Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
   4 *
   5 *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
   6 *  Copyright (C) 2010 ST-Ericsson SA
   7 */
   8#include <linux/module.h>
   9#include <linux/moduleparam.h>
  10#include <linux/init.h>
  11#include <linux/ioport.h>
  12#include <linux/device.h>
  13#include <linux/io.h>
  14#include <linux/interrupt.h>
  15#include <linux/kernel.h>
  16#include <linux/slab.h>
  17#include <linux/delay.h>
  18#include <linux/err.h>
  19#include <linux/highmem.h>
  20#include <linux/log2.h>
  21#include <linux/mmc/mmc.h>
  22#include <linux/mmc/pm.h>
  23#include <linux/mmc/host.h>
  24#include <linux/mmc/card.h>
  25#include <linux/mmc/sd.h>
  26#include <linux/mmc/slot-gpio.h>
  27#include <linux/amba/bus.h>
  28#include <linux/clk.h>
  29#include <linux/scatterlist.h>
  30#include <linux/of.h>
  31#include <linux/regulator/consumer.h>
  32#include <linux/dmaengine.h>
  33#include <linux/dma-mapping.h>
  34#include <linux/amba/mmci.h>
  35#include <linux/pm_runtime.h>
  36#include <linux/types.h>
  37#include <linux/pinctrl/consumer.h>
  38#include <linux/reset.h>
  39#include <linux/gpio/consumer.h>
  40
  41#include <asm/div64.h>
  42#include <asm/io.h>
  43
  44#include "mmci.h"
  45
  46#define DRIVER_NAME "mmci-pl18x"
  47
  48static void mmci_variant_init(struct mmci_host *host);
  49static void ux500_variant_init(struct mmci_host *host);
  50static void ux500v2_variant_init(struct mmci_host *host);
  51
  52static unsigned int fmax = 515633;
  53
  54static struct variant_data variant_arm = {
  55	.fifosize		= 16 * 4,
  56	.fifohalfsize		= 8 * 4,
  57	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
  58	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
  59	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
  60	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
  61	.datalength_bits	= 16,
  62	.datactrl_blocksz	= 11,
  63	.pwrreg_powerup		= MCI_PWR_UP,
  64	.f_max			= 100000000,
  65	.reversed_irq_handling	= true,
  66	.mmcimask1		= true,
  67	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
  68	.start_err		= MCI_STARTBITERR,
  69	.opendrain		= MCI_ROD,
  70	.init			= mmci_variant_init,
  71};
  72
  73static struct variant_data variant_arm_extended_fifo = {
  74	.fifosize		= 128 * 4,
  75	.fifohalfsize		= 64 * 4,
  76	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
  77	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
  78	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
  79	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
  80	.datalength_bits	= 16,
  81	.datactrl_blocksz	= 11,
  82	.pwrreg_powerup		= MCI_PWR_UP,
  83	.f_max			= 100000000,
  84	.mmcimask1		= true,
  85	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
  86	.start_err		= MCI_STARTBITERR,
  87	.opendrain		= MCI_ROD,
  88	.init			= mmci_variant_init,
  89};
  90
  91static struct variant_data variant_arm_extended_fifo_hwfc = {
  92	.fifosize		= 128 * 4,
  93	.fifohalfsize		= 64 * 4,
  94	.clkreg_enable		= MCI_ARM_HWFCEN,
  95	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
  96	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
  97	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
  98	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
  99	.datalength_bits	= 16,
 100	.datactrl_blocksz	= 11,
 101	.pwrreg_powerup		= MCI_PWR_UP,
 102	.f_max			= 100000000,
 103	.mmcimask1		= true,
 104	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 105	.start_err		= MCI_STARTBITERR,
 106	.opendrain		= MCI_ROD,
 107	.init			= mmci_variant_init,
 108};
 109
 110static struct variant_data variant_u300 = {
 111	.fifosize		= 16 * 4,
 112	.fifohalfsize		= 8 * 4,
 113	.clkreg_enable		= MCI_ST_U300_HWFCEN,
 114	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 115	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
 116	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 117	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
 118	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
 119	.datalength_bits	= 16,
 120	.datactrl_blocksz	= 11,
 121	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 122	.st_sdio			= true,
 123	.pwrreg_powerup		= MCI_PWR_ON,
 124	.f_max			= 100000000,
 125	.signal_direction	= true,
 126	.pwrreg_clkgate		= true,
 127	.pwrreg_nopower		= true,
 128	.mmcimask1		= true,
 129	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 130	.start_err		= MCI_STARTBITERR,
 131	.opendrain		= MCI_OD,
 132	.init			= mmci_variant_init,
 133};
 134
 135static struct variant_data variant_nomadik = {
 136	.fifosize		= 16 * 4,
 137	.fifohalfsize		= 8 * 4,
 138	.clkreg			= MCI_CLK_ENABLE,
 139	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 140	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
 141	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 142	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
 143	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
 144	.datalength_bits	= 24,
 145	.datactrl_blocksz	= 11,
 146	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 147	.st_sdio		= true,
 148	.st_clkdiv		= true,
 149	.pwrreg_powerup		= MCI_PWR_ON,
 150	.f_max			= 100000000,
 151	.signal_direction	= true,
 152	.pwrreg_clkgate		= true,
 153	.pwrreg_nopower		= true,
 154	.mmcimask1		= true,
 155	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 156	.start_err		= MCI_STARTBITERR,
 157	.opendrain		= MCI_OD,
 158	.init			= mmci_variant_init,
 159};
 160
 161static struct variant_data variant_ux500 = {
 162	.fifosize		= 30 * 4,
 163	.fifohalfsize		= 8 * 4,
 164	.clkreg			= MCI_CLK_ENABLE,
 165	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 166	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 167	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
 168	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
 169	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 170	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
 171	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
 172	.datalength_bits	= 24,
 173	.datactrl_blocksz	= 11,
 174	.datactrl_any_blocksz	= true,
 175	.dma_power_of_2		= true,
 176	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 177	.st_sdio		= true,
 178	.st_clkdiv		= true,
 179	.pwrreg_powerup		= MCI_PWR_ON,
 180	.f_max			= 100000000,
 181	.signal_direction	= true,
 182	.pwrreg_clkgate		= true,
 183	.busy_detect		= true,
 184	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
 185	.busy_detect_flag	= MCI_ST_CARDBUSY,
 186	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
 187	.pwrreg_nopower		= true,
 188	.mmcimask1		= true,
 189	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 190	.start_err		= MCI_STARTBITERR,
 191	.opendrain		= MCI_OD,
 192	.init			= ux500_variant_init,
 193};
 194
 195static struct variant_data variant_ux500v2 = {
 196	.fifosize		= 30 * 4,
 197	.fifohalfsize		= 8 * 4,
 198	.clkreg			= MCI_CLK_ENABLE,
 199	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 200	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 201	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
 202	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
 203	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 204	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
 205	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
 206	.datactrl_mask_ddrmode	= MCI_DPSM_ST_DDRMODE,
 207	.datalength_bits	= 24,
 208	.datactrl_blocksz	= 11,
 209	.datactrl_any_blocksz	= true,
 210	.dma_power_of_2		= true,
 211	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 212	.st_sdio		= true,
 213	.st_clkdiv		= true,
 214	.pwrreg_powerup		= MCI_PWR_ON,
 215	.f_max			= 100000000,
 216	.signal_direction	= true,
 217	.pwrreg_clkgate		= true,
 218	.busy_detect		= true,
 219	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
 220	.busy_detect_flag	= MCI_ST_CARDBUSY,
 221	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
 222	.pwrreg_nopower		= true,
 223	.mmcimask1		= true,
 224	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 225	.start_err		= MCI_STARTBITERR,
 226	.opendrain		= MCI_OD,
 227	.init			= ux500v2_variant_init,
 228};
 229
 230static struct variant_data variant_stm32 = {
 231	.fifosize		= 32 * 4,
 232	.fifohalfsize		= 8 * 4,
 233	.clkreg			= MCI_CLK_ENABLE,
 234	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 235	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 236	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
 237	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
 238	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 239	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
 240	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
 241	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 242	.datalength_bits	= 24,
 243	.datactrl_blocksz	= 11,
 244	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 245	.st_sdio		= true,
 246	.st_clkdiv		= true,
 247	.pwrreg_powerup		= MCI_PWR_ON,
 248	.f_max			= 48000000,
 249	.pwrreg_clkgate		= true,
 250	.pwrreg_nopower		= true,
 251	.init			= mmci_variant_init,
 252};
 253
 254static struct variant_data variant_stm32_sdmmc = {
 255	.fifosize		= 16 * 4,
 256	.fifohalfsize		= 8 * 4,
 257	.f_max			= 208000000,
 258	.stm32_clkdiv		= true,
 259	.cmdreg_cpsm_enable	= MCI_CPSM_STM32_ENABLE,
 260	.cmdreg_lrsp_crc	= MCI_CPSM_STM32_LRSP_CRC,
 261	.cmdreg_srsp_crc	= MCI_CPSM_STM32_SRSP_CRC,
 262	.cmdreg_srsp		= MCI_CPSM_STM32_SRSP,
 263	.cmdreg_stop		= MCI_CPSM_STM32_CMDSTOP,
 264	.data_cmd_enable	= MCI_CPSM_STM32_CMDTRANS,
 265	.irq_pio_mask		= MCI_IRQ_PIO_STM32_MASK,
 266	.datactrl_first		= true,
 267	.datacnt_useless	= true,
 268	.datalength_bits	= 25,
 269	.datactrl_blocksz	= 14,
 270	.datactrl_any_blocksz	= true,
 271	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 272	.stm32_idmabsize_mask	= GENMASK(12, 5),
 273	.busy_timeout		= true,
 274	.busy_detect		= true,
 275	.busy_detect_flag	= MCI_STM32_BUSYD0,
 276	.busy_detect_mask	= MCI_STM32_BUSYD0ENDMASK,
 277	.init			= sdmmc_variant_init,
 278};
 279
 280static struct variant_data variant_stm32_sdmmcv2 = {
 281	.fifosize		= 16 * 4,
 282	.fifohalfsize		= 8 * 4,
 283	.f_max			= 267000000,
 284	.stm32_clkdiv		= true,
 285	.cmdreg_cpsm_enable	= MCI_CPSM_STM32_ENABLE,
 286	.cmdreg_lrsp_crc	= MCI_CPSM_STM32_LRSP_CRC,
 287	.cmdreg_srsp_crc	= MCI_CPSM_STM32_SRSP_CRC,
 288	.cmdreg_srsp		= MCI_CPSM_STM32_SRSP,
 289	.cmdreg_stop		= MCI_CPSM_STM32_CMDSTOP,
 290	.data_cmd_enable	= MCI_CPSM_STM32_CMDTRANS,
 291	.irq_pio_mask		= MCI_IRQ_PIO_STM32_MASK,
 292	.datactrl_first		= true,
 293	.datacnt_useless	= true,
 294	.datalength_bits	= 25,
 295	.datactrl_blocksz	= 14,
 296	.datactrl_any_blocksz	= true,
 297	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 298	.stm32_idmabsize_mask	= GENMASK(16, 5),
 299	.dma_lli		= true,
 300	.busy_timeout		= true,
 301	.busy_detect		= true,
 302	.busy_detect_flag	= MCI_STM32_BUSYD0,
 303	.busy_detect_mask	= MCI_STM32_BUSYD0ENDMASK,
 304	.init			= sdmmc_variant_init,
 305};
 306
 307static struct variant_data variant_qcom = {
 308	.fifosize		= 16 * 4,
 309	.fifohalfsize		= 8 * 4,
 310	.clkreg			= MCI_CLK_ENABLE,
 311	.clkreg_enable		= MCI_QCOM_CLK_FLOWENA |
 312				  MCI_QCOM_CLK_SELECT_IN_FBCLK,
 313	.clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
 314	.datactrl_mask_ddrmode	= MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
 315	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
 316	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 317	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
 318	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
 319	.data_cmd_enable	= MCI_CPSM_QCOM_DATCMD,
 320	.datalength_bits	= 24,
 321	.datactrl_blocksz	= 11,
 322	.datactrl_any_blocksz	= true,
 323	.pwrreg_powerup		= MCI_PWR_UP,
 324	.f_max			= 208000000,
 325	.explicit_mclk_control	= true,
 326	.qcom_fifo		= true,
 327	.qcom_dml		= true,
 328	.mmcimask1		= true,
 329	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 330	.start_err		= MCI_STARTBITERR,
 331	.opendrain		= MCI_ROD,
 332	.init			= qcom_variant_init,
 333};
 334
 335/* Busy detection for the ST Micro variant */
 336static int mmci_card_busy(struct mmc_host *mmc)
 337{
 338	struct mmci_host *host = mmc_priv(mmc);
 339	unsigned long flags;
 340	int busy = 0;
 341
 342	spin_lock_irqsave(&host->lock, flags);
 343	if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
 344		busy = 1;
 345	spin_unlock_irqrestore(&host->lock, flags);
 346
 347	return busy;
 348}
 349
 350static void mmci_reg_delay(struct mmci_host *host)
 351{
 352	/*
 353	 * According to the spec, at least three feedback clock cycles
 354	 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
 355	 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
 356	 * Worst delay time during card init is at 100 kHz => 30 us.
 357	 * Worst delay time when up and running is at 25 MHz => 120 ns.
 358	 */
 359	if (host->cclk < 25000000)
 360		udelay(30);
 361	else
 362		ndelay(120);
 363}
 364
 365/*
 366 * This must be called with host->lock held
 367 */
 368void mmci_write_clkreg(struct mmci_host *host, u32 clk)
 369{
 370	if (host->clk_reg != clk) {
 371		host->clk_reg = clk;
 372		writel(clk, host->base + MMCICLOCK);
 373	}
 374}
 375
 376/*
 377 * This must be called with host->lock held
 378 */
 379void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
 380{
 381	if (host->pwr_reg != pwr) {
 382		host->pwr_reg = pwr;
 383		writel(pwr, host->base + MMCIPOWER);
 384	}
 385}
 386
 387/*
 388 * This must be called with host->lock held
 389 */
 390static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
 391{
 392	/* Keep busy mode in DPSM if enabled */
 393	datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
 394
 395	if (host->datactrl_reg != datactrl) {
 396		host->datactrl_reg = datactrl;
 397		writel(datactrl, host->base + MMCIDATACTRL);
 398	}
 399}
 400
 401/*
 402 * This must be called with host->lock held
 403 */
 404static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
 405{
 406	struct variant_data *variant = host->variant;
 407	u32 clk = variant->clkreg;
 408
 409	/* Make sure cclk reflects the current calculated clock */
 410	host->cclk = 0;
 411
 412	if (desired) {
 413		if (variant->explicit_mclk_control) {
 414			host->cclk = host->mclk;
 415		} else if (desired >= host->mclk) {
 416			clk = MCI_CLK_BYPASS;
 417			if (variant->st_clkdiv)
 418				clk |= MCI_ST_UX500_NEG_EDGE;
 419			host->cclk = host->mclk;
 420		} else if (variant->st_clkdiv) {
 421			/*
 422			 * DB8500 TRM says f = mclk / (clkdiv + 2)
 423			 * => clkdiv = (mclk / f) - 2
 424			 * Round the divider up so we don't exceed the max
 425			 * frequency
 426			 */
 427			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
 428			if (clk >= 256)
 429				clk = 255;
 430			host->cclk = host->mclk / (clk + 2);
 431		} else {
 432			/*
 433			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
 434			 * => clkdiv = mclk / (2 * f) - 1
 435			 */
 436			clk = host->mclk / (2 * desired) - 1;
 437			if (clk >= 256)
 438				clk = 255;
 439			host->cclk = host->mclk / (2 * (clk + 1));
 440		}
 441
 442		clk |= variant->clkreg_enable;
 443		clk |= MCI_CLK_ENABLE;
 444		/* This hasn't proven to be worthwhile */
 445		/* clk |= MCI_CLK_PWRSAVE; */
 446	}
 447
 448	/* Set actual clock for debug */
 449	host->mmc->actual_clock = host->cclk;
 450
 451	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
 452		clk |= MCI_4BIT_BUS;
 453	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
 454		clk |= variant->clkreg_8bit_bus_enable;
 455
 456	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
 457	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
 458		clk |= variant->clkreg_neg_edge_enable;
 459
 460	mmci_write_clkreg(host, clk);
 461}
 462
 463static void mmci_dma_release(struct mmci_host *host)
 464{
 465	if (host->ops && host->ops->dma_release)
 466		host->ops->dma_release(host);
 467
 468	host->use_dma = false;
 469}
 470
 471static void mmci_dma_setup(struct mmci_host *host)
 472{
 473	if (!host->ops || !host->ops->dma_setup)
 474		return;
 475
 476	if (host->ops->dma_setup(host))
 477		return;
 478
 479	/* initialize pre request cookie */
 480	host->next_cookie = 1;
 481
 482	host->use_dma = true;
 483}
 484
 485/*
 486 * Validate mmc prerequisites
 487 */
 488static int mmci_validate_data(struct mmci_host *host,
 489			      struct mmc_data *data)
 490{
 491	struct variant_data *variant = host->variant;
 492
 493	if (!data)
 494		return 0;
 495	if (!is_power_of_2(data->blksz) && !variant->datactrl_any_blocksz) {
 
