Loading...
1/*
2 * drivers/mmc/host/omap_hsmmc.c
3 *
4 * Driver for OMAP2430/3430 MMC controller.
5 *
6 * Copyright (C) 2007 Texas Instruments.
7 *
8 * Authors:
9 * Syed Mohammed Khasim <x0khasim@ti.com>
10 * Madhusudhan <madhu.cr@ti.com>
11 * Mohit Jalori <mjalori@ti.com>
12 *
13 * This file is licensed under the terms of the GNU General Public License
14 * version 2. This program is licensed "as is" without any warranty of any
15 * kind, whether express or implied.
16 */
17
18#include <linux/module.h>
19#include <linux/init.h>
20#include <linux/kernel.h>
21#include <linux/debugfs.h>
22#include <linux/dmaengine.h>
23#include <linux/seq_file.h>
24#include <linux/sizes.h>
25#include <linux/interrupt.h>
26#include <linux/delay.h>
27#include <linux/dma-mapping.h>
28#include <linux/platform_device.h>
29#include <linux/timer.h>
30#include <linux/clk.h>
31#include <linux/of.h>
32#include <linux/of_irq.h>
33#include <linux/of_device.h>
34#include <linux/mmc/host.h>
35#include <linux/mmc/core.h>
36#include <linux/mmc/mmc.h>
37#include <linux/mmc/slot-gpio.h>
38#include <linux/io.h>
39#include <linux/irq.h>
40#include <linux/regulator/consumer.h>
41#include <linux/pinctrl/consumer.h>
42#include <linux/pm_runtime.h>
43#include <linux/pm_wakeirq.h>
44#include <linux/platform_data/hsmmc-omap.h>
45
46/* OMAP HSMMC Host Controller Registers */
47#define OMAP_HSMMC_SYSSTATUS 0x0014
48#define OMAP_HSMMC_CON 0x002C
49#define OMAP_HSMMC_SDMASA 0x0100
50#define OMAP_HSMMC_BLK 0x0104
51#define OMAP_HSMMC_ARG 0x0108
52#define OMAP_HSMMC_CMD 0x010C
53#define OMAP_HSMMC_RSP10 0x0110
54#define OMAP_HSMMC_RSP32 0x0114
55#define OMAP_HSMMC_RSP54 0x0118
56#define OMAP_HSMMC_RSP76 0x011C
57#define OMAP_HSMMC_DATA 0x0120
58#define OMAP_HSMMC_PSTATE 0x0124
59#define OMAP_HSMMC_HCTL 0x0128
60#define OMAP_HSMMC_SYSCTL 0x012C
61#define OMAP_HSMMC_STAT 0x0130
62#define OMAP_HSMMC_IE 0x0134
63#define OMAP_HSMMC_ISE 0x0138
64#define OMAP_HSMMC_AC12 0x013C
65#define OMAP_HSMMC_CAPA 0x0140
66
67#define VS18 (1 << 26)
68#define VS30 (1 << 25)
69#define HSS (1 << 21)
70#define SDVS18 (0x5 << 9)
71#define SDVS30 (0x6 << 9)
72#define SDVS33 (0x7 << 9)
73#define SDVS_MASK 0x00000E00
74#define SDVSCLR 0xFFFFF1FF
75#define SDVSDET 0x00000400
76#define AUTOIDLE 0x1
77#define SDBP (1 << 8)
78#define DTO 0xe
79#define ICE 0x1
80#define ICS 0x2
81#define CEN (1 << 2)
82#define CLKD_MAX 0x3FF /* max clock divisor: 1023 */
83#define CLKD_MASK 0x0000FFC0
84#define CLKD_SHIFT 6
85#define DTO_MASK 0x000F0000
86#define DTO_SHIFT 16
87#define INIT_STREAM (1 << 1)
88#define ACEN_ACMD23 (2 << 2)
89#define DP_SELECT (1 << 21)
90#define DDIR (1 << 4)
91#define DMAE 0x1
92#define MSBS (1 << 5)
93#define BCE (1 << 1)
94#define FOUR_BIT (1 << 1)
95#define HSPE (1 << 2)
96#define IWE (1 << 24)
97#define DDR (1 << 19)
98#define CLKEXTFREE (1 << 16)
99#define CTPL (1 << 11)
100#define DW8 (1 << 5)
101#define OD 0x1
102#define STAT_CLEAR 0xFFFFFFFF
103#define INIT_STREAM_CMD 0x00000000
104#define DUAL_VOLT_OCR_BIT 7
105#define SRC (1 << 25)
106#define SRD (1 << 26)
107#define SOFTRESET (1 << 1)
108
109/* PSTATE */
110#define DLEV_DAT(x) (1 << (20 + (x)))
111
112/* Interrupt masks for IE and ISE register */
113#define CC_EN (1 << 0)
114#define TC_EN (1 << 1)
115#define BWR_EN (1 << 4)
116#define BRR_EN (1 << 5)
117#define CIRQ_EN (1 << 8)
118#define ERR_EN (1 << 15)
119#define CTO_EN (1 << 16)
120#define CCRC_EN (1 << 17)
121#define CEB_EN (1 << 18)
122#define CIE_EN (1 << 19)
123#define DTO_EN (1 << 20)
124#define DCRC_EN (1 << 21)
125#define DEB_EN (1 << 22)
126#define ACE_EN (1 << 24)
127#define CERR_EN (1 << 28)
128#define BADA_EN (1 << 29)
129
130#define INT_EN_MASK (BADA_EN | CERR_EN | ACE_EN | DEB_EN | DCRC_EN |\
131 DTO_EN | CIE_EN | CEB_EN | CCRC_EN | CTO_EN | \
132 BRR_EN | BWR_EN | TC_EN | CC_EN)
133
134#define CNI (1 << 7)
135#define ACIE (1 << 4)
136#define ACEB (1 << 3)
137#define ACCE (1 << 2)
138#define ACTO (1 << 1)
139#define ACNE (1 << 0)
140
141#define MMC_AUTOSUSPEND_DELAY 100
142#define MMC_TIMEOUT_MS 20 /* 20 mSec */
143#define MMC_TIMEOUT_US 20000 /* 20000 micro Sec */
144#define OMAP_MMC_MIN_CLOCK 400000
145#define OMAP_MMC_MAX_CLOCK 52000000
146#define DRIVER_NAME "omap_hsmmc"
147
148/*
149 * One controller can have multiple slots, like on some omap boards using
150 * omap.c controller driver. Luckily this is not currently done on any known
151 * omap_hsmmc.c device.
152 */
153#define mmc_pdata(host) host->pdata
154
155/*
156 * MMC Host controller read/write API's
157 */
158#define OMAP_HSMMC_READ(base, reg) \
159 __raw_readl((base) + OMAP_HSMMC_##reg)
160
161#define OMAP_HSMMC_WRITE(base, reg, val) \
162 __raw_writel((val), (base) + OMAP_HSMMC_##reg)
163
164struct omap_hsmmc_next {
165 unsigned int dma_len;
166 s32 cookie;
167};
168
169struct omap_hsmmc_host {
170 struct device *dev;
171 struct mmc_host *mmc;
172 struct mmc_request *mrq;
173 struct mmc_command *cmd;
174 struct mmc_data *data;
175 struct clk *fclk;
176 struct clk *dbclk;
177 struct regulator *pbias;
178 bool pbias_enabled;
179 void __iomem *base;
180 bool vqmmc_enabled;
181 resource_size_t mapbase;
182 spinlock_t irq_lock; /* Prevent races with irq handler */
183 unsigned int dma_len;
184 unsigned int dma_sg_idx;
185 unsigned char bus_mode;
186 unsigned char power_mode;
187 int suspended;
188 u32 con;
189 u32 hctl;
190 u32 sysctl;
191 u32 capa;
192 int irq;
193 int wake_irq;
194 int use_dma, dma_ch;
195 struct dma_chan *tx_chan;
196 struct dma_chan *rx_chan;
197 int response_busy;
198 int context_loss;
199 int reqs_blocked;
200 int req_in_progress;
201 unsigned long clk_rate;
202 unsigned int flags;
203#define AUTO_CMD23 (1 << 0) /* Auto CMD23 support */
204#define HSMMC_SDIO_IRQ_ENABLED (1 << 1) /* SDIO irq enabled */
205 struct omap_hsmmc_next next_data;
206 struct omap_hsmmc_platform_data *pdata;
207};
208
209struct omap_mmc_of_data {
210 u32 reg_offset;
211 u8 controller_flags;
212};
213
214static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host);
215
216static int omap_hsmmc_enable_supply(struct mmc_host *mmc)
217{
218 int ret;
219 struct omap_hsmmc_host *host = mmc_priv(mmc);
220 struct mmc_ios *ios = &mmc->ios;
221
222 if (!IS_ERR(mmc->supply.vmmc)) {
223 ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
224 if (ret)
225 return ret;
226 }
227
228 /* Enable interface voltage rail, if needed */
229 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
230 ret = regulator_enable(mmc->supply.vqmmc);
231 if (ret) {
232 dev_err(mmc_dev(mmc), "vmmc_aux reg enable failed\n");
233 goto err_vqmmc;
234 }
235 host->vqmmc_enabled = true;
236 }
237
238 return 0;
239
240err_vqmmc:
241 if (!IS_ERR(mmc->supply.vmmc))
242 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
243
244 return ret;
245}
246
247static int omap_hsmmc_disable_supply(struct mmc_host *mmc)
248{
249 int ret;
250 int status;
251 struct omap_hsmmc_host *host = mmc_priv(mmc);
252
253 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
254 ret = regulator_disable(mmc->supply.vqmmc);
255 if (ret) {
256 dev_err(mmc_dev(mmc), "vmmc_aux reg disable failed\n");
257 return ret;
258 }
259 host->vqmmc_enabled = false;
260 }
261
262 if (!IS_ERR(mmc->supply.vmmc)) {
263 ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
264 if (ret)
265 goto err_set_ocr;
266 }
267
268 return 0;
269
270err_set_ocr:
271 if (!IS_ERR(mmc->supply.vqmmc)) {
272 status = regulator_enable(mmc->supply.vqmmc);
273 if (status)
274 dev_err(mmc_dev(mmc), "vmmc_aux re-enable failed\n");
275 }
276
277 return ret;
278}
279
280static int omap_hsmmc_set_pbias(struct omap_hsmmc_host *host, bool power_on)
281{
282 int ret;
283
284 if (IS_ERR(host->pbias))
285 return 0;
286
287 if (power_on) {
288 if (!host->pbias_enabled) {
289 ret = regulator_enable(host->pbias);
290 if (ret) {
291 dev_err(host->dev, "pbias reg enable fail\n");
292 return ret;
293 }
294 host->pbias_enabled = true;
295 }
296 } else {
297 if (host->pbias_enabled) {
298 ret = regulator_disable(host->pbias);
299 if (ret) {
300 dev_err(host->dev, "pbias reg disable fail\n");
301 return ret;
302 }
303 host->pbias_enabled = false;
304 }
305 }
306
307 return 0;
308}
309
310static int omap_hsmmc_set_power(struct omap_hsmmc_host *host, int power_on)
311{
312 struct mmc_host *mmc = host->mmc;
313 int ret = 0;
314
315 /*
316 * If we don't see a Vcc regulator, assume it's a fixed
317 * voltage always-on regulator.
318 */
319 if (IS_ERR(mmc->supply.vmmc))
320 return 0;
321
322 ret = omap_hsmmc_set_pbias(host, false);
323 if (ret)
324 return ret;
325
326 /*
327 * Assume Vcc regulator is used only to power the card ... OMAP
328 * VDDS is used to power the pins, optionally with a transceiver to
329 * support cards using voltages other than VDDS (1.8V nominal). When a
330 * transceiver is used, DAT3..7 are muxed as transceiver control pins.
331 *
332 * In some cases this regulator won't support enable/disable;
333 * e.g. it's a fixed rail for a WLAN chip.
334 *
335 * In other cases vcc_aux switches interface power. Example, for
336 * eMMC cards it represents VccQ. Sometimes transceivers or SDIO
337 * chips/cards need an interface voltage rail too.
338 */
339 if (power_on) {
340 ret = omap_hsmmc_enable_supply(mmc);
341 if (ret)
342 return ret;
343
344 ret = omap_hsmmc_set_pbias(host, true);
345 if (ret)
346 goto err_set_voltage;
347 } else {
348 ret = omap_hsmmc_disable_supply(mmc);
349 if (ret)
350 return ret;
351 }
352
353 return 0;
354
355err_set_voltage:
356 omap_hsmmc_disable_supply(mmc);
357
358 return ret;
359}
360
361static int omap_hsmmc_disable_boot_regulator(struct regulator *reg)
362{
363 int ret;
364
365 if (IS_ERR(reg))
366 return 0;
367
368 if (regulator_is_enabled(reg)) {
369 ret = regulator_enable(reg);
370 if (ret)
371 return ret;
372
373 ret = regulator_disable(reg);
374 if (ret)
375 return ret;
376 }
377
378 return 0;
379}
380
381static int omap_hsmmc_disable_boot_regulators(struct omap_hsmmc_host *host)
382{
383 struct mmc_host *mmc = host->mmc;
384 int ret;
385
386 /*
387 * disable regulators enabled during boot and get the usecount
388 * right so that regulators can be enabled/disabled by checking
389 * the return value of regulator_is_enabled
390 */
391 ret = omap_hsmmc_disable_boot_regulator(mmc->supply.vmmc);
392 if (ret) {
393 dev_err(host->dev, "fail to disable boot enabled vmmc reg\n");
394 return ret;
395 }
396
397 ret = omap_hsmmc_disable_boot_regulator(mmc->supply.vqmmc);
398 if (ret) {
399 dev_err(host->dev,
400 "fail to disable boot enabled vmmc_aux reg\n");
401 return ret;
402 }
403
404 ret = omap_hsmmc_disable_boot_regulator(host->pbias);
405 if (ret) {
406 dev_err(host->dev,
407 "failed to disable boot enabled pbias reg\n");
408 return ret;
409 }
410
411 return 0;
412}
413
414static int omap_hsmmc_reg_get(struct omap_hsmmc_host *host)
415{
416 int ret;
417 struct mmc_host *mmc = host->mmc;
418
419
420 ret = mmc_regulator_get_supply(mmc);
421 if (ret)
422 return ret;
423
424 /* Allow an aux regulator */
425 if (IS_ERR(mmc->supply.vqmmc)) {
426 mmc->supply.vqmmc = devm_regulator_get_optional(host->dev,
427 "vmmc_aux");
428 if (IS_ERR(mmc->supply.vqmmc)) {
429 ret = PTR_ERR(mmc->supply.vqmmc);
430 if ((ret != -ENODEV) && host->dev->of_node)
431 return ret;
432 dev_dbg(host->dev, "unable to get vmmc_aux regulator %ld\n",
433 PTR_ERR(mmc->supply.vqmmc));
434 }
435 }
436
437 host->pbias = devm_regulator_get_optional(host->dev, "pbias");
438 if (IS_ERR(host->pbias)) {
439 ret = PTR_ERR(host->pbias);
440 if ((ret != -ENODEV) && host->dev->of_node) {
441 dev_err(host->dev,
442 "SD card detect fail? enable CONFIG_REGULATOR_PBIAS\n");
443 return ret;
444 }
445 dev_dbg(host->dev, "unable to get pbias regulator %ld\n",
446 PTR_ERR(host->pbias));
447 }
448
449 /* For eMMC do not power off when not in sleep state */
450 if (mmc_pdata(host)->no_regulator_off_init)
451 return 0;
452
453 ret = omap_hsmmc_disable_boot_regulators(host);
454 if (ret)
455 return ret;
456
457 return 0;
458}
459
460/*
461 * Start clock to the card
462 */
463static void omap_hsmmc_start_clock(struct omap_hsmmc_host *host)
464{
465 OMAP_HSMMC_WRITE(host->base, SYSCTL,
466 OMAP_HSMMC_READ(host->base, SYSCTL) | CEN);
467}
468
469/*
470 * Stop clock to the card
471 */
472static void omap_hsmmc_stop_clock(struct omap_hsmmc_host *host)
473{
474 OMAP_HSMMC_WRITE(host->base, SYSCTL,
475 OMAP_HSMMC_READ(host->base, SYSCTL) & ~CEN);
476 if ((OMAP_HSMMC_READ(host->base, SYSCTL) & CEN) != 0x0)
477 dev_dbg(mmc_dev(host->mmc), "MMC Clock is not stopped\n");
478}
479
480static void omap_hsmmc_enable_irq(struct omap_hsmmc_host *host,
481 struct mmc_command *cmd)
482{
483 u32 irq_mask = INT_EN_MASK;
484 unsigned long flags;
485
486 if (host->use_dma)
487 irq_mask &= ~(BRR_EN | BWR_EN);
488
489 /* Disable timeout for erases */
490 if (cmd->opcode == MMC_ERASE)
491 irq_mask &= ~DTO_EN;
492
493 spin_lock_irqsave(&host->irq_lock, flags);
494 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
495 OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
496
497 /* latch pending CIRQ, but don't signal MMC core */
498 if (host->flags & HSMMC_SDIO_IRQ_ENABLED)
499 irq_mask |= CIRQ_EN;
500 OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
501 spin_unlock_irqrestore(&host->irq_lock, flags);
502}
503
504static void omap_hsmmc_disable_irq(struct omap_hsmmc_host *host)
505{
506 u32 irq_mask = 0;
507 unsigned long flags;
508
509 spin_lock_irqsave(&host->irq_lock, flags);
510 /* no transfer running but need to keep cirq if enabled */
511 if (host->flags & HSMMC_SDIO_IRQ_ENABLED)
512 irq_mask |= CIRQ_EN;
513 OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
514 OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
515 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
516 spin_unlock_irqrestore(&host->irq_lock, flags);
517}
518
519/* Calculate divisor for the given clock frequency */
520static u16 calc_divisor(struct omap_hsmmc_host *host, struct mmc_ios *ios)
521{
522 u16 dsor = 0;
523
524 if (ios->clock) {
525 dsor = DIV_ROUND_UP(clk_get_rate(host->fclk), ios->clock);
526 if (dsor > CLKD_MAX)
527 dsor = CLKD_MAX;
528 }
529
530 return dsor;
531}
532
533static void omap_hsmmc_set_clock(struct omap_hsmmc_host *host)
534{
535 struct mmc_ios *ios = &host->mmc->ios;
536 unsigned long regval;
537 unsigned long timeout;
538 unsigned long clkdiv;
539
540 dev_vdbg(mmc_dev(host->mmc), "Set clock to %uHz\n", ios->clock);
541
542 omap_hsmmc_stop_clock(host);
543
544 regval = OMAP_HSMMC_READ(host->base, SYSCTL);
545 regval = regval & ~(CLKD_MASK | DTO_MASK);
546 clkdiv = calc_divisor(host, ios);
547 regval = regval | (clkdiv << 6) | (DTO << 16);
548 OMAP_HSMMC_WRITE(host->base, SYSCTL, regval);
549 OMAP_HSMMC_WRITE(host->base, SYSCTL,
550 OMAP_HSMMC_READ(host->base, SYSCTL) | ICE);
551
552 /* Wait till the ICS bit is set */
553 timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
554 while ((OMAP_HSMMC_READ(host->base, SYSCTL) & ICS) != ICS
555 && time_before(jiffies, timeout))
556 cpu_relax();
557
558 /*
559 * Enable High-Speed Support
560 * Pre-Requisites
561 * - Controller should support High-Speed-Enable Bit
562 * - Controller should not be using DDR Mode
563 * - Controller should advertise that it supports High Speed
564 * in capabilities register
565 * - MMC/SD clock coming out of controller > 25MHz
566 */
567 if ((mmc_pdata(host)->features & HSMMC_HAS_HSPE_SUPPORT) &&
568 (ios->timing != MMC_TIMING_MMC_DDR52) &&
569 (ios->timing != MMC_TIMING_UHS_DDR50) &&
570 ((OMAP_HSMMC_READ(host->base, CAPA) & HSS) == HSS)) {
571 regval = OMAP_HSMMC_READ(host->base, HCTL);
572 if (clkdiv && (clk_get_rate(host->fclk)/clkdiv) > 25000000)
573 regval |= HSPE;
574 else
575 regval &= ~HSPE;
576
577 OMAP_HSMMC_WRITE(host->base, HCTL, regval);
578 }
579
580 omap_hsmmc_start_clock(host);
581}
582
583static void omap_hsmmc_set_bus_width(struct omap_hsmmc_host *host)
584{
585 struct mmc_ios *ios = &host->mmc->ios;
586 u32 con;
587
588 con = OMAP_HSMMC_READ(host->base, CON);
589 if (ios->timing == MMC_TIMING_MMC_DDR52 ||
590 ios->timing == MMC_TIMING_UHS_DDR50)
591 con |= DDR; /* configure in DDR mode */
592 else
593 con &= ~DDR;
594 switch (ios->bus_width) {
595 case MMC_BUS_WIDTH_8:
596 OMAP_HSMMC_WRITE(host->base, CON, con | DW8);
597 break;
598 case MMC_BUS_WIDTH_4:
599 OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
600 OMAP_HSMMC_WRITE(host->base, HCTL,
601 OMAP_HSMMC_READ(host->base, HCTL) | FOUR_BIT);
602 break;
603 case MMC_BUS_WIDTH_1:
604 OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
605 OMAP_HSMMC_WRITE(host->base, HCTL,
606 OMAP_HSMMC_READ(host->base, HCTL) & ~FOUR_BIT);
607 break;
608 }
609}
610
611static void omap_hsmmc_set_bus_mode(struct omap_hsmmc_host *host)
612{
613 struct mmc_ios *ios = &host->mmc->ios;
614 u32 con;
615
616 con = OMAP_HSMMC_READ(host->base, CON);
617 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
618 OMAP_HSMMC_WRITE(host->base, CON, con | OD);
619 else
620 OMAP_HSMMC_WRITE(host->base, CON, con & ~OD);
621}
622
623#ifdef CONFIG_PM
624
625/*
626 * Restore the MMC host context, if it was lost as result of a
627 * power state change.
