Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Longest prefix match list implementation
  4 *
  5 * Copyright (c) 2016,2017 Daniel Mack
  6 * Copyright (c) 2016 David Herrmann
 
 
 
 
  7 */
  8
  9#include <linux/bpf.h>
 10#include <linux/btf.h>
 11#include <linux/err.h>
 12#include <linux/slab.h>
 13#include <linux/spinlock.h>
 14#include <linux/vmalloc.h>
 15#include <net/ipv6.h>
 16#include <uapi/linux/btf.h>
 17#include <linux/btf_ids.h>
 18
 19/* Intermediate node */
 20#define LPM_TREE_NODE_FLAG_IM BIT(0)
 21
 22struct lpm_trie_node;
 23
 24struct lpm_trie_node {
 25	struct rcu_head rcu;
 26	struct lpm_trie_node __rcu	*child[2];
 27	u32				prefixlen;
 28	u32				flags;
 29	u8				data[];
 30};
 31
 32struct lpm_trie {
 33	struct bpf_map			map;
 34	struct lpm_trie_node __rcu	*root;
 35	size_t				n_entries;
 36	size_t				max_prefixlen;
 37	size_t				data_size;
 38	spinlock_t			lock;
 39};
 40
 41/* This trie implements a longest prefix match algorithm that can be used to
 42 * match IP addresses to a stored set of ranges.
 43 *
 44 * Data stored in @data of struct bpf_lpm_key and struct lpm_trie_node is
 45 * interpreted as big endian, so data[0] stores the most significant byte.
 46 *
 47 * Match ranges are internally stored in instances of struct lpm_trie_node
 48 * which each contain their prefix length as well as two pointers that may
 49 * lead to more nodes containing more specific matches. Each node also stores
 50 * a value that is defined by and returned to userspace via the update_elem
 51 * and lookup functions.
 52 *
 53 * For instance, let's start with a trie that was created with a prefix length
 54 * of 32, so it can be used for IPv4 addresses, and one single element that
 55 * matches 192.168.0.0/16. The data array would hence contain
 56 * [0xc0, 0xa8, 0x00, 0x00] in big-endian notation. This documentation will
 57 * stick to IP-address notation for readability though.
 58 *
 59 * As the trie is empty initially, the new node (1) will be places as root
 60 * node, denoted as (R) in the example below. As there are no other node, both
 61 * child pointers are %NULL.
 62 *
 63 *              +----------------+
 64 *              |       (1)  (R) |
 65 *              | 192.168.0.0/16 |
 66 *              |    value: 1    |
 67 *              |   [0]    [1]   |
 68 *              +----------------+
 69 *
 70 * Next, let's add a new node (2) matching 192.168.0.0/24. As there is already
 71 * a node with the same data and a smaller prefix (ie, a less specific one),
 72 * node (2) will become a child of (1). In child index depends on the next bit
 73 * that is outside of what (1) matches, and that bit is 0, so (2) will be
 74 * child[0] of (1):
 75 *
 76 *              +----------------+
 77 *              |       (1)  (R) |
 78 *              | 192.168.0.0/16 |
 79 *              |    value: 1    |
 80 *              |   [0]    [1]   |
 81 *              +----------------+
 82 *                   |
 83 *    +----------------+
 84 *    |       (2)      |
 85 *    | 192.168.0.0/24 |
 86 *    |    value: 2    |
 87 *    |   [0]    [1]   |
 88 *    +----------------+
 89 *
 90 * The child[1] slot of (1) could be filled with another node which has bit #17
 91 * (the next bit after the ones that (1) matches on) set to 1. For instance,
 92 * 192.168.128.0/24:
 93 *
 94 *              +----------------+
 95 *              |       (1)  (R) |
 96 *              | 192.168.0.0/16 |
 97 *              |    value: 1    |
 98 *              |   [0]    [1]   |
 99 *              +----------------+
100 *                   |      |
101 *    +----------------+  +------------------+
102 *    |       (2)      |  |        (3)       |
103 *    | 192.168.0.0/24 |  | 192.168.128.0/24 |
104 *    |    value: 2    |  |     value: 3     |
105 *    |   [0]    [1]   |  |    [0]    [1]    |
106 *    +----------------+  +------------------+
107 *
108 * Let's add another node (4) to the game for 192.168.1.0/24. In order to place
109 * it, node (1) is looked at first, and because (4) of the semantics laid out
110 * above (bit #17 is 0), it would normally be attached to (1) as child[0].
111 * However, that slot is already allocated, so a new node is needed in between.
112 * That node does not have a value attached to it and it will never be
113 * returned to users as result of a lookup. It is only there to differentiate
114 * the traversal further. It will get a prefix as wide as necessary to
115 * distinguish its two children:
116 *
117 *                      +----------------+
118 *                      |       (1)  (R) |
119 *                      | 192.168.0.0/16 |
120 *                      |    value: 1    |
121 *                      |   [0]    [1]   |
122 *                      +----------------+
123 *                           |      |
124 *            +----------------+  +------------------+
125 *            |       (4)  (I) |  |        (3)       |
126 *            | 192.168.0.0/23 |  | 192.168.128.0/24 |
127 *            |    value: ---  |  |     value: 3     |
128 *            |   [0]    [1]   |  |    [0]    [1]    |
129 *            +----------------+  +------------------+
130 *                 |      |
131 *  +----------------+  +----------------+
132 *  |       (2)      |  |       (5)      |
133 *  | 192.168.0.0/24 |  | 192.168.1.0/24 |
134 *  |    value: 2    |  |     value: 5   |
135 *  |   [0]    [1]   |  |   [0]    [1]   |
136 *  +----------------+  +----------------+
137 *
138 * 192.168.1.1/32 would be a child of (5) etc.
139 *
140 * An intermediate node will be turned into a 'real' node on demand. In the
141 * example above, (4) would be re-used if 192.168.0.0/23 is added to the trie.
142 *
143 * A fully populated trie would have a height of 32 nodes, as the trie was
144 * created with a prefix length of 32.
145 *
146 * The lookup starts at the root node. If the current node matches and if there
147 * is a child that can be used to become more specific, the trie is traversed
148 * downwards. The last node in the traversal that is a non-intermediate one is
149 * returned.
150 */
151
152static inline int extract_bit(const u8 *data, size_t index)
153{
154	return !!(data[index / 8] & (1 << (7 - (index % 8))));
155}
156
157/**
158 * longest_prefix_match() - determine the longest prefix
159 * @trie:	The trie to get internal sizes from
160 * @node:	The node to operate on
161 * @key:	The key to compare to @node
162 *
163 * Determine the longest prefix of @node that matches the bits in @key.
164 */
165static size_t longest_prefix_match(const struct lpm_trie *trie,
166				   const struct lpm_trie_node *node,
167				   const struct bpf_lpm_trie_key *key)
168{
169	u32 limit = min(node->prefixlen, key->prefixlen);
170	u32 prefixlen = 0, i = 0;
171
172	BUILD_BUG_ON(offsetof(struct lpm_trie_node, data) % sizeof(u32));
173	BUILD_BUG_ON(offsetof(struct bpf_lpm_trie_key, data) % sizeof(u32));
174
175#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && defined(CONFIG_64BIT)
 
