Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
   4 *
   5 *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
   6 *  Copyright (C) 2010 ST-Ericsson SA
   7 */
   8#include <linux/module.h>
   9#include <linux/moduleparam.h>
  10#include <linux/init.h>
  11#include <linux/ioport.h>
  12#include <linux/device.h>
  13#include <linux/io.h>
  14#include <linux/interrupt.h>
  15#include <linux/kernel.h>
  16#include <linux/slab.h>
  17#include <linux/delay.h>
  18#include <linux/err.h>
  19#include <linux/highmem.h>
  20#include <linux/log2.h>
  21#include <linux/mmc/mmc.h>
  22#include <linux/mmc/pm.h>
  23#include <linux/mmc/host.h>
  24#include <linux/mmc/card.h>
  25#include <linux/mmc/sd.h>
  26#include <linux/mmc/slot-gpio.h>
  27#include <linux/amba/bus.h>
  28#include <linux/clk.h>
  29#include <linux/scatterlist.h>
  30#include <linux/of.h>
  31#include <linux/regulator/consumer.h>
  32#include <linux/dmaengine.h>
  33#include <linux/dma-mapping.h>
  34#include <linux/amba/mmci.h>
  35#include <linux/pm_runtime.h>
  36#include <linux/types.h>
  37#include <linux/pinctrl/consumer.h>
  38#include <linux/reset.h>
  39#include <linux/gpio/consumer.h>
 
  40
  41#include <asm/div64.h>
  42#include <asm/io.h>
  43
  44#include "mmci.h"
  45
  46#define DRIVER_NAME "mmci-pl18x"
  47
  48static void mmci_variant_init(struct mmci_host *host);
  49static void ux500_variant_init(struct mmci_host *host);
  50static void ux500v2_variant_init(struct mmci_host *host);
  51
  52static unsigned int fmax = 515633;
  53
  54static struct variant_data variant_arm = {
  55	.fifosize		= 16 * 4,
  56	.fifohalfsize		= 8 * 4,
  57	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
  58	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
  59	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
  60	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
  61	.datalength_bits	= 16,
  62	.datactrl_blocksz	= 11,
  63	.pwrreg_powerup		= MCI_PWR_UP,
  64	.f_max			= 100000000,
  65	.reversed_irq_handling	= true,
  66	.mmcimask1		= true,
  67	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
  68	.start_err		= MCI_STARTBITERR,
  69	.opendrain		= MCI_ROD,
  70	.init			= mmci_variant_init,
  71};
  72
  73static struct variant_data variant_arm_extended_fifo = {
  74	.fifosize		= 128 * 4,
  75	.fifohalfsize		= 64 * 4,
  76	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
  77	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
  78	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
  79	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
  80	.datalength_bits	= 16,
  81	.datactrl_blocksz	= 11,
  82	.pwrreg_powerup		= MCI_PWR_UP,
  83	.f_max			= 100000000,
  84	.mmcimask1		= true,
  85	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
  86	.start_err		= MCI_STARTBITERR,
  87	.opendrain		= MCI_ROD,
  88	.init			= mmci_variant_init,
  89};
  90
  91static struct variant_data variant_arm_extended_fifo_hwfc = {
  92	.fifosize		= 128 * 4,
  93	.fifohalfsize		= 64 * 4,
  94	.clkreg_enable		= MCI_ARM_HWFCEN,
  95	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
  96	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
  97	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
  98	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
  99	.datalength_bits	= 16,
 100	.datactrl_blocksz	= 11,
 101	.pwrreg_powerup		= MCI_PWR_UP,
 102	.f_max			= 100000000,
 103	.mmcimask1		= true,
 104	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 105	.start_err		= MCI_STARTBITERR,
 106	.opendrain		= MCI_ROD,
 107	.init			= mmci_variant_init,
 108};
 109
 110static struct variant_data variant_u300 = {
 111	.fifosize		= 16 * 4,
 112	.fifohalfsize		= 8 * 4,
 113	.clkreg_enable		= MCI_ST_U300_HWFCEN,
 114	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 115	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
 116	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 117	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
 118	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
 119	.datalength_bits	= 16,
 120	.datactrl_blocksz	= 11,
 121	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 122	.st_sdio			= true,
 123	.pwrreg_powerup		= MCI_PWR_ON,
 124	.f_max			= 100000000,
 125	.signal_direction	= true,
 126	.pwrreg_clkgate		= true,
 127	.pwrreg_nopower		= true,
 128	.mmcimask1		= true,
 129	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 130	.start_err		= MCI_STARTBITERR,
 131	.opendrain		= MCI_OD,
 132	.init			= mmci_variant_init,
 133};
 134
 135static struct variant_data variant_nomadik = {
 136	.fifosize		= 16 * 4,
 137	.fifohalfsize		= 8 * 4,
 138	.clkreg			= MCI_CLK_ENABLE,
 139	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 140	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
 141	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 142	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
 143	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
 144	.datalength_bits	= 24,
 145	.datactrl_blocksz	= 11,
 146	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 147	.st_sdio		= true,
 148	.st_clkdiv		= true,
 149	.pwrreg_powerup		= MCI_PWR_ON,
 150	.f_max			= 100000000,
 151	.signal_direction	= true,
 152	.pwrreg_clkgate		= true,
 153	.pwrreg_nopower		= true,
 154	.mmcimask1		= true,
 155	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 156	.start_err		= MCI_STARTBITERR,
 157	.opendrain		= MCI_OD,
 158	.init			= mmci_variant_init,
 159};
 160
 161static struct variant_data variant_ux500 = {
 162	.fifosize		= 30 * 4,
 163	.fifohalfsize		= 8 * 4,
 164	.clkreg			= MCI_CLK_ENABLE,
 165	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 166	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 167	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
 168	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
 169	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 170	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
 171	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
 172	.datalength_bits	= 24,
 173	.datactrl_blocksz	= 11,
 174	.datactrl_any_blocksz	= true,
 175	.dma_power_of_2		= true,
 176	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 177	.st_sdio		= true,
 178	.st_clkdiv		= true,
 179	.pwrreg_powerup		= MCI_PWR_ON,
 180	.f_max			= 100000000,
 181	.signal_direction	= true,
 182	.pwrreg_clkgate		= true,
 183	.busy_detect		= true,
 184	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
 185	.busy_detect_flag	= MCI_ST_CARDBUSY,
 186	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
 187	.pwrreg_nopower		= true,
 188	.mmcimask1		= true,
 189	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 190	.start_err		= MCI_STARTBITERR,
 191	.opendrain		= MCI_OD,
 192	.init			= ux500_variant_init,
 193};
 194
 195static struct variant_data variant_ux500v2 = {
 196	.fifosize		= 30 * 4,
 197	.fifohalfsize		= 8 * 4,
 198	.clkreg			= MCI_CLK_ENABLE,
 199	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 200	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 201	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
 202	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
 203	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 204	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
 205	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
 206	.datactrl_mask_ddrmode	= MCI_DPSM_ST_DDRMODE,
 207	.datalength_bits	= 24,
 208	.datactrl_blocksz	= 11,
 209	.datactrl_any_blocksz	= true,
 210	.dma_power_of_2		= true,
 211	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 212	.st_sdio		= true,
 213	.st_clkdiv		= true,
 214	.pwrreg_powerup		= MCI_PWR_ON,
 215	.f_max			= 100000000,
 216	.signal_direction	= true,
 217	.pwrreg_clkgate		= true,
 218	.busy_detect		= true,
 219	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
 220	.busy_detect_flag	= MCI_ST_CARDBUSY,
 221	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
 222	.pwrreg_nopower		= true,
 223	.mmcimask1		= true,
 224	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 225	.start_err		= MCI_STARTBITERR,
 226	.opendrain		= MCI_OD,
 227	.init			= ux500v2_variant_init,
 228};
 229
 230static struct variant_data variant_stm32 = {
 231	.fifosize		= 32 * 4,
 232	.fifohalfsize		= 8 * 4,
 233	.clkreg			= MCI_CLK_ENABLE,
 234	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 235	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 236	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
 237	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
 238	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 239	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
 240	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
 241	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 242	.datalength_bits	= 24,
 243	.datactrl_blocksz	= 11,
 244	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 245	.st_sdio		= true,
 246	.st_clkdiv		= true,
 247	.pwrreg_powerup		= MCI_PWR_ON,
 248	.f_max			= 48000000,
 249	.pwrreg_clkgate		= true,
 250	.pwrreg_nopower		= true,
 
 251	.init			= mmci_variant_init,
 252};
 253
 254static struct variant_data variant_stm32_sdmmc = {
 255	.fifosize		= 16 * 4,
 256	.fifohalfsize		= 8 * 4,
 257	.f_max			= 208000000,
 258	.stm32_clkdiv		= true,
 259	.cmdreg_cpsm_enable	= MCI_CPSM_STM32_ENABLE,
 260	.cmdreg_lrsp_crc	= MCI_CPSM_STM32_LRSP_CRC,
 261	.cmdreg_srsp_crc	= MCI_CPSM_STM32_SRSP_CRC,
 262	.cmdreg_srsp		= MCI_CPSM_STM32_SRSP,
 263	.cmdreg_stop		= MCI_CPSM_STM32_CMDSTOP,
 264	.data_cmd_enable	= MCI_CPSM_STM32_CMDTRANS,
 265	.irq_pio_mask		= MCI_IRQ_PIO_STM32_MASK,
 266	.datactrl_first		= true,
 267	.datacnt_useless	= true,
 268	.datalength_bits	= 25,
 269	.datactrl_blocksz	= 14,
 270	.datactrl_any_blocksz	= true,
 271	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 272	.stm32_idmabsize_mask	= GENMASK(12, 5),
 
 
 273	.busy_timeout		= true,
 274	.busy_detect		= true,
 275	.busy_detect_flag	= MCI_STM32_BUSYD0,
 276	.busy_detect_mask	= MCI_STM32_BUSYD0ENDMASK,
 277	.init			= sdmmc_variant_init,
 278};
 279
 280static struct variant_data variant_stm32_sdmmcv2 = {
 281	.fifosize		= 16 * 4,
 282	.fifohalfsize		= 8 * 4,
 283	.f_max			= 267000000,
 284	.stm32_clkdiv		= true,
 285	.cmdreg_cpsm_enable	= MCI_CPSM_STM32_ENABLE,
 286	.cmdreg_lrsp_crc	= MCI_CPSM_STM32_LRSP_CRC,
 287	.cmdreg_srsp_crc	= MCI_CPSM_STM32_SRSP_CRC,
 288	.cmdreg_srsp		= MCI_CPSM_STM32_SRSP,
 289	.cmdreg_stop		= MCI_CPSM_STM32_CMDSTOP,
 290	.data_cmd_enable	= MCI_CPSM_STM32_CMDTRANS,
 291	.irq_pio_mask		= MCI_IRQ_PIO_STM32_MASK,
 292	.datactrl_first		= true,
 293	.datacnt_useless	= true,
 294	.datalength_bits	= 25,
 295	.datactrl_blocksz	= 14,
 296	.datactrl_any_blocksz	= true,
 297	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 298	.stm32_idmabsize_mask	= GENMASK(16, 5),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 299	.dma_lli		= true,
 300	.busy_timeout		= true,
 301	.busy_detect		= true,
 302	.busy_detect_flag	= MCI_STM32_BUSYD0,
 303	.busy_detect_mask	= MCI_STM32_BUSYD0ENDMASK,
 304	.init			= sdmmc_variant_init,
 305};
 306
 307static struct variant_data variant_qcom = {
 308	.fifosize		= 16 * 4,
 309	.fifohalfsize		= 8 * 4,
 310	.clkreg			= MCI_CLK_ENABLE,
 311	.clkreg_enable		= MCI_QCOM_CLK_FLOWENA |
 312				  MCI_QCOM_CLK_SELECT_IN_FBCLK,
 313	.clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
 314	.datactrl_mask_ddrmode	= MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
 315	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
 316	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 317	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
 318	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
 319	.data_cmd_enable	= MCI_CPSM_QCOM_DATCMD,
 320	.datalength_bits	= 24,
 321	.datactrl_blocksz	= 11,
 322	.datactrl_any_blocksz	= true,
 323	.pwrreg_powerup		= MCI_PWR_UP,
 324	.f_max			= 208000000,
 325	.explicit_mclk_control	= true,
 326	.qcom_fifo		= true,
 327	.qcom_dml		= true,
 328	.mmcimask1		= true,
 329	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 330	.start_err		= MCI_STARTBITERR,
 331	.opendrain		= MCI_ROD,
 332	.init			= qcom_variant_init,
 333};
 334
 335/* Busy detection for the ST Micro variant */
 336static int mmci_card_busy(struct mmc_host *mmc)
 337{
 338	struct mmci_host *host = mmc_priv(mmc);
 339	unsigned long flags;
 340	int busy = 0;
 341
 342	spin_lock_irqsave(&host->lock, flags);
 343	if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
 344		busy = 1;
 345	spin_unlock_irqrestore(&host->lock, flags);
 346
 347	return busy;
 348}
 349
 350static void mmci_reg_delay(struct mmci_host *host)
 351{
 352	/*
 353	 * According to the spec, at least three feedback clock cycles
 354	 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
 355	 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
 356	 * Worst delay time during card init is at 100 kHz => 30 us.
 357	 * Worst delay time when up and running is at 25 MHz => 120 ns.
 358	 */
 359	if (host->cclk < 25000000)
 360		udelay(30);
 361	else
 362		ndelay(120);
 363}
 364
 365/*
 366 * This must be called with host->lock held
 367 */
 368void mmci_write_clkreg(struct mmci_host *host, u32 clk)
 369{
 370	if (host->clk_reg != clk) {
 371		host->clk_reg = clk;
 372		writel(clk, host->base + MMCICLOCK);
 373	}
 374}
 375
 376/*
 377 * This must be called with host->lock held
 378 */
 379void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
 380{
 381	if (host->pwr_reg != pwr) {
 382		host->pwr_reg = pwr;
 383		writel(pwr, host->base + MMCIPOWER);
 384	}
 385}
 386
 387/*
 388 * This must be called with host->lock held
 389 */
 390static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
 391{
 392	/* Keep busy mode in DPSM if enabled */
 393	datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
 
 394
 395	if (host->datactrl_reg != datactrl) {
 396		host->datactrl_reg = datactrl;
 397		writel(datactrl, host->base + MMCIDATACTRL);
 398	}
 399}
 400
 401/*
 402 * This must be called with host->lock held
 403 */
 404static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
 405{
 406	struct variant_data *variant = host->variant;
 407	u32 clk = variant->clkreg;
 408
 409	/* Make sure cclk reflects the current calculated clock */
 410	host->cclk = 0;
 411
 412	if (desired) {
 413		if (variant->explicit_mclk_control) {
 414			host->cclk = host->mclk;
 415		} else if (desired >= host->mclk) {
 416			clk = MCI_CLK_BYPASS;
 417			if (variant->st_clkdiv)
 418				clk |= MCI_ST_UX500_NEG_EDGE;
 419			host->cclk = host->mclk;
 420		} else if (variant->st_clkdiv) {
 421			/*
 422			 * DB8500 TRM says f = mclk / (clkdiv + 2)
 423			 * => clkdiv = (mclk / f) - 2
 424			 * Round the divider up so we don't exceed the max
 425			 * frequency
 426			 */
 427			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
 428			if (clk >= 256)
 429				clk = 255;
 430			host->cclk = host->mclk / (clk + 2);
 431		} else {
 432			/*
 433			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
 434			 * => clkdiv = mclk / (2 * f) - 1
 435			 */
 436			clk = host->mclk / (2 * desired) - 1;
 437			if (clk >= 256)
 438				clk = 255;
 439			host->cclk = host->mclk / (2 * (clk + 1));
 440		}
 441
 442		clk |= variant->clkreg_enable;
 443		clk |= MCI_CLK_ENABLE;
 444		/* This hasn't proven to be worthwhile */
 445		/* clk |= MCI_CLK_PWRSAVE; */
 446	}
 447
 448	/* Set actual clock for debug */
 449	host->mmc->actual_clock = host->cclk;
 450
 451	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
 452		clk |= MCI_4BIT_BUS;
 453	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
 454		clk |= variant->clkreg_8bit_bus_enable;
 455
 456	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
 457	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
 458		clk |= variant->clkreg_neg_edge_enable;
 459
 460	mmci_write_clkreg(host, clk);
 461}
 462
 463static void mmci_dma_release(struct mmci_host *host)
 464{
 465	if (host->ops && host->ops->dma_release)
 466		host->ops->dma_release(host);
 467
 468	host->use_dma = false;
 469}
 470
 471static void mmci_dma_setup(struct mmci_host *host)
 472{
 473	if (!host->ops || !host->ops->dma_setup)
 474		return;
 475
 476	if (host->ops->dma_setup(host))
 477		return;
 478
 479	/* initialize pre request cookie */
 480	host->next_cookie = 1;
 481
 482	host->use_dma = true;
 483}
 484
 485/*
 486 * Validate mmc prerequisites
 487 */
 488static int mmci_validate_data(struct mmci_host *host,
 489			      struct mmc_data *data)
 490{
 491	struct variant_data *variant = host->variant;
 492
 493	if (!data)
 494		return 0;
 495	if (!is_power_of_2(data->blksz) && !variant->datactrl_any_blocksz) {
 496		dev_err(mmc_dev(host->mmc),
 497			"unsupported block size (%d bytes)\n", data->blksz);
 498		return -EINVAL;
 499	}
 500
 501	if (host->ops && host->ops->validate_data)
 502		return host->ops->validate_data(host, data);
 503
 504	return 0;
 505}
 506
 507static int mmci_prep_data(struct mmci_host *host, struct mmc_data *data, bool next)
 508{
 509	int err;
 510
 511	if (!host->ops || !host->ops->prep_data)
 512		return 0;
 513
 514	err = host->ops->prep_data(host, data, next);
 515
 516	if (next && !err)
 517		data->host_cookie = ++host->next_cookie < 0 ?
 518			1 : host->next_cookie;
 519
 520	return err;
 521}
 522
 523static void mmci_unprep_data(struct mmci_host *host, struct mmc_data *data,
 524		      int err)
 525{
 526	if (host->ops && host->ops->unprep_data)
 527		host->ops->unprep_data(host, data, err);
 528
 529	data->host_cookie = 0;
 530}
 531
 532static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
 533{
 534	WARN_ON(data->host_cookie && data->host_cookie != host->next_cookie);
 535
 536	if (host->ops && host->ops->get_next_data)
 537		host->ops->get_next_data(host, data);
 538}
 539
 540static int mmci_dma_start(struct mmci_host *host, unsigned int datactrl)
 541{
 542	struct mmc_data *data = host->data;
 543	int ret;
 544
 545	if (!host->use_dma)
 546		return -EINVAL;
 547
 548	ret = mmci_prep_data(host, data, false);
 549	if (ret)
 550		return ret;
 551
 552	if (!host->ops || !host->ops->dma_start)
 553		return -EINVAL;
 554
 555	/* Okay, go for it. */
 556	dev_vdbg(mmc_dev(host->mmc),
 557		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
 558		 data->sg_len, data->blksz, data->blocks, data->flags);
 559
 560	ret = host->ops->dma_start(host, &datactrl);
 561	if (ret)
 562		return ret;
 563
 564	/* Trigger the DMA transfer */
 565	mmci_write_datactrlreg(host, datactrl);
 566
 567	/*
 568	 * Let the MMCI say when the data is ended and it's time
 569	 * to fire next DMA request. When that happens, MMCI will
 570	 * call mmci_data_end()
 571	 */
 572	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
 573	       host->base + MMCIMASK0);
 574	return 0;
 575}
 576
 577static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
 578{
 579	if (!host->use_dma)
 580		return;
 581
 582	if (host->ops && host->ops->dma_finalize)
 583		host->ops->dma_finalize(host, data);
 584}
 585
 586static void mmci_dma_error(struct mmci_host *host)
 587{
 588	if (!host->use_dma)
 589		return;
 590
 591	if (host->ops && host->ops->dma_error)
 592		host->ops->dma_error(host);
 593}
 594
 595static void
 596mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
 597{
 598	writel(0, host->base + MMCICOMMAND);
 599
 600	BUG_ON(host->data);
 601
 602	host->mrq = NULL;
 603	host->cmd = NULL;
 604
 605	mmc_request_done(host->mmc, mrq);
 606}
 607
 608static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
 609{
 610	void __iomem *base = host->base;
 611	struct variant_data *variant = host->variant;
 612
 613	if (host->singleirq) {
 614		unsigned int mask0 = readl(base + MMCIMASK0);
 615
 616		mask0 &= ~variant->irq_pio_mask;
 617		mask0 |= mask;
 618
 619		writel(mask0, base + MMCIMASK0);
 620	}
 621
 622	if (variant->mmcimask1)
 623		writel(mask, base + MMCIMASK1);
 624
 625	host->mask1_reg = mask;
 626}
 627
 628static void mmci_stop_data(struct mmci_host *host)
 629{
 630	mmci_write_datactrlreg(host, 0);
 631	mmci_set_mask1(host, 0);
 632	host->data = NULL;
 633}
 634
 635static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
 636{
 637	unsigned int flags = SG_MITER_ATOMIC;
 638
 639	if (data->flags & MMC_DATA_READ)
 640		flags |= SG_MITER_TO_SG;
 641	else
 642		flags |= SG_MITER_FROM_SG;
 643
 644	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
 645}
 646
 647static u32 mmci_get_dctrl_cfg(struct mmci_host *host)
 648{
 649	return MCI_DPSM_ENABLE | mmci_dctrl_blksz(host);
 650}
 651
 652static u32 ux500v2_get_dctrl_cfg(struct mmci_host *host)
 653{
 654	return MCI_DPSM_ENABLE | (host->data->blksz << 16);
 655}
 656
 657static bool ux500_busy_complete(struct mmci_host *host, u32 status, u32 err_msk)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 658{
 659	void __iomem *base = host->base;
 