628 */
629static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host)
630{
631 struct mmc_ios *ios = &host->mmc->ios;
632 u32 hctl, capa;
633 unsigned long timeout;
634
635 if (host->con == OMAP_HSMMC_READ(host->base, CON) &&
636 host->hctl == OMAP_HSMMC_READ(host->base, HCTL) &&
637 host->sysctl == OMAP_HSMMC_READ(host->base, SYSCTL) &&
638 host->capa == OMAP_HSMMC_READ(host->base, CAPA))
639 return 0;
640
641 host->context_loss++;
642
643 if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
644 if (host->power_mode != MMC_POWER_OFF &&
645 (1 << ios->vdd) <= MMC_VDD_23_24)
646 hctl = SDVS18;
647 else
648 hctl = SDVS30;
649 capa = VS30 | VS18;
650 } else {
651 hctl = SDVS18;
652 capa = VS18;
653 }
654
655 if (host->mmc->caps & MMC_CAP_SDIO_IRQ)
656 hctl |= IWE;
657
658 OMAP_HSMMC_WRITE(host->base, HCTL,
659 OMAP_HSMMC_READ(host->base, HCTL) | hctl);
660
661 OMAP_HSMMC_WRITE(host->base, CAPA,
662 OMAP_HSMMC_READ(host->base, CAPA) | capa);
663
664 OMAP_HSMMC_WRITE(host->base, HCTL,
665 OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
666
667 timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
668 while ((OMAP_HSMMC_READ(host->base, HCTL) & SDBP) != SDBP
669 && time_before(jiffies, timeout))
670 ;
671
672 OMAP_HSMMC_WRITE(host->base, ISE, 0);
673 OMAP_HSMMC_WRITE(host->base, IE, 0);
674 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
675
676 /* Do not initialize card-specific things if the power is off */
677 if (host->power_mode == MMC_POWER_OFF)
678 goto out;
679
680 omap_hsmmc_set_bus_width(host);
681
682 omap_hsmmc_set_clock(host);
683
684 omap_hsmmc_set_bus_mode(host);
685
686out:
687 dev_dbg(mmc_dev(host->mmc), "context is restored: restore count %d\n",
688 host->context_loss);
689 return 0;
690}
691
692/*
693 * Save the MMC host context (store the number of power state changes so far).
694 */
695static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
696{
697 host->con = OMAP_HSMMC_READ(host->base, CON);
698 host->hctl = OMAP_HSMMC_READ(host->base, HCTL);
699 host->sysctl = OMAP_HSMMC_READ(host->base, SYSCTL);
700 host->capa = OMAP_HSMMC_READ(host->base, CAPA);
701}
702
703#else
704
705static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
706{
707}
708
709#endif
710
711/*
712 * Send init stream sequence to card
713 * before sending IDLE command
714 */
715static void send_init_stream(struct omap_hsmmc_host *host)
716{
717 int reg = 0;
718 unsigned long timeout;
719
720 disable_irq(host->irq);
721
722 OMAP_HSMMC_WRITE(host->base, IE, INT_EN_MASK);
723 OMAP_HSMMC_WRITE(host->base, CON,
724 OMAP_HSMMC_READ(host->base, CON) | INIT_STREAM);
725 OMAP_HSMMC_WRITE(host->base, CMD, INIT_STREAM_CMD);
726
727 timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
728 while ((reg != CC_EN) && time_before(jiffies, timeout))
729 reg = OMAP_HSMMC_READ(host->base, STAT) & CC_EN;
730
731 OMAP_HSMMC_WRITE(host->base, CON,
732 OMAP_HSMMC_READ(host->base, CON) & ~INIT_STREAM);
733
734 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
735 OMAP_HSMMC_READ(host->base, STAT);
736
737 enable_irq(host->irq);
738}
739
740static ssize_t
741omap_hsmmc_show_slot_name(struct device *dev, struct device_attribute *attr,
742 char *buf)
743{
744 struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
745 struct omap_hsmmc_host *host = mmc_priv(mmc);
746
747 return sprintf(buf, "%s\n", mmc_pdata(host)->name);
748}
749
750static DEVICE_ATTR(slot_name, S_IRUGO, omap_hsmmc_show_slot_name, NULL);
751
752/*
753 * Configure the response type and send the cmd.
754 */
755static void
756omap_hsmmc_start_command(struct omap_hsmmc_host *host, struct mmc_command *cmd,
757 struct mmc_data *data)
758{
759 int cmdreg = 0, resptype = 0, cmdtype = 0;
760
761 dev_vdbg(mmc_dev(host->mmc), "%s: CMD%d, argument 0x%08x\n",
762 mmc_hostname(host->mmc), cmd->opcode, cmd->arg);
763 host->cmd = cmd;
764
765 omap_hsmmc_enable_irq(host, cmd);
766
767 host->response_busy = 0;
768 if (cmd->flags & MMC_RSP_PRESENT) {
769 if (cmd->flags & MMC_RSP_136)
770 resptype = 1;
771 else if (cmd->flags & MMC_RSP_BUSY) {
772 resptype = 3;
773 host->response_busy = 1;
774 } else
775 resptype = 2;
776 }
777
778 /*
779 * Unlike OMAP1 controller, the cmdtype does not seem to be based on
780 * ac, bc, adtc, bcr. Only commands ending an open ended transfer need
781 * a val of 0x3, rest 0x0.
782 */
783 if (cmd == host->mrq->stop)
784 cmdtype = 0x3;
785
786 cmdreg = (cmd->opcode << 24) | (resptype << 16) | (cmdtype << 22);
787
788 if ((host->flags & AUTO_CMD23) && mmc_op_multi(cmd->opcode) &&
789 host->mrq->sbc) {
790 cmdreg |= ACEN_ACMD23;
791 OMAP_HSMMC_WRITE(host->base, SDMASA, host->mrq->sbc->arg);
792 }
793 if (data) {
794 cmdreg |= DP_SELECT | MSBS | BCE;
795 if (data->flags & MMC_DATA_READ)
796 cmdreg |= DDIR;
797 else
798 cmdreg &= ~(DDIR);
799 }
800
801 if (host->use_dma)
802 cmdreg |= DMAE;
803
804 host->req_in_progress = 1;
805
806 OMAP_HSMMC_WRITE(host->base, ARG, cmd->arg);
807 OMAP_HSMMC_WRITE(host->base, CMD, cmdreg);
808}
809
810static struct dma_chan *omap_hsmmc_get_dma_chan(struct omap_hsmmc_host *host,
811 struct mmc_data *data)
812{
813 return data->flags & MMC_DATA_WRITE ? host->tx_chan : host->rx_chan;
814}
815
816static void omap_hsmmc_request_done(struct omap_hsmmc_host *host, struct mmc_request *mrq)
817{
818 int dma_ch;
819 unsigned long flags;
820
821 spin_lock_irqsave(&host->irq_lock, flags);
822 host->req_in_progress = 0;
823 dma_ch = host->dma_ch;
824 spin_unlock_irqrestore(&host->irq_lock, flags);
825
826 omap_hsmmc_disable_irq(host);
827 /* Do not complete the request if DMA is still in progress */
828 if (mrq->data && host->use_dma && dma_ch != -1)
829 return;
830 host->mrq = NULL;
831 mmc_request_done(host->mmc, mrq);
832}
833
834/*
835 * Notify the transfer complete to MMC core
836 */
837static void
838omap_hsmmc_xfer_done(struct omap_hsmmc_host *host, struct mmc_data *data)
839{
840 if (!data) {
841 struct mmc_request *mrq = host->mrq;
842
843 /* TC before CC from CMD6 - don't know why, but it happens */
844 if (host->cmd && host->cmd->opcode == 6 &&
845 host->response_busy) {
846 host->response_busy = 0;
847 return;
848 }
849
850 omap_hsmmc_request_done(host, mrq);
851 return;
852 }
853
854 host->data = NULL;
855
856 if (!data->error)
857 data->bytes_xfered += data->blocks * (data->blksz);
858 else
859 data->bytes_xfered = 0;
860
861 if (data->stop && (data->error || !host->mrq->sbc))
862 omap_hsmmc_start_command(host, data->stop, NULL);
863 else
864 omap_hsmmc_request_done(host, data->mrq);
865}
866
867/*
868 * Notify the core about command completion
869 */
870static void
871omap_hsmmc_cmd_done(struct omap_hsmmc_host *host, struct mmc_command *cmd)
872{
873 if (host->mrq->sbc && (host->cmd == host->mrq->sbc) &&
874 !host->mrq->sbc->error && !(host->flags & AUTO_CMD23)) {
875 host->cmd = NULL;
876 omap_hsmmc_start_dma_transfer(host);
877 omap_hsmmc_start_command(host, host->mrq->cmd,
878 host->mrq->data);
879 return;
880 }
881
882 host->cmd = NULL;
883
884 if (cmd->flags & MMC_RSP_PRESENT) {
885 if (cmd->flags & MMC_RSP_136) {
886 /* response type 2 */
887 cmd->resp[3] = OMAP_HSMMC_READ(host->base, RSP10);
888 cmd->resp[2] = OMAP_HSMMC_READ(host->base, RSP32);
889 cmd->resp[1] = OMAP_HSMMC_READ(host->base, RSP54);
890 cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP76);
891 } else {
892 /* response types 1, 1b, 3, 4, 5, 6 */
893 cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP10);
894 }
895 }
896 if ((host->data == NULL && !host->response_busy) || cmd->error)
897 omap_hsmmc_request_done(host, host->mrq);
898}
899
900/*
901 * DMA clean up for command errors
902 */
903static void omap_hsmmc_dma_cleanup(struct omap_hsmmc_host *host, int errno)
904{
905 int dma_ch;
906 unsigned long flags;
907
908 host->data->error = errno;
909
910 spin_lock_irqsave(&host->irq_lock, flags);
911 dma_ch = host->dma_ch;
912 host->dma_ch = -1;
913 spin_unlock_irqrestore(&host->irq_lock, flags);
914
915 if (host->use_dma && dma_ch != -1) {
916 struct dma_chan *chan = omap_hsmmc_get_dma_chan(host, host->data);
917
918 dmaengine_terminate_all(chan);
919 dma_unmap_sg(chan->device->dev,
920 host->data->sg, host->data->sg_len,
921 mmc_get_dma_dir(host->data));
922
923 host->data->host_cookie = 0;
924 }
925 host->data = NULL;
926}
927
928/*
929 * Readable error output
930 */
931#ifdef CONFIG_MMC_DEBUG
932static void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host, u32 status)
933{
934 /* --- means reserved bit without definition at documentation */
935 static const char *omap_hsmmc_status_bits[] = {
936 "CC" , "TC" , "BGE", "---", "BWR" , "BRR" , "---" , "---" ,
937 "CIRQ", "OBI" , "---", "---", "---" , "---" , "---" , "ERRI",
938 "CTO" , "CCRC", "CEB", "CIE", "DTO" , "DCRC", "DEB" , "---" ,
939 "ACE" , "---" , "---", "---", "CERR", "BADA", "---" , "---"
940 };
941 char res[256];
942 char *buf = res;
943 int len, i;
944
945 len = sprintf(buf, "MMC IRQ 0x%x :", status);
946 buf += len;
947
948 for (i = 0; i < ARRAY_SIZE(omap_hsmmc_status_bits); i++)
949 if (status & (1 << i)) {
950 len = sprintf(buf, " %s", omap_hsmmc_status_bits[i]);
951 buf += len;
952 }
953
954 dev_vdbg(mmc_dev(host->mmc), "%s\n", res);
955}
956#else
957static inline void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host,
958 u32 status)
959{
960}
961#endif /* CONFIG_MMC_DEBUG */
962
963/*
964 * MMC controller internal state machines reset
965 *
966 * Used to reset command or data internal state machines, using respectively
967 * SRC or SRD bit of SYSCTL register
968 * Can be called from interrupt context
969 */
970static inline void omap_hsmmc_reset_controller_fsm(struct omap_hsmmc_host *host,
971 unsigned long bit)
972{
973 unsigned long i = 0;
974 unsigned long limit = MMC_TIMEOUT_US;
975
976 OMAP_HSMMC_WRITE(host->base, SYSCTL,
977 OMAP_HSMMC_READ(host->base, SYSCTL) | bit);
978
979 /*
980 * OMAP4 ES2 and greater has an updated reset logic.
981 * Monitor a 0->1 transition first
982 */
983 if (mmc_pdata(host)->features & HSMMC_HAS_UPDATED_RESET) {
984 while ((!(OMAP_HSMMC_READ(host->base, SYSCTL) & bit))
985 && (i++ < limit))
986 udelay(1);
987 }
988 i = 0;
989
990 while ((OMAP_HSMMC_READ(host->base, SYSCTL) & bit) &&
991 (i++ < limit))
992 udelay(1);
993
994 if (OMAP_HSMMC_READ(host->base, SYSCTL) & bit)
995 dev_err(mmc_dev(host->mmc),
996 "Timeout waiting on controller reset in %s\n",
997 __func__);
998}
999
1000static void hsmmc_command_incomplete(struct omap_hsmmc_host *host,
1001 int err, int end_cmd)
1002{
1003 if (end_cmd) {
1004 omap_hsmmc_reset_controller_fsm(host, SRC);
1005 if (host->cmd)
1006 host->cmd->error = err;
1007 }
1008
1009 if (host->data) {
1010 omap_hsmmc_reset_controller_fsm(host, SRD);
1011 omap_hsmmc_dma_cleanup(host, err);
1012 } else if (host->mrq && host->mrq->cmd)
1013 host->mrq->cmd->error = err;
1014}
1015
1016static void omap_hsmmc_do_irq(struct omap_hsmmc_host *host, int status)
1017{
1018 struct mmc_data *data;
1019 int end_cmd = 0, end_trans = 0;
1020 int error = 0;
1021
1022 data = host->data;
1023 dev_vdbg(mmc_dev(host->mmc), "IRQ Status is %x\n", status);
1024
1025 if (status & ERR_EN) {
1026 omap_hsmmc_dbg_report_irq(host, status);
1027
1028 if (status & (CTO_EN | CCRC_EN | CEB_EN))
1029 end_cmd = 1;
1030 if (host->data || host->response_busy) {
1031 end_trans = !end_cmd;
1032 host->response_busy = 0;
1033 }
1034 if (status & (CTO_EN | DTO_EN))
1035 hsmmc_command_incomplete(host, -ETIMEDOUT, end_cmd);
1036 else if (status & (CCRC_EN | DCRC_EN | DEB_EN | CEB_EN |
1037 BADA_EN))
1038 hsmmc_command_incomplete(host, -EILSEQ, end_cmd);
1039
1040 if (status & ACE_EN) {
1041 u32 ac12;
1042 ac12 = OMAP_HSMMC_READ(host->base, AC12);
1043 if (!(ac12 & ACNE) && host->mrq->sbc) {
1044 end_cmd = 1;
1045 if (ac12 & ACTO)
1046 error = -ETIMEDOUT;
1047 else if (ac12 & (ACCE | ACEB | ACIE))
1048 error = -EILSEQ;
1049 host->mrq->sbc->error = error;
1050 hsmmc_command_incomplete(host, error, end_cmd);
1051 }
1052 dev_dbg(mmc_dev(host->mmc), "AC12 err: 0x%x\n", ac12);
1053 }
1054 }
1055
1056 OMAP_HSMMC_WRITE(host->base, STAT, status);
1057 if (end_cmd || ((status & CC_EN) && host->cmd))
1058 omap_hsmmc_cmd_done(host, host->cmd);
1059 if ((end_trans || (status & TC_EN)) && host->mrq)
1060 omap_hsmmc_xfer_done(host, data);
1061}
1062
1063/*
1064 * MMC controller IRQ handler
1065 */
1066static irqreturn_t omap_hsmmc_irq(int irq, void *dev_id)
1067{
1068 struct omap_hsmmc_host *host = dev_id;
1069 int status;
1070
1071 status = OMAP_HSMMC_READ(host->base, STAT);
1072 while (status & (INT_EN_MASK | CIRQ_EN)) {
1073 if (host->req_in_progress)
1074 omap_hsmmc_do_irq(host, status);
1075
1076 if (status & CIRQ_EN)
1077 mmc_signal_sdio_irq(host->mmc);
1078
1079 /* Flush posted write */
1080 status = OMAP_HSMMC_READ(host->base, STAT);
1081 }
1082
1083 return IRQ_HANDLED;
1084}
1085
1086static void set_sd_bus_power(struct omap_hsmmc_host *host)
1087{
1088 unsigned long i;
1089
1090 OMAP_HSMMC_WRITE(host->base, HCTL,
1091 OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
1092 for (i = 0; i < loops_per_jiffy; i++) {
1093 if (OMAP_HSMMC_READ(host->base, HCTL) & SDBP)
1094 break;
1095 cpu_relax();
1096 }
1097}
1098
1099/*
1100 * Switch MMC interface voltage ... only relevant for MMC1.
1101 *
1102 * MMC2 and MMC3 use fixed 1.8V levels, and maybe a transceiver.
1103 * The MMC2 transceiver controls are used instead of DAT4..DAT7.
1104 * Some chips, like eMMC ones, use internal transceivers.
