
1412		if (omap_hsmmc_pre_dma_transfer(host, mrq->data,
1413						&host->next_data, c))
1414			mrq->data->host_cookie = 0;
1415	}
1416}
1417
1418/*
1419 * Request function. for read/write operation
1420 */
1421static void omap_hsmmc_request(struct mmc_host *mmc, struct mmc_request *req)
1422{
1423	struct omap_hsmmc_host *host = mmc_priv(mmc);
1424	int err;
1425
1426	BUG_ON(host->req_in_progress);
1427	BUG_ON(host->dma_ch != -1);
1428	if (host->reqs_blocked)
1429		host->reqs_blocked = 0;
1430	WARN_ON(host->mrq != NULL);
1431	host->mrq = req;
1432	host->clk_rate = clk_get_rate(host->fclk);
1433	err = omap_hsmmc_prepare_data(host, req);
1434	if (err) {
1435		req->cmd->error = err;
1436		if (req->data)
1437			req->data->error = err;
1438		host->mrq = NULL;
1439		mmc_request_done(mmc, req);
1440		return;
1441	}
1442	if (req->sbc && !(host->flags & AUTO_CMD23)) {
1443		omap_hsmmc_start_command(host, req->sbc, NULL);
1444		return;
1445	}
1446
1447	omap_hsmmc_start_dma_transfer(host);
1448	omap_hsmmc_start_command(host, req->cmd, req->data);
1449}
1450
1451/* Routine to configure clock values. Exposed API to core */
1452static void omap_hsmmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1453{
1454	struct omap_hsmmc_host *host = mmc_priv(mmc);
1455	int do_send_init_stream = 0;
1456
1457	if (ios->power_mode != host->power_mode) {
1458		switch (ios->power_mode) {
1459		case MMC_POWER_OFF:
1460			omap_hsmmc_set_power(host, 0);
1461			break;
1462		case MMC_POWER_UP:
1463			omap_hsmmc_set_power(host, 1);
1464			break;
1465		case MMC_POWER_ON:
1466			do_send_init_stream = 1;
1467			break;
1468		}
1469		host->power_mode = ios->power_mode;
1470	}
1471
1472	/* FIXME: set registers based only on changes to ios */
1473
1474	omap_hsmmc_set_bus_width(host);
1475
1476	if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
1477		/* Only MMC1 can interface at 3V without some flavor
1478		 * of external transceiver; but they all handle 1.8V.
1479		 */
1480		if ((OMAP_HSMMC_READ(host->base, HCTL) & SDVSDET) &&
1481			(ios->vdd == DUAL_VOLT_OCR_BIT)) {
1482				/*
1483				 * The mmc_select_voltage fn of the core does
1484				 * not seem to set the power_mode to
1485				 * MMC_POWER_UP upon recalculating the voltage.
1486				 * vdd 1.8v.
1487				 */
1488			if (omap_hsmmc_switch_opcond(host, ios->vdd) != 0)
1489				dev_dbg(mmc_dev(host->mmc),
1490						"Switch operation failed\n");
1491		}
1492	}
1493
1494	omap_hsmmc_set_clock(host);
1495
1496	if (do_send_init_stream)
1497		send_init_stream(host);
1498
1499	omap_hsmmc_set_bus_mode(host);
1500}
1501
1502static void omap_hsmmc_enable_sdio_irq(struct mmc_host *mmc, int enable)
1503{
1504	struct omap_hsmmc_host *host = mmc_priv(mmc);
1505	u32 irq_mask, con;
1506	unsigned long flags;
1507
1508	spin_lock_irqsave(&host->irq_lock, flags);
1509
1510	con = OMAP_HSMMC_READ(host->base, CON);
1511	irq_mask = OMAP_HSMMC_READ(host->base, ISE);
1512	if (enable) {
1513		host->flags |= HSMMC_SDIO_IRQ_ENABLED;
1514		irq_mask |= CIRQ_EN;
1515		con |= CTPL | CLKEXTFREE;
1516	} else {
1517		host->flags &= ~HSMMC_SDIO_IRQ_ENABLED;
1518		irq_mask &= ~CIRQ_EN;
1519		con &= ~(CTPL | CLKEXTFREE);
1520	}
1521	OMAP_HSMMC_WRITE(host->base, CON, con);
1522	OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
1523
1524	/*
1525	 * if enable, piggy back detection on current request
1526	 * but always disable immediately
1527	 */
1528	if (!host->req_in_progress || !enable)
1529		OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
1530
1531	/* flush posted write */
1532	OMAP_HSMMC_READ(host->base, IE);
1533
1534	spin_unlock_irqrestore(&host->irq_lock, flags);
1535}
1536
1537static int omap_hsmmc_configure_wake_irq(struct omap_hsmmc_host *host)
1538{
1539	int ret;
1540
1541	/*
1542	 * For omaps with wake-up path, wakeirq will be irq from pinctrl and
1543	 * for other omaps, wakeirq will be from GPIO (dat line remuxed to
1544	 * gpio). wakeirq is needed to detect sdio irq in runtime suspend state
1545	 * with functional clock disabled.