 
 
 
 
 
 
 
 
 
 
 
 
 660
 661	/*
 662	 * Before unmasking for the busy end IRQ, confirm that the
 663	 * command was sent successfully. To keep track of having a
 664	 * command in-progress, waiting for busy signaling to end,
 665	 * store the status in host->busy_status.
 666	 *
 667	 * Note that, the card may need a couple of clock cycles before
 668	 * it starts signaling busy on DAT0, hence re-read the
 669	 * MMCISTATUS register here, to allow the busy bit to be set.
 670	 * Potentially we may even need to poll the register for a
 671	 * while, to allow it to be set, but tests indicates that it
 672	 * isn't needed.
 673	 */
 674	if (!host->busy_status && !(status & err_msk) &&
 675	    (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
 676		writel(readl(base + MMCIMASK0) |
 677		       host->variant->busy_detect_mask,
 678		       base + MMCIMASK0);
 679
 680		host->busy_status = status & (MCI_CMDSENT | MCI_CMDRESPEND);
 681		return false;
 682	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 683
 684	/*
 685	 * If there is a command in-progress that has been successfully
 686	 * sent, then bail out if busy status is set and wait for the
 687	 * busy end IRQ.
 688	 *
 689	 * Note that, the HW triggers an IRQ on both edges while
 690	 * monitoring DAT0 for busy completion, but there is only one
 691	 * status bit in MMCISTATUS for the busy state. Therefore
 692	 * both the start and the end interrupts needs to be cleared,
 693	 * one after the other. So, clear the busy start IRQ here.
 694	 */
 695	if (host->busy_status &&
 696	    (status & host->variant->busy_detect_flag)) {
 697		writel(host->variant->busy_detect_mask, base + MMCICLEAR);
 698		return false;
 699	}
 
 
 
 
 
 
 
 
 700
 701	/*
 702	 * If there is a command in-progress that has been successfully
 703	 * sent and the busy bit isn't set, it means we have received
 704	 * the busy end IRQ. Clear and mask the IRQ, then continue to
 705	 * process the command.
 706	 */
 707	if (host->busy_status) {
 708		writel(host->variant->busy_detect_mask, base + MMCICLEAR);
 
 
 
 
 709
 710		writel(readl(base + MMCIMASK0) &
 711		       ~host->variant->busy_detect_mask, base + MMCIMASK0);
 712		host->busy_status = 0;
 
 713	}
 714
 715	return true;
 
 716}
 717
 718/*
 719 * All the DMA operation mode stuff goes inside this ifdef.
 720 * This assumes that you have a generic DMA device interface,
 721 * no custom DMA interfaces are supported.
 722 */
 723#ifdef CONFIG_DMA_ENGINE
 724struct mmci_dmae_next {
 725	struct dma_async_tx_descriptor *desc;
 726	struct dma_chan	*chan;
 727};
 728
 729struct mmci_dmae_priv {
 730	struct dma_chan	*cur;
 731	struct dma_chan	*rx_channel;
 732	struct dma_chan	*tx_channel;
 733	struct dma_async_tx_descriptor	*desc_current;
 734	struct mmci_dmae_next next_data;
 735};
 736
 737int mmci_dmae_setup(struct mmci_host *host)
 738{
 739	const char *rxname, *txname;
 740	struct mmci_dmae_priv *dmae;
 741
 742	dmae = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dmae), GFP_KERNEL);
 743	if (!dmae)
 744		return -ENOMEM;
 745
 746	host->dma_priv = dmae;
 747
 748	dmae->rx_channel = dma_request_chan(mmc_dev(host->mmc), "rx");
 749	if (IS_ERR(dmae->rx_channel)) {
 750		int ret = PTR_ERR(dmae->rx_channel);
 751		dmae->rx_channel = NULL;
 752		return ret;
 753	}
 754
 755	dmae->tx_channel = dma_request_chan(mmc_dev(host->mmc), "tx");
 756	if (IS_ERR(dmae->tx_channel)) {
 757		if (PTR_ERR(dmae->tx_channel) == -EPROBE_DEFER)
 758			dev_warn(mmc_dev(host->mmc),
 759				 "Deferred probe for TX channel ignored\n");
 760		dmae->tx_channel = NULL;
 761	}
 762
 763	/*
 764	 * If only an RX channel is specified, the driver will
 765	 * attempt to use it bidirectionally, however if it
 766	 * is specified but cannot be located, DMA will be disabled.
 767	 */
 768	if (dmae->rx_channel && !dmae->tx_channel)
 769		dmae->tx_channel = dmae->rx_channel;
 770
 771	if (dmae->rx_channel)
 772		rxname = dma_chan_name(dmae->rx_channel);
 773	else
 774		rxname = "none";
 775
 776	if (dmae->tx_channel)
 777		txname = dma_chan_name(dmae->tx_channel);
 778	else
 779		txname = "none";
 780
 781	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
 782		 rxname, txname);
 783
 784	/*
 785	 * Limit the maximum segment size in any SG entry according to
 786	 * the parameters of the DMA engine device.
 787	 */
 788	if (dmae->tx_channel) {
 789		struct device *dev = dmae->tx_channel->device->dev;
 790		unsigned int max_seg_size = dma_get_max_seg_size(dev);
 791
 792		if (max_seg_size < host->mmc->max_seg_size)
 793			host->mmc->max_seg_size = max_seg_size;
 794	}
 795	if (dmae->rx_channel) {
 796		struct device *dev = dmae->rx_channel->device->dev;
 797		unsigned int max_seg_size = dma_get_max_seg_size(dev);
 798
 799		if (max_seg_size < host->mmc->max_seg_size)
 800			host->mmc->max_seg_size = max_seg_size;
 801	}
 802
 803	if (!dmae->tx_channel || !dmae->rx_channel) {
 804		mmci_dmae_release(host);
 805		return -EINVAL;
 806	}
 807
 808	return 0;
 809}
 810
 811/*
 812 * This is used in or so inline it
 813 * so it can be discarded.
 814 */
 815void mmci_dmae_release(struct mmci_host *host)
 816{
 817	struct mmci_dmae_priv *dmae = host->dma_priv;
 818
 819	if (dmae->rx_channel)
 820		dma_release_channel(dmae->rx_channel);
 821	if (dmae->tx_channel)
 822		dma_release_channel(dmae->tx_channel);
 823	dmae->rx_channel = dmae->tx_channel = NULL;
 824}
 825
 826static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
 827{
 828	struct mmci_dmae_priv *dmae = host->dma_priv;
 829	struct dma_chan *chan;
 830
 831	if (data->flags & MMC_DATA_READ)
 832		chan = dmae->rx_channel;
 833	else
 834		chan = dmae->tx_channel;
 835
 836	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
 837		     mmc_get_dma_dir(data));
 838}
 839
 840void mmci_dmae_error(struct mmci_host *host)
 841{
 842	struct mmci_dmae_priv *dmae = host->dma_priv;
 843
 844	if (!dma_inprogress(host))
 845		return;
 846
 847	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
 848	dmaengine_terminate_all(dmae->cur);
 849	host->dma_in_progress = false;
 850	dmae->cur = NULL;
 851	dmae->desc_current = NULL;
 852	host->data->host_cookie = 0;
 853
 854	mmci_dma_unmap(host, host->data);
 855}
 856
 857void mmci_dmae_finalize(struct mmci_host *host, struct mmc_data *data)
 858{
 859	struct mmci_dmae_priv *dmae = host->dma_priv;
 860	u32 status;
 861	int i;
 862
 863	if (!dma_inprogress(host))
 864		return;
 865
 866	/* Wait up to 1ms for the DMA to complete */
 867	for (i = 0; ; i++) {
 868		status = readl(host->base + MMCISTATUS);
 869		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
 870			break;
 871		udelay(10);
 872	}
 873
 874	/*
 875	 * Check to see whether we still have some data left in the FIFO -
 876	 * this catches DMA controllers which are unable to monitor the
 877	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
 878	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
 879	 */
 880	if (status & MCI_RXDATAAVLBLMASK) {
 881		mmci_dma_error(host);
 882		if (!data->error)
 883			data->error = -EIO;
 884	} else if (!data->host_cookie) {
 885		mmci_dma_unmap(host, data);
 886	}
 887
 888	/*
 889	 * Use of DMA with scatter-gather is impossible.
 890	 * Give up with DMA and switch back to PIO mode.
 891	 */
 892	if (status & MCI_RXDATAAVLBLMASK) {
 893		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
 894		mmci_dma_release(host);
 895	}
 896
 897	host->dma_in_progress = false;
 898	dmae->cur = NULL;
 899	dmae->desc_current = NULL;
 900}
 901
 902/* prepares DMA channel and DMA descriptor, returns non-zero on failure */
 903static int _mmci_dmae_prep_data(struct mmci_host *host, struct mmc_data *data,
 904				struct dma_chan **dma_chan,
 905				struct dma_async_tx_descriptor **dma_desc)
 906{
 907	struct mmci_dmae_priv *dmae = host->dma_priv;
 908	struct variant_data *variant = host->variant;
 909	struct dma_slave_config conf = {
 910		.src_addr = host->phybase + MMCIFIFO,
 911		.dst_addr = host->phybase + MMCIFIFO,
 912		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 913		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 914		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
 915		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
 916		.device_fc = false,
 917	};
 918	struct dma_chan *chan;
 919	struct dma_device *device;
 920	struct dma_async_tx_descriptor *desc;
 921	int nr_sg;
 922	unsigned long flags = DMA_CTRL_ACK;
 923
 924	if (data->flags & MMC_DATA_READ) {
 925		conf.direction = DMA_DEV_TO_MEM;
 926		chan = dmae->rx_channel;
 927	} else {
 928		conf.direction = DMA_MEM_TO_DEV;
 929		chan = dmae->tx_channel;
 930	}
 931
 932	/* If there's no DMA channel, fall back to PIO */
 933	if (!chan)
 934		return -EINVAL;
 935
 936	/* If less than or equal to the fifo size, don't bother with DMA */
 937	if (data->blksz * data->blocks <= variant->fifosize)
 938		return -EINVAL;
 939
 940	/*
 941	 * This is necessary to get SDIO working on the Ux500. We do not yet
 942	 * know if this is a bug in:
 943	 * - The Ux500 DMA controller (DMA40)
 944	 * - The MMCI DMA interface on the Ux500
 945	 * some power of two blocks (such as 64 bytes) are sent regularly
 946	 * during SDIO traffic and those work fine so for these we enable DMA
 947	 * transfers.
 948	 */
 949	if (host->variant->dma_power_of_2 && !is_power_of_2(data->blksz))
 950		return -EINVAL;
 951
 952	device = chan->device;
 953	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
 954			   mmc_get_dma_dir(data));
 955	if (nr_sg == 0)
 956		return -EINVAL;
 957
 958	if (host->variant->qcom_dml)
 959		flags |= DMA_PREP_INTERRUPT;
 960
 961	dmaengine_slave_config(chan, &conf);
 962	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
 963					    conf.direction, flags);
 964	if (!desc)
 965		goto unmap_exit;
 966
 967	*dma_chan = chan;
 968	*dma_desc = desc;
 969
 970	return 0;
 971
 972 unmap_exit:
 973	dma_unmap_sg(device->dev, data->sg, data->sg_len,
 974		     mmc_get_dma_dir(data));
 975	return -ENOMEM;
 976}
 977
 978int mmci_dmae_prep_data(struct mmci_host *host,
 979			struct mmc_data *data,
 980			bool next)
 981{
 982	struct mmci_dmae_priv *dmae = host->dma_priv;
 983	struct mmci_dmae_next *nd = &dmae->next_data;
 984
 985	if (!host->use_dma)
 986		return -EINVAL;
 987
 988	if (next)
 989		return _mmci_dmae_prep_data(host, data, &nd->chan, &nd->desc);
 990	/* Check if next job is already prepared. */
 991	if (dmae->cur && dmae->desc_current)
 992		return 0;
 993
 994	/* No job were prepared thus do it now. */
 995	return _mmci_dmae_prep_data(host, data, &dmae->cur,
 996				    &dmae->desc_current);
 997}
 998
 999int mmci_dmae_start(struct mmci_host *host, unsigned int *datactrl)
1000{
1001	struct mmci_dmae_priv *dmae = host->dma_priv;
1002	int ret;
1003
1004	host->dma_in_progress = true;
1005	ret = dma_submit_error(dmaengine_submit(dmae->desc_current));
1006	if (ret < 0) {
1007		host->dma_in_progress = false;
1008		return ret;
1009	}
1010	dma_async_issue_pending(dmae->cur);
1011
1012	*datactrl |= MCI_DPSM_DMAENABLE;
1013
1014	return 0;
1015}
1016
1017void mmci_dmae_get_next_data(struct mmci_host *host, struct mmc_data *data)
1018{
1019	struct mmci_dmae_priv *dmae = host->dma_priv;
1020	struct mmci_dmae_next *next = &dmae->next_data;
1021
1022	if (!host->use_dma)
1023		return;
1024
1025	WARN_ON(!data->host_cookie && (next->desc || next->chan));
1026
1027	dmae->desc_current = next->desc;
1028	dmae->cur = next->chan;
1029	next->desc = NULL;
1030	next->chan = NULL;
1031}
1032
1033void mmci_dmae_unprep_data(struct mmci_host *host,
1034			   struct mmc_data *data, int err)
1035
1036{
1037	struct mmci_dmae_priv *dmae = host->dma_priv;
1038
1039	if (!host->use_dma)
1040		return;
1041
1042	mmci_dma_unmap(host, data);
1043
1044	if (err) {
1045		struct mmci_dmae_next *next = &dmae->next_data;
1046		struct dma_chan *chan;
1047		if (data->flags & MMC_DATA_READ)
1048			chan = dmae->rx_channel;
1049		else
1050			chan = dmae->tx_channel;
1051		dmaengine_terminate_all(chan);
1052
1053		if (dmae->desc_current == next->desc)
1054			dmae->desc_current = NULL;
1055
1056		if (dmae->cur == next->chan) {
1057			host->dma_in_progress = false;
1058			dmae->cur = NULL;
1059		}
1060
1061		next->desc = NULL;
1062		next->chan = NULL;
1063	}
1064}
1065
1066static struct mmci_host_ops mmci_variant_ops = {
1067	.prep_data = mmci_dmae_prep_data,
1068	.unprep_data = mmci_dmae_unprep_data,
1069	.get_datactrl_cfg = mmci_get_dctrl_cfg,
1070	.get_next_data = mmci_dmae_get_next_data,
1071	.dma_setup = mmci_dmae_setup,
1072	.dma_release = mmci_dmae_release,
1073	.dma_start = mmci_dmae_start,
1074	.dma_finalize = mmci_dmae_finalize,
1075	.dma_error = mmci_dmae_error,
1076};
1077#else
1078static struct mmci_host_ops mmci_variant_ops = {
1079	.get_datactrl_cfg = mmci_get_dctrl_cfg,
1080};
1081#endif
1082
1083static void mmci_variant_init(struct mmci_host *host)
1084{
1085	host->ops = &mmci_variant_ops;
1086}
1087
1088static void ux500_variant_init(struct mmci_host *host)
1089{
1090	host->ops = &mmci_variant_ops;
1091	host->ops->busy_complete = ux500_busy_complete;
1092}
1093
1094static void ux500v2_variant_init(struct mmci_host *host)
1095{
1096	host->ops = &mmci_variant_ops;
1097	host->ops->busy_complete = ux500_busy_complete;
1098	host->ops->get_datactrl_cfg = ux500v2_get_dctrl_cfg;
1099}
1100
1101static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
1102{
1103	struct mmci_host *host = mmc_priv(mmc);
1104	struct mmc_data *data = mrq->data;
1105
1106	if (!data)
1107		return;
1108
1109	WARN_ON(data->host_cookie);
1110
1111	if (mmci_validate_data(host, data))
1112		return;
1113
1114	mmci_prep_data(host, data, true);
1115}
1116
1117static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
1118			      int err)
1119{
1120	struct mmci_host *host = mmc_priv(mmc);
1121	struct mmc_data *data = mrq->data;
1122
1123	if (!data || !data->host_cookie)
1124		return;
1125
1126	mmci_unprep_data(host, data, err);
1127}
1128
1129static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
1130{
1131	struct variant_data *variant = host->variant;
1132	unsigned int datactrl, timeout, irqmask;
1133	unsigned long long clks;
1134	void __iomem *base;
1135
1136	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
1137		data->blksz, data->blocks, data->flags);
1138
1139	host->data = data;
1140	host->size = data->blksz * data->blocks;
1141	data->bytes_xfered = 0;
1142
1143	clks = (unsigned long long)data->timeout_ns * host->cclk;
1144	do_div(clks, NSEC_PER_SEC);
1145
1146	timeout = data->timeout_clks + (unsigned int)clks;
1147
1148	base = host->base;
1149	writel(timeout, base + MMCIDATATIMER);
1150	writel(host->size, base + MMCIDATALENGTH);
1151
1152	datactrl = host->ops->get_datactrl_cfg(host);
1153	datactrl |= host->data->flags & MMC_DATA_READ ? MCI_DPSM_DIRECTION : 0;
1154
1155	if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
1156		u32 clk;
1157
1158		datactrl |= variant->datactrl_mask_sdio;
1159
1160		/*
1161		 * The ST Micro variant for SDIO small write transfers
1162		 * needs to have clock H/W flow control disabled,
1163		 * otherwise the transfer will not start. The threshold
1164		 * depends on the rate of MCLK.
1165		 */
1166		if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
1167		    (host->size < 8 ||
1168		     (host->size <= 8 && host->mclk > 50000000)))
1169			clk = host->clk_reg & ~variant->clkreg_enable;
1170		else
1171			clk = host->clk_reg | variant->clkreg_enable;
1172
1173		mmci_write_clkreg(host, clk);
1174	}
1175
1176	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
1177	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
1178		datactrl |= variant->datactrl_mask_ddrmode;
1179
1180	/*
1181	 * Attempt to use DMA operation mode, if this
1182	 * should fail, fall back to PIO mode
1183	 */
1184	if (!mmci_dma_start(host, datactrl))
1185		return;
1186
1187	/* IRQ mode, map the SG list for CPU reading/writing */
1188	mmci_init_sg(host, data);
1189
1190	if (data->flags & MMC_DATA_READ) {
1191		irqmask = MCI_RXFIFOHALFFULLMASK;
1192
1193		/*
1194		 * If we have less than the fifo 'half-full' threshold to
1195		 * transfer, trigger a PIO interrupt as soon as any data
1196		 * is available.
1197		 */
1198		if (host->size < variant->fifohalfsize)
1199			irqmask |= MCI_RXDATAAVLBLMASK;
1200	} else {
1201		/*
1202		 * We don't actually need to include "FIFO empty" here
1203		 * since its implicit in "FIFO half empty".
1204		 */
1205		irqmask = MCI_TXFIFOHALFEMPTYMASK;
1206	}
1207
1208	mmci_write_datactrlreg(host, datactrl);
1209	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
1210	mmci_set_mask1(host, irqmask);
1211}
1212
1213static void
1214mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
1215{
1216	void __iomem *base = host->base;
 
1217	unsigned long long clks;
1218
1219	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
1220	    cmd->opcode, cmd->arg, cmd->flags);
1221
1222	if (readl(base + MMCICOMMAND) & host->variant->cmdreg_cpsm_enable) {
1223		writel(0, base + MMCICOMMAND);
1224		mmci_reg_delay(host);
1225	}
1226
1227	if (host->variant->cmdreg_stop &&
1228	    cmd->opcode == MMC_STOP_TRANSMISSION)
1229		c |= host->variant->cmdreg_stop;
1230
1231	c |= cmd->opcode | host->variant->cmdreg_cpsm_enable;
1232	if (cmd->flags & MMC_RSP_PRESENT) {
1233		if (cmd->flags & MMC_RSP_136)
1234			c |= host->variant->cmdreg_lrsp_crc;
1235		else if (cmd->flags & MMC_RSP_CRC)
1236			c |= host->variant->cmdreg_srsp_crc;
1237		else
1238			c |= host->variant->cmdreg_srsp;
1239	}
1240
1241	if (host->variant->busy_timeout && cmd->flags & MMC_RSP_BUSY) {
1242		if (!cmd->busy_timeout)
1243			cmd->busy_timeout = 10 * MSEC_PER_SEC;
1244
 
 
 
 
 
