Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Longest prefix match list implementation
4 *
5 * Copyright (c) 2016,2017 Daniel Mack
6 * Copyright (c) 2016 David Herrmann
7 */
8
9#include <linux/bpf.h>
10#include <linux/btf.h>
11#include <linux/err.h>
12#include <linux/slab.h>
13#include <linux/spinlock.h>
14#include <linux/vmalloc.h>
15#include <net/ipv6.h>
16#include <uapi/linux/btf.h>
17#include <linux/btf_ids.h>
18
19/* Intermediate node */
20#define LPM_TREE_NODE_FLAG_IM BIT(0)
21
22struct lpm_trie_node;
23
24struct lpm_trie_node {
25 struct rcu_head rcu;
26 struct lpm_trie_node __rcu *child[2];
27 u32 prefixlen;
28 u32 flags;
29 u8 data[];
30};
31
32struct lpm_trie {
33 struct bpf_map map;
34 struct lpm_trie_node __rcu *root;
35 size_t n_entries;
36 size_t max_prefixlen;
37 size_t data_size;
38 spinlock_t lock;
39};
40
41/* This trie implements a longest prefix match algorithm that can be used to
42 * match IP addresses to a stored set of ranges.
43 *
44 * Data stored in @data of struct bpf_lpm_key and struct lpm_trie_node is
45 * interpreted as big endian, so data[0] stores the most significant byte.
46 *
47 * Match ranges are internally stored in instances of struct lpm_trie_node
48 * which each contain their prefix length as well as two pointers that may
49 * lead to more nodes containing more specific matches. Each node also stores
50 * a value that is defined by and returned to userspace via the update_elem
51 * and lookup functions.
52 *
53 * For instance, let's start with a trie that was created with a prefix length
54 * of 32, so it can be used for IPv4 addresses, and one single element that
55 * matches 192.168.0.0/16. The data array would hence contain
56 * [0xc0, 0xa8, 0x00, 0x00] in big-endian notation. This documentation will
57 * stick to IP-address notation for readability though.
58 *
59 * As the trie is empty initially, the new node (1) will be places as root
60 * node, denoted as (R) in the example below. As there are no other node, both
61 * child pointers are %NULL.
62 *
63 * +----------------+
64 * | (1) (R) |
65 * | 192.168.0.0/16 |
66 * | value: 1 |
67 * | [0] [1] |
68 * +----------------+
69 *
70 * Next, let's add a new node (2) matching 192.168.0.0/24. As there is already
71 * a node with the same data and a smaller prefix (ie, a less specific one),
72 * node (2) will become a child of (1). In child index depends on the next bit
73 * that is outside of what (1) matches, and that bit is 0, so (2) will be
74 * child[0] of (1):
75 *
76 * +----------------+
77 * | (1) (R) |
78 * | 192.168.0.0/16 |
79 * | value: 1 |
80 * | [0] [1] |
81 * +----------------+
82 * |
83 * +----------------+
84 * | (2) |
85 * | 192.168.0.0/24 |
86 * | value: 2 |
87 * | [0] [1] |
88 * +----------------+
89 *
90 * The child[1] slot of (1) could be filled with another node which has bit #17
91 * (the next bit after the ones that (1) matches on) set to 1. For instance,
92 * 192.168.128.0/24:
93 *
94 * +----------------+
95 * | (1) (R) |
96 * | 192.168.0.0/16 |
97 * | value: 1 |
98 * | [0] [1] |
99 * +----------------+
100 * | |
101 * +----------------+ +------------------+
102 * | (2) | | (3) |
103 * | 192.168.0.0/24 | | 192.168.128.0/24 |
104 * | value: 2 | | value: 3 |
105 * | [0] [1] | | [0] [1] |
106 * +----------------+ +------------------+
107 *
108 * Let's add another node (4) to the game for 192.168.1.0/24. In order to place
109 * it, node (1) is looked at first, and because (4) of the semantics laid out
110 * above (bit #17 is 0), it would normally be attached to (1) as child[0].
111 * However, that slot is already allocated, so a new node is needed in between.
112 * That node does not have a value attached to it and it will never be
113 * returned to users as result of a lookup. It is only there to differentiate
114 * the traversal further. It will get a prefix as wide as necessary to
115 * distinguish its two children:
116 *
117 * +----------------+
118 * | (1) (R) |
119 * | 192.168.0.0/16 |
120 * | value: 1 |
121 * | [0] [1] |
122 * +----------------+
123 * | |
124 * +----------------+ +------------------+
125 * | (4) (I) | | (3) |
126 * | 192.168.0.0/23 | | 192.168.128.0/24 |
127 * | value: --- | | value: 3 |
128 * | [0] [1] | | [0] [1] |
129 * +----------------+ +------------------+
130 * | |
131 * +----------------+ +----------------+
132 * | (2) | | (5) |
133 * | 192.168.0.0/24 | | 192.168.1.0/24 |
134 * | value: 2 | | value: 5 |
135 * | [0] [1] | | [0] [1] |
136 * +----------------+ +----------------+
137 *
138 * 192.168.1.1/32 would be a child of (5) etc.
139 *
140 * An intermediate node will be turned into a 'real' node on demand. In the
141 * example above, (4) would be re-used if 192.168.0.0/23 is added to the trie.
142 *
143 * A fully populated trie would have a height of 32 nodes, as the trie was
144 * created with a prefix length of 32.
145 *
146 * The lookup starts at the root node. If the current node matches and if there
147 * is a child that can be used to become more specific, the trie is traversed
148 * downwards. The last node in the traversal that is a non-intermediate one is
149 * returned.
150 */
151
152static inline int extract_bit(const u8 *data, size_t index)
153{
154 return !!(data[index / 8] & (1 << (7 - (index % 8))));
155}
156
157/**
158 * longest_prefix_match() - determine the longest prefix
159 * @trie: The trie to get internal sizes from
160 * @node: The node to operate on
161 * @key: The key to compare to @node
162 *
163 * Determine the longest prefix of @node that matches the bits in @key.
164 */
165static size_t longest_prefix_match(const struct lpm_trie *trie,
166 const struct lpm_trie_node *node,
167 const struct bpf_lpm_trie_key *key)
168{
169 u32 limit = min(node->prefixlen, key->prefixlen);
170 u32 prefixlen = 0, i = 0;
171
172 BUILD_BUG_ON(offsetof(struct lpm_trie_node, data) % sizeof(u32));
173 BUILD_BUG_ON(offsetof(struct bpf_lpm_trie_key, data) % sizeof(u32));
174
175#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && defined(CONFIG_64BIT)
176
177 /* data_size >= 16 has very small probability.
178 * We do not use a loop for optimal code generation.
