Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * CPUFreq governor based on scheduler-provided CPU utilization data.
4 *
5 * Copyright (C) 2016, Intel Corporation
6 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7 */
8
9#define IOWAIT_BOOST_MIN (SCHED_CAPACITY_SCALE / 8)
10
11struct sugov_tunables {
12 struct gov_attr_set attr_set;
13 unsigned int rate_limit_us;
14};
15
16struct sugov_policy {
17 struct cpufreq_policy *policy;
18
19 struct sugov_tunables *tunables;
20 struct list_head tunables_hook;
21
22 raw_spinlock_t update_lock;
23 u64 last_freq_update_time;
24 s64 freq_update_delay_ns;
25 unsigned int next_freq;
26 unsigned int cached_raw_freq;
27
28 /* The next fields are only needed if fast switch cannot be used: */
29 struct irq_work irq_work;
30 struct kthread_work work;
31 struct mutex work_lock;
32 struct kthread_worker worker;
33 struct task_struct *thread;
34 bool work_in_progress;
35
36 bool limits_changed;
37 bool need_freq_update;
38};
39
40struct sugov_cpu {
41 struct update_util_data update_util;
42 struct sugov_policy *sg_policy;
43 unsigned int cpu;
44
45 bool iowait_boost_pending;
46 unsigned int iowait_boost;
47 u64 last_update;
48
49 unsigned long util;
50 unsigned long bw_dl;
51 unsigned long max;
52
53 /* The field below is for single-CPU policies only: */
54#ifdef CONFIG_NO_HZ_COMMON
55 unsigned long saved_idle_calls;
56#endif
57};
58
59static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
60
61/************************ Governor internals ***********************/
62
63static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
64{
65 s64 delta_ns;
66
67 /*
68 * Since cpufreq_update_util() is called with rq->lock held for
69 * the @target_cpu, our per-CPU data is fully serialized.
70 *
71 * However, drivers cannot in general deal with cross-CPU
72 * requests, so while get_next_freq() will work, our
73 * sugov_update_commit() call may not for the fast switching platforms.
74 *
75 * Hence stop here for remote requests if they aren't supported
76 * by the hardware, as calculating the frequency is pointless if
77 * we cannot in fact act on it.
78 *
79 * This is needed on the slow switching platforms too to prevent CPUs
80 * going offline from leaving stale IRQ work items behind.
81 */
82 if (!cpufreq_this_cpu_can_update(sg_policy->policy))
83 return false;
84
85 if (unlikely(sg_policy->limits_changed)) {
86 sg_policy->limits_changed = false;
87 sg_policy->need_freq_update = true;
88 return true;
89 }
90
91 delta_ns = time - sg_policy->last_freq_update_time;
92
93 return delta_ns >= sg_policy->freq_update_delay_ns;
94}
95
96static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
97 unsigned int next_freq)
98{
99 if (sg_policy->need_freq_update)
100 sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
101 else if (sg_policy->next_freq == next_freq)
102 return false;
103
104 sg_policy->next_freq = next_freq;
105 sg_policy->last_freq_update_time = time;
106
107 return true;
108}
109
110static void sugov_deferred_update(struct sugov_policy *sg_policy)
111{
112 if (!sg_policy->work_in_progress) {
113 sg_policy->work_in_progress = true;
114 irq_work_queue(&sg_policy->irq_work);
115 }
116}
117
118/**
119 * get_next_freq - Compute a new frequency for a given cpufreq policy.
120 * @sg_policy: schedutil policy object to compute the new frequency for.
121 * @util: Current CPU utilization.
122 * @max: CPU capacity.
123 *
124 * If the utilization is frequency-invariant, choose the new frequency to be
125 * proportional to it, that is
126 *
127 * next_freq = C * max_freq * util / max
128 *
129 * Otherwise, approximate the would-be frequency-invariant utilization by
130 * util_raw * (curr_freq / max_freq) which leads to
131 *
132 * next_freq = C * curr_freq * util_raw / max
133 *
134 * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
135 *
136 * The lowest driver-supported frequency which is equal or greater than the raw
137 * next_freq (as calculated above) is returned, subject to policy min/max and
138 * cpufreq driver limitations.
139 */
140static unsigned int get_next_freq(struct sugov_policy *sg_policy,
141 unsigned long util, unsigned long max)
142{
143 struct cpufreq_policy *policy = sg_policy->policy;
144 unsigned int freq = arch_scale_freq_invariant() ?
145 policy->cpuinfo.max_freq : policy->cur;
146
147 util = map_util_perf(util);
148 freq = map_util_freq(util, freq, max);
149
150 if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update)
151 return sg_policy->next_freq;
152
153 sg_policy->cached_raw_freq = freq;
154 return cpufreq_driver_resolve_freq(policy, freq);
155}
156
157static void sugov_get_util(struct sugov_cpu *sg_cpu)
158{
159 struct rq *rq = cpu_rq(sg_cpu->cpu);
160
161 sg_cpu->max = arch_scale_cpu_capacity(sg_cpu->cpu);
162 sg_cpu->bw_dl = cpu_bw_dl(rq);
163 sg_cpu->util = effective_cpu_util(sg_cpu->cpu, cpu_util_cfs(sg_cpu->cpu),
164 FREQUENCY_UTIL, NULL);
165}
166
167/**
168 * sugov_iowait_reset() - Reset the IO boost status of a CPU.
169 * @sg_cpu: the sugov data for the CPU to boost
170 * @time: the update time from the caller
171 * @set_iowait_boost: true if an IO boost has been requested
172 *
173 * The IO wait boost of a task is disabled after a tick since the last update
174 * of a CPU. If a new IO wait boost is requested after more then a tick, then
175 * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy
176 * efficiency by ignoring sporadic wakeups from IO.
177 */
178static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time,
179 bool set_iowait_boost)
180{
181 s64 delta_ns = time - sg_cpu->last_update;
182
183 /* Reset boost only if a tick has elapsed since last request */
184 if (delta_ns <= TICK_NSEC)
185 return false;
186
187 sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0;
188 sg_cpu->iowait_boost_pending = set_iowait_boost;
189
190 return true;
191}
192
193/**
194 * sugov_iowait_boost() - Updates the IO boost status of a CPU.
195 * @sg_cpu: the sugov data for the CPU to boost
196 * @time: the update time from the caller
197 * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
198 *
199 * Each time a task wakes up after an IO operation, the CPU utilization can be
200 * boosted to a certain utilization which doubles at each "frequent and
201 * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization
202 * of the maximum OPP.
203 *
204 * To keep doubling, an IO boost has to be requested at least once per tick,
205 * otherwise we restart from the utilization of the minimum OPP.