1245		if (cmd->busy_timeout > host->mmc->max_busy_timeout)
1246			clks = (unsigned long long)host->mmc->max_busy_timeout * host->cclk;
1247		else
1248			clks = (unsigned long long)cmd->busy_timeout * host->cclk;
1249
1250		do_div(clks, MSEC_PER_SEC);
1251		writel_relaxed(clks, host->base + MMCIDATATIMER);
1252	}
1253
1254	if (host->ops->pre_sig_volt_switch && cmd->opcode == SD_SWITCH_VOLTAGE)
1255		host->ops->pre_sig_volt_switch(host);
1256
1257	if (/*interrupt*/0)
1258		c |= MCI_CPSM_INTERRUPT;
1259
1260	if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
1261		c |= host->variant->data_cmd_enable;
1262
1263	host->cmd = cmd;
1264
1265	writel(cmd->arg, base + MMCIARGUMENT);
1266	writel(c, base + MMCICOMMAND);
1267}
1268
1269static void mmci_stop_command(struct mmci_host *host)
1270{
1271	host->stop_abort.error = 0;
1272	mmci_start_command(host, &host->stop_abort, 0);
1273}
1274
1275static void
1276mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
1277	      unsigned int status)
1278{
1279	unsigned int status_err;
1280
1281	/* Make sure we have data to handle */
1282	if (!data)
1283		return;
1284
1285	/* First check for errors */
1286	status_err = status & (host->variant->start_err |
1287			       MCI_DATACRCFAIL | MCI_DATATIMEOUT |
1288			       MCI_TXUNDERRUN | MCI_RXOVERRUN);
1289
1290	if (status_err) {
1291		u32 remain, success;
1292
1293		/* Terminate the DMA transfer */
1294		mmci_dma_error(host);
1295
1296		/*
1297		 * Calculate how far we are into the transfer.  Note that
1298		 * the data counter gives the number of bytes transferred
1299		 * on the MMC bus, not on the host side.  On reads, this
1300		 * can be as much as a FIFO-worth of data ahead.  This
1301		 * matters for FIFO overruns only.
1302		 */
1303		if (!host->variant->datacnt_useless) {
1304			remain = readl(host->base + MMCIDATACNT);
1305			success = data->blksz * data->blocks - remain;
1306		} else {
1307			success = 0;
1308		}
1309
1310		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
1311			status_err, success);
1312		if (status_err & MCI_DATACRCFAIL) {
1313			/* Last block was not successful */
1314			success -= 1;
1315			data->error = -EILSEQ;
1316		} else if (status_err & MCI_DATATIMEOUT) {
1317			data->error = -ETIMEDOUT;
1318		} else if (status_err & MCI_STARTBITERR) {
1319			data->error = -ECOMM;
1320		} else if (status_err & MCI_TXUNDERRUN) {
1321			data->error = -EIO;
1322		} else if (status_err & MCI_RXOVERRUN) {
1323			if (success > host->variant->fifosize)
1324				success -= host->variant->fifosize;
1325			else
1326				success = 0;
1327			data->error = -EIO;
1328		}
1329		data->bytes_xfered = round_down(success, data->blksz);
1330	}
1331
1332	if (status & MCI_DATABLOCKEND)
1333		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1334
1335	if (status & MCI_DATAEND || data->error) {
1336		mmci_dma_finalize(host, data);
1337
1338		mmci_stop_data(host);
1339
1340		if (!data->error)
1341			/* The error clause is handled above, success! */
1342			data->bytes_xfered = data->blksz * data->blocks;
1343
1344		if (!data->stop) {
1345			if (host->variant->cmdreg_stop && data->error)
1346				mmci_stop_command(host);
1347			else
1348				mmci_request_end(host, data->mrq);
1349		} else if (host->mrq->sbc && !data->error) {
1350			mmci_request_end(host, data->mrq);
1351		} else {
1352			mmci_start_command(host, data->stop, 0);
1353		}
1354	}
1355}
1356
1357static void
1358mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1359	     unsigned int status)
1360{
1361	u32 err_msk = MCI_CMDCRCFAIL | MCI_CMDTIMEOUT;
1362	void __iomem *base = host->base;
1363	bool sbc, busy_resp;
1364
1365	if (!cmd)
1366		return;
1367
1368	sbc = (cmd == host->mrq->sbc);
1369	busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1370
1371	/*
1372	 * We need to be one of these interrupts to be considered worth
1373	 * handling. Note that we tag on any latent IRQs postponed
1374	 * due to waiting for busy status.
1375	 */
1376	if (host->variant->busy_timeout && busy_resp)
1377		err_msk |= MCI_DATATIMEOUT;
1378
1379	if (!((status | host->busy_status) &
1380	      (err_msk | MCI_CMDSENT | MCI_CMDRESPEND)))
1381		return;
1382
1383	/* Handle busy detection on DAT0 if the variant supports it. */
1384	if (busy_resp && host->variant->busy_detect)
1385		if (!host->ops->busy_complete(host, status, err_msk))
1386			return;
1387
1388	host->cmd = NULL;
1389
1390	if (status & MCI_CMDTIMEOUT) {
1391		cmd->error = -ETIMEDOUT;
1392	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1393		cmd->error = -EILSEQ;
1394	} else if (host->variant->busy_timeout && busy_resp &&
1395		   status & MCI_DATATIMEOUT) {
1396		cmd->error = -ETIMEDOUT;
1397		/*
1398		 * This will wake up mmci_irq_thread() which will issue
1399		 * a hardware reset of the MMCI block.
1400		 */
1401		host->irq_action = IRQ_WAKE_THREAD;
1402	} else {
1403		cmd->resp[0] = readl(base + MMCIRESPONSE0);
1404		cmd->resp[1] = readl(base + MMCIRESPONSE1);
1405		cmd->resp[2] = readl(base + MMCIRESPONSE2);
1406		cmd->resp[3] = readl(base + MMCIRESPONSE3);
1407	}
1408
1409	if ((!sbc && !cmd->data) || cmd->error) {
1410		if (host->data) {
1411			/* Terminate the DMA transfer */
1412			mmci_dma_error(host);
1413
1414			mmci_stop_data(host);
1415			if (host->variant->cmdreg_stop && cmd->error) {
1416				mmci_stop_command(host);
1417				return;
1418			}
1419		}
1420
1421		if (host->irq_action != IRQ_WAKE_THREAD)
1422			mmci_request_end(host, host->mrq);
1423
1424	} else if (sbc) {
1425		mmci_start_command(host, host->mrq->cmd, 0);
1426	} else if (!host->variant->datactrl_first &&
1427		   !(cmd->data->flags & MMC_DATA_READ)) {
1428		mmci_start_data(host, cmd->data);
1429	}
1430}
1431
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1432static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1433{
1434	return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1435}
1436
1437static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1438{
1439	/*
1440	 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1441	 * from the fifo range should be used
1442	 */
1443	if (status & MCI_RXFIFOHALFFULL)
1444		return host->variant->fifohalfsize;
1445	else if (status & MCI_RXDATAAVLBL)
1446		return 4;
1447
1448	return 0;
1449}
1450
1451static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1452{
1453	void __iomem *base = host->base;
1454	char *ptr = buffer;
1455	u32 status = readl(host->base + MMCISTATUS);
1456	int host_remain = host->size;
1457
1458	do {
1459		int count = host->get_rx_fifocnt(host, status, host_remain);
1460
1461		if (count > remain)
1462			count = remain;
1463
1464		if (count <= 0)
1465			break;
1466
1467		/*
1468		 * SDIO especially may want to send something that is
1469		 * not divisible by 4 (as opposed to card sectors
1470		 * etc). Therefore make sure to always read the last bytes
1471		 * while only doing full 32-bit reads towards the FIFO.
1472		 */
1473		if (unlikely(count & 0x3)) {
1474			if (count < 4) {
1475				unsigned char buf[4];
1476				ioread32_rep(base + MMCIFIFO, buf, 1);
1477				memcpy(ptr, buf, count);
1478			} else {
1479				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1480				count &= ~0x3;
1481			}
1482		} else {
1483			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1484		}
1485
1486		ptr += count;
1487		remain -= count;
1488		host_remain -= count;
1489
1490		if (remain == 0)
1491			break;
1492
1493		status = readl(base + MMCISTATUS);
1494	} while (status & MCI_RXDATAAVLBL);
1495
1496	return ptr - buffer;
1497}
1498
1499static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1500{
1501	struct variant_data *variant = host->variant;
1502	void __iomem *base = host->base;
1503	char *ptr = buffer;
1504
1505	do {
1506		unsigned int count, maxcnt;
1507
1508		maxcnt = status & MCI_TXFIFOEMPTY ?
1509			 variant->fifosize : variant->fifohalfsize;
1510		count = min(remain, maxcnt);
1511
1512		/*
1513		 * SDIO especially may want to send something that is
1514		 * not divisible by 4 (as opposed to card sectors
1515		 * etc), and the FIFO only accept full 32-bit writes.
1516		 * So compensate by adding +3 on the count, a single
1517		 * byte become a 32bit write, 7 bytes will be two
1518		 * 32bit writes etc.
1519		 */
1520		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1521
1522		ptr += count;
1523		remain -= count;
1524
1525		if (remain == 0)
1526			break;
1527
1528		status = readl(base + MMCISTATUS);
1529	} while (status & MCI_TXFIFOHALFEMPTY);
1530
1531	return ptr - buffer;
1532}
1533
1534/*
1535 * PIO data transfer IRQ handler.
1536 */
1537static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1538{
1539	struct mmci_host *host = dev_id;
1540	struct sg_mapping_iter *sg_miter = &host->sg_miter;
1541	struct variant_data *variant = host->variant;
1542	void __iomem *base = host->base;
1543	u32 status;
1544
1545	status = readl(base + MMCISTATUS);
1546
1547	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1548
1549	do {
1550		unsigned int remain, len;
1551		char *buffer;
1552
1553		/*
1554		 * For write, we only need to test the half-empty flag
1555		 * here - if the FIFO is completely empty, then by
1556		 * definition it is more than half empty.
1557		 *
1558		 * For read, check for data available.
1559		 */
1560		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1561			break;
1562
1563		if (!sg_miter_next(sg_miter))
1564			break;
1565
1566		buffer = sg_miter->addr;
1567		remain = sg_miter->length;
1568
1569		len = 0;
1570		if (status & MCI_RXACTIVE)
1571			len = mmci_pio_read(host, buffer, remain);
1572		if (status & MCI_TXACTIVE)
1573			len = mmci_pio_write(host, buffer, remain, status);
1574
1575		sg_miter->consumed = len;
1576
1577		host->size -= len;
1578		remain -= len;
1579
1580		if (remain)
1581			break;
1582
1583		status = readl(base + MMCISTATUS);
1584	} while (1);
1585
1586	sg_miter_stop(sg_miter);
1587
1588	/*
1589	 * If we have less than the fifo 'half-full' threshold to transfer,
1590	 * trigger a PIO interrupt as soon as any data is available.
1591	 */
1592	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1593		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1594
1595	/*
1596	 * If we run out of data, disable the data IRQs; this
1597	 * prevents a race where the FIFO becomes empty before
1598	 * the chip itself has disabled the data path, and
1599	 * stops us racing with our data end IRQ.
1600	 */
1601	if (host->size == 0) {
1602		mmci_set_mask1(host, 0);
1603		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1604	}
1605
1606	return IRQ_HANDLED;
1607}
1608
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1609/*
1610 * Handle completion of command and data transfers.
1611 */
1612static irqreturn_t mmci_irq(int irq, void *dev_id)
1613{
1614	struct mmci_host *host = dev_id;
1615	u32 status;
1616
1617	spin_lock(&host->lock);
1618	host->irq_action = IRQ_HANDLED;
1619
1620	do {
1621		status = readl(host->base + MMCISTATUS);
1622		if (!status)
1623			break;
1624
1625		if (host->singleirq) {
1626			if (status & host->mask1_reg)
1627				mmci_pio_irq(irq, dev_id);
1628
1629			status &= ~host->variant->irq_pio_mask;
1630		}
1631
1632		/*
1633		 * Busy detection is managed by mmci_cmd_irq(), including to
1634		 * clear the corresponding IRQ.
1635		 */
1636		status &= readl(host->base + MMCIMASK0);
1637		if (host->variant->busy_detect)
1638			writel(status & ~host->variant->busy_detect_mask,
1639			       host->base + MMCICLEAR);
1640		else
1641			writel(status, host->base + MMCICLEAR);
1642
1643		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1644
1645		if (host->variant->reversed_irq_handling) {
1646			mmci_data_irq(host, host->data, status);
1647			mmci_cmd_irq(host, host->cmd, status);
1648		} else {
1649			mmci_cmd_irq(host, host->cmd, status);
1650			mmci_data_irq(host, host->data, status);
1651		}
1652
 
 
 
1653		/*
1654		 * Busy detection has been handled by mmci_cmd_irq() above.
1655		 * Clear the status bit to prevent polling in IRQ context.
1656		 */
1657		if (host->variant->busy_detect_flag)
1658			status &= ~host->variant->busy_detect_flag;
1659
1660	} while (status);
1661
1662	spin_unlock(&host->lock);
1663
1664	return host->irq_action;
1665}
1666
1667/*
1668 * mmci_irq_thread() - A threaded IRQ handler that manages a reset of the HW.
1669 *
1670 * A reset is needed for some variants, where a datatimeout for a R1B request
1671 * causes the DPSM to stay busy (non-functional).
1672 */
1673static irqreturn_t mmci_irq_thread(int irq, void *dev_id)
1674{
1675	struct mmci_host *host = dev_id;
1676	unsigned long flags;
1677
1678	if (host->rst) {
1679		reset_control_assert(host->rst);
1680		udelay(2);
1681		reset_control_deassert(host->rst);
1682	}
1683
1684	spin_lock_irqsave(&host->lock, flags);
1685	writel(host->clk_reg, host->base + MMCICLOCK);
1686	writel(host->pwr_reg, host->base + MMCIPOWER);
1687	writel(MCI_IRQENABLE | host->variant->start_err,
1688	       host->base + MMCIMASK0);
1689
1690	host->irq_action = IRQ_HANDLED;
1691	mmci_request_end(host, host->mrq);
1692	spin_unlock_irqrestore(&host->lock, flags);
1693
1694	return host->irq_action;
1695}
1696
1697static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1698{
1699	struct mmci_host *host = mmc_priv(mmc);
1700	unsigned long flags;
1701
1702	WARN_ON(host->mrq != NULL);
1703
1704	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1705	if (mrq->cmd->error) {
1706		mmc_request_done(mmc, mrq);
1707		return;
1708	}
1709
1710	spin_lock_irqsave(&host->lock, flags);
1711
1712	host->mrq = mrq;
1713
1714	if (mrq->data)
1715		mmci_get_next_data(host, mrq->data);
1716
1717	if (mrq->data &&
1718	    (host->variant->datactrl_first || mrq->data->flags & MMC_DATA_READ))
1719		mmci_start_data(host, mrq->data);
1720
1721	if (mrq->sbc)
1722		mmci_start_command(host, mrq->sbc, 0);
1723	else
1724		mmci_start_command(host, mrq->cmd, 0);
1725
1726	spin_unlock_irqrestore(&host->lock, flags);
1727}
1728
1729static void mmci_set_max_busy_timeout(struct mmc_host *mmc)
1730{
1731	struct mmci_host *host = mmc_priv(mmc);
1732	u32 max_busy_timeout = 0;
1733
1734	if (!host->variant->busy_detect)
1735		return;
1736
1737	if (host->variant->busy_timeout && mmc->actual_clock)
1738		max_busy_timeout = ~0UL / (mmc->actual_clock / MSEC_PER_SEC);
 
1739
1740	mmc->max_busy_timeout = max_busy_timeout;
1741}
1742
1743static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1744{
1745	struct mmci_host *host = mmc_priv(mmc);
1746	struct variant_data *variant = host->variant;
1747	u32 pwr = 0;
1748	unsigned long flags;
1749	int ret;
1750
1751	switch (ios->power_mode) {
1752	case MMC_POWER_OFF:
1753		if (!IS_ERR(mmc->supply.vmmc))
1754			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1755
1756		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1757			regulator_disable(mmc->supply.vqmmc);
1758			host->vqmmc_enabled = false;
1759		}
1760
1761		break;
1762	case MMC_POWER_UP:
1763		if (!IS_ERR(mmc->supply.vmmc))
1764			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1765
1766		/*
1767		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1768		 * and instead uses MCI_PWR_ON so apply whatever value is
1769		 * configured in the variant data.
1770		 */
1771		pwr |= variant->pwrreg_powerup;
1772
1773		break;
1774	case MMC_POWER_ON:
1775		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1776			ret = regulator_enable(mmc->supply.vqmmc);
1777			if (ret < 0)
1778				dev_err(mmc_dev(mmc),
1779					"failed to enable vqmmc regulator\n");
1780			else
1781				host->vqmmc_enabled = true;
1782		}
1783
1784		pwr |= MCI_PWR_ON;
1785		break;
1786	}
1787
1788	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1789		/*
1790		 * The ST Micro variant has some additional bits
1791		 * indicating signal direction for the signals in
1792		 * the SD/MMC bus and feedback-clock usage.
1793		 */
1794		pwr |= host->pwr_reg_add;
1795
1796		if (ios->bus_width == MMC_BUS_WIDTH_4)
1797			pwr &= ~MCI_ST_DATA74DIREN;
1798		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1799			pwr &= (~MCI_ST_DATA74DIREN &
1800				~MCI_ST_DATA31DIREN &
1801				~MCI_ST_DATA2DIREN);
1802	}
1803
1804	if (variant->opendrain) {
1805		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1806			pwr |= variant->opendrain;
1807	} else {
1808		/*
1809		 * If the variant cannot configure the pads by its own, then we
1810		 * expect the pinctrl to be able to do that for us
1811		 */
1812		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1813			pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1814		else
1815			pinctrl_select_default_state(mmc_dev(mmc));
1816	}
1817
1818	/*
1819	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1820	 * gating the clock, the MCI_PWR_ON bit is cleared.
1821	 */
1822	if (!ios->clock && variant->pwrreg_clkgate)
1823		pwr &= ~MCI_PWR_ON;
1824
1825	if (host->variant->explicit_mclk_control &&
1826	    ios->clock != host->clock_cache) {
1827		ret = clk_set_rate(host->clk, ios->clock);
1828		if (ret < 0)
1829			dev_err(mmc_dev(host->mmc),
1830				"Error setting clock rate (%d)\n", ret);
1831		else
1832			host->mclk = clk_get_rate(host->clk);
1833	}
1834	host->clock_cache = ios->clock;
1835
1836	spin_lock_irqsave(&host->lock, flags);
1837
1838	if (host->ops && host->ops->set_clkreg)
1839		host->ops->set_clkreg(host, ios->clock);
1840	else
1841		mmci_set_clkreg(host, ios->clock);
1842
1843	mmci_set_max_busy_timeout(mmc);
1844
1845	if (host->ops && host->ops->set_pwrreg)
1846		host->ops->set_pwrreg(host, pwr);
1847	else
1848		mmci_write_pwrreg(host, pwr);
1849
1850	mmci_reg_delay(host);
1851
1852	spin_unlock_irqrestore(&host->lock, flags);
1853}
1854
1855static int mmci_get_cd(struct mmc_host *mmc)
1856{
1857	struct mmci_host *host = mmc_priv(mmc);
1858	struct mmci_platform_data *plat = host->plat;
1859	unsigned int status = mmc_gpio_get_cd(mmc);
1860
1861	if (status == -ENOSYS) {
1862		if (!plat->status)
1863			return 1; /* Assume always present */
1864
1865		status = plat->status(mmc_dev(host->mmc));
1866	}
1867	return status;
1868}
1869
1870static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1871{
1872	struct mmci_host *host = mmc_priv(mmc);
1873	int ret;
1874
1875	ret = mmc_regulator_set_vqmmc(mmc, ios);
1876
1877	if (!ret && host->ops && host->ops->post_sig_volt_switch)
1878		ret = host->ops->post_sig_volt_switch(host, ios);
1879	else if (ret)
1880		ret = 0;
1881
1882	if (ret < 0)
1883		dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1884
1885	return ret;
1886}
1887
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1888static struct mmc_host_ops mmci_ops = {
1889	.request	= mmci_request,
1890	.pre_req	= mmci_pre_request,
1891	.post_req	= mmci_post_request,
1892	.set_ios	= mmci_set_ios,
1893	.get_ro		= mmc_gpio_get_ro,
1894	.get_cd		= mmci_get_cd,
1895	.start_signal_voltage_switch = mmci_sig_volt_switch,
1896};
1897
1898static void mmci_probe_level_translator(struct mmc_host *mmc)
1899{
1900	struct device *dev = mmc_dev(mmc);
1901	struct mmci_host *host = mmc_priv(mmc);
1902	struct gpio_desc *cmd_gpio;
1903	struct gpio_desc *ck_gpio;
1904	struct gpio_desc *ckin_gpio;
1905	int clk_hi, clk_lo;
1906
1907	/*
1908	 * Assume the level translator is present if st,use-ckin is set.
1909	 * This is to cater for DTs which do not implement this test.
1910	 */
1911	host->clk_reg_add |= MCI_STM32_CLK_SELCKIN;
1912
1913	cmd_gpio = gpiod_get(dev, "st,cmd", GPIOD_OUT_HIGH);
1914	if (IS_ERR(cmd_gpio))
1915		goto exit_cmd;
1916
1917	ck_gpio = gpiod_get(dev, "st,ck", GPIOD_OUT_HIGH);
1918	if (IS_ERR(ck_gpio))
1919		goto exit_ck;
1920
1921	ckin_gpio = gpiod_get(dev, "st,ckin", GPIOD_IN);
1922	if (IS_ERR(ckin_gpio))
1923		goto exit_ckin;
1924
1925	/* All GPIOs are valid, test whether level translator works */
1926
1927	/* Sample CKIN */
1928	clk_hi = !!gpiod_get_value(ckin_gpio);
1929
1930	/* Set CK low */
1931	gpiod_set_value(ck_gpio, 0);
1932
1933	/* Sample CKIN */
1934	clk_lo = !!gpiod_get_value(ckin_gpio);
1935
1936	/* Tristate all */
1937	gpiod_direction_input(cmd_gpio);
1938	gpiod_direction_input(ck_gpio);
1939
1940	/* Level translator is present if CK signal is propagated to CKIN */
1941	if (!clk_hi || clk_lo) {
1942		host->clk_reg_add &= ~MCI_STM32_CLK_SELCKIN;
1943		dev_warn(dev,
1944			 "Level translator inoperable, CK signal not detected on CKIN, disabling.\n");
1945	}
1946
1947	gpiod_put(ckin_gpio);
1948
1949exit_ckin:
1950	gpiod_put(ck_gpio);
1951exit_ck:
1952	gpiod_put(cmd_gpio);
1953exit_cmd:
1954	pinctrl_select_default_state(dev);
1955}
1956
1957static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1958{
1959	struct mmci_host *host = mmc_priv(mmc);
1960	int ret = mmc_of_parse(mmc);
1961
1962	if (ret)
1963		return ret;
1964
1965	if (of_get_property(np, "st,sig-dir-dat0", NULL))
1966		host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1967	if (of_get_property(np, "st,sig-dir-dat2", NULL))
1968		host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1969	if (of_get_property(np, "st,sig-dir-dat31", NULL))
1970		host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1971	if (of_get_property(np, "st,sig-dir-dat74", NULL))
1972		host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1973	if (of_get_property(np, "st,sig-dir-cmd", NULL))
1974		host->pwr_reg_add |= MCI_ST_CMDDIREN;
1975	if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1976		host->pwr_reg_add |= MCI_ST_FBCLKEN;
1977	if (of_get_property(np, "st,sig-dir", NULL))
1978		host->pwr_reg_add |= MCI_STM32_DIRPOL;
1979	if (of_get_property(np, "st,neg-edge", NULL))
1980		host->clk_reg_add |= MCI_STM32_CLK_NEGEDGE;
1981	if (of_get_property(np, "st,use-ckin", NULL))
1982		mmci_probe_level_translator(mmc);
1983
1984	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1985		mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1986	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1987		mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1988
1989	return 0;
1990}
1991
1992static int mmci_probe(struct amba_device *dev,
1993	const struct amba_id *id)
1994{
1995	struct mmci_platform_data *plat = dev->dev.platform_data;
1996	struct device_node *np = dev->dev.of_node;
1997	struct variant_data *variant = id->data;
1998	struct mmci_host *host;
1999	struct mmc_host *mmc;
2000	int ret;
2001
2002	/* Must have platform data or Device Tree. */
2003	if (!plat && !np) {
2004		dev_err(&dev->dev, "No plat data or DT found\n");
2005		return -EINVAL;
2006	}
2007
2008	if (!plat) {
2009		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
2010		if (!plat)
2011			return -ENOMEM;
2012	}
2013
2014	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
2015	if (!mmc)
2016		return -ENOMEM;
2017
2018	host = mmc_priv(mmc);
2019	host->mmc = mmc;
2020	host->mmc_ops = &mmci_ops;
2021	mmc->ops = &mmci_ops;
2022
2023	ret = mmci_of_parse(np, mmc);
2024	if (ret)
2025		goto host_free;
2026
2027	/*
2028	 * Some variant (STM32) doesn't have opendrain bit, nevertheless
2029	 * pins can be set accordingly using pinctrl
2030	 */
2031	if (!variant->opendrain) {
2032		host->pinctrl = devm_pinctrl_get(&dev->dev);
2033		if (IS_ERR(host->pinctrl)) {
2034			dev_err(&dev->dev, "failed to get pinctrl");
2035			ret = PTR_ERR(host->pinctrl);
2036			goto host_free;
2037		}
2038
2039		host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
2040							    MMCI_PINCTRL_STATE_OPENDRAIN);
2041		if (IS_ERR(host->pins_opendrain)) {
2042			dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
2043			ret = PTR_ERR(host->pins_opendrain);
2044			goto host_free;
2045		}
2046	}
2047
2048	host->hw_designer = amba_manf(dev);
2049	host->hw_revision = amba_rev(dev);
2050	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
2051	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
2052
2053	host->clk = devm_clk_get(&dev->dev, NULL);
2054	if (IS_ERR(host->clk)) {
2055		ret = PTR_ERR(host->clk);
2056		goto host_free;
2057	}
2058
2059	ret = clk_prepare_enable(host->clk);
2060	if (ret)
2061		goto host_free;
2062
2063	if (variant->qcom_fifo)
2064		host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
2065	else
2066		host->get_rx_fifocnt = mmci_get_rx_fifocnt;
2067
2068	host->plat = plat;
2069	host->variant = variant;
2070	host->mclk = clk_get_rate(host->clk);
2071	/*
2072	 * According to the spec, mclk is max 100 MHz,
2073	 * so we try to adjust the clock down to this,
2074	 * (if possible).
2075	 */
2076	if (host->mclk > variant->f_max) {
2077		ret = clk_set_rate(host->clk, variant->f_max);
2078		if (ret < 0)
2079			goto clk_disable;
2080		host->mclk = clk_get_rate(host->clk);
2081		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
2082			host->mclk);
2083	}
2084
2085	host->phybase = dev->res.start;
2086	host->base = devm_ioremap_resource(&dev->dev, &dev->res);
2087	if (IS_ERR(host->base)) {
2088		ret = PTR_ERR(host->base);
2089		goto clk_disable;
2090	}
2091
2092	if (variant->init)
2093		variant->init(host);
2094
2095	/*
2096	 * The ARM and ST versions of the block have slightly different
2097	 * clock divider equations which means that the minimum divider
2098	 * differs too.
2099	 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
2100	 */
2101	if (variant->st_clkdiv)
2102		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
2103	else if (variant->stm32_clkdiv)
2104		mmc->f_min = DIV_ROUND_UP(host->mclk, 2046);
2105	else if (variant->explicit_mclk_control)
2106		mmc->f_min = clk_round_rate(host->clk, 100000);
2107	else
2108		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
2109	/*
2110	 * If no maximum operating frequency is supplied, fall back to use
2111	 * the module parameter, which has a (low) default value in case it
2112	 * is not specified. Either value must not exceed the clock rate into
2113	 * the block, of course.
2114	 */
2115	if (mmc->f_max)
2116		mmc->f_max = variant->explicit_mclk_control ?
2117				min(variant->f_max, mmc->f_max) :
2118				min(host->mclk, mmc->f_max);
2119	else
2120		mmc->f_max = variant->explicit_mclk_control ?
2121				fmax : min(host->mclk, fmax);
2122
2123
2124	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
2125
2126	host->rst = devm_reset_control_get_optional_exclusive(&dev->dev, NULL);
2127	if (IS_ERR(host->rst)) {
2128		ret = PTR_ERR(host->rst);
2129		goto clk_disable;
2130	}
2131	ret = reset_control_deassert(host->rst);
2132	if (ret)
2133		dev_err(mmc_dev(mmc), "failed to de-assert reset\n");
2134
2135	/* Get regulators and the supported OCR mask */
2136	ret = mmc_regulator_get_supply(mmc);
2137	if (ret)
2138		goto clk_disable;
2139
2140	if (!mmc->ocr_avail)
2141		mmc->ocr_avail = plat->ocr_mask;
2142	else if (plat->ocr_mask)
2143		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
2144
2145	/* We support these capabilities. */
2146	mmc->caps |= MMC_CAP_CMD23;
2147
2148	/*
2149	 * Enable busy detection.
2150	 */
2151	if (variant->busy_detect) {
2152		mmci_ops.card_busy = mmci_card_busy;
2153		/*
2154		 * Not all variants have a flag to enable busy detection
2155		 * in the DPSM, but if they do, set it here.
2156		 */
2157		if (variant->busy_dpsm_flag)
2158			mmci_write_datactrlreg(host,
2159					       host->variant->busy_dpsm_flag);
2160		mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
2161	}
2162
 