 496		dev_err(mmc_dev(host->mmc),
 497			"unsupported block size (%d bytes)\n", data->blksz);
 498		return -EINVAL;
 499	}
 500
 501	if (host->ops && host->ops->validate_data)
 502		return host->ops->validate_data(host, data);
 503
 504	return 0;
 505}
 506
 507static int mmci_prep_data(struct mmci_host *host, struct mmc_data *data, bool next)
 508{
 509	int err;
 510
 511	if (!host->ops || !host->ops->prep_data)
 512		return 0;
 513
 514	err = host->ops->prep_data(host, data, next);
 515
 516	if (next && !err)
 517		data->host_cookie = ++host->next_cookie < 0 ?
 518			1 : host->next_cookie;
 519
 520	return err;
 521}
 522
 523static void mmci_unprep_data(struct mmci_host *host, struct mmc_data *data,
 524		      int err)
 525{
 526	if (host->ops && host->ops->unprep_data)
 527		host->ops->unprep_data(host, data, err);
 528
 529	data->host_cookie = 0;
 530}
 531
 532static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
 533{
 534	WARN_ON(data->host_cookie && data->host_cookie != host->next_cookie);
 535
 536	if (host->ops && host->ops->get_next_data)
 537		host->ops->get_next_data(host, data);
 538}
 539
 540static int mmci_dma_start(struct mmci_host *host, unsigned int datactrl)
 541{
 542	struct mmc_data *data = host->data;
 543	int ret;
 544
 545	if (!host->use_dma)
 546		return -EINVAL;
 547
 548	ret = mmci_prep_data(host, data, false);
 549	if (ret)
 550		return ret;
 551
 552	if (!host->ops || !host->ops->dma_start)
 553		return -EINVAL;
 554
 555	/* Okay, go for it. */
 556	dev_vdbg(mmc_dev(host->mmc),
 557		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
 558		 data->sg_len, data->blksz, data->blocks, data->flags);
 559
 560	ret = host->ops->dma_start(host, &datactrl);
 561	if (ret)
 562		return ret;
 563
 564	/* Trigger the DMA transfer */
 565	mmci_write_datactrlreg(host, datactrl);
 566
 567	/*
 568	 * Let the MMCI say when the data is ended and it's time
 569	 * to fire next DMA request. When that happens, MMCI will
 570	 * call mmci_data_end()
 571	 */
 572	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
 573	       host->base + MMCIMASK0);
 574	return 0;
 575}
 576
 577static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
 578{
 579	if (!host->use_dma)
 580		return;
 581
 582	if (host->ops && host->ops->dma_finalize)
 583		host->ops->dma_finalize(host, data);
 584}
 585
 586static void mmci_dma_error(struct mmci_host *host)
 587{
 588	if (!host->use_dma)
 589		return;
 590
 591	if (host->ops && host->ops->dma_error)
 592		host->ops->dma_error(host);
 593}
 594
 595static void
 596mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
 597{
 598	writel(0, host->base + MMCICOMMAND);
 599
 600	BUG_ON(host->data);
 601
 602	host->mrq = NULL;
 603	host->cmd = NULL;
 604
 605	mmc_request_done(host->mmc, mrq);
 606}
 607
 608static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
 609{
 610	void __iomem *base = host->base;
 611	struct variant_data *variant = host->variant;
 612
 613	if (host->singleirq) {
 614		unsigned int mask0 = readl(base + MMCIMASK0);
 615
 616		mask0 &= ~variant->irq_pio_mask;
 617		mask0 |= mask;
 618
 619		writel(mask0, base + MMCIMASK0);
 620	}
 621
 622	if (variant->mmcimask1)
 623		writel(mask, base + MMCIMASK1);
 624
 625	host->mask1_reg = mask;
 626}
 627
 628static void mmci_stop_data(struct mmci_host *host)
 629{
 630	mmci_write_datactrlreg(host, 0);
 631	mmci_set_mask1(host, 0);
 632	host->data = NULL;
 633}
 634
 635static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
 636{
 637	unsigned int flags = SG_MITER_ATOMIC;
 638
 639	if (data->flags & MMC_DATA_READ)
 640		flags |= SG_MITER_TO_SG;
 641	else
 642		flags |= SG_MITER_FROM_SG;
 643
 644	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
 645}
 646
 647static u32 mmci_get_dctrl_cfg(struct mmci_host *host)
 648{
 649	return MCI_DPSM_ENABLE | mmci_dctrl_blksz(host);
 650}
 651
 652static u32 ux500v2_get_dctrl_cfg(struct mmci_host *host)
 653{
 654	return MCI_DPSM_ENABLE | (host->data->blksz << 16);
 655}
 656
 657static bool ux500_busy_complete(struct mmci_host *host, u32 status, u32 err_msk)
 658{
 659	void __iomem *base = host->base;
 660
 661	/*
 662	 * Before unmasking for the busy end IRQ, confirm that the
 663	 * command was sent successfully. To keep track of having a
 664	 * command in-progress, waiting for busy signaling to end,
 665	 * store the status in host->busy_status.
 666	 *
 667	 * Note that, the card may need a couple of clock cycles before
 668	 * it starts signaling busy on DAT0, hence re-read the
 669	 * MMCISTATUS register here, to allow the busy bit to be set.
 670	 * Potentially we may even need to poll the register for a
 671	 * while, to allow it to be set, but tests indicates that it
 672	 * isn't needed.
 673	 */
 674	if (!host->busy_status && !(status & err_msk) &&
 675	    (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
 676		writel(readl(base + MMCIMASK0) |
 677		       host->variant->busy_detect_mask,
 678		       base + MMCIMASK0);
 679
 680		host->busy_status = status & (MCI_CMDSENT | MCI_CMDRESPEND);
 681		return false;
 682	}
 683
 684	/*
 685	 * If there is a command in-progress that has been successfully
 686	 * sent, then bail out if busy status is set and wait for the
 687	 * busy end IRQ.
 688	 *
 689	 * Note that, the HW triggers an IRQ on both edges while
 690	 * monitoring DAT0 for busy completion, but there is only one
 691	 * status bit in MMCISTATUS for the busy state. Therefore
 692	 * both the start and the end interrupts needs to be cleared,
 693	 * one after the other. So, clear the busy start IRQ here.
 694	 */
 695	if (host->busy_status &&
 696	    (status & host->variant->busy_detect_flag)) {
 697		writel(host->variant->busy_detect_mask, base + MMCICLEAR);
 698		return false;
 699	}
 700
 701	/*
 702	 * If there is a command in-progress that has been successfully
 703	 * sent and the busy bit isn't set, it means we have received
 704	 * the busy end IRQ. Clear and mask the IRQ, then continue to
 705	 * process the command.
 706	 */
 707	if (host->busy_status) {
 708		writel(host->variant->busy_detect_mask, base + MMCICLEAR);
 709
 710		writel(readl(base + MMCIMASK0) &
 711		       ~host->variant->busy_detect_mask, base + MMCIMASK0);
 712		host->busy_status = 0;
 713	}
 714
 715	return true;
 716}
 717
 718/*
 719 * All the DMA operation mode stuff goes inside this ifdef.
 720 * This assumes that you have a generic DMA device interface,
 721 * no custom DMA interfaces are supported.
 722 */
 723#ifdef CONFIG_DMA_ENGINE
 724struct mmci_dmae_next {
 725	struct dma_async_tx_descriptor *desc;
 726	struct dma_chan	*chan;
 727};
 728
 729struct mmci_dmae_priv {
 730	struct dma_chan	*cur;
 731	struct dma_chan	*rx_channel;
 732	struct dma_chan	*tx_channel;
 733	struct dma_async_tx_descriptor	*desc_current;
 734	struct mmci_dmae_next next_data;
 735};
 736
 737int mmci_dmae_setup(struct mmci_host *host)
 738{
 739	const char *rxname, *txname;
 740	struct mmci_dmae_priv *dmae;
 741
 742	dmae = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dmae), GFP_KERNEL);
 743	if (!dmae)
 744		return -ENOMEM;
 745
 746	host->dma_priv = dmae;
 747
 748	dmae->rx_channel = dma_request_chan(mmc_dev(host->mmc), "rx");
 749	if (IS_ERR(dmae->rx_channel)) {
 750		int ret = PTR_ERR(dmae->rx_channel);
 751		dmae->rx_channel = NULL;
 752		return ret;
 753	}
 754
 755	dmae->tx_channel = dma_request_chan(mmc_dev(host->mmc), "tx");
 756	if (IS_ERR(dmae->tx_channel)) {
 757		if (PTR_ERR(dmae->tx_channel) == -EPROBE_DEFER)
 758			dev_warn(mmc_dev(host->mmc),
 759				 "Deferred probe for TX channel ignored\n");
 760		dmae->tx_channel = NULL;
 761	}
 762
 763	/*
 764	 * If only an RX channel is specified, the driver will
 765	 * attempt to use it bidirectionally, however if it
 766	 * is specified but cannot be located, DMA will be disabled.
 767	 */
 768	if (dmae->rx_channel && !dmae->tx_channel)
 769		dmae->tx_channel = dmae->rx_channel;
 770
 771	if (dmae->rx_channel)
 772		rxname = dma_chan_name(dmae->rx_channel);
 773	else
 774		rxname = "none";
 775
 776	if (dmae->tx_channel)
 777		txname = dma_chan_name(dmae->tx_channel);
 778	else
 779		txname = "none";
 780
 781	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
 782		 rxname, txname);
 783
 784	/*
 785	 * Limit the maximum segment size in any SG entry according to
 786	 * the parameters of the DMA engine device.
 787	 */
 788	if (dmae->tx_channel) {
 789		struct device *dev = dmae->tx_channel->device->dev;
 790		unsigned int max_seg_size = dma_get_max_seg_size(dev);
 791
 792		if (max_seg_size < host->mmc->max_seg_size)
 793			host->mmc->max_seg_size = max_seg_size;
 794	}
 795	if (dmae->rx_channel) {
 796		struct device *dev = dmae->rx_channel->device->dev;
 797		unsigned int max_seg_size = dma_get_max_seg_size(dev);
 798
 799		if (max_seg_size < host->mmc->max_seg_size)
 800			host->mmc->max_seg_size = max_seg_size;
 801	}
 802
 803	if (!dmae->tx_channel || !dmae->rx_channel) {
 804		mmci_dmae_release(host);
 805		return -EINVAL;
 806	}
 807
 808	return 0;
 809}
 810
 811/*
 812 * This is used in or so inline it
 813 * so it can be discarded.
 814 */
 815void mmci_dmae_release(struct mmci_host *host)
 816{
 817	struct mmci_dmae_priv *dmae = host->dma_priv;
 818
 819	if (dmae->rx_channel)
 820		dma_release_channel(dmae->rx_channel);
 821	if (dmae->tx_channel)
 822		dma_release_channel(dmae->tx_channel);
 823	dmae->rx_channel = dmae->tx_channel = NULL;
 824}
 825
 826static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
 827{
 828	struct mmci_dmae_priv *dmae = host->dma_priv;
 829	struct dma_chan *chan;
 830
 831	if (data->flags & MMC_DATA_READ)
 832		chan = dmae->rx_channel;
 833	else
 834		chan = dmae->tx_channel;
 835
 836	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
 837		     mmc_get_dma_dir(data));
 838}
 839
 840void mmci_dmae_error(struct mmci_host *host)
 841{
 842	struct mmci_dmae_priv *dmae = host->dma_priv;
 843
 844	if (!dma_inprogress(host))
 845		return;
 846
 847	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
 848	dmaengine_terminate_all(dmae->cur);
 849	host->dma_in_progress = false;
 850	dmae->cur = NULL;
 851	dmae->desc_current = NULL;
 852	host->data->host_cookie = 0;
 853
 854	mmci_dma_unmap(host, host->data);
 855}
 856
 857void mmci_dmae_finalize(struct mmci_host *host, struct mmc_data *data)
 858{
 859	struct mmci_dmae_priv *dmae = host->dma_priv;
 860	u32 status;
 861	int i;
 862
 863	if (!dma_inprogress(host))
 864		return;
 865
 866	/* Wait up to 1ms for the DMA to complete */
 867	for (i = 0; ; i++) {
 868		status = readl(host->base + MMCISTATUS);
 869		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
 870			break;
 871		udelay(10);
 872	}
 873
 874	/*
 875	 * Check to see whether we still have some data left in the FIFO -
 876	 * this catches DMA controllers which are unable to monitor the
 877	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
 878	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
 879	 */
 880	if (status & MCI_RXDATAAVLBLMASK) {
 881		mmci_dma_error(host);
 882		if (!data->error)
 883			data->error = -EIO;
 884	} else if (!data->host_cookie) {
 885		mmci_dma_unmap(host, data);
 886	}
 887
 888	/*
 889	 * Use of DMA with scatter-gather is impossible.
 890	 * Give up with DMA and switch back to PIO mode.
 891	 */
 892	if (status & MCI_RXDATAAVLBLMASK) {
 893		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
 894		mmci_dma_release(host);
 895	}
 896
 897	host->dma_in_progress = false;
 898	dmae->cur = NULL;
 899	dmae->desc_current = NULL;
 900}
 901
 902/* prepares DMA channel and DMA descriptor, returns non-zero on failure */
 903static int _mmci_dmae_prep_data(struct mmci_host *host, struct mmc_data *data,
 904				struct dma_chan **dma_chan,
 905				struct dma_async_tx_descriptor **dma_desc)
 906{
 907	struct mmci_dmae_priv *dmae = host->dma_priv;
 908	struct variant_data *variant = host->variant;
 909	struct dma_slave_config conf = {
 910		.src_addr = host->phybase + MMCIFIFO,
 911		.dst_addr = host->phybase + MMCIFIFO,
 912		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 913		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 914		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
 915		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
 916		.device_fc = false,
 917	};
 918	struct dma_chan *chan;
 919	struct dma_device *device;
 920	struct dma_async_tx_descriptor *desc;
 921	int nr_sg;
 922	unsigned long flags = DMA_CTRL_ACK;
 923
 924	if (data->flags & MMC_DATA_READ) {
 925		conf.direction = DMA_DEV_TO_MEM;
 926		chan = dmae->rx_channel;
 927	} else {
 928		conf.direction = DMA_MEM_TO_DEV;
 929		chan = dmae->tx_channel;
 930	}
 931
 932	/* If there's no DMA channel, fall back to PIO */
 933	if (!chan)
 934		return -EINVAL;
 935
 936	/* If less than or equal to the fifo size, don't bother with DMA */
 937	if (data->blksz * data->blocks <= variant->fifosize)
 938		return -EINVAL;
 939
 940	/*
 941	 * This is necessary to get SDIO working on the Ux500. We do not yet
 942	 * know if this is a bug in:
 943	 * - The Ux500 DMA controller (DMA40)
 944	 * - The MMCI DMA interface on the Ux500
 945	 * some power of two blocks (such as 64 bytes) are sent regularly
 946	 * during SDIO traffic and those work fine so for these we enable DMA
 947	 * transfers.
 948	 */
 949	if (host->variant->dma_power_of_2 && !is_power_of_2(data->blksz))
 950		return -EINVAL;
 951
 952	device = chan->device;
 953	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
 954			   mmc_get_dma_dir(data));
 955	if (nr_sg == 0)
 956		return -EINVAL;
 957
 958	if (host->variant->qcom_dml)
 959		flags |= DMA_PREP_INTERRUPT;
 960
 961	dmaengine_slave_config(chan, &conf);
 962	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
 963					    conf.direction, flags);
 964	if (!desc)
 965		goto unmap_exit;
 966
 967	*dma_chan = chan;
 968	*dma_desc = desc;
 969
 970	return 0;
 971
 972 unmap_exit:
 973	dma_unmap_sg(device->dev, data->sg, data->sg_len,
 974		     mmc_get_dma_dir(data));
 975	return -ENOMEM;
 976}
 977
 978int mmci_dmae_prep_data(struct mmci_host *host,
 979			struct mmc_data *data,
 980			bool next)
 981{
 982	struct mmci_dmae_priv *dmae = host->dma_priv;
 983	struct mmci_dmae_next *nd = &dmae->next_data;
 984
 985	if (!host->use_dma)
 986		return -EINVAL;
 987
 988	if (next)
 989		return _mmci_dmae_prep_data(host, data, &nd->chan, &nd->desc);
 990	/* Check if next job is already prepared. */
 991	if (dmae->cur && dmae->desc_current)
 992		return 0;
 993
 994	/* No job were prepared thus do it now. */
 995	return _mmci_dmae_prep_data(host, data, &dmae->cur,
 996				    &dmae->desc_current);
 997}
 998
 999int mmci_dmae_start(struct mmci_host *host, unsigned int *datactrl)
1000{
1001	struct mmci_dmae_priv *dmae = host->dma_priv;
1002	int ret;
1003
1004	host->dma_in_progress = true;
1005	ret = dma_submit_error(dmaengine_submit(dmae->desc_current));
1006	if (ret < 0) {
1007		host->dma_in_progress = false;
1008		return ret;
1009	}
1010	dma_async_issue_pending(dmae->cur);
1011
1012	*datactrl |= MCI_DPSM_DMAENABLE;
1013
1014	return 0;
1015}
1016
1017void mmci_dmae_get_next_data(struct mmci_host *host, struct mmc_data *data)
1018{
1019	struct mmci_dmae_priv *dmae = host->dma_priv;
1020	struct mmci_dmae_next *next = &dmae->next_data;
1021
1022	if (!host->use_dma)
1023		return;
1024
1025	WARN_ON(!data->host_cookie && (next->desc || next->chan));
1026
1027	dmae->desc_current = next->desc;
1028	dmae->cur = next->chan;
1029	next->desc = NULL;
1030	next->chan = NULL;
1031}
1032
1033void mmci_dmae_unprep_data(struct mmci_host *host,
1034			   struct mmc_data *data, int err)
1035
1036{
1037	struct mmci_dmae_priv *dmae = host->dma_priv;
1038
1039	if (!host->use_dma)
1040		return;
1041
1042	mmci_dma_unmap(host, data);
1043
1044	if (err) {
1045		struct mmci_dmae_next *next = &dmae->next_data;
1046		struct dma_chan *chan;
1047		if (data->flags & MMC_DATA_READ)
1048			chan = dmae->rx_channel;
1049		else
1050			chan = dmae->tx_channel;
1051		dmaengine_terminate_all(chan);
1052
1053		if (dmae->desc_current == next->desc)
1054			dmae->desc_current = NULL;
1055
1056		if (dmae->cur == next->chan) {
1057			host->dma_in_progress = false;
1058			dmae->cur = NULL;
1059		}
1060
1061		next->desc = NULL;
1062		next->chan = NULL;
1063	}
1064}
1065
1066static struct mmci_host_ops mmci_variant_ops = {
1067	.prep_data = mmci_dmae_prep_data,
1068	.unprep_data = mmci_dmae_unprep_data,
1069	.get_datactrl_cfg = mmci_get_dctrl_cfg,
1070	.get_next_data = mmci_dmae_get_next_data,
1071	.dma_setup = mmci_dmae_setup,
1072	.dma_release = mmci_dmae_release,
1073	.dma_start = mmci_dmae_start,
1074	.dma_finalize = mmci_dmae_finalize,
1075	.dma_error = mmci_dmae_error,
1076};
1077#else
1078static struct mmci_host_ops mmci_variant_ops = {
1079	.get_datactrl_cfg = mmci_get_dctrl_cfg,
1080};
1081#endif
1082
1083static void mmci_variant_init(struct mmci_host *host)
1084{
1085	host->ops = &mmci_variant_ops;
1086}
1087
1088static void ux500_variant_init(struct mmci_host *host)
1089{
1090	host->ops = &mmci_variant_ops;
1091	host->ops->busy_complete = ux500_busy_complete;
1092}
1093
1094static void ux500v2_variant_init(struct mmci_host *host)
1095{
1096	host->ops = &mmci_variant_ops;
1097	host->ops->busy_complete = ux500_busy_complete;
1098	host->ops->get_datactrl_cfg = ux500v2_get_dctrl_cfg;
1099}
1100
1101static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
1102{
1103	struct mmci_host *host = mmc_priv(mmc);
1104	struct mmc_data *data = mrq->data;
1105
1106	if (!data)
1107		return;
1108
1109	WARN_ON(data->host_cookie);
1110
1111	if (mmci_validate_data(host, data))
1112		return;
1113
1114	mmci_prep_data(host, data, true);
1115}
1116
1117static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
1118			      int err)
1119{
1120	struct mmci_host *host = mmc_priv(mmc);
1121	struct mmc_data *data = mrq->data;
1122
1123	if (!data || !data->host_cookie)
1124		return;
1125
1126	mmci_unprep_data(host, data, err);
1127}
1128
1129static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
1130{
1131	struct variant_data *variant = host->variant;
1132	unsigned int datactrl, timeout, irqmask;
1133	unsigned long long clks;
1134	void __iomem *base;
1135
1136	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
1137		data->blksz, data->blocks, data->flags);
1138
1139	host->data = data;
1140	host->size = data->blksz * data->blocks;
1141	data->bytes_xfered = 0;
1142
1143	clks = (unsigned long long)data->timeout_ns * host->cclk;
1144	do_div(clks, NSEC_PER_SEC);
1145
1146	timeout = data->timeout_clks + (unsigned int)clks;
1147
1148	base = host->base;
1149	writel(timeout, base + MMCIDATATIMER);
1150	writel(host->size, base + MMCIDATALENGTH);
1151
1152	datactrl = host->ops->get_datactrl_cfg(host);
1153	datactrl |= host->data->flags & MMC_DATA_READ ? MCI_DPSM_DIRECTION : 0;
1154
1155	if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
1156		u32 clk;
1157
1158		datactrl |= variant->datactrl_mask_sdio;
1159
1160		/*
1161		 * The ST Micro variant for SDIO small write transfers
1162		 * needs to have clock H/W flow control disabled,
1163		 * otherwise the transfer will not start. The threshold
1164		 * depends on the rate of MCLK.
1165		 */
1166		if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
1167		    (host->size < 8 ||
1168		     (host->size <= 8 && host->mclk > 50000000)))
1169			clk = host->clk_reg & ~variant->clkreg_enable;
1170		else
1171			clk = host->clk_reg | variant->clkreg_enable;
1172
1173		mmci_write_clkreg(host, clk);
1174	}
1175
1176	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
1177	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
1178		datactrl |= variant->datactrl_mask_ddrmode;
1179
1180	/*
1181	 * Attempt to use DMA operation mode, if this
1182	 * should fail, fall back to PIO mode
1183	 */
1184	if (!mmci_dma_start(host, datactrl))
1185		return;
1186
1187	/* IRQ mode, map the SG list for CPU reading/writing */
1188	mmci_init_sg(host, data);
1189
1190	if (data->flags & MMC_DATA_READ) {
1191		irqmask = MCI_RXFIFOHALFFULLMASK;
1192
1193		/*
1194		 * If we have less than the fifo 'half-full' threshold to
1195		 * transfer, trigger a PIO interrupt as soon as any data
1196		 * is available.
1197		 */
1198		if (host->size < variant->fifohalfsize)
1199			irqmask |= MCI_RXDATAAVLBLMASK;
1200	} else {
1201		/*
1202		 * We don't actually need to include "FIFO empty" here
1203		 * since its implicit in "FIFO half empty".
1204		 */
1205		irqmask = MCI_TXFIFOHALFEMPTYMASK;
1206	}
1207
1208	mmci_write_datactrlreg(host, datactrl);
1209	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
1210	mmci_set_mask1(host, irqmask);
1211}
1212
1213static void
1214mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
1215{
1216	void __iomem *base = host->base;
1217	unsigned long long clks;
1218
1219	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
1220	    cmd->opcode, cmd->arg, cmd->flags);
1221
1222	if (readl(base + MMCICOMMAND) & host->variant->cmdreg_cpsm_enable) {
1223		writel(0, base + MMCICOMMAND);
1224		mmci_reg_delay(host);
1225	}
1226
1227	if (host->variant->cmdreg_stop &&
1228	    cmd->opcode == MMC_STOP_TRANSMISSION)
1229		c |= host->variant->cmdreg_stop;
1230
1231	c |= cmd->opcode | host->variant->cmdreg_cpsm_enable;
1232	if (cmd->flags & MMC_RSP_PRESENT) {
1233		if (cmd->flags & MMC_RSP_136)
1234			c |= host->variant->cmdreg_lrsp_crc;
1235		else if (cmd->flags & MMC_RSP_CRC)
1236			c |= host->variant->cmdreg_srsp_crc;
1237		else
1238			c |= host->variant->cmdreg_srsp;
1239	}
1240
1241	if (host->variant->busy_timeout && cmd->flags & MMC_RSP_BUSY) {
1242		if (!cmd->busy_timeout)
1243			cmd->busy_timeout = 10 * MSEC_PER_SEC;
1244
1245		if (cmd->busy_timeout > host->mmc->max_busy_timeout)
1246			clks = (unsigned long long)host->mmc->max_busy_timeout * host->cclk;
1247		else
1248			clks = (unsigned long long)cmd->busy_timeout * host->cclk;
1249
1250		do_div(clks, MSEC_PER_SEC);
1251		writel_relaxed(clks, host->base + MMCIDATATIMER);
1252	}
1253
1254	if (host->ops->pre_sig_volt_switch && cmd->opcode == SD_SWITCH_VOLTAGE)
1255		host->ops->pre_sig_volt_switch(host);
1256
1257	if (/*interrupt*/0)
1258		c |= MCI_CPSM_INTERRUPT;
1259
1260	if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
1261		c |= host->variant->data_cmd_enable;
1262
1263	host->cmd = cmd;
1264
1265	writel(cmd->arg, base + MMCIARGUMENT);
1266	writel(c, base + MMCICOMMAND);
1267}
1268
1269static void mmci_stop_command(struct mmci_host *host)
1270{
1271	host->stop_abort.error = 0;
1272	mmci_start_command(host, &host->stop_abort, 0);
1273}
1274
1275static void
1276mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
1277	      unsigned int status)
1278{
1279	unsigned int status_err;
1280
1281	/* Make sure we have data to handle */
1282	if (!data)
1283		return;
1284
1285	/* First check for errors */
1286	status_err = status & (host->variant->start_err |
1287			       MCI_DATACRCFAIL | MCI_DATATIMEOUT |
1288			       MCI_TXUNDERRUN | MCI_RXOVERRUN);
1289
1290	if (status_err) {
1291		u32 remain, success;
1292
1293		/* Terminate the DMA transfer */
1294		mmci_dma_error(host);
1295
1296		/*
1297		 * Calculate how far we are into the transfer.  Note that
1298		 * the data counter gives the number of bytes transferred
1299		 * on the MMC bus, not on the host side.  On reads, this
1300		 * can be as much as a FIFO-worth of data ahead.  This
1301		 * matters for FIFO overruns only.
1302		 */
1303		if (!host->variant->datacnt_useless) {
1304			remain = readl(host->base + MMCIDATACNT);
1305			success = data->blksz * data->blocks - remain;
1306		} else {
1307			success = 0;
1308		}
1309
1310		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
1311			status_err, success);
1312		if (status_err & MCI_DATACRCFAIL) {
1313			/* Last block was not successful */
1314			success -= 1;
1315			data->error = -EILSEQ;
1316		} else if (status_err & MCI_DATATIMEOUT) {
1317			data->error = -ETIMEDOUT;
1318		} else if (status_err & MCI_STARTBITERR) {
1319			data->error = -ECOMM;
1320		} else if (status_err & MCI_TXUNDERRUN) {
1321			data->error = -EIO;
1322		} else if (status_err & MCI_RXOVERRUN) {
1323			if (success > host->variant->fifosize)
1324				success -= host->variant->fifosize;
1325			else
1326				success = 0;
1327			data->error = -EIO;
1328		}
1329		data->bytes_xfered = round_down(success, data->blksz);
1330	}
1331
1332	if (status & MCI_DATABLOCKEND)
1333		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1334
1335	if (status & MCI_DATAEND || data->error) {
1336		mmci_dma_finalize(host, data);
1337
1338		mmci_stop_data(host);
1339
1340		if (!data->error)
1341			/* The error clause is handled above, success! */
1342			data->bytes_xfered = data->blksz * data->blocks;
1343
1344		if (!data->stop) {
1345			if (host->variant->cmdreg_stop && data->error)
1346				mmci_stop_command(host);
1347			else
1348				mmci_request_end(host, data->mrq);
1349		} else if (host->mrq->sbc && !data->error) {
1350			mmci_request_end(host, data->mrq);
1351		} else {
1352			mmci_start_command(host, data->stop, 0);
1353		}
1354	}
1355}
1356
1357static void
1358mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1359	     unsigned int status)
1360{
1361	u32 err_msk = MCI_CMDCRCFAIL | MCI_CMDTIMEOUT;
1362	void __iomem *base = host->base;
1363	bool sbc, busy_resp;
1364
1365	if (!cmd)
1366		return;
1367
1368	sbc = (cmd == host->mrq->sbc);
1369	busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1370
1371	/*
1372	 * We need to be one of these interrupts to be considered worth
1373	 * handling. Note that we tag on any latent IRQs postponed
1374	 * due to waiting for busy status.
1375	 */
1376	if (host->variant->busy_timeout && busy_resp)
1377		err_msk |= MCI_DATATIMEOUT;
1378
1379	if (!((status | host->busy_status) &
1380	      (err_msk | MCI_CMDSENT | MCI_CMDRESPEND)))
1381		return;
1382
1383	/* Handle busy detection on DAT0 if the variant supports it. */
1384	if (busy_resp && host->variant->busy_detect)
1385		if (!host->ops->busy_complete(host, status, err_msk))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1386			return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1387
1388	host->cmd = NULL;
1389
1390	if (status & MCI_CMDTIMEOUT) {
1391		cmd->error = -ETIMEDOUT;
1392	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1393		cmd->error = -EILSEQ;
1394	} else if (host->variant->busy_timeout && busy_resp &&
1395		   status & MCI_DATATIMEOUT) {
1396		cmd->error = -ETIMEDOUT;
1397		/*
1398		 * This will wake up mmci_irq_thread() which will issue
1399		 * a hardware reset of the MMCI block.
1400		 */
1401		host->irq_action = IRQ_WAKE_THREAD;
1402	} else {
1403		cmd->resp[0] = readl(base + MMCIRESPONSE0);
1404		cmd->resp[1] = readl(base + MMCIRESPONSE1);
1405		cmd->resp[2] = readl(base + MMCIRESPONSE2);
1406		cmd->resp[3] = readl(base + MMCIRESPONSE3);
1407	}
1408
1409	if ((!sbc && !cmd->data) || cmd->error) {
1410		if (host->data) {
1411			/* Terminate the DMA transfer */
1412			mmci_dma_error(host);
1413
1414			mmci_stop_data(host);
1415			if (host->variant->cmdreg_stop && cmd->error) {
1416				mmci_stop_command(host);
1417				return;
1418			}
1419		}
1420
1421		if (host->irq_action != IRQ_WAKE_THREAD)
1422			mmci_request_end(host, host->mrq);
1423
1424	} else if (sbc) {
1425		mmci_start_command(host, host->mrq->cmd, 0);
1426	} else if (!host->variant->datactrl_first &&
1427		   !(cmd->data->flags & MMC_DATA_READ)) {
1428		mmci_start_data(host, cmd->data);
1429	}
1430}
1431
1432static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1433{
1434	return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1435}
1436
1437static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1438{
1439	/*
1440	 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1441	 * from the fifo range should be used
1442	 */
1443	if (status & MCI_RXFIFOHALFFULL)
1444		return host->variant->fifohalfsize;
1445	else if (status & MCI_RXDATAAVLBL)
1446		return 4;
1447
1448	return 0;
1449}
1450
1451static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1452{
1453	void __iomem *base = host->base;
1454	char *ptr = buffer;
1455	u32 status = readl(host->base + MMCISTATUS);
1456	int host_remain = host->size;
1457
1458	do {
1459		int count = host->get_rx_fifocnt(host, status, host_remain);
1460
1461		if (count > remain)
1462			count = remain;
1463
1464		if (count <= 0)
1465			break;
1466
1467		/*
1468		 * SDIO especially may want to send something that is
1469		 * not divisible by 4 (as opposed to card sectors
1470		 * etc). Therefore make sure to always read the last bytes
1471		 * while only doing full 32-bit reads towards the FIFO.
1472		 */
1473		if (unlikely(count & 0x3)) {
1474			if (count < 4) {
1475				unsigned char buf[4];
1476				ioread32_rep(base + MMCIFIFO, buf, 1);
1477				memcpy(ptr, buf, count);
1478			} else {
1479				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1480				count &= ~0x3;
1481			}
1482		} else {
1483			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1484		}
1485
1486		ptr += count;
1487		remain -= count;
1488		host_remain -= count;
1489
1490		if (remain == 0)
1491			break;
1492
1493		status = readl(base + MMCISTATUS);
1494	} while (status & MCI_RXDATAAVLBL);
1495
1496	return ptr - buffer;
1497}
1498
1499static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1500{
1501	struct variant_data *variant = host->variant;
1502	void __iomem *base = host->base;
1503	char *ptr = buffer;
1504
1505	do {
1506		unsigned int count, maxcnt;
1507
1508		maxcnt = status & MCI_TXFIFOEMPTY ?
1509			 variant->fifosize : variant->fifohalfsize;
1510		count = min(remain, maxcnt);
1511
1512		/*
1513		 * SDIO especially may want to send something that is
1514		 * not divisible by 4 (as opposed to card sectors
1515		 * etc), and the FIFO only accept full 32-bit writes.
1516		 * So compensate by adding +3 on the count, a single
1517		 * byte become a 32bit write, 7 bytes will be two
1518		 * 32bit writes etc.
1519		 */
1520		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1521
1522		ptr += count;
1523		remain -= count;
1524
1525		if (remain == 0)
1526			break;
1527
1528		status = readl(base + MMCISTATUS);
1529	} while (status & MCI_TXFIFOHALFEMPTY);
1530
1531	return ptr - buffer;
1532}
1533
1534/*
1535 * PIO data transfer IRQ handler.
1536 */
1537static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1538{
1539	struct mmci_host *host = dev_id;
1540	struct sg_mapping_iter *sg_miter = &host->sg_miter;
1541	struct variant_data *variant = host->variant;
1542	void __iomem *base = host->base;
1543	u32 status;
1544
1545	status = readl(base + MMCISTATUS);
1546
1547	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1548
1549	do {
1550		unsigned int remain, len;
1551		char *buffer;
1552
1553		/*
1554		 * For write, we only need to test the half-empty flag
1555		 * here - if the FIFO is completely empty, then by
1556		 * definition it is more than half empty.
1557		 *
1558		 * For read, check for data available.
1559		 */
1560		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1561			break;
1562
1563		if (!sg_miter_next(sg_miter))
1564			break;
1565
1566		buffer = sg_miter->addr;
1567		remain = sg_miter->length;
1568
1569		len = 0;
1570		if (status & MCI_RXACTIVE)
1571			len = mmci_pio_read(host, buffer, remain);
1572		if (status & MCI_TXACTIVE)
1573			len = mmci_pio_write(host, buffer, remain, status);
1574
1575		sg_miter->consumed = len;
1576
1577		host->size -= len;
1578		remain -= len;
1579
1580		if (remain)
1581			break;
1582
1583		status = readl(base + MMCISTATUS);
1584	} while (1);
1585
1586	sg_miter_stop(sg_miter);
1587
1588	/*
1589	 * If we have less than the fifo 'half-full' threshold to transfer,
1590	 * trigger a PIO interrupt as soon as any data is available.
1591	 */
1592	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1593		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1594
1595	/*
1596	 * If we run out of data, disable the data IRQs; this
1597	 * prevents a race where the FIFO becomes empty before
1598	 * the chip itself has disabled the data path, and
1599	 * stops us racing with our data end IRQ.
1600	 */
1601	if (host->size == 0) {
1602		mmci_set_mask1(host, 0);
1603		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1604	}
1605
1606	return IRQ_HANDLED;
1607}
1608
1609/*
1610 * Handle completion of command and data transfers.
1611 */
1612static irqreturn_t mmci_irq(int irq, void *dev_id)
1613{
1614	struct mmci_host *host = dev_id;
1615	u32 status;
 
