Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * CPUFreq governor based on scheduler-provided CPU utilization data.
  4 *
  5 * Copyright (C) 2016, Intel Corporation
  6 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
  7 */
  8
 
 
 
 
 
 
 
  9#define IOWAIT_BOOST_MIN	(SCHED_CAPACITY_SCALE / 8)
 10
 11struct sugov_tunables {
 12	struct gov_attr_set	attr_set;
 13	unsigned int		rate_limit_us;
 14};
 15
 16struct sugov_policy {
 17	struct cpufreq_policy	*policy;
 18
 19	struct sugov_tunables	*tunables;
 20	struct list_head	tunables_hook;
 21
 22	raw_spinlock_t		update_lock;
 23	u64			last_freq_update_time;
 24	s64			freq_update_delay_ns;
 25	unsigned int		next_freq;
 26	unsigned int		cached_raw_freq;
 27
 28	/* The next fields are only needed if fast switch cannot be used: */
 29	struct			irq_work irq_work;
 30	struct			kthread_work work;
 31	struct			mutex work_lock;
 32	struct			kthread_worker worker;
 33	struct task_struct	*thread;
 34	bool			work_in_progress;
 35
 36	bool			limits_changed;
 37	bool			need_freq_update;
 38};
 39
 40struct sugov_cpu {
 41	struct update_util_data	update_util;
 42	struct sugov_policy	*sg_policy;
 43	unsigned int		cpu;
 44
 45	bool			iowait_boost_pending;
 46	unsigned int		iowait_boost;
 47	u64			last_update;
 48
 49	unsigned long		util;
 50	unsigned long		bw_dl;
 51	unsigned long		max;
 52
 53	/* The field below is for single-CPU policies only: */
 54#ifdef CONFIG_NO_HZ_COMMON
 55	unsigned long		saved_idle_calls;
 56#endif
 57};
 58
 59static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
 60
 61/************************ Governor internals ***********************/
 62
 63static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
 64{
 65	s64 delta_ns;
 66
 67	/*
 68	 * Since cpufreq_update_util() is called with rq->lock held for
 69	 * the @target_cpu, our per-CPU data is fully serialized.
 70	 *
 71	 * However, drivers cannot in general deal with cross-CPU
 72	 * requests, so while get_next_freq() will work, our
 73	 * sugov_update_commit() call may not for the fast switching platforms.
 74	 *
 75	 * Hence stop here for remote requests if they aren't supported
 76	 * by the hardware, as calculating the frequency is pointless if
 77	 * we cannot in fact act on it.
 78	 *
 79	 * This is needed on the slow switching platforms too to prevent CPUs
 80	 * going offline from leaving stale IRQ work items behind.
 81	 */
 82	if (!cpufreq_this_cpu_can_update(sg_policy->policy))
 83		return false;
 84
 85	if (unlikely(sg_policy->limits_changed)) {
 86		sg_policy->limits_changed = false;
 87		sg_policy->need_freq_update = true;
 88		return true;
 89	}
 90
 91	delta_ns = time - sg_policy->last_freq_update_time;
 92
 93	return delta_ns >= sg_policy->freq_update_delay_ns;
 94}
 95
 96static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
 97				   unsigned int next_freq)
 98{
 99	if (sg_policy->need_freq_update)
100		sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
101	else if (sg_policy->next_freq == next_freq)
102		return false;
103
104	sg_policy->next_freq = next_freq;
105	sg_policy->last_freq_update_time = time;
106
107	return true;
108}
109
110static void sugov_deferred_update(struct sugov_policy *sg_policy)
 
111{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
112	if (!sg_policy->work_in_progress) {
113		sg_policy->work_in_progress = true;
114		irq_work_queue(&sg_policy->irq_work);
115	}
116}
117
118/**
119 * get_next_freq - Compute a new frequency for a given cpufreq policy.
120 * @sg_policy: schedutil policy object to compute the new frequency for.
121 * @util: Current CPU utilization.
122 * @max: CPU capacity.
123 *
124 * If the utilization is frequency-invariant, choose the new frequency to be
125 * proportional to it, that is
126 *
127 * next_freq = C * max_freq * util / max
128 *
129 * Otherwise, approximate the would-be frequency-invariant utilization by
130 * util_raw * (curr_freq / max_freq) which leads to
131 *
132 * next_freq = C * curr_freq * util_raw / max
133 *
134 * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
135 *
136 * The lowest driver-supported frequency which is equal or greater than the raw
137 * next_freq (as calculated above) is returned, subject to policy min/max and
138 * cpufreq driver limitations.
139 */
140static unsigned int get_next_freq(struct sugov_policy *sg_policy,
141				  unsigned long util, unsigned long max)
142{
143	struct cpufreq_policy *policy = sg_policy->policy;
144	unsigned int freq = arch_scale_freq_invariant() ?
145				policy->cpuinfo.max_freq : policy->cur;
146
147	util = map_util_perf(util);
148	freq = map_util_freq(util, freq, max);
149
150	if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update)
151		return sg_policy->next_freq;
152
 
153	sg_policy->cached_raw_freq = freq;
154	return cpufreq_driver_resolve_freq(policy, freq);
155}
156
157static void sugov_get_util(struct sugov_cpu *sg_cpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
158{
159	struct rq *rq = cpu_rq(sg_cpu->cpu);
 
 
160
161	sg_cpu->max = arch_scale_cpu_capacity(sg_cpu->cpu);
162	sg_cpu->bw_dl = cpu_bw_dl(rq);
163	sg_cpu->util = effective_cpu_util(sg_cpu->cpu, cpu_util_cfs(sg_cpu->cpu),
164					  FREQUENCY_UTIL, NULL);
165}
166
167/**
168 * sugov_iowait_reset() - Reset the IO boost status of a CPU.
169 * @sg_cpu: the sugov data for the CPU to boost
170 * @time: the update time from the caller
171 * @set_iowait_boost: true if an IO boost has been requested
172 *
173 * The IO wait boost of a task is disabled after a tick since the last update
174 * of a CPU. If a new IO wait boost is requested after more then a tick, then
175 * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy
176 * efficiency by ignoring sporadic wakeups from IO.
177 */
178static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time,
179			       bool set_iowait_boost)
180{
181	s64 delta_ns = time - sg_cpu->last_update;
182
183	/* Reset boost only if a tick has elapsed since last request */
184	if (delta_ns <= TICK_NSEC)
185		return false;
186
187	sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0;
188	sg_cpu->iowait_boost_pending = set_iowait_boost;
189
190	return true;
191}
192
193/**
194 * sugov_iowait_boost() - Updates the IO boost status of a CPU.
195 * @sg_cpu: the sugov data for the CPU to boost
196 * @time: the update time from the caller
197 * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
198 *
199 * Each time a task wakes up after an IO operation, the CPU utilization can be
200 * boosted to a certain utilization which doubles at each "frequent and
201 * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization
202 * of the maximum OPP.
203 *
204 * To keep doubling, an IO boost has to be requested at least once per tick,
205 * otherwise we restart from the utilization of the minimum OPP.
206 */
207static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
208			       unsigned int flags)
209{
210	bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT;
211
212	/* Reset boost if the CPU appears to have been idle enough */
213	if (sg_cpu->iowait_boost &&
214	    sugov_iowait_reset(sg_cpu, time, set_iowait_boost))
215		return;
216
217	/* Boost only tasks waking up after IO */
218	if (!set_iowait_boost)
219		return;
220
221	/* Ensure boost doubles only one time at each request */
222	if (sg_cpu->iowait_boost_pending)
223		return;
224	sg_cpu->iowait_boost_pending = true;
225
226	/* Double the boost at each request */
227	if (sg_cpu->iowait_boost) {
228		sg_cpu->iowait_boost =
229			min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE);
230		return;
231	}
232
233	/* First wakeup after IO: start with minimum boost */
234	sg_cpu->iowait_boost = IOWAIT_BOOST_MIN;
235}
236
237/**
238 * sugov_iowait_apply() - Apply the IO boost to a CPU.
239 * @sg_cpu: the sugov data for the cpu to boost
240 * @time: the update time from the caller
 