176
177	/* data_size >= 16 has very small probability.
178	 * We do not use a loop for optimal code generation.
179	 */
180	if (trie->data_size >= 8) {
181		u64 diff = be64_to_cpu(*(__be64 *)node->data ^
182				       *(__be64 *)key->data);
183
184		prefixlen = 64 - fls64(diff);
185		if (prefixlen >= limit)
186			return limit;
187		if (diff)
188			return prefixlen;
189		i = 8;
190	}
191#endif
192
193	while (trie->data_size >= i + 4) {
194		u32 diff = be32_to_cpu(*(__be32 *)&node->data[i] ^
195				       *(__be32 *)&key->data[i]);
196
197		prefixlen += 32 - fls(diff);
198		if (prefixlen >= limit)
199			return limit;
200		if (diff)
201			return prefixlen;
202		i += 4;
203	}
204
205	if (trie->data_size >= i + 2) {
206		u16 diff = be16_to_cpu(*(__be16 *)&node->data[i] ^
207				       *(__be16 *)&key->data[i]);
208
209		prefixlen += 16 - fls(diff);
210		if (prefixlen >= limit)
211			return limit;
212		if (diff)
213			return prefixlen;
214		i += 2;
215	}
216
217	if (trie->data_size >= i + 1) {
218		prefixlen += 8 - fls(node->data[i] ^ key->data[i]);
219
220		if (prefixlen >= limit)
221			return limit;
222	}
223
224	return prefixlen;
225}
226
227/* Called from syscall or from eBPF program */
228static void *trie_lookup_elem(struct bpf_map *map, void *_key)
229{
230	struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
231	struct lpm_trie_node *node, *found = NULL;
232	struct bpf_lpm_trie_key *key = _key;
233
234	/* Start walking the trie from the root node ... */
235
236	for (node = rcu_dereference_check(trie->root, rcu_read_lock_bh_held());
237	     node;) {
238		unsigned int next_bit;
239		size_t matchlen;
240
241		/* Determine the longest prefix of @node that matches @key.
242		 * If it's the maximum possible prefix for this trie, we have
243		 * an exact match and can return it directly.
244		 */
245		matchlen = longest_prefix_match(trie, node, key);
246		if (matchlen == trie->max_prefixlen) {
247			found = node;
248			break;
249		}
250
251		/* If the number of bits that match is smaller than the prefix
252		 * length of @node, bail out and return the node we have seen
253		 * last in the traversal (ie, the parent).
254		 */
255		if (matchlen < node->prefixlen)
256			break;
257
258		/* Consider this node as return candidate unless it is an
259		 * artificially added intermediate one.
260		 */
261		if (!(node->flags & LPM_TREE_NODE_FLAG_IM))
262			found = node;
263
264		/* If the node match is fully satisfied, let's see if we can
265		 * become more specific. Determine the next bit in the key and
266		 * traverse down.
267		 */
268		next_bit = extract_bit(key->data, node->prefixlen);
269		node = rcu_dereference_check(node->child[next_bit],
270					     rcu_read_lock_bh_held());
271	}
272
273	if (!found)
274		return NULL;
275
276	return found->data + trie->data_size;
277}
278
279static struct lpm_trie_node *lpm_trie_node_alloc(const struct lpm_trie *trie,
280						 const void *value)
281{
282	struct lpm_trie_node *node;
283	size_t size = sizeof(struct lpm_trie_node) + trie->data_size;
284
285	if (value)
286		size += trie->map.value_size;
287
288	node = bpf_map_kmalloc_node(&trie->map, size, GFP_NOWAIT | __GFP_NOWARN,
289				    trie->map.numa_node);
290	if (!node)
291		return NULL;
292
293	node->flags = 0;
294
295	if (value)
296		memcpy(node->data + trie->data_size, value,
297		       trie->map.value_size);
298
299	return node;
300}
301
302/* Called from syscall or from eBPF program */
303static int trie_update_elem(struct bpf_map *map,
304			    void *_key, void *value, u64 flags)
305{
306	struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
307	struct lpm_trie_node *node, *im_node = NULL, *new_node = NULL;
308	struct lpm_trie_node __rcu **slot;
309	struct bpf_lpm_trie_key *key = _key;
310	unsigned long irq_flags;
311	unsigned int next_bit;
312	size_t matchlen = 0;
313	int ret = 0;
314
315	if (unlikely(flags > BPF_EXIST))
316		return -EINVAL;
317
318	if (key->prefixlen > trie->max_prefixlen)
319		return -EINVAL;
320
321	spin_lock_irqsave(&trie->lock, irq_flags);
322
323	/* Allocate and fill a new node */
324
325	if (trie->n_entries == trie->map.max_entries) {
326		ret = -ENOSPC;
327		goto out;
328	}
329
330	new_node = lpm_trie_node_alloc(trie, value);
331	if (!new_node) {
332		ret = -ENOMEM;
333		goto out;
334	}
335
336	trie->n_entries++;
337
338	new_node->prefixlen = key->prefixlen;
339	RCU_INIT_POINTER(new_node->child[0], NULL);
340	RCU_INIT_POINTER(new_node->child[1], NULL);
341	memcpy(new_node->data, key->data, trie->data_size);
342
343	/* Now find a slot to attach the new node. To do that, walk the tree
344	 * from the root and match as many bits as possible for each node until
345	 * we either find an empty slot or a slot that needs to be replaced by
346	 * an intermediate node.
347	 */
348	slot = &trie->root;
349
350	while ((node = rcu_dereference_protected(*slot,
351					lockdep_is_held(&trie->lock)))) {
352		matchlen = longest_prefix_match(trie, node, key);
353
354		if (node->prefixlen != matchlen ||
355		    node->prefixlen == key->prefixlen ||
356		    node->prefixlen == trie->max_prefixlen)
357			break;
358
359		next_bit = extract_bit(key->data, node->prefixlen);
360		slot = &node->child[next_bit];
361	}
362
363	/* If the slot is empty (a free child pointer or an empty root),
364	 * simply assign the @new_node to that slot and be done.
365	 */
366	if (!node) {
367		rcu_assign_pointer(*slot, new_node);
368		goto out;
369	}
370