179 */
180 if (trie->data_size >= 8) {
181 u64 diff = be64_to_cpu(*(__be64 *)node->data ^
182 *(__be64 *)key->data);
183
184 prefixlen = 64 - fls64(diff);
185 if (prefixlen >= limit)
186 return limit;
187 if (diff)
188 return prefixlen;
189 i = 8;
190 }
191#endif
192
193 while (trie->data_size >= i + 4) {
194 u32 diff = be32_to_cpu(*(__be32 *)&node->data[i] ^
195 *(__be32 *)&key->data[i]);
196
197 prefixlen += 32 - fls(diff);
198 if (prefixlen >= limit)
199 return limit;
200 if (diff)
201 return prefixlen;
202 i += 4;
203 }
204
205 if (trie->data_size >= i + 2) {
206 u16 diff = be16_to_cpu(*(__be16 *)&node->data[i] ^
207 *(__be16 *)&key->data[i]);
208
209 prefixlen += 16 - fls(diff);
210 if (prefixlen >= limit)
211 return limit;
212 if (diff)
213 return prefixlen;
214 i += 2;
215 }
216
217 if (trie->data_size >= i + 1) {
218 prefixlen += 8 - fls(node->data[i] ^ key->data[i]);
219
220 if (prefixlen >= limit)
221 return limit;
222 }
223
224 return prefixlen;
225}
226
227/* Called from syscall or from eBPF program */
228static void *trie_lookup_elem(struct bpf_map *map, void *_key)
229{
230 struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
231 struct lpm_trie_node *node, *found = NULL;
232 struct bpf_lpm_trie_key *key = _key;
233
234 /* Start walking the trie from the root node ... */
235
236 for (node = rcu_dereference_check(trie->root, rcu_read_lock_bh_held());
237 node;) {
238 unsigned int next_bit;
239 size_t matchlen;
240
241 /* Determine the longest prefix of @node that matches @key.
242 * If it's the maximum possible prefix for this trie, we have
243 * an exact match and can return it directly.
244 */
245 matchlen = longest_prefix_match(trie, node, key);
246 if (matchlen == trie->max_prefixlen) {
247 found = node;
248 break;
249 }
250
251 /* If the number of bits that match is smaller than the prefix
252 * length of @node, bail out and return the node we have seen
253 * last in the traversal (ie, the parent).
254 */
255 if (matchlen < node->prefixlen)
256 break;
257
258 /* Consider this node as return candidate unless it is an
259 * artificially added intermediate one.
260 */
261 if (!(node->flags & LPM_TREE_NODE_FLAG_IM))
262 found = node;
263
264 /* If the node match is fully satisfied, let's see if we can
265 * become more specific. Determine the next bit in the key and
266 * traverse down.
267 */
268 next_bit = extract_bit(key->data, node->prefixlen);
269 node = rcu_dereference_check(node->child[next_bit],
270 rcu_read_lock_bh_held());
271 }
272
273 if (!found)
274 return NULL;
275
276 return found->data + trie->data_size;
277}
278
279static struct lpm_trie_node *lpm_trie_node_alloc(const struct lpm_trie *trie,
280 const void *value)
281{
282 struct lpm_trie_node *node;
283 size_t size = sizeof(struct lpm_trie_node) + trie->data_size;
284
285 if (value)
286 size += trie->map.value_size;
287
288 node = bpf_map_kmalloc_node(&trie->map, size, GFP_NOWAIT | __GFP_NOWARN,
289 trie->map.numa_node);
290 if (!node)
291 return NULL;
292
293 node->flags = 0;
294
295 if (value)
296 memcpy(node->data + trie->data_size, value,
297 trie->map.value_size);
298
299 return node;
300}
301
302/* Called from syscall or from eBPF program */
303static int trie_update_elem(struct bpf_map *map,
304 void *_key, void *value, u64 flags)
305{
306 struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
307 struct lpm_trie_node *node, *im_node = NULL, *new_node = NULL;
308 struct lpm_trie_node __rcu **slot;
309 struct bpf_lpm_trie_key *key = _key;
310 unsigned long irq_flags;
311 unsigned int next_bit;
312 size_t matchlen = 0;
313 int ret = 0;
314
315 if (unlikely(flags > BPF_EXIST))
316 return -EINVAL;
317
318 if (key->prefixlen > trie->max_prefixlen)
319 return -EINVAL;
320
321 spin_lock_irqsave(&trie->lock, irq_flags);
322
323 /* Allocate and fill a new node */
324
325 if (trie->n_entries == trie->map.max_entries) {
326 ret = -ENOSPC;
327 goto out;
328 }
329
330 new_node = lpm_trie_node_alloc(trie, value);
331 if (!new_node) {
332 ret = -ENOMEM;
333 goto out;
334 }
335
336 trie->n_entries++;
337
338 new_node->prefixlen = key->prefixlen;
339 RCU_INIT_POINTER(new_node->child[0], NULL);
340 RCU_INIT_POINTER(new_node->child[1], NULL);
341 memcpy(new_node->data, key->data, trie->data_size);
342
343 /* Now find a slot to attach the new node. To do that, walk the tree
344 * from the root and match as many bits as possible for each node until
345 * we either find an empty slot or a slot that needs to be replaced by
346 * an intermediate node.
347 */
348 slot = &trie->root;
349
350 while ((node = rcu_dereference_protected(*slot,
351 lockdep_is_held(&trie->lock)))) {
352 matchlen = longest_prefix_match(trie, node, key);
353
354 if (node->prefixlen != matchlen ||
355 node->prefixlen == key->prefixlen ||
356 node->prefixlen == trie->max_prefixlen)
357 break;
358
359 next_bit = extract_bit(key->data, node->prefixlen);
360 slot = &node->child[next_bit];
361 }
362
363 /* If the slot is empty (a free child pointer or an empty root),
364 * simply assign the @new_node to that slot and be done.
365 */
366 if (!node) {
367 rcu_assign_pointer(*slot, new_node);
368 goto out;
369 }
370
371 /* If the slot we picked already exists, replace it with @new_node
372 * which already has the correct data array set.
373 */
374 if (node->prefixlen == matchlen) {
375 new_node->child[0] = node->child[0];
376 new_node->child[1] = node->child[1];
377
378 if (!(node->flags & LPM_TREE_NODE_FLAG_IM))
379 trie->n_entries--;
380
381 rcu_assign_pointer(*slot, new_node);
382 kfree_rcu(node, rcu);
383
384 goto out;
385 }
386
387 /* If the new node matches the prefix completely, it must be inserted
388 * as an ancestor. Simply insert it between @node and *@slot.