1616
1617	spin_lock(&host->lock);
1618	host->irq_action = IRQ_HANDLED;
1619
1620	do {
1621		status = readl(host->base + MMCISTATUS);
1622		if (!status)
1623			break;
1624
1625		if (host->singleirq) {
1626			if (status & host->mask1_reg)
1627				mmci_pio_irq(irq, dev_id);
1628
1629			status &= ~host->variant->irq_pio_mask;
1630		}
1631
1632		/*
1633		 * Busy detection is managed by mmci_cmd_irq(), including to
1634		 * clear the corresponding IRQ.
1635		 */
1636		status &= readl(host->base + MMCIMASK0);
1637		if (host->variant->busy_detect)
1638			writel(status & ~host->variant->busy_detect_mask,
1639			       host->base + MMCICLEAR);
1640		else
1641			writel(status, host->base + MMCICLEAR);
1642
1643		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1644
1645		if (host->variant->reversed_irq_handling) {
1646			mmci_data_irq(host, host->data, status);
1647			mmci_cmd_irq(host, host->cmd, status);
1648		} else {
1649			mmci_cmd_irq(host, host->cmd, status);
1650			mmci_data_irq(host, host->data, status);
1651		}
1652
1653		/*
1654		 * Busy detection has been handled by mmci_cmd_irq() above.
1655		 * Clear the status bit to prevent polling in IRQ context.
1656		 */
1657		if (host->variant->busy_detect_flag)
1658			status &= ~host->variant->busy_detect_flag;
1659
 
1660	} while (status);
1661
1662	spin_unlock(&host->lock);
1663
1664	return host->irq_action;
1665}
1666
1667/*
1668 * mmci_irq_thread() - A threaded IRQ handler that manages a reset of the HW.
1669 *
1670 * A reset is needed for some variants, where a datatimeout for a R1B request
1671 * causes the DPSM to stay busy (non-functional).
1672 */
1673static irqreturn_t mmci_irq_thread(int irq, void *dev_id)
1674{
1675	struct mmci_host *host = dev_id;
1676	unsigned long flags;
1677
1678	if (host->rst) {
1679		reset_control_assert(host->rst);
1680		udelay(2);
1681		reset_control_deassert(host->rst);
1682	}
1683
1684	spin_lock_irqsave(&host->lock, flags);
1685	writel(host->clk_reg, host->base + MMCICLOCK);
1686	writel(host->pwr_reg, host->base + MMCIPOWER);
1687	writel(MCI_IRQENABLE | host->variant->start_err,
1688	       host->base + MMCIMASK0);
1689
1690	host->irq_action = IRQ_HANDLED;
1691	mmci_request_end(host, host->mrq);
1692	spin_unlock_irqrestore(&host->lock, flags);
1693
1694	return host->irq_action;
1695}
1696
1697static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1698{
1699	struct mmci_host *host = mmc_priv(mmc);
1700	unsigned long flags;
1701
1702	WARN_ON(host->mrq != NULL);
1703
1704	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1705	if (mrq->cmd->error) {
1706		mmc_request_done(mmc, mrq);
1707		return;
1708	}
1709
1710	spin_lock_irqsave(&host->lock, flags);
1711
1712	host->mrq = mrq;
1713
1714	if (mrq->data)
1715		mmci_get_next_data(host, mrq->data);
1716
1717	if (mrq->data &&
1718	    (host->variant->datactrl_first || mrq->data->flags & MMC_DATA_READ))
1719		mmci_start_data(host, mrq->data);
1720
1721	if (mrq->sbc)
1722		mmci_start_command(host, mrq->sbc, 0);
1723	else
1724		mmci_start_command(host, mrq->cmd, 0);
1725
1726	spin_unlock_irqrestore(&host->lock, flags);
1727}
1728
1729static void mmci_set_max_busy_timeout(struct mmc_host *mmc)
1730{
1731	struct mmci_host *host = mmc_priv(mmc);
1732	u32 max_busy_timeout = 0;
1733
1734	if (!host->variant->busy_detect)
1735		return;
1736
1737	if (host->variant->busy_timeout && mmc->actual_clock)
1738		max_busy_timeout = ~0UL / (mmc->actual_clock / MSEC_PER_SEC);
1739
1740	mmc->max_busy_timeout = max_busy_timeout;
1741}
1742
1743static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1744{
1745	struct mmci_host *host = mmc_priv(mmc);
1746	struct variant_data *variant = host->variant;
1747	u32 pwr = 0;
1748	unsigned long flags;
1749	int ret;
1750
 
 
 