 
241 *
242 * A CPU running a task which woken up after an IO operation can have its
243 * utilization boosted to speed up the completion of those IO operations.
244 * The IO boost value is increased each time a task wakes up from IO, in
245 * sugov_iowait_apply(), and it's instead decreased by this function,
246 * each time an increase has not been requested (!iowait_boost_pending).
247 *
248 * A CPU which also appears to have been idle for at least one tick has also
249 * its IO boost utilization reset.
250 *
251 * This mechanism is designed to boost high frequently IO waiting tasks, while
252 * being more conservative on tasks which does sporadic IO operations.
253 */
254static void sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time)
 
255{
256	unsigned long boost;
257
258	/* No boost currently required */
259	if (!sg_cpu->iowait_boost)
260		return;
261
262	/* Reset boost if the CPU appears to have been idle enough */
263	if (sugov_iowait_reset(sg_cpu, time, false))
264		return;
265
266	if (!sg_cpu->iowait_boost_pending) {
267		/*
268		 * No boost pending; reduce the boost value.
269		 */
270		sg_cpu->iowait_boost >>= 1;
271		if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) {
272			sg_cpu->iowait_boost = 0;
273			return;
274		}
275	}
276
277	sg_cpu->iowait_boost_pending = false;
278
279	/*
280	 * sg_cpu->util is already in capacity scale; convert iowait_boost
281	 * into the same scale so we can compare.
282	 */
283	boost = (sg_cpu->iowait_boost * sg_cpu->max) >> SCHED_CAPACITY_SHIFT;
284	boost = uclamp_rq_util_with(cpu_rq(sg_cpu->cpu), boost, NULL);
285	if (sg_cpu->util < boost)
286		sg_cpu->util = boost;
287}
288
289#ifdef CONFIG_NO_HZ_COMMON
290static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu)
291{
292	unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
293	bool ret = idle_calls == sg_cpu->saved_idle_calls;
294
295	sg_cpu->saved_idle_calls = idle_calls;
296	return ret;
297}
298#else
299static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; }
300#endif /* CONFIG_NO_HZ_COMMON */
301
302/*
303 * Make sugov_should_update_freq() ignore the rate limit when DL
304 * has increased the utilization.
305 */
306static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu)
307{
308	if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_dl)
309		sg_cpu->sg_policy->limits_changed = true;
310}
311
312static inline bool sugov_update_single_common(struct sugov_cpu *sg_cpu,
313					      u64 time, unsigned int flags)
314{
315	sugov_iowait_boost(sg_cpu, time, flags);
316	sg_cpu->last_update = time;
317
318	ignore_dl_rate_limit(sg_cpu);
319
320	if (!sugov_should_update_freq(sg_cpu->sg_policy, time))
321		return false;
322
323	sugov_get_util(sg_cpu);
324	sugov_iowait_apply(sg_cpu, time);
325
326	return true;
327}
328
329static void sugov_update_single_freq(struct update_util_data *hook, u64 time,
330				     unsigned int flags)
331{
332	struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
333	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
334	unsigned int cached_freq = sg_policy->cached_raw_freq;
335	unsigned int next_f;
 
 
 
 
 
 
336
337	if (!sugov_update_single_common(sg_cpu, time, flags))
338		return;
339
340	next_f = get_next_freq(sg_policy, sg_cpu->util, sg_cpu->max);
 
 
 
 
 
 
341	/*
342	 * Do not reduce the frequency if the CPU has not been idle
343	 * recently, as the reduction is likely to be premature then.
344	 *
345	 * Except when the rq is capped by uclamp_max.
346	 */
347	if (!uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu)) &&
348	    sugov_cpu_is_busy(sg_cpu) && next_f < sg_policy->next_freq) {
349		next_f = sg_policy->next_freq;
350
351		/* Restore cached freq as next_freq has changed */
352		sg_policy->cached_raw_freq = cached_freq;
353	}
354
355	if (!sugov_update_next_freq(sg_policy, time, next_f))
356		return;
357
358	/*
359	 * This code runs under rq->lock for the target CPU, so it won't run
360	 * concurrently on two different CPUs for the same target and it is not
361	 * necessary to acquire the lock in the fast switch case.
362	 */
363	if (sg_policy->policy->fast_switch_enabled) {
364		cpufreq_driver_fast_switch(sg_policy->policy, next_f);
365	} else {
366		raw_spin_lock(&sg_policy->update_lock);
367		sugov_deferred_update(sg_policy);
368		raw_spin_unlock(&sg_policy->update_lock);
369	}
370}
371
372static void sugov_update_single_perf(struct update_util_data *hook, u64 time,
373				     unsigned int flags)
374{
375	struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
376	unsigned long prev_util = sg_cpu->util;
377
378	/*
379	 * Fall back to the "frequency" path if frequency invariance is not
380	 * supported, because the direct mapping between the utilization and
381	 * the performance levels depends on the frequency invariance.
382	 */
383	if (!arch_scale_freq_invariant()) {
384		sugov_update_single_freq(hook, time, flags);
385		return;
386	}
387
388	if (!sugov_update_single_common(sg_cpu, time, flags))
389		return;
390
391	/*
392	 * Do not reduce the target performance level if the CPU has not been
393	 * idle recently, as the reduction is likely to be premature then.
394	 *
395	 * Except when the rq is capped by uclamp_max.
396	 */
397	if (!uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu)) &&
398	    sugov_cpu_is_busy(sg_cpu) && sg_cpu->util < prev_util)
399		sg_cpu->util = prev_util;
400
401	cpufreq_driver_adjust_perf(sg_cpu->cpu, map_util_perf(sg_cpu->bw_dl),
402				   map_util_perf(sg_cpu->util), sg_cpu->max);
403
404	sg_cpu->sg_policy->last_freq_update_time = time;
405}
406
407static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
408{
409	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
410	struct cpufreq_policy *policy = sg_policy->policy;
411	unsigned long util = 0, max = 1;
412	unsigned int j;
413
414	for_each_cpu(j, policy->cpus) {
415		struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
416		unsigned long j_util, j_max;
417
418		sugov_get_util(j_sg_cpu);
419		sugov_iowait_apply(j_sg_cpu, time);
420		j_util = j_sg_cpu->util;
421		j_max = j_sg_cpu->max;
 