 
 
 
 
 
 
 
 
 
2163	/* Variants with mandatory busy timeout in HW needs R1B responses. */
2164	if (variant->busy_timeout)
2165		mmc->caps |= MMC_CAP_NEED_RSP_BUSY;
2166
2167	/* Prepare a CMD12 - needed to clear the DPSM on some variants. */
2168	host->stop_abort.opcode = MMC_STOP_TRANSMISSION;
2169	host->stop_abort.arg = 0;
2170	host->stop_abort.flags = MMC_RSP_R1B | MMC_CMD_AC;
2171
2172	/* We support these PM capabilities. */
2173	mmc->pm_caps |= MMC_PM_KEEP_POWER;
2174
2175	/*
2176	 * We can do SGIO
2177	 */
2178	mmc->max_segs = NR_SG;
2179
2180	/*
2181	 * Since only a certain number of bits are valid in the data length
2182	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
2183	 * single request.
2184	 */
2185	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
2186
2187	/*
2188	 * Set the maximum segment size.  Since we aren't doing DMA
2189	 * (yet) we are only limited by the data length register.
2190	 */
2191	mmc->max_seg_size = mmc->max_req_size;
2192
2193	/*
2194	 * Block size can be up to 2048 bytes, but must be a power of two.
2195	 */
2196	mmc->max_blk_size = 1 << variant->datactrl_blocksz;
2197
2198	/*
2199	 * Limit the number of blocks transferred so that we don't overflow
2200	 * the maximum request size.
2201	 */
2202	mmc->max_blk_count = mmc->max_req_size >> variant->datactrl_blocksz;
2203
2204	spin_lock_init(&host->lock);
2205
2206	writel(0, host->base + MMCIMASK0);
2207
2208	if (variant->mmcimask1)
2209		writel(0, host->base + MMCIMASK1);
2210
2211	writel(0xfff, host->base + MMCICLEAR);
2212
2213	/*
2214	 * If:
2215	 * - not using DT but using a descriptor table, or
2216	 * - using a table of descriptors ALONGSIDE DT, or
2217	 * look up these descriptors named "cd" and "wp" right here, fail
2218	 * silently of these do not exist
2219	 */
2220	if (!np) {
2221		ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0);
2222		if (ret == -EPROBE_DEFER)
2223			goto clk_disable;
2224
2225		ret = mmc_gpiod_request_ro(mmc, "wp", 0, 0);
2226		if (ret == -EPROBE_DEFER)
2227			goto clk_disable;
2228	}
2229
2230	ret = devm_request_threaded_irq(&dev->dev, dev->irq[0], mmci_irq,
2231					mmci_irq_thread, IRQF_SHARED,
2232					DRIVER_NAME " (cmd)", host);
2233	if (ret)
2234		goto clk_disable;
2235
2236	if (!dev->irq[1])
2237		host->singleirq = true;
2238	else {
2239		ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
2240				IRQF_SHARED, DRIVER_NAME " (pio)", host);
2241		if (ret)
2242			goto clk_disable;
2243	}
2244
 
 
 
 
2245	writel(MCI_IRQENABLE | variant->start_err, host->base + MMCIMASK0);
2246
2247	amba_set_drvdata(dev, mmc);
2248
2249	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
2250		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
2251		 amba_rev(dev), (unsigned long long)dev->res.start,
2252		 dev->irq[0], dev->irq[1]);
2253
2254	mmci_dma_setup(host);
2255
2256	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
2257	pm_runtime_use_autosuspend(&dev->dev);
2258
2259	ret = mmc_add_host(mmc);
2260	if (ret)
2261		goto clk_disable;
2262
2263	pm_runtime_put(&dev->dev);
2264	return 0;
2265
2266 clk_disable:
2267	clk_disable_unprepare(host->clk);
2268 host_free:
2269	mmc_free_host(mmc);
2270	return ret;
2271}
2272
2273static void mmci_remove(struct amba_device *dev)
2274{
2275	struct mmc_host *mmc = amba_get_drvdata(dev);
2276
2277	if (mmc) {
2278		struct mmci_host *host = mmc_priv(mmc);
2279		struct variant_data *variant = host->variant;
2280
2281		/*
2282		 * Undo pm_runtime_put() in probe.  We use the _sync
2283		 * version here so that we can access the primecell.
2284		 */
2285		pm_runtime_get_sync(&dev->dev);
2286
2287		mmc_remove_host(mmc);
2288
2289		writel(0, host->base + MMCIMASK0);
2290
2291		if (variant->mmcimask1)
2292			writel(0, host->base + MMCIMASK1);
2293
2294		writel(0, host->base + MMCICOMMAND);
2295		writel(0, host->base + MMCIDATACTRL);
2296
2297		mmci_dma_release(host);
2298		clk_disable_unprepare(host->clk);
2299		mmc_free_host(mmc);
2300	}
2301}
2302
2303#ifdef CONFIG_PM
2304static void mmci_save(struct mmci_host *host)
2305{
2306	unsigned long flags;
2307
2308	spin_lock_irqsave(&host->lock, flags);
2309
2310	writel(0, host->base + MMCIMASK0);
2311	if (host->variant->pwrreg_nopower) {
2312		writel(0, host->base + MMCIDATACTRL);
2313		writel(0, host->base + MMCIPOWER);
2314		writel(0, host->base + MMCICLOCK);
2315	}
2316	mmci_reg_delay(host);
2317
2318	spin_unlock_irqrestore(&host->lock, flags);
2319}
2320
2321static void mmci_restore(struct mmci_host *host)
2322{
2323	unsigned long flags;
2324
2325	spin_lock_irqsave(&host->lock, flags);
2326
2327	if (host->variant->pwrreg_nopower) {
2328		writel(host->clk_reg, host->base + MMCICLOCK);
2329		writel(host->datactrl_reg, host->base + MMCIDATACTRL);
2330		writel(host->pwr_reg, host->base + MMCIPOWER);
2331	}
2332	writel(MCI_IRQENABLE | host->variant->start_err,
2333	       host->base + MMCIMASK0);
2334	mmci_reg_delay(host);
2335
2336	spin_unlock_irqrestore(&host->lock, flags);
2337}
2338
2339static int mmci_runtime_suspend(struct device *dev)
2340{
2341	struct amba_device *adev = to_amba_device(dev);
2342	struct mmc_host *mmc = amba_get_drvdata(adev);
2343
2344	if (mmc) {
2345		struct mmci_host *host = mmc_priv(mmc);
2346		pinctrl_pm_select_sleep_state(dev);
2347		mmci_save(host);
2348		clk_disable_unprepare(host->clk);
2349	}
2350
2351	return 0;
2352}
2353
2354static int mmci_runtime_resume(struct device *dev)
2355{
2356	struct amba_device *adev = to_amba_device(dev);
2357	struct mmc_host *mmc = amba_get_drvdata(adev);
2358
2359	if (mmc) {
2360		struct mmci_host *host = mmc_priv(mmc);
2361		clk_prepare_enable(host->clk);
2362		mmci_restore(host);
2363		pinctrl_select_default_state(dev);
2364	}
2365
2366	return 0;
2367}
2368#endif
2369
2370static const struct dev_pm_ops mmci_dev_pm_ops = {
2371	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2372				pm_runtime_force_resume)
2373	SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
2374};
2375
2376static const struct amba_id mmci_ids[] = {
2377	{
2378		.id	= 0x00041180,
2379		.mask	= 0xff0fffff,
2380		.data	= &variant_arm,
2381	},
2382	{
2383		.id	= 0x01041180,
2384		.mask	= 0xff0fffff,
2385		.data	= &variant_arm_extended_fifo,
2386	},
2387	{
2388		.id	= 0x02041180,
2389		.mask	= 0xff0fffff,
2390		.data	= &variant_arm_extended_fifo_hwfc,
2391	},
2392	{
2393		.id	= 0x00041181,
2394		.mask	= 0x000fffff,
2395		.data	= &variant_arm,
2396	},
2397	/* ST Micro variants */
2398	{
2399		.id     = 0x00180180,
2400		.mask   = 0x00ffffff,
2401		.data	= &variant_u300,
2402	},
2403	{
2404		.id     = 0x10180180,
2405		.mask   = 0xf0ffffff,
2406		.data	= &variant_nomadik,
2407	},
2408	{
2409		.id     = 0x00280180,
2410		.mask   = 0x00ffffff,
2411		.data	= &variant_nomadik,
2412	},
2413	{
2414		.id     = 0x00480180,
2415		.mask   = 0xf0ffffff,
2416		.data	= &variant_ux500,
2417	},
2418	{
2419		.id     = 0x10480180,
2420		.mask   = 0xf0ffffff,
2421		.data	= &variant_ux500v2,
2422	},
2423	{
2424		.id     = 0x00880180,
2425		.mask   = 0x00ffffff,
2426		.data	= &variant_stm32,
2427	},
2428	{
2429		.id     = 0x10153180,
2430		.mask	= 0xf0ffffff,
2431		.data	= &variant_stm32_sdmmc,
2432	},
2433	{
2434		.id     = 0x00253180,
2435		.mask	= 0xf0ffffff,
2436		.data	= &variant_stm32_sdmmcv2,
2437	},
2438	{
2439		.id     = 0x20253180,
2440		.mask	= 0xf0ffffff,
2441		.data	= &variant_stm32_sdmmcv2,
2442	},
 
 
 
 
 
2443	/* Qualcomm variants */
2444	{
2445		.id     = 0x00051180,
2446		.mask	= 0x000fffff,
2447		.data	= &variant_qcom,
2448	},
2449	{ 0, 0 },
2450};
2451
2452MODULE_DEVICE_TABLE(amba, mmci_ids);
2453
2454static struct amba_driver mmci_driver = {
2455	.drv		= {
2456		.name	= DRIVER_NAME,
2457		.pm	= &mmci_dev_pm_ops,
 