 
1751	switch (ios->power_mode) {
1752	case MMC_POWER_OFF:
1753		if (!IS_ERR(mmc->supply.vmmc))
1754			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1755
1756		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1757			regulator_disable(mmc->supply.vqmmc);
1758			host->vqmmc_enabled = false;
1759		}
1760
1761		break;
1762	case MMC_POWER_UP:
1763		if (!IS_ERR(mmc->supply.vmmc))
1764			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1765
1766		/*
1767		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1768		 * and instead uses MCI_PWR_ON so apply whatever value is
1769		 * configured in the variant data.
1770		 */
1771		pwr |= variant->pwrreg_powerup;
1772
1773		break;
1774	case MMC_POWER_ON:
1775		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1776			ret = regulator_enable(mmc->supply.vqmmc);
1777			if (ret < 0)
1778				dev_err(mmc_dev(mmc),
1779					"failed to enable vqmmc regulator\n");
1780			else
1781				host->vqmmc_enabled = true;
1782		}
1783
1784		pwr |= MCI_PWR_ON;
1785		break;
1786	}
1787
1788	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1789		/*
1790		 * The ST Micro variant has some additional bits
1791		 * indicating signal direction for the signals in
1792		 * the SD/MMC bus and feedback-clock usage.
1793		 */
1794		pwr |= host->pwr_reg_add;
1795
1796		if (ios->bus_width == MMC_BUS_WIDTH_4)
1797			pwr &= ~MCI_ST_DATA74DIREN;
1798		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1799			pwr &= (~MCI_ST_DATA74DIREN &
1800				~MCI_ST_DATA31DIREN &
1801				~MCI_ST_DATA2DIREN);
1802	}
1803
1804	if (variant->opendrain) {
1805		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1806			pwr |= variant->opendrain;
1807	} else {
1808		/*
1809		 * If the variant cannot configure the pads by its own, then we
1810		 * expect the pinctrl to be able to do that for us
1811		 */
1812		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1813			pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1814		else
1815			pinctrl_select_default_state(mmc_dev(mmc));
1816	}
1817
1818	/*
1819	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1820	 * gating the clock, the MCI_PWR_ON bit is cleared.
1821	 */
1822	if (!ios->clock && variant->pwrreg_clkgate)
1823		pwr &= ~MCI_PWR_ON;
1824
1825	if (host->variant->explicit_mclk_control &&
1826	    ios->clock != host->clock_cache) {
1827		ret = clk_set_rate(host->clk, ios->clock);
1828		if (ret < 0)
1829			dev_err(mmc_dev(host->mmc),
1830				"Error setting clock rate (%d)\n", ret);
1831		else
1832			host->mclk = clk_get_rate(host->clk);
1833	}
1834	host->clock_cache = ios->clock;
1835
1836	spin_lock_irqsave(&host->lock, flags);
1837
1838	if (host->ops && host->ops->set_clkreg)
1839		host->ops->set_clkreg(host, ios->clock);
1840	else
1841		mmci_set_clkreg(host, ios->clock);
1842
1843	mmci_set_max_busy_timeout(mmc);
1844
1845	if (host->ops && host->ops->set_pwrreg)
1846		host->ops->set_pwrreg(host, pwr);
1847	else
1848		mmci_write_pwrreg(host, pwr);
1849
1850	mmci_reg_delay(host);
1851
1852	spin_unlock_irqrestore(&host->lock, flags);
1853}
1854
1855static int mmci_get_cd(struct mmc_host *mmc)
1856{
1857	struct mmci_host *host = mmc_priv(mmc);
1858	struct mmci_platform_data *plat = host->plat;
1859	unsigned int status = mmc_gpio_get_cd(mmc);
1860
1861	if (status == -ENOSYS) {
1862		if (!plat->status)
1863			return 1; /* Assume always present */
1864
1865		status = plat->status(mmc_dev(host->mmc));
1866	}
1867	return status;
1868}
1869
1870static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1871{
1872	struct mmci_host *host = mmc_priv(mmc);
1873	int ret;
1874
1875	ret = mmc_regulator_set_vqmmc(mmc, ios);
1876
1877	if (!ret && host->ops && host->ops->post_sig_volt_switch)
1878		ret = host->ops->post_sig_volt_switch(host, ios);
1879	else if (ret)
1880		ret = 0;
 
 
 
 
 
 
 
 
 
 
1881
1882	if (ret < 0)
1883		dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
 
1884
1885	return ret;
1886}
1887
1888static struct mmc_host_ops mmci_ops = {
1889	.request	= mmci_request,
1890	.pre_req	= mmci_pre_request,
1891	.post_req	= mmci_post_request,
1892	.set_ios	= mmci_set_ios,
1893	.get_ro		= mmc_gpio_get_ro,
1894	.get_cd		= mmci_get_cd,
1895	.start_signal_voltage_switch = mmci_sig_volt_switch,
1896};
1897
1898static void mmci_probe_level_translator(struct mmc_host *mmc)
1899{
1900	struct device *dev = mmc_dev(mmc);
1901	struct mmci_host *host = mmc_priv(mmc);
1902	struct gpio_desc *cmd_gpio;
1903	struct gpio_desc *ck_gpio;
1904	struct gpio_desc *ckin_gpio;
1905	int clk_hi, clk_lo;
1906
1907	/*
1908	 * Assume the level translator is present if st,use-ckin is set.
1909	 * This is to cater for DTs which do not implement this test.
1910	 */
1911	host->clk_reg_add |= MCI_STM32_CLK_SELCKIN;
1912
1913	cmd_gpio = gpiod_get(dev, "st,cmd", GPIOD_OUT_HIGH);
1914	if (IS_ERR(cmd_gpio))
1915		goto exit_cmd;
1916
1917	ck_gpio = gpiod_get(dev, "st,ck", GPIOD_OUT_HIGH);
1918	if (IS_ERR(ck_gpio))
1919		goto exit_ck;
1920
1921	ckin_gpio = gpiod_get(dev, "st,ckin", GPIOD_IN);
1922	if (IS_ERR(ckin_gpio))
1923		goto exit_ckin;
1924
1925	/* All GPIOs are valid, test whether level translator works */
1926
1927	/* Sample CKIN */
1928	clk_hi = !!gpiod_get_value(ckin_gpio);
1929
1930	/* Set CK low */
1931	gpiod_set_value(ck_gpio, 0);
1932
1933	/* Sample CKIN */
1934	clk_lo = !!gpiod_get_value(ckin_gpio);
1935
1936	/* Tristate all */
1937	gpiod_direction_input(cmd_gpio);
1938	gpiod_direction_input(ck_gpio);
1939
1940	/* Level translator is present if CK signal is propagated to CKIN */
1941	if (!clk_hi || clk_lo) {
1942		host->clk_reg_add &= ~MCI_STM32_CLK_SELCKIN;
1943		dev_warn(dev,
1944			 "Level translator inoperable, CK signal not detected on CKIN, disabling.\n");
1945	}
1946
1947	gpiod_put(ckin_gpio);
1948
1949exit_ckin:
1950	gpiod_put(ck_gpio);
1951exit_ck:
1952	gpiod_put(cmd_gpio);
1953exit_cmd:
1954	pinctrl_select_default_state(dev);
1955}
1956
1957static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1958{
1959	struct mmci_host *host = mmc_priv(mmc);
1960	int ret = mmc_of_parse(mmc);
1961
1962	if (ret)
1963		return ret;
1964
1965	if (of_get_property(np, "st,sig-dir-dat0", NULL))
1966		host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1967	if (of_get_property(np, "st,sig-dir-dat2", NULL))
1968		host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1969	if (of_get_property(np, "st,sig-dir-dat31", NULL))
1970		host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1971	if (of_get_property(np, "st,sig-dir-dat74", NULL))
1972		host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1973	if (of_get_property(np, "st,sig-dir-cmd", NULL))
1974		host->pwr_reg_add |= MCI_ST_CMDDIREN;
1975	if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1976		host->pwr_reg_add |= MCI_ST_FBCLKEN;
1977	if (of_get_property(np, "st,sig-dir", NULL))
1978		host->pwr_reg_add |= MCI_STM32_DIRPOL;
1979	if (of_get_property(np, "st,neg-edge", NULL))
1980		host->clk_reg_add |= MCI_STM32_CLK_NEGEDGE;
1981	if (of_get_property(np, "st,use-ckin", NULL))
1982		mmci_probe_level_translator(mmc);
1983
1984	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1985		mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1986	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1987		mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1988
1989	return 0;
1990}
1991
1992static int mmci_probe(struct amba_device *dev,
1993	const struct amba_id *id)
1994{
1995	struct mmci_platform_data *plat = dev->dev.platform_data;
1996	struct device_node *np = dev->dev.of_node;
1997	struct variant_data *variant = id->data;
1998	struct mmci_host *host;
1999	struct mmc_host *mmc;
2000	int ret;
2001
2002	/* Must have platform data or Device Tree. */
2003	if (!plat && !np) {
2004		dev_err(&dev->dev, "No plat data or DT found\n");
2005		return -EINVAL;
2006	}
2007
2008	if (!plat) {
2009		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
2010		if (!plat)
2011			return -ENOMEM;
2012	}
2013
2014	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
2015	if (!mmc)
2016		return -ENOMEM;
2017
2018	host = mmc_priv(mmc);
2019	host->mmc = mmc;
2020	host->mmc_ops = &mmci_ops;
2021	mmc->ops = &mmci_ops;
2022
2023	ret = mmci_of_parse(np, mmc);
2024	if (ret)
2025		goto host_free;
2026
 
 
 
2027	/*
2028	 * Some variant (STM32) doesn't have opendrain bit, nevertheless
2029	 * pins can be set accordingly using pinctrl
2030	 */
2031	if (!variant->opendrain) {
2032		host->pinctrl = devm_pinctrl_get(&dev->dev);
2033		if (IS_ERR(host->pinctrl)) {
2034			dev_err(&dev->dev, "failed to get pinctrl");
2035			ret = PTR_ERR(host->pinctrl);
2036			goto host_free;
2037		}
2038
 
 
 
 
 
 
 
 
2039		host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
2040							    MMCI_PINCTRL_STATE_OPENDRAIN);
2041		if (IS_ERR(host->pins_opendrain)) {
2042			dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
2043			ret = PTR_ERR(host->pins_opendrain);
2044			goto host_free;
2045		}
2046	}
2047
2048	host->hw_designer = amba_manf(dev);
2049	host->hw_revision = amba_rev(dev);
2050	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
2051	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
2052
2053	host->clk = devm_clk_get(&dev->dev, NULL);
2054	if (IS_ERR(host->clk)) {
2055		ret = PTR_ERR(host->clk);
2056		goto host_free;
2057	}
2058
2059	ret = clk_prepare_enable(host->clk);
2060	if (ret)
2061		goto host_free;
2062
2063	if (variant->qcom_fifo)
2064		host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
2065	else
2066		host->get_rx_fifocnt = mmci_get_rx_fifocnt;
2067
2068	host->plat = plat;
2069	host->variant = variant;
2070	host->mclk = clk_get_rate(host->clk);
2071	/*
2072	 * According to the spec, mclk is max 100 MHz,
2073	 * so we try to adjust the clock down to this,
2074	 * (if possible).
2075	 */
2076	if (host->mclk > variant->f_max) {
2077		ret = clk_set_rate(host->clk, variant->f_max);
2078		if (ret < 0)
2079			goto clk_disable;
2080		host->mclk = clk_get_rate(host->clk);
2081		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
2082			host->mclk);
2083	}
2084
2085	host->phybase = dev->res.start;
2086	host->base = devm_ioremap_resource(&dev->dev, &dev->res);
2087	if (IS_ERR(host->base)) {
2088		ret = PTR_ERR(host->base);
2089		goto clk_disable;
2090	}
2091
2092	if (variant->init)
2093		variant->init(host);
2094
2095	/*
2096	 * The ARM and ST versions of the block have slightly different
2097	 * clock divider equations which means that the minimum divider
2098	 * differs too.
2099	 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
2100	 */
2101	if (variant->st_clkdiv)
2102		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
2103	else if (variant->stm32_clkdiv)
2104		mmc->f_min = DIV_ROUND_UP(host->mclk, 2046);
2105	else if (variant->explicit_mclk_control)
2106		mmc->f_min = clk_round_rate(host->clk, 100000);
2107	else
2108		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
2109	/*
2110	 * If no maximum operating frequency is supplied, fall back to use
2111	 * the module parameter, which has a (low) default value in case it
2112	 * is not specified. Either value must not exceed the clock rate into
2113	 * the block, of course.
2114	 */
2115	if (mmc->f_max)
2116		mmc->f_max = variant->explicit_mclk_control ?
2117				min(variant->f_max, mmc->f_max) :
2118				min(host->mclk, mmc->f_max);
2119	else
2120		mmc->f_max = variant->explicit_mclk_control ?
2121				fmax : min(host->mclk, fmax);
2122
2123
2124	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
2125
2126	host->rst = devm_reset_control_get_optional_exclusive(&dev->dev, NULL);
2127	if (IS_ERR(host->rst)) {
2128		ret = PTR_ERR(host->rst);
2129		goto clk_disable;
2130	}
2131	ret = reset_control_deassert(host->rst);
2132	if (ret)
2133		dev_err(mmc_dev(mmc), "failed to de-assert reset\n");
2134
2135	/* Get regulators and the supported OCR mask */
2136	ret = mmc_regulator_get_supply(mmc);
2137	if (ret)
2138		goto clk_disable;
2139
2140	if (!mmc->ocr_avail)
2141		mmc->ocr_avail = plat->ocr_mask;
2142	else if (plat->ocr_mask)
2143		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
2144
2145	/* We support these capabilities. */
2146	mmc->caps |= MMC_CAP_CMD23;
2147
2148	/*
2149	 * Enable busy detection.
2150	 */
2151	if (variant->busy_detect) {
2152		mmci_ops.card_busy = mmci_card_busy;
2153		/*
2154		 * Not all variants have a flag to enable busy detection
2155		 * in the DPSM, but if they do, set it here.
2156		 */
2157		if (variant->busy_dpsm_flag)
2158			mmci_write_datactrlreg(host,
2159					       host->variant->busy_dpsm_flag);
2160		mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
 
2161	}
2162
2163	/* Variants with mandatory busy timeout in HW needs R1B responses. */
2164	if (variant->busy_timeout)
2165		mmc->caps |= MMC_CAP_NEED_RSP_BUSY;
2166
2167	/* Prepare a CMD12 - needed to clear the DPSM on some variants. */
2168	host->stop_abort.opcode = MMC_STOP_TRANSMISSION;
2169	host->stop_abort.arg = 0;
2170	host->stop_abort.flags = MMC_RSP_R1B | MMC_CMD_AC;
2171
 
 
2172	/* We support these PM capabilities. */
2173	mmc->pm_caps |= MMC_PM_KEEP_POWER;
2174
2175	/*
2176	 * We can do SGIO
2177	 */
2178	mmc->max_segs = NR_SG;
2179
2180	/*
2181	 * Since only a certain number of bits are valid in the data length
2182	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
2183	 * single request.
2184	 */
2185	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
2186
2187	/*
2188	 * Set the maximum segment size.  Since we aren't doing DMA
2189	 * (yet) we are only limited by the data length register.
2190	 */
2191	mmc->max_seg_size = mmc->max_req_size;
2192
2193	/*
2194	 * Block size can be up to 2048 bytes, but must be a power of two.
2195	 */
2196	mmc->max_blk_size = 1 << variant->datactrl_blocksz;
2197
2198	/*
2199	 * Limit the number of blocks transferred so that we don't overflow
2200	 * the maximum request size.
2201	 */
2202	mmc->max_blk_count = mmc->max_req_size >> variant->datactrl_blocksz;
2203
2204	spin_lock_init(&host->lock);
2205
2206	writel(0, host->base + MMCIMASK0);
2207
2208	if (variant->mmcimask1)
2209		writel(0, host->base + MMCIMASK1);
2210
2211	writel(0xfff, host->base + MMCICLEAR);
2212
2213	/*
2214	 * If:
2215	 * - not using DT but using a descriptor table, or
2216	 * - using a table of descriptors ALONGSIDE DT, or
2217	 * look up these descriptors named "cd" and "wp" right here, fail
2218	 * silently of these do not exist
2219	 */
2220	if (!np) {
2221		ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0);
2222		if (ret == -EPROBE_DEFER)
2223			goto clk_disable;
2224
2225		ret = mmc_gpiod_request_ro(mmc, "wp", 0, 0);
2226		if (ret == -EPROBE_DEFER)
2227			goto clk_disable;
2228	}
2229
2230	ret = devm_request_threaded_irq(&dev->dev, dev->irq[0], mmci_irq,
2231					mmci_irq_thread, IRQF_SHARED,
2232					DRIVER_NAME " (cmd)", host);
2233	if (ret)
2234		goto clk_disable;
2235
2236	if (!dev->irq[1])
2237		host->singleirq = true;
2238	else {
2239		ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
2240				IRQF_SHARED, DRIVER_NAME " (pio)", host);
2241		if (ret)
2242			goto clk_disable;
2243	}
2244
2245	writel(MCI_IRQENABLE | variant->start_err, host->base + MMCIMASK0);
2246
2247	amba_set_drvdata(dev, mmc);
2248
2249	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
2250		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
2251		 amba_rev(dev), (unsigned long long)dev->res.start,
2252		 dev->irq[0], dev->irq[1]);
2253
2254	mmci_dma_setup(host);
2255
2256	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
2257	pm_runtime_use_autosuspend(&dev->dev);
2258
2259	ret = mmc_add_host(mmc);
2260	if (ret)
2261		goto clk_disable;
2262
2263	pm_runtime_put(&dev->dev);
2264	return 0;
2265
2266 clk_disable:
2267	clk_disable_unprepare(host->clk);
2268 host_free:
2269	mmc_free_host(mmc);
2270	return ret;
2271}
2272
2273static void mmci_remove(struct amba_device *dev)
2274{
2275	struct mmc_host *mmc = amba_get_drvdata(dev);
2276
2277	if (mmc) {
2278		struct mmci_host *host = mmc_priv(mmc);
2279		struct variant_data *variant = host->variant;
2280
2281		/*
2282		 * Undo pm_runtime_put() in probe.  We use the _sync
2283		 * version here so that we can access the primecell.
2284		 */
2285		pm_runtime_get_sync(&dev->dev);
2286
2287		mmc_remove_host(mmc);
2288
2289		writel(0, host->base + MMCIMASK0);
2290
2291		if (variant->mmcimask1)
2292			writel(0, host->base + MMCIMASK1);
2293
2294		writel(0, host->base + MMCICOMMAND);
2295		writel(0, host->base + MMCIDATACTRL);
2296
2297		mmci_dma_release(host);
2298		clk_disable_unprepare(host->clk);
2299		mmc_free_host(mmc);
2300	}
 