1546	 */
1547	if (!host->dev->of_node || !host->wake_irq)
1548		return -ENODEV;
1549
1550	ret = dev_pm_set_dedicated_wake_irq(host->dev, host->wake_irq);
1551	if (ret) {
1552		dev_err(mmc_dev(host->mmc), "Unable to request wake IRQ\n");
1553		goto err;
1554	}
1555
1556	/*
1557	 * Some omaps don't have wake-up path from deeper idle states
1558	 * and need to remux SDIO DAT1 to GPIO for wake-up from idle.
1559	 */
1560	if (host->pdata->controller_flags & OMAP_HSMMC_SWAKEUP_MISSING) {
1561		struct pinctrl *p = devm_pinctrl_get(host->dev);
1562		if (IS_ERR(p)) {
1563			ret = PTR_ERR(p);
1564			goto err_free_irq;
1565		}
1566
1567		if (IS_ERR(pinctrl_lookup_state(p, PINCTRL_STATE_IDLE))) {
1568			dev_info(host->dev, "missing idle pinctrl state\n");
1569			devm_pinctrl_put(p);
1570			ret = -EINVAL;
1571			goto err_free_irq;
1572		}
1573		devm_pinctrl_put(p);
1574	}
1575
1576	OMAP_HSMMC_WRITE(host->base, HCTL,
1577			 OMAP_HSMMC_READ(host->base, HCTL) | IWE);
1578	return 0;
1579
1580err_free_irq:
1581	dev_pm_clear_wake_irq(host->dev);
1582err:
1583	dev_warn(host->dev, "no SDIO IRQ support, falling back to polling\n");
1584	host->wake_irq = 0;
1585	return ret;
1586}
1587
1588static void omap_hsmmc_conf_bus_power(struct omap_hsmmc_host *host)
1589{
1590	u32 hctl, capa, value;
1591
1592	/* Only MMC1 supports 3.0V */
1593	if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
1594		hctl = SDVS30;
1595		capa = VS30 | VS18;
1596	} else {
1597		hctl = SDVS18;
1598		capa = VS18;
1599	}
1600
1601	value = OMAP_HSMMC_READ(host->base, HCTL) & ~SDVS_MASK;
1602	OMAP_HSMMC_WRITE(host->base, HCTL, value | hctl);
1603
1604	value = OMAP_HSMMC_READ(host->base, CAPA);
1605	OMAP_HSMMC_WRITE(host->base, CAPA, value | capa);
1606
1607	/* Set SD bus power bit */
1608	set_sd_bus_power(host);
1609}
1610
1611static int omap_hsmmc_multi_io_quirk(struct mmc_card *card,
1612				     unsigned int direction, int blk_size)
1613{
1614	/* This controller can't do multiblock reads due to hw bugs */
1615	if (direction == MMC_DATA_READ)
1616		return 1;
1617
1618	return blk_size;
1619}
1620
1621static struct mmc_host_ops omap_hsmmc_ops = {
1622	.post_req = omap_hsmmc_post_req,
1623	.pre_req = omap_hsmmc_pre_req,
1624	.request = omap_hsmmc_request,
1625	.set_ios = omap_hsmmc_set_ios,
1626	.get_cd = mmc_gpio_get_cd,
1627	.get_ro = mmc_gpio_get_ro,
1628	.enable_sdio_irq = omap_hsmmc_enable_sdio_irq,
1629};
1630
1631#ifdef CONFIG_DEBUG_FS
1632
1633static int mmc_regs_show(struct seq_file *s, void *data)
1634{
1635	struct mmc_host *mmc = s->private;
1636	struct omap_hsmmc_host *host = mmc_priv(mmc);
1637
1638	seq_printf(s, "mmc%d:\n", mmc->index);
1639	seq_printf(s, "sdio irq mode\t%s\n",
1640		   (mmc->caps & MMC_CAP_SDIO_IRQ) ? "interrupt" : "polling");