422
423		if (j_util * max > j_max * util) {
424			util = j_util;
425			max = j_max;
426		}
427	}
428
429	return get_next_freq(sg_policy, util, max);
430}
431
432static void
433sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
434{
435	struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
436	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
437	unsigned int next_f;
438
439	raw_spin_lock(&sg_policy->update_lock);
440
441	sugov_iowait_boost(sg_cpu, time, flags);
442	sg_cpu->last_update = time;
443
444	ignore_dl_rate_limit(sg_cpu);
445
446	if (sugov_should_update_freq(sg_policy, time)) {
447		next_f = sugov_next_freq_shared(sg_cpu, time);
448
449		if (!sugov_update_next_freq(sg_policy, time, next_f))
450			goto unlock;
451
452		if (sg_policy->policy->fast_switch_enabled)
453			cpufreq_driver_fast_switch(sg_policy->policy, next_f);
454		else
455			sugov_deferred_update(sg_policy);
456	}
457unlock:
458	raw_spin_unlock(&sg_policy->update_lock);
459}
460
461static void sugov_work(struct kthread_work *work)
462{
463	struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
464	unsigned int freq;
465	unsigned long flags;
466
467	/*
468	 * Hold sg_policy->update_lock shortly to handle the case where:
469	 * in case sg_policy->next_freq is read here, and then updated by
470	 * sugov_deferred_update() just before work_in_progress is set to false
471	 * here, we may miss queueing the new update.
472	 *
473	 * Note: If a work was queued after the update_lock is released,
474	 * sugov_work() will just be called again by kthread_work code; and the
475	 * request will be proceed before the sugov thread sleeps.
476	 */
477	raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
478	freq = sg_policy->next_freq;
479	sg_policy->work_in_progress = false;
480	raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
481
482	mutex_lock(&sg_policy->work_lock);
483	__cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L);
484	mutex_unlock(&sg_policy->work_lock);
485}
486
487static void sugov_irq_work(struct irq_work *irq_work)
488{
489	struct sugov_policy *sg_policy;
490
491	sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
492
493	kthread_queue_work(&sg_policy->worker, &sg_policy->work);
494}
495
496/************************** sysfs interface ************************/
497
498static struct sugov_tunables *global_tunables;
499static DEFINE_MUTEX(global_tunables_lock);
500
501static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
502{
503	return container_of(attr_set, struct sugov_tunables, attr_set);
504}
505
506static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
507{
508	struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
509
510	return sprintf(buf, "%u\n", tunables->rate_limit_us);
511}
512
513static ssize_t
514rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
515{
516	struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
517	struct sugov_policy *sg_policy;
518	unsigned int rate_limit_us;
519
520	if (kstrtouint(buf, 10, &rate_limit_us))
521		return -EINVAL;
522
523	tunables->rate_limit_us = rate_limit_us;
524
525	list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
526		sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
527
528	return count;
529}
530
531static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
532
533static struct attribute *sugov_attrs[] = {
534	&rate_limit_us.attr,
535	NULL
536};
537ATTRIBUTE_GROUPS(sugov);
538
539static void sugov_tunables_free(struct kobject *kobj)
540{
541	struct gov_attr_set *attr_set = to_gov_attr_set(kobj);
542
543	kfree(to_sugov_tunables(attr_set));
544}
545
546static struct kobj_type sugov_tunables_ktype = {
547	.default_groups = sugov_groups,
548	.sysfs_ops = &governor_sysfs_ops,
549	.release = &sugov_tunables_free,
550};
551
552/********************** cpufreq governor interface *********************/
553
554struct cpufreq_governor schedutil_gov;
555
556static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
557{
558	struct sugov_policy *sg_policy;
559
560	sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
561	if (!sg_policy)
562		return NULL;
563
564	sg_policy->policy = policy;
565	raw_spin_lock_init(&sg_policy->update_lock);
566	return sg_policy;
567}
568
569static void sugov_policy_free(struct sugov_policy *sg_policy)
570{
571	kfree(sg_policy);
572}
573
574static int sugov_kthread_create(struct sugov_policy *sg_policy)
575{
576	struct task_struct *thread;
577	struct sched_attr attr = {
578		.size		= sizeof(struct sched_attr),
579		.sched_policy	= SCHED_DEADLINE,
580		.sched_flags	= SCHED_FLAG_SUGOV,
581		.sched_nice	= 0,
582		.sched_priority	= 0,
583		/*
584		 * Fake (unused) bandwidth; workaround to "fix"
585		 * priority inheritance.
586		 */
587		.sched_runtime	=  1000000,
588		.sched_deadline = 10000000,
589		.sched_period	= 10000000,
590	};
591	struct cpufreq_policy *policy = sg_policy->policy;
592	int ret;
593
594	/* kthread only required for slow path */
595	if (policy->fast_switch_enabled)
596		return 0;
597
598	kthread_init_work(&sg_policy->work, sugov_work);
599	kthread_init_worker(&sg_policy->worker);
600	thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
601				"sugov:%d",
602				cpumask_first(policy->related_cpus));
603	if (IS_ERR(thread)) {
604		pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
605		return PTR_ERR(thread);
606	}
607
608	ret = sched_setattr_nocheck(thread, &attr);
609	if (ret) {
610		kthread_stop(thread);
611		pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
612		return ret;
613	}
614
615	sg_policy->thread = thread;
616	kthread_bind_mask(thread, policy->related_cpus);
617	init_irq_work(&sg_policy->irq_work, sugov_irq_work);
618	mutex_init(&sg_policy->work_lock);
619
620	wake_up_process(thread);
621
622	return 0;
623}
624
625static void sugov_kthread_stop(struct sugov_policy *sg_policy)
626{
627	/* kthread only required for slow path */
628	if (sg_policy->policy->fast_switch_enabled)
629		return;
630
631	kthread_flush_worker(&sg_policy->worker);
632	kthread_stop(sg_policy->thread);
633	mutex_destroy(&sg_policy->work_lock);
634}
635
636static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
637{
638	struct sugov_tunables *tunables;
639
640	tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
641	if (tunables) {
642		gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
643		if (!have_governor_per_policy())
644			global_tunables = tunables;
645	}
646	return tunables;
647}
648
649static void sugov_clear_global_tunables(void)
650{
651	if (!have_governor_per_policy())
652		global_tunables = NULL;
 