 
2301}
2302
2303#ifdef CONFIG_PM
2304static void mmci_save(struct mmci_host *host)
2305{
2306	unsigned long flags;
2307
2308	spin_lock_irqsave(&host->lock, flags);
2309
2310	writel(0, host->base + MMCIMASK0);
2311	if (host->variant->pwrreg_nopower) {
2312		writel(0, host->base + MMCIDATACTRL);
2313		writel(0, host->base + MMCIPOWER);
2314		writel(0, host->base + MMCICLOCK);
2315	}
2316	mmci_reg_delay(host);
2317
2318	spin_unlock_irqrestore(&host->lock, flags);
2319}
2320
2321static void mmci_restore(struct mmci_host *host)
2322{
2323	unsigned long flags;
2324
2325	spin_lock_irqsave(&host->lock, flags);
2326
2327	if (host->variant->pwrreg_nopower) {
2328		writel(host->clk_reg, host->base + MMCICLOCK);
2329		writel(host->datactrl_reg, host->base + MMCIDATACTRL);
2330		writel(host->pwr_reg, host->base + MMCIPOWER);
2331	}
2332	writel(MCI_IRQENABLE | host->variant->start_err,
2333	       host->base + MMCIMASK0);
2334	mmci_reg_delay(host);
2335
2336	spin_unlock_irqrestore(&host->lock, flags);
2337}
2338
2339static int mmci_runtime_suspend(struct device *dev)
2340{
2341	struct amba_device *adev = to_amba_device(dev);
2342	struct mmc_host *mmc = amba_get_drvdata(adev);
2343
2344	if (mmc) {
2345		struct mmci_host *host = mmc_priv(mmc);
2346		pinctrl_pm_select_sleep_state(dev);
2347		mmci_save(host);
2348		clk_disable_unprepare(host->clk);
2349	}
2350
2351	return 0;
2352}
2353
2354static int mmci_runtime_resume(struct device *dev)
2355{
2356	struct amba_device *adev = to_amba_device(dev);
2357	struct mmc_host *mmc = amba_get_drvdata(adev);
2358
2359	if (mmc) {
2360		struct mmci_host *host = mmc_priv(mmc);
2361		clk_prepare_enable(host->clk);
2362		mmci_restore(host);
2363		pinctrl_select_default_state(dev);
2364	}
2365
2366	return 0;
2367}
2368#endif
2369
2370static const struct dev_pm_ops mmci_dev_pm_ops = {
2371	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2372				pm_runtime_force_resume)
2373	SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
2374};
2375
2376static const struct amba_id mmci_ids[] = {
2377	{
2378		.id	= 0x00041180,
2379		.mask	= 0xff0fffff,
2380		.data	= &variant_arm,
2381	},
2382	{
2383		.id	= 0x01041180,
2384		.mask	= 0xff0fffff,
2385		.data	= &variant_arm_extended_fifo,
2386	},
2387	{
2388		.id	= 0x02041180,
2389		.mask	= 0xff0fffff,
2390		.data	= &variant_arm_extended_fifo_hwfc,
2391	},
2392	{
2393		.id	= 0x00041181,
2394		.mask	= 0x000fffff,
2395		.data	= &variant_arm,
2396	},
2397	/* ST Micro variants */
2398	{
2399		.id     = 0x00180180,
2400		.mask   = 0x00ffffff,
2401		.data	= &variant_u300,
2402	},
2403	{
2404		.id     = 0x10180180,
2405		.mask   = 0xf0ffffff,
2406		.data	= &variant_nomadik,
2407	},
2408	{
2409		.id     = 0x00280180,
2410		.mask   = 0x00ffffff,
2411		.data	= &variant_nomadik,
2412	},
2413	{
2414		.id     = 0x00480180,
2415		.mask   = 0xf0ffffff,
2416		.data	= &variant_ux500,
2417	},
2418	{
2419		.id     = 0x10480180,
2420		.mask   = 0xf0ffffff,
2421		.data	= &variant_ux500v2,
2422	},
2423	{
2424		.id     = 0x00880180,
2425		.mask   = 0x00ffffff,
2426		.data	= &variant_stm32,
2427	},
2428	{
2429		.id     = 0x10153180,
2430		.mask	= 0xf0ffffff,
2431		.data	= &variant_stm32_sdmmc,
2432	},
2433	{
2434		.id     = 0x00253180,
2435		.mask	= 0xf0ffffff,
2436		.data	= &variant_stm32_sdmmcv2,
2437	},
2438	{
2439		.id     = 0x20253180,
2440		.mask	= 0xf0ffffff,
2441		.data	= &variant_stm32_sdmmcv2,
2442	},
2443	/* Qualcomm variants */
2444	{
2445		.id     = 0x00051180,
2446		.mask	= 0x000fffff,
2447		.data	= &variant_qcom,
2448	},
2449	{ 0, 0 },
2450};
2451
2452MODULE_DEVICE_TABLE(amba, mmci_ids);
2453
2454static struct amba_driver mmci_driver = {
2455	.drv		= {
2456		.name	= DRIVER_NAME,
2457		.pm	= &mmci_dev_pm_ops,
2458	},
2459	.probe		= mmci_probe,
2460	.remove		= mmci_remove,
2461	.id_table	= mmci_ids,
2462};
2463
2464module_amba_driver(mmci_driver);
2465
2466module_param(fmax, uint, 0444);
2467
2468MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2469MODULE_LICENSE("GPL");
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
   4 *
   5 *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
   6 *  Copyright (C) 2010 ST-Ericsson SA
   7 */
   8#include <linux/module.h>
   9#include <linux/moduleparam.h>
  10#include <linux/init.h>
  11#include <linux/ioport.h>
  12#include <linux/device.h>
  13#include <linux/io.h>
  14#include <linux/interrupt.h>
  15#include <linux/kernel.h>
  16#include <linux/slab.h>
  17#include <linux/delay.h>
  18#include <linux/err.h>
  19#include <linux/highmem.h>
  20#include <linux/log2.h>
  21#include <linux/mmc/mmc.h>
  22#include <linux/mmc/pm.h>
  23#include <linux/mmc/host.h>
  24#include <linux/mmc/card.h>
 
  25#include <linux/mmc/slot-gpio.h>
  26#include <linux/amba/bus.h>
  27#include <linux/clk.h>
  28#include <linux/scatterlist.h>
  29#include <linux/of.h>
  30#include <linux/regulator/consumer.h>
  31#include <linux/dmaengine.h>
  32#include <linux/dma-mapping.h>
  33#include <linux/amba/mmci.h>
  34#include <linux/pm_runtime.h>
  35#include <linux/types.h>
  36#include <linux/pinctrl/consumer.h>
  37#include <linux/reset.h>
 
  38
  39#include <asm/div64.h>
  40#include <asm/io.h>
  41
  42#include "mmci.h"
  43
  44#define DRIVER_NAME "mmci-pl18x"
  45
  46static void mmci_variant_init(struct mmci_host *host);
 
  47static void ux500v2_variant_init(struct mmci_host *host);
  48
  49static unsigned int fmax = 515633;
  50
  51static struct variant_data variant_arm = {
  52	.fifosize		= 16 * 4,
  53	.fifohalfsize		= 8 * 4,
  54	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
  55	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
  56	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
  57	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
  58	.datalength_bits	= 16,
  59	.datactrl_blocksz	= 11,
  60	.pwrreg_powerup		= MCI_PWR_UP,
  61	.f_max			= 100000000,
  62	.reversed_irq_handling	= true,
  63	.mmcimask1		= true,
  64	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
  65	.start_err		= MCI_STARTBITERR,
  66	.opendrain		= MCI_ROD,
  67	.init			= mmci_variant_init,
  68};
  69
  70static struct variant_data variant_arm_extended_fifo = {
  71	.fifosize		= 128 * 4,
  72	.fifohalfsize		= 64 * 4,
  73	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
  74	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
  75	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
  76	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
  77	.datalength_bits	= 16,
  78	.datactrl_blocksz	= 11,
  79	.pwrreg_powerup		= MCI_PWR_UP,
  80	.f_max			= 100000000,
  81	.mmcimask1		= true,
  82	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
  83	.start_err		= MCI_STARTBITERR,
  84	.opendrain		= MCI_ROD,
  85	.init			= mmci_variant_init,
  86};
  87
  88static struct variant_data variant_arm_extended_fifo_hwfc = {
  89	.fifosize		= 128 * 4,
  90	.fifohalfsize		= 64 * 4,
  91	.clkreg_enable		= MCI_ARM_HWFCEN,
  92	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
  93	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
  94	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
  95	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
  96	.datalength_bits	= 16,
  97	.datactrl_blocksz	= 11,
  98	.pwrreg_powerup		= MCI_PWR_UP,
  99	.f_max			= 100000000,
 100	.mmcimask1		= true,
 101	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 102	.start_err		= MCI_STARTBITERR,
 103	.opendrain		= MCI_ROD,
 104	.init			= mmci_variant_init,
 105};
 106
 107static struct variant_data variant_u300 = {
 108	.fifosize		= 16 * 4,
 109	.fifohalfsize		= 8 * 4,
 110	.clkreg_enable		= MCI_ST_U300_HWFCEN,
 111	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 112	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
 113	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 114	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
 115	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
 116	.datalength_bits	= 16,
 117	.datactrl_blocksz	= 11,
 118	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 119	.st_sdio			= true,
 120	.pwrreg_powerup		= MCI_PWR_ON,
 121	.f_max			= 100000000,
 122	.signal_direction	= true,
 123	.pwrreg_clkgate		= true,
 124	.pwrreg_nopower		= true,
 125	.mmcimask1		= true,
 126	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 127	.start_err		= MCI_STARTBITERR,
 128	.opendrain		= MCI_OD,
 129	.init			= mmci_variant_init,
 130};
 131
 132static struct variant_data variant_nomadik = {
 133	.fifosize		= 16 * 4,
 134	.fifohalfsize		= 8 * 4,
 135	.clkreg			= MCI_CLK_ENABLE,
 136	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 137	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
 138	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 139	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
 140	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
 141	.datalength_bits	= 24,
 142	.datactrl_blocksz	= 11,
 143	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 144	.st_sdio		= true,
 145	.st_clkdiv		= true,
 146	.pwrreg_powerup		= MCI_PWR_ON,
 147	.f_max			= 100000000,
 148	.signal_direction	= true,
 149	.pwrreg_clkgate		= true,
 150	.pwrreg_nopower		= true,
 151	.mmcimask1		= true,
 152	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 153	.start_err		= MCI_STARTBITERR,
 154	.opendrain		= MCI_OD,
 155	.init			= mmci_variant_init,
 156};
 157
 158static struct variant_data variant_ux500 = {
 159	.fifosize		= 30 * 4,
 160	.fifohalfsize		= 8 * 4,
 161	.clkreg			= MCI_CLK_ENABLE,
 162	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 163	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 164	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
 165	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
 166	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 167	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
 168	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
 169	.datalength_bits	= 24,
 170	.datactrl_blocksz	= 11,
 
 
 171	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 172	.st_sdio		= true,
 173	.st_clkdiv		= true,
 174	.pwrreg_powerup		= MCI_PWR_ON,
 175	.f_max			= 100000000,
 176	.signal_direction	= true,
 177	.pwrreg_clkgate		= true,
 178	.busy_detect		= true,
 179	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
 180	.busy_detect_flag	= MCI_ST_CARDBUSY,
 181	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
 182	.pwrreg_nopower		= true,
 183	.mmcimask1		= true,
 184	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 185	.start_err		= MCI_STARTBITERR,
 186	.opendrain		= MCI_OD,
 187	.init			= mmci_variant_init,
 188};
 189
 190static struct variant_data variant_ux500v2 = {
 191	.fifosize		= 30 * 4,
 192	.fifohalfsize		= 8 * 4,
 193	.clkreg			= MCI_CLK_ENABLE,
 194	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 195	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 196	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
 197	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
 198	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 199	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
 200	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
 201	.datactrl_mask_ddrmode	= MCI_DPSM_ST_DDRMODE,
 202	.datalength_bits	= 24,
 203	.datactrl_blocksz	= 11,
 
 
 204	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 205	.st_sdio		= true,
 206	.st_clkdiv		= true,
 207	.pwrreg_powerup		= MCI_PWR_ON,
 208	.f_max			= 100000000,
 209	.signal_direction	= true,
 210	.pwrreg_clkgate		= true,
 211	.busy_detect		= true,
 212	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
 213	.busy_detect_flag	= MCI_ST_CARDBUSY,
 214	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
 215	.pwrreg_nopower		= true,
 216	.mmcimask1		= true,
 217	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 218	.start_err		= MCI_STARTBITERR,
 219	.opendrain		= MCI_OD,
 220	.init			= ux500v2_variant_init,
 221};
 222
 223static struct variant_data variant_stm32 = {
 224	.fifosize		= 32 * 4,
 225	.fifohalfsize		= 8 * 4,
 226	.clkreg			= MCI_CLK_ENABLE,
 227	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 228	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 229	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
 230	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
 231	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 232	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
 233	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
 234	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 235	.datalength_bits	= 24,
 236	.datactrl_blocksz	= 11,
 237	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 238	.st_sdio		= true,
 239	.st_clkdiv		= true,
 240	.pwrreg_powerup		= MCI_PWR_ON,
 241	.f_max			= 48000000,
 242	.pwrreg_clkgate		= true,
 243	.pwrreg_nopower		= true,
 244	.init			= mmci_variant_init,
 245};
 246
 247static struct variant_data variant_stm32_sdmmc = {
 248	.fifosize		= 16 * 4,
 249	.fifohalfsize		= 8 * 4,
 250	.f_max			= 208000000,
 251	.stm32_clkdiv		= true,
 252	.cmdreg_cpsm_enable	= MCI_CPSM_STM32_ENABLE,
 253	.cmdreg_lrsp_crc	= MCI_CPSM_STM32_LRSP_CRC,
 254	.cmdreg_srsp_crc	= MCI_CPSM_STM32_SRSP_CRC,
 255	.cmdreg_srsp		= MCI_CPSM_STM32_SRSP,
 256	.cmdreg_stop		= MCI_CPSM_STM32_CMDSTOP,
 257	.data_cmd_enable	= MCI_CPSM_STM32_CMDTRANS,
 258	.irq_pio_mask		= MCI_IRQ_PIO_STM32_MASK,
 259	.datactrl_first		= true,
 260	.datacnt_useless	= true,
 261	.datalength_bits	= 25,
 262	.datactrl_blocksz	= 14,
 
 
 263	.stm32_idmabsize_mask	= GENMASK(12, 5),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 264	.init			= sdmmc_variant_init,
 265};
 266
 267static struct variant_data variant_qcom = {
 268	.fifosize		= 16 * 4,
 269	.fifohalfsize		= 8 * 4,
 270	.clkreg			= MCI_CLK_ENABLE,
 271	.clkreg_enable		= MCI_QCOM_CLK_FLOWENA |
 272				  MCI_QCOM_CLK_SELECT_IN_FBCLK,
 273	.clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
 274	.datactrl_mask_ddrmode	= MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
 275	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
 276	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 277	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
 278	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
 279	.data_cmd_enable	= MCI_CPSM_QCOM_DATCMD,
 280	.datalength_bits	= 24,
 281	.datactrl_blocksz	= 11,
 
 282	.pwrreg_powerup		= MCI_PWR_UP,
 283	.f_max			= 208000000,
 284	.explicit_mclk_control	= true,
 285	.qcom_fifo		= true,
 286	.qcom_dml		= true,
 287	.mmcimask1		= true,
 288	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 289	.start_err		= MCI_STARTBITERR,
 290	.opendrain		= MCI_ROD,
 291	.init			= qcom_variant_init,
 292};
 293
 294/* Busy detection for the ST Micro variant */
 295static int mmci_card_busy(struct mmc_host *mmc)
 296{
 297	struct mmci_host *host = mmc_priv(mmc);
 298	unsigned long flags;
 299	int busy = 0;
 300
 301	spin_lock_irqsave(&host->lock, flags);
 302	if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
 303		busy = 1;
 304	spin_unlock_irqrestore(&host->lock, flags);
 305
 306	return busy;
 307}
 308
 309static void mmci_reg_delay(struct mmci_host *host)
 310{
 311	/*
 312	 * According to the spec, at least three feedback clock cycles
 313	 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
 314	 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
 315	 * Worst delay time during card init is at 100 kHz => 30 us.
 316	 * Worst delay time when up and running is at 25 MHz => 120 ns.
 317	 */
 318	if (host->cclk < 25000000)
 319		udelay(30);
 320	else
 321		ndelay(120);
 322}
 323
 324/*
 325 * This must be called with host->lock held
 326 */
 327void mmci_write_clkreg(struct mmci_host *host, u32 clk)
 328{
 329	if (host->clk_reg != clk) {
 330		host->clk_reg = clk;
 331		writel(clk, host->base + MMCICLOCK);
 332	}
 333}
 334
 335/*
 336 * This must be called with host->lock held
 337 */
 338void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
 339{
 340	if (host->pwr_reg != pwr) {
 341		host->pwr_reg = pwr;
 342		writel(pwr, host->base + MMCIPOWER);
 343	}
 344}
 345
 346/*
 347 * This must be called with host->lock held
 348 */
 349static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
 350{
 351	/* Keep busy mode in DPSM if enabled */
 352	datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
 353
 354	if (host->datactrl_reg != datactrl) {
 355		host->datactrl_reg = datactrl;
 356		writel(datactrl, host->base + MMCIDATACTRL);
 357	}
 358}
 359
 360/*
 361 * This must be called with host->lock held
 362 */
 363static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
 364{
 365	struct variant_data *variant = host->variant;
 366	u32 clk = variant->clkreg;
 367
 368	/* Make sure cclk reflects the current calculated clock */
 369	host->cclk = 0;
 370
 371	if (desired) {
 372		if (variant->explicit_mclk_control) {
 373			host->cclk = host->mclk;
 374		} else if (desired >= host->mclk) {
 375			clk = MCI_CLK_BYPASS;
 376			if (variant->st_clkdiv)
 377				clk |= MCI_ST_UX500_NEG_EDGE;
 378			host->cclk = host->mclk;
 379		} else if (variant->st_clkdiv) {
 380			/*
 381			 * DB8500 TRM says f = mclk / (clkdiv + 2)
 382			 * => clkdiv = (mclk / f) - 2
 383			 * Round the divider up so we don't exceed the max
 384			 * frequency
 385			 */
 386			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
 387			if (clk >= 256)
 388				clk = 255;
 389			host->cclk = host->mclk / (clk + 2);
 390		} else {
 391			/*
 392			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
 393			 * => clkdiv = mclk / (2 * f) - 1
 394			 */
 395			clk = host->mclk / (2 * desired) - 1;
 396			if (clk >= 256)
 397				clk = 255;
 398			host->cclk = host->mclk / (2 * (clk + 1));
 399		}
 400
 401		clk |= variant->clkreg_enable;
 402		clk |= MCI_CLK_ENABLE;
 403		/* This hasn't proven to be worthwhile */
 404		/* clk |= MCI_CLK_PWRSAVE; */
 405	}
 406
 407	/* Set actual clock for debug */
 408	host->mmc->actual_clock = host->cclk;
 409
 410	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
 411		clk |= MCI_4BIT_BUS;
 412	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
 413		clk |= variant->clkreg_8bit_bus_enable;
 414
 415	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
 416	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
 417		clk |= variant->clkreg_neg_edge_enable;
 418
 419	mmci_write_clkreg(host, clk);
 420}
 421
 422void mmci_dma_release(struct mmci_host *host)
 423{
 424	if (host->ops && host->ops->dma_release)
 425		host->ops->dma_release(host);
 426
 427	host->use_dma = false;
 428}
 429
 430void mmci_dma_setup(struct mmci_host *host)
 431{
 432	if (!host->ops || !host->ops->dma_setup)
 433		return;
 434
 435	if (host->ops->dma_setup(host))
 436		return;
 437
 438	/* initialize pre request cookie */
 439	host->next_cookie = 1;
 440
 441	host->use_dma = true;
 442}
 443
 444/*
 445 * Validate mmc prerequisites
 446 */
 447static int mmci_validate_data(struct mmci_host *host,
 448			      struct mmc_data *data)
 449{
 