1105 */
1106static int omap_hsmmc_switch_opcond(struct omap_hsmmc_host *host, int vdd)
1107{
1108 u32 reg_val = 0;
1109 int ret;
1110
1111 /* Disable the clocks */
1112 clk_disable_unprepare(host->dbclk);
1113
1114 /* Turn the power off */
1115 ret = omap_hsmmc_set_power(host, 0);
1116
1117 /* Turn the power ON with given VDD 1.8 or 3.0v */
1118 if (!ret)
1119 ret = omap_hsmmc_set_power(host, 1);
1120 clk_prepare_enable(host->dbclk);
1121
1122 if (ret != 0)
1123 goto err;
1124
1125 OMAP_HSMMC_WRITE(host->base, HCTL,
1126 OMAP_HSMMC_READ(host->base, HCTL) & SDVSCLR);
1127 reg_val = OMAP_HSMMC_READ(host->base, HCTL);
1128
1129 /*
1130 * If a MMC dual voltage card is detected, the set_ios fn calls
1131 * this fn with VDD bit set for 1.8V. Upon card removal from the
1132 * slot, omap_hsmmc_set_ios sets the VDD back to 3V on MMC_POWER_OFF.
1133 *
1134 * Cope with a bit of slop in the range ... per data sheets:
1135 * - "1.8V" for vdds_mmc1/vdds_mmc1a can be up to 2.45V max,
1136 * but recommended values are 1.71V to 1.89V
1137 * - "3.0V" for vdds_mmc1/vdds_mmc1a can be up to 3.5V max,
1138 * but recommended values are 2.7V to 3.3V
1139 *
1140 * Board setup code shouldn't permit anything very out-of-range.
1141 * TWL4030-family VMMC1 and VSIM regulators are fine (avoiding the
1142 * middle range) but VSIM can't power DAT4..DAT7 at more than 3V.
1143 */
1144 if ((1 << vdd) <= MMC_VDD_23_24)
1145 reg_val |= SDVS18;
1146 else
1147 reg_val |= SDVS30;
1148
1149 OMAP_HSMMC_WRITE(host->base, HCTL, reg_val);
1150 set_sd_bus_power(host);
1151
1152 return 0;
1153err:
1154 dev_err(mmc_dev(host->mmc), "Unable to switch operating voltage\n");
1155 return ret;
1156}
1157
1158static void omap_hsmmc_dma_callback(void *param)
1159{
1160 struct omap_hsmmc_host *host = param;
1161 struct dma_chan *chan;
1162 struct mmc_data *data;
1163 int req_in_progress;
1164
1165 spin_lock_irq(&host->irq_lock);
1166 if (host->dma_ch < 0) {
1167 spin_unlock_irq(&host->irq_lock);
1168 return;
1169 }
1170
1171 data = host->mrq->data;
1172 chan = omap_hsmmc_get_dma_chan(host, data);
1173 if (!data->host_cookie)
1174 dma_unmap_sg(chan->device->dev,
1175 data->sg, data->sg_len,
1176 mmc_get_dma_dir(data));
1177
1178 req_in_progress = host->req_in_progress;
1179 host->dma_ch = -1;
1180 spin_unlock_irq(&host->irq_lock);
1181
1182 /* If DMA has finished after TC, complete the request */
1183 if (!req_in_progress) {
1184 struct mmc_request *mrq = host->mrq;
1185
1186 host->mrq = NULL;
1187 mmc_request_done(host->mmc, mrq);
1188 }
1189}
1190
1191static int omap_hsmmc_pre_dma_transfer(struct omap_hsmmc_host *host,
1192 struct mmc_data *data,
1193 struct omap_hsmmc_next *next,
1194 struct dma_chan *chan)
1195{
1196 int dma_len;
1197
1198 if (!next && data->host_cookie &&
1199 data->host_cookie != host->next_data.cookie) {
1200 dev_warn(host->dev, "[%s] invalid cookie: data->host_cookie %d"
1201 " host->next_data.cookie %d\n",
1202 __func__, data->host_cookie, host->next_data.cookie);
1203 data->host_cookie = 0;
1204 }
1205
1206 /* Check if next job is already prepared */
1207 if (next || data->host_cookie != host->next_data.cookie) {
1208 dma_len = dma_map_sg(chan->device->dev, data->sg, data->sg_len,
1209 mmc_get_dma_dir(data));
1210
1211 } else {
1212 dma_len = host->next_data.dma_len;
1213 host->next_data.dma_len = 0;
1214 }
1215
1216
1217 if (dma_len == 0)
1218 return -EINVAL;
1219
1220 if (next) {
1221 next->dma_len = dma_len;
1222 data->host_cookie = ++next->cookie < 0 ? 1 : next->cookie;
1223 } else
1224 host->dma_len = dma_len;
1225
1226 return 0;
1227}
1228
1229/*
1230 * Routine to configure and start DMA for the MMC card
1231 */
1232static int omap_hsmmc_setup_dma_transfer(struct omap_hsmmc_host *host,
1233 struct mmc_request *req)
1234{
1235 struct dma_async_tx_descriptor *tx;
1236 int ret = 0, i;
1237 struct mmc_data *data = req->data;
1238 struct dma_chan *chan;
1239 struct dma_slave_config cfg = {
1240 .src_addr = host->mapbase + OMAP_HSMMC_DATA,
1241 .dst_addr = host->mapbase + OMAP_HSMMC_DATA,
1242 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
1243 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
1244 .src_maxburst = data->blksz / 4,
1245 .dst_maxburst = data->blksz / 4,
1246 };
1247
1248 /* Sanity check: all the SG entries must be aligned by block size. */
1249 for (i = 0; i < data->sg_len; i++) {
1250 struct scatterlist *sgl;
1251
1252 sgl = data->sg + i;
1253 if (sgl->length % data->blksz)
1254 return -EINVAL;
1255 }
1256 if ((data->blksz % 4) != 0)
1257 /* REVISIT: The MMC buffer increments only when MSB is written.
1258 * Return error for blksz which is non multiple of four.
1259 */
1260 return -EINVAL;
1261
1262 BUG_ON(host->dma_ch != -1);
1263
1264 chan = omap_hsmmc_get_dma_chan(host, data);
1265
1266 ret = dmaengine_slave_config(chan, &cfg);
1267 if (ret)
1268 return ret;
1269
1270 ret = omap_hsmmc_pre_dma_transfer(host, data, NULL, chan);
1271 if (ret)
1272 return ret;
1273
1274 tx = dmaengine_prep_slave_sg(chan, data->sg, data->sg_len,
1275 data->flags & MMC_DATA_WRITE ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
1276 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1277 if (!tx) {
1278 dev_err(mmc_dev(host->mmc), "prep_slave_sg() failed\n");
1279 /* FIXME: cleanup */
1280 return -1;
1281 }
1282
1283 tx->callback = omap_hsmmc_dma_callback;
1284 tx->callback_param = host;
1285
1286 /* Does not fail */
1287 dmaengine_submit(tx);
1288
1289 host->dma_ch = 1;
1290
1291 return 0;
1292}
1293
1294static void set_data_timeout(struct omap_hsmmc_host *host,
1295 unsigned long long timeout_ns,
1296 unsigned int timeout_clks)
1297{
1298 unsigned long long timeout = timeout_ns;
1299 unsigned int cycle_ns;
1300 uint32_t reg, clkd, dto = 0;
1301
1302 reg = OMAP_HSMMC_READ(host->base, SYSCTL);
1303 clkd = (reg & CLKD_MASK) >> CLKD_SHIFT;
1304 if (clkd == 0)
1305 clkd = 1;
1306
1307 cycle_ns = 1000000000 / (host->clk_rate / clkd);
1308 do_div(timeout, cycle_ns);
1309 timeout += timeout_clks;
1310 if (timeout) {
1311 while ((timeout & 0x80000000) == 0) {
1312 dto += 1;
1313 timeout <<= 1;
1314 }
1315 dto = 31 - dto;
1316 timeout <<= 1;
1317 if (timeout && dto)
1318 dto += 1;
1319 if (dto >= 13)
1320 dto -= 13;
1321 else
1322 dto = 0;
1323 if (dto > 14)
1324 dto = 14;
1325 }
1326
1327 reg &= ~DTO_MASK;
1328 reg |= dto << DTO_SHIFT;
1329 OMAP_HSMMC_WRITE(host->base, SYSCTL, reg);
1330}
1331
1332static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host)
1333{
1334 struct mmc_request *req = host->mrq;
1335 struct dma_chan *chan;
1336
1337 if (!req->data)
1338 return;
1339 OMAP_HSMMC_WRITE(host->base, BLK, (req->data->blksz)
1340 | (req->data->blocks << 16));
1341 set_data_timeout(host, req->data->timeout_ns,
1342 req->data->timeout_clks);
1343 chan = omap_hsmmc_get_dma_chan(host, req->data);
1344 dma_async_issue_pending(chan);
1345}
1346
1347/*
1348 * Configure block length for MMC/SD cards and initiate the transfer.
1349 */
1350static int
1351omap_hsmmc_prepare_data(struct omap_hsmmc_host *host, struct mmc_request *req)
1352{
1353 int ret;
1354 unsigned long long timeout;
1355
1356 host->data = req->data;
1357
1358 if (req->data == NULL) {
1359 OMAP_HSMMC_WRITE(host->base, BLK, 0);
1360 if (req->cmd->flags & MMC_RSP_BUSY) {
1361 timeout = req->cmd->busy_timeout * NSEC_PER_MSEC;
1362
1363 /*
1364 * Set an arbitrary 100ms data timeout for commands with
1365 * busy signal and no indication of busy_timeout.
1366 */
1367 if (!timeout)
1368 timeout = 100000000U;
1369
1370 set_data_timeout(host, timeout, 0);
1371 }
1372 return 0;
1373 }
1374
1375 if (host->use_dma) {
1376 ret = omap_hsmmc_setup_dma_transfer(host, req);
1377 if (ret != 0) {
1378 dev_err(mmc_dev(host->mmc), "MMC start dma failure\n");
1379 return ret;
1380 }
1381 }
1382 return 0;
1383}
1384
1385static void omap_hsmmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq,
1386 int err)
1387{
1388 struct omap_hsmmc_host *host = mmc_priv(mmc);
1389 struct mmc_data *data = mrq->data;
1390
1391 if (host->use_dma && data->host_cookie) {
1392 struct dma_chan *c = omap_hsmmc_get_dma_chan(host, data);
1393
1394 dma_unmap_sg(c->device->dev, data->sg, data->sg_len,
1395 mmc_get_dma_dir(data));
1396 data->host_cookie = 0;
1397 }
1398}
1399
1400static void omap_hsmmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq)
1401{
1402 struct omap_hsmmc_host *host = mmc_priv(mmc);
1403
1404 if (mrq->data->host_cookie) {
1405 mrq->data->host_cookie = 0;
1406 return ;
1407 }
1408
1409 if (host->use_dma) {
1410 struct dma_chan *c = omap_hsmmc_get_dma_chan(host, mrq->data);
1411
1412 if (omap_hsmmc_pre_dma_transfer(host, mrq->data,
1413 &host->next_data, c))
1414 mrq->data->host_cookie = 0;
1415 }
1416}
1417
1418/*
1419 * Request function. for read/write operation
1420 */
1421static void omap_hsmmc_request(struct mmc_host *mmc, struct mmc_request *req)
1422{
1423 struct omap_hsmmc_host *host = mmc_priv(mmc);
1424 int err;
1425
1426 BUG_ON(host->req_in_progress);
1427 BUG_ON(host->dma_ch != -1);
1428 if (host->reqs_blocked)
1429 host->reqs_blocked = 0;
1430 WARN_ON(host->mrq != NULL);
1431 host->mrq = req;
1432 host->clk_rate = clk_get_rate(host->fclk);
1433 err = omap_hsmmc_prepare_data(host, req);
1434 if (err) {
1435 req->cmd->error = err;
1436 if (req->data)
1437 req->data->error = err;
1438 host->mrq = NULL;
1439 mmc_request_done(mmc, req);
1440 return;
1441 }
1442 if (req->sbc && !(host->flags & AUTO_CMD23)) {
1443 omap_hsmmc_start_command(host, req->sbc, NULL);
1444 return;
1445 }
1446
1447 omap_hsmmc_start_dma_transfer(host);
1448 omap_hsmmc_start_command(host, req->cmd, req->data);
1449}
1450
1451/* Routine to configure clock values. Exposed API to core */
1452static void omap_hsmmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1453{
1454 struct omap_hsmmc_host *host = mmc_priv(mmc);
1455 int do_send_init_stream = 0;
1456
1457 if (ios->power_mode != host->power_mode) {
1458 switch (ios->power_mode) {
1459 case MMC_POWER_OFF:
1460 omap_hsmmc_set_power(host, 0);
1461 break;
1462 case MMC_POWER_UP:
1463 omap_hsmmc_set_power(host, 1);
1464 break;
1465 case MMC_POWER_ON:
1466 do_send_init_stream = 1;
1467 break;
1468 }
1469 host->power_mode = ios->power_mode;
1470 }
1471
1472 /* FIXME: set registers based only on changes to ios */
1473
1474 omap_hsmmc_set_bus_width(host);
1475
1476 if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
1477 /* Only MMC1 can interface at 3V without some flavor
1478 * of external transceiver; but they all handle 1.8V.
1479 */
1480 if ((OMAP_HSMMC_READ(host->base, HCTL) & SDVSDET) &&
1481 (ios->vdd == DUAL_VOLT_OCR_BIT)) {
1482 /*
1483 * The mmc_select_voltage fn of the core does
1484 * not seem to set the power_mode to
1485 * MMC_POWER_UP upon recalculating the voltage.
1486 * vdd 1.8v.
1487 */
1488 if (omap_hsmmc_switch_opcond(host, ios->vdd) != 0)
1489 dev_dbg(mmc_dev(host->mmc),
1490 "Switch operation failed\n");
1491 }
1492 }
1493
1494 omap_hsmmc_set_clock(host);
1495
1496 if (do_send_init_stream)
1497 send_init_stream(host);
1498
1499 omap_hsmmc_set_bus_mode(host);
1500}
1501
1502static void omap_hsmmc_enable_sdio_irq(struct mmc_host *mmc, int enable)
1503{
1504 struct omap_hsmmc_host *host = mmc_priv(mmc);
1505 u32 irq_mask, con;
1506 unsigned long flags;
1507
1508 spin_lock_irqsave(&host->irq_lock, flags);
1509
1510 con = OMAP_HSMMC_READ(host->base, CON);
1511 irq_mask = OMAP_HSMMC_READ(host->base, ISE);
1512 if (enable) {
1513 host->flags |= HSMMC_SDIO_IRQ_ENABLED;
1514 irq_mask |= CIRQ_EN;
1515 con |= CTPL | CLKEXTFREE;
1516 } else {
1517 host->flags &= ~HSMMC_SDIO_IRQ_ENABLED;
1518 irq_mask &= ~CIRQ_EN;
1519 con &= ~(CTPL | CLKEXTFREE);
1520 }
1521 OMAP_HSMMC_WRITE(host->base, CON, con);
1522 OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
1523
1524 /*
1525 * if enable, piggy back detection on current request
1526 * but always disable immediately
1527 */
1528 if (!host->req_in_progress || !enable)
1529 OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
1530
1531 /* flush posted write */
1532 OMAP_HSMMC_READ(host->base, IE);
1533
1534 spin_unlock_irqrestore(&host->irq_lock, flags);
1535}
1536
1537static int omap_hsmmc_configure_wake_irq(struct omap_hsmmc_host *host)
1538{
1539 int ret;
1540
1541 /*
1542 * For omaps with wake-up path, wakeirq will be irq from pinctrl and
1543 * for other omaps, wakeirq will be from GPIO (dat line remuxed to
1544 * gpio). wakeirq is needed to detect sdio irq in runtime suspend state
1545 * with functional clock disabled.
1546 */
1547 if (!host->dev->of_node || !host->wake_irq)
1548 return -ENODEV;
1549
1550 ret = dev_pm_set_dedicated_wake_irq(host->dev, host->wake_irq);
1551 if (ret) {
1552 dev_err(mmc_dev(host->mmc), "Unable to request wake IRQ\n");
1553 goto err;
1554 }
1555
1556 /*
1557 * Some omaps don't have wake-up path from deeper idle states
1558 * and need to remux SDIO DAT1 to GPIO for wake-up from idle.