 
653}
654
655static int sugov_init(struct cpufreq_policy *policy)
656{
657	struct sugov_policy *sg_policy;
658	struct sugov_tunables *tunables;
659	int ret = 0;
660
661	/* State should be equivalent to EXIT */
662	if (policy->governor_data)
663		return -EBUSY;
664
665	cpufreq_enable_fast_switch(policy);
666
667	sg_policy = sugov_policy_alloc(policy);
668	if (!sg_policy) {
669		ret = -ENOMEM;
670		goto disable_fast_switch;
671	}
672
673	ret = sugov_kthread_create(sg_policy);
674	if (ret)
675		goto free_sg_policy;
676
677	mutex_lock(&global_tunables_lock);
678
679	if (global_tunables) {
680		if (WARN_ON(have_governor_per_policy())) {
681			ret = -EINVAL;
682			goto stop_kthread;
683		}
684		policy->governor_data = sg_policy;
685		sg_policy->tunables = global_tunables;
686
687		gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
688		goto out;
689	}
690
691	tunables = sugov_tunables_alloc(sg_policy);
692	if (!tunables) {
693		ret = -ENOMEM;
694		goto stop_kthread;
695	}
696
697	tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
698
699	policy->governor_data = sg_policy;
700	sg_policy->tunables = tunables;
701
702	ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
703				   get_governor_parent_kobj(policy), "%s",
704				   schedutil_gov.name);
705	if (ret)
706		goto fail;
707
708out:
709	mutex_unlock(&global_tunables_lock);
710	return 0;
711
712fail:
713	kobject_put(&tunables->attr_set.kobj);
714	policy->governor_data = NULL;
715	sugov_clear_global_tunables();
716
717stop_kthread:
718	sugov_kthread_stop(sg_policy);
719	mutex_unlock(&global_tunables_lock);
720
721free_sg_policy:
722	sugov_policy_free(sg_policy);
723
724disable_fast_switch:
725	cpufreq_disable_fast_switch(policy);
726
727	pr_err("initialization failed (error %d)\n", ret);
728	return ret;
729}
730
731static void sugov_exit(struct cpufreq_policy *policy)
732{
733	struct sugov_policy *sg_policy = policy->governor_data;
734	struct sugov_tunables *tunables = sg_policy->tunables;
735	unsigned int count;
736
737	mutex_lock(&global_tunables_lock);
738
739	count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
740	policy->governor_data = NULL;
741	if (!count)
742		sugov_clear_global_tunables();
743
744	mutex_unlock(&global_tunables_lock);
745
746	sugov_kthread_stop(sg_policy);
747	sugov_policy_free(sg_policy);
748	cpufreq_disable_fast_switch(policy);
749}
750
751static int sugov_start(struct cpufreq_policy *policy)
752{
753	struct sugov_policy *sg_policy = policy->governor_data;
754	void (*uu)(struct update_util_data *data, u64 time, unsigned int flags);
755	unsigned int cpu;
756
757	sg_policy->freq_update_delay_ns	= sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
758	sg_policy->last_freq_update_time	= 0;
759	sg_policy->next_freq			= 0;
760	sg_policy->work_in_progress		= false;
761	sg_policy->limits_changed		= false;
 
762	sg_policy->cached_raw_freq		= 0;
763
764	sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
765
766	for_each_cpu(cpu, policy->cpus) {
767		struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
768
769		memset(sg_cpu, 0, sizeof(*sg_cpu));
770		sg_cpu->cpu			= cpu;
771		sg_cpu->sg_policy		= sg_policy;
772	}
773
774	if (policy_is_shared(policy))
775		uu = sugov_update_shared;
776	else if (policy->fast_switch_enabled && cpufreq_driver_has_adjust_perf())
777		uu = sugov_update_single_perf;
778	else
779		uu = sugov_update_single_freq;
780
781	for_each_cpu(cpu, policy->cpus) {
782		struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
783
784		cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util, uu);
 
 
 
785	}
786	return 0;
787}
788
789static void sugov_stop(struct cpufreq_policy *policy)
790{
791	struct sugov_policy *sg_policy = policy->governor_data;
792	unsigned int cpu;
793
794	for_each_cpu(cpu, policy->cpus)
795		cpufreq_remove_update_util_hook(cpu);
796
797	synchronize_rcu();
798
799	if (!policy->fast_switch_enabled) {
800		irq_work_sync(&sg_policy->irq_work);
801		kthread_cancel_work_sync(&sg_policy->work);
802	}
803}
804
805static void sugov_limits(struct cpufreq_policy *policy)
806{
807	struct sugov_policy *sg_policy = policy->governor_data;
808
809	if (!policy->fast_switch_enabled) {
810		mutex_lock(&sg_policy->work_lock);
811		cpufreq_policy_apply_limits(policy);
812		mutex_unlock(&sg_policy->work_lock);
813	}
814
815	sg_policy->limits_changed = true;
816}
817
818struct cpufreq_governor schedutil_gov = {
819	.name			= "schedutil",
820	.owner			= THIS_MODULE,
821	.flags			= CPUFREQ_GOV_DYNAMIC_SWITCHING,
822	.init			= sugov_init,
823	.exit			= sugov_exit,
824	.start			= sugov_start,
825	.stop			= sugov_stop,
826	.limits			= sugov_limits,
827};
828
829#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
830struct cpufreq_governor *cpufreq_default_governor(void)
831{
832	return &schedutil_gov;
833}
834#endif
835
836cpufreq_governor_init(schedutil_gov);
837
838#ifdef CONFIG_ENERGY_MODEL
 
 
 
839static void rebuild_sd_workfn(struct work_struct *work)
840{
841	rebuild_sched_domains_energy();
 
 
 
 
842}
843static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn);
844
845/*
846 * EAS shouldn't be attempted without sugov, so rebuild the sched_domains
847 * on governor changes to make sure the scheduler knows about it.
848 */
849void sched_cpufreq_governor_change(struct cpufreq_policy *policy,
850				  struct cpufreq_governor *old_gov)
851{
852	if (old_gov == &schedutil_gov || policy->governor == &schedutil_gov) {
853		/*
854		 * When called from the cpufreq_register_driver() path, the
855		 * cpu_hotplug_lock is already held, so use a work item to
856		 * avoid nested locking in rebuild_sched_domains().
857		 */
858		schedule_work(&rebuild_sd_work);
859	}
860
861}
862#endif
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * CPUFreq governor based on scheduler-provided CPU utilization data.
  4 *
  5 * Copyright (C) 2016, Intel Corporation
  6 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
  7 */
  8
  9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 10
 11#include "sched.h"
 12
 13#include <linux/sched/cpufreq.h>
 14#include <trace/events/power.h>
 15
 16#define IOWAIT_BOOST_MIN	(SCHED_CAPACITY_SCALE / 8)
 17
 18struct sugov_tunables {
 19	struct gov_attr_set	attr_set;
 20	unsigned int		rate_limit_us;
 21};
 22
 23struct sugov_policy {
 24	struct cpufreq_policy	*policy;
 25
 26	struct sugov_tunables	*tunables;
 27	struct list_head	tunables_hook;
 28
 29	raw_spinlock_t		update_lock;	/* For shared policies */
 30	u64			last_freq_update_time;
 31	s64			freq_update_delay_ns;
 32	unsigned int		next_freq;
 33	unsigned int		cached_raw_freq;
 34
 35	/* The next fields are only needed if fast switch cannot be used: */
 36	struct			irq_work irq_work;
 37	struct			kthread_work work;
 38	struct			mutex work_lock;
 39	struct			kthread_worker worker;
 40	struct task_struct	*thread;
 41	bool			work_in_progress;
 42
 43	bool			limits_changed;
 44	bool			need_freq_update;
 45};
 46
 47struct sugov_cpu {
 48	struct update_util_data	update_util;
 49	struct sugov_policy	*sg_policy;
 50	unsigned int		cpu;
 51
 52	bool			iowait_boost_pending;
 53	unsigned int		iowait_boost;
 54	u64			last_update;
 55
 