2458	},
2459	.probe		= mmci_probe,
2460	.remove		= mmci_remove,
2461	.id_table	= mmci_ids,
2462};
2463
2464module_amba_driver(mmci_driver);
2465
2466module_param(fmax, uint, 0444);
2467
2468MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2469MODULE_LICENSE("GPL");
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
   4 *
   5 *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
   6 *  Copyright (C) 2010 ST-Ericsson SA
   7 */
   8#include <linux/module.h>
   9#include <linux/moduleparam.h>
  10#include <linux/init.h>
  11#include <linux/ioport.h>
  12#include <linux/device.h>
  13#include <linux/io.h>
  14#include <linux/interrupt.h>
  15#include <linux/kernel.h>
  16#include <linux/slab.h>
  17#include <linux/delay.h>
  18#include <linux/err.h>
  19#include <linux/highmem.h>
  20#include <linux/log2.h>
  21#include <linux/mmc/mmc.h>
  22#include <linux/mmc/pm.h>
  23#include <linux/mmc/host.h>
  24#include <linux/mmc/card.h>
  25#include <linux/mmc/sd.h>
  26#include <linux/mmc/slot-gpio.h>
  27#include <linux/amba/bus.h>
  28#include <linux/clk.h>
  29#include <linux/scatterlist.h>
  30#include <linux/of.h>
  31#include <linux/regulator/consumer.h>
  32#include <linux/dmaengine.h>
  33#include <linux/dma-mapping.h>
  34#include <linux/amba/mmci.h>
  35#include <linux/pm_runtime.h>
  36#include <linux/types.h>
  37#include <linux/pinctrl/consumer.h>
  38#include <linux/reset.h>
  39#include <linux/gpio/consumer.h>
  40#include <linux/workqueue.h>
  41
  42#include <asm/div64.h>
  43#include <asm/io.h>
  44
  45#include "mmci.h"
  46
  47#define DRIVER_NAME "mmci-pl18x"
  48
  49static void mmci_variant_init(struct mmci_host *host);
  50static void ux500_variant_init(struct mmci_host *host);
  51static void ux500v2_variant_init(struct mmci_host *host);
  52
  53static unsigned int fmax = 515633;
  54
  55static struct variant_data variant_arm = {
  56	.fifosize		= 16 * 4,
  57	.fifohalfsize		= 8 * 4,
  58	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
  59	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
  60	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
  61	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
  62	.datalength_bits	= 16,
  63	.datactrl_blocksz	= 11,
  64	.pwrreg_powerup		= MCI_PWR_UP,
  65	.f_max			= 100000000,
  66	.reversed_irq_handling	= true,
  67	.mmcimask1		= true,
  68	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
  69	.start_err		= MCI_STARTBITERR,
  70	.opendrain		= MCI_ROD,
  71	.init			= mmci_variant_init,
  72};
  73
  74static struct variant_data variant_arm_extended_fifo = {
  75	.fifosize		= 128 * 4,
  76	.fifohalfsize		= 64 * 4,
  77	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
  78	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
  79	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
  80	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
  81	.datalength_bits	= 16,
  82	.datactrl_blocksz	= 11,
  83	.pwrreg_powerup		= MCI_PWR_UP,
  84	.f_max			= 100000000,
  85	.mmcimask1		= true,
  86	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
  87	.start_err		= MCI_STARTBITERR,
  88	.opendrain		= MCI_ROD,
  89	.init			= mmci_variant_init,
  90};
  91
  92static struct variant_data variant_arm_extended_fifo_hwfc = {
  93	.fifosize		= 128 * 4,
  94	.fifohalfsize		= 64 * 4,
  95	.clkreg_enable		= MCI_ARM_HWFCEN,
  96	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
  97	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
  98	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
  99	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
 100	.datalength_bits	= 16,
 101	.datactrl_blocksz	= 11,
 102	.pwrreg_powerup		= MCI_PWR_UP,
 103	.f_max			= 100000000,
 104	.mmcimask1		= true,
 105	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 106	.start_err		= MCI_STARTBITERR,
 107	.opendrain		= MCI_ROD,
 108	.init			= mmci_variant_init,
 109};
 110
 111static struct variant_data variant_u300 = {
 112	.fifosize		= 16 * 4,
 113	.fifohalfsize		= 8 * 4,
 114	.clkreg_enable		= MCI_ST_U300_HWFCEN,
 115	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 116	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
 117	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 118	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
 119	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
 120	.datalength_bits	= 16,
 121	.datactrl_blocksz	= 11,
 122	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 123	.st_sdio			= true,
 124	.pwrreg_powerup		= MCI_PWR_ON,
 125	.f_max			= 100000000,
 126	.signal_direction	= true,
 127	.pwrreg_clkgate		= true,
 128	.pwrreg_nopower		= true,
 129	.mmcimask1		= true,
 130	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 131	.start_err		= MCI_STARTBITERR,
 132	.opendrain		= MCI_OD,
 133	.init			= mmci_variant_init,
 134};
 135
 136static struct variant_data variant_nomadik = {
 137	.fifosize		= 16 * 4,
 138	.fifohalfsize		= 8 * 4,
 139	.clkreg			= MCI_CLK_ENABLE,
 140	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 141	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
 142	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 143	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
 144	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
 145	.datalength_bits	= 24,
 146	.datactrl_blocksz	= 11,
 147	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 148	.st_sdio		= true,
 149	.st_clkdiv		= true,
 150	.pwrreg_powerup		= MCI_PWR_ON,
 151	.f_max			= 100000000,
 152	.signal_direction	= true,
 153	.pwrreg_clkgate		= true,
 154	.pwrreg_nopower		= true,
 155	.mmcimask1		= true,
 156	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 157	.start_err		= MCI_STARTBITERR,
 158	.opendrain		= MCI_OD,
 159	.init			= mmci_variant_init,
 160};
 161
 162static struct variant_data variant_ux500 = {
 163	.fifosize		= 30 * 4,
 164	.fifohalfsize		= 8 * 4,
 165	.clkreg			= MCI_CLK_ENABLE,
 166	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 167	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 168	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
 169	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
 170	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 171	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
 172	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
 173	.datalength_bits	= 24,
 174	.datactrl_blocksz	= 11,
 175	.datactrl_any_blocksz	= true,
 176	.dma_power_of_2		= true,
 177	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 178	.st_sdio		= true,
 179	.st_clkdiv		= true,
 180	.pwrreg_powerup		= MCI_PWR_ON,
 181	.f_max			= 100000000,
 182	.signal_direction	= true,
 183	.pwrreg_clkgate		= true,
 184	.busy_detect		= true,
 185	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
 186	.busy_detect_flag	= MCI_ST_CARDBUSY,
 187	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
 188	.pwrreg_nopower		= true,
 189	.mmcimask1		= true,
 190	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 191	.start_err		= MCI_STARTBITERR,
 192	.opendrain		= MCI_OD,
 193	.init			= ux500_variant_init,
 194};
 195
 196static struct variant_data variant_ux500v2 = {
 197	.fifosize		= 30 * 4,
 198	.fifohalfsize		= 8 * 4,
 199	.clkreg			= MCI_CLK_ENABLE,
 200	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 201	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 202	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
 203	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
 204	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 205	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
 206	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
 207	.datactrl_mask_ddrmode	= MCI_DPSM_ST_DDRMODE,
 208	.datalength_bits	= 24,
 209	.datactrl_blocksz	= 11,
 210	.datactrl_any_blocksz	= true,
 211	.dma_power_of_2		= true,
 212	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 213	.st_sdio		= true,
 214	.st_clkdiv		= true,
 215	.pwrreg_powerup		= MCI_PWR_ON,
 216	.f_max			= 100000000,
 217	.signal_direction	= true,
 218	.pwrreg_clkgate		= true,
 219	.busy_detect		= true,
 220	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
 221	.busy_detect_flag	= MCI_ST_CARDBUSY,
 222	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
 223	.pwrreg_nopower		= true,
 224	.mmcimask1		= true,
 225	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 226	.start_err		= MCI_STARTBITERR,
 227	.opendrain		= MCI_OD,
 228	.init			= ux500v2_variant_init,
 229};
 230
 231static struct variant_data variant_stm32 = {
 232	.fifosize		= 32 * 4,
 233	.fifohalfsize		= 8 * 4,
 234	.clkreg			= MCI_CLK_ENABLE,
 235	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 236	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 237	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
 238	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
 239	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 240	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
 241	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
 242	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 243	.datalength_bits	= 24,
 244	.datactrl_blocksz	= 11,
 245	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 246	.st_sdio		= true,
 247	.st_clkdiv		= true,
 248	.pwrreg_powerup		= MCI_PWR_ON,
 249	.f_max			= 48000000,
 250	.pwrreg_clkgate		= true,
 251	.pwrreg_nopower		= true,
 252	.dma_flow_controller	= true,
 253	.init			= mmci_variant_init,
 254};
 255
 256static struct variant_data variant_stm32_sdmmc = {
 257	.fifosize		= 16 * 4,
 258	.fifohalfsize		= 8 * 4,
 259	.f_max			= 208000000,
 260	.stm32_clkdiv		= true,
 261	.cmdreg_cpsm_enable	= MCI_CPSM_STM32_ENABLE,
 262	.cmdreg_lrsp_crc	= MCI_CPSM_STM32_LRSP_CRC,
 263	.cmdreg_srsp_crc	= MCI_CPSM_STM32_SRSP_CRC,
 264	.cmdreg_srsp		= MCI_CPSM_STM32_SRSP,
 265	.cmdreg_stop		= MCI_CPSM_STM32_CMDSTOP,
 266	.data_cmd_enable	= MCI_CPSM_STM32_CMDTRANS,
 267	.irq_pio_mask		= MCI_IRQ_PIO_STM32_MASK,
 268	.datactrl_first		= true,
 269	.datacnt_useless	= true,
 270	.datalength_bits	= 25,
 271	.datactrl_blocksz	= 14,
 272	.datactrl_any_blocksz	= true,
 273	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 274	.stm32_idmabsize_mask	= GENMASK(12, 5),
 275	.stm32_idmabsize_align	= BIT(5),
 276	.supports_sdio_irq	= true,
 277	.busy_timeout		= true,
 278	.busy_detect		= true,
 279	.busy_detect_flag	= MCI_STM32_BUSYD0,
 280	.busy_detect_mask	= MCI_STM32_BUSYD0ENDMASK,
 281	.init			= sdmmc_variant_init,
 282};
 283
 284static struct variant_data variant_stm32_sdmmcv2 = {
 285	.fifosize		= 16 * 4,
 286	.fifohalfsize		= 8 * 4,
 287	.f_max			= 267000000,
 288	.stm32_clkdiv		= true,
 289	.cmdreg_cpsm_enable	= MCI_CPSM_STM32_ENABLE,
 290	.cmdreg_lrsp_crc	= MCI_CPSM_STM32_LRSP_CRC,
 291	.cmdreg_srsp_crc	= MCI_CPSM_STM32_SRSP_CRC,
 292	.cmdreg_srsp		= MCI_CPSM_STM32_SRSP,
 293	.cmdreg_stop		= MCI_CPSM_STM32_CMDSTOP,
 294	.data_cmd_enable	= MCI_CPSM_STM32_CMDTRANS,
 295	.irq_pio_mask		= MCI_IRQ_PIO_STM32_MASK,
 296	.datactrl_first		= true,
 297	.datacnt_useless	= true,
 298	.datalength_bits	= 25,
 299	.datactrl_blocksz	= 14,
 300	.datactrl_any_blocksz	= true,
 301	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 302	.stm32_idmabsize_mask	= GENMASK(16, 5),
 303	.stm32_idmabsize_align	= BIT(5),
 304	.supports_sdio_irq	= true,
 305	.dma_lli		= true,
 306	.busy_timeout		= true,
 307	.busy_detect		= true,
 308	.busy_detect_flag	= MCI_STM32_BUSYD0,
 309	.busy_detect_mask	= MCI_STM32_BUSYD0ENDMASK,
 310	.init			= sdmmc_variant_init,
 311};
 312
 313static struct variant_data variant_stm32_sdmmcv3 = {
 314	.fifosize		= 256 * 4,
 315	.fifohalfsize		= 128 * 4,
 316	.f_max			= 267000000,
 317	.stm32_clkdiv		= true,
 318	.cmdreg_cpsm_enable	= MCI_CPSM_STM32_ENABLE,
 319	.cmdreg_lrsp_crc	= MCI_CPSM_STM32_LRSP_CRC,
 320	.cmdreg_srsp_crc	= MCI_CPSM_STM32_SRSP_CRC,
 321	.cmdreg_srsp		= MCI_CPSM_STM32_SRSP,
 322	.cmdreg_stop		= MCI_CPSM_STM32_CMDSTOP,
 323	.data_cmd_enable	= MCI_CPSM_STM32_CMDTRANS,
 324	.irq_pio_mask		= MCI_IRQ_PIO_STM32_MASK,
 325	.datactrl_first		= true,
 326	.datacnt_useless	= true,
 327	.datalength_bits	= 25,
 328	.datactrl_blocksz	= 14,
 329	.datactrl_any_blocksz	= true,
 330	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 331	.stm32_idmabsize_mask	= GENMASK(16, 6),
 332	.stm32_idmabsize_align	= BIT(6),
 333	.supports_sdio_irq	= true,
 334	.dma_lli		= true,
 335	.busy_timeout		= true,
 336	.busy_detect		= true,
 337	.busy_detect_flag	= MCI_STM32_BUSYD0,
 338	.busy_detect_mask	= MCI_STM32_BUSYD0ENDMASK,
 339	.init			= sdmmc_variant_init,
 340};
 341
 342static struct variant_data variant_qcom = {
 343	.fifosize		= 16 * 4,
 344	.fifohalfsize		= 8 * 4,
 345	.clkreg			= MCI_CLK_ENABLE,
 346	.clkreg_enable		= MCI_QCOM_CLK_FLOWENA |
 347				  MCI_QCOM_CLK_SELECT_IN_FBCLK,
 348	.clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
 349	.datactrl_mask_ddrmode	= MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
 350	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
 351	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 352	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
 353	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
 354	.data_cmd_enable	= MCI_CPSM_QCOM_DATCMD,
 355	.datalength_bits	= 24,
 356	.datactrl_blocksz	= 11,
 357	.datactrl_any_blocksz	= true,
 358	.pwrreg_powerup		= MCI_PWR_UP,
 359	.f_max			= 208000000,
 360	.explicit_mclk_control	= true,
 361	.qcom_fifo		= true,
 362	.qcom_dml		= true,
 363	.mmcimask1		= true,
 364	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 365	.start_err		= MCI_STARTBITERR,
 366	.opendrain		= MCI_ROD,
 367	.init			= qcom_variant_init,
 368};
 369
 370/* Busy detection for the ST Micro variant */
 371static int mmci_card_busy(struct mmc_host *mmc)
 372{
 373	struct mmci_host *host = mmc_priv(mmc);
 374	unsigned long flags;
 375	int busy = 0;
 376
 377	spin_lock_irqsave(&host->lock, flags);
 378	if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
 379		busy = 1;
 380	spin_unlock_irqrestore(&host->lock, flags);
 381
 382	return busy;
 383}
 384
 385static void mmci_reg_delay(struct mmci_host *host)
 386{
 387	/*
 388	 * According to the spec, at least three feedback clock cycles
 389	 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
 390	 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
 391	 * Worst delay time during card init is at 100 kHz => 30 us.
 392	 * Worst delay time when up and running is at 25 MHz => 120 ns.
 393	 */
 394	if (host->cclk < 25000000)
 395		udelay(30);
 396	else
 397		ndelay(120);
 398}
 399
 400/*
 401 * This must be called with host->lock held
 402 */
 403void mmci_write_clkreg(struct mmci_host *host, u32 clk)
 404{
 405	if (host->clk_reg != clk) {
 406		host->clk_reg = clk;
 407		writel(clk, host->base + MMCICLOCK);
 408	}
 409}
 410
 411/*
 412 * This must be called with host->lock held
 413 */
 414void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
 415{
 416	if (host->pwr_reg != pwr) {
 417		host->pwr_reg = pwr;
 418		writel(pwr, host->base + MMCIPOWER);
 419	}
 420}
 421
 422/*
 423 * This must be called with host->lock held
 424 */
 425static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
 426{
 427	/* Keep busy mode in DPSM and SDIO mask if enabled */
 428	datactrl |= host->datactrl_reg & (host->variant->busy_dpsm_flag |
 429					  host->variant->datactrl_mask_sdio);
 430
 431	if (host->datactrl_reg != datactrl) {
 432		host->datactrl_reg = datactrl;
 433		writel(datactrl, host->base + MMCIDATACTRL);
 434	}
 435}
 436
 437/*
 438 * This must be called with host->lock held
 439 */
 440static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
 441{
 442	struct variant_data *variant = host->variant;
 443	u32 clk = variant->clkreg;
 444
 445	/* Make sure cclk reflects the current calculated clock */
 446	host->cclk = 0;
 447
 448	if (desired) {
 449		if (variant->explicit_mclk_control) {
 450			host->cclk = host->mclk;
 451		} else if (desired >= host->mclk) {
 452			clk = MCI_CLK_BYPASS;
 453			if (variant->st_clkdiv)
 454				clk |= MCI_ST_UX500_NEG_EDGE;
 455			host->cclk = host->mclk;
 456		} else if (variant->st_clkdiv) {
 457			/*
 458			 * DB8500 TRM says f = mclk / (clkdiv + 2)
 459			 * => clkdiv = (mclk / f) - 2
 460			 * Round the divider up so we don't exceed the max
 461			 * frequency
 462			 */
 463			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
 464			if (clk >= 256)
 465				clk = 255;
 466			host->cclk = host->mclk / (clk + 2);
 467		} else {
 468			/*
 469			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
 470			 * => clkdiv = mclk / (2 * f) - 1
 471			 */
 472			clk = host->mclk / (2 * desired) - 1;
 473			if (clk >= 256)
 474				clk = 255;
 475			host->cclk = host->mclk / (2 * (clk + 1));
 476		}
 477
 478		clk |= variant->clkreg_enable;
 479		clk |= MCI_CLK_ENABLE;
 480		/* This hasn't proven to be worthwhile */
 481		/* clk |= MCI_CLK_PWRSAVE; */
 482	}
 483
 484	/* Set actual clock for debug */
 485	host->mmc->actual_clock = host->cclk;
 486
 487	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
 488		clk |= MCI_4BIT_BUS;
 489	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
 490		clk |= variant->clkreg_8bit_bus_enable;
 491
 492	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
 493	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
 494		clk |= variant->clkreg_neg_edge_enable;
 495
 496	mmci_write_clkreg(host, clk);
 497}
 498
 499static void mmci_dma_release(struct mmci_host *host)
 500{
 501	if (host->ops && host->ops->dma_release)
 502		host->ops->dma_release(host);
 503
 504	host->use_dma = false;
 505}
 506
 507static void mmci_dma_setup(struct mmci_host *host)
 508{
 509	if (!host->ops || !host->ops->dma_setup)
 510		return;
 511
 512	if (host->ops->dma_setup(host))
 513		return;
 514
 515	/* initialize pre request cookie */
 516	host->next_cookie = 1;
 517
 518	host->use_dma = true;
 519}
 520
 521/*
 522 * Validate mmc prerequisites
 523 */
 524static int mmci_validate_data(struct mmci_host *host,
 525			      struct mmc_data *data)
 526{
 527	struct variant_data *variant = host->variant;
 528
 529	if (!data)
 530		return 0;
 531	if (!is_power_of_2(data->blksz) && !variant->datactrl_any_blocksz) {
 532		dev_err(mmc_dev(host->mmc),
 533			"unsupported block size (%d bytes)\n", data->blksz);
 534		return -EINVAL;
 535	}
 536
 537	if (host->ops && host->ops->validate_data)
 538		return host->ops->validate_data(host, data);
 539
 540	return 0;
 541}
 542
 543static int mmci_prep_data(struct mmci_host *host, struct mmc_data *data, bool next)
 544{
 545	int err;
 546
 547	if (!host->ops || !host->ops->prep_data)
 548		return 0;
 549
 550	err = host->ops->prep_data(host, data, next);
 551
 552	if (next && !err)
 553		data->host_cookie = ++host->next_cookie < 0 ?
 554			1 : host->next_cookie;
 555
 556	return err;
 557}
 558
 559static void mmci_unprep_data(struct mmci_host *host, struct mmc_data *data,
 560		      int err)
 561{
 562	if (host->ops && host->ops->unprep_data)
 563		host->ops->unprep_data(host, data, err);
 564
 565	data->host_cookie = 0;
 566}
 567
 568static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
 569{
 570	WARN_ON(data->host_cookie && data->host_cookie != host->next_cookie);
 571
 572	if (host->ops && host->ops->get_next_data)
 573		host->ops->get_next_data(host, data);
 574}
 575
 576static int mmci_dma_start(struct mmci_host *host, unsigned int datactrl)
 577{
 578	struct mmc_data *data = host->data;
 579	int ret;
 580
 581	if (!host->use_dma)
 582		return -EINVAL;
 583
 584	ret = mmci_prep_data(host, data, false);
 585	if (ret)
 586		return ret;
 587
 588	if (!host->ops || !host->ops->dma_start)
 589		return -EINVAL;
 590
 591	/* Okay, go for it. */
 592	dev_vdbg(mmc_dev(host->mmc),
 593		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
 594		 data->sg_len, data->blksz, data->blocks, data->flags);
 595
 596	ret = host->ops->dma_start(host, &datactrl);
 597	if (ret)
 598		return ret;
 599
 600	/* Trigger the DMA transfer */
 601	mmci_write_datactrlreg(host, datactrl);
 602
 603	/*
 604	 * Let the MMCI say when the data is ended and it's time
 605	 * to fire next DMA request. When that happens, MMCI will
 606	 * call mmci_data_end()
 607	 */
 608	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
 609	       host->base + MMCIMASK0);
 610	return 0;
 611}
 612
 613static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
 614{
 615	if (!host->use_dma)
 616		return;
 617
 618	if (host->ops && host->ops->dma_finalize)
 619		host->ops->dma_finalize(host, data);
 620}
 621
 622static void mmci_dma_error(struct mmci_host *host)
 623{
 624	if (!host->use_dma)
 625		return;
 626
 627	if (host->ops && host->ops->dma_error)
 628		host->ops->dma_error(host);
 629}
 630
 631static void
 632mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
 633{
 634	writel(0, host->base + MMCICOMMAND);
 635
 636	BUG_ON(host->data);
 637
 638	host->mrq = NULL;
 639	host->cmd = NULL;
 640
 641	mmc_request_done(host->mmc, mrq);
 642}
 643
 644static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
 645{
 646	void __iomem *base = host->base;
 647	struct variant_data *variant = host->variant;
 648
 649	if (host->singleirq) {
 650		unsigned int mask0 = readl(base + MMCIMASK0);
 651
 652		mask0 &= ~variant->irq_pio_mask;
 653		mask0 |= mask;
 654
 655		writel(mask0, base + MMCIMASK0);
 656	}
 657
 658	if (variant->mmcimask1)
 659		writel(mask, base + MMCIMASK1);
 660
 661	host->mask1_reg = mask;
 662}
 663
 664static void mmci_stop_data(struct mmci_host *host)
 665{
 666	mmci_write_datactrlreg(host, 0);
 667	mmci_set_mask1(host, 0);
 668	host->data = NULL;
 669}
 670
 671static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
 672{
 673	unsigned int flags = SG_MITER_ATOMIC;
 674
 675	if (data->flags & MMC_DATA_READ)
 676		flags |= SG_MITER_TO_SG;
 677	else
 678		flags |= SG_MITER_FROM_SG;
 679
 680	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
 681}
 682
 683static u32 mmci_get_dctrl_cfg(struct mmci_host *host)
 684{
 685	return MCI_DPSM_ENABLE | mmci_dctrl_blksz(host);
 686}
 687
 688static u32 ux500v2_get_dctrl_cfg(struct mmci_host *host)
 689{
 690	return MCI_DPSM_ENABLE | (host->data->blksz << 16);
 691}
 692
 693static void ux500_busy_clear_mask_done(struct mmci_host *host)
 694{
 695	void __iomem *base = host->base;
 696
 697	writel(host->variant->busy_detect_mask, base + MMCICLEAR);
 698	writel(readl(base + MMCIMASK0) &
 699	       ~host->variant->busy_detect_mask, base + MMCIMASK0);
 700	host->busy_state = MMCI_BUSY_DONE;
 701	host->busy_status = 0;
 702}
 703
 704/*
 705 * ux500_busy_complete() - this will wait until the busy status
 706 * goes off, saving any status that occur in the meantime into
 707 * host->busy_status until we know the card is not busy any more.
 708 * The function returns true when the busy detection is ended
 709 * and we should continue processing the command.
 710 *
 711 * The Ux500 typically fires two IRQs over a busy cycle like this:
 712 *
 713 *  DAT0 busy          +-----------------+
 714 *                     |                 |
 715 *  DAT0 not busy  ----+                 +--------
 716 *
 717 *                     ^                 ^
 718 *                     |                 |
 719 *                    IRQ1              IRQ2
 720 */
 721static bool ux500_busy_complete(struct mmci_host *host, struct mmc_command *cmd,
 722				u32 status, u32 err_msk)
 723{
 724	void __iomem *base = host->base;
 725	int retries = 10;
 726
 727	if (status & err_msk) {
 728		/* Stop any ongoing busy detection if an error occurs */
 729		ux500_busy_clear_mask_done(host);
 730		goto out_ret_state;
 731	}
 732
 733	/*
 734	 * The state transitions are encoded in a state machine crossing
 735	 * the edges in this switch statement.
 736	 */
 737	switch (host->busy_state) {
 738
 739	/*
 740	 * Before unmasking for the busy end IRQ, confirm that the
 741	 * command was sent successfully. To keep track of having a
 742	 * command in-progress, waiting for busy signaling to end,
 743	 * store the status in host->busy_status.
 744	 *
 745	 * Note that, the card may need a couple of clock cycles before
 746	 * it starts signaling busy on DAT0, hence re-read the
 747	 * MMCISTATUS register here, to allow the busy bit to be set.
 748	 */
 749	case MMCI_BUSY_DONE:
 750		/*
 751		 * Save the first status register read to be sure to catch
 752		 * all bits that may be lost will retrying. If the command
 753		 * is still busy this will result in assigning 0 to
 754		 * host->busy_status, which is what it should be in IDLE.
 755		 */
 