206 */
207static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
208 unsigned int flags)
209{
210 bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT;
211
212 /* Reset boost if the CPU appears to have been idle enough */
213 if (sg_cpu->iowait_boost &&
214 sugov_iowait_reset(sg_cpu, time, set_iowait_boost))
215 return;
216
217 /* Boost only tasks waking up after IO */
218 if (!set_iowait_boost)
219 return;
220
221 /* Ensure boost doubles only one time at each request */
222 if (sg_cpu->iowait_boost_pending)
223 return;
224 sg_cpu->iowait_boost_pending = true;
225
226 /* Double the boost at each request */
227 if (sg_cpu->iowait_boost) {
228 sg_cpu->iowait_boost =
229 min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE);
230 return;
231 }
232
233 /* First wakeup after IO: start with minimum boost */
234 sg_cpu->iowait_boost = IOWAIT_BOOST_MIN;
235}
236
237/**
238 * sugov_iowait_apply() - Apply the IO boost to a CPU.
239 * @sg_cpu: the sugov data for the cpu to boost
240 * @time: the update time from the caller
241 *
242 * A CPU running a task which woken up after an IO operation can have its
243 * utilization boosted to speed up the completion of those IO operations.
244 * The IO boost value is increased each time a task wakes up from IO, in
245 * sugov_iowait_apply(), and it's instead decreased by this function,
246 * each time an increase has not been requested (!iowait_boost_pending).
247 *
248 * A CPU which also appears to have been idle for at least one tick has also
249 * its IO boost utilization reset.
250 *
251 * This mechanism is designed to boost high frequently IO waiting tasks, while
252 * being more conservative on tasks which does sporadic IO operations.
253 */
254static void sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time)
255{
256 unsigned long boost;
257
258 /* No boost currently required */
259 if (!sg_cpu->iowait_boost)
260 return;
261
262 /* Reset boost if the CPU appears to have been idle enough */
263 if (sugov_iowait_reset(sg_cpu, time, false))
264 return;
265
266 if (!sg_cpu->iowait_boost_pending) {
267 /*
268 * No boost pending; reduce the boost value.
269 */
270 sg_cpu->iowait_boost >>= 1;
271 if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) {
272 sg_cpu->iowait_boost = 0;
273 return;
274 }
275 }
276
277 sg_cpu->iowait_boost_pending = false;
278
279 /*
280 * sg_cpu->util is already in capacity scale; convert iowait_boost
281 * into the same scale so we can compare.
282 */
283 boost = (sg_cpu->iowait_boost * sg_cpu->max) >> SCHED_CAPACITY_SHIFT;
284 boost = uclamp_rq_util_with(cpu_rq(sg_cpu->cpu), boost, NULL);
285 if (sg_cpu->util < boost)
286 sg_cpu->util = boost;
287}
288
289#ifdef CONFIG_NO_HZ_COMMON
290static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu)
291{
292 unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
293 bool ret = idle_calls == sg_cpu->saved_idle_calls;
294
295 sg_cpu->saved_idle_calls = idle_calls;
296 return ret;
297}
298#else
299static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; }
300#endif /* CONFIG_NO_HZ_COMMON */
301
302/*
303 * Make sugov_should_update_freq() ignore the rate limit when DL
304 * has increased the utilization.
305 */
306static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu)
307{
308 if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_dl)
309 sg_cpu->sg_policy->limits_changed = true;
310}
311
312static inline bool sugov_update_single_common(struct sugov_cpu *sg_cpu,
313 u64 time, unsigned int flags)
314{
315 sugov_iowait_boost(sg_cpu, time, flags);
316 sg_cpu->last_update = time;
317
318 ignore_dl_rate_limit(sg_cpu);
319
320 if (!sugov_should_update_freq(sg_cpu->sg_policy, time))
321 return false;
322
323 sugov_get_util(sg_cpu);
324 sugov_iowait_apply(sg_cpu, time);
325
326 return true;
327}
328
329static void sugov_update_single_freq(struct update_util_data *hook, u64 time,
330 unsigned int flags)
331{
332 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
333 struct sugov_policy *sg_policy = sg_cpu->sg_policy;
334 unsigned int cached_freq = sg_policy->cached_raw_freq;
335 unsigned int next_f;
336
337 if (!sugov_update_single_common(sg_cpu, time, flags))
338 return;
339
340 next_f = get_next_freq(sg_policy, sg_cpu->util, sg_cpu->max);
341 /*
342 * Do not reduce the frequency if the CPU has not been idle
343 * recently, as the reduction is likely to be premature then.
344 *
345 * Except when the rq is capped by uclamp_max.
346 */
347 if (!uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu)) &&
348 sugov_cpu_is_busy(sg_cpu) && next_f < sg_policy->next_freq) {
349 next_f = sg_policy->next_freq;
350
351 /* Restore cached freq as next_freq has changed */
352 sg_policy->cached_raw_freq = cached_freq;
353 }
354
355 if (!sugov_update_next_freq(sg_policy, time, next_f))
356 return;
357
358 /*
359 * This code runs under rq->lock for the target CPU, so it won't run
360 * concurrently on two different CPUs for the same target and it is not
361 * necessary to acquire the lock in the fast switch case.
362 */
363 if (sg_policy->policy->fast_switch_enabled) {
364 cpufreq_driver_fast_switch(sg_policy->policy, next_f);
365 } else {
366 raw_spin_lock(&sg_policy->update_lock);
367 sugov_deferred_update(sg_policy);
368 raw_spin_unlock(&sg_policy->update_lock);
369 }
370}
371
372static void sugov_update_single_perf(struct update_util_data *hook, u64 time,
373 unsigned int flags)
374{
375 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
376 unsigned long prev_util = sg_cpu->util;
377
378 /*
379 * Fall back to the "frequency" path if frequency invariance is not
380 * supported, because the direct mapping between the utilization and
381 * the performance levels depends on the frequency invariance.
382 */
383 if (!arch_scale_freq_invariant()) {
384 sugov_update_single_freq(hook, time, flags);
385 return;
386 }
387
388 if (!sugov_update_single_common(sg_cpu, time, flags))
389 return;
390
391 /*
392 * Do not reduce the target performance level if the CPU has not been
393 * idle recently, as the reduction is likely to be premature then.
394 *
395 * Except when the rq is capped by uclamp_max.