1641
1642	if (mmc->caps & MMC_CAP_SDIO_IRQ) {
1643		seq_printf(s, "sdio irq \t%s\n",
1644			   (host->flags & HSMMC_SDIO_IRQ_ENABLED) ?  "enabled"
1645			   : "disabled");
1646	}
1647	seq_printf(s, "ctx_loss:\t%d\n", host->context_loss);
1648
1649	pm_runtime_get_sync(host->dev);
1650	seq_puts(s, "\nregs:\n");
1651	seq_printf(s, "CON:\t\t0x%08x\n",
1652			OMAP_HSMMC_READ(host->base, CON));
1653	seq_printf(s, "PSTATE:\t\t0x%08x\n",
1654		   OMAP_HSMMC_READ(host->base, PSTATE));
1655	seq_printf(s, "HCTL:\t\t0x%08x\n",
1656			OMAP_HSMMC_READ(host->base, HCTL));
1657	seq_printf(s, "SYSCTL:\t\t0x%08x\n",
1658			OMAP_HSMMC_READ(host->base, SYSCTL));
1659	seq_printf(s, "IE:\t\t0x%08x\n",
1660			OMAP_HSMMC_READ(host->base, IE));
1661	seq_printf(s, "ISE:\t\t0x%08x\n",
1662			OMAP_HSMMC_READ(host->base, ISE));
1663	seq_printf(s, "CAPA:\t\t0x%08x\n",
1664			OMAP_HSMMC_READ(host->base, CAPA));
1665
1666	pm_runtime_mark_last_busy(host->dev);
1667	pm_runtime_put_autosuspend(host->dev);
1668
1669	return 0;
1670}
1671
1672DEFINE_SHOW_ATTRIBUTE(mmc_regs);
1673
1674static void omap_hsmmc_debugfs(struct mmc_host *mmc)
1675{
1676	if (mmc->debugfs_root)
1677		debugfs_create_file("regs", S_IRUSR, mmc->debugfs_root,
1678			mmc, &mmc_regs_fops);
1679}
1680
1681#else
1682
1683static void omap_hsmmc_debugfs(struct mmc_host *mmc)
1684{
1685}
1686
1687#endif
1688
1689#ifdef CONFIG_OF
1690static const struct omap_mmc_of_data omap3_pre_es3_mmc_of_data = {
1691	/* See 35xx errata 2.1.1.128 in SPRZ278F */
1692	.controller_flags = OMAP_HSMMC_BROKEN_MULTIBLOCK_READ,
1693};
1694
1695static const struct omap_mmc_of_data omap4_mmc_of_data = {
1696	.reg_offset = 0x100,
1697};
1698static const struct omap_mmc_of_data am33xx_mmc_of_data = {
1699	.reg_offset = 0x100,
1700	.controller_flags = OMAP_HSMMC_SWAKEUP_MISSING,
1701};
1702
1703static const struct of_device_id omap_mmc_of_match[] = {
1704	{
1705		.compatible = "ti,omap2-hsmmc",
1706	},
1707	{
1708		.compatible = "ti,omap3-pre-es3-hsmmc",
1709		.data = &omap3_pre_es3_mmc_of_data,
1710	},
1711	{
1712		.compatible = "ti,omap3-hsmmc",
1713	},
1714	{
1715		.compatible = "ti,omap4-hsmmc",
1716		.data = &omap4_mmc_of_data,
1717	},
1718	{
1719		.compatible = "ti,am33xx-hsmmc",
1720		.data = &am33xx_mmc_of_data,
1721	},
1722	{},
1723};
1724MODULE_DEVICE_TABLE(of, omap_mmc_of_match);
1725
1726static struct omap_hsmmc_platform_data *of_get_hsmmc_pdata(struct device *dev)
1727{
1728	struct omap_hsmmc_platform_data *pdata, *legacy;
1729	struct device_node *np = dev->of_node;
1730
1731	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1732	if (!pdata)
1733		return ERR_PTR(-ENOMEM); /* out of memory */
1734
1735	legacy = dev_get_platdata(dev);
1736	if (legacy && legacy->name)
1737		pdata->name = legacy->name;