 
 450	if (!data)
 451		return 0;
 452
 453	if (!is_power_of_2(data->blksz)) {
 454		dev_err(mmc_dev(host->mmc),
 455			"unsupported block size (%d bytes)\n", data->blksz);
 456		return -EINVAL;
 457	}
 458
 459	if (host->ops && host->ops->validate_data)
 460		return host->ops->validate_data(host, data);
 461
 462	return 0;
 463}
 464
 465int mmci_prep_data(struct mmci_host *host, struct mmc_data *data, bool next)
 466{
 467	int err;
 468
 469	if (!host->ops || !host->ops->prep_data)
 470		return 0;
 471
 472	err = host->ops->prep_data(host, data, next);
 473
 474	if (next && !err)
 475		data->host_cookie = ++host->next_cookie < 0 ?
 476			1 : host->next_cookie;
 477
 478	return err;
 479}
 480
 481void mmci_unprep_data(struct mmci_host *host, struct mmc_data *data,
 482		      int err)
 483{
 484	if (host->ops && host->ops->unprep_data)
 485		host->ops->unprep_data(host, data, err);
 486
 487	data->host_cookie = 0;
 488}
 489
 490void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
 491{
 492	WARN_ON(data->host_cookie && data->host_cookie != host->next_cookie);
 493
 494	if (host->ops && host->ops->get_next_data)
 495		host->ops->get_next_data(host, data);
 496}
 497
 498int mmci_dma_start(struct mmci_host *host, unsigned int datactrl)
 499{
 500	struct mmc_data *data = host->data;
 501	int ret;
 502
 503	if (!host->use_dma)
 504		return -EINVAL;
 505
 506	ret = mmci_prep_data(host, data, false);
 507	if (ret)
 508		return ret;
 509
 510	if (!host->ops || !host->ops->dma_start)
 511		return -EINVAL;
 512
 513	/* Okay, go for it. */
 514	dev_vdbg(mmc_dev(host->mmc),
 515		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
 516		 data->sg_len, data->blksz, data->blocks, data->flags);
 517
 518	host->ops->dma_start(host, &datactrl);
 
 
 519
 520	/* Trigger the DMA transfer */
 521	mmci_write_datactrlreg(host, datactrl);
 522
 523	/*
 524	 * Let the MMCI say when the data is ended and it's time
 525	 * to fire next DMA request. When that happens, MMCI will
 526	 * call mmci_data_end()
 527	 */
 528	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
 529	       host->base + MMCIMASK0);
 530	return 0;
 531}
 532
 533void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
 534{
 535	if (!host->use_dma)
 536		return;
 537
 538	if (host->ops && host->ops->dma_finalize)
 539		host->ops->dma_finalize(host, data);
 540}
 541
 542void mmci_dma_error(struct mmci_host *host)
 543{
 544	if (!host->use_dma)
 545		return;
 546
 547	if (host->ops && host->ops->dma_error)
 548		host->ops->dma_error(host);
 549}
 550
 551static void
 552mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
 553{
 554	writel(0, host->base + MMCICOMMAND);
 555
 556	BUG_ON(host->data);
 557
 558	host->mrq = NULL;
 559	host->cmd = NULL;
 560
 561	mmc_request_done(host->mmc, mrq);
 562}
 563
 564static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
 565{
 566	void __iomem *base = host->base;
 567	struct variant_data *variant = host->variant;
 568
 569	if (host->singleirq) {
 570		unsigned int mask0 = readl(base + MMCIMASK0);
 571
 572		mask0 &= ~variant->irq_pio_mask;
 573		mask0 |= mask;
 574
 575		writel(mask0, base + MMCIMASK0);
 576	}
 577
 578	if (variant->mmcimask1)
 579		writel(mask, base + MMCIMASK1);
 580
 581	host->mask1_reg = mask;
 582}
 583
 584static void mmci_stop_data(struct mmci_host *host)
 585{
 586	mmci_write_datactrlreg(host, 0);
 587	mmci_set_mask1(host, 0);
 588	host->data = NULL;
 589}
 590
 591static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
 592{
 593	unsigned int flags = SG_MITER_ATOMIC;
 594
 595	if (data->flags & MMC_DATA_READ)
 596		flags |= SG_MITER_TO_SG;
 597	else
 598		flags |= SG_MITER_FROM_SG;
 599
 600	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
 601}
 602
 603static u32 mmci_get_dctrl_cfg(struct mmci_host *host)
 604{
 605	return MCI_DPSM_ENABLE | mmci_dctrl_blksz(host);
 606}
 607
 608static u32 ux500v2_get_dctrl_cfg(struct mmci_host *host)
 609{
 610	return MCI_DPSM_ENABLE | (host->data->blksz << 16);
 611}
 612
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 613/*
 614 * All the DMA operation mode stuff goes inside this ifdef.
 615 * This assumes that you have a generic DMA device interface,
 616 * no custom DMA interfaces are supported.
 617 */
 618#ifdef CONFIG_DMA_ENGINE
 619struct mmci_dmae_next {
 620	struct dma_async_tx_descriptor *desc;
 621	struct dma_chan	*chan;
 622};
 623
 624struct mmci_dmae_priv {
 625	struct dma_chan	*cur;
 626	struct dma_chan	*rx_channel;
 627	struct dma_chan	*tx_channel;
 628	struct dma_async_tx_descriptor	*desc_current;
 629	struct mmci_dmae_next next_data;
 630};
 631
 632int mmci_dmae_setup(struct mmci_host *host)
 633{
 634	const char *rxname, *txname;
 635	struct mmci_dmae_priv *dmae;
 636
 637	dmae = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dmae), GFP_KERNEL);
 638	if (!dmae)
 639		return -ENOMEM;
 640
 641	host->dma_priv = dmae;
 642
 643	dmae->rx_channel = dma_request_slave_channel(mmc_dev(host->mmc),
 644						     "rx");
 645	dmae->tx_channel = dma_request_slave_channel(mmc_dev(host->mmc),
 646						     "tx");
 
 
 
 
 
 
 
 
 
 
 647
 648	/*
 649	 * If only an RX channel is specified, the driver will
 650	 * attempt to use it bidirectionally, however if it is
 651	 * is specified but cannot be located, DMA will be disabled.
 652	 */
 653	if (dmae->rx_channel && !dmae->tx_channel)
 654		dmae->tx_channel = dmae->rx_channel;
 655
 656	if (dmae->rx_channel)
 657		rxname = dma_chan_name(dmae->rx_channel);
 658	else
 659		rxname = "none";
 660
 661	if (dmae->tx_channel)
 662		txname = dma_chan_name(dmae->tx_channel);
 663	else
 664		txname = "none";
 665
 666	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
 667		 rxname, txname);
 668
 669	/*
 670	 * Limit the maximum segment size in any SG entry according to
 671	 * the parameters of the DMA engine device.
 672	 */
 673	if (dmae->tx_channel) {
 674		struct device *dev = dmae->tx_channel->device->dev;
 675		unsigned int max_seg_size = dma_get_max_seg_size(dev);
 676
 677		if (max_seg_size < host->mmc->max_seg_size)
 678			host->mmc->max_seg_size = max_seg_size;
 679	}
 680	if (dmae->rx_channel) {
 681		struct device *dev = dmae->rx_channel->device->dev;
 682		unsigned int max_seg_size = dma_get_max_seg_size(dev);
 683
 684		if (max_seg_size < host->mmc->max_seg_size)
 685			host->mmc->max_seg_size = max_seg_size;
 686	}
 687
 688	if (!dmae->tx_channel || !dmae->rx_channel) {
 689		mmci_dmae_release(host);
 690		return -EINVAL;
 691	}
 692
 693	return 0;
 694}
 695
 696/*
 697 * This is used in or so inline it
 698 * so it can be discarded.
 699 */
 700void mmci_dmae_release(struct mmci_host *host)
 701{
 702	struct mmci_dmae_priv *dmae = host->dma_priv;
 703
 704	if (dmae->rx_channel)
 705		dma_release_channel(dmae->rx_channel);
 706	if (dmae->tx_channel)
 707		dma_release_channel(dmae->tx_channel);
 708	dmae->rx_channel = dmae->tx_channel = NULL;
 709}
 710
 711static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
 712{
 713	struct mmci_dmae_priv *dmae = host->dma_priv;
 714	struct dma_chan *chan;
 715
 716	if (data->flags & MMC_DATA_READ)
 717		chan = dmae->rx_channel;
 718	else
 719		chan = dmae->tx_channel;
 720
 721	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
 722		     mmc_get_dma_dir(data));
 723}
 724
 725void mmci_dmae_error(struct mmci_host *host)
 726{
 727	struct mmci_dmae_priv *dmae = host->dma_priv;
 728
 729	if (!dma_inprogress(host))
 730		return;
 731
 732	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
 733	dmaengine_terminate_all(dmae->cur);
 734	host->dma_in_progress = false;
 735	dmae->cur = NULL;
 736	dmae->desc_current = NULL;
 737	host->data->host_cookie = 0;
 738
 739	mmci_dma_unmap(host, host->data);
 740}
 741
 742void mmci_dmae_finalize(struct mmci_host *host, struct mmc_data *data)
 743{
 744	struct mmci_dmae_priv *dmae = host->dma_priv;
 745	u32 status;
 746	int i;
 747
 748	if (!dma_inprogress(host))
 749		return;
 750
 751	/* Wait up to 1ms for the DMA to complete */
 752	for (i = 0; ; i++) {
 753		status = readl(host->base + MMCISTATUS);
 754		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
 755			break;
 756		udelay(10);
 757	}
 758
 759	/*
 760	 * Check to see whether we still have some data left in the FIFO -
 761	 * this catches DMA controllers which are unable to monitor the
 762	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
 763	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
 764	 */
 765	if (status & MCI_RXDATAAVLBLMASK) {
 766		mmci_dma_error(host);
 767		if (!data->error)
 768			data->error = -EIO;
 769	} else if (!data->host_cookie) {
 770		mmci_dma_unmap(host, data);
 771	}
 772
 773	/*
 774	 * Use of DMA with scatter-gather is impossible.
 775	 * Give up with DMA and switch back to PIO mode.
 776	 */
 777	if (status & MCI_RXDATAAVLBLMASK) {
 778		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
 779		mmci_dma_release(host);
 780	}
 781
 782	host->dma_in_progress = false;
 783	dmae->cur = NULL;
 784	dmae->desc_current = NULL;
 785}
 786
 787/* prepares DMA channel and DMA descriptor, returns non-zero on failure */
 788static int _mmci_dmae_prep_data(struct mmci_host *host, struct mmc_data *data,
 789				struct dma_chan **dma_chan,
 790				struct dma_async_tx_descriptor **dma_desc)
 791{
 792	struct mmci_dmae_priv *dmae = host->dma_priv;
 793	struct variant_data *variant = host->variant;
 794	struct dma_slave_config conf = {
 795		.src_addr = host->phybase + MMCIFIFO,
 796		.dst_addr = host->phybase + MMCIFIFO,
 797		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 798		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 799		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
 800		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
 801		.device_fc = false,
 802	};
 803	struct dma_chan *chan;
 804	struct dma_device *device;
 805	struct dma_async_tx_descriptor *desc;
 806	int nr_sg;
 807	unsigned long flags = DMA_CTRL_ACK;
 808
 809	if (data->flags & MMC_DATA_READ) {
 810		conf.direction = DMA_DEV_TO_MEM;
 811		chan = dmae->rx_channel;
 812	} else {
 813		conf.direction = DMA_MEM_TO_DEV;
 814		chan = dmae->tx_channel;
 815	}
 816
 817	/* If there's no DMA channel, fall back to PIO */
 818	if (!chan)
 819		return -EINVAL;
 820
 821	/* If less than or equal to the fifo size, don't bother with DMA */
 822	if (data->blksz * data->blocks <= variant->fifosize)
 823		return -EINVAL;
 824
 
 
 
 
 
 
 
 
 
 
 
 
 825	device = chan->device;
 826	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
 827			   mmc_get_dma_dir(data));
 828	if (nr_sg == 0)
 829		return -EINVAL;
 830
 831	if (host->variant->qcom_dml)
 832		flags |= DMA_PREP_INTERRUPT;
 833
 834	dmaengine_slave_config(chan, &conf);
 835	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
 836					    conf.direction, flags);
 837	if (!desc)
 838		goto unmap_exit;
 839
 840	*dma_chan = chan;
 841	*dma_desc = desc;
 842
 843	return 0;
 844
 845 unmap_exit:
 846	dma_unmap_sg(device->dev, data->sg, data->sg_len,
 847		     mmc_get_dma_dir(data));
 848	return -ENOMEM;
 849}
 850
 851int mmci_dmae_prep_data(struct mmci_host *host,
 852			struct mmc_data *data,
 853			bool next)
 854{
 855	struct mmci_dmae_priv *dmae = host->dma_priv;
 856	struct mmci_dmae_next *nd = &dmae->next_data;
 857
 858	if (!host->use_dma)
 859		return -EINVAL;
 860
 861	if (next)
 862		return _mmci_dmae_prep_data(host, data, &nd->chan, &nd->desc);
 863	/* Check if next job is already prepared. */
 864	if (dmae->cur && dmae->desc_current)
 865		return 0;
 866
 867	/* No job were prepared thus do it now. */
 868	return _mmci_dmae_prep_data(host, data, &dmae->cur,
 869				    &dmae->desc_current);
 870}
 871
 872int mmci_dmae_start(struct mmci_host *host, unsigned int *datactrl)
 873{
 874	struct mmci_dmae_priv *dmae = host->dma_priv;
 
 875
 876	host->dma_in_progress = true;
 877	dmaengine_submit(dmae->desc_current);
 
 
 
 
 878	dma_async_issue_pending(dmae->cur);
 879
 880	*datactrl |= MCI_DPSM_DMAENABLE;
 881
 882	return 0;
 883}
 884
 885void mmci_dmae_get_next_data(struct mmci_host *host, struct mmc_data *data)
 886{
 887	struct mmci_dmae_priv *dmae = host->dma_priv;
 888	struct mmci_dmae_next *next = &dmae->next_data;
 889
 890	if (!host->use_dma)
 891		return;
 892
 893	WARN_ON(!data->host_cookie && (next->desc || next->chan));
 894
 895	dmae->desc_current = next->desc;
 896	dmae->cur = next->chan;
 897	next->desc = NULL;
 898	next->chan = NULL;
 899}
 900
 901void mmci_dmae_unprep_data(struct mmci_host *host,
 902			   struct mmc_data *data, int err)
 903
 904{
 905	struct mmci_dmae_priv *dmae = host->dma_priv;
 906
 907	if (!host->use_dma)
 908		return;
 909
 910	mmci_dma_unmap(host, data);
 911
 912	if (err) {
 913		struct mmci_dmae_next *next = &dmae->next_data;
 914		struct dma_chan *chan;
 915		if (data->flags & MMC_DATA_READ)
 916			chan = dmae->rx_channel;
 917		else
 918			chan = dmae->tx_channel;
 919		dmaengine_terminate_all(chan);
 920
 921		if (dmae->desc_current == next->desc)
 922			dmae->desc_current = NULL;
 923
 924		if (dmae->cur == next->chan) {
 925			host->dma_in_progress = false;
 926			dmae->cur = NULL;
 927		}
 928
 929		next->desc = NULL;
 930		next->chan = NULL;
 931	}
 932}
 933
 934static struct mmci_host_ops mmci_variant_ops = {
 935	.prep_data = mmci_dmae_prep_data,
 936	.unprep_data = mmci_dmae_unprep_data,
 937	.get_datactrl_cfg = mmci_get_dctrl_cfg,
 938	.get_next_data = mmci_dmae_get_next_data,
 939	.dma_setup = mmci_dmae_setup,
 940	.dma_release = mmci_dmae_release,
 941	.dma_start = mmci_dmae_start,
 942	.dma_finalize = mmci_dmae_finalize,
 943	.dma_error = mmci_dmae_error,
 944};
 945#else
 946static struct mmci_host_ops mmci_variant_ops = {
 947	.get_datactrl_cfg = mmci_get_dctrl_cfg,
 948};
 949#endif
 950
 951void mmci_variant_init(struct mmci_host *host)
 952{
 953	host->ops = &mmci_variant_ops;
 954}
 955
 956void ux500v2_variant_init(struct mmci_host *host)
 957{
 958	host->ops = &mmci_variant_ops;
 
 
 
 
 
 
 
 959	host->ops->get_datactrl_cfg = ux500v2_get_dctrl_cfg;
 960}
 961
 962static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
 963{
 964	struct mmci_host *host = mmc_priv(mmc);
 965	struct mmc_data *data = mrq->data;
 966
 967	if (!data)
 968		return;
 969
 970	WARN_ON(data->host_cookie);
 971
 972	if (mmci_validate_data(host, data))
 973		return;
 974
 975	mmci_prep_data(host, data, true);
 976}
 977
 978static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
 979			      int err)
 980{
 981	struct mmci_host *host = mmc_priv(mmc);
 982	struct mmc_data *data = mrq->data;
 983
 984	if (!data || !data->host_cookie)
 985		return;
 986
 987	mmci_unprep_data(host, data, err);
 988}
 989
 990static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
 991{
 992	struct variant_data *variant = host->variant;
 993	unsigned int datactrl, timeout, irqmask;
 994	unsigned long long clks;
 995	void __iomem *base;
 996
 997	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
 998		data->blksz, data->blocks, data->flags);
 999
1000	host->data = data;
1001	host->size = data->blksz * data->blocks;
1002	data->bytes_xfered = 0;
1003
1004	clks = (unsigned long long)data->timeout_ns * host->cclk;
1005	do_div(clks, NSEC_PER_SEC);
1006
1007	timeout = data->timeout_clks + (unsigned int)clks;
1008
1009	base = host->base;
1010	writel(timeout, base + MMCIDATATIMER);
1011	writel(host->size, base + MMCIDATALENGTH);
1012
1013	datactrl = host->ops->get_datactrl_cfg(host);
1014	datactrl |= host->data->flags & MMC_DATA_READ ? MCI_DPSM_DIRECTION : 0;
1015
1016	if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
1017		u32 clk;
1018
1019		datactrl |= variant->datactrl_mask_sdio;
1020
1021		/*
1022		 * The ST Micro variant for SDIO small write transfers
1023		 * needs to have clock H/W flow control disabled,
1024		 * otherwise the transfer will not start. The threshold
1025		 * depends on the rate of MCLK.
1026		 */
1027		if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
1028		    (host->size < 8 ||
1029		     (host->size <= 8 && host->mclk > 50000000)))
1030			clk = host->clk_reg & ~variant->clkreg_enable;
1031		else
1032			clk = host->clk_reg | variant->clkreg_enable;
1033
1034		mmci_write_clkreg(host, clk);
1035	}
1036
1037	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
1038	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
1039		datactrl |= variant->datactrl_mask_ddrmode;
1040
1041	/*
1042	 * Attempt to use DMA operation mode, if this
1043	 * should fail, fall back to PIO mode
1044	 */
1045	if (!mmci_dma_start(host, datactrl))
1046		return;
1047
1048	/* IRQ mode, map the SG list for CPU reading/writing */
1049	mmci_init_sg(host, data);
1050
1051	if (data->flags & MMC_DATA_READ) {
1052		irqmask = MCI_RXFIFOHALFFULLMASK;
1053
1054		/*
1055		 * If we have less than the fifo 'half-full' threshold to
1056		 * transfer, trigger a PIO interrupt as soon as any data
1057		 * is available.
1058		 */
1059		if (host->size < variant->fifohalfsize)
1060			irqmask |= MCI_RXDATAAVLBLMASK;
1061	} else {
1062		/*
1063		 * We don't actually need to include "FIFO empty" here
1064		 * since its implicit in "FIFO half empty".
1065		 */
1066		irqmask = MCI_TXFIFOHALFEMPTYMASK;
1067	}
1068
1069	mmci_write_datactrlreg(host, datactrl);
1070	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
1071	mmci_set_mask1(host, irqmask);
1072}
1073
1074static void
1075mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
1076{
1077	void __iomem *base = host->base;
 