389 */
390 if (matchlen == key->prefixlen) {
391 next_bit = extract_bit(node->data, matchlen);
392 rcu_assign_pointer(new_node->child[next_bit], node);
393 rcu_assign_pointer(*slot, new_node);
394 goto out;
395 }
396
397 im_node = lpm_trie_node_alloc(trie, NULL);
398 if (!im_node) {
399 ret = -ENOMEM;
400 goto out;
401 }
402
403 im_node->prefixlen = matchlen;
404 im_node->flags |= LPM_TREE_NODE_FLAG_IM;
405 memcpy(im_node->data, node->data, trie->data_size);
406
407 /* Now determine which child to install in which slot */
408 if (extract_bit(key->data, matchlen)) {
409 rcu_assign_pointer(im_node->child[0], node);
410 rcu_assign_pointer(im_node->child[1], new_node);
411 } else {
412 rcu_assign_pointer(im_node->child[0], new_node);
413 rcu_assign_pointer(im_node->child[1], node);
414 }
415
416 /* Finally, assign the intermediate node to the determined slot */
417 rcu_assign_pointer(*slot, im_node);
418
419out:
420 if (ret) {
421 if (new_node)
422 trie->n_entries--;
423
424 kfree(new_node);
425 kfree(im_node);
426 }
427
428 spin_unlock_irqrestore(&trie->lock, irq_flags);
429
430 return ret;
431}
432
433/* Called from syscall or from eBPF program */
434static int trie_delete_elem(struct bpf_map *map, void *_key)
435{
436 struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
437 struct bpf_lpm_trie_key *key = _key;
438 struct lpm_trie_node __rcu **trim, **trim2;
439 struct lpm_trie_node *node, *parent;
440 unsigned long irq_flags;
441 unsigned int next_bit;
442 size_t matchlen = 0;
443 int ret = 0;
444
445 if (key->prefixlen > trie->max_prefixlen)
446 return -EINVAL;
447
448 spin_lock_irqsave(&trie->lock, irq_flags);
449
450 /* Walk the tree looking for an exact key/length match and keeping
451 * track of the path we traverse. We will need to know the node
452 * we wish to delete, and the slot that points to the node we want
453 * to delete. We may also need to know the nodes parent and the
454 * slot that contains it.
455 */
456 trim = &trie->root;
457 trim2 = trim;
458 parent = NULL;
459 while ((node = rcu_dereference_protected(
460 *trim, lockdep_is_held(&trie->lock)))) {
461 matchlen = longest_prefix_match(trie, node, key);
462
463 if (node->prefixlen != matchlen ||
464 node->prefixlen == key->prefixlen)
465 break;
466
467 parent = node;
468 trim2 = trim;
469 next_bit = extract_bit(key->data, node->prefixlen);
470 trim = &node->child[next_bit];
471 }
472
473 if (!node || node->prefixlen != key->prefixlen ||
474 node->prefixlen != matchlen ||
475 (node->flags & LPM_TREE_NODE_FLAG_IM)) {
476 ret = -ENOENT;
477 goto out;
478 }
479
480 trie->n_entries--;
481
482 /* If the node we are removing has two children, simply mark it
483 * as intermediate and we are done.
484 */
485 if (rcu_access_pointer(node->child[0]) &&
486 rcu_access_pointer(node->child[1])) {
487 node->flags |= LPM_TREE_NODE_FLAG_IM;
488 goto out;
489 }
490
491 /* If the parent of the node we are about to delete is an intermediate
492 * node, and the deleted node doesn't have any children, we can delete
493 * the intermediate parent as well and promote its other child
494 * up the tree. Doing this maintains the invariant that all
495 * intermediate nodes have exactly 2 children and that there are no
496 * unnecessary intermediate nodes in the tree.
497 */
498 if (parent && (parent->flags & LPM_TREE_NODE_FLAG_IM) &&
499 !node->child[0] && !node->child[1]) {
500 if (node == rcu_access_pointer(parent->child[0]))
501 rcu_assign_pointer(
502 *trim2, rcu_access_pointer(parent->child[1]));
503 else
504 rcu_assign_pointer(
505 *trim2, rcu_access_pointer(parent->child[0]));
506 kfree_rcu(parent, rcu);
507 kfree_rcu(node, rcu);
508 goto out;
509 }
510
511 /* The node we are removing has either zero or one child. If there
512 * is a child, move it into the removed node's slot then delete
513 * the node. Otherwise just clear the slot and delete the node.
514 */
515 if (node->child[0])
516 rcu_assign_pointer(*trim, rcu_access_pointer(node->child[0]));
517 else if (node->child[1])
518 rcu_assign_pointer(*trim, rcu_access_pointer(node->child[1]));
519 else
520 RCU_INIT_POINTER(*trim, NULL);
521 kfree_rcu(node, rcu);
522
523out:
524 spin_unlock_irqrestore(&trie->lock, irq_flags);
525
526 return ret;
527}
528
529#define LPM_DATA_SIZE_MAX 256
530#define LPM_DATA_SIZE_MIN 1
531
532#define LPM_VAL_SIZE_MAX (KMALLOC_MAX_SIZE - LPM_DATA_SIZE_MAX - \
533 sizeof(struct lpm_trie_node))
534#define LPM_VAL_SIZE_MIN 1
535
536#define LPM_KEY_SIZE(X) (sizeof(struct bpf_lpm_trie_key) + (X))
537#define LPM_KEY_SIZE_MAX LPM_KEY_SIZE(LPM_DATA_SIZE_MAX)
538#define LPM_KEY_SIZE_MIN LPM_KEY_SIZE(LPM_DATA_SIZE_MIN)
539
540#define LPM_CREATE_FLAG_MASK (BPF_F_NO_PREALLOC | BPF_F_NUMA_NODE | \
541 BPF_F_ACCESS_MASK)
542
543static struct bpf_map *trie_alloc(union bpf_attr *attr)
544{
545 struct lpm_trie *trie;
546
547 if (!bpf_capable())
548 return ERR_PTR(-EPERM);
549
550 /* check sanity of attributes */
551 if (attr->max_entries == 0 ||
552 !(attr->map_flags & BPF_F_NO_PREALLOC) ||
553 attr->map_flags & ~LPM_CREATE_FLAG_MASK ||
554 !bpf_map_flags_access_ok(attr->map_flags) ||
555 attr->key_size < LPM_KEY_SIZE_MIN ||
556 attr->key_size > LPM_KEY_SIZE_MAX ||
557 attr->value_size < LPM_VAL_SIZE_MIN ||
558 attr->value_size > LPM_VAL_SIZE_MAX)
559 return ERR_PTR(-EINVAL);
560
561 trie = bpf_map_area_alloc(sizeof(*trie), NUMA_NO_NODE);
562 if (!trie)
563 return ERR_PTR(-ENOMEM);
564
565 /* copy mandatory map attributes */
566 bpf_map_init_from_attr(&trie->map, attr);
567 trie->data_size = attr->key_size -
568 offsetof(struct bpf_lpm_trie_key, data);
569 trie->max_prefixlen = trie->data_size * 8;
570
571 spin_lock_init(&trie->lock);
572
573 return &trie->map;
574}
575
576static void trie_free(struct bpf_map *map)
577{
578 struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
579 struct lpm_trie_node __rcu **slot;
580 struct lpm_trie_node *node;
581
582 /* Always start at the root and walk down to a node that has no
583 * children. Then free that node, nullify its reference in the parent
584 * and start over.