1738
1739	if (of_property_read_bool(np, "ti,dual-volt"))
1740		pdata->controller_flags |= OMAP_HSMMC_SUPPORTS_DUAL_VOLT;
1741
1742	if (of_property_read_bool(np, "ti,non-removable")) {
1743		pdata->nonremovable = true;
1744		pdata->no_regulator_off_init = true;
1745	}
1746
1747	if (of_property_read_bool(np, "ti,needs-special-reset"))
1748		pdata->features |= HSMMC_HAS_UPDATED_RESET;
1749
1750	if (of_property_read_bool(np, "ti,needs-special-hs-handling"))
1751		pdata->features |= HSMMC_HAS_HSPE_SUPPORT;
1752
1753	return pdata;
1754}
1755#else
1756static inline struct omap_hsmmc_platform_data
1757			*of_get_hsmmc_pdata(struct device *dev)
1758{
1759	return ERR_PTR(-EINVAL);
1760}
1761#endif
1762
1763static int omap_hsmmc_probe(struct platform_device *pdev)
1764{
1765	struct omap_hsmmc_platform_data *pdata = pdev->dev.platform_data;
1766	struct mmc_host *mmc;
1767	struct omap_hsmmc_host *host = NULL;
1768	struct resource *res;
1769	int ret, irq;
1770	const struct of_device_id *match;
1771	const struct omap_mmc_of_data *data;
1772	void __iomem *base;
1773
1774	match = of_match_device(of_match_ptr(omap_mmc_of_match), &pdev->dev);
1775	if (match) {
1776		pdata = of_get_hsmmc_pdata(&pdev->dev);
1777
1778		if (IS_ERR(pdata))
1779			return PTR_ERR(pdata);
1780
1781		if (match->data) {
1782			data = match->data;
1783			pdata->reg_offset = data->reg_offset;
1784			pdata->controller_flags |= data->controller_flags;
1785		}
1786	}
1787
1788	if (pdata == NULL) {
1789		dev_err(&pdev->dev, "Platform Data is missing\n");
1790		return -ENXIO;
1791	}
1792
 
1793	irq = platform_get_irq(pdev, 0);
1794	if (irq < 0)
1795		return irq;
1796
1797	base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1798	if (IS_ERR(base))
1799		return PTR_ERR(base);
1800
1801	mmc = mmc_alloc_host(sizeof(struct omap_hsmmc_host), &pdev->dev);
1802	if (!mmc) {
1803		ret = -ENOMEM;
1804		goto err;
1805	}
1806
1807	ret = mmc_of_parse(mmc);
1808	if (ret)
1809		goto err1;
1810
1811	host		= mmc_priv(mmc);
1812	host->mmc	= mmc;
1813	host->pdata	= pdata;
1814	host->dev	= &pdev->dev;
1815	host->use_dma	= 1;
1816	host->dma_ch	= -1;
1817	host->irq	= irq;
1818	host->mapbase	= res->start + pdata->reg_offset;
1819	host->base	= base + pdata->reg_offset;
1820	host->power_mode = MMC_POWER_OFF;
1821	host->next_data.cookie = 1;
1822	host->pbias_enabled = false;
1823	host->vqmmc_enabled = false;
1824
1825	platform_set_drvdata(pdev, host);
1826
1827	if (pdev->dev.of_node)
1828		host->wake_irq = irq_of_parse_and_map(pdev->dev.of_node, 1);
1829
1830	mmc->ops	= &omap_hsmmc_ops;
1831
1832	mmc->f_min = OMAP_MMC_MIN_CLOCK;
1833
1834	if (pdata->max_freq > 0)
1835		mmc->f_max = pdata->max_freq;
1836	else if (mmc->f_max == 0)
1837		mmc->f_max = OMAP_MMC_MAX_CLOCK;
1838