396 */
397 if (!uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu)) &&
398 sugov_cpu_is_busy(sg_cpu) && sg_cpu->util < prev_util)
399 sg_cpu->util = prev_util;
400
401 cpufreq_driver_adjust_perf(sg_cpu->cpu, map_util_perf(sg_cpu->bw_dl),
402 map_util_perf(sg_cpu->util), sg_cpu->max);
403
404 sg_cpu->sg_policy->last_freq_update_time = time;
405}
406
407static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
408{
409 struct sugov_policy *sg_policy = sg_cpu->sg_policy;
410 struct cpufreq_policy *policy = sg_policy->policy;
411 unsigned long util = 0, max = 1;
412 unsigned int j;
413
414 for_each_cpu(j, policy->cpus) {
415 struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
416 unsigned long j_util, j_max;
417
418 sugov_get_util(j_sg_cpu);
419 sugov_iowait_apply(j_sg_cpu, time);
420 j_util = j_sg_cpu->util;
421 j_max = j_sg_cpu->max;
422
423 if (j_util * max > j_max * util) {
424 util = j_util;
425 max = j_max;
426 }
427 }
428
429 return get_next_freq(sg_policy, util, max);
430}
431
432static void
433sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
434{
435 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
436 struct sugov_policy *sg_policy = sg_cpu->sg_policy;
437 unsigned int next_f;
438
439 raw_spin_lock(&sg_policy->update_lock);
440
441 sugov_iowait_boost(sg_cpu, time, flags);
442 sg_cpu->last_update = time;
443
444 ignore_dl_rate_limit(sg_cpu);
445
446 if (sugov_should_update_freq(sg_policy, time)) {
447 next_f = sugov_next_freq_shared(sg_cpu, time);
448
449 if (!sugov_update_next_freq(sg_policy, time, next_f))
450 goto unlock;
451
452 if (sg_policy->policy->fast_switch_enabled)
453 cpufreq_driver_fast_switch(sg_policy->policy, next_f);
454 else
455 sugov_deferred_update(sg_policy);
456 }
457unlock:
458 raw_spin_unlock(&sg_policy->update_lock);
459}
460
461static void sugov_work(struct kthread_work *work)
462{
463 struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
464 unsigned int freq;
465 unsigned long flags;
466
467 /*
468 * Hold sg_policy->update_lock shortly to handle the case where:
469 * in case sg_policy->next_freq is read here, and then updated by
470 * sugov_deferred_update() just before work_in_progress is set to false
471 * here, we may miss queueing the new update.
472 *
473 * Note: If a work was queued after the update_lock is released,
474 * sugov_work() will just be called again by kthread_work code; and the
475 * request will be proceed before the sugov thread sleeps.
476 */
477 raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
478 freq = sg_policy->next_freq;
479 sg_policy->work_in_progress = false;
480 raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
481
482 mutex_lock(&sg_policy->work_lock);
483 __cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L);
484 mutex_unlock(&sg_policy->work_lock);
485}
486
487static void sugov_irq_work(struct irq_work *irq_work)
488{
489 struct sugov_policy *sg_policy;
490
491 sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
492
493 kthread_queue_work(&sg_policy->worker, &sg_policy->work);
494}
495
496/************************** sysfs interface ************************/
497
498static struct sugov_tunables *global_tunables;
499static DEFINE_MUTEX(global_tunables_lock);
500
501static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
502{
503 return container_of(attr_set, struct sugov_tunables, attr_set);
504}
505
506static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
507{
508 struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
509
510 return sprintf(buf, "%u\n", tunables->rate_limit_us);
511}
512
513static ssize_t
514rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
515{
516 struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
517 struct sugov_policy *sg_policy;
518 unsigned int rate_limit_us;
519
520 if (kstrtouint(buf, 10, &rate_limit_us))
521 return -EINVAL;
522
523 tunables->rate_limit_us = rate_limit_us;
524
525 list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
526 sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
527
528 return count;
529}
530
531static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
532
533static struct attribute *sugov_attrs[] = {
534 &rate_limit_us.attr,
535 NULL
536};
537ATTRIBUTE_GROUPS(sugov);
538
539static void sugov_tunables_free(struct kobject *kobj)
540{
541 struct gov_attr_set *attr_set = to_gov_attr_set(kobj);
542
543 kfree(to_sugov_tunables(attr_set));
544}
545
546static struct kobj_type sugov_tunables_ktype = {
547 .default_groups = sugov_groups,
548 .sysfs_ops = &governor_sysfs_ops,
549 .release = &sugov_tunables_free,
550};
551
552/********************** cpufreq governor interface *********************/
553
554struct cpufreq_governor schedutil_gov;
555
556static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
557{
558 struct sugov_policy *sg_policy;
559
560 sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
561 if (!sg_policy)
562 return NULL;
563
564 sg_policy->policy = policy;
565 raw_spin_lock_init(&sg_policy->update_lock);
566 return sg_policy;
567}
568
569static void sugov_policy_free(struct sugov_policy *sg_policy)
570{
571 kfree(sg_policy);
572}
573
574static int sugov_kthread_create(struct sugov_policy *sg_policy)
575{
576 struct task_struct *thread;
577 struct sched_attr attr = {
578 .size = sizeof(struct sched_attr),
579 .sched_policy = SCHED_DEADLINE,
580 .sched_flags = SCHED_FLAG_SUGOV,
581 .sched_nice = 0,
582 .sched_priority = 0,
583 /*
584 * Fake (unused) bandwidth; workaround to "fix"
585 * priority inheritance.