 56	unsigned long		bw_dl;
 57	unsigned long		max;
 58
 59	/* The field below is for single-CPU policies only: */
 60#ifdef CONFIG_NO_HZ_COMMON
 61	unsigned long		saved_idle_calls;
 62#endif
 63};
 64
 65static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
 66
 67/************************ Governor internals ***********************/
 68
 69static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
 70{
 71	s64 delta_ns;
 72
 73	/*
 74	 * Since cpufreq_update_util() is called with rq->lock held for
 75	 * the @target_cpu, our per-CPU data is fully serialized.
 76	 *
 77	 * However, drivers cannot in general deal with cross-CPU
 78	 * requests, so while get_next_freq() will work, our
 79	 * sugov_update_commit() call may not for the fast switching platforms.
 80	 *
 81	 * Hence stop here for remote requests if they aren't supported
 82	 * by the hardware, as calculating the frequency is pointless if
 83	 * we cannot in fact act on it.
 84	 *
 85	 * This is needed on the slow switching platforms too to prevent CPUs
 86	 * going offline from leaving stale IRQ work items behind.
 87	 */
 88	if (!cpufreq_this_cpu_can_update(sg_policy->policy))
 89		return false;
 90
 91	if (unlikely(sg_policy->limits_changed)) {
 92		sg_policy->limits_changed = false;
 93		sg_policy->need_freq_update = true;
 94		return true;
 95	}
 96
 97	delta_ns = time - sg_policy->last_freq_update_time;
 98
 99	return delta_ns >= sg_policy->freq_update_delay_ns;
100}
101
102static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
103				   unsigned int next_freq)
104{
105	if (sg_policy->next_freq == next_freq)
 
 
106		return false;
107
108	sg_policy->next_freq = next_freq;
109	sg_policy->last_freq_update_time = time;
110
111	return true;
112}
113
114static void sugov_fast_switch(struct sugov_policy *sg_policy, u64 time,
115			      unsigned int next_freq)
116{
117	struct cpufreq_policy *policy = sg_policy->policy;
118	int cpu;
119
120	if (!sugov_update_next_freq(sg_policy, time, next_freq))
121		return;
122
123	next_freq = cpufreq_driver_fast_switch(policy, next_freq);
124	if (!next_freq)
125		return;
126
127	policy->cur = next_freq;
128
129	if (trace_cpu_frequency_enabled()) {
130		for_each_cpu(cpu, policy->cpus)
131			trace_cpu_frequency(next_freq, cpu);
132	}
133}
134
135static void sugov_deferred_update(struct sugov_policy *sg_policy, u64 time,
136				  unsigned int next_freq)
137{
138	if (!sugov_update_next_freq(sg_policy, time, next_freq))
139		return;
140
141	if (!sg_policy->work_in_progress) {
142		sg_policy->work_in_progress = true;
143		irq_work_queue(&sg_policy->irq_work);
144	}
145}
146
147/**
148 * get_next_freq - Compute a new frequency for a given cpufreq policy.
149 * @sg_policy: schedutil policy object to compute the new frequency for.
150 * @util: Current CPU utilization.
151 * @max: CPU capacity.
152 *
153 * If the utilization is frequency-invariant, choose the new frequency to be
154 * proportional to it, that is
155 *
156 * next_freq = C * max_freq * util / max
157 *
158 * Otherwise, approximate the would-be frequency-invariant utilization by
159 * util_raw * (curr_freq / max_freq) which leads to
160 *
161 * next_freq = C * curr_freq * util_raw / max
162 *
163 * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
164 *
165 * The lowest driver-supported frequency which is equal or greater than the raw
166 * next_freq (as calculated above) is returned, subject to policy min/max and
167 * cpufreq driver limitations.
168 */
169static unsigned int get_next_freq(struct sugov_policy *sg_policy,
170				  unsigned long util, unsigned long max)
171{
172	struct cpufreq_policy *policy = sg_policy->policy;
173	unsigned int freq = arch_scale_freq_invariant() ?
174				policy->cpuinfo.max_freq : policy->cur;
175
 