371	/* If the slot we picked already exists, replace it with @new_node
372	 * which already has the correct data array set.
373	 */
374	if (node->prefixlen == matchlen) {
375		new_node->child[0] = node->child[0];
376		new_node->child[1] = node->child[1];
377
378		if (!(node->flags & LPM_TREE_NODE_FLAG_IM))
379			trie->n_entries--;
380
381		rcu_assign_pointer(*slot, new_node);
382		kfree_rcu(node, rcu);
383
384		goto out;
385	}
386
387	/* If the new node matches the prefix completely, it must be inserted
388	 * as an ancestor. Simply insert it between @node and *@slot.
389	 */
390	if (matchlen == key->prefixlen) {
391		next_bit = extract_bit(node->data, matchlen);
392		rcu_assign_pointer(new_node->child[next_bit], node);
393		rcu_assign_pointer(*slot, new_node);
394		goto out;
395	}
396
397	im_node = lpm_trie_node_alloc(trie, NULL);
398	if (!im_node) {
399		ret = -ENOMEM;
400		goto out;
401	}
402
403	im_node->prefixlen = matchlen;
404	im_node->flags |= LPM_TREE_NODE_FLAG_IM;
405	memcpy(im_node->data, node->data, trie->data_size);
406
407	/* Now determine which child to install in which slot */
408	if (extract_bit(key->data, matchlen)) {
409		rcu_assign_pointer(im_node->child[0], node);
410		rcu_assign_pointer(im_node->child[1], new_node);
411	} else {
412		rcu_assign_pointer(im_node->child[0], new_node);
413		rcu_assign_pointer(im_node->child[1], node);
414	}
415
416	/* Finally, assign the intermediate node to the determined slot */
417	rcu_assign_pointer(*slot, im_node);
418
419out:
420	if (ret) {
421		if (new_node)
422			trie->n_entries--;
423
424		kfree(new_node);
425		kfree(im_node);
426	}
427
428	spin_unlock_irqrestore(&trie->lock, irq_flags);
429
430	return ret;
431}
432
433/* Called from syscall or from eBPF program */
434static int trie_delete_elem(struct bpf_map *map, void *_key)
435{
436	struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
437	struct bpf_lpm_trie_key *key = _key;
438	struct lpm_trie_node __rcu **trim, **trim2;
439	struct lpm_trie_node *node, *parent;
440	unsigned long irq_flags;
441	unsigned int next_bit;
442	size_t matchlen = 0;
443	int ret = 0;
444
445	if (key->prefixlen > trie->max_prefixlen)
446		return -EINVAL;
447
448	spin_lock_irqsave(&trie->lock, irq_flags);
449
450	/* Walk the tree looking for an exact key/length match and keeping
451	 * track of the path we traverse.  We will need to know the node
452	 * we wish to delete, and the slot that points to the node we want
453	 * to delete.  We may also need to know the nodes parent and the
454	 * slot that contains it.
455	 */
456	trim = &trie->root;
457	trim2 = trim;
458	parent = NULL;
459	while ((node = rcu_dereference_protected(
460		       *trim, lockdep_is_held(&trie->lock)))) {
461		matchlen = longest_prefix_match(trie, node, key);
462
463		if (node->prefixlen != matchlen ||
464		    node->prefixlen == key->prefixlen)
465			break;
466
467		parent = node;
468		trim2 = trim;
469		next_bit = extract_bit(key->data, node->prefixlen);
470		trim = &node->child[next_bit];
471	}
472
473	if (!node || node->prefixlen != key->prefixlen ||
474	    node->prefixlen != matchlen ||
475	    (node->flags & LPM_TREE_NODE_FLAG_IM)) {
476		ret = -ENOENT;
477		goto out;
478	}
479
480	trie->n_entries--;
481
482	/* If the node we are removing has two children, simply mark it
483	 * as intermediate and we are done.
484	 */
485	if (rcu_access_pointer(node->child[0]) &&
486	    rcu_access_pointer(node->child[1])) {
487		node->flags |= LPM_TREE_NODE_FLAG_IM;
488		goto out;
489	}
490
491	/* If the parent of the node we are about to delete is an intermediate
492	 * node, and the deleted node doesn't have any children, we can delete
493	 * the intermediate parent as well and promote its other child
494	 * up the tree.  Doing this maintains the invariant that all
495	 * intermediate nodes have exactly 2 children and that there are no
496	 * unnecessary intermediate nodes in the tree.
497	 */
498	if (parent && (parent->flags & LPM_TREE_NODE_FLAG_IM) &&
499	    !node->child[0] && !node->child[1]) {
500		if (node == rcu_access_pointer(parent->child[0]))
501			rcu_assign_pointer(
502				*trim2, rcu_access_pointer(parent->child[1]));
503		else
504			rcu_assign_pointer(
505				*trim2, rcu_access_pointer(parent->child[0]));
506		kfree_rcu(parent, rcu);
507		kfree_rcu(node, rcu);
508		goto out;
509	}
510
511	/* The node we are removing has either zero or one child. If there
512	 * is a child, move it into the removed node's slot then delete
513	 * the node.  Otherwise just clear the slot and delete the node.
514	 */
515	if (node->child[0])
516		rcu_assign_pointer(*trim, rcu_access_pointer(node->child[0]));
517	else if (node->child[1])
518		rcu_assign_pointer(*trim, rcu_access_pointer(node->child[1]));
519	else
520		RCU_INIT_POINTER(*trim, NULL);
521	kfree_rcu(node, rcu);
522
523out:
524	spin_unlock_irqrestore(&trie->lock, irq_flags);
525
526	return ret;
527}
528
529#define LPM_DATA_SIZE_MAX	256
530#define LPM_DATA_SIZE_MIN	1
531
532#define LPM_VAL_SIZE_MAX	(KMALLOC_MAX_SIZE - LPM_DATA_SIZE_MAX - \
533				 sizeof(struct lpm_trie_node))
534#define LPM_VAL_SIZE_MIN	1
535
536#define LPM_KEY_SIZE(X)		(sizeof(struct bpf_lpm_trie_key) + (X))
537#define LPM_KEY_SIZE_MAX	LPM_KEY_SIZE(LPM_DATA_SIZE_MAX)
538#define LPM_KEY_SIZE_MIN	LPM_KEY_SIZE(LPM_DATA_SIZE_MIN)
539
540#define LPM_CREATE_FLAG_MASK	(BPF_F_NO_PREALLOC | BPF_F_NUMA_NODE |	\
541				 BPF_F_ACCESS_MASK)
542
543static struct bpf_map *trie_alloc(union bpf_attr *attr)
544{
545	struct lpm_trie *trie;
 