586 */
587 .sched_runtime = 1000000,
588 .sched_deadline = 10000000,
589 .sched_period = 10000000,
590 };
591 struct cpufreq_policy *policy = sg_policy->policy;
592 int ret;
593
594 /* kthread only required for slow path */
595 if (policy->fast_switch_enabled)
596 return 0;
597
598 kthread_init_work(&sg_policy->work, sugov_work);
599 kthread_init_worker(&sg_policy->worker);
600 thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
601 "sugov:%d",
602 cpumask_first(policy->related_cpus));
603 if (IS_ERR(thread)) {
604 pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
605 return PTR_ERR(thread);
606 }
607
608 ret = sched_setattr_nocheck(thread, &attr);
609 if (ret) {
610 kthread_stop(thread);
611 pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
612 return ret;
613 }
614
615 sg_policy->thread = thread;
616 kthread_bind_mask(thread, policy->related_cpus);
617 init_irq_work(&sg_policy->irq_work, sugov_irq_work);
618 mutex_init(&sg_policy->work_lock);
619
620 wake_up_process(thread);
621
622 return 0;
623}
624
625static void sugov_kthread_stop(struct sugov_policy *sg_policy)
626{
627 /* kthread only required for slow path */
628 if (sg_policy->policy->fast_switch_enabled)
629 return;
630
631 kthread_flush_worker(&sg_policy->worker);
632 kthread_stop(sg_policy->thread);
633 mutex_destroy(&sg_policy->work_lock);
634}
635
636static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
637{
638 struct sugov_tunables *tunables;
639
640 tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
641 if (tunables) {
642 gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
643 if (!have_governor_per_policy())
644 global_tunables = tunables;
645 }
646 return tunables;
647}
648
649static void sugov_clear_global_tunables(void)
650{
651 if (!have_governor_per_policy())
652 global_tunables = NULL;
653}
654
655static int sugov_init(struct cpufreq_policy *policy)
656{
657 struct sugov_policy *sg_policy;
658 struct sugov_tunables *tunables;
659 int ret = 0;
660
661 /* State should be equivalent to EXIT */
662 if (policy->governor_data)
663 return -EBUSY;
664
665 cpufreq_enable_fast_switch(policy);
666
667 sg_policy = sugov_policy_alloc(policy);
668 if (!sg_policy) {
669 ret = -ENOMEM;
670 goto disable_fast_switch;
671 }
672
673 ret = sugov_kthread_create(sg_policy);
674 if (ret)
675 goto free_sg_policy;
676
677 mutex_lock(&global_tunables_lock);
678
679 if (global_tunables) {
680 if (WARN_ON(have_governor_per_policy())) {
681 ret = -EINVAL;
682 goto stop_kthread;
683 }
684 policy->governor_data = sg_policy;
685 sg_policy->tunables = global_tunables;
686
687 gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
688 goto out;
689 }
690
691 tunables = sugov_tunables_alloc(sg_policy);
692 if (!tunables) {
693 ret = -ENOMEM;
694 goto stop_kthread;
695 }
696
697 tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
698
699 policy->governor_data = sg_policy;
700 sg_policy->tunables = tunables;
701
702 ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
703 get_governor_parent_kobj(policy), "%s",
704 schedutil_gov.name);
705 if (ret)
706 goto fail;
707
708out:
709 mutex_unlock(&global_tunables_lock);
710 return 0;
711
712fail:
713 kobject_put(&tunables->attr_set.kobj);
714 policy->governor_data = NULL;
715 sugov_clear_global_tunables();
716
717stop_kthread:
718 sugov_kthread_stop(sg_policy);
719 mutex_unlock(&global_tunables_lock);
720
721free_sg_policy:
722 sugov_policy_free(sg_policy);
723
724disable_fast_switch:
725 cpufreq_disable_fast_switch(policy);
726
727 pr_err("initialization failed (error %d)\n", ret);
728 return ret;
729}
730
731static void sugov_exit(struct cpufreq_policy *policy)
732{
733 struct sugov_policy *sg_policy = policy->governor_data;
734 struct sugov_tunables *tunables = sg_policy->tunables;
735 unsigned int count;
736
737 mutex_lock(&global_tunables_lock);
738
739 count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
740 policy->governor_data = NULL;
741 if (!count)
742 sugov_clear_global_tunables();
743
744 mutex_unlock(&global_tunables_lock);
745
746 sugov_kthread_stop(sg_policy);
747 sugov_policy_free(sg_policy);
748 cpufreq_disable_fast_switch(policy);
749}
750
751static int sugov_start(struct cpufreq_policy *policy)
752{
753 struct sugov_policy *sg_policy = policy->governor_data;
754 void (*uu)(struct update_util_data *data, u64 time, unsigned int flags);
755 unsigned int cpu;
756
757 sg_policy->freq_update_delay_ns = sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
758 sg_policy->last_freq_update_time = 0;
759 sg_policy->next_freq = 0;
760 sg_policy->work_in_progress = false;
761 sg_policy->limits_changed = false;
762 sg_policy->cached_raw_freq = 0;
763
764 sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
765
766 for_each_cpu(cpu, policy->cpus) {
767 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
768
769 memset(sg_cpu, 0, sizeof(*sg_cpu));
770 sg_cpu->cpu = cpu;
771 sg_cpu->sg_policy = sg_policy;
772 }
773
774 if (policy_is_shared(policy))
775 uu = sugov_update_shared;
776 else if (policy->fast_switch_enabled && cpufreq_driver_has_adjust_perf())
777 uu = sugov_update_single_perf;
778 else
779 uu = sugov_update_single_freq;
780
781 for_each_cpu(cpu, policy->cpus) {
782 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
783
784 cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util, uu);
785 }
786 return 0;
787}
788
789static void sugov_stop(struct cpufreq_policy *policy)
790{
791 struct sugov_policy *sg_policy = policy->governor_data;
792 unsigned int cpu;
793
794 for_each_cpu(cpu, policy->cpus)
795 cpufreq_remove_update_util_hook(cpu);
796
797 synchronize_rcu();
798
799 if (!policy->fast_switch_enabled) {
800 irq_work_sync(&sg_policy->irq_work);
801 kthread_cancel_work_sync(&sg_policy->work);
802 }
803}
804
805static void sugov_limits(struct cpufreq_policy *policy)
806{
807 struct sugov_policy *sg_policy = policy->governor_data;
808
809 if (!policy->fast_switch_enabled) {
810 mutex_lock(&sg_policy->work_lock);
811 cpufreq_policy_apply_limits(policy);
812 mutex_unlock(&sg_policy->work_lock);
813 }
814
815 sg_policy->limits_changed = true;
816}
817
818struct cpufreq_governor schedutil_gov = {
819 .name = "schedutil",
820 .owner = THIS_MODULE,
821 .flags = CPUFREQ_GOV_DYNAMIC_SWITCHING,
822 .init = sugov_init,
823 .exit = sugov_exit,
824 .start = sugov_start,
825 .stop = sugov_stop,
826 .limits = sugov_limits,
827};
828
829#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
830struct cpufreq_governor *cpufreq_default_governor(void)
831{
832 return &schedutil_gov;
833}
834#endif
835
836cpufreq_governor_init(schedutil_gov);
837
838#ifdef CONFIG_ENERGY_MODEL
839static void rebuild_sd_workfn(struct work_struct *work)
840{
841 rebuild_sched_domains_energy();
842}
843static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn);
844
845/*
846 * EAS shouldn't be attempted without sugov, so rebuild the sched_domains
847 * on governor changes to make sure the scheduler knows about it.
848 */
849void sched_cpufreq_governor_change(struct cpufreq_policy *policy,
850 struct cpufreq_governor *old_gov)
851{
852 if (old_gov == &schedutil_gov || policy->governor == &schedutil_gov) {
853 /*
854 * When called from the cpufreq_register_driver() path, the
855 * cpu_hotplug_lock is already held, so use a work item to
856 * avoid nested locking in rebuild_sched_domains().
857 */
858 schedule_work(&rebuild_sd_work);
859 }
860
861}
862#endif
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * CPUFreq governor based on scheduler-provided CPU utilization data.