176	freq = map_util_freq(util, freq, max);
177
178	if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update)
179		return sg_policy->next_freq;
180
181	sg_policy->need_freq_update = false;
182	sg_policy->cached_raw_freq = freq;
183	return cpufreq_driver_resolve_freq(policy, freq);
184}
185
186/*
187 * This function computes an effective utilization for the given CPU, to be
188 * used for frequency selection given the linear relation: f = u * f_max.
189 *
190 * The scheduler tracks the following metrics:
191 *
192 *   cpu_util_{cfs,rt,dl,irq}()
193 *   cpu_bw_dl()
194 *
195 * Where the cfs,rt and dl util numbers are tracked with the same metric and
196 * synchronized windows and are thus directly comparable.
197 *
198 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
199 * which excludes things like IRQ and steal-time. These latter are then accrued
200 * in the irq utilization.
201 *
202 * The DL bandwidth number otoh is not a measured metric but a value computed
203 * based on the task model parameters and gives the minimal utilization
204 * required to meet deadlines.
205 */
206unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
207				 unsigned long max, enum schedutil_type type,
208				 struct task_struct *p)
209{
210	unsigned long dl_util, util, irq;
211	struct rq *rq = cpu_rq(cpu);
212
213	if (!uclamp_is_used() &&
214	    type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
215		return max;
216	}
217
218	/*
219	 * Early check to see if IRQ/steal time saturates the CPU, can be
220	 * because of inaccuracies in how we track these -- see
221	 * update_irq_load_avg().
222	 */
223	irq = cpu_util_irq(rq);
224	if (unlikely(irq >= max))
225		return max;
226
227	/*
228	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
229	 * CFS tasks and we use the same metric to track the effective
230	 * utilization (PELT windows are synchronized) we can directly add them
231	 * to obtain the CPU's actual utilization.
232	 *
233	 * CFS and RT utilization can be boosted or capped, depending on
234	 * utilization clamp constraints requested by currently RUNNABLE
235	 * tasks.
236	 * When there are no CFS RUNNABLE tasks, clamps are released and
237	 * frequency will be gracefully reduced with the utilization decay.
238	 */
239	util = util_cfs + cpu_util_rt(rq);
240	if (type == FREQUENCY_UTIL)
241		util = uclamp_rq_util_with(rq, util, p);
242
243	dl_util = cpu_util_dl(rq);
244
245	/*
246	 * For frequency selection we do not make cpu_util_dl() a permanent part
247	 * of this sum because we want to use cpu_bw_dl() later on, but we need
248	 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
249	 * that we select f_max when there is no idle time.
250	 *
251	 * NOTE: numerical errors or stop class might cause us to not quite hit
252	 * saturation when we should -- something for later.
253	 */
254	if (util + dl_util >= max)
255		return max;
256
257	/*
258	 * OTOH, for energy computation we need the estimated running time, so
259	 * include util_dl and ignore dl_bw.
260	 */
261	if (type == ENERGY_UTIL)
262		util += dl_util;
263
264	/*
265	 * There is still idle time; further improve the number by using the
266	 * irq metric. Because IRQ/steal time is hidden from the task clock we
267	 * need to scale the task numbers:
268	 *
269	 *              max - irq
270	 *   U' = irq + --------- * U
271	 *                 max
272	 */
273	util = scale_irq_capacity(util, irq, max);
274	util += irq;
275
276	/*
277	 * Bandwidth required by DEADLINE must always be granted while, for
278	 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
279	 * to gracefully reduce the frequency when no tasks show up for longer
280	 * periods of time.
281	 *
282	 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
283	 * bw_dl as requested freq. However, cpufreq is not yet ready for such
284	 * an interface. So, we only do the latter for now.
285	 */
286	if (type == FREQUENCY_UTIL)
287		util += cpu_bw_dl(rq);
288
289	return min(max, util);
290}
291
292static unsigned long sugov_get_util(struct sugov_cpu *sg_cpu)
293{
294	struct rq *rq = cpu_rq(sg_cpu->cpu);
295	unsigned long util = cpu_util_cfs(rq);
296	unsigned long max = arch_scale_cpu_capacity(sg_cpu->cpu);
297
298	sg_cpu->max = max;
299	sg_cpu->bw_dl = cpu_bw_dl(rq);
300
301	return schedutil_cpu_util(sg_cpu->cpu, util, max, FREQUENCY_UTIL, NULL);
302}
303
304/**
305 * sugov_iowait_reset() - Reset the IO boost status of a CPU.
306 * @sg_cpu: the sugov data for the CPU to boost
307 * @time: the update time from the caller
308 * @set_iowait_boost: true if an IO boost has been requested
309 *
310 * The IO wait boost of a task is disabled after a tick since the last update
311 * of a CPU. If a new IO wait boost is requested after more then a tick, then
312 * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy
313 * efficiency by ignoring sporadic wakeups from IO.
314 */
315static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time,
316			       bool set_iowait_boost)
317{
318	s64 delta_ns = time - sg_cpu->last_update;
319
320	/* Reset boost only if a tick has elapsed since last request */
321	if (delta_ns <= TICK_NSEC)
322		return false;
323
324	sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0;
325	sg_cpu->iowait_boost_pending = set_iowait_boost;
326
327	return true;
328}
329
330/**
331 * sugov_iowait_boost() - Updates the IO boost status of a CPU.
332 * @sg_cpu: the sugov data for the CPU to boost
333 * @time: the update time from the caller
334 * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
335 *
336 * Each time a task wakes up after an IO operation, the CPU utilization can be
337 * boosted to a certain utilization which doubles at each "frequent and
338 * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization
339 * of the maximum OPP.
340 *
341 * To keep doubling, an IO boost has to be requested at least once per tick,
342 * otherwise we restart from the utilization of the minimum OPP.
343 */
344static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
345			       unsigned int flags)
346{
347	bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT;
348
349	/* Reset boost if the CPU appears to have been idle enough */
350	if (sg_cpu->iowait_boost &&
351	    sugov_iowait_reset(sg_cpu, time, set_iowait_boost))
352		return;
353
354	/* Boost only tasks waking up after IO */
355	if (!set_iowait_boost)
356		return;
357
358	/* Ensure boost doubles only one time at each request */
359	if (sg_cpu->iowait_boost_pending)
360		return;
361	sg_cpu->iowait_boost_pending = true;
362
363	/* Double the boost at each request */
364	if (sg_cpu->iowait_boost) {
365		sg_cpu->iowait_boost =
366			min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE);
367		return;
368	}
369
370	/* First wakeup after IO: start with minimum boost */
371	sg_cpu->iowait_boost = IOWAIT_BOOST_MIN;
372}
373
374/**
375 * sugov_iowait_apply() - Apply the IO boost to a CPU.
376 * @sg_cpu: the sugov data for the cpu to boost
377 * @time: the update time from the caller
378 * @util: the utilization to (eventually) boost
379 * @max: the maximum value the utilization can be boosted to
380 *
381 * A CPU running a task which woken up after an IO operation can have its
382 * utilization boosted to speed up the completion of those IO operations.
383 * The IO boost value is increased each time a task wakes up from IO, in
384 * sugov_iowait_apply(), and it's instead decreased by this function,
385 * each time an increase has not been requested (!iowait_boost_pending).
386 *
387 * A CPU which also appears to have been idle for at least one tick has also
388 * its IO boost utilization reset.
389 *
390 * This mechanism is designed to boost high frequently IO waiting tasks, while
391 * being more conservative on tasks which does sporadic IO operations.
392 */
393static unsigned long sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time,
394					unsigned long util, unsigned long max)
395{
396	unsigned long boost;
397
398	/* No boost currently required */
399	if (!sg_cpu->iowait_boost)
400		return util;
401
402	/* Reset boost if the CPU appears to have been idle enough */
403	if (sugov_iowait_reset(sg_cpu, time, false))
404		return util;
405
406	if (!sg_cpu->iowait_boost_pending) {
407		/*
408		 * No boost pending; reduce the boost value.
409		 */
410		sg_cpu->iowait_boost >>= 1;
411		if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) {
412			sg_cpu->iowait_boost = 0;
413			return util;
414		}
415	}
416
417	sg_cpu->iowait_boost_pending = false;
418
419	/*
420	 * @util is already in capacity scale; convert iowait_boost
421	 * into the same scale so we can compare.
422	 */
423	boost = (sg_cpu->iowait_boost * max) >> SCHED_CAPACITY_SHIFT;
424	return max(boost, util);
 
 
425}
426
427#ifdef CONFIG_NO_HZ_COMMON
428static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu)
429{
430	unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
431	bool ret = idle_calls == sg_cpu->saved_idle_calls;
432
433	sg_cpu->saved_idle_calls = idle_calls;
434	return ret;
435}
436#else
437static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; }
438#endif /* CONFIG_NO_HZ_COMMON */
439
440/*
441 * Make sugov_should_update_freq() ignore the rate limit when DL
442 * has increased the utilization.
443 */
444static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu, struct sugov_policy *sg_policy)
445{
446	if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_dl)
447		sg_policy->limits_changed = true;
448}
449
450static void sugov_update_single(struct update_util_data *hook, u64 time,
451				unsigned int flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
452{
453	struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
454	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
455	unsigned long util, max;
456	unsigned int next_f;
457	bool busy;
458
459	sugov_iowait_boost(sg_cpu, time, flags);
460	sg_cpu->last_update = time;
461
462	ignore_dl_rate_limit(sg_cpu, sg_policy);
463
464	if (!sugov_should_update_freq(sg_policy, time))
465		return;
466
467	/* Limits may have changed, don't skip frequency update */
468	busy = !sg_policy->need_freq_update && sugov_cpu_is_busy(sg_cpu);
469
470	util = sugov_get_util(sg_cpu);
471	max = sg_cpu->max;
472	util = sugov_iowait_apply(sg_cpu, time, util, max);
473	next_f = get_next_freq(sg_policy, util, max);
474	/*
475	 * Do not reduce the frequency if the CPU has not been idle
476	 * recently, as the reduction is likely to be premature then.
 