 
546
547	if (!bpf_capable())
548		return ERR_PTR(-EPERM);
549
550	/* check sanity of attributes */
551	if (attr->max_entries == 0 ||
552	    !(attr->map_flags & BPF_F_NO_PREALLOC) ||
553	    attr->map_flags & ~LPM_CREATE_FLAG_MASK ||
554	    !bpf_map_flags_access_ok(attr->map_flags) ||
555	    attr->key_size < LPM_KEY_SIZE_MIN ||
556	    attr->key_size > LPM_KEY_SIZE_MAX ||
557	    attr->value_size < LPM_VAL_SIZE_MIN ||
558	    attr->value_size > LPM_VAL_SIZE_MAX)
559		return ERR_PTR(-EINVAL);
560
561	trie = bpf_map_area_alloc(sizeof(*trie), NUMA_NO_NODE);
562	if (!trie)
563		return ERR_PTR(-ENOMEM);
564
565	/* copy mandatory map attributes */
566	bpf_map_init_from_attr(&trie->map, attr);
567	trie->data_size = attr->key_size -
568			  offsetof(struct bpf_lpm_trie_key, data);
569	trie->max_prefixlen = trie->data_size * 8;
570
571	spin_lock_init(&trie->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
572
573	return &trie->map;
 
 
 
574}
575
576static void trie_free(struct bpf_map *map)
577{
578	struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
579	struct lpm_trie_node __rcu **slot;
580	struct lpm_trie_node *node;
581
 
 
 
 
 
582	/* Always start at the root and walk down to a node that has no
583	 * children. Then free that node, nullify its reference in the parent
584	 * and start over.
585	 */
586
587	for (;;) {
588		slot = &trie->root;
589
590		for (;;) {
591			node = rcu_dereference_protected(*slot, 1);
592			if (!node)
593				goto out;
594
595			if (rcu_access_pointer(node->child[0])) {
596				slot = &node->child[0];
597				continue;
598			}
599
600			if (rcu_access_pointer(node->child[1])) {
601				slot = &node->child[1];
602				continue;
603			}
604
605			kfree(node);
606			RCU_INIT_POINTER(*slot, NULL);
607			break;
608		}
609	}
610
611out:
612	bpf_map_area_free(trie);
613}
614
615static int trie_get_next_key(struct bpf_map *map, void *_key, void *_next_key)
616{
617	struct lpm_trie_node *node, *next_node = NULL, *parent, *search_root;
618	struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
619	struct bpf_lpm_trie_key *key = _key, *next_key = _next_key;
620	struct lpm_trie_node **node_stack = NULL;
621	int err = 0, stack_ptr = -1;
622	unsigned int next_bit;
623	size_t matchlen;
624
625	/* The get_next_key follows postorder. For the 4 node example in
626	 * the top of this file, the trie_get_next_key() returns the following
627	 * one after another:
628	 *   192.168.0.0/24
629	 *   192.168.1.0/24
630	 *   192.168.128.0/24
631	 *   192.168.0.0/16
632	 *
633	 * The idea is to return more specific keys before less specific ones.
634	 */
635
636	/* Empty trie */
637	search_root = rcu_dereference(trie->root);
638	if (!search_root)
639		return -ENOENT;
640
641	/* For invalid key, find the leftmost node in the trie */
642	if (!key || key->prefixlen > trie->max_prefixlen)
643		goto find_leftmost;
644
645	node_stack = kmalloc_array(trie->max_prefixlen,
646				   sizeof(struct lpm_trie_node *),
647				   GFP_ATOMIC | __GFP_NOWARN);
648	if (!node_stack)
649		return -ENOMEM;
650
651	/* Try to find the exact node for the given key */
652	for (node = search_root; node;) {
653		node_stack[++stack_ptr] = node;
654		matchlen = longest_prefix_match(trie, node, key);
655		if (node->prefixlen != matchlen ||
656		    node->prefixlen == key->prefixlen)
657			break;
658
659		next_bit = extract_bit(key->data, node->prefixlen);
660		node = rcu_dereference(node->child[next_bit]);
661	}
662	if (!node || node->prefixlen != key->prefixlen ||
663	    (node->flags & LPM_TREE_NODE_FLAG_IM))
664		goto find_leftmost;
665
666	/* The node with the exactly-matching key has been found,
667	 * find the first node in postorder after the matched node.
668	 */
669	node = node_stack[stack_ptr];
670	while (stack_ptr > 0) {
671		parent = node_stack[stack_ptr - 1];
672		if (rcu_dereference(parent->child[0]) == node) {
673			search_root = rcu_dereference(parent->child[1]);
674			if (search_root)
675				goto find_leftmost;
676		}
677		if (!(parent->flags & LPM_TREE_NODE_FLAG_IM)) {
678			next_node = parent;
679			goto do_copy;
680		}
681
682		node = parent;
683		stack_ptr--;
684	}
685
686	/* did not find anything */
687	err = -ENOENT;
688	goto free_stack;
689
690find_leftmost:
691	/* Find the leftmost non-intermediate node, all intermediate nodes
692	 * have exact two children, so this function will never return NULL.
693	 */
694	for (node = search_root; node;) {
695		if (node->flags & LPM_TREE_NODE_FLAG_IM) {
696			node = rcu_dereference(node->child[0]);
697		} else {
698			next_node = node;
699			node = rcu_dereference(node->child[0]);
700			if (!node)
701				node = rcu_dereference(next_node->child[1]);
702		}
703	}
704do_copy:
705	next_key->prefixlen = next_node->prefixlen;
706	memcpy((void *)next_key + offsetof(struct bpf_lpm_trie_key, data),
707	       next_node->data, trie->data_size);
708free_stack:
709	kfree(node_stack);
710	return err;
711}
712
713static int trie_check_btf(const struct bpf_map *map,
714			  const struct btf *btf,
715			  const struct btf_type *key_type,
716			  const struct btf_type *value_type)
717{
718	/* Keys must have struct bpf_lpm_trie_key embedded. */
719	return BTF_INFO_KIND(key_type->info) != BTF_KIND_STRUCT ?
720	       -EINVAL : 0;
721}
722
723BTF_ID_LIST_SINGLE(trie_map_btf_ids, struct, lpm_trie)
724const struct bpf_map_ops trie_map_ops = {
725	.map_meta_equal = bpf_map_meta_equal,
726	.map_alloc = trie_alloc,
727	.map_free = trie_free,
728	.map_get_next_key = trie_get_next_key,
729	.map_lookup_elem = trie_lookup_elem,
730	.map_update_elem = trie_update_elem,
731	.map_delete_elem = trie_delete_elem,
732	.map_lookup_batch = generic_map_lookup_batch,
733	.map_update_batch = generic_map_update_batch,
734	.map_delete_batch = generic_map_delete_batch,
735	.map_check_btf = trie_check_btf,
736	.map_btf_id = &trie_map_btf_ids[0],
737};
v4.17
 