4 *
5 * Copyright (C) 2016, Intel Corporation
6 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7 */
8
9#define IOWAIT_BOOST_MIN (SCHED_CAPACITY_SCALE / 8)
10
11struct sugov_tunables {
12 struct gov_attr_set attr_set;
13 unsigned int rate_limit_us;
14};
15
16struct sugov_policy {
17 struct cpufreq_policy *policy;
18
19 struct sugov_tunables *tunables;
20 struct list_head tunables_hook;
21
22 raw_spinlock_t update_lock;
23 u64 last_freq_update_time;
24 s64 freq_update_delay_ns;
25 unsigned int next_freq;
26 unsigned int cached_raw_freq;
27
28 /* The next fields are only needed if fast switch cannot be used: */
29 struct irq_work irq_work;
30 struct kthread_work work;
31 struct mutex work_lock;
32 struct kthread_worker worker;
33 struct task_struct *thread;
34 bool work_in_progress;
35
36 bool limits_changed;
37 bool need_freq_update;
38};
39
40struct sugov_cpu {
41 struct update_util_data update_util;
42 struct sugov_policy *sg_policy;
43 unsigned int cpu;
44
45 bool iowait_boost_pending;
46 unsigned int iowait_boost;
47 u64 last_update;
48
49 unsigned long util;
50 unsigned long bw_min;
51
52 /* The field below is for single-CPU policies only: */
53#ifdef CONFIG_NO_HZ_COMMON
54 unsigned long saved_idle_calls;
55#endif
56};
57
58static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
59
60/************************ Governor internals ***********************/
61
62static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
63{
64 s64 delta_ns;
65
66 /*
67 * Since cpufreq_update_util() is called with rq->lock held for
68 * the @target_cpu, our per-CPU data is fully serialized.
69 *
70 * However, drivers cannot in general deal with cross-CPU
71 * requests, so while get_next_freq() will work, our
72 * sugov_update_commit() call may not for the fast switching platforms.
73 *
74 * Hence stop here for remote requests if they aren't supported
75 * by the hardware, as calculating the frequency is pointless if
76 * we cannot in fact act on it.
77 *
78 * This is needed on the slow switching platforms too to prevent CPUs
79 * going offline from leaving stale IRQ work items behind.
80 */
81 if (!cpufreq_this_cpu_can_update(sg_policy->policy))
82 return false;
83
84 if (unlikely(sg_policy->limits_changed)) {
85 sg_policy->limits_changed = false;
86 sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
87 return true;
88 }
89
90 delta_ns = time - sg_policy->last_freq_update_time;
91
92 return delta_ns >= sg_policy->freq_update_delay_ns;
93}
94
95static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
96 unsigned int next_freq)
97{
98 if (sg_policy->need_freq_update)
99 sg_policy->need_freq_update = false;
100 else if (sg_policy->next_freq == next_freq)
101 return false;
102
103 sg_policy->next_freq = next_freq;
104 sg_policy->last_freq_update_time = time;
105
106 return true;
107}
108
109static void sugov_deferred_update(struct sugov_policy *sg_policy)
110{
111 if (!sg_policy->work_in_progress) {
112 sg_policy->work_in_progress = true;
113 irq_work_queue(&sg_policy->irq_work);
114 }
115}
116
117/**
118 * get_capacity_ref_freq - get the reference frequency that has been used to
119 * correlate frequency and compute capacity for a given cpufreq policy. We use
120 * the CPU managing it for the arch_scale_freq_ref() call in the function.
121 * @policy: the cpufreq policy of the CPU in question.
122 *
123 * Return: the reference CPU frequency to compute a capacity.
124 */
125static __always_inline
126unsigned long get_capacity_ref_freq(struct cpufreq_policy *policy)
127{
128 unsigned int freq = arch_scale_freq_ref(policy->cpu);
129
130 if (freq)
131 return freq;
132
133 if (arch_scale_freq_invariant())
134 return policy->cpuinfo.max_freq;
135
136 /*
137 * Apply a 25% margin so that we select a higher frequency than
138 * the current one before the CPU is fully busy:
139 */
140 return policy->cur + (policy->cur >> 2);
141}
142
143/**
144 * get_next_freq - Compute a new frequency for a given cpufreq policy.
145 * @sg_policy: schedutil policy object to compute the new frequency for.
146 * @util: Current CPU utilization.
147 * @max: CPU capacity.
148 *
149 * If the utilization is frequency-invariant, choose the new frequency to be
150 * proportional to it, that is
151 *
152 * next_freq = C * max_freq * util / max
153 *
154 * Otherwise, approximate the would-be frequency-invariant utilization by
155 * util_raw * (curr_freq / max_freq) which leads to
156 *
157 * next_freq = C * curr_freq * util_raw / max
158 *
159 * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
160 *
161 * The lowest driver-supported frequency which is equal or greater than the raw
162 * next_freq (as calculated above) is returned, subject to policy min/max and
163 * cpufreq driver limitations.
164 */
165static unsigned int get_next_freq(struct sugov_policy *sg_policy,
166 unsigned long util, unsigned long max)
167{
168 struct cpufreq_policy *policy = sg_policy->policy;
169 unsigned int freq;
170
171 freq = get_capacity_ref_freq(policy);
172 freq = map_util_freq(util, freq, max);
173
174 if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update)
175 return sg_policy->next_freq;
176
177 sg_policy->cached_raw_freq = freq;
178 return cpufreq_driver_resolve_freq(policy, freq);
179}
180
181unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual,
182 unsigned long min,
183 unsigned long max)
184{
185 /* Add dvfs headroom to actual utilization */
186 actual = map_util_perf(actual);
187 /* Actually we don't need to target the max performance */
188 if (actual < max)
189 max = actual;
190
191 /*
192 * Ensure at least minimum performance while providing more compute
193 * capacity when possible.
194 */
195 return max(min, max);
196}
197
198static void sugov_get_util(struct sugov_cpu *sg_cpu, unsigned long boost)
199{
200 unsigned long min, max, util = scx_cpuperf_target(sg_cpu->cpu);
201
202 if (!scx_switched_all())
203 util += cpu_util_cfs_boost(sg_cpu->cpu);
204 util = effective_cpu_util(sg_cpu->cpu, util, &min, &max);
205 util = max(util, boost);
206 sg_cpu->bw_min = min;
207 sg_cpu->util = sugov_effective_cpu_perf(sg_cpu->cpu, util, min, max);
208}
209
210/**
211 * sugov_iowait_reset() - Reset the IO boost status of a CPU.
212 * @sg_cpu: the sugov data for the CPU to boost
213 * @time: the update time from the caller
214 * @set_iowait_boost: true if an IO boost has been requested
215 *
216 * The IO wait boost of a task is disabled after a tick since the last update
217 * of a CPU. If a new IO wait boost is requested after more then a tick, then
218 * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy
219 * efficiency by ignoring sporadic wakeups from IO.
220 */
221static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time,
222 bool set_iowait_boost)
223{
224 s64 delta_ns = time - sg_cpu->last_update;
225
226 /* Reset boost only if a tick has elapsed since last request */
227 if (delta_ns <= TICK_NSEC)
228 return false;
229
230 sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0;
231 sg_cpu->iowait_boost_pending = set_iowait_boost;
232
233 return true;
234}
235
236/**
237 * sugov_iowait_boost() - Updates the IO boost status of a CPU.