585 */
586
587 for (;;) {
588 slot = &trie->root;
589
590 for (;;) {
591 node = rcu_dereference_protected(*slot, 1);
592 if (!node)
593 goto out;
594
595 if (rcu_access_pointer(node->child[0])) {
596 slot = &node->child[0];
597 continue;
598 }
599
600 if (rcu_access_pointer(node->child[1])) {
601 slot = &node->child[1];
602 continue;
603 }
604
605 kfree(node);
606 RCU_INIT_POINTER(*slot, NULL);
607 break;
608 }
609 }
610
611out:
612 bpf_map_area_free(trie);
613}
614
615static int trie_get_next_key(struct bpf_map *map, void *_key, void *_next_key)
616{
617 struct lpm_trie_node *node, *next_node = NULL, *parent, *search_root;
618 struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
619 struct bpf_lpm_trie_key *key = _key, *next_key = _next_key;
620 struct lpm_trie_node **node_stack = NULL;
621 int err = 0, stack_ptr = -1;
622 unsigned int next_bit;
623 size_t matchlen;
624
625 /* The get_next_key follows postorder. For the 4 node example in
626 * the top of this file, the trie_get_next_key() returns the following
627 * one after another:
628 * 192.168.0.0/24
629 * 192.168.1.0/24
630 * 192.168.128.0/24
631 * 192.168.0.0/16
632 *
633 * The idea is to return more specific keys before less specific ones.
634 */
635
636 /* Empty trie */
637 search_root = rcu_dereference(trie->root);
638 if (!search_root)
639 return -ENOENT;
640
641 /* For invalid key, find the leftmost node in the trie */
642 if (!key || key->prefixlen > trie->max_prefixlen)
643 goto find_leftmost;
644
645 node_stack = kmalloc_array(trie->max_prefixlen,
646 sizeof(struct lpm_trie_node *),
647 GFP_ATOMIC | __GFP_NOWARN);
648 if (!node_stack)
649 return -ENOMEM;
650
651 /* Try to find the exact node for the given key */
652 for (node = search_root; node;) {
653 node_stack[++stack_ptr] = node;
654 matchlen = longest_prefix_match(trie, node, key);
655 if (node->prefixlen != matchlen ||
656 node->prefixlen == key->prefixlen)
657 break;
658
659 next_bit = extract_bit(key->data, node->prefixlen);
660 node = rcu_dereference(node->child[next_bit]);
661 }
662 if (!node || node->prefixlen != key->prefixlen ||
663 (node->flags & LPM_TREE_NODE_FLAG_IM))
664 goto find_leftmost;
665
666 /* The node with the exactly-matching key has been found,
667 * find the first node in postorder after the matched node.
668 */
669 node = node_stack[stack_ptr];
670 while (stack_ptr > 0) {
671 parent = node_stack[stack_ptr - 1];
672 if (rcu_dereference(parent->child[0]) == node) {
673 search_root = rcu_dereference(parent->child[1]);
674 if (search_root)
675 goto find_leftmost;
676 }
677 if (!(parent->flags & LPM_TREE_NODE_FLAG_IM)) {
678 next_node = parent;
679 goto do_copy;
680 }
681
682 node = parent;
683 stack_ptr--;
684 }
685
686 /* did not find anything */
687 err = -ENOENT;
688 goto free_stack;
689
690find_leftmost:
691 /* Find the leftmost non-intermediate node, all intermediate nodes
692 * have exact two children, so this function will never return NULL.
693 */
694 for (node = search_root; node;) {
695 if (node->flags & LPM_TREE_NODE_FLAG_IM) {
696 node = rcu_dereference(node->child[0]);
697 } else {
698 next_node = node;
699 node = rcu_dereference(node->child[0]);
700 if (!node)
701 node = rcu_dereference(next_node->child[1]);
702 }
703 }
704do_copy:
705 next_key->prefixlen = next_node->prefixlen;
706 memcpy((void *)next_key + offsetof(struct bpf_lpm_trie_key, data),
707 next_node->data, trie->data_size);
708free_stack:
709 kfree(node_stack);
710 return err;
711}
712
713static int trie_check_btf(const struct bpf_map *map,
714 const struct btf *btf,
715 const struct btf_type *key_type,
716 const struct btf_type *value_type)
717{
718 /* Keys must have struct bpf_lpm_trie_key embedded. */
719 return BTF_INFO_KIND(key_type->info) != BTF_KIND_STRUCT ?
720 -EINVAL : 0;
721}
722
723BTF_ID_LIST_SINGLE(trie_map_btf_ids, struct, lpm_trie)
724const struct bpf_map_ops trie_map_ops = {
725 .map_meta_equal = bpf_map_meta_equal,
726 .map_alloc = trie_alloc,
727 .map_free = trie_free,
728 .map_get_next_key = trie_get_next_key,
729 .map_lookup_elem = trie_lookup_elem,
730 .map_update_elem = trie_update_elem,
731 .map_delete_elem = trie_delete_elem,
732 .map_lookup_batch = generic_map_lookup_batch,
733 .map_update_batch = generic_map_update_batch,
734 .map_delete_batch = generic_map_delete_batch,
735 .map_check_btf = trie_check_btf,
736 .map_btf_id = &trie_map_btf_ids[0],
737};
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Longest prefix match list implementation
4 *
5 * Copyright (c) 2016,2017 Daniel Mack
6 * Copyright (c) 2016 David Herrmann
7 */
8
9#include <linux/bpf.h>
10#include <linux/btf.h>
11#include <linux/err.h>
12#include <linux/slab.h>
13#include <linux/spinlock.h>
14#include <linux/vmalloc.h>
15#include <net/ipv6.h>
16#include <uapi/linux/btf.h>
17#include <linux/btf_ids.h>
18#include <linux/bpf_mem_alloc.h>
19
20/* Intermediate node */
21#define LPM_TREE_NODE_FLAG_IM BIT(0)
22
23struct lpm_trie_node;
24
25struct lpm_trie_node {
26 struct lpm_trie_node __rcu *child[2];
27 u32 prefixlen;
28 u32 flags;
29 u8 data[];
30};
31
32struct lpm_trie {
33 struct bpf_map map;
34 struct lpm_trie_node __rcu *root;
35 struct bpf_mem_alloc ma;
36 size_t n_entries;
37 size_t max_prefixlen;
38 size_t data_size;
39 raw_spinlock_t lock;
40};
41
42/* This trie implements a longest prefix match algorithm that can be used to
43 * match IP addresses to a stored set of ranges.