1559 */
1560 if (host->pdata->controller_flags & OMAP_HSMMC_SWAKEUP_MISSING) {
1561 struct pinctrl *p = devm_pinctrl_get(host->dev);
1562 if (IS_ERR(p)) {
1563 ret = PTR_ERR(p);
1564 goto err_free_irq;
1565 }
1566
1567 if (IS_ERR(pinctrl_lookup_state(p, PINCTRL_STATE_IDLE))) {
1568 dev_info(host->dev, "missing idle pinctrl state\n");
1569 devm_pinctrl_put(p);
1570 ret = -EINVAL;
1571 goto err_free_irq;
1572 }
1573 devm_pinctrl_put(p);
1574 }
1575
1576 OMAP_HSMMC_WRITE(host->base, HCTL,
1577 OMAP_HSMMC_READ(host->base, HCTL) | IWE);
1578 return 0;
1579
1580err_free_irq:
1581 dev_pm_clear_wake_irq(host->dev);
1582err:
1583 dev_warn(host->dev, "no SDIO IRQ support, falling back to polling\n");
1584 host->wake_irq = 0;
1585 return ret;
1586}
1587
1588static void omap_hsmmc_conf_bus_power(struct omap_hsmmc_host *host)
1589{
1590 u32 hctl, capa, value;
1591
1592 /* Only MMC1 supports 3.0V */
1593 if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
1594 hctl = SDVS30;
1595 capa = VS30 | VS18;
1596 } else {
1597 hctl = SDVS18;
1598 capa = VS18;
1599 }
1600
1601 value = OMAP_HSMMC_READ(host->base, HCTL) & ~SDVS_MASK;
1602 OMAP_HSMMC_WRITE(host->base, HCTL, value | hctl);
1603
1604 value = OMAP_HSMMC_READ(host->base, CAPA);
1605 OMAP_HSMMC_WRITE(host->base, CAPA, value | capa);
1606
1607 /* Set SD bus power bit */
1608 set_sd_bus_power(host);
1609}
1610
1611static int omap_hsmmc_multi_io_quirk(struct mmc_card *card,
1612 unsigned int direction, int blk_size)
1613{
1614 /* This controller can't do multiblock reads due to hw bugs */
1615 if (direction == MMC_DATA_READ)
1616 return 1;
1617
1618 return blk_size;
1619}
1620
1621static struct mmc_host_ops omap_hsmmc_ops = {
1622 .post_req = omap_hsmmc_post_req,
1623 .pre_req = omap_hsmmc_pre_req,
1624 .request = omap_hsmmc_request,
1625 .set_ios = omap_hsmmc_set_ios,
1626 .get_cd = mmc_gpio_get_cd,
1627 .get_ro = mmc_gpio_get_ro,
1628 .enable_sdio_irq = omap_hsmmc_enable_sdio_irq,
1629};
1630
1631#ifdef CONFIG_DEBUG_FS
1632
1633static int mmc_regs_show(struct seq_file *s, void *data)
1634{
1635 struct mmc_host *mmc = s->private;
1636 struct omap_hsmmc_host *host = mmc_priv(mmc);
1637
1638 seq_printf(s, "mmc%d:\n", mmc->index);
1639 seq_printf(s, "sdio irq mode\t%s\n",
1640 (mmc->caps & MMC_CAP_SDIO_IRQ) ? "interrupt" : "polling");
1641
1642 if (mmc->caps & MMC_CAP_SDIO_IRQ) {
1643 seq_printf(s, "sdio irq \t%s\n",
1644 (host->flags & HSMMC_SDIO_IRQ_ENABLED) ? "enabled"
1645 : "disabled");
1646 }
1647 seq_printf(s, "ctx_loss:\t%d\n", host->context_loss);
1648
1649 pm_runtime_get_sync(host->dev);
1650 seq_puts(s, "\nregs:\n");
1651 seq_printf(s, "CON:\t\t0x%08x\n",
1652 OMAP_HSMMC_READ(host->base, CON));
1653 seq_printf(s, "PSTATE:\t\t0x%08x\n",
1654 OMAP_HSMMC_READ(host->base, PSTATE));
1655 seq_printf(s, "HCTL:\t\t0x%08x\n",
1656 OMAP_HSMMC_READ(host->base, HCTL));
1657 seq_printf(s, "SYSCTL:\t\t0x%08x\n",
1658 OMAP_HSMMC_READ(host->base, SYSCTL));
1659 seq_printf(s, "IE:\t\t0x%08x\n",
1660 OMAP_HSMMC_READ(host->base, IE));
1661 seq_printf(s, "ISE:\t\t0x%08x\n",
1662 OMAP_HSMMC_READ(host->base, ISE));
1663 seq_printf(s, "CAPA:\t\t0x%08x\n",
1664 OMAP_HSMMC_READ(host->base, CAPA));
1665
1666 pm_runtime_mark_last_busy(host->dev);
1667 pm_runtime_put_autosuspend(host->dev);
1668
1669 return 0;
1670}
1671
1672DEFINE_SHOW_ATTRIBUTE(mmc_regs);
1673
1674static void omap_hsmmc_debugfs(struct mmc_host *mmc)
1675{
1676 if (mmc->debugfs_root)
1677 debugfs_create_file("regs", S_IRUSR, mmc->debugfs_root,
1678 mmc, &mmc_regs_fops);
1679}
1680
1681#else
1682
1683static void omap_hsmmc_debugfs(struct mmc_host *mmc)
1684{
1685}
1686
1687#endif
1688
1689#ifdef CONFIG_OF
1690static const struct omap_mmc_of_data omap3_pre_es3_mmc_of_data = {
1691 /* See 35xx errata 2.1.1.128 in SPRZ278F */
1692 .controller_flags = OMAP_HSMMC_BROKEN_MULTIBLOCK_READ,
1693};
1694
1695static const struct omap_mmc_of_data omap4_mmc_of_data = {
1696 .reg_offset = 0x100,
1697};
1698static const struct omap_mmc_of_data am33xx_mmc_of_data = {
1699 .reg_offset = 0x100,
1700 .controller_flags = OMAP_HSMMC_SWAKEUP_MISSING,
1701};
1702
1703static const struct of_device_id omap_mmc_of_match[] = {
1704 {
1705 .compatible = "ti,omap2-hsmmc",
1706 },
1707 {
1708 .compatible = "ti,omap3-pre-es3-hsmmc",
1709 .data = &omap3_pre_es3_mmc_of_data,
1710 },
1711 {
1712 .compatible = "ti,omap3-hsmmc",
1713 },
1714 {
1715 .compatible = "ti,omap4-hsmmc",
1716 .data = &omap4_mmc_of_data,
1717 },
1718 {
1719 .compatible = "ti,am33xx-hsmmc",
1720 .data = &am33xx_mmc_of_data,
1721 },
1722 {},
1723};
1724MODULE_DEVICE_TABLE(of, omap_mmc_of_match);
1725
1726static struct omap_hsmmc_platform_data *of_get_hsmmc_pdata(struct device *dev)
1727{
1728 struct omap_hsmmc_platform_data *pdata, *legacy;
1729 struct device_node *np = dev->of_node;
1730
1731 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1732 if (!pdata)
1733 return ERR_PTR(-ENOMEM); /* out of memory */
1734
1735 legacy = dev_get_platdata(dev);
1736 if (legacy && legacy->name)
1737 pdata->name = legacy->name;
1738
1739 if (of_find_property(np, "ti,dual-volt", NULL))
1740 pdata->controller_flags |= OMAP_HSMMC_SUPPORTS_DUAL_VOLT;
1741
1742 if (of_find_property(np, "ti,non-removable", NULL)) {
1743 pdata->nonremovable = true;
1744 pdata->no_regulator_off_init = true;
1745 }
1746
1747 if (of_find_property(np, "ti,needs-special-reset", NULL))
1748 pdata->features |= HSMMC_HAS_UPDATED_RESET;
1749
1750 if (of_find_property(np, "ti,needs-special-hs-handling", NULL))
1751 pdata->features |= HSMMC_HAS_HSPE_SUPPORT;
1752
1753 return pdata;
1754}
1755#else
1756static inline struct omap_hsmmc_platform_data
1757 *of_get_hsmmc_pdata(struct device *dev)
1758{
1759 return ERR_PTR(-EINVAL);
1760}
1761#endif
1762
1763static int omap_hsmmc_probe(struct platform_device *pdev)
1764{
1765 struct omap_hsmmc_platform_data *pdata = pdev->dev.platform_data;
1766 struct mmc_host *mmc;
1767 struct omap_hsmmc_host *host = NULL;
1768 struct resource *res;
1769 int ret, irq;
1770 const struct of_device_id *match;
1771 const struct omap_mmc_of_data *data;
1772 void __iomem *base;
1773
1774 match = of_match_device(of_match_ptr(omap_mmc_of_match), &pdev->dev);
1775 if (match) {
1776 pdata = of_get_hsmmc_pdata(&pdev->dev);
1777
1778 if (IS_ERR(pdata))
1779 return PTR_ERR(pdata);
1780
1781 if (match->data) {
1782 data = match->data;
1783 pdata->reg_offset = data->reg_offset;
1784 pdata->controller_flags |= data->controller_flags;
1785 }
1786 }
1787
1788 if (pdata == NULL) {
1789 dev_err(&pdev->dev, "Platform Data is missing\n");
1790 return -ENXIO;
1791 }
1792
1793 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1794 irq = platform_get_irq(pdev, 0);
1795 if (res == NULL || irq < 0)
1796 return -ENXIO;
1797
1798 base = devm_ioremap_resource(&pdev->dev, res);
1799 if (IS_ERR(base))
1800 return PTR_ERR(base);
1801
1802 mmc = mmc_alloc_host(sizeof(struct omap_hsmmc_host), &pdev->dev);
1803 if (!mmc) {
1804 ret = -ENOMEM;
1805 goto err;
1806 }
1807
1808 ret = mmc_of_parse(mmc);
1809 if (ret)
1810 goto err1;
1811
1812 host = mmc_priv(mmc);
1813 host->mmc = mmc;
1814 host->pdata = pdata;
1815 host->dev = &pdev->dev;
1816 host->use_dma = 1;
1817 host->dma_ch = -1;
1818 host->irq = irq;
1819 host->mapbase = res->start + pdata->reg_offset;
1820 host->base = base + pdata->reg_offset;
1821 host->power_mode = MMC_POWER_OFF;
1822 host->next_data.cookie = 1;
1823 host->pbias_enabled = false;
1824 host->vqmmc_enabled = false;
1825
1826 platform_set_drvdata(pdev, host);
1827
1828 if (pdev->dev.of_node)
1829 host->wake_irq = irq_of_parse_and_map(pdev->dev.of_node, 1);
1830
1831 mmc->ops = &omap_hsmmc_ops;
1832
1833 mmc->f_min = OMAP_MMC_MIN_CLOCK;
1834
1835 if (pdata->max_freq > 0)
1836 mmc->f_max = pdata->max_freq;
1837 else if (mmc->f_max == 0)
1838 mmc->f_max = OMAP_MMC_MAX_CLOCK;
1839
1840 spin_lock_init(&host->irq_lock);
1841
1842 host->fclk = devm_clk_get(&pdev->dev, "fck");
1843 if (IS_ERR(host->fclk)) {
1844 ret = PTR_ERR(host->fclk);
1845 host->fclk = NULL;
1846 goto err1;
1847 }
1848
1849 if (host->pdata->controller_flags & OMAP_HSMMC_BROKEN_MULTIBLOCK_READ) {
1850 dev_info(&pdev->dev, "multiblock reads disabled due to 35xx erratum 2.1.1.128; MMC read performance may suffer\n");
1851 omap_hsmmc_ops.multi_io_quirk = omap_hsmmc_multi_io_quirk;
1852 }
1853
1854 device_init_wakeup(&pdev->dev, true);
1855 pm_runtime_enable(host->dev);
1856 pm_runtime_get_sync(host->dev);
1857 pm_runtime_set_autosuspend_delay(host->dev, MMC_AUTOSUSPEND_DELAY);
1858 pm_runtime_use_autosuspend(host->dev);
1859
1860 omap_hsmmc_context_save(host);
1861
1862 host->dbclk = devm_clk_get(&pdev->dev, "mmchsdb_fck");
1863 /*
1864 * MMC can still work without debounce clock.
1865 */
1866 if (IS_ERR(host->dbclk)) {
1867 host->dbclk = NULL;
1868 } else if (clk_prepare_enable(host->dbclk) != 0) {
1869 dev_warn(mmc_dev(host->mmc), "Failed to enable debounce clk\n");
1870 host->dbclk = NULL;
1871 }
1872
1873 /* Set this to a value that allows allocating an entire descriptor
1874 * list within a page (zero order allocation). */
1875 mmc->max_segs = 64;
1876
1877 mmc->max_blk_size = 512; /* Block Length at max can be 1024 */
1878 mmc->max_blk_count = 0xFFFF; /* No. of Blocks is 16 bits */
1879 mmc->max_req_size = mmc->max_blk_size * mmc->max_blk_count;
1880
1881 mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED |
1882 MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_CMD23;
1883
1884 mmc->caps |= mmc_pdata(host)->caps;
1885 if (mmc->caps & MMC_CAP_8_BIT_DATA)
1886 mmc->caps |= MMC_CAP_4_BIT_DATA;
1887
1888 if (mmc_pdata(host)->nonremovable)
1889 mmc->caps |= MMC_CAP_NONREMOVABLE;
1890
1891 mmc->pm_caps |= mmc_pdata(host)->pm_caps;
1892
1893 omap_hsmmc_conf_bus_power(host);
1894
1895 host->rx_chan = dma_request_chan(&pdev->dev, "rx");
1896 if (IS_ERR(host->rx_chan)) {
1897 dev_err(mmc_dev(host->mmc), "RX DMA channel request failed\n");
1898 ret = PTR_ERR(host->rx_chan);
1899 goto err_irq;
1900 }
1901
1902 host->tx_chan = dma_request_chan(&pdev->dev, "tx");
1903 if (IS_ERR(host->tx_chan)) {
1904 dev_err(mmc_dev(host->mmc), "TX DMA channel request failed\n");
1905 ret = PTR_ERR(host->tx_chan);
1906 goto err_irq;
1907 }
1908
1909 /*
1910 * Limit the maximum segment size to the lower of the request size
1911 * and the DMA engine device segment size limits. In reality, with
1912 * 32-bit transfers, the DMA engine can do longer segments than this
1913 * but there is no way to represent that in the DMA model - if we
1914 * increase this figure here, we get warnings from the DMA API debug.
1915 */
1916 mmc->max_seg_size = min3(mmc->max_req_size,
1917 dma_get_max_seg_size(host->rx_chan->device->dev),
1918 dma_get_max_seg_size(host->tx_chan->device->dev));
1919
1920 /* Request IRQ for MMC operations */
1921 ret = devm_request_irq(&pdev->dev, host->irq, omap_hsmmc_irq, 0,
1922 mmc_hostname(mmc), host);
1923 if (ret) {
1924 dev_err(mmc_dev(host->mmc), "Unable to grab HSMMC IRQ\n");
1925 goto err_irq;
1926 }
1927
1928 ret = omap_hsmmc_reg_get(host);
1929 if (ret)
1930 goto err_irq;
1931
1932 if (!mmc->ocr_avail)
1933 mmc->ocr_avail = mmc_pdata(host)->ocr_mask;
1934
1935 omap_hsmmc_disable_irq(host);
1936
1937 /*
1938 * For now, only support SDIO interrupt if we have a separate
1939 * wake-up interrupt configured from device tree. This is because
1940 * the wake-up interrupt is needed for idle state and some
1941 * platforms need special quirks. And we don't want to add new
1942 * legacy mux platform init code callbacks any longer as we
1943 * are moving to DT based booting anyways.
1944 */
1945 ret = omap_hsmmc_configure_wake_irq(host);
1946 if (!ret)
1947 mmc->caps |= MMC_CAP_SDIO_IRQ;
1948
1949 ret = mmc_add_host(mmc);
1950 if (ret)
1951 goto err_irq;
1952
1953 if (mmc_pdata(host)->name != NULL) {
1954 ret = device_create_file(&mmc->class_dev, &dev_attr_slot_name);
1955 if (ret < 0)
1956 goto err_slot_name;
1957 }
1958
1959 omap_hsmmc_debugfs(mmc);
1960 pm_runtime_mark_last_busy(host->dev);
1961 pm_runtime_put_autosuspend(host->dev);
1962
1963 return 0;
1964
1965err_slot_name:
1966 mmc_remove_host(mmc);
1967err_irq:
1968 device_init_wakeup(&pdev->dev, false);
1969 if (!IS_ERR_OR_NULL(host->tx_chan))
1970 dma_release_channel(host->tx_chan);
1971 if (!IS_ERR_OR_NULL(host->rx_chan))
1972 dma_release_channel(host->rx_chan);
1973 pm_runtime_dont_use_autosuspend(host->dev);
1974 pm_runtime_put_sync(host->dev);
1975 pm_runtime_disable(host->dev);
1976 clk_disable_unprepare(host->dbclk);
1977err1:
1978 mmc_free_host(mmc);
1979err:
1980 return ret;
1981}
1982
1983static int omap_hsmmc_remove(struct platform_device *pdev)
1984{
1985 struct omap_hsmmc_host *host = platform_get_drvdata(pdev);
1986
1987 pm_runtime_get_sync(host->dev);
1988 mmc_remove_host(host->mmc);
1989
1990 dma_release_channel(host->tx_chan);
1991 dma_release_channel(host->rx_chan);
1992
1993 dev_pm_clear_wake_irq(host->dev);
1994 pm_runtime_dont_use_autosuspend(host->dev);
1995 pm_runtime_put_sync(host->dev);
1996 pm_runtime_disable(host->dev);
1997 device_init_wakeup(&pdev->dev, false);
1998 clk_disable_unprepare(host->dbclk);
1999
2000 mmc_free_host(host->mmc);
2001
2002 return 0;
2003}
2004
2005#ifdef CONFIG_PM_SLEEP
2006static int omap_hsmmc_suspend(struct device *dev)
2007{
2008 struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2009
2010 if (!host)
2011 return 0;
2012
2013 pm_runtime_get_sync(host->dev);
2014
2015 if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER)) {
2016 OMAP_HSMMC_WRITE(host->base, ISE, 0);
2017 OMAP_HSMMC_WRITE(host->base, IE, 0);
2018 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2019 OMAP_HSMMC_WRITE(host->base, HCTL,
2020 OMAP_HSMMC_READ(host->base, HCTL) & ~SDBP);
2021 }
2022
2023 clk_disable_unprepare(host->dbclk);
2024
2025 pm_runtime_put_sync(host->dev);
2026 return 0;
2027}
2028
2029/* Routine to resume the MMC device */
2030static int omap_hsmmc_resume(struct device *dev)
2031{
2032 struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2033
2034 if (!host)
2035 return 0;
2036
2037 pm_runtime_get_sync(host->dev);
2038
2039 clk_prepare_enable(host->dbclk);
2040
2041 if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER))
2042 omap_hsmmc_conf_bus_power(host);
2043
2044 pm_runtime_mark_last_busy(host->dev);
2045 pm_runtime_put_autosuspend(host->dev);
2046 return 0;
2047}
2048#endif
2049
2050#ifdef CONFIG_PM
2051static int omap_hsmmc_runtime_suspend(struct device *dev)
2052{
2053 struct omap_hsmmc_host *host;
2054 unsigned long flags;
2055 int ret = 0;
2056
2057 host = dev_get_drvdata(dev);
2058 omap_hsmmc_context_save(host);
2059 dev_dbg(dev, "disabled\n");
2060
2061 spin_lock_irqsave(&host->irq_lock, flags);
2062 if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
2063 (host->flags & HSMMC_SDIO_IRQ_ENABLED)) {
2064 /* disable sdio irq handling to prevent race */
2065 OMAP_HSMMC_WRITE(host->base, ISE, 0);
2066 OMAP_HSMMC_WRITE(host->base, IE, 0);
2067
2068 if (!(OMAP_HSMMC_READ(host->base, PSTATE) & DLEV_DAT(1))) {
2069 /*
2070 * dat1 line low, pending sdio irq
2071 * race condition: possible irq handler running on
2072 * multi-core, abort
2073 */
2074 dev_dbg(dev, "pending sdio irq, abort suspend\n");
2075 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2076 OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN);
2077 OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN);
2078 pm_runtime_mark_last_busy(dev);
2079 ret = -EBUSY;
2080 goto abort;
2081 }
2082
2083 pinctrl_pm_select_idle_state(dev);
2084 } else {
2085 pinctrl_pm_select_idle_state(dev);
2086 }
2087
2088abort:
2089 spin_unlock_irqrestore(&host->irq_lock, flags);
2090 return ret;
2091}
2092
2093static int omap_hsmmc_runtime_resume(struct device *dev)
2094{
2095 struct omap_hsmmc_host *host;
2096 unsigned long flags;
2097
2098 host = dev_get_drvdata(dev);
2099 omap_hsmmc_context_restore(host);
2100 dev_dbg(dev, "enabled\n");
2101
2102 spin_lock_irqsave(&host->irq_lock, flags);
2103 if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
2104 (host->flags & HSMMC_SDIO_IRQ_ENABLED)) {
2105
2106 pinctrl_select_default_state(host->dev);
2107
2108 /* irq lost, if pinmux incorrect */
2109 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2110 OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN);
2111 OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN);
2112 } else {
2113 pinctrl_select_default_state(host->dev);
2114 }
2115 spin_unlock_irqrestore(&host->irq_lock, flags);
2116 return 0;
2117}
2118#endif
2119
2120static const struct dev_pm_ops omap_hsmmc_dev_pm_ops = {
2121 SET_SYSTEM_SLEEP_PM_OPS(omap_hsmmc_suspend, omap_hsmmc_resume)
2122 SET_RUNTIME_PM_OPS(omap_hsmmc_runtime_suspend, omap_hsmmc_runtime_resume, NULL)
2123};
2124
2125static struct platform_driver omap_hsmmc_driver = {
2126 .probe = omap_hsmmc_probe,
2127 .remove = omap_hsmmc_remove,
2128 .driver = {
2129 .name = DRIVER_NAME,
2130 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
2131 .pm = &omap_hsmmc_dev_pm_ops,
2132 .of_match_table = of_match_ptr(omap_mmc_of_match),
2133 },
2134};
2135
2136module_platform_driver(omap_hsmmc_driver);
2137MODULE_DESCRIPTION("OMAP High Speed Multimedia Card driver");
2138MODULE_LICENSE("GPL");
2139MODULE_ALIAS("platform:" DRIVER_NAME);
2140MODULE_AUTHOR("Texas Instruments Inc");
1/*
2 * drivers/mmc/host/omap_hsmmc.c
3 *
4 * Driver for OMAP2430/3430 MMC controller.
5 *
6 * Copyright (C) 2007 Texas Instruments.
7 *
8 * Authors:
9 * Syed Mohammed Khasim <x0khasim@ti.com>
10 * Madhusudhan <madhu.cr@ti.com>
11 * Mohit Jalori <mjalori@ti.com>
12 *
13 * This file is licensed under the terms of the GNU General Public License
14 * version 2. This program is licensed "as is" without any warranty of any
15 * kind, whether express or implied.