238 * @sg_cpu: the sugov data for the CPU to boost
239 * @time: the update time from the caller
240 * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
241 *
242 * Each time a task wakes up after an IO operation, the CPU utilization can be
243 * boosted to a certain utilization which doubles at each "frequent and
244 * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization
245 * of the maximum OPP.
246 *
247 * To keep doubling, an IO boost has to be requested at least once per tick,
248 * otherwise we restart from the utilization of the minimum OPP.
249 */
250static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
251 unsigned int flags)
252{
253 bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT;
254
255 /* Reset boost if the CPU appears to have been idle enough */
256 if (sg_cpu->iowait_boost &&
257 sugov_iowait_reset(sg_cpu, time, set_iowait_boost))
258 return;
259
260 /* Boost only tasks waking up after IO */
261 if (!set_iowait_boost)
262 return;
263
264 /* Ensure boost doubles only one time at each request */
265 if (sg_cpu->iowait_boost_pending)
266 return;
267 sg_cpu->iowait_boost_pending = true;
268
269 /* Double the boost at each request */
270 if (sg_cpu->iowait_boost) {
271 sg_cpu->iowait_boost =
272 min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE);
273 return;
274 }
275
276 /* First wakeup after IO: start with minimum boost */
277 sg_cpu->iowait_boost = IOWAIT_BOOST_MIN;
278}
279
280/**
281 * sugov_iowait_apply() - Apply the IO boost to a CPU.
282 * @sg_cpu: the sugov data for the cpu to boost
283 * @time: the update time from the caller
284 * @max_cap: the max CPU capacity
285 *
286 * A CPU running a task which woken up after an IO operation can have its
287 * utilization boosted to speed up the completion of those IO operations.
288 * The IO boost value is increased each time a task wakes up from IO, in
289 * sugov_iowait_apply(), and it's instead decreased by this function,
290 * each time an increase has not been requested (!iowait_boost_pending).
291 *
292 * A CPU which also appears to have been idle for at least one tick has also
293 * its IO boost utilization reset.
294 *
295 * This mechanism is designed to boost high frequently IO waiting tasks, while
296 * being more conservative on tasks which does sporadic IO operations.
297 */
298static unsigned long sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time,
299 unsigned long max_cap)
300{
301 /* No boost currently required */
302 if (!sg_cpu->iowait_boost)
303 return 0;
304
305 /* Reset boost if the CPU appears to have been idle enough */
306 if (sugov_iowait_reset(sg_cpu, time, false))
307 return 0;
308
309 if (!sg_cpu->iowait_boost_pending) {
310 /*
311 * No boost pending; reduce the boost value.
312 */
313 sg_cpu->iowait_boost >>= 1;
314 if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) {
315 sg_cpu->iowait_boost = 0;
316 return 0;
317 }
318 }
319
320 sg_cpu->iowait_boost_pending = false;
321
322 /*
323 * sg_cpu->util is already in capacity scale; convert iowait_boost
324 * into the same scale so we can compare.
325 */
326 return (sg_cpu->iowait_boost * max_cap) >> SCHED_CAPACITY_SHIFT;
327}
328
329#ifdef CONFIG_NO_HZ_COMMON
330static bool sugov_hold_freq(struct sugov_cpu *sg_cpu)
331{
332 unsigned long idle_calls;
333 bool ret;
334
335 /*
336 * The heuristics in this function is for the fair class. For SCX, the
337 * performance target comes directly from the BPF scheduler. Let's just
338 * follow it.
339 */
340 if (scx_switched_all())
341 return false;
342
343 /* if capped by uclamp_max, always update to be in compliance */
344 if (uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu)))
345 return false;
346
347 /*
348 * Maintain the frequency if the CPU has not been idle recently, as
349 * reduction is likely to be premature.
350 */
351 idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
352 ret = idle_calls == sg_cpu->saved_idle_calls;
353
354 sg_cpu->saved_idle_calls = idle_calls;
355 return ret;
356}
357#else
358static inline bool sugov_hold_freq(struct sugov_cpu *sg_cpu) { return false; }
359#endif /* CONFIG_NO_HZ_COMMON */
360
361/*
362 * Make sugov_should_update_freq() ignore the rate limit when DL
363 * has increased the utilization.
364 */
365static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu)
366{
367 if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_min)
368 sg_cpu->sg_policy->limits_changed = true;
369}
370
371static inline bool sugov_update_single_common(struct sugov_cpu *sg_cpu,
372 u64 time, unsigned long max_cap,
373 unsigned int flags)
374{
375 unsigned long boost;
376
377 sugov_iowait_boost(sg_cpu, time, flags);
378 sg_cpu->last_update = time;
379
380 ignore_dl_rate_limit(sg_cpu);
381
382 if (!sugov_should_update_freq(sg_cpu->sg_policy, time))
383 return false;
384
385 boost = sugov_iowait_apply(sg_cpu, time, max_cap);
386 sugov_get_util(sg_cpu, boost);
387
388 return true;
389}
390
391static void sugov_update_single_freq(struct update_util_data *hook, u64 time,
392 unsigned int flags)
393{
394 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
395 struct sugov_policy *sg_policy = sg_cpu->sg_policy;
396 unsigned int cached_freq = sg_policy->cached_raw_freq;
397 unsigned long max_cap;
398 unsigned int next_f;
399
400 max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
401
402 if (!sugov_update_single_common(sg_cpu, time, max_cap, flags))
403 return;
404
405 next_f = get_next_freq(sg_policy, sg_cpu->util, max_cap);
406
407 if (sugov_hold_freq(sg_cpu) && next_f < sg_policy->next_freq &&
408 !sg_policy->need_freq_update) {
409 next_f = sg_policy->next_freq;
410
411 /* Restore cached freq as next_freq has changed */
412 sg_policy->cached_raw_freq = cached_freq;
413 }
414
415 if (!sugov_update_next_freq(sg_policy, time, next_f))
416 return;
417
418 /*
419 * This code runs under rq->lock for the target CPU, so it won't run
420 * concurrently on two different CPUs for the same target and it is not
421 * necessary to acquire the lock in the fast switch case.
422 */
423 if (sg_policy->policy->fast_switch_enabled) {
424 cpufreq_driver_fast_switch(sg_policy->policy, next_f);
425 } else {
426 raw_spin_lock(&sg_policy->update_lock);
427 sugov_deferred_update(sg_policy);
428 raw_spin_unlock(&sg_policy->update_lock);
429 }
430}
431
432static void sugov_update_single_perf(struct update_util_data *hook, u64 time,
433 unsigned int flags)
434{
435 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
436 unsigned long prev_util = sg_cpu->util;
437 unsigned long max_cap;
438
439 /*
440 * Fall back to the "frequency" path if frequency invariance is not
441 * supported, because the direct mapping between the utilization and
442 * the performance levels depends on the frequency invariance.