1839	spin_lock_init(&host->irq_lock);
1840
1841	host->fclk = devm_clk_get(&pdev->dev, "fck");
1842	if (IS_ERR(host->fclk)) {
1843		ret = PTR_ERR(host->fclk);
1844		host->fclk = NULL;
1845		goto err1;
1846	}
1847
1848	if (host->pdata->controller_flags & OMAP_HSMMC_BROKEN_MULTIBLOCK_READ) {
1849		dev_info(&pdev->dev, "multiblock reads disabled due to 35xx erratum 2.1.1.128; MMC read performance may suffer\n");
1850		omap_hsmmc_ops.multi_io_quirk = omap_hsmmc_multi_io_quirk;
1851	}
1852
1853	device_init_wakeup(&pdev->dev, true);
1854	pm_runtime_enable(host->dev);
1855	pm_runtime_get_sync(host->dev);
1856	pm_runtime_set_autosuspend_delay(host->dev, MMC_AUTOSUSPEND_DELAY);
1857	pm_runtime_use_autosuspend(host->dev);
1858
1859	omap_hsmmc_context_save(host);
1860
1861	host->dbclk = devm_clk_get(&pdev->dev, "mmchsdb_fck");
1862	/*
1863	 * MMC can still work without debounce clock.
1864	 */
1865	if (IS_ERR(host->dbclk)) {
1866		host->dbclk = NULL;
1867	} else if (clk_prepare_enable(host->dbclk) != 0) {
1868		dev_warn(mmc_dev(host->mmc), "Failed to enable debounce clk\n");
1869		host->dbclk = NULL;
1870	}
1871
1872	/* Set this to a value that allows allocating an entire descriptor
1873	 * list within a page (zero order allocation). */
1874	mmc->max_segs = 64;
1875
1876	mmc->max_blk_size = 512;       /* Block Length at max can be 1024 */
1877	mmc->max_blk_count = 0xFFFF;    /* No. of Blocks is 16 bits */
1878	mmc->max_req_size = mmc->max_blk_size * mmc->max_blk_count;
1879
1880	mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED |
1881		     MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_CMD23;
1882
1883	mmc->caps |= mmc_pdata(host)->caps;
1884	if (mmc->caps & MMC_CAP_8_BIT_DATA)
1885		mmc->caps |= MMC_CAP_4_BIT_DATA;
1886
1887	if (mmc_pdata(host)->nonremovable)
1888		mmc->caps |= MMC_CAP_NONREMOVABLE;
1889
1890	mmc->pm_caps |= mmc_pdata(host)->pm_caps;
1891
1892	omap_hsmmc_conf_bus_power(host);
1893
1894	host->rx_chan = dma_request_chan(&pdev->dev, "rx");
1895	if (IS_ERR(host->rx_chan)) {
1896		dev_err(mmc_dev(host->mmc), "RX DMA channel request failed\n");
1897		ret = PTR_ERR(host->rx_chan);
1898		goto err_irq;
1899	}
1900
1901	host->tx_chan = dma_request_chan(&pdev->dev, "tx");
1902	if (IS_ERR(host->tx_chan)) {
1903		dev_err(mmc_dev(host->mmc), "TX DMA channel request failed\n");
1904		ret = PTR_ERR(host->tx_chan);
1905		goto err_irq;
1906	}
1907
1908	/*
1909	 * Limit the maximum segment size to the lower of the request size
1910	 * and the DMA engine device segment size limits.  In reality, with
1911	 * 32-bit transfers, the DMA engine can do longer segments than this
1912	 * but there is no way to represent that in the DMA model - if we
1913	 * increase this figure here, we get warnings from the DMA API debug.