16 */
17
18#include <linux/module.h>
19#include <linux/init.h>
20#include <linux/kernel.h>
21#include <linux/debugfs.h>
22#include <linux/seq_file.h>
23#include <linux/interrupt.h>
24#include <linux/delay.h>
25#include <linux/dma-mapping.h>
26#include <linux/platform_device.h>
27#include <linux/timer.h>
28#include <linux/clk.h>
29#include <linux/of.h>
30#include <linux/of_gpio.h>
31#include <linux/of_device.h>
32#include <linux/mmc/host.h>
33#include <linux/mmc/core.h>
34#include <linux/mmc/mmc.h>
35#include <linux/io.h>
36#include <linux/semaphore.h>
37#include <linux/gpio.h>
38#include <linux/regulator/consumer.h>
39#include <linux/pm_runtime.h>
40#include <plat/dma.h>
41#include <mach/hardware.h>
42#include <plat/board.h>
43#include <plat/mmc.h>
44#include <plat/cpu.h>
45
46/* OMAP HSMMC Host Controller Registers */
47#define OMAP_HSMMC_SYSCONFIG 0x0010
48#define OMAP_HSMMC_SYSSTATUS 0x0014
49#define OMAP_HSMMC_CON 0x002C
50#define OMAP_HSMMC_BLK 0x0104
51#define OMAP_HSMMC_ARG 0x0108
52#define OMAP_HSMMC_CMD 0x010C
53#define OMAP_HSMMC_RSP10 0x0110
54#define OMAP_HSMMC_RSP32 0x0114
55#define OMAP_HSMMC_RSP54 0x0118
56#define OMAP_HSMMC_RSP76 0x011C
57#define OMAP_HSMMC_DATA 0x0120
58#define OMAP_HSMMC_HCTL 0x0128
59#define OMAP_HSMMC_SYSCTL 0x012C
60#define OMAP_HSMMC_STAT 0x0130
61#define OMAP_HSMMC_IE 0x0134
62#define OMAP_HSMMC_ISE 0x0138
63#define OMAP_HSMMC_CAPA 0x0140
64
65#define VS18 (1 << 26)
66#define VS30 (1 << 25)
67#define SDVS18 (0x5 << 9)
68#define SDVS30 (0x6 << 9)
69#define SDVS33 (0x7 << 9)
70#define SDVS_MASK 0x00000E00
71#define SDVSCLR 0xFFFFF1FF
72#define SDVSDET 0x00000400
73#define AUTOIDLE 0x1
74#define SDBP (1 << 8)
75#define DTO 0xe
76#define ICE 0x1
77#define ICS 0x2
78#define CEN (1 << 2)
79#define CLKD_MASK 0x0000FFC0
80#define CLKD_SHIFT 6
81#define DTO_MASK 0x000F0000
82#define DTO_SHIFT 16
83#define INT_EN_MASK 0x307F0033
84#define BWR_ENABLE (1 << 4)
85#define BRR_ENABLE (1 << 5)
86#define DTO_ENABLE (1 << 20)
87#define INIT_STREAM (1 << 1)
88#define DP_SELECT (1 << 21)
89#define DDIR (1 << 4)
90#define DMA_EN 0x1
91#define MSBS (1 << 5)
92#define BCE (1 << 1)
93#define FOUR_BIT (1 << 1)
94#define DDR (1 << 19)
95#define DW8 (1 << 5)
96#define CC 0x1
97#define TC 0x02
98#define OD 0x1
99#define ERR (1 << 15)
100#define CMD_TIMEOUT (1 << 16)
101#define DATA_TIMEOUT (1 << 20)
102#define CMD_CRC (1 << 17)
103#define DATA_CRC (1 << 21)
104#define CARD_ERR (1 << 28)
105#define STAT_CLEAR 0xFFFFFFFF
106#define INIT_STREAM_CMD 0x00000000
107#define DUAL_VOLT_OCR_BIT 7
108#define SRC (1 << 25)
109#define SRD (1 << 26)
110#define SOFTRESET (1 << 1)
111#define RESETDONE (1 << 0)
112
113#define MMC_AUTOSUSPEND_DELAY 100
114#define MMC_TIMEOUT_MS 20
115#define OMAP_MMC_MIN_CLOCK 400000
116#define OMAP_MMC_MAX_CLOCK 52000000
117#define DRIVER_NAME "omap_hsmmc"
118
119/*
120 * One controller can have multiple slots, like on some omap boards using
121 * omap.c controller driver. Luckily this is not currently done on any known
122 * omap_hsmmc.c device.
123 */
124#define mmc_slot(host) (host->pdata->slots[host->slot_id])
125
126/*
127 * MMC Host controller read/write API's
128 */
129#define OMAP_HSMMC_READ(base, reg) \
130 __raw_readl((base) + OMAP_HSMMC_##reg)
131
132#define OMAP_HSMMC_WRITE(base, reg, val) \
133 __raw_writel((val), (base) + OMAP_HSMMC_##reg)
134
135struct omap_hsmmc_next {
136 unsigned int dma_len;
137 s32 cookie;
138};
139
140struct omap_hsmmc_host {
141 struct device *dev;
142 struct mmc_host *mmc;
143 struct mmc_request *mrq;
144 struct mmc_command *cmd;
145 struct mmc_data *data;
146 struct clk *fclk;
147 struct clk *dbclk;
148 /*
149 * vcc == configured supply
150 * vcc_aux == optional
151 * - MMC1, supply for DAT4..DAT7
152 * - MMC2/MMC2, external level shifter voltage supply, for
153 * chip (SDIO, eMMC, etc) or transceiver (MMC2 only)
154 */
155 struct regulator *vcc;
156 struct regulator *vcc_aux;
157 void __iomem *base;
158 resource_size_t mapbase;
159 spinlock_t irq_lock; /* Prevent races with irq handler */
160 unsigned int dma_len;
161 unsigned int dma_sg_idx;
162 unsigned char bus_mode;
163 unsigned char power_mode;
164 u32 *buffer;
165 u32 bytesleft;
166 int suspended;
167 int irq;
168 int use_dma, dma_ch;
169 int dma_line_tx, dma_line_rx;
170 int slot_id;
171 int response_busy;
172 int context_loss;
173 int vdd;
174 int protect_card;
175 int reqs_blocked;
176 int use_reg;
177 int req_in_progress;
178 struct omap_hsmmc_next next_data;
179
180 struct omap_mmc_platform_data *pdata;
181};
182
183static int omap_hsmmc_card_detect(struct device *dev, int slot)
184{
185 struct omap_mmc_platform_data *mmc = dev->platform_data;
186
187 /* NOTE: assumes card detect signal is active-low */
188 return !gpio_get_value_cansleep(mmc->slots[0].switch_pin);
189}
190
191static int omap_hsmmc_get_wp(struct device *dev, int slot)
192{
193 struct omap_mmc_platform_data *mmc = dev->platform_data;
194
195 /* NOTE: assumes write protect signal is active-high */
196 return gpio_get_value_cansleep(mmc->slots[0].gpio_wp);
197}
198
199static int omap_hsmmc_get_cover_state(struct device *dev, int slot)
200{
201 struct omap_mmc_platform_data *mmc = dev->platform_data;
202
203 /* NOTE: assumes card detect signal is active-low */
204 return !gpio_get_value_cansleep(mmc->slots[0].switch_pin);
205}
206
207#ifdef CONFIG_PM
208
209static int omap_hsmmc_suspend_cdirq(struct device *dev, int slot)
210{
211 struct omap_mmc_platform_data *mmc = dev->platform_data;
212
213 disable_irq(mmc->slots[0].card_detect_irq);
214 return 0;
215}
216
217static int omap_hsmmc_resume_cdirq(struct device *dev, int slot)
218{
219 struct omap_mmc_platform_data *mmc = dev->platform_data;
220
221 enable_irq(mmc->slots[0].card_detect_irq);
222 return 0;
223}
224
225#else
226
227#define omap_hsmmc_suspend_cdirq NULL
228#define omap_hsmmc_resume_cdirq NULL
229
230#endif
231
232#ifdef CONFIG_REGULATOR
233
234static int omap_hsmmc_set_power(struct device *dev, int slot, int power_on,
235 int vdd)
236{
237 struct omap_hsmmc_host *host =
238 platform_get_drvdata(to_platform_device(dev));
239 int ret = 0;
240
241 /*
242 * If we don't see a Vcc regulator, assume it's a fixed
243 * voltage always-on regulator.
244 */
245 if (!host->vcc)
246 return 0;
247 /*
248 * With DT, never turn OFF the regulator. This is because
249 * the pbias cell programming support is still missing when
250 * booting with Device tree
251 */
252 if (dev->of_node && !vdd)
253 return 0;
254
255 if (mmc_slot(host).before_set_reg)
256 mmc_slot(host).before_set_reg(dev, slot, power_on, vdd);
257
258 /*
259 * Assume Vcc regulator is used only to power the card ... OMAP
260 * VDDS is used to power the pins, optionally with a transceiver to
261 * support cards using voltages other than VDDS (1.8V nominal). When a
262 * transceiver is used, DAT3..7 are muxed as transceiver control pins.
263 *
264 * In some cases this regulator won't support enable/disable;
265 * e.g. it's a fixed rail for a WLAN chip.
266 *
267 * In other cases vcc_aux switches interface power. Example, for
268 * eMMC cards it represents VccQ. Sometimes transceivers or SDIO
269 * chips/cards need an interface voltage rail too.
270 */
271 if (power_on) {
272 ret = mmc_regulator_set_ocr(host->mmc, host->vcc, vdd);
273 /* Enable interface voltage rail, if needed */
274 if (ret == 0 && host->vcc_aux) {
275 ret = regulator_enable(host->vcc_aux);
276 if (ret < 0)
277 ret = mmc_regulator_set_ocr(host->mmc,
278 host->vcc, 0);
279 }
280 } else {
281 /* Shut down the rail */
282 if (host->vcc_aux)
283 ret = regulator_disable(host->vcc_aux);
284 if (!ret) {
285 /* Then proceed to shut down the local regulator */
286 ret = mmc_regulator_set_ocr(host->mmc,
287 host->vcc, 0);
288 }
289 }
290
291 if (mmc_slot(host).after_set_reg)
292 mmc_slot(host).after_set_reg(dev, slot, power_on, vdd);
293
294 return ret;
295}
296
297static int omap_hsmmc_reg_get(struct omap_hsmmc_host *host)
298{
299 struct regulator *reg;
300 int ocr_value = 0;
301
302 mmc_slot(host).set_power = omap_hsmmc_set_power;
303
304 reg = regulator_get(host->dev, "vmmc");
305 if (IS_ERR(reg)) {
306 dev_dbg(host->dev, "vmmc regulator missing\n");
307 } else {
308 host->vcc = reg;
309 ocr_value = mmc_regulator_get_ocrmask(reg);
310 if (!mmc_slot(host).ocr_mask) {
311 mmc_slot(host).ocr_mask = ocr_value;
312 } else {
313 if (!(mmc_slot(host).ocr_mask & ocr_value)) {
314 dev_err(host->dev, "ocrmask %x is not supported\n",
315 mmc_slot(host).ocr_mask);
316 mmc_slot(host).ocr_mask = 0;
317 return -EINVAL;
318 }
319 }
320
321 /* Allow an aux regulator */
322 reg = regulator_get(host->dev, "vmmc_aux");
323 host->vcc_aux = IS_ERR(reg) ? NULL : reg;
324
325 /* For eMMC do not power off when not in sleep state */
326 if (mmc_slot(host).no_regulator_off_init)
327 return 0;
328 /*
329 * UGLY HACK: workaround regulator framework bugs.
330 * When the bootloader leaves a supply active, it's
331 * initialized with zero usecount ... and we can't
332 * disable it without first enabling it. Until the
333 * framework is fixed, we need a workaround like this
334 * (which is safe for MMC, but not in general).
335 */
336 if (regulator_is_enabled(host->vcc) > 0 ||
337 (host->vcc_aux && regulator_is_enabled(host->vcc_aux))) {
338 int vdd = ffs(mmc_slot(host).ocr_mask) - 1;
339
340 mmc_slot(host).set_power(host->dev, host->slot_id,
341 1, vdd);
342 mmc_slot(host).set_power(host->dev, host->slot_id,
343 0, 0);
344 }
345 }
346
347 return 0;
348}
349
350static void omap_hsmmc_reg_put(struct omap_hsmmc_host *host)
351{
352 regulator_put(host->vcc);
353 regulator_put(host->vcc_aux);
354 mmc_slot(host).set_power = NULL;
355}
356
357static inline int omap_hsmmc_have_reg(void)
358{
359 return 1;
360}
361
362#else
363
364static inline int omap_hsmmc_reg_get(struct omap_hsmmc_host *host)
365{
366 return -EINVAL;
367}
368
369static inline void omap_hsmmc_reg_put(struct omap_hsmmc_host *host)
370{
371}
372
373static inline int omap_hsmmc_have_reg(void)
374{
375 return 0;
376}
377
378#endif
379
380static int omap_hsmmc_gpio_init(struct omap_mmc_platform_data *pdata)
381{
382 int ret;
383
384 if (gpio_is_valid(pdata->slots[0].switch_pin)) {
385 if (pdata->slots[0].cover)
386 pdata->slots[0].get_cover_state =
387 omap_hsmmc_get_cover_state;
388 else
389 pdata->slots[0].card_detect = omap_hsmmc_card_detect;
390 pdata->slots[0].card_detect_irq =
391 gpio_to_irq(pdata->slots[0].switch_pin);
392 ret = gpio_request(pdata->slots[0].switch_pin, "mmc_cd");
393 if (ret)
394 return ret;
395 ret = gpio_direction_input(pdata->slots[0].switch_pin);
396 if (ret)
397 goto err_free_sp;
398 } else
399 pdata->slots[0].switch_pin = -EINVAL;
400
401 if (gpio_is_valid(pdata->slots[0].gpio_wp)) {
402 pdata->slots[0].get_ro = omap_hsmmc_get_wp;
403 ret = gpio_request(pdata->slots[0].gpio_wp, "mmc_wp");
404 if (ret)
405 goto err_free_cd;
406 ret = gpio_direction_input(pdata->slots[0].gpio_wp);
407 if (ret)
408 goto err_free_wp;
409 } else
410 pdata->slots[0].gpio_wp = -EINVAL;
411
412 return 0;
413
414err_free_wp:
415 gpio_free(pdata->slots[0].gpio_wp);
416err_free_cd:
417 if (gpio_is_valid(pdata->slots[0].switch_pin))
418err_free_sp:
419 gpio_free(pdata->slots[0].switch_pin);
420 return ret;
421}
422
423static void omap_hsmmc_gpio_free(struct omap_mmc_platform_data *pdata)
424{
425 if (gpio_is_valid(pdata->slots[0].gpio_wp))
426 gpio_free(pdata->slots[0].gpio_wp);
427 if (gpio_is_valid(pdata->slots[0].switch_pin))
428 gpio_free(pdata->slots[0].switch_pin);
429}
430
431/*
432 * Start clock to the card
433 */
434static void omap_hsmmc_start_clock(struct omap_hsmmc_host *host)
435{
436 OMAP_HSMMC_WRITE(host->base, SYSCTL,
437 OMAP_HSMMC_READ(host->base, SYSCTL) | CEN);
438}
439
440/*
441 * Stop clock to the card
442 */
443static void omap_hsmmc_stop_clock(struct omap_hsmmc_host *host)
444{
445 OMAP_HSMMC_WRITE(host->base, SYSCTL,
446 OMAP_HSMMC_READ(host->base, SYSCTL) & ~CEN);
447 if ((OMAP_HSMMC_READ(host->base, SYSCTL) & CEN) != 0x0)
448 dev_dbg(mmc_dev(host->mmc), "MMC Clock is not stoped\n");
449}
450
451static void omap_hsmmc_enable_irq(struct omap_hsmmc_host *host,
452 struct mmc_command *cmd)
453{
454 unsigned int irq_mask;
455
456 if (host->use_dma)
457 irq_mask = INT_EN_MASK & ~(BRR_ENABLE | BWR_ENABLE);
458 else
459 irq_mask = INT_EN_MASK;
460
461 /* Disable timeout for erases */
462 if (cmd->opcode == MMC_ERASE)
463 irq_mask &= ~DTO_ENABLE;
464
465 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
466 OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
467 OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
468}
469
470static void omap_hsmmc_disable_irq(struct omap_hsmmc_host *host)
471{
472 OMAP_HSMMC_WRITE(host->base, ISE, 0);
473 OMAP_HSMMC_WRITE(host->base, IE, 0);
474 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
475}
476
477/* Calculate divisor for the given clock frequency */
478static u16 calc_divisor(struct omap_hsmmc_host *host, struct mmc_ios *ios)
479{
480 u16 dsor = 0;
481
482 if (ios->clock) {
483 dsor = DIV_ROUND_UP(clk_get_rate(host->fclk), ios->clock);
484 if (dsor > 250)
485 dsor = 250;
486 }
487
488 return dsor;
489}
490
491static void omap_hsmmc_set_clock(struct omap_hsmmc_host *host)
492{
493 struct mmc_ios *ios = &host->mmc->ios;
494 unsigned long regval;
495 unsigned long timeout;
496
497 dev_dbg(mmc_dev(host->mmc), "Set clock to %uHz\n", ios->clock);
498
499 omap_hsmmc_stop_clock(host);
500
501 regval = OMAP_HSMMC_READ(host->base, SYSCTL);
502 regval = regval & ~(CLKD_MASK | DTO_MASK);
503 regval = regval | (calc_divisor(host, ios) << 6) | (DTO << 16);
504 OMAP_HSMMC_WRITE(host->base, SYSCTL, regval);
505 OMAP_HSMMC_WRITE(host->base, SYSCTL,
506 OMAP_HSMMC_READ(host->base, SYSCTL) | ICE);
507
508 /* Wait till the ICS bit is set */
509 timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
510 while ((OMAP_HSMMC_READ(host->base, SYSCTL) & ICS) != ICS
511 && time_before(jiffies, timeout))
512 cpu_relax();
513
514 omap_hsmmc_start_clock(host);
515}
516
517static void omap_hsmmc_set_bus_width(struct omap_hsmmc_host *host)
518{
519 struct mmc_ios *ios = &host->mmc->ios;
520 u32 con;
521
522 con = OMAP_HSMMC_READ(host->base, CON);
523 if (ios->timing == MMC_TIMING_UHS_DDR50)
524 con |= DDR; /* configure in DDR mode */
525 else
526 con &= ~DDR;
527 switch (ios->bus_width) {
528 case MMC_BUS_WIDTH_8:
529 OMAP_HSMMC_WRITE(host->base, CON, con | DW8);
530 break;
531 case MMC_BUS_WIDTH_4:
532 OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
533 OMAP_HSMMC_WRITE(host->base, HCTL,
534 OMAP_HSMMC_READ(host->base, HCTL) | FOUR_BIT);
535 break;
536 case MMC_BUS_WIDTH_1:
537 OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
538 OMAP_HSMMC_WRITE(host->base, HCTL,
539 OMAP_HSMMC_READ(host->base, HCTL) & ~FOUR_BIT);
540 break;
541 }
542}
543
544static void omap_hsmmc_set_bus_mode(struct omap_hsmmc_host *host)
545{
546 struct mmc_ios *ios = &host->mmc->ios;
547 u32 con;
548
549 con = OMAP_HSMMC_READ(host->base, CON);
550 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
551 OMAP_HSMMC_WRITE(host->base, CON, con | OD);
552 else
553 OMAP_HSMMC_WRITE(host->base, CON, con & ~OD);
554}
555
556#ifdef CONFIG_PM
557
558/*
559 * Restore the MMC host context, if it was lost as result of a
560 * power state change.