443 */
444 if (!arch_scale_freq_invariant()) {
445 sugov_update_single_freq(hook, time, flags);
446 return;
447 }
448
449 max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
450
451 if (!sugov_update_single_common(sg_cpu, time, max_cap, flags))
452 return;
453
454 if (sugov_hold_freq(sg_cpu) && sg_cpu->util < prev_util)
455 sg_cpu->util = prev_util;
456
457 cpufreq_driver_adjust_perf(sg_cpu->cpu, sg_cpu->bw_min,
458 sg_cpu->util, max_cap);
459
460 sg_cpu->sg_policy->last_freq_update_time = time;
461}
462
463static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
464{
465 struct sugov_policy *sg_policy = sg_cpu->sg_policy;
466 struct cpufreq_policy *policy = sg_policy->policy;
467 unsigned long util = 0, max_cap;
468 unsigned int j;
469
470 max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
471
472 for_each_cpu(j, policy->cpus) {
473 struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
474 unsigned long boost;
475
476 boost = sugov_iowait_apply(j_sg_cpu, time, max_cap);
477 sugov_get_util(j_sg_cpu, boost);
478
479 util = max(j_sg_cpu->util, util);
480 }
481
482 return get_next_freq(sg_policy, util, max_cap);
483}
484
485static void
486sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
487{
488 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
489 struct sugov_policy *sg_policy = sg_cpu->sg_policy;
490 unsigned int next_f;
491
492 raw_spin_lock(&sg_policy->update_lock);
493
494 sugov_iowait_boost(sg_cpu, time, flags);
495 sg_cpu->last_update = time;
496
497 ignore_dl_rate_limit(sg_cpu);
498
499 if (sugov_should_update_freq(sg_policy, time)) {
500 next_f = sugov_next_freq_shared(sg_cpu, time);
501
502 if (!sugov_update_next_freq(sg_policy, time, next_f))
503 goto unlock;
504
505 if (sg_policy->policy->fast_switch_enabled)
506 cpufreq_driver_fast_switch(sg_policy->policy, next_f);
507 else
508 sugov_deferred_update(sg_policy);
509 }
510unlock:
511 raw_spin_unlock(&sg_policy->update_lock);
512}
513
514static void sugov_work(struct kthread_work *work)
515{
516 struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
517 unsigned int freq;
518 unsigned long flags;
519
520 /*
521 * Hold sg_policy->update_lock shortly to handle the case where:
522 * in case sg_policy->next_freq is read here, and then updated by
523 * sugov_deferred_update() just before work_in_progress is set to false
524 * here, we may miss queueing the new update.
525 *
526 * Note: If a work was queued after the update_lock is released,
527 * sugov_work() will just be called again by kthread_work code; and the
528 * request will be proceed before the sugov thread sleeps.
529 */
530 raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
531 freq = sg_policy->next_freq;
532 sg_policy->work_in_progress = false;
533 raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
534
535 mutex_lock(&sg_policy->work_lock);
536 __cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L);
537 mutex_unlock(&sg_policy->work_lock);
538}
539
540static void sugov_irq_work(struct irq_work *irq_work)
541{
542 struct sugov_policy *sg_policy;
543
544 sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
545
546 kthread_queue_work(&sg_policy->worker, &sg_policy->work);
547}
548
549/************************** sysfs interface ************************/
550
551static struct sugov_tunables *global_tunables;
552static DEFINE_MUTEX(global_tunables_lock);
553
554static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
555{
556 return container_of(attr_set, struct sugov_tunables, attr_set);
557}
558
559static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
560{
561 struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
562
563 return sprintf(buf, "%u\n", tunables->rate_limit_us);
564}
565
566static ssize_t
567rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
568{
569 struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
570 struct sugov_policy *sg_policy;
571 unsigned int rate_limit_us;
572
573 if (kstrtouint(buf, 10, &rate_limit_us))
574 return -EINVAL;
575
576 tunables->rate_limit_us = rate_limit_us;
577
578 list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
579 sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
580
581 return count;
582}
583
584static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
585
586static struct attribute *sugov_attrs[] = {
587 &rate_limit_us.attr,
588 NULL
589};
590ATTRIBUTE_GROUPS(sugov);
591
592static void sugov_tunables_free(struct kobject *kobj)
593{
594 struct gov_attr_set *attr_set = to_gov_attr_set(kobj);
595
596 kfree(to_sugov_tunables(attr_set));
597}
598
599static const struct kobj_type sugov_tunables_ktype = {
600 .default_groups = sugov_groups,
601 .sysfs_ops = &governor_sysfs_ops,
602 .release = &sugov_tunables_free,
603};
604
605/********************** cpufreq governor interface *********************/
606
607#ifdef CONFIG_ENERGY_MODEL
608static void rebuild_sd_workfn(struct work_struct *work)
609{
610 rebuild_sched_domains_energy();
611}
612
613static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn);
614
615/*
616 * EAS shouldn't be attempted without sugov, so rebuild the sched_domains
617 * on governor changes to make sure the scheduler knows about it.
618 */
619static void sugov_eas_rebuild_sd(void)
620{
621 /*
622 * When called from the cpufreq_register_driver() path, the
623 * cpu_hotplug_lock is already held, so use a work item to
624 * avoid nested locking in rebuild_sched_domains().
625 */
626 schedule_work(&rebuild_sd_work);
627}
628#else
629static inline void sugov_eas_rebuild_sd(void) { };
630#endif
631
632struct cpufreq_governor schedutil_gov;
633
634static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
635{
636 struct sugov_policy *sg_policy;
637
638 sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
639 if (!sg_policy)
640 return NULL;
641
642 sg_policy->policy = policy;
643 raw_spin_lock_init(&sg_policy->update_lock);
644 return sg_policy;
645}
646
647static void sugov_policy_free(struct sugov_policy *sg_policy)
648{
649 kfree(sg_policy);
650}
651
652static int sugov_kthread_create(struct sugov_policy *sg_policy)
653{
654 struct task_struct *thread;
655 struct sched_attr attr = {
656 .size = sizeof(struct sched_attr),
657 .sched_policy = SCHED_DEADLINE,
658 .sched_flags = SCHED_FLAG_SUGOV,
659 .sched_nice = 0,
660 .sched_priority = 0,
661 /*
662 * Fake (unused) bandwidth; workaround to "fix"
663 * priority inheritance.