  1/*
  2 * Longest prefix match list implementation
  3 *
  4 * Copyright (c) 2016,2017 Daniel Mack
  5 * Copyright (c) 2016 David Herrmann
  6 *
  7 * This file is subject to the terms and conditions of version 2 of the GNU
  8 * General Public License.  See the file COPYING in the main directory of the
  9 * Linux distribution for more details.
 10 */
 11
 12#include <linux/bpf.h>
 
 13#include <linux/err.h>
 14#include <linux/slab.h>
 15#include <linux/spinlock.h>
 16#include <linux/vmalloc.h>
 17#include <net/ipv6.h>
 
 
 18
 19/* Intermediate node */
 20#define LPM_TREE_NODE_FLAG_IM BIT(0)
 21
 22struct lpm_trie_node;
 23
 24struct lpm_trie_node {
 25	struct rcu_head rcu;
 26	struct lpm_trie_node __rcu	*child[2];
 27	u32				prefixlen;
 28	u32				flags;
 29	u8				data[0];
 30};
 31
 32struct lpm_trie {
 33	struct bpf_map			map;
 34	struct lpm_trie_node __rcu	*root;
 35	size_t				n_entries;
 36	size_t				max_prefixlen;
 37	size_t				data_size;
 38	raw_spinlock_t			lock;
 39};
 40
 41/* This trie implements a longest prefix match algorithm that can be used to
 42 * match IP addresses to a stored set of ranges.
 43 *
 44 * Data stored in @data of struct bpf_lpm_key and struct lpm_trie_node is
 45 * interpreted as big endian, so data[0] stores the most significant byte.
 46 *
 47 * Match ranges are internally stored in instances of struct lpm_trie_node
 48 * which each contain their prefix length as well as two pointers that may
 49 * lead to more nodes containing more specific matches. Each node also stores
 50 * a value that is defined by and returned to userspace via the update_elem
 51 * and lookup functions.
 52 *
 53 * For instance, let's start with a trie that was created with a prefix length
 54 * of 32, so it can be used for IPv4 addresses, and one single element that
 55 * matches 192.168.0.0/16. The data array would hence contain
 56 * [0xc0, 0xa8, 0x00, 0x00] in big-endian notation. This documentation will
 57 * stick to IP-address notation for readability though.
 58 *
 59 * As the trie is empty initially, the new node (1) will be places as root
 60 * node, denoted as (R) in the example below. As there are no other node, both
 61 * child pointers are %NULL.
 62 *
 63 *              +----------------+
 64 *              |       (1)  (R) |
 65 *              | 192.168.0.0/16 |
 66 *              |    value: 1    |
 67 *              |   [0]    [1]   |
 68 *              +----------------+
 69 *
 70 * Next, let's add a new node (2) matching 192.168.0.0/24. As there is already
 71 * a node with the same data and a smaller prefix (ie, a less specific one),
 72 * node (2) will become a child of (1). In child index depends on the next bit
 73 * that is outside of what (1) matches, and that bit is 0, so (2) will be
 74 * child[0] of (1):
 75 *
 76 *              +----------------+
 77 *              |       (1)  (R) |
 78 *              | 192.168.0.0/16 |
 79 *              |    value: 1    |
 80 *              |   [0]    [1]   |
 81 *              +----------------+
 82 *                   |
 83 *    +----------------+
 84 *    |       (2)      |
 85 *    | 192.168.0.0/24 |
 86 *    |    value: 2    |
 87 *    |   [0]    [1]   |
 88 *    +----------------+
 89 *
 90 * The child[1] slot of (1) could be filled with another node which has bit #17
 91 * (the next bit after the ones that (1) matches on) set to 1. For instance,
 92 * 192.168.128.0/24:
 93 *
 94 *              +----------------+
 95 *              |       (1)  (R) |
 96 *              | 192.168.0.0/16 |
 97 *              |    value: 1    |
 98 *              |   [0]    [1]   |
 99 *              +----------------+
100 *                   |      |
101 *    +----------------+  +------------------+
102 *    |       (2)      |  |        (3)       |
103 *    | 192.168.0.0/24 |  | 192.168.128.0/24 |
104 *    |    value: 2    |  |     value: 3     |
105 *    |   [0]    [1]   |  |    [0]    [1]    |
106 *    +----------------+  +------------------+
107 *
108 * Let's add another node (4) to the game for 192.168.1.0/24. In order to place
109 * it, node (1) is looked at first, and because (4) of the semantics laid out
110 * above (bit #17 is 0), it would normally be attached to (1) as child[0].
111 * However, that slot is already allocated, so a new node is needed in between.
112 * That node does not have a value attached to it and it will never be
113 * returned to users as result of a lookup. It is only there to differentiate
114 * the traversal further. It will get a prefix as wide as necessary to
115 * distinguish its two children:
116 *
117 *                      +----------------+
118 *                      |       (1)  (R) |
119 *                      | 192.168.0.0/16 |
120 *                      |    value: 1    |
121 *                      |   [0]    [1]   |
122 *                      +----------------+
123 *                           |      |
124 *            +----------------+  +------------------+
125 *            |       (4)  (I) |  |        (3)       |
126 *            | 192.168.0.0/23 |  | 192.168.128.0/24 |
127 *            |    value: ---  |  |     value: 3     |
128 *            |   [0]    [1]   |  |    [0]    [1]    |
129 *            +----------------+  +------------------+
130 *                 |      |
131 *  +----------------+  +----------------+
132 *  |       (2)      |  |       (5)      |
133 *  | 192.168.0.0/24 |  | 192.168.1.0/24 |
134 *  |    value: 2    |  |     value: 5   |
135 *  |   [0]    [1]   |  |   [0]    [1]   |
136 *  +----------------+  +----------------+
137 *
138 * 192.168.1.1/32 would be a child of (5) etc.
139 *
140 * An intermediate node will be turned into a 'real' node on demand. In the
141 * example above, (4) would be re-used if 192.168.0.0/23 is added to the trie.
142 *
143 * A fully populated trie would have a height of 32 nodes, as the trie was
144 * created with a prefix length of 32.
145 *
146 * The lookup starts at the root node. If the current node matches and if there
147 * is a child that can be used to become more specific, the trie is traversed
148 * downwards. The last node in the traversal that is a non-intermediate one is
149 * returned.
150 */
151
152static inline int extract_bit(const u8 *data, size_t index)
153{
154	return !!(data[index / 8] & (1 << (7 - (index % 8))));
155}
156
157/**
158 * longest_prefix_match() - determine the longest prefix
159 * @trie:	The trie to get internal sizes from
160 * @node:	The node to operate on
161 * @key:	The key to compare to @node
162 *
163 * Determine the longest prefix of @node that matches the bits in @key.
164 */
165static size_t longest_prefix_match(const struct lpm_trie *trie,
166				   const struct lpm_trie_node *node,
167				   const struct bpf_lpm_trie_key *key)
168{
169	size_t prefixlen = 0;
170	size_t i;
 