561 */
562static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host)
563{
564 struct mmc_ios *ios = &host->mmc->ios;
565 struct omap_mmc_platform_data *pdata = host->pdata;
566 int context_loss = 0;
567 u32 hctl, capa;
568 unsigned long timeout;
569
570 if (pdata->get_context_loss_count) {
571 context_loss = pdata->get_context_loss_count(host->dev);
572 if (context_loss < 0)
573 return 1;
574 }
575
576 dev_dbg(mmc_dev(host->mmc), "context was %slost\n",
577 context_loss == host->context_loss ? "not " : "");
578 if (host->context_loss == context_loss)
579 return 1;
580
581 /* Wait for hardware reset */
582 timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
583 while ((OMAP_HSMMC_READ(host->base, SYSSTATUS) & RESETDONE) != RESETDONE
584 && time_before(jiffies, timeout))
585 ;
586
587 /* Do software reset */
588 OMAP_HSMMC_WRITE(host->base, SYSCONFIG, SOFTRESET);
589 timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
590 while ((OMAP_HSMMC_READ(host->base, SYSSTATUS) & RESETDONE) != RESETDONE
591 && time_before(jiffies, timeout))
592 ;
593
594 OMAP_HSMMC_WRITE(host->base, SYSCONFIG,
595 OMAP_HSMMC_READ(host->base, SYSCONFIG) | AUTOIDLE);
596
597 if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
598 if (host->power_mode != MMC_POWER_OFF &&
599 (1 << ios->vdd) <= MMC_VDD_23_24)
600 hctl = SDVS18;
601 else
602 hctl = SDVS30;
603 capa = VS30 | VS18;
604 } else {
605 hctl = SDVS18;
606 capa = VS18;
607 }
608
609 OMAP_HSMMC_WRITE(host->base, HCTL,
610 OMAP_HSMMC_READ(host->base, HCTL) | hctl);
611
612 OMAP_HSMMC_WRITE(host->base, CAPA,
613 OMAP_HSMMC_READ(host->base, CAPA) | capa);
614
615 OMAP_HSMMC_WRITE(host->base, HCTL,
616 OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
617
618 timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
619 while ((OMAP_HSMMC_READ(host->base, HCTL) & SDBP) != SDBP
620 && time_before(jiffies, timeout))
621 ;
622
623 omap_hsmmc_disable_irq(host);
624
625 /* Do not initialize card-specific things if the power is off */
626 if (host->power_mode == MMC_POWER_OFF)
627 goto out;
628
629 omap_hsmmc_set_bus_width(host);
630
631 omap_hsmmc_set_clock(host);
632
633 omap_hsmmc_set_bus_mode(host);
634
635out:
636 host->context_loss = context_loss;
637
638 dev_dbg(mmc_dev(host->mmc), "context is restored\n");
639 return 0;
640}
641
642/*
643 * Save the MMC host context (store the number of power state changes so far).
644 */
645static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
646{
647 struct omap_mmc_platform_data *pdata = host->pdata;
648 int context_loss;
649
650 if (pdata->get_context_loss_count) {
651 context_loss = pdata->get_context_loss_count(host->dev);
652 if (context_loss < 0)
653 return;
654 host->context_loss = context_loss;
655 }
656}
657
658#else
659
660static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host)
661{
662 return 0;
663}
664
665static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
666{
667}
668
669#endif
670
671/*
672 * Send init stream sequence to card
673 * before sending IDLE command
674 */
675static void send_init_stream(struct omap_hsmmc_host *host)
676{
677 int reg = 0;
678 unsigned long timeout;
679
680 if (host->protect_card)
681 return;
682
683 disable_irq(host->irq);
684
685 OMAP_HSMMC_WRITE(host->base, IE, INT_EN_MASK);
686 OMAP_HSMMC_WRITE(host->base, CON,
687 OMAP_HSMMC_READ(host->base, CON) | INIT_STREAM);
688 OMAP_HSMMC_WRITE(host->base, CMD, INIT_STREAM_CMD);
689
690 timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
691 while ((reg != CC) && time_before(jiffies, timeout))
692 reg = OMAP_HSMMC_READ(host->base, STAT) & CC;
693
694 OMAP_HSMMC_WRITE(host->base, CON,
695 OMAP_HSMMC_READ(host->base, CON) & ~INIT_STREAM);
696
697 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
698 OMAP_HSMMC_READ(host->base, STAT);
699
700 enable_irq(host->irq);
701}
702
703static inline
704int omap_hsmmc_cover_is_closed(struct omap_hsmmc_host *host)
705{
706 int r = 1;
707
708 if (mmc_slot(host).get_cover_state)
709 r = mmc_slot(host).get_cover_state(host->dev, host->slot_id);
710 return r;
711}
712
713static ssize_t
714omap_hsmmc_show_cover_switch(struct device *dev, struct device_attribute *attr,
715 char *buf)
716{
717 struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
718 struct omap_hsmmc_host *host = mmc_priv(mmc);
719
720 return sprintf(buf, "%s\n",
721 omap_hsmmc_cover_is_closed(host) ? "closed" : "open");
722}
723
724static DEVICE_ATTR(cover_switch, S_IRUGO, omap_hsmmc_show_cover_switch, NULL);
725
726static ssize_t
727omap_hsmmc_show_slot_name(struct device *dev, struct device_attribute *attr,
728 char *buf)
729{
730 struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
731 struct omap_hsmmc_host *host = mmc_priv(mmc);
732
733 return sprintf(buf, "%s\n", mmc_slot(host).name);
734}
735
736static DEVICE_ATTR(slot_name, S_IRUGO, omap_hsmmc_show_slot_name, NULL);
737
738/*
739 * Configure the response type and send the cmd.
740 */
741static void
742omap_hsmmc_start_command(struct omap_hsmmc_host *host, struct mmc_command *cmd,
743 struct mmc_data *data)
744{
745 int cmdreg = 0, resptype = 0, cmdtype = 0;
746
747 dev_dbg(mmc_dev(host->mmc), "%s: CMD%d, argument 0x%08x\n",
748 mmc_hostname(host->mmc), cmd->opcode, cmd->arg);
749 host->cmd = cmd;
750
751 omap_hsmmc_enable_irq(host, cmd);
752
753 host->response_busy = 0;
754 if (cmd->flags & MMC_RSP_PRESENT) {
755 if (cmd->flags & MMC_RSP_136)
756 resptype = 1;
757 else if (cmd->flags & MMC_RSP_BUSY) {
758 resptype = 3;
759 host->response_busy = 1;
760 } else
761 resptype = 2;
762 }
763
764 /*
765 * Unlike OMAP1 controller, the cmdtype does not seem to be based on
766 * ac, bc, adtc, bcr. Only commands ending an open ended transfer need
767 * a val of 0x3, rest 0x0.
768 */
769 if (cmd == host->mrq->stop)
770 cmdtype = 0x3;
771
772 cmdreg = (cmd->opcode << 24) | (resptype << 16) | (cmdtype << 22);
773
774 if (data) {
775 cmdreg |= DP_SELECT | MSBS | BCE;
776 if (data->flags & MMC_DATA_READ)
777 cmdreg |= DDIR;
778 else
779 cmdreg &= ~(DDIR);
780 }
781
782 if (host->use_dma)
783 cmdreg |= DMA_EN;
784
785 host->req_in_progress = 1;
786
787 OMAP_HSMMC_WRITE(host->base, ARG, cmd->arg);
788 OMAP_HSMMC_WRITE(host->base, CMD, cmdreg);
789}
790
791static int
792omap_hsmmc_get_dma_dir(struct omap_hsmmc_host *host, struct mmc_data *data)
793{
794 if (data->flags & MMC_DATA_WRITE)
795 return DMA_TO_DEVICE;
796 else
797 return DMA_FROM_DEVICE;
798}
799
800static void omap_hsmmc_request_done(struct omap_hsmmc_host *host, struct mmc_request *mrq)
801{
802 int dma_ch;
803 unsigned long flags;
804
805 spin_lock_irqsave(&host->irq_lock, flags);
806 host->req_in_progress = 0;
807 dma_ch = host->dma_ch;
808 spin_unlock_irqrestore(&host->irq_lock, flags);
809
810 omap_hsmmc_disable_irq(host);
811 /* Do not complete the request if DMA is still in progress */
812 if (mrq->data && host->use_dma && dma_ch != -1)
813 return;
814 host->mrq = NULL;
815 mmc_request_done(host->mmc, mrq);
816}
817
818/*
819 * Notify the transfer complete to MMC core
820 */
821static void
822omap_hsmmc_xfer_done(struct omap_hsmmc_host *host, struct mmc_data *data)
823{
824 if (!data) {
825 struct mmc_request *mrq = host->mrq;
826
827 /* TC before CC from CMD6 - don't know why, but it happens */
828 if (host->cmd && host->cmd->opcode == 6 &&
829 host->response_busy) {
830 host->response_busy = 0;
831 return;
832 }
833
834 omap_hsmmc_request_done(host, mrq);
835 return;
836 }
837
838 host->data = NULL;
839
840 if (!data->error)
841 data->bytes_xfered += data->blocks * (data->blksz);
842 else
843 data->bytes_xfered = 0;
844
845 if (!data->stop) {
846 omap_hsmmc_request_done(host, data->mrq);
847 return;
848 }
849 omap_hsmmc_start_command(host, data->stop, NULL);
850}
851
852/*
853 * Notify the core about command completion
854 */
855static void
856omap_hsmmc_cmd_done(struct omap_hsmmc_host *host, struct mmc_command *cmd)
857{
858 host->cmd = NULL;
859
860 if (cmd->flags & MMC_RSP_PRESENT) {
861 if (cmd->flags & MMC_RSP_136) {
862 /* response type 2 */
863 cmd->resp[3] = OMAP_HSMMC_READ(host->base, RSP10);
864 cmd->resp[2] = OMAP_HSMMC_READ(host->base, RSP32);
865 cmd->resp[1] = OMAP_HSMMC_READ(host->base, RSP54);
866 cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP76);
867 } else {
868 /* response types 1, 1b, 3, 4, 5, 6 */
869 cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP10);
870 }
871 }
872 if ((host->data == NULL && !host->response_busy) || cmd->error)
873 omap_hsmmc_request_done(host, cmd->mrq);
874}
875
876/*
877 * DMA clean up for command errors
878 */
879static void omap_hsmmc_dma_cleanup(struct omap_hsmmc_host *host, int errno)
880{
881 int dma_ch;
882 unsigned long flags;
883
884 host->data->error = errno;
885
886 spin_lock_irqsave(&host->irq_lock, flags);
887 dma_ch = host->dma_ch;
888 host->dma_ch = -1;
889 spin_unlock_irqrestore(&host->irq_lock, flags);
890
891 if (host->use_dma && dma_ch != -1) {
892 dma_unmap_sg(mmc_dev(host->mmc), host->data->sg,
893 host->data->sg_len,
894 omap_hsmmc_get_dma_dir(host, host->data));
895 omap_free_dma(dma_ch);
896 host->data->host_cookie = 0;
897 }
898 host->data = NULL;
899}
900
901/*
902 * Readable error output
903 */
904#ifdef CONFIG_MMC_DEBUG
905static void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host, u32 status)
906{
907 /* --- means reserved bit without definition at documentation */
908 static const char *omap_hsmmc_status_bits[] = {
909 "CC" , "TC" , "BGE", "---", "BWR" , "BRR" , "---" , "---" ,
910 "CIRQ", "OBI" , "---", "---", "---" , "---" , "---" , "ERRI",
911 "CTO" , "CCRC", "CEB", "CIE", "DTO" , "DCRC", "DEB" , "---" ,
912 "ACE" , "---" , "---", "---", "CERR", "BADA", "---" , "---"
913 };
914 char res[256];
915 char *buf = res;
916 int len, i;
917
918 len = sprintf(buf, "MMC IRQ 0x%x :", status);
919 buf += len;
920
921 for (i = 0; i < ARRAY_SIZE(omap_hsmmc_status_bits); i++)
922 if (status & (1 << i)) {
923 len = sprintf(buf, " %s", omap_hsmmc_status_bits[i]);
924 buf += len;
925 }
926
927 dev_dbg(mmc_dev(host->mmc), "%s\n", res);
928}
929#else
930static inline void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host,
931 u32 status)
932{
933}
934#endif /* CONFIG_MMC_DEBUG */
935
936/*
937 * MMC controller internal state machines reset
938 *
939 * Used to reset command or data internal state machines, using respectively
940 * SRC or SRD bit of SYSCTL register
941 * Can be called from interrupt context
942 */
943static inline void omap_hsmmc_reset_controller_fsm(struct omap_hsmmc_host *host,
944 unsigned long bit)
945{
946 unsigned long i = 0;
947 unsigned long limit = (loops_per_jiffy *
948 msecs_to_jiffies(MMC_TIMEOUT_MS));
949
950 OMAP_HSMMC_WRITE(host->base, SYSCTL,
951 OMAP_HSMMC_READ(host->base, SYSCTL) | bit);
952
953 /*
954 * OMAP4 ES2 and greater has an updated reset logic.
955 * Monitor a 0->1 transition first
956 */
957 if (mmc_slot(host).features & HSMMC_HAS_UPDATED_RESET) {
958 while ((!(OMAP_HSMMC_READ(host->base, SYSCTL) & bit))
959 && (i++ < limit))
960 cpu_relax();
961 }
962 i = 0;
963
964 while ((OMAP_HSMMC_READ(host->base, SYSCTL) & bit) &&
965 (i++ < limit))
966 cpu_relax();
967
968 if (OMAP_HSMMC_READ(host->base, SYSCTL) & bit)
969 dev_err(mmc_dev(host->mmc),
970 "Timeout waiting on controller reset in %s\n",
971 __func__);
972}
973
974static void omap_hsmmc_do_irq(struct omap_hsmmc_host *host, int status)
975{
976 struct mmc_data *data;
977 int end_cmd = 0, end_trans = 0;
978
979 if (!host->req_in_progress) {
980 do {
981 OMAP_HSMMC_WRITE(host->base, STAT, status);
982 /* Flush posted write */
983 status = OMAP_HSMMC_READ(host->base, STAT);
984 } while (status & INT_EN_MASK);
985 return;
986 }
987
988 data = host->data;
989 dev_dbg(mmc_dev(host->mmc), "IRQ Status is %x\n", status);
990
991 if (status & ERR) {
992 omap_hsmmc_dbg_report_irq(host, status);
993 if ((status & CMD_TIMEOUT) ||
994 (status & CMD_CRC)) {
995 if (host->cmd) {
996 if (status & CMD_TIMEOUT) {
997 omap_hsmmc_reset_controller_fsm(host,
998 SRC);
999 host->cmd->error = -ETIMEDOUT;
1000 } else {
1001 host->cmd->error = -EILSEQ;
1002 }
1003 end_cmd = 1;
1004 }
1005 if (host->data || host->response_busy) {
1006 if (host->data)
1007 omap_hsmmc_dma_cleanup(host,
1008 -ETIMEDOUT);
1009 host->response_busy = 0;
1010 omap_hsmmc_reset_controller_fsm(host, SRD);
1011 }
1012 }
1013 if ((status & DATA_TIMEOUT) ||
1014 (status & DATA_CRC)) {
1015 if (host->data || host->response_busy) {
1016 int err = (status & DATA_TIMEOUT) ?
1017 -ETIMEDOUT : -EILSEQ;
1018
1019 if (host->data)
1020 omap_hsmmc_dma_cleanup(host, err);
1021 else
1022 host->mrq->cmd->error = err;
1023 host->response_busy = 0;
1024 omap_hsmmc_reset_controller_fsm(host, SRD);
1025 end_trans = 1;
1026 }
1027 }
1028 if (status & CARD_ERR) {
1029 dev_dbg(mmc_dev(host->mmc),
1030 "Ignoring card err CMD%d\n", host->cmd->opcode);
1031 if (host->cmd)
1032 end_cmd = 1;
1033 if (host->data)
1034 end_trans = 1;
1035 }
1036 }
1037
1038 OMAP_HSMMC_WRITE(host->base, STAT, status);
1039
1040 if (end_cmd || ((status & CC) && host->cmd))
1041 omap_hsmmc_cmd_done(host, host->cmd);
1042 if ((end_trans || (status & TC)) && host->mrq)
1043 omap_hsmmc_xfer_done(host, data);
1044}
1045
1046/*
1047 * MMC controller IRQ handler
1048 */
1049static irqreturn_t omap_hsmmc_irq(int irq, void *dev_id)
1050{
1051 struct omap_hsmmc_host *host = dev_id;
1052 int status;
1053
1054 status = OMAP_HSMMC_READ(host->base, STAT);
1055 do {
1056 omap_hsmmc_do_irq(host, status);
1057 /* Flush posted write */
1058 status = OMAP_HSMMC_READ(host->base, STAT);
1059 } while (status & INT_EN_MASK);
1060
1061 return IRQ_HANDLED;
1062}
1063
1064static void set_sd_bus_power(struct omap_hsmmc_host *host)
1065{
1066 unsigned long i;
1067
1068 OMAP_HSMMC_WRITE(host->base, HCTL,
1069 OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
1070 for (i = 0; i < loops_per_jiffy; i++) {
1071 if (OMAP_HSMMC_READ(host->base, HCTL) & SDBP)
1072 break;
1073 cpu_relax();
1074 }
1075}
1076
1077/*
1078 * Switch MMC interface voltage ... only relevant for MMC1.
1079 *
1080 * MMC2 and MMC3 use fixed 1.8V levels, and maybe a transceiver.
1081 * The MMC2 transceiver controls are used instead of DAT4..DAT7.
1082 * Some chips, like eMMC ones, use internal transceivers.
1083 */
1084static int omap_hsmmc_switch_opcond(struct omap_hsmmc_host *host, int vdd)
1085{
1086 u32 reg_val = 0;
1087 int ret;
1088
1089 /* Disable the clocks */
1090 pm_runtime_put_sync(host->dev);
1091 if (host->dbclk)
1092 clk_disable(host->dbclk);
1093
1094 /* Turn the power off */
1095 ret = mmc_slot(host).set_power(host->dev, host->slot_id, 0, 0);
1096
1097 /* Turn the power ON with given VDD 1.8 or 3.0v */
1098 if (!ret)
1099 ret = mmc_slot(host).set_power(host->dev, host->slot_id, 1,
1100 vdd);
1101 pm_runtime_get_sync(host->dev);
1102 if (host->dbclk)
1103 clk_enable(host->dbclk);
1104
1105 if (ret != 0)
1106 goto err;
1107
1108 OMAP_HSMMC_WRITE(host->base, HCTL,
1109 OMAP_HSMMC_READ(host->base, HCTL) & SDVSCLR);
1110 reg_val = OMAP_HSMMC_READ(host->base, HCTL);
1111
1112 /*
1113 * If a MMC dual voltage card is detected, the set_ios fn calls
1114 * this fn with VDD bit set for 1.8V. Upon card removal from the
1115 * slot, omap_hsmmc_set_ios sets the VDD back to 3V on MMC_POWER_OFF.
1116 *
1117 * Cope with a bit of slop in the range ... per data sheets:
1118 * - "1.8V" for vdds_mmc1/vdds_mmc1a can be up to 2.45V max,
1119 * but recommended values are 1.71V to 1.89V
1120 * - "3.0V" for vdds_mmc1/vdds_mmc1a can be up to 3.5V max,
1121 * but recommended values are 2.7V to 3.3V
1122 *
1123 * Board setup code shouldn't permit anything very out-of-range.
1124 * TWL4030-family VMMC1 and VSIM regulators are fine (avoiding the
1125 * middle range) but VSIM can't power DAT4..DAT7 at more than 3V.