 
 756		host->busy_status = status & (MCI_CMDSENT | MCI_CMDRESPEND);
 757		while (retries) {
 758			status = readl(base + MMCISTATUS);
 759			/* Keep accumulating status bits */
 760			host->busy_status |= status & (MCI_CMDSENT | MCI_CMDRESPEND);
 761			if (status & host->variant->busy_detect_flag) {
 762				writel(readl(base + MMCIMASK0) |
 763				       host->variant->busy_detect_mask,
 764				       base + MMCIMASK0);
 765				host->busy_state = MMCI_BUSY_WAITING_FOR_START_IRQ;
 766				schedule_delayed_work(&host->ux500_busy_timeout_work,
 767				      msecs_to_jiffies(cmd->busy_timeout));
 768				goto out_ret_state;
 769			}
 770			retries--;
 771		}
 772		dev_dbg(mmc_dev(host->mmc),
 773			"no busy signalling in time CMD%02x\n", cmd->opcode);
 774		ux500_busy_clear_mask_done(host);
 775		break;
 776
 777	/*
 778	 * If there is a command in-progress that has been successfully
 779	 * sent, then bail out if busy status is set and wait for the
 780	 * busy end IRQ.
 781	 *
 782	 * Note that, the HW triggers an IRQ on both edges while
 783	 * monitoring DAT0 for busy completion, but there is only one
 784	 * status bit in MMCISTATUS for the busy state. Therefore
 785	 * both the start and the end interrupts needs to be cleared,
 786	 * one after the other. So, clear the busy start IRQ here.
 787	 */
 788	case MMCI_BUSY_WAITING_FOR_START_IRQ:
 789		if (status & host->variant->busy_detect_flag) {
 790			host->busy_status |= status & (MCI_CMDSENT | MCI_CMDRESPEND);
 791			writel(host->variant->busy_detect_mask, base + MMCICLEAR);
 792			host->busy_state = MMCI_BUSY_WAITING_FOR_END_IRQ;
 793		} else {
 794			dev_dbg(mmc_dev(host->mmc),
 795				"lost busy status when waiting for busy start IRQ CMD%02x\n",
 796				cmd->opcode);
 797			cancel_delayed_work(&host->ux500_busy_timeout_work);
 798			ux500_busy_clear_mask_done(host);
 799		}
 800		break;
 801
 802	case MMCI_BUSY_WAITING_FOR_END_IRQ:
 803		if (!(status & host->variant->busy_detect_flag)) {
 804			host->busy_status |= status & (MCI_CMDSENT | MCI_CMDRESPEND);
 805			writel(host->variant->busy_detect_mask, base + MMCICLEAR);
 806			cancel_delayed_work(&host->ux500_busy_timeout_work);
 807			ux500_busy_clear_mask_done(host);
 808		} else {
 809			dev_dbg(mmc_dev(host->mmc),
 810				"busy status still asserted when handling busy end IRQ - will keep waiting CMD%02x\n",
 811				cmd->opcode);
 812		}
 813		break;
 814
 815	default:
 816		dev_dbg(mmc_dev(host->mmc), "fell through on state %d, CMD%02x\n",
 817			host->busy_state, cmd->opcode);
 818		break;
 819	}
 820
 821out_ret_state:
 822	return (host->busy_state == MMCI_BUSY_DONE);
 823}
 824
 825/*
 826 * All the DMA operation mode stuff goes inside this ifdef.
 827 * This assumes that you have a generic DMA device interface,
 828 * no custom DMA interfaces are supported.
 829 */
 830#ifdef CONFIG_DMA_ENGINE
 831struct mmci_dmae_next {
 832	struct dma_async_tx_descriptor *desc;
 833	struct dma_chan	*chan;
 834};
 835
 836struct mmci_dmae_priv {
 837	struct dma_chan	*cur;
 838	struct dma_chan	*rx_channel;
 839	struct dma_chan	*tx_channel;
 840	struct dma_async_tx_descriptor	*desc_current;
 841	struct mmci_dmae_next next_data;
 842};
 843
 844int mmci_dmae_setup(struct mmci_host *host)
 845{
 846	const char *rxname, *txname;
 847	struct mmci_dmae_priv *dmae;
 848
 849	dmae = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dmae), GFP_KERNEL);
 850	if (!dmae)
 851		return -ENOMEM;
 852
 853	host->dma_priv = dmae;
 854
 855	dmae->rx_channel = dma_request_chan(mmc_dev(host->mmc), "rx");
 856	if (IS_ERR(dmae->rx_channel)) {
 857		int ret = PTR_ERR(dmae->rx_channel);
 858		dmae->rx_channel = NULL;
 859		return ret;
 860	}
 861
 862	dmae->tx_channel = dma_request_chan(mmc_dev(host->mmc), "tx");
 863	if (IS_ERR(dmae->tx_channel)) {
 864		if (PTR_ERR(dmae->tx_channel) == -EPROBE_DEFER)
 865			dev_warn(mmc_dev(host->mmc),
 866				 "Deferred probe for TX channel ignored\n");
 867		dmae->tx_channel = NULL;
 868	}
 869
 870	/*
 871	 * If only an RX channel is specified, the driver will
 872	 * attempt to use it bidirectionally, however if it
 873	 * is specified but cannot be located, DMA will be disabled.
 874	 */
 875	if (dmae->rx_channel && !dmae->tx_channel)
 876		dmae->tx_channel = dmae->rx_channel;
 877
 878	if (dmae->rx_channel)
 879		rxname = dma_chan_name(dmae->rx_channel);
 880	else
 881		rxname = "none";
 882
 883	if (dmae->tx_channel)
 884		txname = dma_chan_name(dmae->tx_channel);
 885	else
 886		txname = "none";
 887
 888	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
 889		 rxname, txname);
 890
 891	/*
 892	 * Limit the maximum segment size in any SG entry according to
 893	 * the parameters of the DMA engine device.
 894	 */
 895	if (dmae->tx_channel) {
 896		struct device *dev = dmae->tx_channel->device->dev;
 897		unsigned int max_seg_size = dma_get_max_seg_size(dev);
 898
 899		if (max_seg_size < host->mmc->max_seg_size)
 900			host->mmc->max_seg_size = max_seg_size;
 901	}
 902	if (dmae->rx_channel) {
 903		struct device *dev = dmae->rx_channel->device->dev;
 904		unsigned int max_seg_size = dma_get_max_seg_size(dev);
 905
 906		if (max_seg_size < host->mmc->max_seg_size)
 907			host->mmc->max_seg_size = max_seg_size;
 908	}
 909
 910	if (!dmae->tx_channel || !dmae->rx_channel) {
 911		mmci_dmae_release(host);
 912		return -EINVAL;
 913	}
 914
 915	return 0;
 916}
 917
 918/*
 919 * This is used in or so inline it
 920 * so it can be discarded.
 921 */
 922void mmci_dmae_release(struct mmci_host *host)
 923{
 924	struct mmci_dmae_priv *dmae = host->dma_priv;
 925
 926	if (dmae->rx_channel)
 927		dma_release_channel(dmae->rx_channel);
 928	if (dmae->tx_channel)
 929		dma_release_channel(dmae->tx_channel);
 930	dmae->rx_channel = dmae->tx_channel = NULL;
 931}
 932
 933static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
 934{
 935	struct mmci_dmae_priv *dmae = host->dma_priv;
 936	struct dma_chan *chan;
 937
 938	if (data->flags & MMC_DATA_READ)
 939		chan = dmae->rx_channel;
 940	else
 941		chan = dmae->tx_channel;
 942
 943	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
 944		     mmc_get_dma_dir(data));
 945}
 946
 947void mmci_dmae_error(struct mmci_host *host)
 948{
 949	struct mmci_dmae_priv *dmae = host->dma_priv;
 950
 951	if (!dma_inprogress(host))
 952		return;
 953
 954	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
 955	dmaengine_terminate_all(dmae->cur);
 956	host->dma_in_progress = false;
 957	dmae->cur = NULL;
 958	dmae->desc_current = NULL;
 959	host->data->host_cookie = 0;
 960
 961	mmci_dma_unmap(host, host->data);
 962}
 963
 964void mmci_dmae_finalize(struct mmci_host *host, struct mmc_data *data)
 965{
 966	struct mmci_dmae_priv *dmae = host->dma_priv;
 967	u32 status;
 968	int i;
 969
 970	if (!dma_inprogress(host))
 971		return;
 972
 973	/* Wait up to 1ms for the DMA to complete */
 974	for (i = 0; ; i++) {
 975		status = readl(host->base + MMCISTATUS);
 976		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
 977			break;
 978		udelay(10);
 979	}
 980
 981	/*
 982	 * Check to see whether we still have some data left in the FIFO -
 983	 * this catches DMA controllers which are unable to monitor the
 984	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
 985	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
 986	 */
 987	if (status & MCI_RXDATAAVLBLMASK) {
 988		mmci_dma_error(host);
 989		if (!data->error)
 990			data->error = -EIO;
 991	} else if (!data->host_cookie) {
 992		mmci_dma_unmap(host, data);
 993	}
 994
 995	/*
 996	 * Use of DMA with scatter-gather is impossible.
 997	 * Give up with DMA and switch back to PIO mode.
 998	 */
 999	if (status & MCI_RXDATAAVLBLMASK) {
1000		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
1001		mmci_dma_release(host);
1002	}
1003
1004	host->dma_in_progress = false;
1005	dmae->cur = NULL;
1006	dmae->desc_current = NULL;
1007}
1008
1009/* prepares DMA channel and DMA descriptor, returns non-zero on failure */
1010static int _mmci_dmae_prep_data(struct mmci_host *host, struct mmc_data *data,
1011				struct dma_chan **dma_chan,
1012				struct dma_async_tx_descriptor **dma_desc)
1013{
1014	struct mmci_dmae_priv *dmae = host->dma_priv;
1015	struct variant_data *variant = host->variant;
1016	struct dma_slave_config conf = {
1017		.src_addr = host->phybase + MMCIFIFO,
1018		.dst_addr = host->phybase + MMCIFIFO,
1019		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
1020		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
1021		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
1022		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
1023		.device_fc = variant->dma_flow_controller,
1024	};
1025	struct dma_chan *chan;
1026	struct dma_device *device;
1027	struct dma_async_tx_descriptor *desc;
1028	int nr_sg;
1029	unsigned long flags = DMA_CTRL_ACK;
1030
1031	if (data->flags & MMC_DATA_READ) {
1032		conf.direction = DMA_DEV_TO_MEM;
1033		chan = dmae->rx_channel;
1034	} else {
1035		conf.direction = DMA_MEM_TO_DEV;
1036		chan = dmae->tx_channel;
1037	}
1038
1039	/* If there's no DMA channel, fall back to PIO */
1040	if (!chan)
1041		return -EINVAL;
1042
1043	/* If less than or equal to the fifo size, don't bother with DMA */
1044	if (data->blksz * data->blocks <= variant->fifosize)
1045		return -EINVAL;
1046
1047	/*
1048	 * This is necessary to get SDIO working on the Ux500. We do not yet
1049	 * know if this is a bug in:
1050	 * - The Ux500 DMA controller (DMA40)
1051	 * - The MMCI DMA interface on the Ux500
1052	 * some power of two blocks (such as 64 bytes) are sent regularly
1053	 * during SDIO traffic and those work fine so for these we enable DMA
1054	 * transfers.
1055	 */
1056	if (host->variant->dma_power_of_2 && !is_power_of_2(data->blksz))
1057		return -EINVAL;
1058
1059	device = chan->device;
1060	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
1061			   mmc_get_dma_dir(data));
1062	if (nr_sg == 0)
1063		return -EINVAL;
1064
1065	if (host->variant->qcom_dml)
1066		flags |= DMA_PREP_INTERRUPT;
1067
1068	dmaengine_slave_config(chan, &conf);
1069	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
1070					    conf.direction, flags);
1071	if (!desc)
1072		goto unmap_exit;
1073
1074	*dma_chan = chan;
1075	*dma_desc = desc;
1076
1077	return 0;
1078
1079 unmap_exit:
1080	dma_unmap_sg(device->dev, data->sg, data->sg_len,
1081		     mmc_get_dma_dir(data));
1082	return -ENOMEM;
1083}
1084
1085int mmci_dmae_prep_data(struct mmci_host *host,
1086			struct mmc_data *data,
1087			bool next)
1088{
1089	struct mmci_dmae_priv *dmae = host->dma_priv;
1090	struct mmci_dmae_next *nd = &dmae->next_data;
1091
1092	if (!host->use_dma)
1093		return -EINVAL;
1094
1095	if (next)
1096		return _mmci_dmae_prep_data(host, data, &nd->chan, &nd->desc);
1097	/* Check if next job is already prepared. */
1098	if (dmae->cur && dmae->desc_current)
1099		return 0;
1100
1101	/* No job were prepared thus do it now. */
1102	return _mmci_dmae_prep_data(host, data, &dmae->cur,
1103				    &dmae->desc_current);
1104}
1105
1106int mmci_dmae_start(struct mmci_host *host, unsigned int *datactrl)
1107{
1108	struct mmci_dmae_priv *dmae = host->dma_priv;
1109	int ret;
1110
1111	host->dma_in_progress = true;
1112	ret = dma_submit_error(dmaengine_submit(dmae->desc_current));
1113	if (ret < 0) {
1114		host->dma_in_progress = false;
1115		return ret;
1116	}
1117	dma_async_issue_pending(dmae->cur);
1118
1119	*datactrl |= MCI_DPSM_DMAENABLE;
1120
1121	return 0;
1122}
1123
1124void mmci_dmae_get_next_data(struct mmci_host *host, struct mmc_data *data)
1125{
1126	struct mmci_dmae_priv *dmae = host->dma_priv;
1127	struct mmci_dmae_next *next = &dmae->next_data;
1128
1129	if (!host->use_dma)
1130		return;
1131
1132	WARN_ON(!data->host_cookie && (next->desc || next->chan));
1133
1134	dmae->desc_current = next->desc;
1135	dmae->cur = next->chan;
1136	next->desc = NULL;
1137	next->chan = NULL;
1138}
1139
1140void mmci_dmae_unprep_data(struct mmci_host *host,
1141			   struct mmc_data *data, int err)
1142
1143{
1144	struct mmci_dmae_priv *dmae = host->dma_priv;
1145
1146	if (!host->use_dma)
1147		return;
1148
1149	mmci_dma_unmap(host, data);
1150
1151	if (err) {
1152		struct mmci_dmae_next *next = &dmae->next_data;
1153		struct dma_chan *chan;
1154		if (data->flags & MMC_DATA_READ)
1155			chan = dmae->rx_channel;
1156		else
1157			chan = dmae->tx_channel;
1158		dmaengine_terminate_all(chan);
1159
1160		if (dmae->desc_current == next->desc)
1161			dmae->desc_current = NULL;
1162
1163		if (dmae->cur == next->chan) {
1164			host->dma_in_progress = false;
1165			dmae->cur = NULL;
1166		}
1167
1168		next->desc = NULL;
1169		next->chan = NULL;
1170	}
1171}
1172
1173static struct mmci_host_ops mmci_variant_ops = {
1174	.prep_data = mmci_dmae_prep_data,
1175	.unprep_data = mmci_dmae_unprep_data,
1176	.get_datactrl_cfg = mmci_get_dctrl_cfg,
1177	.get_next_data = mmci_dmae_get_next_data,
1178	.dma_setup = mmci_dmae_setup,
1179	.dma_release = mmci_dmae_release,
1180	.dma_start = mmci_dmae_start,
1181	.dma_finalize = mmci_dmae_finalize,
1182	.dma_error = mmci_dmae_error,
1183};
1184#else
1185static struct mmci_host_ops mmci_variant_ops = {
1186	.get_datactrl_cfg = mmci_get_dctrl_cfg,
1187};
1188#endif
1189
1190static void mmci_variant_init(struct mmci_host *host)
1191{
1192	host->ops = &mmci_variant_ops;
1193}
1194
1195static void ux500_variant_init(struct mmci_host *host)
1196{
1197	host->ops = &mmci_variant_ops;
1198	host->ops->busy_complete = ux500_busy_complete;
1199}
1200
1201static void ux500v2_variant_init(struct mmci_host *host)
1202{
1203	host->ops = &mmci_variant_ops;
1204	host->ops->busy_complete = ux500_busy_complete;
1205	host->ops->get_datactrl_cfg = ux500v2_get_dctrl_cfg;
1206}
1207
1208static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
1209{
1210	struct mmci_host *host = mmc_priv(mmc);
1211	struct mmc_data *data = mrq->data;
1212
1213	if (!data)
1214		return;
1215
1216	WARN_ON(data->host_cookie);
1217
1218	if (mmci_validate_data(host, data))
1219		return;
1220
1221	mmci_prep_data(host, data, true);
1222}
1223
1224static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
1225			      int err)
1226{
1227	struct mmci_host *host = mmc_priv(mmc);
1228	struct mmc_data *data = mrq->data;
1229
1230	if (!data || !data->host_cookie)
1231		return;
1232
1233	mmci_unprep_data(host, data, err);
1234}
1235
1236static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
1237{
1238	struct variant_data *variant = host->variant;
1239	unsigned int datactrl, timeout, irqmask;
1240	unsigned long long clks;
1241	void __iomem *base;
1242
1243	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
1244		data->blksz, data->blocks, data->flags);
1245
1246	host->data = data;
1247	host->size = data->blksz * data->blocks;
1248	data->bytes_xfered = 0;
1249
1250	clks = (unsigned long long)data->timeout_ns * host->cclk;
1251	do_div(clks, NSEC_PER_SEC);
1252
1253	timeout = data->timeout_clks + (unsigned int)clks;
1254
1255	base = host->base;
1256	writel(timeout, base + MMCIDATATIMER);
1257	writel(host->size, base + MMCIDATALENGTH);
1258
1259	datactrl = host->ops->get_datactrl_cfg(host);
1260	datactrl |= host->data->flags & MMC_DATA_READ ? MCI_DPSM_DIRECTION : 0;
1261
1262	if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
1263		u32 clk;
1264
1265		datactrl |= variant->datactrl_mask_sdio;
1266
1267		/*
1268		 * The ST Micro variant for SDIO small write transfers
1269		 * needs to have clock H/W flow control disabled,
1270		 * otherwise the transfer will not start. The threshold
1271		 * depends on the rate of MCLK.
1272		 */
1273		if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
1274		    (host->size < 8 ||
1275		     (host->size <= 8 && host->mclk > 50000000)))
1276			clk = host->clk_reg & ~variant->clkreg_enable;
1277		else
1278			clk = host->clk_reg | variant->clkreg_enable;
1279
1280		mmci_write_clkreg(host, clk);
1281	}
1282
1283	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
1284	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
1285		datactrl |= variant->datactrl_mask_ddrmode;
1286
1287	/*
1288	 * Attempt to use DMA operation mode, if this
1289	 * should fail, fall back to PIO mode
1290	 */
1291	if (!mmci_dma_start(host, datactrl))
1292		return;
1293
1294	/* IRQ mode, map the SG list for CPU reading/writing */
1295	mmci_init_sg(host, data);
1296
1297	if (data->flags & MMC_DATA_READ) {
1298		irqmask = MCI_RXFIFOHALFFULLMASK;
1299
1300		/*
1301		 * If we have less than the fifo 'half-full' threshold to
1302		 * transfer, trigger a PIO interrupt as soon as any data
1303		 * is available.
1304		 */
1305		if (host->size < variant->fifohalfsize)
1306			irqmask |= MCI_RXDATAAVLBLMASK;
1307	} else {
1308		/*
1309		 * We don't actually need to include "FIFO empty" here
1310		 * since its implicit in "FIFO half empty".
1311		 */
1312		irqmask = MCI_TXFIFOHALFEMPTYMASK;
1313	}
1314
1315	mmci_write_datactrlreg(host, datactrl);
1316	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
1317	mmci_set_mask1(host, irqmask);
1318}
1319
1320static void
1321mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
1322{
1323	void __iomem *base = host->base;
1324	bool busy_resp = cmd->flags & MMC_RSP_BUSY;
1325	unsigned long long clks;
1326
1327	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
1328	    cmd->opcode, cmd->arg, cmd->flags);
1329
1330	if (readl(base + MMCICOMMAND) & host->variant->cmdreg_cpsm_enable) {
1331		writel(0, base + MMCICOMMAND);
1332		mmci_reg_delay(host);
1333	}
1334
1335	if (host->variant->cmdreg_stop &&
1336	    cmd->opcode == MMC_STOP_TRANSMISSION)
1337		c |= host->variant->cmdreg_stop;
1338
1339	c |= cmd->opcode | host->variant->cmdreg_cpsm_enable;
1340	if (cmd->flags & MMC_RSP_PRESENT) {
1341		if (cmd->flags & MMC_RSP_136)
1342			c |= host->variant->cmdreg_lrsp_crc;
1343		else if (cmd->flags & MMC_RSP_CRC)
1344			c |= host->variant->cmdreg_srsp_crc;
1345		else
1346			c |= host->variant->cmdreg_srsp;
1347	}
1348
1349	host->busy_status = 0;
1350	host->busy_state = MMCI_BUSY_DONE;
 