 
 
171
172	for (i = 0; i < trie->data_size; i++) {
173		size_t b;
174
175		b = 8 - fls(node->data[i] ^ key->data[i]);
176		prefixlen += b;
 
 
 
 
177
178		if (prefixlen >= node->prefixlen || prefixlen >= key->prefixlen)
179			return min(node->prefixlen, key->prefixlen);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
180
181		if (b < 8)
182			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
183	}
184
185	return prefixlen;
186}
187
188/* Called from syscall or from eBPF program */
189static void *trie_lookup_elem(struct bpf_map *map, void *_key)
190{
191	struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
192	struct lpm_trie_node *node, *found = NULL;
193	struct bpf_lpm_trie_key *key = _key;
194
195	/* Start walking the trie from the root node ... */
196
197	for (node = rcu_dereference(trie->root); node;) {
 
198		unsigned int next_bit;
199		size_t matchlen;
200
201		/* Determine the longest prefix of @node that matches @key.
202		 * If it's the maximum possible prefix for this trie, we have
203		 * an exact match and can return it directly.
204		 */
205		matchlen = longest_prefix_match(trie, node, key);
206		if (matchlen == trie->max_prefixlen) {
207			found = node;
208			break;
209		}
210
211		/* If the number of bits that match is smaller than the prefix
212		 * length of @node, bail out and return the node we have seen
213		 * last in the traversal (ie, the parent).
214		 */
215		if (matchlen < node->prefixlen)
216			break;
217
218		/* Consider this node as return candidate unless it is an
219		 * artificially added intermediate one.
220		 */
221		if (!(node->flags & LPM_TREE_NODE_FLAG_IM))
222			found = node;
223
224		/* If the node match is fully satisfied, let's see if we can
225		 * become more specific. Determine the next bit in the key and
226		 * traverse down.
227		 */
228		next_bit = extract_bit(key->data, node->prefixlen);
229		node = rcu_dereference(node->child[next_bit]);
 
230	}
231
232	if (!found)
233		return NULL;
234
235	return found->data + trie->data_size;
236}
237
238static struct lpm_trie_node *lpm_trie_node_alloc(const struct lpm_trie *trie,
239						 const void *value)
240{
241	struct lpm_trie_node *node;
242	size_t size = sizeof(struct lpm_trie_node) + trie->data_size;
243
244	if (value)
245		size += trie->map.value_size;
246
247	node = kmalloc_node(size, GFP_ATOMIC | __GFP_NOWARN,
248			    trie->map.numa_node);
249	if (!node)
250		return NULL;
251
252	node->flags = 0;
253
254	if (value)
255		memcpy(node->data + trie->data_size, value,
256		       trie->map.value_size);
257
258	return node;
259}
260
261/* Called from syscall or from eBPF program */
262static int trie_update_elem(struct bpf_map *map,
263			    void *_key, void *value, u64 flags)
264{
265	struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
266	struct lpm_trie_node *node, *im_node = NULL, *new_node = NULL;
267	struct lpm_trie_node __rcu **slot;
268	struct bpf_lpm_trie_key *key = _key;
269	unsigned long irq_flags;
270	unsigned int next_bit;
271	size_t matchlen = 0;
272	int ret = 0;
273
274	if (unlikely(flags > BPF_EXIST))
275		return -EINVAL;
276
277	if (key->prefixlen > trie->max_prefixlen)
278		return -EINVAL;
279
280	raw_spin_lock_irqsave(&trie->lock, irq_flags);
281
282	/* Allocate and fill a new node */
283
284	if (trie->n_entries == trie->map.max_entries) {
285		ret = -ENOSPC;
286		goto out;
287	}
288
289	new_node = lpm_trie_node_alloc(trie, value);
290	if (!new_node) {
291		ret = -ENOMEM;
292		goto out;
293	}
294
295	trie->n_entries++;
296
297	new_node->prefixlen = key->prefixlen;
298	RCU_INIT_POINTER(new_node->child[0], NULL);
299	RCU_INIT_POINTER(new_node->child[1], NULL);
300	memcpy(new_node->data, key->data, trie->data_size);
301
302	/* Now find a slot to attach the new node. To do that, walk the tree
303	 * from the root and match as many bits as possible for each node until
304	 * we either find an empty slot or a slot that needs to be replaced by
305	 * an intermediate node.
306	 */
307	slot = &trie->root;
308
309	while ((node = rcu_dereference_protected(*slot,
310					lockdep_is_held(&trie->lock)))) {
311		matchlen = longest_prefix_match(trie, node, key);
312
313		if (node->prefixlen != matchlen ||
314		    node->prefixlen == key->prefixlen ||
315		    node->prefixlen == trie->max_prefixlen)
316			break;
317
318		next_bit = extract_bit(key->data, node->prefixlen);
319		slot = &node->child[next_bit];
320	}
321
322	/* If the slot is empty (a free child pointer or an empty root),
323	 * simply assign the @new_node to that slot and be done.
324	 */
325	if (!node) {
326		rcu_assign_pointer(*slot, new_node);
327		goto out;
328	}
329
330	/* If the slot we picked already exists, replace it with @new_node
331	 * which already has the correct data array set.
332	 */
333	if (node->prefixlen == matchlen) {
334		new_node->child[0] = node->child[0];
335		new_node->child[1] = node->child[1];
336
337		if (!(node->flags & LPM_TREE_NODE_FLAG_IM))
338			trie->n_entries--;
339
340		rcu_assign_pointer(*slot, new_node);
341		kfree_rcu(node, rcu);
342
343		goto out;
344	}
345
346	/* If the new node matches the prefix completely, it must be inserted
347	 * as an ancestor. Simply insert it between @node and *@slot.
348	 */
349	if (matchlen == key->prefixlen) {
350		next_bit = extract_bit(node->data, matchlen);
351		rcu_assign_pointer(new_node->child[next_bit], node);
352		rcu_assign_pointer(*slot, new_node);
353		goto out;
354	}
355
356	im_node = lpm_trie_node_alloc(trie, NULL);
357	if (!im_node) {
358		ret = -ENOMEM;
359		goto out;
360	}
361
362	im_node->prefixlen = matchlen;
363	im_node->flags |= LPM_TREE_NODE_FLAG_IM;
364	memcpy(im_node->data, node->data, trie->data_size);
365
366	/* Now determine which child to install in which slot */
367	if (extract_bit(key->data, matchlen)) {
368		rcu_assign_pointer(im_node->child[0], node);
369		rcu_assign_pointer(im_node->child[1], new_node);
370	} else {
371		rcu_assign_pointer(im_node->child[0], new_node);
372		rcu_assign_pointer(im_node->child[1], node);
373	}
374
375	/* Finally, assign the intermediate node to the determined spot */
376	rcu_assign_pointer(*slot, im_node);
377
378out:
379	if (ret) {
380		if (new_node)
381			trie->n_entries--;
382
383		kfree(new_node);
384		kfree(im_node);
385	}
386
387	raw_spin_unlock_irqrestore(&trie->lock, irq_flags);
388
389	return ret;
390}
391
392/* Called from syscall or from eBPF program */
393static int trie_delete_elem(struct bpf_map *map, void *_key)
394{
395	struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
396	struct bpf_lpm_trie_key *key = _key;
397	struct lpm_trie_node __rcu **trim, **trim2;
398	struct lpm_trie_node *node, *parent;
399	unsigned long irq_flags;
400	unsigned int next_bit;
401	size_t matchlen = 0;
402	int ret = 0;
403
404	if (key->prefixlen > trie->max_prefixlen)
405		return -EINVAL;
406
407	raw_spin_lock_irqsave(&trie->lock, irq_flags);
408
409	/* Walk the tree looking for an exact key/length match and keeping
410	 * track of the path we traverse.  We will need to know the node
411	 * we wish to delete, and the slot that points to the node we want
412	 * to delete.  We may also need to know the nodes parent and the
413	 * slot that contains it.
414	 */
415	trim = &trie->root;
416	trim2 = trim;
417	parent = NULL;
418	while ((node = rcu_dereference_protected(
419		       *trim, lockdep_is_held(&trie->lock)))) {
420		matchlen = longest_prefix_match(trie, node, key);
421
422		if (node->prefixlen != matchlen ||
423		    node->prefixlen == key->prefixlen)
424			break;
425
426		parent = node;
427		trim2 = trim;
428		next_bit = extract_bit(key->data, node->prefixlen);
429		trim = &node->child[next_bit];
430	}
431
432	if (!node || node->prefixlen != key->prefixlen ||
 