1126 */
1127 if ((1 << vdd) <= MMC_VDD_23_24)
1128 reg_val |= SDVS18;
1129 else
1130 reg_val |= SDVS30;
1131
1132 OMAP_HSMMC_WRITE(host->base, HCTL, reg_val);
1133 set_sd_bus_power(host);
1134
1135 return 0;
1136err:
1137 dev_dbg(mmc_dev(host->mmc), "Unable to switch operating voltage\n");
1138 return ret;
1139}
1140
1141/* Protect the card while the cover is open */
1142static void omap_hsmmc_protect_card(struct omap_hsmmc_host *host)
1143{
1144 if (!mmc_slot(host).get_cover_state)
1145 return;
1146
1147 host->reqs_blocked = 0;
1148 if (mmc_slot(host).get_cover_state(host->dev, host->slot_id)) {
1149 if (host->protect_card) {
1150 dev_info(host->dev, "%s: cover is closed, "
1151 "card is now accessible\n",
1152 mmc_hostname(host->mmc));
1153 host->protect_card = 0;
1154 }
1155 } else {
1156 if (!host->protect_card) {
1157 dev_info(host->dev, "%s: cover is open, "
1158 "card is now inaccessible\n",
1159 mmc_hostname(host->mmc));
1160 host->protect_card = 1;
1161 }
1162 }
1163}
1164
1165/*
1166 * irq handler to notify the core about card insertion/removal
1167 */
1168static irqreturn_t omap_hsmmc_detect(int irq, void *dev_id)
1169{
1170 struct omap_hsmmc_host *host = dev_id;
1171 struct omap_mmc_slot_data *slot = &mmc_slot(host);
1172 int carddetect;
1173
1174 if (host->suspended)
1175 return IRQ_HANDLED;
1176
1177 sysfs_notify(&host->mmc->class_dev.kobj, NULL, "cover_switch");
1178
1179 if (slot->card_detect)
1180 carddetect = slot->card_detect(host->dev, host->slot_id);
1181 else {
1182 omap_hsmmc_protect_card(host);
1183 carddetect = -ENOSYS;
1184 }
1185
1186 if (carddetect)
1187 mmc_detect_change(host->mmc, (HZ * 200) / 1000);
1188 else
1189 mmc_detect_change(host->mmc, (HZ * 50) / 1000);
1190 return IRQ_HANDLED;
1191}
1192
1193static int omap_hsmmc_get_dma_sync_dev(struct omap_hsmmc_host *host,
1194 struct mmc_data *data)
1195{
1196 int sync_dev;
1197
1198 if (data->flags & MMC_DATA_WRITE)
1199 sync_dev = host->dma_line_tx;
1200 else
1201 sync_dev = host->dma_line_rx;
1202 return sync_dev;
1203}
1204
1205static void omap_hsmmc_config_dma_params(struct omap_hsmmc_host *host,
1206 struct mmc_data *data,
1207 struct scatterlist *sgl)
1208{
1209 int blksz, nblk, dma_ch;
1210
1211 dma_ch = host->dma_ch;
1212 if (data->flags & MMC_DATA_WRITE) {
1213 omap_set_dma_dest_params(dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
1214 (host->mapbase + OMAP_HSMMC_DATA), 0, 0);
1215 omap_set_dma_src_params(dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
1216 sg_dma_address(sgl), 0, 0);
1217 } else {
1218 omap_set_dma_src_params(dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
1219 (host->mapbase + OMAP_HSMMC_DATA), 0, 0);
1220 omap_set_dma_dest_params(dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
1221 sg_dma_address(sgl), 0, 0);
1222 }
1223
1224 blksz = host->data->blksz;
1225 nblk = sg_dma_len(sgl) / blksz;
1226
1227 omap_set_dma_transfer_params(dma_ch, OMAP_DMA_DATA_TYPE_S32,
1228 blksz / 4, nblk, OMAP_DMA_SYNC_FRAME,
1229 omap_hsmmc_get_dma_sync_dev(host, data),
1230 !(data->flags & MMC_DATA_WRITE));
1231
1232 omap_start_dma(dma_ch);
1233}
1234
1235/*
1236 * DMA call back function
1237 */
1238static void omap_hsmmc_dma_cb(int lch, u16 ch_status, void *cb_data)
1239{
1240 struct omap_hsmmc_host *host = cb_data;
1241 struct mmc_data *data;
1242 int dma_ch, req_in_progress;
1243 unsigned long flags;
1244
1245 if (!(ch_status & OMAP_DMA_BLOCK_IRQ)) {
1246 dev_warn(mmc_dev(host->mmc), "unexpected dma status %x\n",
1247 ch_status);
1248 return;
1249 }
1250
1251 spin_lock_irqsave(&host->irq_lock, flags);
1252 if (host->dma_ch < 0) {
1253 spin_unlock_irqrestore(&host->irq_lock, flags);
1254 return;
1255 }
1256
1257 data = host->mrq->data;
1258 host->dma_sg_idx++;
1259 if (host->dma_sg_idx < host->dma_len) {
1260 /* Fire up the next transfer. */
1261 omap_hsmmc_config_dma_params(host, data,
1262 data->sg + host->dma_sg_idx);
1263 spin_unlock_irqrestore(&host->irq_lock, flags);
1264 return;
1265 }
1266
1267 if (!data->host_cookie)
1268 dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
1269 omap_hsmmc_get_dma_dir(host, data));
1270
1271 req_in_progress = host->req_in_progress;
1272 dma_ch = host->dma_ch;
1273 host->dma_ch = -1;
1274 spin_unlock_irqrestore(&host->irq_lock, flags);
1275
1276 omap_free_dma(dma_ch);
1277
1278 /* If DMA has finished after TC, complete the request */
1279 if (!req_in_progress) {
1280 struct mmc_request *mrq = host->mrq;
1281
1282 host->mrq = NULL;
1283 mmc_request_done(host->mmc, mrq);
1284 }
1285}
1286
1287static int omap_hsmmc_pre_dma_transfer(struct omap_hsmmc_host *host,
1288 struct mmc_data *data,
1289 struct omap_hsmmc_next *next)
1290{
1291 int dma_len;
1292
1293 if (!next && data->host_cookie &&
1294 data->host_cookie != host->next_data.cookie) {
1295 dev_warn(host->dev, "[%s] invalid cookie: data->host_cookie %d"
1296 " host->next_data.cookie %d\n",
1297 __func__, data->host_cookie, host->next_data.cookie);
1298 data->host_cookie = 0;
1299 }
1300
1301 /* Check if next job is already prepared */
1302 if (next ||
1303 (!next && data->host_cookie != host->next_data.cookie)) {
1304 dma_len = dma_map_sg(mmc_dev(host->mmc), data->sg,
1305 data->sg_len,
1306 omap_hsmmc_get_dma_dir(host, data));
1307
1308 } else {
1309 dma_len = host->next_data.dma_len;
1310 host->next_data.dma_len = 0;
1311 }
1312
1313
1314 if (dma_len == 0)
1315 return -EINVAL;
1316
1317 if (next) {
1318 next->dma_len = dma_len;
1319 data->host_cookie = ++next->cookie < 0 ? 1 : next->cookie;
1320 } else
1321 host->dma_len = dma_len;
1322
1323 return 0;
1324}
1325
1326/*
1327 * Routine to configure and start DMA for the MMC card
1328 */
1329static int omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host,
1330 struct mmc_request *req)
1331{
1332 int dma_ch = 0, ret = 0, i;
1333 struct mmc_data *data = req->data;
1334
1335 /* Sanity check: all the SG entries must be aligned by block size. */
1336 for (i = 0; i < data->sg_len; i++) {
1337 struct scatterlist *sgl;
1338
1339 sgl = data->sg + i;
1340 if (sgl->length % data->blksz)
1341 return -EINVAL;
1342 }
1343 if ((data->blksz % 4) != 0)
1344 /* REVISIT: The MMC buffer increments only when MSB is written.
1345 * Return error for blksz which is non multiple of four.
1346 */
1347 return -EINVAL;
1348
1349 BUG_ON(host->dma_ch != -1);
1350
1351 ret = omap_request_dma(omap_hsmmc_get_dma_sync_dev(host, data),
1352 "MMC/SD", omap_hsmmc_dma_cb, host, &dma_ch);
1353 if (ret != 0) {
1354 dev_err(mmc_dev(host->mmc),
1355 "%s: omap_request_dma() failed with %d\n",
1356 mmc_hostname(host->mmc), ret);
1357 return ret;
1358 }
1359 ret = omap_hsmmc_pre_dma_transfer(host, data, NULL);
1360 if (ret)
1361 return ret;
1362
1363 host->dma_ch = dma_ch;
1364 host->dma_sg_idx = 0;
1365
1366 omap_hsmmc_config_dma_params(host, data, data->sg);
1367
1368 return 0;
1369}
1370
1371static void set_data_timeout(struct omap_hsmmc_host *host,
1372 unsigned int timeout_ns,
1373 unsigned int timeout_clks)
1374{
1375 unsigned int timeout, cycle_ns;
1376 uint32_t reg, clkd, dto = 0;
1377
1378 reg = OMAP_HSMMC_READ(host->base, SYSCTL);
1379 clkd = (reg & CLKD_MASK) >> CLKD_SHIFT;
1380 if (clkd == 0)
1381 clkd = 1;
1382
1383 cycle_ns = 1000000000 / (clk_get_rate(host->fclk) / clkd);
1384 timeout = timeout_ns / cycle_ns;
1385 timeout += timeout_clks;
1386 if (timeout) {
1387 while ((timeout & 0x80000000) == 0) {
1388 dto += 1;
1389 timeout <<= 1;
1390 }
1391 dto = 31 - dto;
1392 timeout <<= 1;
1393 if (timeout && dto)
1394 dto += 1;
1395 if (dto >= 13)
1396 dto -= 13;
1397 else
1398 dto = 0;
1399 if (dto > 14)
1400 dto = 14;
1401 }
1402
1403 reg &= ~DTO_MASK;
1404 reg |= dto << DTO_SHIFT;
1405 OMAP_HSMMC_WRITE(host->base, SYSCTL, reg);
1406}
1407
1408/*
1409 * Configure block length for MMC/SD cards and initiate the transfer.
1410 */
1411static int
1412omap_hsmmc_prepare_data(struct omap_hsmmc_host *host, struct mmc_request *req)
1413{
1414 int ret;
1415 host->data = req->data;
1416
1417 if (req->data == NULL) {
1418 OMAP_HSMMC_WRITE(host->base, BLK, 0);
1419 /*
1420 * Set an arbitrary 100ms data timeout for commands with
1421 * busy signal.
1422 */
1423 if (req->cmd->flags & MMC_RSP_BUSY)
1424 set_data_timeout(host, 100000000U, 0);
1425 return 0;
1426 }
1427
1428 OMAP_HSMMC_WRITE(host->base, BLK, (req->data->blksz)
1429 | (req->data->blocks << 16));
1430 set_data_timeout(host, req->data->timeout_ns, req->data->timeout_clks);
1431
1432 if (host->use_dma) {
1433 ret = omap_hsmmc_start_dma_transfer(host, req);
1434 if (ret != 0) {
1435 dev_dbg(mmc_dev(host->mmc), "MMC start dma failure\n");
1436 return ret;
1437 }
1438 }
1439 return 0;
1440}
1441
1442static void omap_hsmmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq,
1443 int err)
1444{
1445 struct omap_hsmmc_host *host = mmc_priv(mmc);
1446 struct mmc_data *data = mrq->data;
1447
1448 if (host->use_dma) {
1449 if (data->host_cookie)
1450 dma_unmap_sg(mmc_dev(host->mmc), data->sg,
1451 data->sg_len,
1452 omap_hsmmc_get_dma_dir(host, data));
1453 data->host_cookie = 0;
1454 }
1455}
1456
1457static void omap_hsmmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq,
1458 bool is_first_req)
1459{
1460 struct omap_hsmmc_host *host = mmc_priv(mmc);
1461
1462 if (mrq->data->host_cookie) {
1463 mrq->data->host_cookie = 0;
1464 return ;
1465 }
1466
1467 if (host->use_dma)
1468 if (omap_hsmmc_pre_dma_transfer(host, mrq->data,
1469 &host->next_data))
1470 mrq->data->host_cookie = 0;
1471}
1472
1473/*
1474 * Request function. for read/write operation
1475 */
1476static void omap_hsmmc_request(struct mmc_host *mmc, struct mmc_request *req)
1477{
1478 struct omap_hsmmc_host *host = mmc_priv(mmc);
1479 int err;
1480
1481 BUG_ON(host->req_in_progress);
1482 BUG_ON(host->dma_ch != -1);
1483 if (host->protect_card) {
1484 if (host->reqs_blocked < 3) {
1485 /*
1486 * Ensure the controller is left in a consistent
1487 * state by resetting the command and data state
1488 * machines.
1489 */
1490 omap_hsmmc_reset_controller_fsm(host, SRD);
1491 omap_hsmmc_reset_controller_fsm(host, SRC);
1492 host->reqs_blocked += 1;
1493 }
1494 req->cmd->error = -EBADF;
1495 if (req->data)
1496 req->data->error = -EBADF;
1497 req->cmd->retries = 0;
1498 mmc_request_done(mmc, req);
1499 return;
1500 } else if (host->reqs_blocked)
1501 host->reqs_blocked = 0;
1502 WARN_ON(host->mrq != NULL);
1503 host->mrq = req;
1504 err = omap_hsmmc_prepare_data(host, req);
1505 if (err) {
1506 req->cmd->error = err;
1507 if (req->data)
1508 req->data->error = err;
1509 host->mrq = NULL;
1510 mmc_request_done(mmc, req);
1511 return;
1512 }
1513
1514 omap_hsmmc_start_command(host, req->cmd, req->data);
1515}
1516
1517/* Routine to configure clock values. Exposed API to core */
1518static void omap_hsmmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1519{
1520 struct omap_hsmmc_host *host = mmc_priv(mmc);
1521 int do_send_init_stream = 0;
1522
1523 pm_runtime_get_sync(host->dev);
1524
1525 if (ios->power_mode != host->power_mode) {
1526 switch (ios->power_mode) {
1527 case MMC_POWER_OFF:
1528 mmc_slot(host).set_power(host->dev, host->slot_id,
1529 0, 0);
1530 host->vdd = 0;
1531 break;
1532 case MMC_POWER_UP:
1533 mmc_slot(host).set_power(host->dev, host->slot_id,
1534 1, ios->vdd);
1535 host->vdd = ios->vdd;
1536 break;
1537 case MMC_POWER_ON:
1538 do_send_init_stream = 1;
1539 break;
1540 }
1541 host->power_mode = ios->power_mode;
1542 }
1543
1544 /* FIXME: set registers based only on changes to ios */
1545
1546 omap_hsmmc_set_bus_width(host);
1547
1548 if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
1549 /* Only MMC1 can interface at 3V without some flavor
1550 * of external transceiver; but they all handle 1.8V.
1551 */
1552 if ((OMAP_HSMMC_READ(host->base, HCTL) & SDVSDET) &&
1553 (ios->vdd == DUAL_VOLT_OCR_BIT) &&
1554 /*
1555 * With pbias cell programming missing, this
1556 * can't be allowed when booting with device
1557 * tree.
1558 */
1559 !host->dev->of_node) {
1560 /*
1561 * The mmc_select_voltage fn of the core does
1562 * not seem to set the power_mode to
1563 * MMC_POWER_UP upon recalculating the voltage.
1564 * vdd 1.8v.