44 *
45 * Data stored in @data of struct bpf_lpm_key and struct lpm_trie_node is
46 * interpreted as big endian, so data[0] stores the most significant byte.
47 *
48 * Match ranges are internally stored in instances of struct lpm_trie_node
49 * which each contain their prefix length as well as two pointers that may
50 * lead to more nodes containing more specific matches. Each node also stores
51 * a value that is defined by and returned to userspace via the update_elem
52 * and lookup functions.
53 *
54 * For instance, let's start with a trie that was created with a prefix length
55 * of 32, so it can be used for IPv4 addresses, and one single element that
56 * matches 192.168.0.0/16. The data array would hence contain
57 * [0xc0, 0xa8, 0x00, 0x00] in big-endian notation. This documentation will
58 * stick to IP-address notation for readability though.
59 *
60 * As the trie is empty initially, the new node (1) will be places as root
61 * node, denoted as (R) in the example below. As there are no other node, both
62 * child pointers are %NULL.
63 *
64 * +----------------+
65 * | (1) (R) |
66 * | 192.168.0.0/16 |
67 * | value: 1 |
68 * | [0] [1] |
69 * +----------------+
70 *
71 * Next, let's add a new node (2) matching 192.168.0.0/24. As there is already
72 * a node with the same data and a smaller prefix (ie, a less specific one),
73 * node (2) will become a child of (1). In child index depends on the next bit
74 * that is outside of what (1) matches, and that bit is 0, so (2) will be
75 * child[0] of (1):
76 *
77 * +----------------+
78 * | (1) (R) |
79 * | 192.168.0.0/16 |
80 * | value: 1 |
81 * | [0] [1] |
82 * +----------------+
83 * |
84 * +----------------+
85 * | (2) |
86 * | 192.168.0.0/24 |
87 * | value: 2 |
88 * | [0] [1] |
89 * +----------------+
90 *
91 * The child[1] slot of (1) could be filled with another node which has bit #17
92 * (the next bit after the ones that (1) matches on) set to 1. For instance,
93 * 192.168.128.0/24:
94 *
95 * +----------------+
96 * | (1) (R) |
97 * | 192.168.0.0/16 |
98 * | value: 1 |
99 * | [0] [1] |
100 * +----------------+
101 * | |
102 * +----------------+ +------------------+
103 * | (2) | | (3) |
104 * | 192.168.0.0/24 | | 192.168.128.0/24 |
105 * | value: 2 | | value: 3 |
106 * | [0] [1] | | [0] [1] |
107 * +----------------+ +------------------+
108 *
109 * Let's add another node (4) to the game for 192.168.1.0/24. In order to place
110 * it, node (1) is looked at first, and because (4) of the semantics laid out
111 * above (bit #17 is 0), it would normally be attached to (1) as child[0].
112 * However, that slot is already allocated, so a new node is needed in between.
113 * That node does not have a value attached to it and it will never be
114 * returned to users as result of a lookup. It is only there to differentiate
115 * the traversal further. It will get a prefix as wide as necessary to
116 * distinguish its two children:
117 *
118 * +----------------+
119 * | (1) (R) |
120 * | 192.168.0.0/16 |
121 * | value: 1 |
122 * | [0] [1] |
123 * +----------------+
124 * | |
125 * +----------------+ +------------------+
126 * | (4) (I) | | (3) |
127 * | 192.168.0.0/23 | | 192.168.128.0/24 |
128 * | value: --- | | value: 3 |
129 * | [0] [1] | | [0] [1] |
130 * +----------------+ +------------------+
131 * | |
132 * +----------------+ +----------------+
133 * | (2) | | (5) |
134 * | 192.168.0.0/24 | | 192.168.1.0/24 |
135 * | value: 2 | | value: 5 |
136 * | [0] [1] | | [0] [1] |
137 * +----------------+ +----------------+
138 *
139 * 192.168.1.1/32 would be a child of (5) etc.
140 *
141 * An intermediate node will be turned into a 'real' node on demand. In the
142 * example above, (4) would be re-used if 192.168.0.0/23 is added to the trie.
143 *
144 * A fully populated trie would have a height of 32 nodes, as the trie was
145 * created with a prefix length of 32.
146 *
147 * The lookup starts at the root node. If the current node matches and if there
148 * is a child that can be used to become more specific, the trie is traversed
149 * downwards. The last node in the traversal that is a non-intermediate one is
150 * returned.
151 */
152
153static inline int extract_bit(const u8 *data, size_t index)
154{
155 return !!(data[index / 8] & (1 << (7 - (index % 8))));
156}
157
158/**
159 * __longest_prefix_match() - determine the longest prefix
160 * @trie: The trie to get internal sizes from
161 * @node: The node to operate on
162 * @key: The key to compare to @node
163 *
164 * Determine the longest prefix of @node that matches the bits in @key.
165 */
166static __always_inline
167size_t __longest_prefix_match(const struct lpm_trie *trie,
168 const struct lpm_trie_node *node,
169 const struct bpf_lpm_trie_key_u8 *key)
170{
171 u32 limit = min(node->prefixlen, key->prefixlen);
172 u32 prefixlen = 0, i = 0;
173
174 BUILD_BUG_ON(offsetof(struct lpm_trie_node, data) % sizeof(u32));
175 BUILD_BUG_ON(offsetof(struct bpf_lpm_trie_key_u8, data) % sizeof(u32));
176
177#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && defined(CONFIG_64BIT)
178
179 /* data_size >= 16 has very small probability.
180 * We do not use a loop for optimal code generation.
181 */
182 if (trie->data_size >= 8) {
183 u64 diff = be64_to_cpu(*(__be64 *)node->data ^
184 *(__be64 *)key->data);
185
186 prefixlen = 64 - fls64(diff);
187 if (prefixlen >= limit)
188 return limit;
189 if (diff)
190 return prefixlen;
191 i = 8;
192 }
193#endif
194
195 while (trie->data_size >= i + 4) {
196 u32 diff = be32_to_cpu(*(__be32 *)&node->data[i] ^
197 *(__be32 *)&key->data[i]);
198
199 prefixlen += 32 - fls(diff);
200 if (prefixlen >= limit)
201 return limit;
202 if (diff)
203 return prefixlen;
204 i += 4;
205 }
206
207 if (trie->data_size >= i + 2) {
208 u16 diff = be16_to_cpu(*(__be16 *)&node->data[i] ^
209 *(__be16 *)&key->data[i]);
210
211 prefixlen += 16 - fls(diff);
212 if (prefixlen >= limit)
213 return limit;
214 if (diff)
215 return prefixlen;
216 i += 2;
217 }
218
219 if (trie->data_size >= i + 1) {
220 prefixlen += 8 - fls(node->data[i] ^ key->data[i]);
221
222 if (prefixlen >= limit)
223 return limit;
224 }
225
226 return prefixlen;
227}
228
229static size_t longest_prefix_match(const struct lpm_trie *trie,
230 const struct lpm_trie_node *node,
231 const struct bpf_lpm_trie_key_u8 *key)
232{
233 return __longest_prefix_match(trie, node, key);
234}
235
236/* Called from syscall or from eBPF program */
237static void *trie_lookup_elem(struct bpf_map *map, void *_key)
238{
239 struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
240 struct lpm_trie_node *node, *found = NULL;
241 struct bpf_lpm_trie_key_u8 *key = _key;
242
243 if (key->prefixlen > trie->max_prefixlen)
244 return NULL;
245
246 /* Start walking the trie from the root node ... */
247
248 for (node = rcu_dereference_check(trie->root, rcu_read_lock_bh_held());
249 node;) {
250 unsigned int next_bit;
251 size_t matchlen;
252
253 /* Determine the longest prefix of @node that matches @key.