1914	 */
1915	mmc->max_seg_size = min3(mmc->max_req_size,
1916			dma_get_max_seg_size(host->rx_chan->device->dev),
1917			dma_get_max_seg_size(host->tx_chan->device->dev));
1918
1919	/* Request IRQ for MMC operations */
1920	ret = devm_request_irq(&pdev->dev, host->irq, omap_hsmmc_irq, 0,
1921			mmc_hostname(mmc), host);
1922	if (ret) {
1923		dev_err(mmc_dev(host->mmc), "Unable to grab HSMMC IRQ\n");
1924		goto err_irq;
1925	}
1926
1927	ret = omap_hsmmc_reg_get(host);
1928	if (ret)
1929		goto err_irq;
1930
1931	if (!mmc->ocr_avail)
1932		mmc->ocr_avail = mmc_pdata(host)->ocr_mask;
1933
1934	omap_hsmmc_disable_irq(host);
1935
1936	/*
1937	 * For now, only support SDIO interrupt if we have a separate
1938	 * wake-up interrupt configured from device tree. This is because
1939	 * the wake-up interrupt is needed for idle state and some
1940	 * platforms need special quirks. And we don't want to add new
1941	 * legacy mux platform init code callbacks any longer as we
1942	 * are moving to DT based booting anyways.
1943	 */
1944	ret = omap_hsmmc_configure_wake_irq(host);
1945	if (!ret)
1946		mmc->caps |= MMC_CAP_SDIO_IRQ;
1947
1948	ret = mmc_add_host(mmc);
1949	if (ret)
1950		goto err_irq;
1951
1952	if (mmc_pdata(host)->name != NULL) {
1953		ret = device_create_file(&mmc->class_dev, &dev_attr_slot_name);
1954		if (ret < 0)
1955			goto err_slot_name;
1956	}
1957
1958	omap_hsmmc_debugfs(mmc);
1959	pm_runtime_mark_last_busy(host->dev);
1960	pm_runtime_put_autosuspend(host->dev);
1961
1962	return 0;
1963
1964err_slot_name:
1965	mmc_remove_host(mmc);
1966err_irq:
1967	device_init_wakeup(&pdev->dev, false);
1968	if (!IS_ERR_OR_NULL(host->tx_chan))
1969		dma_release_channel(host->tx_chan);
1970	if (!IS_ERR_OR_NULL(host->rx_chan))
1971		dma_release_channel(host->rx_chan);
1972	pm_runtime_dont_use_autosuspend(host->dev);
1973	pm_runtime_put_sync(host->dev);
1974	pm_runtime_disable(host->dev);
1975	clk_disable_unprepare(host->dbclk);
1976err1:
1977	mmc_free_host(mmc);
1978err:
1979	return ret;
1980}
1981
1982static void omap_hsmmc_remove(struct platform_device *pdev)
1983{
1984	struct omap_hsmmc_host *host = platform_get_drvdata(pdev);
1985
1986	pm_runtime_get_sync(host->dev);
1987	mmc_remove_host(host->mmc);
1988
1989	dma_release_channel(host->tx_chan);
1990	dma_release_channel(host->rx_chan);
1991
1992	dev_pm_clear_wake_irq(host->dev);
1993	pm_runtime_dont_use_autosuspend(host->dev);
1994	pm_runtime_put_sync(host->dev);
1995	pm_runtime_disable(host->dev);
1996	device_init_wakeup(&pdev->dev, false);
1997	clk_disable_unprepare(host->dbclk);
1998
1999	mmc_free_host(host->mmc);
 
 
2000}
2001
2002#ifdef CONFIG_PM_SLEEP
2003static int omap_hsmmc_suspend(struct device *dev)
2004{
2005	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2006
2007	if (!host)
2008		return 0;
2009
2010	pm_runtime_get_sync(host->dev);
2011
2012	if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER)) {
2013		OMAP_HSMMC_WRITE(host->base, ISE, 0);
2014		OMAP_HSMMC_WRITE(host->base, IE, 0);
2015		OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2016		OMAP_HSMMC_WRITE(host->base, HCTL,
2017				OMAP_HSMMC_READ(host->base, HCTL) & ~SDBP);
2018	}
2019
2020	clk_disable_unprepare(host->dbclk);
2021
2022	pm_runtime_put_sync(host->dev);
2023	return 0;
2024}
2025
2026/* Routine to resume the MMC device */
2027static int omap_hsmmc_resume(struct device *dev)
2028{