664 */
665 .sched_runtime = NSEC_PER_MSEC,
666 .sched_deadline = 10 * NSEC_PER_MSEC,
667 .sched_period = 10 * NSEC_PER_MSEC,
668 };
669 struct cpufreq_policy *policy = sg_policy->policy;
670 int ret;
671
672 /* kthread only required for slow path */
673 if (policy->fast_switch_enabled)
674 return 0;
675
676 kthread_init_work(&sg_policy->work, sugov_work);
677 kthread_init_worker(&sg_policy->worker);
678 thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
679 "sugov:%d",
680 cpumask_first(policy->related_cpus));
681 if (IS_ERR(thread)) {
682 pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
683 return PTR_ERR(thread);
684 }
685
686 ret = sched_setattr_nocheck(thread, &attr);
687 if (ret) {
688 kthread_stop(thread);
689 pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
690 return ret;
691 }
692
693 sg_policy->thread = thread;
694 kthread_bind_mask(thread, policy->related_cpus);
695 init_irq_work(&sg_policy->irq_work, sugov_irq_work);
696 mutex_init(&sg_policy->work_lock);
697
698 wake_up_process(thread);
699
700 return 0;
701}
702
703static void sugov_kthread_stop(struct sugov_policy *sg_policy)
704{
705 /* kthread only required for slow path */
706 if (sg_policy->policy->fast_switch_enabled)
707 return;
708
709 kthread_flush_worker(&sg_policy->worker);
710 kthread_stop(sg_policy->thread);
711 mutex_destroy(&sg_policy->work_lock);
712}
713
714static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
715{
716 struct sugov_tunables *tunables;
717
718 tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
719 if (tunables) {
720 gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
721 if (!have_governor_per_policy())
722 global_tunables = tunables;
723 }
724 return tunables;
725}
726
727static void sugov_clear_global_tunables(void)
728{
729 if (!have_governor_per_policy())
730 global_tunables = NULL;
731}
732
733static int sugov_init(struct cpufreq_policy *policy)
734{
735 struct sugov_policy *sg_policy;
736 struct sugov_tunables *tunables;
737 int ret = 0;
738
739 /* State should be equivalent to EXIT */
740 if (policy->governor_data)
741 return -EBUSY;
742
743 cpufreq_enable_fast_switch(policy);
744
745 sg_policy = sugov_policy_alloc(policy);
746 if (!sg_policy) {
747 ret = -ENOMEM;
748 goto disable_fast_switch;
749 }
750
751 ret = sugov_kthread_create(sg_policy);
752 if (ret)
753 goto free_sg_policy;
754
755 mutex_lock(&global_tunables_lock);
756
757 if (global_tunables) {
758 if (WARN_ON(have_governor_per_policy())) {
759 ret = -EINVAL;
760 goto stop_kthread;
761 }
762 policy->governor_data = sg_policy;
763 sg_policy->tunables = global_tunables;
764
765 gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
766 goto out;
767 }
768
769 tunables = sugov_tunables_alloc(sg_policy);
770 if (!tunables) {
771 ret = -ENOMEM;
772 goto stop_kthread;
773 }
774
775 tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
776
777 policy->governor_data = sg_policy;
778 sg_policy->tunables = tunables;
779
780 ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
781 get_governor_parent_kobj(policy), "%s",
782 schedutil_gov.name);
783 if (ret)
784 goto fail;
785
786out:
787 sugov_eas_rebuild_sd();
788 mutex_unlock(&global_tunables_lock);
789 return 0;
790
791fail:
792 kobject_put(&tunables->attr_set.kobj);
793 policy->governor_data = NULL;
794 sugov_clear_global_tunables();
795
796stop_kthread:
797 sugov_kthread_stop(sg_policy);
798 mutex_unlock(&global_tunables_lock);
799
800free_sg_policy:
801 sugov_policy_free(sg_policy);
802
803disable_fast_switch:
804 cpufreq_disable_fast_switch(policy);
805
806 pr_err("initialization failed (error %d)\n", ret);
807 return ret;
808}
809
810static void sugov_exit(struct cpufreq_policy *policy)
811{
812 struct sugov_policy *sg_policy = policy->governor_data;
813 struct sugov_tunables *tunables = sg_policy->tunables;
814 unsigned int count;
815
816 mutex_lock(&global_tunables_lock);
817
818 count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
819 policy->governor_data = NULL;
820 if (!count)
821 sugov_clear_global_tunables();
822
823 mutex_unlock(&global_tunables_lock);
824
825 sugov_kthread_stop(sg_policy);
826 sugov_policy_free(sg_policy);
827 cpufreq_disable_fast_switch(policy);
828
829 sugov_eas_rebuild_sd();
830}
831
832static int sugov_start(struct cpufreq_policy *policy)
833{
834 struct sugov_policy *sg_policy = policy->governor_data;
835 void (*uu)(struct update_util_data *data, u64 time, unsigned int flags);
836 unsigned int cpu;
837
838 sg_policy->freq_update_delay_ns = sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
839 sg_policy->last_freq_update_time = 0;
840 sg_policy->next_freq = 0;
841 sg_policy->work_in_progress = false;
842 sg_policy->limits_changed = false;
843 sg_policy->cached_raw_freq = 0;
844
845 sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
846
847 if (policy_is_shared(policy))
848 uu = sugov_update_shared;
849 else if (policy->fast_switch_enabled && cpufreq_driver_has_adjust_perf())
850 uu = sugov_update_single_perf;
851 else
852 uu = sugov_update_single_freq;
853
854 for_each_cpu(cpu, policy->cpus) {
855 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
856
857 memset(sg_cpu, 0, sizeof(*sg_cpu));
858 sg_cpu->cpu = cpu;
859 sg_cpu->sg_policy = sg_policy;
860 cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util, uu);
861 }
862 return 0;
863}
864
865static void sugov_stop(struct cpufreq_policy *policy)
866{
867 struct sugov_policy *sg_policy = policy->governor_data;
868 unsigned int cpu;
869
870 for_each_cpu(cpu, policy->cpus)
871 cpufreq_remove_update_util_hook(cpu);
872
873 synchronize_rcu();
874
875 if (!policy->fast_switch_enabled) {
876 irq_work_sync(&sg_policy->irq_work);
877 kthread_cancel_work_sync(&sg_policy->work);
878 }
879}
880
881static void sugov_limits(struct cpufreq_policy *policy)
882{
883 struct sugov_policy *sg_policy = policy->governor_data;
884
885 if (!policy->fast_switch_enabled) {
886 mutex_lock(&sg_policy->work_lock);
887 cpufreq_policy_apply_limits(policy);
888 mutex_unlock(&sg_policy->work_lock);
889 }
890
891 sg_policy->limits_changed = true;
892}
893
894struct cpufreq_governor schedutil_gov = {
895 .name = "schedutil",
896 .owner = THIS_MODULE,
897 .flags = CPUFREQ_GOV_DYNAMIC_SWITCHING,
898 .init = sugov_init,
899 .exit = sugov_exit,
900 .start = sugov_start,
901 .stop = sugov_stop,
902 .limits = sugov_limits,
903};
904
905#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
906struct cpufreq_governor *cpufreq_default_governor(void)
907{
908 return &schedutil_gov;
909}
910#endif
911
912cpufreq_governor_init(schedutil_gov);