254 * If it's the maximum possible prefix for this trie, we have
255 * an exact match and can return it directly.
256 */
257 matchlen = __longest_prefix_match(trie, node, key);
258 if (matchlen == trie->max_prefixlen) {
259 found = node;
260 break;
261 }
262
263 /* If the number of bits that match is smaller than the prefix
264 * length of @node, bail out and return the node we have seen
265 * last in the traversal (ie, the parent).
266 */
267 if (matchlen < node->prefixlen)
268 break;
269
270 /* Consider this node as return candidate unless it is an
271 * artificially added intermediate one.
272 */
273 if (!(node->flags & LPM_TREE_NODE_FLAG_IM))
274 found = node;
275
276 /* If the node match is fully satisfied, let's see if we can
277 * become more specific. Determine the next bit in the key and
278 * traverse down.
279 */
280 next_bit = extract_bit(key->data, node->prefixlen);
281 node = rcu_dereference_check(node->child[next_bit],
282 rcu_read_lock_bh_held());
283 }
284
285 if (!found)
286 return NULL;
287
288 return found->data + trie->data_size;
289}
290
291static struct lpm_trie_node *lpm_trie_node_alloc(struct lpm_trie *trie,
292 const void *value,
293 bool disable_migration)
294{
295 struct lpm_trie_node *node;
296
297 if (disable_migration)
298 migrate_disable();
299 node = bpf_mem_cache_alloc(&trie->ma);
300 if (disable_migration)
301 migrate_enable();
302
303 if (!node)
304 return NULL;
305
306 node->flags = 0;
307
308 if (value)
309 memcpy(node->data + trie->data_size, value,
310 trie->map.value_size);
311
312 return node;
313}
314
315static int trie_check_add_elem(struct lpm_trie *trie, u64 flags)
316{
317 if (flags == BPF_EXIST)
318 return -ENOENT;
319 if (trie->n_entries == trie->map.max_entries)
320 return -ENOSPC;
321 trie->n_entries++;
322 return 0;
323}
324
325/* Called from syscall or from eBPF program */
326static long trie_update_elem(struct bpf_map *map,
327 void *_key, void *value, u64 flags)
328{
329 struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
330 struct lpm_trie_node *node, *im_node, *new_node;
331 struct lpm_trie_node *free_node = NULL;
332 struct lpm_trie_node __rcu **slot;
333 struct bpf_lpm_trie_key_u8 *key = _key;
334 unsigned long irq_flags;
335 unsigned int next_bit;
336 size_t matchlen = 0;
337 int ret = 0;
338
339 if (unlikely(flags > BPF_EXIST))
340 return -EINVAL;
341
342 if (key->prefixlen > trie->max_prefixlen)
343 return -EINVAL;
344
345 /* Allocate and fill a new node. Need to disable migration before
346 * invoking bpf_mem_cache_alloc().
347 */
348 new_node = lpm_trie_node_alloc(trie, value, true);
349 if (!new_node)
350 return -ENOMEM;
351
352 raw_spin_lock_irqsave(&trie->lock, irq_flags);
353
354 new_node->prefixlen = key->prefixlen;
355 RCU_INIT_POINTER(new_node->child[0], NULL);
356 RCU_INIT_POINTER(new_node->child[1], NULL);
357 memcpy(new_node->data, key->data, trie->data_size);
358
359 /* Now find a slot to attach the new node. To do that, walk the tree
360 * from the root and match as many bits as possible for each node until
361 * we either find an empty slot or a slot that needs to be replaced by
362 * an intermediate node.
363 */
364 slot = &trie->root;
365
366 while ((node = rcu_dereference_protected(*slot,
367 lockdep_is_held(&trie->lock)))) {
368 matchlen = longest_prefix_match(trie, node, key);
369
370 if (node->prefixlen != matchlen ||
371 node->prefixlen == key->prefixlen)
372 break;
373
374 next_bit = extract_bit(key->data, node->prefixlen);
375 slot = &node->child[next_bit];
376 }
377
378 /* If the slot is empty (a free child pointer or an empty root),
379 * simply assign the @new_node to that slot and be done.
380 */
381 if (!node) {
382 ret = trie_check_add_elem(trie, flags);
383 if (ret)
384 goto out;
385
386 rcu_assign_pointer(*slot, new_node);
387 goto out;
388 }
389
390 /* If the slot we picked already exists, replace it with @new_node
391 * which already has the correct data array set.
392 */
393 if (node->prefixlen == matchlen) {
394 if (!(node->flags & LPM_TREE_NODE_FLAG_IM)) {
395 if (flags == BPF_NOEXIST) {
396 ret = -EEXIST;
397 goto out;
398 }
399 } else {
400 ret = trie_check_add_elem(trie, flags);
401 if (ret)
402 goto out;
403 }
404
405 new_node->child[0] = node->child[0];
406 new_node->child[1] = node->child[1];
407
408 rcu_assign_pointer(*slot, new_node);
409 free_node = node;
410
411 goto out;
412 }
413
414 ret = trie_check_add_elem(trie, flags);
415 if (ret)
416 goto out;
417
418 /* If the new node matches the prefix completely, it must be inserted
419 * as an ancestor. Simply insert it between @node and *@slot.