 
477	 */
478	if (busy && next_f < sg_policy->next_freq) {
 
479		next_f = sg_policy->next_freq;
480
481		/* Reset cached freq as next_freq has changed */
482		sg_policy->cached_raw_freq = 0;
483	}
484
 
 
 
485	/*
486	 * This code runs under rq->lock for the target CPU, so it won't run
487	 * concurrently on two different CPUs for the same target and it is not
488	 * necessary to acquire the lock in the fast switch case.
489	 */
490	if (sg_policy->policy->fast_switch_enabled) {
491		sugov_fast_switch(sg_policy, time, next_f);
492	} else {
493		raw_spin_lock(&sg_policy->update_lock);
494		sugov_deferred_update(sg_policy, time, next_f);
495		raw_spin_unlock(&sg_policy->update_lock);
496	}
497}
498
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
499static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
500{
501	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
502	struct cpufreq_policy *policy = sg_policy->policy;
503	unsigned long util = 0, max = 1;
504	unsigned int j;
505
506	for_each_cpu(j, policy->cpus) {
507		struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
508		unsigned long j_util, j_max;
509
510		j_util = sugov_get_util(j_sg_cpu);
 
 
511		j_max = j_sg_cpu->max;
512		j_util = sugov_iowait_apply(j_sg_cpu, time, j_util, j_max);
513
514		if (j_util * max > j_max * util) {
515			util = j_util;
516			max = j_max;
517		}
518	}
519
520	return get_next_freq(sg_policy, util, max);
521}
522
523static void
524sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
525{
526	struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
527	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
528	unsigned int next_f;
529
530	raw_spin_lock(&sg_policy->update_lock);
531
532	sugov_iowait_boost(sg_cpu, time, flags);
533	sg_cpu->last_update = time;
534
535	ignore_dl_rate_limit(sg_cpu, sg_policy);
536
537	if (sugov_should_update_freq(sg_policy, time)) {
538		next_f = sugov_next_freq_shared(sg_cpu, time);
539
 
 
 
540		if (sg_policy->policy->fast_switch_enabled)
541			sugov_fast_switch(sg_policy, time, next_f);
542		else
543			sugov_deferred_update(sg_policy, time, next_f);
544	}
545
546	raw_spin_unlock(&sg_policy->update_lock);
547}
548
549static void sugov_work(struct kthread_work *work)
550{
551	struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
552	unsigned int freq;
553	unsigned long flags;
554
555	/*
556	 * Hold sg_policy->update_lock shortly to handle the case where:
557	 * incase sg_policy->next_freq is read here, and then updated by
558	 * sugov_deferred_update() just before work_in_progress is set to false
559	 * here, we may miss queueing the new update.
560	 *
561	 * Note: If a work was queued after the update_lock is released,
562	 * sugov_work() will just be called again by kthread_work code; and the
563	 * request will be proceed before the sugov thread sleeps.
564	 */
565	raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
566	freq = sg_policy->next_freq;
567	sg_policy->work_in_progress = false;
568	raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
569
570	mutex_lock(&sg_policy->work_lock);
571	__cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L);
572	mutex_unlock(&sg_policy->work_lock);
573}
574
575static void sugov_irq_work(struct irq_work *irq_work)
576{
577	struct sugov_policy *sg_policy;
578
579	sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
580
581	kthread_queue_work(&sg_policy->worker, &sg_policy->work);
582}
583
584/************************** sysfs interface ************************/
585
586static struct sugov_tunables *global_tunables;
587static DEFINE_MUTEX(global_tunables_lock);
588
589static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
590{
591	return container_of(attr_set, struct sugov_tunables, attr_set);
592}
593
594static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
595{
596	struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
597
598	return sprintf(buf, "%u\n", tunables->rate_limit_us);
599}
600
601static ssize_t
602rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
603{
604	struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
605	struct sugov_policy *sg_policy;
606	unsigned int rate_limit_us;
607
608	if (kstrtouint(buf, 10, &rate_limit_us))
609		return -EINVAL;
610
611	tunables->rate_limit_us = rate_limit_us;
612
613	list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
614		sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
615
616	return count;
617}
618
619static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
620
621static struct attribute *sugov_attrs[] = {
622	&rate_limit_us.attr,
623	NULL
624};
625ATTRIBUTE_GROUPS(sugov);
626
 
 
 
 
 
 
 
627static struct kobj_type sugov_tunables_ktype = {
628	.default_groups = sugov_groups,
629	.sysfs_ops = &governor_sysfs_ops,
 