1351
1352	/* Assign a default timeout if the core does not provide one */
1353	if (busy_resp && !cmd->busy_timeout)
1354		cmd->busy_timeout = 10 * MSEC_PER_SEC;
1355
1356	if (busy_resp && host->variant->busy_timeout) {
1357		if (cmd->busy_timeout > host->mmc->max_busy_timeout)
1358			clks = (unsigned long long)host->mmc->max_busy_timeout * host->cclk;
1359		else
1360			clks = (unsigned long long)cmd->busy_timeout * host->cclk;
1361
1362		do_div(clks, MSEC_PER_SEC);
1363		writel_relaxed(clks, host->base + MMCIDATATIMER);
1364	}
1365
1366	if (host->ops->pre_sig_volt_switch && cmd->opcode == SD_SWITCH_VOLTAGE)
1367		host->ops->pre_sig_volt_switch(host);
1368
1369	if (/*interrupt*/0)
1370		c |= MCI_CPSM_INTERRUPT;
1371
1372	if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
1373		c |= host->variant->data_cmd_enable;
1374
1375	host->cmd = cmd;
1376
1377	writel(cmd->arg, base + MMCIARGUMENT);
1378	writel(c, base + MMCICOMMAND);
1379}
1380
1381static void mmci_stop_command(struct mmci_host *host)
1382{
1383	host->stop_abort.error = 0;
1384	mmci_start_command(host, &host->stop_abort, 0);
1385}
1386
1387static void
1388mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
1389	      unsigned int status)
1390{
1391	unsigned int status_err;
1392
1393	/* Make sure we have data to handle */
1394	if (!data)
1395		return;
1396
1397	/* First check for errors */
1398	status_err = status & (host->variant->start_err |
1399			       MCI_DATACRCFAIL | MCI_DATATIMEOUT |
1400			       MCI_TXUNDERRUN | MCI_RXOVERRUN);
1401
1402	if (status_err) {
1403		u32 remain, success;
1404
1405		/* Terminate the DMA transfer */
1406		mmci_dma_error(host);
1407
1408		/*
1409		 * Calculate how far we are into the transfer.  Note that
1410		 * the data counter gives the number of bytes transferred
1411		 * on the MMC bus, not on the host side.  On reads, this
1412		 * can be as much as a FIFO-worth of data ahead.  This
1413		 * matters for FIFO overruns only.
1414		 */
1415		if (!host->variant->datacnt_useless) {
1416			remain = readl(host->base + MMCIDATACNT);
1417			success = data->blksz * data->blocks - remain;
1418		} else {
1419			success = 0;
1420		}
1421
1422		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
1423			status_err, success);
1424		if (status_err & MCI_DATACRCFAIL) {
1425			/* Last block was not successful */
1426			success -= 1;
1427			data->error = -EILSEQ;
1428		} else if (status_err & MCI_DATATIMEOUT) {
1429			data->error = -ETIMEDOUT;
1430		} else if (status_err & MCI_STARTBITERR) {
1431			data->error = -ECOMM;
1432		} else if (status_err & MCI_TXUNDERRUN) {
1433			data->error = -EIO;
1434		} else if (status_err & MCI_RXOVERRUN) {
1435			if (success > host->variant->fifosize)
1436				success -= host->variant->fifosize;
1437			else
1438				success = 0;
1439			data->error = -EIO;
1440		}
1441		data->bytes_xfered = round_down(success, data->blksz);
1442	}
1443
1444	if (status & MCI_DATABLOCKEND)
1445		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1446
1447	if (status & MCI_DATAEND || data->error) {
1448		mmci_dma_finalize(host, data);
1449
1450		mmci_stop_data(host);
1451
1452		if (!data->error)
1453			/* The error clause is handled above, success! */
1454			data->bytes_xfered = data->blksz * data->blocks;
1455
1456		if (!data->stop) {
1457			if (host->variant->cmdreg_stop && data->error)
1458				mmci_stop_command(host);
1459			else
1460				mmci_request_end(host, data->mrq);
1461		} else if (host->mrq->sbc && !data->error) {
1462			mmci_request_end(host, data->mrq);
1463		} else {
1464			mmci_start_command(host, data->stop, 0);
1465		}
1466	}
1467}
1468
1469static void
1470mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1471	     unsigned int status)
1472{
1473	u32 err_msk = MCI_CMDCRCFAIL | MCI_CMDTIMEOUT;
1474	void __iomem *base = host->base;
1475	bool sbc, busy_resp;
1476
1477	if (!cmd)
1478		return;
1479
1480	sbc = (cmd == host->mrq->sbc);
1481	busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1482
1483	/*
1484	 * We need to be one of these interrupts to be considered worth
1485	 * handling. Note that we tag on any latent IRQs postponed
1486	 * due to waiting for busy status.
1487	 */
1488	if (host->variant->busy_timeout && busy_resp)
1489		err_msk |= MCI_DATATIMEOUT;
1490
1491	if (!((status | host->busy_status) &
1492	      (err_msk | MCI_CMDSENT | MCI_CMDRESPEND)))
1493		return;
1494
1495	/* Handle busy detection on DAT0 if the variant supports it. */
1496	if (busy_resp && host->variant->busy_detect)
1497		if (!host->ops->busy_complete(host, cmd, status, err_msk))
1498			return;
1499
1500	host->cmd = NULL;
1501
1502	if (status & MCI_CMDTIMEOUT) {
1503		cmd->error = -ETIMEDOUT;
1504	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1505		cmd->error = -EILSEQ;
1506	} else if (host->variant->busy_timeout && busy_resp &&
1507		   status & MCI_DATATIMEOUT) {
1508		cmd->error = -ETIMEDOUT;
1509		/*
1510		 * This will wake up mmci_irq_thread() which will issue
1511		 * a hardware reset of the MMCI block.
1512		 */
1513		host->irq_action = IRQ_WAKE_THREAD;
1514	} else {
1515		cmd->resp[0] = readl(base + MMCIRESPONSE0);
1516		cmd->resp[1] = readl(base + MMCIRESPONSE1);
1517		cmd->resp[2] = readl(base + MMCIRESPONSE2);
1518		cmd->resp[3] = readl(base + MMCIRESPONSE3);
1519	}
1520
1521	if ((!sbc && !cmd->data) || cmd->error) {
1522		if (host->data) {
1523			/* Terminate the DMA transfer */
1524			mmci_dma_error(host);
1525
1526			mmci_stop_data(host);
1527			if (host->variant->cmdreg_stop && cmd->error) {
1528				mmci_stop_command(host);
1529				return;
1530			}
1531		}
1532
1533		if (host->irq_action != IRQ_WAKE_THREAD)
1534			mmci_request_end(host, host->mrq);
1535
1536	} else if (sbc) {
1537		mmci_start_command(host, host->mrq->cmd, 0);
1538	} else if (!host->variant->datactrl_first &&
1539		   !(cmd->data->flags & MMC_DATA_READ)) {
1540		mmci_start_data(host, cmd->data);
1541	}
1542}
1543
1544static char *ux500_state_str(struct mmci_host *host)
1545{
1546	switch (host->busy_state) {
1547	case MMCI_BUSY_WAITING_FOR_START_IRQ:
1548		return "waiting for start IRQ";
1549	case MMCI_BUSY_WAITING_FOR_END_IRQ:
1550		return "waiting for end IRQ";
1551	case MMCI_BUSY_DONE:
1552		return "not waiting for IRQs";
1553	default:
1554		return "unknown";
1555	}
1556}
1557
1558/*
1559 * This busy timeout worker is used to "kick" the command IRQ if a
1560 * busy detect IRQ fails to appear in reasonable time. Only used on
1561 * variants with busy detection IRQ delivery.
1562 */
1563static void ux500_busy_timeout_work(struct work_struct *work)
1564{
1565	struct mmci_host *host = container_of(work, struct mmci_host,
1566					ux500_busy_timeout_work.work);
1567	unsigned long flags;
1568	u32 status;
1569
1570	spin_lock_irqsave(&host->lock, flags);
1571
1572	if (host->cmd) {
1573		/* If we are still busy let's tag on a cmd-timeout error. */
1574		status = readl(host->base + MMCISTATUS);
1575		if (status & host->variant->busy_detect_flag) {
1576			status |= MCI_CMDTIMEOUT;
1577			dev_err(mmc_dev(host->mmc),
1578				"timeout in state %s still busy with CMD%02x\n",
1579				ux500_state_str(host), host->cmd->opcode);
1580		} else {
1581			dev_err(mmc_dev(host->mmc),
1582				"timeout in state %s waiting for busy CMD%02x\n",
1583				ux500_state_str(host), host->cmd->opcode);
1584		}
1585
1586		mmci_cmd_irq(host, host->cmd, status);
1587	}
1588
1589	spin_unlock_irqrestore(&host->lock, flags);
1590}
1591
1592static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1593{
1594	return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1595}
1596
1597static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1598{
1599	/*
1600	 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1601	 * from the fifo range should be used
1602	 */
1603	if (status & MCI_RXFIFOHALFFULL)
1604		return host->variant->fifohalfsize;
1605	else if (status & MCI_RXDATAAVLBL)
1606		return 4;
1607
1608	return 0;
1609}
1610
1611static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1612{
1613	void __iomem *base = host->base;
1614	char *ptr = buffer;
1615	u32 status = readl(host->base + MMCISTATUS);
1616	int host_remain = host->size;
1617
1618	do {
1619		int count = host->get_rx_fifocnt(host, status, host_remain);
1620
1621		if (count > remain)
1622			count = remain;
1623
1624		if (count <= 0)
1625			break;
1626
1627		/*
1628		 * SDIO especially may want to send something that is
1629		 * not divisible by 4 (as opposed to card sectors
1630		 * etc). Therefore make sure to always read the last bytes
1631		 * while only doing full 32-bit reads towards the FIFO.
1632		 */
1633		if (unlikely(count & 0x3)) {
1634			if (count < 4) {
1635				unsigned char buf[4];
1636				ioread32_rep(base + MMCIFIFO, buf, 1);
1637				memcpy(ptr, buf, count);
1638			} else {
1639				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1640				count &= ~0x3;
1641			}
1642		} else {
1643			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1644		}
1645
1646		ptr += count;
1647		remain -= count;
1648		host_remain -= count;
1649
1650		if (remain == 0)
1651			break;
1652
1653		status = readl(base + MMCISTATUS);
1654	} while (status & MCI_RXDATAAVLBL);
1655
1656	return ptr - buffer;
1657}
1658
1659static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1660{
1661	struct variant_data *variant = host->variant;
1662	void __iomem *base = host->base;
1663	char *ptr = buffer;
1664
1665	do {
1666		unsigned int count, maxcnt;
1667
1668		maxcnt = status & MCI_TXFIFOEMPTY ?
1669			 variant->fifosize : variant->fifohalfsize;
1670		count = min(remain, maxcnt);
1671
1672		/*
1673		 * SDIO especially may want to send something that is
1674		 * not divisible by 4 (as opposed to card sectors
1675		 * etc), and the FIFO only accept full 32-bit writes.
1676		 * So compensate by adding +3 on the count, a single
1677		 * byte become a 32bit write, 7 bytes will be two
1678		 * 32bit writes etc.
1679		 */
1680		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1681
1682		ptr += count;
1683		remain -= count;
1684
1685		if (remain == 0)
1686			break;
1687
1688		status = readl(base + MMCISTATUS);
1689	} while (status & MCI_TXFIFOHALFEMPTY);
1690
1691	return ptr - buffer;
1692}
1693
1694/*
1695 * PIO data transfer IRQ handler.
1696 */
1697static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1698{
1699	struct mmci_host *host = dev_id;
1700	struct sg_mapping_iter *sg_miter = &host->sg_miter;
1701	struct variant_data *variant = host->variant;
1702	void __iomem *base = host->base;
1703	u32 status;
1704
1705	status = readl(base + MMCISTATUS);
1706
1707	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1708
1709	do {
1710		unsigned int remain, len;
1711		char *buffer;
1712
1713		/*
1714		 * For write, we only need to test the half-empty flag
1715		 * here - if the FIFO is completely empty, then by
1716		 * definition it is more than half empty.
1717		 *
1718		 * For read, check for data available.
1719		 */
1720		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1721			break;
1722
1723		if (!sg_miter_next(sg_miter))
1724			break;
1725
1726		buffer = sg_miter->addr;
1727		remain = sg_miter->length;
1728
1729		len = 0;
1730		if (status & MCI_RXACTIVE)
1731			len = mmci_pio_read(host, buffer, remain);
1732		if (status & MCI_TXACTIVE)
1733			len = mmci_pio_write(host, buffer, remain, status);
1734
1735		sg_miter->consumed = len;
1736
1737		host->size -= len;
1738		remain -= len;
1739
1740		if (remain)
1741			break;
1742
1743		status = readl(base + MMCISTATUS);
1744	} while (1);
1745
1746	sg_miter_stop(sg_miter);
1747
1748	/*
1749	 * If we have less than the fifo 'half-full' threshold to transfer,
1750	 * trigger a PIO interrupt as soon as any data is available.
1751	 */
1752	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1753		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1754
1755	/*
1756	 * If we run out of data, disable the data IRQs; this
1757	 * prevents a race where the FIFO becomes empty before
1758	 * the chip itself has disabled the data path, and
1759	 * stops us racing with our data end IRQ.
1760	 */
1761	if (host->size == 0) {
1762		mmci_set_mask1(host, 0);
1763		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1764	}
1765
1766	return IRQ_HANDLED;
1767}
1768
1769static void mmci_write_sdio_irq_bit(struct mmci_host *host, int enable)
1770{
1771	void __iomem *base = host->base;
1772	u32 mask = readl_relaxed(base + MMCIMASK0);
1773
1774	if (enable)
1775		writel_relaxed(mask | MCI_ST_SDIOITMASK, base + MMCIMASK0);
1776	else
1777		writel_relaxed(mask & ~MCI_ST_SDIOITMASK, base + MMCIMASK0);
1778}
1779
1780static void mmci_signal_sdio_irq(struct mmci_host *host, u32 status)
1781{
1782	if (status & MCI_ST_SDIOIT) {
1783		mmci_write_sdio_irq_bit(host, 0);
1784		sdio_signal_irq(host->mmc);
1785	}
1786}
1787
1788/*
1789 * Handle completion of command and data transfers.
1790 */
1791static irqreturn_t mmci_irq(int irq, void *dev_id)
1792{
1793	struct mmci_host *host = dev_id;
1794	u32 status;
1795
1796	spin_lock(&host->lock);
1797	host->irq_action = IRQ_HANDLED;
1798
1799	do {
1800		status = readl(host->base + MMCISTATUS);
1801		if (!status)
1802			break;
1803
1804		if (host->singleirq) {
1805			if (status & host->mask1_reg)
1806				mmci_pio_irq(irq, dev_id);
1807
1808			status &= ~host->variant->irq_pio_mask;
1809		}
1810
1811		/*
1812		 * Busy detection is managed by mmci_cmd_irq(), including to
1813		 * clear the corresponding IRQ.
1814		 */
1815		status &= readl(host->base + MMCIMASK0);
1816		if (host->variant->busy_detect)
1817			writel(status & ~host->variant->busy_detect_mask,
1818			       host->base + MMCICLEAR);
1819		else
1820			writel(status, host->base + MMCICLEAR);
1821
1822		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1823
1824		if (host->variant->reversed_irq_handling) {
1825			mmci_data_irq(host, host->data, status);
1826			mmci_cmd_irq(host, host->cmd, status);
1827		} else {
1828			mmci_cmd_irq(host, host->cmd, status);
1829			mmci_data_irq(host, host->data, status);
1830		}
1831
1832		if (host->variant->supports_sdio_irq)
1833			mmci_signal_sdio_irq(host, status);
1834
1835		/*
1836		 * Busy detection has been handled by mmci_cmd_irq() above.
1837		 * Clear the status bit to prevent polling in IRQ context.
1838		 */
1839		if (host->variant->busy_detect_flag)
1840			status &= ~host->variant->busy_detect_flag;
1841
1842	} while (status);
1843
1844	spin_unlock(&host->lock);
1845
1846	return host->irq_action;
1847}
1848
1849/*
1850 * mmci_irq_thread() - A threaded IRQ handler that manages a reset of the HW.
1851 *
1852 * A reset is needed for some variants, where a datatimeout for a R1B request
1853 * causes the DPSM to stay busy (non-functional).
1854 */
1855static irqreturn_t mmci_irq_thread(int irq, void *dev_id)
1856{
1857	struct mmci_host *host = dev_id;
1858	unsigned long flags;
1859
1860	if (host->rst) {
1861		reset_control_assert(host->rst);
1862		udelay(2);
1863		reset_control_deassert(host->rst);
1864	}
1865
1866	spin_lock_irqsave(&host->lock, flags);
1867	writel(host->clk_reg, host->base + MMCICLOCK);
1868	writel(host->pwr_reg, host->base + MMCIPOWER);
1869	writel(MCI_IRQENABLE | host->variant->start_err,
1870	       host->base + MMCIMASK0);
1871
1872	host->irq_action = IRQ_HANDLED;
1873	mmci_request_end(host, host->mrq);
1874	spin_unlock_irqrestore(&host->lock, flags);
1875
1876	return host->irq_action;
1877}
1878
1879static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1880{
1881	struct mmci_host *host = mmc_priv(mmc);
1882	unsigned long flags;
1883
1884	WARN_ON(host->mrq != NULL);
1885
1886	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1887	if (mrq->cmd->error) {
1888		mmc_request_done(mmc, mrq);
1889		return;
1890	}
1891
1892	spin_lock_irqsave(&host->lock, flags);
1893
1894	host->mrq = mrq;
1895
1896	if (mrq->data)
1897		mmci_get_next_data(host, mrq->data);
1898
1899	if (mrq->data &&
1900	    (host->variant->datactrl_first || mrq->data->flags & MMC_DATA_READ))
1901		mmci_start_data(host, mrq->data);
1902
1903	if (mrq->sbc)
1904		mmci_start_command(host, mrq->sbc, 0);
1905	else
1906		mmci_start_command(host, mrq->cmd, 0);
1907
1908	spin_unlock_irqrestore(&host->lock, flags);
1909}
1910
1911static void mmci_set_max_busy_timeout(struct mmc_host *mmc)
1912{
1913	struct mmci_host *host = mmc_priv(mmc);
1914	u32 max_busy_timeout = 0;
1915
1916	if (!host->variant->busy_detect)
1917		return;
1918
1919	if (host->variant->busy_timeout && mmc->actual_clock)
1920		max_busy_timeout = U32_MAX / DIV_ROUND_UP(mmc->actual_clock,
1921							  MSEC_PER_SEC);
1922
1923	mmc->max_busy_timeout = max_busy_timeout;
1924}
1925
1926static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1927{
1928	struct mmci_host *host = mmc_priv(mmc);
1929	struct variant_data *variant = host->variant;
1930	u32 pwr = 0;
1931	unsigned long flags;
1932	int ret;
1933
1934	switch (ios->power_mode) {
1935	case MMC_POWER_OFF:
1936		if (!IS_ERR(mmc->supply.vmmc))
1937			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1938
1939		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1940			regulator_disable(mmc->supply.vqmmc);
1941			host->vqmmc_enabled = false;
1942		}
1943
1944		break;
1945	case MMC_POWER_UP:
1946		if (!IS_ERR(mmc->supply.vmmc))
1947			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1948
1949		/*
1950		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1951		 * and instead uses MCI_PWR_ON so apply whatever value is
1952		 * configured in the variant data.
1953		 */
1954		pwr |= variant->pwrreg_powerup;
1955
1956		break;
1957	case MMC_POWER_ON:
1958		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1959			ret = regulator_enable(mmc->supply.vqmmc);
1960			if (ret < 0)
1961				dev_err(mmc_dev(mmc),
1962					"failed to enable vqmmc regulator\n");
1963			else
1964				host->vqmmc_enabled = true;
1965		}
1966
1967		pwr |= MCI_PWR_ON;
1968		break;
1969	}
1970
1971	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1972		/*
1973		 * The ST Micro variant has some additional bits
1974		 * indicating signal direction for the signals in
1975		 * the SD/MMC bus and feedback-clock usage.
1976		 */
1977		pwr |= host->pwr_reg_add;
1978
1979		if (ios->bus_width == MMC_BUS_WIDTH_4)
1980			pwr &= ~MCI_ST_DATA74DIREN;
1981		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1982			pwr &= (~MCI_ST_DATA74DIREN &
1983				~MCI_ST_DATA31DIREN &
1984				~MCI_ST_DATA2DIREN);
1985	}
1986
1987	if (variant->opendrain) {
1988		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1989			pwr |= variant->opendrain;
1990	} else {
1991		/*
1992		 * If the variant cannot configure the pads by its own, then we
1993		 * expect the pinctrl to be able to do that for us
1994		 */
1995		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1996			pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1997		else
1998			pinctrl_select_default_state(mmc_dev(mmc));
1999	}
2000
2001	/*
2002	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
2003	 * gating the clock, the MCI_PWR_ON bit is cleared.
2004	 */
2005	if (!ios->clock && variant->pwrreg_clkgate)
2006		pwr &= ~MCI_PWR_ON;
2007
2008	if (host->variant->explicit_mclk_control &&
2009	    ios->clock != host->clock_cache) {
2010		ret = clk_set_rate(host->clk, ios->clock);
2011		if (ret < 0)
2012			dev_err(mmc_dev(host->mmc),
2013				"Error setting clock rate (%d)\n", ret);
2014		else