420 */
421 if (matchlen == key->prefixlen) {
422 next_bit = extract_bit(node->data, matchlen);
423 rcu_assign_pointer(new_node->child[next_bit], node);
424 rcu_assign_pointer(*slot, new_node);
425 goto out;
426 }
427
428 /* migration is disabled within the locked scope */
429 im_node = lpm_trie_node_alloc(trie, NULL, false);
430 if (!im_node) {
431 trie->n_entries--;
432 ret = -ENOMEM;
433 goto out;
434 }
435
436 im_node->prefixlen = matchlen;
437 im_node->flags |= LPM_TREE_NODE_FLAG_IM;
438 memcpy(im_node->data, node->data, trie->data_size);
439
440 /* Now determine which child to install in which slot */
441 if (extract_bit(key->data, matchlen)) {
442 rcu_assign_pointer(im_node->child[0], node);
443 rcu_assign_pointer(im_node->child[1], new_node);
444 } else {
445 rcu_assign_pointer(im_node->child[0], new_node);
446 rcu_assign_pointer(im_node->child[1], node);
447 }
448
449 /* Finally, assign the intermediate node to the determined slot */
450 rcu_assign_pointer(*slot, im_node);
451
452out:
453 raw_spin_unlock_irqrestore(&trie->lock, irq_flags);
454
455 migrate_disable();
456 if (ret)
457 bpf_mem_cache_free(&trie->ma, new_node);
458 bpf_mem_cache_free_rcu(&trie->ma, free_node);
459 migrate_enable();
460
461 return ret;
462}
463
464/* Called from syscall or from eBPF program */
465static long trie_delete_elem(struct bpf_map *map, void *_key)
466{
467 struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
468 struct lpm_trie_node *free_node = NULL, *free_parent = NULL;
469 struct bpf_lpm_trie_key_u8 *key = _key;
470 struct lpm_trie_node __rcu **trim, **trim2;
471 struct lpm_trie_node *node, *parent;
472 unsigned long irq_flags;
473 unsigned int next_bit;
474 size_t matchlen = 0;
475 int ret = 0;
476
477 if (key->prefixlen > trie->max_prefixlen)
478 return -EINVAL;
479
480 raw_spin_lock_irqsave(&trie->lock, irq_flags);
481
482 /* Walk the tree looking for an exact key/length match and keeping
483 * track of the path we traverse. We will need to know the node
484 * we wish to delete, and the slot that points to the node we want
485 * to delete. We may also need to know the nodes parent and the
486 * slot that contains it.
487 */
488 trim = &trie->root;
489 trim2 = trim;
490 parent = NULL;
491 while ((node = rcu_dereference_protected(
492 *trim, lockdep_is_held(&trie->lock)))) {
493 matchlen = longest_prefix_match(trie, node, key);
494
495 if (node->prefixlen != matchlen ||
496 node->prefixlen == key->prefixlen)
497 break;
498
499 parent = node;
500 trim2 = trim;
501 next_bit = extract_bit(key->data, node->prefixlen);
502 trim = &node->child[next_bit];
503 }
504
505 if (!node || node->prefixlen != key->prefixlen ||
506 node->prefixlen != matchlen ||
507 (node->flags & LPM_TREE_NODE_FLAG_IM)) {
508 ret = -ENOENT;
509 goto out;
510 }
511
512 trie->n_entries--;
513
514 /* If the node we are removing has two children, simply mark it
515 * as intermediate and we are done.
516 */
517 if (rcu_access_pointer(node->child[0]) &&
518 rcu_access_pointer(node->child[1])) {
519 node->flags |= LPM_TREE_NODE_FLAG_IM;
520 goto out;
521 }
522
523 /* If the parent of the node we are about to delete is an intermediate
524 * node, and the deleted node doesn't have any children, we can delete
525 * the intermediate parent as well and promote its other child
526 * up the tree. Doing this maintains the invariant that all
527 * intermediate nodes have exactly 2 children and that there are no
528 * unnecessary intermediate nodes in the tree.
529 */
530 if (parent && (parent->flags & LPM_TREE_NODE_FLAG_IM) &&
531 !node->child[0] && !node->child[1]) {
532 if (node == rcu_access_pointer(parent->child[0]))
533 rcu_assign_pointer(
534 *trim2, rcu_access_pointer(parent->child[1]));
535 else
536 rcu_assign_pointer(
537 *trim2, rcu_access_pointer(parent->child[0]));
538 free_parent = parent;
539 free_node = node;
540 goto out;
541 }
542
543 /* The node we are removing has either zero or one child. If there
544 * is a child, move it into the removed node's slot then delete
545 * the node. Otherwise just clear the slot and delete the node.
546 */
547 if (node->child[0])
548 rcu_assign_pointer(*trim, rcu_access_pointer(node->child[0]));
549 else if (node->child[1])
550 rcu_assign_pointer(*trim, rcu_access_pointer(node->child[1]));
551 else
552 RCU_INIT_POINTER(*trim, NULL);
553 free_node = node;
554
555out:
556 raw_spin_unlock_irqrestore(&trie->lock, irq_flags);
557
558 migrate_disable();
559 bpf_mem_cache_free_rcu(&trie->ma, free_parent);
560 bpf_mem_cache_free_rcu(&trie->ma, free_node);
561 migrate_enable();
562
563 return ret;
564}
565
566#define LPM_DATA_SIZE_MAX 256
567#define LPM_DATA_SIZE_MIN 1
568
569#define LPM_VAL_SIZE_MAX (KMALLOC_MAX_SIZE - LPM_DATA_SIZE_MAX - \
570 sizeof(struct lpm_trie_node))
571#define LPM_VAL_SIZE_MIN 1
572
573#define LPM_KEY_SIZE(X) (sizeof(struct bpf_lpm_trie_key_u8) + (X))
574#define LPM_KEY_SIZE_MAX LPM_KEY_SIZE(LPM_DATA_SIZE_MAX)
575#define LPM_KEY_SIZE_MIN LPM_KEY_SIZE(LPM_DATA_SIZE_MIN)
576
577#define LPM_CREATE_FLAG_MASK (BPF_F_NO_PREALLOC | BPF_F_NUMA_NODE | \
578 BPF_F_ACCESS_MASK)
579
580static struct bpf_map *trie_alloc(union bpf_attr *attr)
581{
582 struct lpm_trie *trie;
583 size_t leaf_size;
584 int err;
585
586 /* check sanity of attributes */
587 if (attr->max_entries == 0 ||
588 !(attr->map_flags & BPF_F_NO_PREALLOC) ||
589 attr->map_flags & ~LPM_CREATE_FLAG_MASK ||
590 !bpf_map_flags_access_ok(attr->map_flags) ||
591 attr->key_size < LPM_KEY_SIZE_MIN ||
592 attr->key_size > LPM_KEY_SIZE_MAX ||
593 attr->value_size < LPM_VAL_SIZE_MIN ||
594 attr->value_size > LPM_VAL_SIZE_MAX)
595 return ERR_PTR(-EINVAL);
596
597 trie = bpf_map_area_alloc(sizeof(*trie), NUMA_NO_NODE);
598 if (!trie)
599 return ERR_PTR(-ENOMEM);
600
601 /* copy mandatory map attributes */
602 bpf_map_init_from_attr(&trie->map, attr);
603 trie->data_size = attr->key_size -
604 offsetof(struct bpf_lpm_trie_key_u8, data);
605 trie->max_prefixlen = trie->data_size * 8;
606
607 raw_spin_lock_init(&trie->lock);
608
609 /* Allocate intermediate and leaf nodes from the same allocator */
610 leaf_size = sizeof(struct lpm_trie_node) + trie->data_size +
611 trie->map.value_size;
612 err = bpf_mem_alloc_init(&trie->ma, leaf_size, false);
613 if (err)
614 goto free_out;
615 return &trie->map;
616
617free_out:
618 bpf_map_area_free(trie);
619 return ERR_PTR(err);
620}
621
622static void trie_free(struct bpf_map *map)
623{
624 struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
625 struct lpm_trie_node __rcu **slot;
626 struct lpm_trie_node *node;
627
628 /* Always start at the root and walk down to a node that has no
629 * children. Then free that node, nullify its reference in the parent
630 * and start over.