630};
631
632/********************** cpufreq governor interface *********************/
633
634struct cpufreq_governor schedutil_gov;
635
636static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
637{
638	struct sugov_policy *sg_policy;
639
640	sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
641	if (!sg_policy)
642		return NULL;
643
644	sg_policy->policy = policy;
645	raw_spin_lock_init(&sg_policy->update_lock);
646	return sg_policy;
647}
648
649static void sugov_policy_free(struct sugov_policy *sg_policy)
650{
651	kfree(sg_policy);
652}
653
654static int sugov_kthread_create(struct sugov_policy *sg_policy)
655{
656	struct task_struct *thread;
657	struct sched_attr attr = {
658		.size		= sizeof(struct sched_attr),
659		.sched_policy	= SCHED_DEADLINE,
660		.sched_flags	= SCHED_FLAG_SUGOV,
661		.sched_nice	= 0,
662		.sched_priority	= 0,
663		/*
664		 * Fake (unused) bandwidth; workaround to "fix"
665		 * priority inheritance.
666		 */
667		.sched_runtime	=  1000000,
668		.sched_deadline = 10000000,
669		.sched_period	= 10000000,
670	};
671	struct cpufreq_policy *policy = sg_policy->policy;
672	int ret;
673
674	/* kthread only required for slow path */
675	if (policy->fast_switch_enabled)
676		return 0;
677
678	kthread_init_work(&sg_policy->work, sugov_work);
679	kthread_init_worker(&sg_policy->worker);
680	thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
681				"sugov:%d",
682				cpumask_first(policy->related_cpus));
683	if (IS_ERR(thread)) {
684		pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
685		return PTR_ERR(thread);
686	}
687
688	ret = sched_setattr_nocheck(thread, &attr);
689	if (ret) {
690		kthread_stop(thread);
691		pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
692		return ret;
693	}
694
695	sg_policy->thread = thread;
696	kthread_bind_mask(thread, policy->related_cpus);
697	init_irq_work(&sg_policy->irq_work, sugov_irq_work);
698	mutex_init(&sg_policy->work_lock);
699
700	wake_up_process(thread);
701
702	return 0;
703}
704
705static void sugov_kthread_stop(struct sugov_policy *sg_policy)
706{
707	/* kthread only required for slow path */
708	if (sg_policy->policy->fast_switch_enabled)
709		return;
710
711	kthread_flush_worker(&sg_policy->worker);
712	kthread_stop(sg_policy->thread);
713	mutex_destroy(&sg_policy->work_lock);
714}
715
716static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
717{
718	struct sugov_tunables *tunables;
719
720	tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
721	if (tunables) {
722		gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
723		if (!have_governor_per_policy())
724			global_tunables = tunables;
725	}
726	return tunables;
727}
728
729static void sugov_tunables_free(struct sugov_tunables *tunables)
730{
731	if (!have_governor_per_policy())
732		global_tunables = NULL;
733
734	kfree(tunables);
735}
736
737static int sugov_init(struct cpufreq_policy *policy)
738{
739	struct sugov_policy *sg_policy;
740	struct sugov_tunables *tunables;
741	int ret = 0;
742
743	/* State should be equivalent to EXIT */
744	if (policy->governor_data)
745		return -EBUSY;
746
747	cpufreq_enable_fast_switch(policy);
748
749	sg_policy = sugov_policy_alloc(policy);
750	if (!sg_policy) {
751		ret = -ENOMEM;
752		goto disable_fast_switch;
753	}
754
755	ret = sugov_kthread_create(sg_policy);
756	if (ret)
757		goto free_sg_policy;
758
759	mutex_lock(&global_tunables_lock);
760
761	if (global_tunables) {
762		if (WARN_ON(have_governor_per_policy())) {
763			ret = -EINVAL;
764			goto stop_kthread;
765		}
766		policy->governor_data = sg_policy;
767		sg_policy->tunables = global_tunables;
768
769		gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
770		goto out;
771	}
772
773	tunables = sugov_tunables_alloc(sg_policy);
774	if (!tunables) {
775		ret = -ENOMEM;
776		goto stop_kthread;
777	}
778
779	tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
780
781	policy->governor_data = sg_policy;
782	sg_policy->tunables = tunables;
783
784	ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
785				   get_governor_parent_kobj(policy), "%s",
786				   schedutil_gov.name);
787	if (ret)
788		goto fail;
789
790out:
791	mutex_unlock(&global_tunables_lock);
792	return 0;
793
794fail:
795	kobject_put(&tunables->attr_set.kobj);
796	policy->governor_data = NULL;
797	sugov_tunables_free(tunables);
798
799stop_kthread:
800	sugov_kthread_stop(sg_policy);
801	mutex_unlock(&global_tunables_lock);
802
803free_sg_policy:
804	sugov_policy_free(sg_policy);
805
806disable_fast_switch:
807	cpufreq_disable_fast_switch(policy);
808
809	pr_err("initialization failed (error %d)\n", ret);
810	return ret;
811}
812
813static void sugov_exit(struct cpufreq_policy *policy)
814{
815	struct sugov_policy *sg_policy = policy->governor_data;
816	struct sugov_tunables *tunables = sg_policy->tunables;
817	unsigned int count;
818
819	mutex_lock(&global_tunables_lock);
820
821	count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
822	policy->governor_data = NULL;
823	if (!count)
824		sugov_tunables_free(tunables);
825
826	mutex_unlock(&global_tunables_lock);
827
828	sugov_kthread_stop(sg_policy);
829	sugov_policy_free(sg_policy);
830	cpufreq_disable_fast_switch(policy);
831}
832
833static int sugov_start(struct cpufreq_policy *policy)
834{
835	struct sugov_policy *sg_policy = policy->governor_data;
 
836	unsigned int cpu;
837
838	sg_policy->freq_update_delay_ns	= sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
839	sg_policy->last_freq_update_time	= 0;
840	sg_policy->next_freq			= 0;
841	sg_policy->work_in_progress		= false;
842	sg_policy->limits_changed		= false;
843	sg_policy->need_freq_update		= false;
844	sg_policy->cached_raw_freq		= 0;
845
 
 
846	for_each_cpu(cpu, policy->cpus) {
847		struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
848
849		memset(sg_cpu, 0, sizeof(*sg_cpu));
850		sg_cpu->cpu			= cpu;
851		sg_cpu->sg_policy		= sg_policy;
852	}
853
 
 
 
 
 
 
 
854	for_each_cpu(cpu, policy->cpus) {
855		struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
856
857		cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util,
858					     policy_is_shared(policy) ?
859							sugov_update_shared :
860							sugov_update_single);
861	}
862	return 0;
863}
864
865static void sugov_stop(struct cpufreq_policy *policy)
866{
867	struct sugov_policy *sg_policy = policy->governor_data;
868	unsigned int cpu;
869
870	for_each_cpu(cpu, policy->cpus)
871		cpufreq_remove_update_util_hook(cpu);
872
873	synchronize_rcu();
874
875	if (!policy->fast_switch_enabled) {
876		irq_work_sync(&sg_policy->irq_work);
877		kthread_cancel_work_sync(&sg_policy->work);
878	}
879}
880
881static void sugov_limits(struct cpufreq_policy *policy)
882{
883	struct sugov_policy *sg_policy = policy->governor_data;
884
885	if (!policy->fast_switch_enabled) {
886		mutex_lock(&sg_policy->work_lock);
887		cpufreq_policy_apply_limits(policy);
888		mutex_unlock(&sg_policy->work_lock);
889	}
890
891	sg_policy->limits_changed = true;
892}
893
894struct cpufreq_governor schedutil_gov = {
895	.name			= "schedutil",
896	.owner			= THIS_MODULE,
897	.dynamic_switching	= true,
898	.init			= sugov_init,
899	.exit			= sugov_exit,
900	.start			= sugov_start,
901	.stop			= sugov_stop,
902	.limits			= sugov_limits,
903};
904
905#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
906struct cpufreq_governor *cpufreq_default_governor(void)
907{
908	return &schedutil_gov;
909}
910#endif
911
912cpufreq_governor_init(schedutil_gov);
913
914#ifdef CONFIG_ENERGY_MODEL
915extern bool sched_energy_update;
916extern struct mutex sched_energy_mutex;
917
918static void rebuild_sd_workfn(struct work_struct *work)
919{
920	mutex_lock(&sched_energy_mutex);
921	sched_energy_update = true;
922	rebuild_sched_domains();
923	sched_energy_update = false;
924	mutex_unlock(&sched_energy_mutex);
925}
926static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn);
927
928/*
929 * EAS shouldn't be attempted without sugov, so rebuild the sched_domains
930 * on governor changes to make sure the scheduler knows about it.
931 */
932void sched_cpufreq_governor_change(struct cpufreq_policy *policy,
933				  struct cpufreq_governor *old_gov)
934{
935	if (old_gov == &schedutil_gov || policy->governor == &schedutil_gov) {
936		/*
937		 * When called from the cpufreq_register_driver() path, the
938		 * cpu_hotplug_lock is already held, so use a work item to
939		 * avoid nested locking in rebuild_sched_domains().
940		 */
941		schedule_work(&rebuild_sd_work);
942	}
943
944}
945#endif