433	    (node->flags & LPM_TREE_NODE_FLAG_IM)) {
434		ret = -ENOENT;
435		goto out;
436	}
437
438	trie->n_entries--;
439
440	/* If the node we are removing has two children, simply mark it
441	 * as intermediate and we are done.
442	 */
443	if (rcu_access_pointer(node->child[0]) &&
444	    rcu_access_pointer(node->child[1])) {
445		node->flags |= LPM_TREE_NODE_FLAG_IM;
446		goto out;
447	}
448
449	/* If the parent of the node we are about to delete is an intermediate
450	 * node, and the deleted node doesn't have any children, we can delete
451	 * the intermediate parent as well and promote its other child
452	 * up the tree.  Doing this maintains the invariant that all
453	 * intermediate nodes have exactly 2 children and that there are no
454	 * unnecessary intermediate nodes in the tree.
455	 */
456	if (parent && (parent->flags & LPM_TREE_NODE_FLAG_IM) &&
457	    !node->child[0] && !node->child[1]) {
458		if (node == rcu_access_pointer(parent->child[0]))
459			rcu_assign_pointer(
460				*trim2, rcu_access_pointer(parent->child[1]));
461		else
462			rcu_assign_pointer(
463				*trim2, rcu_access_pointer(parent->child[0]));
464		kfree_rcu(parent, rcu);
465		kfree_rcu(node, rcu);
466		goto out;
467	}
468
469	/* The node we are removing has either zero or one child. If there
470	 * is a child, move it into the removed node's slot then delete
471	 * the node.  Otherwise just clear the slot and delete the node.
472	 */
473	if (node->child[0])
474		rcu_assign_pointer(*trim, rcu_access_pointer(node->child[0]));
475	else if (node->child[1])
476		rcu_assign_pointer(*trim, rcu_access_pointer(node->child[1]));
477	else
478		RCU_INIT_POINTER(*trim, NULL);
479	kfree_rcu(node, rcu);
480
481out:
482	raw_spin_unlock_irqrestore(&trie->lock, irq_flags);
483
484	return ret;
485}
486
487#define LPM_DATA_SIZE_MAX	256
488#define LPM_DATA_SIZE_MIN	1
489
490#define LPM_VAL_SIZE_MAX	(KMALLOC_MAX_SIZE - LPM_DATA_SIZE_MAX - \
491				 sizeof(struct lpm_trie_node))
492#define LPM_VAL_SIZE_MIN	1
493
494#define LPM_KEY_SIZE(X)		(sizeof(struct bpf_lpm_trie_key) + (X))
495#define LPM_KEY_SIZE_MAX	LPM_KEY_SIZE(LPM_DATA_SIZE_MAX)
496#define LPM_KEY_SIZE_MIN	LPM_KEY_SIZE(LPM_DATA_SIZE_MIN)
497
498#define LPM_CREATE_FLAG_MASK	(BPF_F_NO_PREALLOC | BPF_F_NUMA_NODE |	\
499				 BPF_F_RDONLY | BPF_F_WRONLY)
500
501static struct bpf_map *trie_alloc(union bpf_attr *attr)
502{
503	struct lpm_trie *trie;
504	u64 cost = sizeof(*trie), cost_per_node;
505	int ret;
506
507	if (!capable(CAP_SYS_ADMIN))
508		return ERR_PTR(-EPERM);
509
510	/* check sanity of attributes */
511	if (attr->max_entries == 0 ||
512	    !(attr->map_flags & BPF_F_NO_PREALLOC) ||
513	    attr->map_flags & ~LPM_CREATE_FLAG_MASK ||
 