631 */
632
633 for (;;) {
634 slot = &trie->root;
635
636 for (;;) {
637 node = rcu_dereference_protected(*slot, 1);
638 if (!node)
639 goto out;
640
641 if (rcu_access_pointer(node->child[0])) {
642 slot = &node->child[0];
643 continue;
644 }
645
646 if (rcu_access_pointer(node->child[1])) {
647 slot = &node->child[1];
648 continue;
649 }
650
651 /* No bpf program may access the map, so freeing the
652 * node without waiting for the extra RCU GP.
653 */
654 bpf_mem_cache_raw_free(node);
655 RCU_INIT_POINTER(*slot, NULL);
656 break;
657 }
658 }
659
660out:
661 bpf_mem_alloc_destroy(&trie->ma);
662 bpf_map_area_free(trie);
663}
664
665static int trie_get_next_key(struct bpf_map *map, void *_key, void *_next_key)
666{
667 struct lpm_trie_node *node, *next_node = NULL, *parent, *search_root;
668 struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
669 struct bpf_lpm_trie_key_u8 *key = _key, *next_key = _next_key;
670 struct lpm_trie_node **node_stack = NULL;
671 int err = 0, stack_ptr = -1;
672 unsigned int next_bit;
673 size_t matchlen = 0;
674
675 /* The get_next_key follows postorder. For the 4 node example in
676 * the top of this file, the trie_get_next_key() returns the following
677 * one after another:
678 * 192.168.0.0/24
679 * 192.168.1.0/24
680 * 192.168.128.0/24
681 * 192.168.0.0/16
682 *
683 * The idea is to return more specific keys before less specific ones.
684 */
685
686 /* Empty trie */
687 search_root = rcu_dereference(trie->root);
688 if (!search_root)
689 return -ENOENT;
690
691 /* For invalid key, find the leftmost node in the trie */
692 if (!key || key->prefixlen > trie->max_prefixlen)
693 goto find_leftmost;
694
695 node_stack = kmalloc_array(trie->max_prefixlen + 1,
696 sizeof(struct lpm_trie_node *),
697 GFP_ATOMIC | __GFP_NOWARN);
698 if (!node_stack)
699 return -ENOMEM;
700
701 /* Try to find the exact node for the given key */
702 for (node = search_root; node;) {
703 node_stack[++stack_ptr] = node;
704 matchlen = longest_prefix_match(trie, node, key);
705 if (node->prefixlen != matchlen ||
706 node->prefixlen == key->prefixlen)
707 break;
708
709 next_bit = extract_bit(key->data, node->prefixlen);
710 node = rcu_dereference(node->child[next_bit]);
711 }
712 if (!node || node->prefixlen != matchlen ||
713 (node->flags & LPM_TREE_NODE_FLAG_IM))
714 goto find_leftmost;
715
716 /* The node with the exactly-matching key has been found,
717 * find the first node in postorder after the matched node.
718 */
719 node = node_stack[stack_ptr];
720 while (stack_ptr > 0) {
721 parent = node_stack[stack_ptr - 1];
722 if (rcu_dereference(parent->child[0]) == node) {
723 search_root = rcu_dereference(parent->child[1]);
724 if (search_root)
725 goto find_leftmost;
726 }
727 if (!(parent->flags & LPM_TREE_NODE_FLAG_IM)) {
728 next_node = parent;
729 goto do_copy;
730 }
731
732 node = parent;
733 stack_ptr--;
734 }
735
736 /* did not find anything */
737 err = -ENOENT;
738 goto free_stack;
739
740find_leftmost:
741 /* Find the leftmost non-intermediate node, all intermediate nodes
742 * have exact two children, so this function will never return NULL.
743 */
744 for (node = search_root; node;) {
745 if (node->flags & LPM_TREE_NODE_FLAG_IM) {
746 node = rcu_dereference(node->child[0]);
747 } else {
748 next_node = node;
749 node = rcu_dereference(node->child[0]);
750 if (!node)
751 node = rcu_dereference(next_node->child[1]);
752 }
753 }
754do_copy:
755 next_key->prefixlen = next_node->prefixlen;
756 memcpy((void *)next_key + offsetof(struct bpf_lpm_trie_key_u8, data),
757 next_node->data, trie->data_size);
758free_stack:
759 kfree(node_stack);
760 return err;
761}
762
763static int trie_check_btf(const struct bpf_map *map,
764 const struct btf *btf,
765 const struct btf_type *key_type,
766 const struct btf_type *value_type)
767{
768 /* Keys must have struct bpf_lpm_trie_key_u8 embedded. */
769 return BTF_INFO_KIND(key_type->info) != BTF_KIND_STRUCT ?
770 -EINVAL : 0;
771}
772
773static u64 trie_mem_usage(const struct bpf_map *map)
774{
775 struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
776 u64 elem_size;
777
778 elem_size = sizeof(struct lpm_trie_node) + trie->data_size +
779 trie->map.value_size;
780 return elem_size * READ_ONCE(trie->n_entries);
781}
782
783BTF_ID_LIST_SINGLE(trie_map_btf_ids, struct, lpm_trie)
784const struct bpf_map_ops trie_map_ops = {
785 .map_meta_equal = bpf_map_meta_equal,
786 .map_alloc = trie_alloc,
787 .map_free = trie_free,
788 .map_get_next_key = trie_get_next_key,
789 .map_lookup_elem = trie_lookup_elem,
790 .map_update_elem = trie_update_elem,
791 .map_delete_elem = trie_delete_elem,
792 .map_lookup_batch = generic_map_lookup_batch,
793 .map_update_batch = generic_map_update_batch,
794 .map_delete_batch = generic_map_delete_batch,
795 .map_check_btf = trie_check_btf,
796 .map_mem_usage = trie_mem_usage,
797 .map_btf_id = &trie_map_btf_ids[0],
798};