1078
1079	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
1080	    cmd->opcode, cmd->arg, cmd->flags);
1081
1082	if (readl(base + MMCICOMMAND) & host->variant->cmdreg_cpsm_enable) {
1083		writel(0, base + MMCICOMMAND);
1084		mmci_reg_delay(host);
1085	}
1086
1087	if (host->variant->cmdreg_stop &&
1088	    cmd->opcode == MMC_STOP_TRANSMISSION)
1089		c |= host->variant->cmdreg_stop;
1090
1091	c |= cmd->opcode | host->variant->cmdreg_cpsm_enable;
1092	if (cmd->flags & MMC_RSP_PRESENT) {
1093		if (cmd->flags & MMC_RSP_136)
1094			c |= host->variant->cmdreg_lrsp_crc;
1095		else if (cmd->flags & MMC_RSP_CRC)
1096			c |= host->variant->cmdreg_srsp_crc;
1097		else
1098			c |= host->variant->cmdreg_srsp;
1099	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1100	if (/*interrupt*/0)
1101		c |= MCI_CPSM_INTERRUPT;
1102
1103	if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
1104		c |= host->variant->data_cmd_enable;
1105
1106	host->cmd = cmd;
1107
1108	writel(cmd->arg, base + MMCIARGUMENT);
1109	writel(c, base + MMCICOMMAND);
1110}
1111
1112static void mmci_stop_command(struct mmci_host *host)
1113{
1114	host->stop_abort.error = 0;
1115	mmci_start_command(host, &host->stop_abort, 0);
1116}
1117
1118static void
1119mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
1120	      unsigned int status)
1121{
1122	unsigned int status_err;
1123
1124	/* Make sure we have data to handle */
1125	if (!data)
1126		return;
1127
1128	/* First check for errors */
1129	status_err = status & (host->variant->start_err |
1130			       MCI_DATACRCFAIL | MCI_DATATIMEOUT |
1131			       MCI_TXUNDERRUN | MCI_RXOVERRUN);
1132
1133	if (status_err) {
1134		u32 remain, success;
1135
1136		/* Terminate the DMA transfer */
1137		mmci_dma_error(host);
1138
1139		/*
1140		 * Calculate how far we are into the transfer.  Note that
1141		 * the data counter gives the number of bytes transferred
1142		 * on the MMC bus, not on the host side.  On reads, this
1143		 * can be as much as a FIFO-worth of data ahead.  This
1144		 * matters for FIFO overruns only.
1145		 */
1146		if (!host->variant->datacnt_useless) {
1147			remain = readl(host->base + MMCIDATACNT);
1148			success = data->blksz * data->blocks - remain;
1149		} else {
1150			success = 0;
1151		}
1152
1153		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
1154			status_err, success);
1155		if (status_err & MCI_DATACRCFAIL) {
1156			/* Last block was not successful */
1157			success -= 1;
1158			data->error = -EILSEQ;
1159		} else if (status_err & MCI_DATATIMEOUT) {
1160			data->error = -ETIMEDOUT;
1161		} else if (status_err & MCI_STARTBITERR) {
1162			data->error = -ECOMM;
1163		} else if (status_err & MCI_TXUNDERRUN) {
1164			data->error = -EIO;
1165		} else if (status_err & MCI_RXOVERRUN) {
1166			if (success > host->variant->fifosize)
1167				success -= host->variant->fifosize;
1168			else
1169				success = 0;
1170			data->error = -EIO;
1171		}
1172		data->bytes_xfered = round_down(success, data->blksz);
1173	}
1174
1175	if (status & MCI_DATABLOCKEND)
1176		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1177
1178	if (status & MCI_DATAEND || data->error) {
1179		mmci_dma_finalize(host, data);
1180
1181		mmci_stop_data(host);
1182
1183		if (!data->error)
1184			/* The error clause is handled above, success! */
1185			data->bytes_xfered = data->blksz * data->blocks;
1186
1187		if (!data->stop) {
1188			if (host->variant->cmdreg_stop && data->error)
1189				mmci_stop_command(host);
1190			else
1191				mmci_request_end(host, data->mrq);
1192		} else if (host->mrq->sbc && !data->error) {
1193			mmci_request_end(host, data->mrq);
1194		} else {
1195			mmci_start_command(host, data->stop, 0);
1196		}
1197	}
1198}
1199
1200static void
1201mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1202	     unsigned int status)
1203{
 
1204	void __iomem *base = host->base;
1205	bool sbc, busy_resp;
1206
1207	if (!cmd)
1208		return;
1209
1210	sbc = (cmd == host->mrq->sbc);
1211	busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1212
1213	/*
1214	 * We need to be one of these interrupts to be considered worth
1215	 * handling. Note that we tag on any latent IRQs postponed
1216	 * due to waiting for busy status.
1217	 */
1218	if (!((status|host->busy_status) &
1219	      (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND)))
 
 
 
1220		return;
1221
1222	/* Handle busy detection on DAT0 if the variant supports it. */
1223	if (busy_resp && host->variant->busy_detect) {
1224
1225		/*
1226		 * Before unmasking for the busy end IRQ, confirm that the
1227		 * command was sent successfully. To keep track of having a
1228		 * command in-progress, waiting for busy signaling to end,
1229		 * store the status in host->busy_status.
1230		 *
1231		 * Note that, the card may need a couple of clock cycles before
1232		 * it starts signaling busy on DAT0, hence re-read the
1233		 * MMCISTATUS register here, to allow the busy bit to be set.
1234		 * Potentially we may even need to poll the register for a
1235		 * while, to allow it to be set, but tests indicates that it
1236		 * isn't needed.
1237		 */
1238		if (!host->busy_status &&
1239		    !(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
1240		    (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
1241
1242			writel(readl(base + MMCIMASK0) |
1243			       host->variant->busy_detect_mask,
1244			       base + MMCIMASK0);
1245
1246			host->busy_status =
1247				status & (MCI_CMDSENT|MCI_CMDRESPEND);
1248			return;
1249		}
1250
1251		/*
1252		 * If there is a command in-progress that has been successfully
1253		 * sent, then bail out if busy status is set and wait for the
1254		 * busy end IRQ.
1255		 *
1256		 * Note that, the HW triggers an IRQ on both edges while
1257		 * monitoring DAT0 for busy completion, but there is only one
1258		 * status bit in MMCISTATUS for the busy state. Therefore
1259		 * both the start and the end interrupts needs to be cleared,
1260		 * one after the other. So, clear the busy start IRQ here.
1261		 */
1262		if (host->busy_status &&
1263		    (status & host->variant->busy_detect_flag)) {
1264			writel(host->variant->busy_detect_mask,
1265			       host->base + MMCICLEAR);
1266			return;
1267		}
1268
1269		/*
1270		 * If there is a command in-progress that has been successfully
1271		 * sent and the busy bit isn't set, it means we have received
1272		 * the busy end IRQ. Clear and mask the IRQ, then continue to
1273		 * process the command.
1274		 */
1275		if (host->busy_status) {
1276
1277			writel(host->variant->busy_detect_mask,
1278			       host->base + MMCICLEAR);
1279
1280			writel(readl(base + MMCIMASK0) &
1281			       ~host->variant->busy_detect_mask,
1282			       base + MMCIMASK0);
1283			host->busy_status = 0;
1284		}
1285	}
1286
1287	host->cmd = NULL;
1288
1289	if (status & MCI_CMDTIMEOUT) {
1290		cmd->error = -ETIMEDOUT;
1291	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1292		cmd->error = -EILSEQ;
 
 
 
 
 
 
 
 
1293	} else {
1294		cmd->resp[0] = readl(base + MMCIRESPONSE0);
1295		cmd->resp[1] = readl(base + MMCIRESPONSE1);
1296		cmd->resp[2] = readl(base + MMCIRESPONSE2);
1297		cmd->resp[3] = readl(base + MMCIRESPONSE3);
1298	}
1299
1300	if ((!sbc && !cmd->data) || cmd->error) {
1301		if (host->data) {
1302			/* Terminate the DMA transfer */
1303			mmci_dma_error(host);
1304
1305			mmci_stop_data(host);
1306			if (host->variant->cmdreg_stop && cmd->error) {
1307				mmci_stop_command(host);
1308				return;
1309			}
1310		}
1311		mmci_request_end(host, host->mrq);
 
 
 
1312	} else if (sbc) {
1313		mmci_start_command(host, host->mrq->cmd, 0);
1314	} else if (!host->variant->datactrl_first &&
1315		   !(cmd->data->flags & MMC_DATA_READ)) {
1316		mmci_start_data(host, cmd->data);
1317	}
1318}
1319
1320static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1321{
1322	return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1323}
1324
1325static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1326{
1327	/*
1328	 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1329	 * from the fifo range should be used
1330	 */
1331	if (status & MCI_RXFIFOHALFFULL)
1332		return host->variant->fifohalfsize;
1333	else if (status & MCI_RXDATAAVLBL)
1334		return 4;
1335
1336	return 0;
1337}
1338
1339static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1340{
1341	void __iomem *base = host->base;
1342	char *ptr = buffer;
1343	u32 status = readl(host->base + MMCISTATUS);
1344	int host_remain = host->size;
1345
1346	do {
1347		int count = host->get_rx_fifocnt(host, status, host_remain);
1348
1349		if (count > remain)
1350			count = remain;
1351
1352		if (count <= 0)
1353			break;
1354
1355		/*
1356		 * SDIO especially may want to send something that is
1357		 * not divisible by 4 (as opposed to card sectors
1358		 * etc). Therefore make sure to always read the last bytes
1359		 * while only doing full 32-bit reads towards the FIFO.
1360		 */
1361		if (unlikely(count & 0x3)) {
1362			if (count < 4) {
1363				unsigned char buf[4];
1364				ioread32_rep(base + MMCIFIFO, buf, 1);
1365				memcpy(ptr, buf, count);
1366			} else {
1367				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1368				count &= ~0x3;
1369			}
1370		} else {
1371			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1372		}
1373
1374		ptr += count;
1375		remain -= count;
1376		host_remain -= count;
1377
1378		if (remain == 0)
1379			break;
1380
1381		status = readl(base + MMCISTATUS);
1382	} while (status & MCI_RXDATAAVLBL);
1383
1384	return ptr - buffer;
1385}
1386
1387static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1388{
1389	struct variant_data *variant = host->variant;
1390	void __iomem *base = host->base;
1391	char *ptr = buffer;
1392
1393	do {
1394		unsigned int count, maxcnt;
1395
1396		maxcnt = status & MCI_TXFIFOEMPTY ?
1397			 variant->fifosize : variant->fifohalfsize;
1398		count = min(remain, maxcnt);
1399
1400		/*
1401		 * SDIO especially may want to send something that is
1402		 * not divisible by 4 (as opposed to card sectors
1403		 * etc), and the FIFO only accept full 32-bit writes.
1404		 * So compensate by adding +3 on the count, a single
1405		 * byte become a 32bit write, 7 bytes will be two
1406		 * 32bit writes etc.
1407		 */
1408		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1409
1410		ptr += count;
1411		remain -= count;
1412
1413		if (remain == 0)
1414			break;
1415
1416		status = readl(base + MMCISTATUS);
1417	} while (status & MCI_TXFIFOHALFEMPTY);
1418
1419	return ptr - buffer;
1420}
1421
1422/*
1423 * PIO data transfer IRQ handler.
1424 */
1425static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1426{
1427	struct mmci_host *host = dev_id;
1428	struct sg_mapping_iter *sg_miter = &host->sg_miter;
1429	struct variant_data *variant = host->variant;
1430	void __iomem *base = host->base;
1431	u32 status;
1432
1433	status = readl(base + MMCISTATUS);
1434
1435	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1436
1437	do {
1438		unsigned int remain, len;
1439		char *buffer;
1440
1441		/*
1442		 * For write, we only need to test the half-empty flag
1443		 * here - if the FIFO is completely empty, then by
1444		 * definition it is more than half empty.
1445		 *
1446		 * For read, check for data available.
1447		 */
1448		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1449			break;
1450
1451		if (!sg_miter_next(sg_miter))
1452			break;
1453
1454		buffer = sg_miter->addr;
1455		remain = sg_miter->length;
1456
1457		len = 0;
1458		if (status & MCI_RXACTIVE)
1459			len = mmci_pio_read(host, buffer, remain);
1460		if (status & MCI_TXACTIVE)
1461			len = mmci_pio_write(host, buffer, remain, status);
1462
1463		sg_miter->consumed = len;
1464
1465		host->size -= len;
1466		remain -= len;
1467
1468		if (remain)
1469			break;
1470
1471		status = readl(base + MMCISTATUS);
1472	} while (1);
1473
1474	sg_miter_stop(sg_miter);
1475
1476	/*
1477	 * If we have less than the fifo 'half-full' threshold to transfer,
1478	 * trigger a PIO interrupt as soon as any data is available.
1479	 */
1480	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1481		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1482
1483	/*
1484	 * If we run out of data, disable the data IRQs; this
1485	 * prevents a race where the FIFO becomes empty before
1486	 * the chip itself has disabled the data path, and
1487	 * stops us racing with our data end IRQ.
1488	 */
1489	if (host->size == 0) {
1490		mmci_set_mask1(host, 0);
1491		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1492	}
1493
1494	return IRQ_HANDLED;
1495}
1496
1497/*
1498 * Handle completion of command and data transfers.
1499 */
1500static irqreturn_t mmci_irq(int irq, void *dev_id)
1501{
1502	struct mmci_host *host = dev_id;
1503	u32 status;
1504	int ret = 0;
1505
1506	spin_lock(&host->lock);
 
1507
1508	do {
1509		status = readl(host->base + MMCISTATUS);
 
 
1510
1511		if (host->singleirq) {
1512			if (status & host->mask1_reg)
1513				mmci_pio_irq(irq, dev_id);
1514
1515			status &= ~host->variant->irq_pio_mask;
1516		}
1517
1518		/*
1519		 * Busy detection is managed by mmci_cmd_irq(), including to
1520		 * clear the corresponding IRQ.
1521		 */
1522		status &= readl(host->base + MMCIMASK0);
1523		if (host->variant->busy_detect)
1524			writel(status & ~host->variant->busy_detect_mask,
1525			       host->base + MMCICLEAR);
1526		else
1527			writel(status, host->base + MMCICLEAR);
1528
1529		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1530
1531		if (host->variant->reversed_irq_handling) {
1532			mmci_data_irq(host, host->data, status);
1533			mmci_cmd_irq(host, host->cmd, status);
1534		} else {
1535			mmci_cmd_irq(host, host->cmd, status);
1536			mmci_data_irq(host, host->data, status);
1537		}
1538
1539		/*
1540		 * Busy detection has been handled by mmci_cmd_irq() above.
1541		 * Clear the status bit to prevent polling in IRQ context.
1542		 */
1543		if (host->variant->busy_detect_flag)
1544			status &= ~host->variant->busy_detect_flag;
1545
1546		ret = 1;
1547	} while (status);
1548
1549	spin_unlock(&host->lock);
1550
1551	return IRQ_RETVAL(ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1552}
1553
1554static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1555{
1556	struct mmci_host *host = mmc_priv(mmc);
1557	unsigned long flags;
1558
1559	WARN_ON(host->mrq != NULL);
1560
1561	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1562	if (mrq->cmd->error) {
1563		mmc_request_done(mmc, mrq);
1564		return;
1565	}
1566
1567	spin_lock_irqsave(&host->lock, flags);
1568
1569	host->mrq = mrq;
1570
1571	if (mrq->data)
1572		mmci_get_next_data(host, mrq->data);
1573
1574	if (mrq->data &&
1575	    (host->variant->datactrl_first || mrq->data->flags & MMC_DATA_READ))
1576		mmci_start_data(host, mrq->data);
1577
1578	if (mrq->sbc)
1579		mmci_start_command(host, mrq->sbc, 0);
1580	else
1581		mmci_start_command(host, mrq->cmd, 0);
1582
1583	spin_unlock_irqrestore(&host->lock, flags);
1584}
1585
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1586static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1587{
1588	struct mmci_host *host = mmc_priv(mmc);
1589	struct variant_data *variant = host->variant;
1590	u32 pwr = 0;
1591	unsigned long flags;
1592	int ret;
1593
1594	if (host->plat->ios_handler &&
1595		host->plat->ios_handler(mmc_dev(mmc), ios))
1596			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1597
1598	switch (ios->power_mode) {
1599	case MMC_POWER_OFF:
1600		if (!IS_ERR(mmc->supply.vmmc))
1601			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1602
1603		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1604			regulator_disable(mmc->supply.vqmmc);
1605			host->vqmmc_enabled = false;
1606		}
1607
1608		break;
1609	case MMC_POWER_UP:
1610		if (!IS_ERR(mmc->supply.vmmc))
1611			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1612
1613		/*
1614		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1615		 * and instead uses MCI_PWR_ON so apply whatever value is
1616		 * configured in the variant data.
1617		 */
1618		pwr |= variant->pwrreg_powerup;
1619
1620		break;
1621	case MMC_POWER_ON:
1622		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1623			ret = regulator_enable(mmc->supply.vqmmc);
1624			if (ret < 0)
1625				dev_err(mmc_dev(mmc),
1626					"failed to enable vqmmc regulator\n");
1627			else
1628				host->vqmmc_enabled = true;
1629		}
1630
1631		pwr |= MCI_PWR_ON;
1632		break;
1633	}
1634
1635	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1636		/*
1637		 * The ST Micro variant has some additional bits
1638		 * indicating signal direction for the signals in
1639		 * the SD/MMC bus and feedback-clock usage.
1640		 */
1641		pwr |= host->pwr_reg_add;
1642
1643		if (ios->bus_width == MMC_BUS_WIDTH_4)
1644			pwr &= ~MCI_ST_DATA74DIREN;
1645		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1646			pwr &= (~MCI_ST_DATA74DIREN &
1647				~MCI_ST_DATA31DIREN &
1648				~MCI_ST_DATA2DIREN);
1649	}
1650
1651	if (variant->opendrain) {
1652		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1653			pwr |= variant->opendrain;
1654	} else {
1655		/*
1656		 * If the variant cannot configure the pads by its own, then we
1657		 * expect the pinctrl to be able to do that for us
1658		 */
1659		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1660			pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1661		else
1662			pinctrl_select_state(host->pinctrl, host->pins_default);
1663	}
1664
1665	/*
1666	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1667	 * gating the clock, the MCI_PWR_ON bit is cleared.
1668	 */
1669	if (!ios->clock && variant->pwrreg_clkgate)
1670		pwr &= ~MCI_PWR_ON;
1671
1672	if (host->variant->explicit_mclk_control &&
1673	    ios->clock != host->clock_cache) {
1674		ret = clk_set_rate(host->clk, ios->clock);
1675		if (ret < 0)
1676			dev_err(mmc_dev(host->mmc),
1677				"Error setting clock rate (%d)\n", ret);
1678		else
1679			host->mclk = clk_get_rate(host->clk);
1680	}
1681	host->clock_cache = ios->clock;
1682
1683	spin_lock_irqsave(&host->lock, flags);
1684
1685	if (host->ops && host->ops->set_clkreg)
1686		host->ops->set_clkreg(host, ios->clock);
1687	else
1688		mmci_set_clkreg(host, ios->clock);
1689
 