514	    attr->key_size < LPM_KEY_SIZE_MIN ||
515	    attr->key_size > LPM_KEY_SIZE_MAX ||
516	    attr->value_size < LPM_VAL_SIZE_MIN ||
517	    attr->value_size > LPM_VAL_SIZE_MAX)
518		return ERR_PTR(-EINVAL);
519
520	trie = kzalloc(sizeof(*trie), GFP_USER | __GFP_NOWARN);
521	if (!trie)
522		return ERR_PTR(-ENOMEM);
523
524	/* copy mandatory map attributes */
525	bpf_map_init_from_attr(&trie->map, attr);
526	trie->data_size = attr->key_size -
527			  offsetof(struct bpf_lpm_trie_key, data);
528	trie->max_prefixlen = trie->data_size * 8;
529
530	cost_per_node = sizeof(struct lpm_trie_node) +
531			attr->value_size + trie->data_size;
532	cost += (u64) attr->max_entries * cost_per_node;
533	if (cost >= U32_MAX - PAGE_SIZE) {
534		ret = -E2BIG;
535		goto out_err;
536	}
537
538	trie->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
539
540	ret = bpf_map_precharge_memlock(trie->map.pages);
541	if (ret)
542		goto out_err;
543
544	raw_spin_lock_init(&trie->lock);
545
546	return &trie->map;
547out_err:
548	kfree(trie);
549	return ERR_PTR(ret);
550}
551
552static void trie_free(struct bpf_map *map)
553{
554	struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
555	struct lpm_trie_node __rcu **slot;
556	struct lpm_trie_node *node;
557
558	/* Wait for outstanding programs to complete
559	 * update/lookup/delete/get_next_key and free the trie.
560	 */
561	synchronize_rcu();
562
563	/* Always start at the root and walk down to a node that has no
564	 * children. Then free that node, nullify its reference in the parent
565	 * and start over.
566	 */
567
568	for (;;) {
569		slot = &trie->root;
570
571		for (;;) {
572			node = rcu_dereference_protected(*slot, 1);
573			if (!node)
574				goto out;
575
576			if (rcu_access_pointer(node->child[0])) {
577				slot = &node->child[0];
578				continue;
579			}
580
581			if (rcu_access_pointer(node->child[1])) {
582				slot = &node->child[1];
583				continue;
584			}
585
586			kfree(node);
587			RCU_INIT_POINTER(*slot, NULL);
588			break;
589		}
590	}
591
592out:
593	kfree(trie);
594}
595
596static int trie_get_next_key(struct bpf_map *map, void *_key, void *_next_key)
597{
598	struct lpm_trie_node *node, *next_node = NULL, *parent, *search_root;
599	struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
600	struct bpf_lpm_trie_key *key = _key, *next_key = _next_key;
601	struct lpm_trie_node **node_stack = NULL;
602	int err = 0, stack_ptr = -1;
603	unsigned int next_bit;
604	size_t matchlen;
605
606	/* The get_next_key follows postorder. For the 4 node example in
607	 * the top of this file, the trie_get_next_key() returns the following
608	 * one after another:
609	 *   192.168.0.0/24
610	 *   192.168.1.0/24
611	 *   192.168.128.0/24
612	 *   192.168.0.0/16
613	 *
614	 * The idea is to return more specific keys before less specific ones.
615	 */
616
617	/* Empty trie */
618	search_root = rcu_dereference(trie->root);
619	if (!search_root)
620		return -ENOENT;
621
622	/* For invalid key, find the leftmost node in the trie */
623	if (!key || key->prefixlen > trie->max_prefixlen)
624		goto find_leftmost;
625
626	node_stack = kmalloc(trie->max_prefixlen * sizeof(struct lpm_trie_node *),
627			     GFP_ATOMIC | __GFP_NOWARN);
 
628	if (!node_stack)
629		return -ENOMEM;
630
631	/* Try to find the exact node for the given key */
632	for (node = search_root; node;) {
633		node_stack[++stack_ptr] = node;
634		matchlen = longest_prefix_match(trie, node, key);
635		if (node->prefixlen != matchlen ||
636		    node->prefixlen == key->prefixlen)
637			break;
638
639		next_bit = extract_bit(key->data, node->prefixlen);
640		node = rcu_dereference(node->child[next_bit]);
641	}
642	if (!node || node->prefixlen != key->prefixlen ||
643	    (node->flags & LPM_TREE_NODE_FLAG_IM))
644		goto find_leftmost;
645
646	/* The node with the exactly-matching key has been found,
647	 * find the first node in postorder after the matched node.
648	 */
649	node = node_stack[stack_ptr];
650	while (stack_ptr > 0) {
651		parent = node_stack[stack_ptr - 1];
652		if (rcu_dereference(parent->child[0]) == node) {
653			search_root = rcu_dereference(parent->child[1]);
654			if (search_root)
655				goto find_leftmost;
656		}
657		if (!(parent->flags & LPM_TREE_NODE_FLAG_IM)) {
658			next_node = parent;
659			goto do_copy;
660		}
661
662		node = parent;
663		stack_ptr--;
664	}
665
666	/* did not find anything */
667	err = -ENOENT;
668	goto free_stack;
669
670find_leftmost:
671	/* Find the leftmost non-intermediate node, all intermediate nodes
672	 * have exact two children, so this function will never return NULL.
673	 */
674	for (node = search_root; node;) {
675		if (!(node->flags & LPM_TREE_NODE_FLAG_IM))
 
 
676			next_node = node;
677		node = rcu_dereference(node->child[0]);
 
 
 
678	}
679do_copy:
680	next_key->prefixlen = next_node->prefixlen;
681	memcpy((void *)next_key + offsetof(struct bpf_lpm_trie_key, data),
682	       next_node->data, trie->data_size);
683free_stack:
684	kfree(node_stack);
685	return err;
686}
687
 
 
 
 
 
 
 
 
 
 
 
688const struct bpf_map_ops trie_map_ops = {
 
689	.map_alloc = trie_alloc,
690	.map_free = trie_free,
691	.map_get_next_key = trie_get_next_key,
692	.map_lookup_elem = trie_lookup_elem,
693	.map_update_elem = trie_update_elem,
694	.map_delete_elem = trie_delete_elem,
 
 
 
 
 
695};