1565 */
1566 if (omap_hsmmc_switch_opcond(host, ios->vdd) != 0)
1567 dev_dbg(mmc_dev(host->mmc),
1568 "Switch operation failed\n");
1569 }
1570 }
1571
1572 omap_hsmmc_set_clock(host);
1573
1574 if (do_send_init_stream)
1575 send_init_stream(host);
1576
1577 omap_hsmmc_set_bus_mode(host);
1578
1579 pm_runtime_put_autosuspend(host->dev);
1580}
1581
1582static int omap_hsmmc_get_cd(struct mmc_host *mmc)
1583{
1584 struct omap_hsmmc_host *host = mmc_priv(mmc);
1585
1586 if (!mmc_slot(host).card_detect)
1587 return -ENOSYS;
1588 return mmc_slot(host).card_detect(host->dev, host->slot_id);
1589}
1590
1591static int omap_hsmmc_get_ro(struct mmc_host *mmc)
1592{
1593 struct omap_hsmmc_host *host = mmc_priv(mmc);
1594
1595 if (!mmc_slot(host).get_ro)
1596 return -ENOSYS;
1597 return mmc_slot(host).get_ro(host->dev, 0);
1598}
1599
1600static void omap_hsmmc_init_card(struct mmc_host *mmc, struct mmc_card *card)
1601{
1602 struct omap_hsmmc_host *host = mmc_priv(mmc);
1603
1604 if (mmc_slot(host).init_card)
1605 mmc_slot(host).init_card(card);
1606}
1607
1608static void omap_hsmmc_conf_bus_power(struct omap_hsmmc_host *host)
1609{
1610 u32 hctl, capa, value;
1611
1612 /* Only MMC1 supports 3.0V */
1613 if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
1614 hctl = SDVS30;
1615 capa = VS30 | VS18;
1616 } else {
1617 hctl = SDVS18;
1618 capa = VS18;
1619 }
1620
1621 value = OMAP_HSMMC_READ(host->base, HCTL) & ~SDVS_MASK;
1622 OMAP_HSMMC_WRITE(host->base, HCTL, value | hctl);
1623
1624 value = OMAP_HSMMC_READ(host->base, CAPA);
1625 OMAP_HSMMC_WRITE(host->base, CAPA, value | capa);
1626
1627 /* Set the controller to AUTO IDLE mode */
1628 value = OMAP_HSMMC_READ(host->base, SYSCONFIG);
1629 OMAP_HSMMC_WRITE(host->base, SYSCONFIG, value | AUTOIDLE);
1630
1631 /* Set SD bus power bit */
1632 set_sd_bus_power(host);
1633}
1634
1635static int omap_hsmmc_enable_fclk(struct mmc_host *mmc)
1636{
1637 struct omap_hsmmc_host *host = mmc_priv(mmc);
1638
1639 pm_runtime_get_sync(host->dev);
1640
1641 return 0;
1642}
1643
1644static int omap_hsmmc_disable_fclk(struct mmc_host *mmc)
1645{
1646 struct omap_hsmmc_host *host = mmc_priv(mmc);
1647
1648 pm_runtime_mark_last_busy(host->dev);
1649 pm_runtime_put_autosuspend(host->dev);
1650
1651 return 0;
1652}
1653
1654static const struct mmc_host_ops omap_hsmmc_ops = {
1655 .enable = omap_hsmmc_enable_fclk,
1656 .disable = omap_hsmmc_disable_fclk,
1657 .post_req = omap_hsmmc_post_req,
1658 .pre_req = omap_hsmmc_pre_req,
1659 .request = omap_hsmmc_request,
1660 .set_ios = omap_hsmmc_set_ios,
1661 .get_cd = omap_hsmmc_get_cd,
1662 .get_ro = omap_hsmmc_get_ro,
1663 .init_card = omap_hsmmc_init_card,
1664 /* NYET -- enable_sdio_irq */
1665};
1666
1667#ifdef CONFIG_DEBUG_FS
1668
1669static int omap_hsmmc_regs_show(struct seq_file *s, void *data)
1670{
1671 struct mmc_host *mmc = s->private;
1672 struct omap_hsmmc_host *host = mmc_priv(mmc);
1673 int context_loss = 0;
1674
1675 if (host->pdata->get_context_loss_count)
1676 context_loss = host->pdata->get_context_loss_count(host->dev);
1677
1678 seq_printf(s, "mmc%d:\n ctx_loss:\t%d:%d\n\nregs:\n",
1679 mmc->index, host->context_loss, context_loss);
1680
1681 if (host->suspended) {
1682 seq_printf(s, "host suspended, can't read registers\n");
1683 return 0;
1684 }
1685
1686 pm_runtime_get_sync(host->dev);
1687
1688 seq_printf(s, "SYSCONFIG:\t0x%08x\n",
1689 OMAP_HSMMC_READ(host->base, SYSCONFIG));
1690 seq_printf(s, "CON:\t\t0x%08x\n",
1691 OMAP_HSMMC_READ(host->base, CON));
1692 seq_printf(s, "HCTL:\t\t0x%08x\n",
1693 OMAP_HSMMC_READ(host->base, HCTL));
1694 seq_printf(s, "SYSCTL:\t\t0x%08x\n",
1695 OMAP_HSMMC_READ(host->base, SYSCTL));
1696 seq_printf(s, "IE:\t\t0x%08x\n",
1697 OMAP_HSMMC_READ(host->base, IE));
1698 seq_printf(s, "ISE:\t\t0x%08x\n",
1699 OMAP_HSMMC_READ(host->base, ISE));
1700 seq_printf(s, "CAPA:\t\t0x%08x\n",
1701 OMAP_HSMMC_READ(host->base, CAPA));
1702
1703 pm_runtime_mark_last_busy(host->dev);
1704 pm_runtime_put_autosuspend(host->dev);
1705
1706 return 0;
1707}
1708
1709static int omap_hsmmc_regs_open(struct inode *inode, struct file *file)
1710{
1711 return single_open(file, omap_hsmmc_regs_show, inode->i_private);
1712}
1713
1714static const struct file_operations mmc_regs_fops = {
1715 .open = omap_hsmmc_regs_open,
1716 .read = seq_read,
1717 .llseek = seq_lseek,
1718 .release = single_release,
1719};
1720
1721static void omap_hsmmc_debugfs(struct mmc_host *mmc)
1722{
1723 if (mmc->debugfs_root)
1724 debugfs_create_file("regs", S_IRUSR, mmc->debugfs_root,
1725 mmc, &mmc_regs_fops);
1726}
1727
1728#else
1729
1730static void omap_hsmmc_debugfs(struct mmc_host *mmc)
1731{
1732}
1733
1734#endif
1735
1736#ifdef CONFIG_OF
1737static u16 omap4_reg_offset = 0x100;
1738
1739static const struct of_device_id omap_mmc_of_match[] = {
1740 {
1741 .compatible = "ti,omap2-hsmmc",
1742 },
1743 {
1744 .compatible = "ti,omap3-hsmmc",
1745 },
1746 {
1747 .compatible = "ti,omap4-hsmmc",
1748 .data = &omap4_reg_offset,
1749 },
1750 {},
1751};
1752MODULE_DEVICE_TABLE(of, omap_mmc_of_match);
1753
1754static struct omap_mmc_platform_data *of_get_hsmmc_pdata(struct device *dev)
1755{
1756 struct omap_mmc_platform_data *pdata;
1757 struct device_node *np = dev->of_node;
1758 u32 bus_width;
1759
1760 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1761 if (!pdata)
1762 return NULL; /* out of memory */
1763
1764 if (of_find_property(np, "ti,dual-volt", NULL))
1765 pdata->controller_flags |= OMAP_HSMMC_SUPPORTS_DUAL_VOLT;
1766
1767 /* This driver only supports 1 slot */
1768 pdata->nr_slots = 1;
1769 pdata->slots[0].switch_pin = of_get_named_gpio(np, "cd-gpios", 0);
1770 pdata->slots[0].gpio_wp = of_get_named_gpio(np, "wp-gpios", 0);
1771
1772 if (of_find_property(np, "ti,non-removable", NULL)) {
1773 pdata->slots[0].nonremovable = true;
1774 pdata->slots[0].no_regulator_off_init = true;
1775 }
1776 of_property_read_u32(np, "bus-width", &bus_width);
1777 if (bus_width == 4)
1778 pdata->slots[0].caps |= MMC_CAP_4_BIT_DATA;
1779 else if (bus_width == 8)
1780 pdata->slots[0].caps |= MMC_CAP_8_BIT_DATA;
1781
1782 if (of_find_property(np, "ti,needs-special-reset", NULL))
1783 pdata->slots[0].features |= HSMMC_HAS_UPDATED_RESET;
1784
1785 return pdata;
1786}
1787#else
1788static inline struct omap_mmc_platform_data
1789 *of_get_hsmmc_pdata(struct device *dev)
1790{
1791 return NULL;
1792}
1793#endif
1794
1795static int __devinit omap_hsmmc_probe(struct platform_device *pdev)
1796{
1797 struct omap_mmc_platform_data *pdata = pdev->dev.platform_data;
1798 struct mmc_host *mmc;
1799 struct omap_hsmmc_host *host = NULL;
1800 struct resource *res;
1801 int ret, irq;
1802 const struct of_device_id *match;
1803
1804 match = of_match_device(of_match_ptr(omap_mmc_of_match), &pdev->dev);
1805 if (match) {
1806 pdata = of_get_hsmmc_pdata(&pdev->dev);
1807 if (match->data) {
1808 u16 *offsetp = match->data;
1809 pdata->reg_offset = *offsetp;
1810 }
1811 }
1812
1813 if (pdata == NULL) {
1814 dev_err(&pdev->dev, "Platform Data is missing\n");
1815 return -ENXIO;
1816 }
1817
1818 if (pdata->nr_slots == 0) {
1819 dev_err(&pdev->dev, "No Slots\n");
1820 return -ENXIO;
1821 }
1822
1823 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1824 irq = platform_get_irq(pdev, 0);
1825 if (res == NULL || irq < 0)
1826 return -ENXIO;
1827
1828 res = request_mem_region(res->start, resource_size(res), pdev->name);
1829 if (res == NULL)
1830 return -EBUSY;
1831
1832 ret = omap_hsmmc_gpio_init(pdata);
1833 if (ret)
1834 goto err;
1835
1836 mmc = mmc_alloc_host(sizeof(struct omap_hsmmc_host), &pdev->dev);
1837 if (!mmc) {
1838 ret = -ENOMEM;
1839 goto err_alloc;
1840 }
1841
1842 host = mmc_priv(mmc);
1843 host->mmc = mmc;
1844 host->pdata = pdata;
1845 host->dev = &pdev->dev;
1846 host->use_dma = 1;
1847 host->dev->dma_mask = &pdata->dma_mask;
1848 host->dma_ch = -1;
1849 host->irq = irq;
1850 host->slot_id = 0;
1851 host->mapbase = res->start + pdata->reg_offset;
1852 host->base = ioremap(host->mapbase, SZ_4K);
1853 host->power_mode = MMC_POWER_OFF;
1854 host->next_data.cookie = 1;
1855
1856 platform_set_drvdata(pdev, host);
1857
1858 mmc->ops = &omap_hsmmc_ops;
1859
1860 /*
1861 * If regulator_disable can only put vcc_aux to sleep then there is
1862 * no off state.
1863 */
1864 if (mmc_slot(host).vcc_aux_disable_is_sleep)
1865 mmc_slot(host).no_off = 1;
1866
1867 mmc->f_min = OMAP_MMC_MIN_CLOCK;
1868
1869 if (pdata->max_freq > 0)
1870 mmc->f_max = pdata->max_freq;
1871 else
1872 mmc->f_max = OMAP_MMC_MAX_CLOCK;
1873
1874 spin_lock_init(&host->irq_lock);
1875
1876 host->fclk = clk_get(&pdev->dev, "fck");
1877 if (IS_ERR(host->fclk)) {
1878 ret = PTR_ERR(host->fclk);
1879 host->fclk = NULL;
1880 goto err1;
1881 }
1882
1883 if (host->pdata->controller_flags & OMAP_HSMMC_BROKEN_MULTIBLOCK_READ) {
1884 dev_info(&pdev->dev, "multiblock reads disabled due to 35xx erratum 2.1.1.128; MMC read performance may suffer\n");
1885 mmc->caps2 |= MMC_CAP2_NO_MULTI_READ;
1886 }
1887
1888 pm_runtime_enable(host->dev);
1889 pm_runtime_get_sync(host->dev);
1890 pm_runtime_set_autosuspend_delay(host->dev, MMC_AUTOSUSPEND_DELAY);
1891 pm_runtime_use_autosuspend(host->dev);
1892
1893 omap_hsmmc_context_save(host);
1894
1895 host->dbclk = clk_get(&pdev->dev, "mmchsdb_fck");
1896 /*
1897 * MMC can still work without debounce clock.
1898 */
1899 if (IS_ERR(host->dbclk)) {
1900 dev_warn(mmc_dev(host->mmc), "Failed to get debounce clk\n");
1901 host->dbclk = NULL;
1902 } else if (clk_enable(host->dbclk) != 0) {
1903 dev_warn(mmc_dev(host->mmc), "Failed to enable debounce clk\n");
1904 clk_put(host->dbclk);
1905 host->dbclk = NULL;
1906 }
1907
1908 /* Since we do only SG emulation, we can have as many segs
1909 * as we want. */
1910 mmc->max_segs = 1024;
1911
1912 mmc->max_blk_size = 512; /* Block Length at max can be 1024 */
1913 mmc->max_blk_count = 0xFFFF; /* No. of Blocks is 16 bits */
1914 mmc->max_req_size = mmc->max_blk_size * mmc->max_blk_count;
1915 mmc->max_seg_size = mmc->max_req_size;
1916
1917 mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED |
1918 MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_ERASE;
1919
1920 mmc->caps |= mmc_slot(host).caps;
1921 if (mmc->caps & MMC_CAP_8_BIT_DATA)
1922 mmc->caps |= MMC_CAP_4_BIT_DATA;
1923
1924 if (mmc_slot(host).nonremovable)
1925 mmc->caps |= MMC_CAP_NONREMOVABLE;
1926
1927 mmc->pm_caps = mmc_slot(host).pm_caps;
1928
1929 omap_hsmmc_conf_bus_power(host);
1930
1931 res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "tx");
1932 if (!res) {
1933 dev_err(mmc_dev(host->mmc), "cannot get DMA TX channel\n");
1934 goto err_irq;
1935 }
1936 host->dma_line_tx = res->start;
1937
1938 res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "rx");
1939 if (!res) {
1940 dev_err(mmc_dev(host->mmc), "cannot get DMA RX channel\n");
1941 goto err_irq;
1942 }
1943 host->dma_line_rx = res->start;
1944
1945 /* Request IRQ for MMC operations */
1946 ret = request_irq(host->irq, omap_hsmmc_irq, 0,
1947 mmc_hostname(mmc), host);
1948 if (ret) {
1949 dev_dbg(mmc_dev(host->mmc), "Unable to grab HSMMC IRQ\n");
1950 goto err_irq;
1951 }
1952
1953 if (pdata->init != NULL) {
1954 if (pdata->init(&pdev->dev) != 0) {
1955 dev_dbg(mmc_dev(host->mmc),
1956 "Unable to configure MMC IRQs\n");
1957 goto err_irq_cd_init;
1958 }
1959 }
1960
1961 if (omap_hsmmc_have_reg() && !mmc_slot(host).set_power) {
1962 ret = omap_hsmmc_reg_get(host);
1963 if (ret)
1964 goto err_reg;
1965 host->use_reg = 1;
1966 }
1967
1968 mmc->ocr_avail = mmc_slot(host).ocr_mask;
1969
1970 /* Request IRQ for card detect */
1971 if ((mmc_slot(host).card_detect_irq)) {
1972 ret = request_threaded_irq(mmc_slot(host).card_detect_irq,
1973 NULL,
1974 omap_hsmmc_detect,
1975 IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
1976 mmc_hostname(mmc), host);
1977 if (ret) {
1978 dev_dbg(mmc_dev(host->mmc),
1979 "Unable to grab MMC CD IRQ\n");
1980 goto err_irq_cd;
1981 }
1982 pdata->suspend = omap_hsmmc_suspend_cdirq;
1983 pdata->resume = omap_hsmmc_resume_cdirq;
1984 }
1985
1986 omap_hsmmc_disable_irq(host);
1987
1988 omap_hsmmc_protect_card(host);
1989
1990 mmc_add_host(mmc);
1991
1992 if (mmc_slot(host).name != NULL) {
1993 ret = device_create_file(&mmc->class_dev, &dev_attr_slot_name);
1994 if (ret < 0)
1995 goto err_slot_name;
1996 }
1997 if (mmc_slot(host).card_detect_irq && mmc_slot(host).get_cover_state) {
1998 ret = device_create_file(&mmc->class_dev,
1999 &dev_attr_cover_switch);
2000 if (ret < 0)
2001 goto err_slot_name;
2002 }
2003
2004 omap_hsmmc_debugfs(mmc);
2005 pm_runtime_mark_last_busy(host->dev);
2006 pm_runtime_put_autosuspend(host->dev);
2007
2008 return 0;
2009
2010err_slot_name:
2011 mmc_remove_host(mmc);
2012 free_irq(mmc_slot(host).card_detect_irq, host);
2013err_irq_cd:
2014 if (host->use_reg)
2015 omap_hsmmc_reg_put(host);
2016err_reg:
2017 if (host->pdata->cleanup)
2018 host->pdata->cleanup(&pdev->dev);
2019err_irq_cd_init:
2020 free_irq(host->irq, host);
2021err_irq:
2022 pm_runtime_put_sync(host->dev);
2023 pm_runtime_disable(host->dev);
2024 clk_put(host->fclk);
2025 if (host->dbclk) {
2026 clk_disable(host->dbclk);
2027 clk_put(host->dbclk);
2028 }
2029err1:
2030 iounmap(host->base);
2031 platform_set_drvdata(pdev, NULL);
2032 mmc_free_host(mmc);
2033err_alloc:
2034 omap_hsmmc_gpio_free(pdata);
2035err:
2036 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2037 if (res)
2038 release_mem_region(res->start, resource_size(res));
2039 return ret;
2040}
2041
2042static int __devexit omap_hsmmc_remove(struct platform_device *pdev)
2043{
2044 struct omap_hsmmc_host *host = platform_get_drvdata(pdev);
2045 struct resource *res;
2046
2047 pm_runtime_get_sync(host->dev);
2048 mmc_remove_host(host->mmc);
2049 if (host->use_reg)
2050 omap_hsmmc_reg_put(host);
2051 if (host->pdata->cleanup)
2052 host->pdata->cleanup(&pdev->dev);
2053 free_irq(host->irq, host);
2054 if (mmc_slot(host).card_detect_irq)
2055 free_irq(mmc_slot(host).card_detect_irq, host);
2056
2057 pm_runtime_put_sync(host->dev);
2058 pm_runtime_disable(host->dev);
2059 clk_put(host->fclk);
2060 if (host->dbclk) {
2061 clk_disable(host->dbclk);
2062 clk_put(host->dbclk);
2063 }
2064
2065 mmc_free_host(host->mmc);
2066 iounmap(host->base);
2067 omap_hsmmc_gpio_free(pdev->dev.platform_data);
2068
2069 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2070 if (res)
2071 release_mem_region(res->start, resource_size(res));
2072 platform_set_drvdata(pdev, NULL);
2073
2074 return 0;
2075}
2076
2077#ifdef CONFIG_PM
2078static int omap_hsmmc_suspend(struct device *dev)
2079{
2080 int ret = 0;
2081 struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2082
2083 if (!host)
2084 return 0;
2085
2086 if (host && host->suspended)
2087 return 0;
2088
2089 pm_runtime_get_sync(host->dev);
2090 host->suspended = 1;
2091 if (host->pdata->suspend) {
2092 ret = host->pdata->suspend(dev, host->slot_id);
2093 if (ret) {
2094 dev_dbg(dev, "Unable to handle MMC board"
2095 " level suspend\n");
2096 host->suspended = 0;
2097 return ret;
2098 }
2099 }
2100 ret = mmc_suspend_host(host->mmc);
2101
2102 if (ret) {
2103 host->suspended = 0;
2104 if (host->pdata->resume) {
2105 ret = host->pdata->resume(dev, host->slot_id);
2106 if (ret)
2107 dev_dbg(dev, "Unmask interrupt failed\n");
2108 }
2109 goto err;
2110 }
2111
2112 if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER)) {
2113 omap_hsmmc_disable_irq(host);
2114 OMAP_HSMMC_WRITE(host->base, HCTL,
2115 OMAP_HSMMC_READ(host->base, HCTL) & ~SDBP);
2116 }
2117
2118 if (host->dbclk)
2119 clk_disable(host->dbclk);
2120err:
2121 pm_runtime_put_sync(host->dev);
2122 return ret;
2123}
2124
2125/* Routine to resume the MMC device */
2126static int omap_hsmmc_resume(struct device *dev)
2127{
2128 int ret = 0;
2129 struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2130
2131 if (!host)
2132 return 0;
2133
2134 if (host && !host->suspended)
2135 return 0;
2136
2137 pm_runtime_get_sync(host->dev);
2138
2139 if (host->dbclk)
2140 clk_enable(host->dbclk);
2141
2142 if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER))
2143 omap_hsmmc_conf_bus_power(host);
2144
2145 if (host->pdata->resume) {
2146 ret = host->pdata->resume(dev, host->slot_id);
2147 if (ret)
2148 dev_dbg(dev, "Unmask interrupt failed\n");
2149 }
2150
2151 omap_hsmmc_protect_card(host);
2152
2153 /* Notify the core to resume the host */
2154 ret = mmc_resume_host(host->mmc);
2155 if (ret == 0)
2156 host->suspended = 0;
2157
2158 pm_runtime_mark_last_busy(host->dev);
2159 pm_runtime_put_autosuspend(host->dev);
2160
2161 return ret;
2162
2163}
2164
2165#else
2166#define omap_hsmmc_suspend NULL
2167#define omap_hsmmc_resume NULL
2168#endif
2169
2170static int omap_hsmmc_runtime_suspend(struct device *dev)
2171{
2172 struct omap_hsmmc_host *host;
2173
2174 host = platform_get_drvdata(to_platform_device(dev));
2175 omap_hsmmc_context_save(host);
2176 dev_dbg(dev, "disabled\n");
2177
2178 return 0;
2179}
2180
2181static int omap_hsmmc_runtime_resume(struct device *dev)
2182{
2183 struct omap_hsmmc_host *host;
2184
2185 host = platform_get_drvdata(to_platform_device(dev));
2186 omap_hsmmc_context_restore(host);
2187 dev_dbg(dev, "enabled\n");
2188
2189 return 0;
2190}
2191
2192static struct dev_pm_ops omap_hsmmc_dev_pm_ops = {
2193 .suspend = omap_hsmmc_suspend,
2194 .resume = omap_hsmmc_resume,
2195 .runtime_suspend = omap_hsmmc_runtime_suspend,
2196 .runtime_resume = omap_hsmmc_runtime_resume,
2197};
2198
2199static struct platform_driver omap_hsmmc_driver = {
2200 .probe = omap_hsmmc_probe,
2201 .remove = __devexit_p(omap_hsmmc_remove),
2202 .driver = {
2203 .name = DRIVER_NAME,
2204 .owner = THIS_MODULE,
2205 .pm = &omap_hsmmc_dev_pm_ops,
2206 .of_match_table = of_match_ptr(omap_mmc_of_match),
2207 },
2208};
2209
2210module_platform_driver(omap_hsmmc_driver);
2211MODULE_DESCRIPTION("OMAP High Speed Multimedia Card driver");
2212MODULE_LICENSE("GPL");
2213MODULE_ALIAS("platform:" DRIVER_NAME);
2214MODULE_AUTHOR("Texas Instruments Inc");