2029	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2030
2031	if (!host)
2032		return 0;
2033
2034	pm_runtime_get_sync(host->dev);
2035
2036	clk_prepare_enable(host->dbclk);
2037
2038	if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER))
2039		omap_hsmmc_conf_bus_power(host);
2040
2041	pm_runtime_mark_last_busy(host->dev);
2042	pm_runtime_put_autosuspend(host->dev);
2043	return 0;
2044}
2045#endif
2046
2047#ifdef CONFIG_PM
2048static int omap_hsmmc_runtime_suspend(struct device *dev)
2049{
2050	struct omap_hsmmc_host *host;
2051	unsigned long flags;
2052	int ret = 0;
2053
2054	host = dev_get_drvdata(dev);
2055	omap_hsmmc_context_save(host);
2056	dev_dbg(dev, "disabled\n");
2057
2058	spin_lock_irqsave(&host->irq_lock, flags);
2059	if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
2060	    (host->flags & HSMMC_SDIO_IRQ_ENABLED)) {
2061		/* disable sdio irq handling to prevent race */
2062		OMAP_HSMMC_WRITE(host->base, ISE, 0);
2063		OMAP_HSMMC_WRITE(host->base, IE, 0);
2064
2065		if (!(OMAP_HSMMC_READ(host->base, PSTATE) & DLEV_DAT(1))) {
2066			/*
2067			 * dat1 line low, pending sdio irq
2068			 * race condition: possible irq handler running on
2069			 * multi-core, abort
2070			 */
2071			dev_dbg(dev, "pending sdio irq, abort suspend\n");
2072			OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2073			OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN);
2074			OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN);
2075			pm_runtime_mark_last_busy(dev);
2076			ret = -EBUSY;
2077			goto abort;
2078		}
2079
2080		pinctrl_pm_select_idle_state(dev);
2081	} else {
2082		pinctrl_pm_select_idle_state(dev);
2083	}
2084
2085abort:
2086	spin_unlock_irqrestore(&host->irq_lock, flags);
2087	return ret;
2088}
2089
2090static int omap_hsmmc_runtime_resume(struct device *dev)
2091{
2092	struct omap_hsmmc_host *host;
2093	unsigned long flags;
2094
2095	host = dev_get_drvdata(dev);
2096	omap_hsmmc_context_restore(host);
2097	dev_dbg(dev, "enabled\n");
2098
2099	spin_lock_irqsave(&host->irq_lock, flags);
2100	if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
2101	    (host->flags & HSMMC_SDIO_IRQ_ENABLED)) {
2102
2103		pinctrl_select_default_state(host->dev);
2104
2105		/* irq lost, if pinmux incorrect */
2106		OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2107		OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN);
2108		OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN);
2109	} else {
2110		pinctrl_select_default_state(host->dev);
2111	}
2112	spin_unlock_irqrestore(&host->irq_lock, flags);
2113	return 0;
2114}
2115#endif
2116
2117static const struct dev_pm_ops omap_hsmmc_dev_pm_ops = {
2118	SET_SYSTEM_SLEEP_PM_OPS(omap_hsmmc_suspend, omap_hsmmc_resume)
2119	SET_RUNTIME_PM_OPS(omap_hsmmc_runtime_suspend, omap_hsmmc_runtime_resume, NULL)
2120};
2121
2122static struct platform_driver omap_hsmmc_driver = {
2123	.probe		= omap_hsmmc_probe,
2124	.remove		= omap_hsmmc_remove,
2125	.driver		= {
2126		.name = DRIVER_NAME,
2127		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
2128		.pm = &omap_hsmmc_dev_pm_ops,
2129		.of_match_table = of_match_ptr(omap_mmc_of_match),
2130	},
2131};
2132
2133module_platform_driver(omap_hsmmc_driver);
2134MODULE_DESCRIPTION("OMAP High Speed Multimedia Card driver");
2135MODULE_LICENSE("GPL");
2136MODULE_ALIAS("platform:" DRIVER_NAME);
2137MODULE_AUTHOR("Texas Instruments Inc");