2015			host->mclk = clk_get_rate(host->clk);
2016	}
2017	host->clock_cache = ios->clock;
2018
2019	spin_lock_irqsave(&host->lock, flags);
2020
2021	if (host->ops && host->ops->set_clkreg)
2022		host->ops->set_clkreg(host, ios->clock);
2023	else
2024		mmci_set_clkreg(host, ios->clock);
2025
2026	mmci_set_max_busy_timeout(mmc);
2027
2028	if (host->ops && host->ops->set_pwrreg)
2029		host->ops->set_pwrreg(host, pwr);
2030	else
2031		mmci_write_pwrreg(host, pwr);
2032
2033	mmci_reg_delay(host);
2034
2035	spin_unlock_irqrestore(&host->lock, flags);
2036}
2037
2038static int mmci_get_cd(struct mmc_host *mmc)
2039{
2040	struct mmci_host *host = mmc_priv(mmc);
2041	struct mmci_platform_data *plat = host->plat;
2042	unsigned int status = mmc_gpio_get_cd(mmc);
2043
2044	if (status == -ENOSYS) {
2045		if (!plat->status)
2046			return 1; /* Assume always present */
2047
2048		status = plat->status(mmc_dev(host->mmc));
2049	}
2050	return status;
2051}
2052
2053static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
2054{
2055	struct mmci_host *host = mmc_priv(mmc);
2056	int ret;
2057
2058	ret = mmc_regulator_set_vqmmc(mmc, ios);
2059
2060	if (!ret && host->ops && host->ops->post_sig_volt_switch)
2061		ret = host->ops->post_sig_volt_switch(host, ios);
2062	else if (ret)
2063		ret = 0;
2064
2065	if (ret < 0)
2066		dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
2067
2068	return ret;
2069}
2070
2071static void mmci_enable_sdio_irq(struct mmc_host *mmc, int enable)
2072{
2073	struct mmci_host *host = mmc_priv(mmc);
2074	unsigned long flags;
2075
2076	if (enable)
2077		/* Keep the SDIO mode bit if SDIO irqs are enabled */
2078		pm_runtime_get_sync(mmc_dev(mmc));
2079
2080	spin_lock_irqsave(&host->lock, flags);
2081	mmci_write_sdio_irq_bit(host, enable);
2082	spin_unlock_irqrestore(&host->lock, flags);
2083
2084	if (!enable) {
2085		pm_runtime_mark_last_busy(mmc_dev(mmc));
2086		pm_runtime_put_autosuspend(mmc_dev(mmc));
2087	}
2088}
2089
2090static void mmci_ack_sdio_irq(struct mmc_host *mmc)
2091{
2092	struct mmci_host *host = mmc_priv(mmc);
2093	unsigned long flags;
2094
2095	spin_lock_irqsave(&host->lock, flags);
2096	mmci_write_sdio_irq_bit(host, 1);
2097	spin_unlock_irqrestore(&host->lock, flags);
2098}
2099
2100static struct mmc_host_ops mmci_ops = {
2101	.request	= mmci_request,
2102	.pre_req	= mmci_pre_request,
2103	.post_req	= mmci_post_request,
2104	.set_ios	= mmci_set_ios,
2105	.get_ro		= mmc_gpio_get_ro,
2106	.get_cd		= mmci_get_cd,
2107	.start_signal_voltage_switch = mmci_sig_volt_switch,
2108};
2109
2110static void mmci_probe_level_translator(struct mmc_host *mmc)
2111{
2112	struct device *dev = mmc_dev(mmc);
2113	struct mmci_host *host = mmc_priv(mmc);
2114	struct gpio_desc *cmd_gpio;
2115	struct gpio_desc *ck_gpio;
2116	struct gpio_desc *ckin_gpio;
2117	int clk_hi, clk_lo;
2118
2119	/*
2120	 * Assume the level translator is present if st,use-ckin is set.
2121	 * This is to cater for DTs which do not implement this test.
2122	 */
2123	host->clk_reg_add |= MCI_STM32_CLK_SELCKIN;
2124
2125	cmd_gpio = gpiod_get(dev, "st,cmd", GPIOD_OUT_HIGH);
2126	if (IS_ERR(cmd_gpio))
2127		goto exit_cmd;
2128
2129	ck_gpio = gpiod_get(dev, "st,ck", GPIOD_OUT_HIGH);
2130	if (IS_ERR(ck_gpio))
2131		goto exit_ck;
2132
2133	ckin_gpio = gpiod_get(dev, "st,ckin", GPIOD_IN);
2134	if (IS_ERR(ckin_gpio))
2135		goto exit_ckin;
2136
2137	/* All GPIOs are valid, test whether level translator works */
2138
2139	/* Sample CKIN */
2140	clk_hi = !!gpiod_get_value(ckin_gpio);
2141
2142	/* Set CK low */
2143	gpiod_set_value(ck_gpio, 0);
2144
2145	/* Sample CKIN */
2146	clk_lo = !!gpiod_get_value(ckin_gpio);
2147
2148	/* Tristate all */
2149	gpiod_direction_input(cmd_gpio);
2150	gpiod_direction_input(ck_gpio);
2151
2152	/* Level translator is present if CK signal is propagated to CKIN */
2153	if (!clk_hi || clk_lo) {
2154		host->clk_reg_add &= ~MCI_STM32_CLK_SELCKIN;
2155		dev_warn(dev,
2156			 "Level translator inoperable, CK signal not detected on CKIN, disabling.\n");
2157	}
2158
2159	gpiod_put(ckin_gpio);
2160
2161exit_ckin:
2162	gpiod_put(ck_gpio);
2163exit_ck:
2164	gpiod_put(cmd_gpio);
2165exit_cmd:
2166	pinctrl_select_default_state(dev);
2167}
2168
2169static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
2170{
2171	struct mmci_host *host = mmc_priv(mmc);
2172	int ret = mmc_of_parse(mmc);
2173
2174	if (ret)
2175		return ret;
2176
2177	if (of_property_read_bool(np, "st,sig-dir-dat0"))
2178		host->pwr_reg_add |= MCI_ST_DATA0DIREN;
2179	if (of_property_read_bool(np, "st,sig-dir-dat2"))
2180		host->pwr_reg_add |= MCI_ST_DATA2DIREN;
2181	if (of_property_read_bool(np, "st,sig-dir-dat31"))
2182		host->pwr_reg_add |= MCI_ST_DATA31DIREN;
2183	if (of_property_read_bool(np, "st,sig-dir-dat74"))
2184		host->pwr_reg_add |= MCI_ST_DATA74DIREN;
2185	if (of_property_read_bool(np, "st,sig-dir-cmd"))
2186		host->pwr_reg_add |= MCI_ST_CMDDIREN;
2187	if (of_property_read_bool(np, "st,sig-pin-fbclk"))
2188		host->pwr_reg_add |= MCI_ST_FBCLKEN;
2189	if (of_property_read_bool(np, "st,sig-dir"))
2190		host->pwr_reg_add |= MCI_STM32_DIRPOL;
2191	if (of_property_read_bool(np, "st,neg-edge"))
2192		host->clk_reg_add |= MCI_STM32_CLK_NEGEDGE;
2193	if (of_property_read_bool(np, "st,use-ckin"))
2194		mmci_probe_level_translator(mmc);
2195
2196	if (of_property_read_bool(np, "mmc-cap-mmc-highspeed"))
2197		mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
2198	if (of_property_read_bool(np, "mmc-cap-sd-highspeed"))
2199		mmc->caps |= MMC_CAP_SD_HIGHSPEED;
2200
2201	return 0;
2202}
2203
2204static int mmci_probe(struct amba_device *dev,
2205	const struct amba_id *id)
2206{
2207	struct mmci_platform_data *plat = dev->dev.platform_data;
2208	struct device_node *np = dev->dev.of_node;
2209	struct variant_data *variant = id->data;
2210	struct mmci_host *host;
2211	struct mmc_host *mmc;
2212	int ret;
2213
2214	/* Must have platform data or Device Tree. */
2215	if (!plat && !np) {
2216		dev_err(&dev->dev, "No plat data or DT found\n");
2217		return -EINVAL;
2218	}
2219
2220	if (!plat) {
2221		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
2222		if (!plat)
2223			return -ENOMEM;
2224	}
2225
2226	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
2227	if (!mmc)
2228		return -ENOMEM;
2229
2230	host = mmc_priv(mmc);
2231	host->mmc = mmc;
2232	host->mmc_ops = &mmci_ops;
2233	mmc->ops = &mmci_ops;
2234
2235	ret = mmci_of_parse(np, mmc);
2236	if (ret)
2237		goto host_free;
2238
2239	/*
2240	 * Some variant (STM32) doesn't have opendrain bit, nevertheless
2241	 * pins can be set accordingly using pinctrl
2242	 */
2243	if (!variant->opendrain) {
2244		host->pinctrl = devm_pinctrl_get(&dev->dev);
2245		if (IS_ERR(host->pinctrl)) {
2246			dev_err(&dev->dev, "failed to get pinctrl");
2247			ret = PTR_ERR(host->pinctrl);
2248			goto host_free;
2249		}
2250
2251		host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
2252							    MMCI_PINCTRL_STATE_OPENDRAIN);
2253		if (IS_ERR(host->pins_opendrain)) {
2254			dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
2255			ret = PTR_ERR(host->pins_opendrain);
2256			goto host_free;
2257		}
2258	}
2259
2260	host->hw_designer = amba_manf(dev);
2261	host->hw_revision = amba_rev(dev);
2262	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
2263	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
2264
2265	host->clk = devm_clk_get(&dev->dev, NULL);
2266	if (IS_ERR(host->clk)) {
2267		ret = PTR_ERR(host->clk);
2268		goto host_free;
2269	}
2270
2271	ret = clk_prepare_enable(host->clk);
2272	if (ret)
2273		goto host_free;
2274
2275	if (variant->qcom_fifo)
2276		host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
2277	else
2278		host->get_rx_fifocnt = mmci_get_rx_fifocnt;
2279
2280	host->plat = plat;
2281	host->variant = variant;
2282	host->mclk = clk_get_rate(host->clk);
2283	/*
2284	 * According to the spec, mclk is max 100 MHz,
2285	 * so we try to adjust the clock down to this,
2286	 * (if possible).
2287	 */
2288	if (host->mclk > variant->f_max) {
2289		ret = clk_set_rate(host->clk, variant->f_max);
2290		if (ret < 0)
2291			goto clk_disable;
2292		host->mclk = clk_get_rate(host->clk);
2293		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
2294			host->mclk);
2295	}
2296
2297	host->phybase = dev->res.start;
2298	host->base = devm_ioremap_resource(&dev->dev, &dev->res);
2299	if (IS_ERR(host->base)) {
2300		ret = PTR_ERR(host->base);
2301		goto clk_disable;
2302	}
2303
2304	if (variant->init)
2305		variant->init(host);
2306
2307	/*
2308	 * The ARM and ST versions of the block have slightly different
2309	 * clock divider equations which means that the minimum divider
2310	 * differs too.
2311	 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
2312	 */
2313	if (variant->st_clkdiv)
2314		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
2315	else if (variant->stm32_clkdiv)
2316		mmc->f_min = DIV_ROUND_UP(host->mclk, 2046);
2317	else if (variant->explicit_mclk_control)
2318		mmc->f_min = clk_round_rate(host->clk, 100000);
2319	else
2320		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
2321	/*
2322	 * If no maximum operating frequency is supplied, fall back to use
2323	 * the module parameter, which has a (low) default value in case it
2324	 * is not specified. Either value must not exceed the clock rate into
2325	 * the block, of course.
2326	 */
2327	if (mmc->f_max)
2328		mmc->f_max = variant->explicit_mclk_control ?
2329				min(variant->f_max, mmc->f_max) :
2330				min(host->mclk, mmc->f_max);
2331	else
2332		mmc->f_max = variant->explicit_mclk_control ?
2333				fmax : min(host->mclk, fmax);
2334
2335
2336	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
2337
2338	host->rst = devm_reset_control_get_optional_exclusive(&dev->dev, NULL);
2339	if (IS_ERR(host->rst)) {
2340		ret = PTR_ERR(host->rst);
2341		goto clk_disable;
2342	}
2343	ret = reset_control_deassert(host->rst);
2344	if (ret)
2345		dev_err(mmc_dev(mmc), "failed to de-assert reset\n");
2346
2347	/* Get regulators and the supported OCR mask */
2348	ret = mmc_regulator_get_supply(mmc);
2349	if (ret)
2350		goto clk_disable;
2351
2352	if (!mmc->ocr_avail)
2353		mmc->ocr_avail = plat->ocr_mask;
2354	else if (plat->ocr_mask)
2355		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
2356
2357	/* We support these capabilities. */
2358	mmc->caps |= MMC_CAP_CMD23;
2359
2360	/*
2361	 * Enable busy detection.
2362	 */
2363	if (variant->busy_detect) {
2364		mmci_ops.card_busy = mmci_card_busy;
2365		/*
2366		 * Not all variants have a flag to enable busy detection
2367		 * in the DPSM, but if they do, set it here.
2368		 */
2369		if (variant->busy_dpsm_flag)
2370			mmci_write_datactrlreg(host,
2371					       host->variant->busy_dpsm_flag);
2372		mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
2373	}
2374
2375	if (variant->supports_sdio_irq && host->mmc->caps & MMC_CAP_SDIO_IRQ) {
2376		mmc->caps2 |= MMC_CAP2_SDIO_IRQ_NOTHREAD;
2377
2378		mmci_ops.enable_sdio_irq = mmci_enable_sdio_irq;
2379		mmci_ops.ack_sdio_irq	= mmci_ack_sdio_irq;
2380
2381		mmci_write_datactrlreg(host,
2382				       host->variant->datactrl_mask_sdio);
2383	}
2384
2385	/* Variants with mandatory busy timeout in HW needs R1B responses. */
2386	if (variant->busy_timeout)
2387		mmc->caps |= MMC_CAP_NEED_RSP_BUSY;
2388
2389	/* Prepare a CMD12 - needed to clear the DPSM on some variants. */
2390	host->stop_abort.opcode = MMC_STOP_TRANSMISSION;
2391	host->stop_abort.arg = 0;
2392	host->stop_abort.flags = MMC_RSP_R1B | MMC_CMD_AC;
2393
2394	/* We support these PM capabilities. */
2395	mmc->pm_caps |= MMC_PM_KEEP_POWER;
2396
2397	/*
2398	 * We can do SGIO
2399	 */
2400	mmc->max_segs = NR_SG;
2401
2402	/*
2403	 * Since only a certain number of bits are valid in the data length
2404	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
2405	 * single request.
2406	 */
2407	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
2408
2409	/*
2410	 * Set the maximum segment size.  Since we aren't doing DMA
2411	 * (yet) we are only limited by the data length register.
2412	 */
2413	mmc->max_seg_size = mmc->max_req_size;
2414
2415	/*
2416	 * Block size can be up to 2048 bytes, but must be a power of two.
2417	 */
2418	mmc->max_blk_size = 1 << variant->datactrl_blocksz;
2419
2420	/*
2421	 * Limit the number of blocks transferred so that we don't overflow
2422	 * the maximum request size.
2423	 */
2424	mmc->max_blk_count = mmc->max_req_size >> variant->datactrl_blocksz;
2425
2426	spin_lock_init(&host->lock);
2427
2428	writel(0, host->base + MMCIMASK0);
2429
2430	if (variant->mmcimask1)
2431		writel(0, host->base + MMCIMASK1);
2432
2433	writel(0xfff, host->base + MMCICLEAR);
2434
2435	/*
2436	 * If:
2437	 * - not using DT but using a descriptor table, or
2438	 * - using a table of descriptors ALONGSIDE DT, or
2439	 * look up these descriptors named "cd" and "wp" right here, fail
2440	 * silently of these do not exist
2441	 */
2442	if (!np) {
2443		ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0);
2444		if (ret == -EPROBE_DEFER)
2445			goto clk_disable;
2446
2447		ret = mmc_gpiod_request_ro(mmc, "wp", 0, 0);
2448		if (ret == -EPROBE_DEFER)
2449			goto clk_disable;
2450	}
2451
2452	ret = devm_request_threaded_irq(&dev->dev, dev->irq[0], mmci_irq,
2453					mmci_irq_thread, IRQF_SHARED,
2454					DRIVER_NAME " (cmd)", host);
2455	if (ret)
2456		goto clk_disable;
2457
2458	if (!dev->irq[1])
2459		host->singleirq = true;
2460	else {
2461		ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
2462				IRQF_SHARED, DRIVER_NAME " (pio)", host);
2463		if (ret)
2464			goto clk_disable;
2465	}
2466
2467	if (host->variant->busy_detect)
2468		INIT_DELAYED_WORK(&host->ux500_busy_timeout_work,
2469				  ux500_busy_timeout_work);
2470
2471	writel(MCI_IRQENABLE | variant->start_err, host->base + MMCIMASK0);
2472
2473	amba_set_drvdata(dev, mmc);
2474
2475	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
2476		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
2477		 amba_rev(dev), (unsigned long long)dev->res.start,
2478		 dev->irq[0], dev->irq[1]);
2479
2480	mmci_dma_setup(host);
2481
2482	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
2483	pm_runtime_use_autosuspend(&dev->dev);
2484
2485	ret = mmc_add_host(mmc);
2486	if (ret)
2487		goto clk_disable;
2488
2489	pm_runtime_put(&dev->dev);
2490	return 0;
2491
2492 clk_disable:
2493	clk_disable_unprepare(host->clk);
2494 host_free:
2495	mmc_free_host(mmc);
2496	return ret;
2497}
2498
2499static void mmci_remove(struct amba_device *dev)
2500{
2501	struct mmc_host *mmc = amba_get_drvdata(dev);
2502
2503	if (mmc) {
2504		struct mmci_host *host = mmc_priv(mmc);
2505		struct variant_data *variant = host->variant;
2506
2507		/*
2508		 * Undo pm_runtime_put() in probe.  We use the _sync
2509		 * version here so that we can access the primecell.
2510		 */
2511		pm_runtime_get_sync(&dev->dev);
2512
2513		mmc_remove_host(mmc);
2514
2515		writel(0, host->base + MMCIMASK0);
2516
2517		if (variant->mmcimask1)
2518			writel(0, host->base + MMCIMASK1);
2519
2520		writel(0, host->base + MMCICOMMAND);
2521		writel(0, host->base + MMCIDATACTRL);
2522
2523		mmci_dma_release(host);
2524		clk_disable_unprepare(host->clk);
2525		mmc_free_host(mmc);
2526	}
2527}
2528
2529#ifdef CONFIG_PM
2530static void mmci_save(struct mmci_host *host)
2531{
2532	unsigned long flags;
2533
2534	spin_lock_irqsave(&host->lock, flags);
2535
2536	writel(0, host->base + MMCIMASK0);
2537	if (host->variant->pwrreg_nopower) {
2538		writel(0, host->base + MMCIDATACTRL);
2539		writel(0, host->base + MMCIPOWER);
2540		writel(0, host->base + MMCICLOCK);
2541	}
2542	mmci_reg_delay(host);
2543
2544	spin_unlock_irqrestore(&host->lock, flags);
2545}
2546
2547static void mmci_restore(struct mmci_host *host)
2548{
2549	unsigned long flags;
2550
2551	spin_lock_irqsave(&host->lock, flags);
2552
2553	if (host->variant->pwrreg_nopower) {
2554		writel(host->clk_reg, host->base + MMCICLOCK);
2555		writel(host->datactrl_reg, host->base + MMCIDATACTRL);
2556		writel(host->pwr_reg, host->base + MMCIPOWER);
2557	}
2558	writel(MCI_IRQENABLE | host->variant->start_err,
2559	       host->base + MMCIMASK0);
2560	mmci_reg_delay(host);
2561
2562	spin_unlock_irqrestore(&host->lock, flags);
2563}
2564
2565static int mmci_runtime_suspend(struct device *dev)
2566{
2567	struct amba_device *adev = to_amba_device(dev);
2568	struct mmc_host *mmc = amba_get_drvdata(adev);
2569
2570	if (mmc) {
2571		struct mmci_host *host = mmc_priv(mmc);
2572		pinctrl_pm_select_sleep_state(dev);
2573		mmci_save(host);
2574		clk_disable_unprepare(host->clk);
2575	}
2576
2577	return 0;
2578}
2579
2580static int mmci_runtime_resume(struct device *dev)
2581{
2582	struct amba_device *adev = to_amba_device(dev);
2583	struct mmc_host *mmc = amba_get_drvdata(adev);
2584
2585	if (mmc) {
2586		struct mmci_host *host = mmc_priv(mmc);
2587		clk_prepare_enable(host->clk);
2588		mmci_restore(host);
2589		pinctrl_select_default_state(dev);
2590	}
2591
2592	return 0;
2593}
2594#endif
2595
2596static const struct dev_pm_ops mmci_dev_pm_ops = {
2597	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2598				pm_runtime_force_resume)
2599	SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
2600};
2601
2602static const struct amba_id mmci_ids[] = {
2603	{
2604		.id	= 0x00041180,
2605		.mask	= 0xff0fffff,
2606		.data	= &variant_arm,
2607	},
2608	{
2609		.id	= 0x01041180,
2610		.mask	= 0xff0fffff,
2611		.data	= &variant_arm_extended_fifo,
2612	},
2613	{
2614		.id	= 0x02041180,
2615		.mask	= 0xff0fffff,
2616		.data	= &variant_arm_extended_fifo_hwfc,
2617	},
2618	{
2619		.id	= 0x00041181,
2620		.mask	= 0x000fffff,
2621		.data	= &variant_arm,
2622	},
2623	/* ST Micro variants */
2624	{
2625		.id     = 0x00180180,
2626		.mask   = 0x00ffffff,
2627		.data	= &variant_u300,
2628	},
2629	{
2630		.id     = 0x10180180,
2631		.mask   = 0xf0ffffff,
2632		.data	= &variant_nomadik,
2633	},
2634	{
2635		.id     = 0x00280180,
2636		.mask   = 0x00ffffff,
2637		.data	= &variant_nomadik,
2638	},
2639	{
2640		.id     = 0x00480180,
2641		.mask   = 0xf0ffffff,
2642		.data	= &variant_ux500,
2643	},
2644	{
2645		.id     = 0x10480180,
2646		.mask   = 0xf0ffffff,
2647		.data	= &variant_ux500v2,
2648	},
2649	{
2650		.id     = 0x00880180,
2651		.mask   = 0x00ffffff,
2652		.data	= &variant_stm32,
2653	},
2654	{
2655		.id     = 0x10153180,
2656		.mask	= 0xf0ffffff,
2657		.data	= &variant_stm32_sdmmc,
2658	},
2659	{
2660		.id     = 0x00253180,
2661		.mask	= 0xf0ffffff,
2662		.data	= &variant_stm32_sdmmcv2,
2663	},
2664	{
2665		.id     = 0x20253180,
2666		.mask	= 0xf0ffffff,
2667		.data	= &variant_stm32_sdmmcv2,
2668	},
2669	{
2670		.id     = 0x00353180,
2671		.mask	= 0xf0ffffff,
2672		.data	= &variant_stm32_sdmmcv3,
2673	},
2674	/* Qualcomm variants */
2675	{
2676		.id     = 0x00051180,
2677		.mask	= 0x000fffff,
2678		.data	= &variant_qcom,
2679	},
2680	{ 0, 0 },
2681};
2682
2683MODULE_DEVICE_TABLE(amba, mmci_ids);
2684
2685static struct amba_driver mmci_driver = {
2686	.drv		= {
2687		.name	= DRIVER_NAME,
2688		.pm	= &mmci_dev_pm_ops,
2689		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
2690	},
2691	.probe		= mmci_probe,
2692	.remove		= mmci_remove,
2693	.id_table	= mmci_ids,
2694};
2695
2696module_amba_driver(mmci_driver);
2697
2698module_param(fmax, uint, 0444);
2699
2700MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2701MODULE_LICENSE("GPL");