 
1690	if (host->ops && host->ops->set_pwrreg)
1691		host->ops->set_pwrreg(host, pwr);
1692	else
1693		mmci_write_pwrreg(host, pwr);
1694
1695	mmci_reg_delay(host);
1696
1697	spin_unlock_irqrestore(&host->lock, flags);
1698}
1699
1700static int mmci_get_cd(struct mmc_host *mmc)
1701{
1702	struct mmci_host *host = mmc_priv(mmc);
1703	struct mmci_platform_data *plat = host->plat;
1704	unsigned int status = mmc_gpio_get_cd(mmc);
1705
1706	if (status == -ENOSYS) {
1707		if (!plat->status)
1708			return 1; /* Assume always present */
1709
1710		status = plat->status(mmc_dev(host->mmc));
1711	}
1712	return status;
1713}
1714
1715static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1716{
1717	int ret = 0;
 
1718
1719	if (!IS_ERR(mmc->supply.vqmmc)) {
1720
1721		switch (ios->signal_voltage) {
1722		case MMC_SIGNAL_VOLTAGE_330:
1723			ret = regulator_set_voltage(mmc->supply.vqmmc,
1724						2700000, 3600000);
1725			break;
1726		case MMC_SIGNAL_VOLTAGE_180:
1727			ret = regulator_set_voltage(mmc->supply.vqmmc,
1728						1700000, 1950000);
1729			break;
1730		case MMC_SIGNAL_VOLTAGE_120:
1731			ret = regulator_set_voltage(mmc->supply.vqmmc,
1732						1100000, 1300000);
1733			break;
1734		}
1735
1736		if (ret)
1737			dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1738	}
1739
1740	return ret;
1741}
1742
1743static struct mmc_host_ops mmci_ops = {
1744	.request	= mmci_request,
1745	.pre_req	= mmci_pre_request,
1746	.post_req	= mmci_post_request,
1747	.set_ios	= mmci_set_ios,
1748	.get_ro		= mmc_gpio_get_ro,
1749	.get_cd		= mmci_get_cd,
1750	.start_signal_voltage_switch = mmci_sig_volt_switch,
1751};
1752
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1753static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1754{
1755	struct mmci_host *host = mmc_priv(mmc);
1756	int ret = mmc_of_parse(mmc);
1757
1758	if (ret)
1759		return ret;
1760
1761	if (of_get_property(np, "st,sig-dir-dat0", NULL))
1762		host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1763	if (of_get_property(np, "st,sig-dir-dat2", NULL))
1764		host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1765	if (of_get_property(np, "st,sig-dir-dat31", NULL))
1766		host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1767	if (of_get_property(np, "st,sig-dir-dat74", NULL))
1768		host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1769	if (of_get_property(np, "st,sig-dir-cmd", NULL))
1770		host->pwr_reg_add |= MCI_ST_CMDDIREN;
1771	if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1772		host->pwr_reg_add |= MCI_ST_FBCLKEN;
1773	if (of_get_property(np, "st,sig-dir", NULL))
1774		host->pwr_reg_add |= MCI_STM32_DIRPOL;
1775	if (of_get_property(np, "st,neg-edge", NULL))
1776		host->clk_reg_add |= MCI_STM32_CLK_NEGEDGE;
1777	if (of_get_property(np, "st,use-ckin", NULL))
1778		host->clk_reg_add |= MCI_STM32_CLK_SELCKIN;
1779
1780	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1781		mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1782	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1783		mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1784
1785	return 0;
1786}
1787
1788static int mmci_probe(struct amba_device *dev,
1789	const struct amba_id *id)
1790{
1791	struct mmci_platform_data *plat = dev->dev.platform_data;
1792	struct device_node *np = dev->dev.of_node;
1793	struct variant_data *variant = id->data;
1794	struct mmci_host *host;
1795	struct mmc_host *mmc;
1796	int ret;
1797
1798	/* Must have platform data or Device Tree. */
1799	if (!plat && !np) {
1800		dev_err(&dev->dev, "No plat data or DT found\n");
1801		return -EINVAL;
1802	}
1803
1804	if (!plat) {
1805		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1806		if (!plat)
1807			return -ENOMEM;
1808	}
1809
1810	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1811	if (!mmc)
1812		return -ENOMEM;
1813
 
 
 
 
 
1814	ret = mmci_of_parse(np, mmc);
1815	if (ret)
1816		goto host_free;
1817
1818	host = mmc_priv(mmc);
1819	host->mmc = mmc;
1820
1821	/*
1822	 * Some variant (STM32) doesn't have opendrain bit, nevertheless
1823	 * pins can be set accordingly using pinctrl
1824	 */
1825	if (!variant->opendrain) {
1826		host->pinctrl = devm_pinctrl_get(&dev->dev);
1827		if (IS_ERR(host->pinctrl)) {
1828			dev_err(&dev->dev, "failed to get pinctrl");
1829			ret = PTR_ERR(host->pinctrl);
1830			goto host_free;
1831		}
1832
1833		host->pins_default = pinctrl_lookup_state(host->pinctrl,
1834							  PINCTRL_STATE_DEFAULT);
1835		if (IS_ERR(host->pins_default)) {
1836			dev_err(mmc_dev(mmc), "Can't select default pins\n");
1837			ret = PTR_ERR(host->pins_default);
1838			goto host_free;
1839		}
1840
1841		host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
1842							    MMCI_PINCTRL_STATE_OPENDRAIN);
1843		if (IS_ERR(host->pins_opendrain)) {
1844			dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
1845			ret = PTR_ERR(host->pins_opendrain);
1846			goto host_free;
1847		}
1848	}
1849
1850	host->hw_designer = amba_manf(dev);
1851	host->hw_revision = amba_rev(dev);
1852	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1853	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1854
1855	host->clk = devm_clk_get(&dev->dev, NULL);
1856	if (IS_ERR(host->clk)) {
1857		ret = PTR_ERR(host->clk);
1858		goto host_free;
1859	}
1860
1861	ret = clk_prepare_enable(host->clk);
1862	if (ret)
1863		goto host_free;
1864
1865	if (variant->qcom_fifo)
1866		host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1867	else
1868		host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1869
1870	host->plat = plat;
1871	host->variant = variant;
1872	host->mclk = clk_get_rate(host->clk);
1873	/*
1874	 * According to the spec, mclk is max 100 MHz,
1875	 * so we try to adjust the clock down to this,
1876	 * (if possible).
1877	 */
1878	if (host->mclk > variant->f_max) {
1879		ret = clk_set_rate(host->clk, variant->f_max);
1880		if (ret < 0)
1881			goto clk_disable;
1882		host->mclk = clk_get_rate(host->clk);
1883		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1884			host->mclk);
1885	}
1886
1887	host->phybase = dev->res.start;
1888	host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1889	if (IS_ERR(host->base)) {
1890		ret = PTR_ERR(host->base);
1891		goto clk_disable;
1892	}
1893
1894	if (variant->init)
1895		variant->init(host);
1896
1897	/*
1898	 * The ARM and ST versions of the block have slightly different
1899	 * clock divider equations which means that the minimum divider
1900	 * differs too.
1901	 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1902	 */
1903	if (variant->st_clkdiv)
1904		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1905	else if (variant->stm32_clkdiv)
1906		mmc->f_min = DIV_ROUND_UP(host->mclk, 2046);
1907	else if (variant->explicit_mclk_control)
1908		mmc->f_min = clk_round_rate(host->clk, 100000);
1909	else
1910		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1911	/*
1912	 * If no maximum operating frequency is supplied, fall back to use
1913	 * the module parameter, which has a (low) default value in case it
1914	 * is not specified. Either value must not exceed the clock rate into
1915	 * the block, of course.
1916	 */
1917	if (mmc->f_max)
1918		mmc->f_max = variant->explicit_mclk_control ?
1919				min(variant->f_max, mmc->f_max) :
1920				min(host->mclk, mmc->f_max);
1921	else
1922		mmc->f_max = variant->explicit_mclk_control ?
1923				fmax : min(host->mclk, fmax);
1924
1925
1926	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1927
1928	host->rst = devm_reset_control_get_optional_exclusive(&dev->dev, NULL);
1929	if (IS_ERR(host->rst)) {
1930		ret = PTR_ERR(host->rst);
1931		goto clk_disable;
1932	}
 
 
 
1933
1934	/* Get regulators and the supported OCR mask */
1935	ret = mmc_regulator_get_supply(mmc);
1936	if (ret)
1937		goto clk_disable;
1938
1939	if (!mmc->ocr_avail)
1940		mmc->ocr_avail = plat->ocr_mask;
1941	else if (plat->ocr_mask)
1942		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1943
1944	/* We support these capabilities. */
1945	mmc->caps |= MMC_CAP_CMD23;
1946
1947	/*
1948	 * Enable busy detection.
1949	 */
1950	if (variant->busy_detect) {
1951		mmci_ops.card_busy = mmci_card_busy;
1952		/*
1953		 * Not all variants have a flag to enable busy detection
1954		 * in the DPSM, but if they do, set it here.
1955		 */
1956		if (variant->busy_dpsm_flag)
1957			mmci_write_datactrlreg(host,
1958					       host->variant->busy_dpsm_flag);
1959		mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1960		mmc->max_busy_timeout = 0;
1961	}
1962
 
 
 
 
1963	/* Prepare a CMD12 - needed to clear the DPSM on some variants. */
1964	host->stop_abort.opcode = MMC_STOP_TRANSMISSION;
1965	host->stop_abort.arg = 0;
1966	host->stop_abort.flags = MMC_RSP_R1B | MMC_CMD_AC;
1967
1968	mmc->ops = &mmci_ops;
1969
1970	/* We support these PM capabilities. */
1971	mmc->pm_caps |= MMC_PM_KEEP_POWER;
1972
1973	/*
1974	 * We can do SGIO
1975	 */
1976	mmc->max_segs = NR_SG;
1977
1978	/*
1979	 * Since only a certain number of bits are valid in the data length
1980	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1981	 * single request.
1982	 */
1983	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1984
1985	/*
1986	 * Set the maximum segment size.  Since we aren't doing DMA
1987	 * (yet) we are only limited by the data length register.
1988	 */
1989	mmc->max_seg_size = mmc->max_req_size;
1990
1991	/*
1992	 * Block size can be up to 2048 bytes, but must be a power of two.
1993	 */
1994	mmc->max_blk_size = 1 << variant->datactrl_blocksz;
1995
1996	/*
1997	 * Limit the number of blocks transferred so that we don't overflow
1998	 * the maximum request size.
1999	 */
2000	mmc->max_blk_count = mmc->max_req_size >> variant->datactrl_blocksz;
2001
2002	spin_lock_init(&host->lock);
2003
2004	writel(0, host->base + MMCIMASK0);
2005
2006	if (variant->mmcimask1)
2007		writel(0, host->base + MMCIMASK1);
2008
2009	writel(0xfff, host->base + MMCICLEAR);
2010
2011	/*
2012	 * If:
2013	 * - not using DT but using a descriptor table, or
2014	 * - using a table of descriptors ALONGSIDE DT, or
2015	 * look up these descriptors named "cd" and "wp" right here, fail
2016	 * silently of these do not exist
2017	 */
2018	if (!np) {
2019		ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0, NULL);
2020		if (ret == -EPROBE_DEFER)
2021			goto clk_disable;
2022
2023		ret = mmc_gpiod_request_ro(mmc, "wp", 0, 0, NULL);
2024		if (ret == -EPROBE_DEFER)
2025			goto clk_disable;
2026	}
2027
2028	ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
2029			DRIVER_NAME " (cmd)", host);
 
2030	if (ret)
2031		goto clk_disable;
2032
2033	if (!dev->irq[1])
2034		host->singleirq = true;
2035	else {
2036		ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
2037				IRQF_SHARED, DRIVER_NAME " (pio)", host);
2038		if (ret)
2039			goto clk_disable;
2040	}
2041
2042	writel(MCI_IRQENABLE | variant->start_err, host->base + MMCIMASK0);
2043
2044	amba_set_drvdata(dev, mmc);
2045
2046	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
2047		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
2048		 amba_rev(dev), (unsigned long long)dev->res.start,
2049		 dev->irq[0], dev->irq[1]);
2050
2051	mmci_dma_setup(host);
2052
2053	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
2054	pm_runtime_use_autosuspend(&dev->dev);
2055
2056	mmc_add_host(mmc);
 
 
2057
2058	pm_runtime_put(&dev->dev);
2059	return 0;
2060
2061 clk_disable:
2062	clk_disable_unprepare(host->clk);
2063 host_free:
2064	mmc_free_host(mmc);
2065	return ret;
2066}
2067
2068static int mmci_remove(struct amba_device *dev)
2069{
2070	struct mmc_host *mmc = amba_get_drvdata(dev);
2071
2072	if (mmc) {
2073		struct mmci_host *host = mmc_priv(mmc);
2074		struct variant_data *variant = host->variant;
2075
2076		/*
2077		 * Undo pm_runtime_put() in probe.  We use the _sync
2078		 * version here so that we can access the primecell.
2079		 */
2080		pm_runtime_get_sync(&dev->dev);
2081
2082		mmc_remove_host(mmc);
2083
2084		writel(0, host->base + MMCIMASK0);
2085
2086		if (variant->mmcimask1)
2087			writel(0, host->base + MMCIMASK1);
2088
2089		writel(0, host->base + MMCICOMMAND);
2090		writel(0, host->base + MMCIDATACTRL);
2091
2092		mmci_dma_release(host);
2093		clk_disable_unprepare(host->clk);
2094		mmc_free_host(mmc);
2095	}
2096
2097	return 0;
2098}
2099
2100#ifdef CONFIG_PM
2101static void mmci_save(struct mmci_host *host)
2102{
2103	unsigned long flags;
2104
2105	spin_lock_irqsave(&host->lock, flags);
2106
2107	writel(0, host->base + MMCIMASK0);
2108	if (host->variant->pwrreg_nopower) {
2109		writel(0, host->base + MMCIDATACTRL);
2110		writel(0, host->base + MMCIPOWER);
2111		writel(0, host->base + MMCICLOCK);
2112	}
2113	mmci_reg_delay(host);
2114
2115	spin_unlock_irqrestore(&host->lock, flags);
2116}
2117
2118static void mmci_restore(struct mmci_host *host)
2119{
2120	unsigned long flags;
2121
2122	spin_lock_irqsave(&host->lock, flags);
2123
2124	if (host->variant->pwrreg_nopower) {
2125		writel(host->clk_reg, host->base + MMCICLOCK);
2126		writel(host->datactrl_reg, host->base + MMCIDATACTRL);
2127		writel(host->pwr_reg, host->base + MMCIPOWER);
2128	}
2129	writel(MCI_IRQENABLE | host->variant->start_err,
2130	       host->base + MMCIMASK0);
2131	mmci_reg_delay(host);
2132
2133	spin_unlock_irqrestore(&host->lock, flags);
2134}
2135
2136static int mmci_runtime_suspend(struct device *dev)
2137{
2138	struct amba_device *adev = to_amba_device(dev);
2139	struct mmc_host *mmc = amba_get_drvdata(adev);
2140
2141	if (mmc) {
2142		struct mmci_host *host = mmc_priv(mmc);
2143		pinctrl_pm_select_sleep_state(dev);
2144		mmci_save(host);
2145		clk_disable_unprepare(host->clk);
2146	}
2147
2148	return 0;
2149}
2150
2151static int mmci_runtime_resume(struct device *dev)
2152{
2153	struct amba_device *adev = to_amba_device(dev);
2154	struct mmc_host *mmc = amba_get_drvdata(adev);
2155
2156	if (mmc) {
2157		struct mmci_host *host = mmc_priv(mmc);
2158		clk_prepare_enable(host->clk);
2159		mmci_restore(host);
2160		pinctrl_pm_select_default_state(dev);
2161	}
2162
2163	return 0;
2164}
2165#endif
2166
2167static const struct dev_pm_ops mmci_dev_pm_ops = {
2168	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2169				pm_runtime_force_resume)
2170	SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
2171};
2172
2173static const struct amba_id mmci_ids[] = {
2174	{
2175		.id	= 0x00041180,
2176		.mask	= 0xff0fffff,
2177		.data	= &variant_arm,
2178	},
2179	{
2180		.id	= 0x01041180,
2181		.mask	= 0xff0fffff,
2182		.data	= &variant_arm_extended_fifo,
2183	},
2184	{
2185		.id	= 0x02041180,
2186		.mask	= 0xff0fffff,
2187		.data	= &variant_arm_extended_fifo_hwfc,
2188	},
2189	{
2190		.id	= 0x00041181,
2191		.mask	= 0x000fffff,
2192		.data	= &variant_arm,
2193	},
2194	/* ST Micro variants */
2195	{
2196		.id     = 0x00180180,
2197		.mask   = 0x00ffffff,
2198		.data	= &variant_u300,
2199	},
2200	{
2201		.id     = 0x10180180,
2202		.mask   = 0xf0ffffff,
2203		.data	= &variant_nomadik,
2204	},
2205	{
2206		.id     = 0x00280180,
2207		.mask   = 0x00ffffff,
2208		.data	= &variant_nomadik,
2209	},
2210	{
2211		.id     = 0x00480180,
2212		.mask   = 0xf0ffffff,
2213		.data	= &variant_ux500,
2214	},
2215	{
2216		.id     = 0x10480180,
2217		.mask   = 0xf0ffffff,
2218		.data	= &variant_ux500v2,
2219	},
2220	{
2221		.id     = 0x00880180,
2222		.mask   = 0x00ffffff,
2223		.data	= &variant_stm32,
2224	},
2225	{
2226		.id     = 0x10153180,
2227		.mask	= 0xf0ffffff,
2228		.data	= &variant_stm32_sdmmc,
 
 
 
 
 
 
 
 
 
 
2229	},
2230	/* Qualcomm variants */
2231	{
2232		.id     = 0x00051180,
2233		.mask	= 0x000fffff,
2234		.data	= &variant_qcom,
2235	},
2236	{ 0, 0 },
2237};
2238
2239MODULE_DEVICE_TABLE(amba, mmci_ids);
2240
2241static struct amba_driver mmci_driver = {
2242	.drv		= {
2243		.name	= DRIVER_NAME,
2244		.pm	= &mmci_dev_pm_ops,
2245	},
2246	.probe		= mmci_probe,
2247	.remove		= mmci_remove,
2248	.id_table	= mmci_ids,
2249};
2250
2251module_amba_driver(mmci_driver);
2252
2253module_param(fmax, uint, 0444);
2254
2255MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2256MODULE_LICENSE("GPL");