Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * STM32 Timer Encoder and Counter driver
  4 *
  5 * Copyright (C) STMicroelectronics 2018
  6 *
  7 * Author: Benjamin Gaignard <benjamin.gaignard@st.com>
  8 *
  9 */
 10#include <linux/counter.h>
 
 11#include <linux/mfd/stm32-timers.h>
 12#include <linux/mod_devicetable.h>
 13#include <linux/module.h>
 
 14#include <linux/pinctrl/consumer.h>
 15#include <linux/platform_device.h>
 16#include <linux/types.h>
 17
 18#define TIM_CCMR_CCXS	(BIT(8) | BIT(0))
 19#define TIM_CCMR_MASK	(TIM_CCMR_CC1S | TIM_CCMR_CC2S | \
 20			 TIM_CCMR_IC1F | TIM_CCMR_IC2F)
 21#define TIM_CCER_MASK	(TIM_CCER_CC1P | TIM_CCER_CC1NP | \
 22			 TIM_CCER_CC2P | TIM_CCER_CC2NP)
 23
 
 
 
 
 
 
 24struct stm32_timer_regs {
 25	u32 cr1;
 26	u32 cnt;
 27	u32 smcr;
 28	u32 arr;
 29};
 30
 31struct stm32_timer_cnt {
 32	struct regmap *regmap;
 33	struct clk *clk;
 34	u32 max_arr;
 35	bool enabled;
 36	struct stm32_timer_regs bak;
 
 
 
 
 
 37};
 38
 39static const enum counter_function stm32_count_functions[] = {
 40	COUNTER_FUNCTION_INCREASE,
 41	COUNTER_FUNCTION_QUADRATURE_X2_A,
 42	COUNTER_FUNCTION_QUADRATURE_X2_B,
 43	COUNTER_FUNCTION_QUADRATURE_X4,
 44};
 45
 46static int stm32_count_read(struct counter_device *counter,
 47			    struct counter_count *count, u64 *val)
 48{
 49	struct stm32_timer_cnt *const priv = counter_priv(counter);
 50	u32 cnt;
 51
 52	regmap_read(priv->regmap, TIM_CNT, &cnt);
 53	*val = cnt;
 54
 55	return 0;
 56}
 57
 58static int stm32_count_write(struct counter_device *counter,
 59			     struct counter_count *count, const u64 val)
 60{
 61	struct stm32_timer_cnt *const priv = counter_priv(counter);
 62	u32 ceiling;
 63
 64	regmap_read(priv->regmap, TIM_ARR, &ceiling);
 65	if (val > ceiling)
 66		return -EINVAL;
 67
 68	return regmap_write(priv->regmap, TIM_CNT, val);
 69}
 70
 71static int stm32_count_function_read(struct counter_device *counter,
 72				     struct counter_count *count,
 73				     enum counter_function *function)
 74{
 75	struct stm32_timer_cnt *const priv = counter_priv(counter);
 76	u32 smcr;
 77
 78	regmap_read(priv->regmap, TIM_SMCR, &smcr);
 79
 80	switch (smcr & TIM_SMCR_SMS) {
 81	case TIM_SMCR_SMS_SLAVE_MODE_DISABLED:
 82		*function = COUNTER_FUNCTION_INCREASE;
 83		return 0;
 84	case TIM_SMCR_SMS_ENCODER_MODE_1:
 85		*function = COUNTER_FUNCTION_QUADRATURE_X2_A;
 86		return 0;
 87	case TIM_SMCR_SMS_ENCODER_MODE_2:
 88		*function = COUNTER_FUNCTION_QUADRATURE_X2_B;
 89		return 0;
 90	case TIM_SMCR_SMS_ENCODER_MODE_3:
 91		*function = COUNTER_FUNCTION_QUADRATURE_X4;
 92		return 0;
 93	default:
 94		return -EINVAL;
 95	}
 96}
 97
 98static int stm32_count_function_write(struct counter_device *counter,
 99				      struct counter_count *count,
100				      enum counter_function function)
101{
102	struct stm32_timer_cnt *const priv = counter_priv(counter);
103	u32 cr1, sms;
104
105	switch (function) {
106	case COUNTER_FUNCTION_INCREASE:
107		sms = TIM_SMCR_SMS_SLAVE_MODE_DISABLED;
108		break;
109	case COUNTER_FUNCTION_QUADRATURE_X2_A:
 
 
110		sms = TIM_SMCR_SMS_ENCODER_MODE_1;
111		break;
112	case COUNTER_FUNCTION_QUADRATURE_X2_B:
 
 
113		sms = TIM_SMCR_SMS_ENCODER_MODE_2;
114		break;
115	case COUNTER_FUNCTION_QUADRATURE_X4:
 
 
116		sms = TIM_SMCR_SMS_ENCODER_MODE_3;
117		break;
118	default:
119		return -EINVAL;
120	}
121
122	/* Store enable status */
123	regmap_read(priv->regmap, TIM_CR1, &cr1);
124
125	regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
126
127	regmap_update_bits(priv->regmap, TIM_SMCR, TIM_SMCR_SMS, sms);
128
129	/* Make sure that registers are updated */
130	regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG);
131
132	/* Restore the enable status */
133	regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, cr1);
134
135	return 0;
136}
137
138static int stm32_count_direction_read(struct counter_device *counter,
139				      struct counter_count *count,
140				      enum counter_count_direction *direction)
141{
142	struct stm32_timer_cnt *const priv = counter_priv(counter);
143	u32 cr1;
144
145	regmap_read(priv->regmap, TIM_CR1, &cr1);
146	*direction = (cr1 & TIM_CR1_DIR) ? COUNTER_COUNT_DIRECTION_BACKWARD :
147		COUNTER_COUNT_DIRECTION_FORWARD;
148
149	return 0;
150}
151
152static int stm32_count_ceiling_read(struct counter_device *counter,
153				    struct counter_count *count, u64 *ceiling)
154{
155	struct stm32_timer_cnt *const priv = counter_priv(counter);
156	u32 arr;
157
158	regmap_read(priv->regmap, TIM_ARR, &arr);
159
160	*ceiling = arr;
161
162	return 0;
163}
164
165static int stm32_count_ceiling_write(struct counter_device *counter,
166				     struct counter_count *count, u64 ceiling)
167{
168	struct stm32_timer_cnt *const priv = counter_priv(counter);
169
170	if (ceiling > priv->max_arr)
171		return -ERANGE;
172
173	/* TIMx_ARR register shouldn't be buffered (ARPE=0) */
174	regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, 0);
175	regmap_write(priv->regmap, TIM_ARR, ceiling);
176
177	return 0;
178}
179
180static int stm32_count_enable_read(struct counter_device *counter,
181				   struct counter_count *count, u8 *enable)
182{
183	struct stm32_timer_cnt *const priv = counter_priv(counter);
184	u32 cr1;
185
186	regmap_read(priv->regmap, TIM_CR1, &cr1);
187
188	*enable = cr1 & TIM_CR1_CEN;
189
190	return 0;
191}
192
193static int stm32_count_enable_write(struct counter_device *counter,
194				    struct counter_count *count, u8 enable)
195{
196	struct stm32_timer_cnt *const priv = counter_priv(counter);
197	u32 cr1;
 
198
199	if (enable) {
200		regmap_read(priv->regmap, TIM_CR1, &cr1);
201		if (!(cr1 & TIM_CR1_CEN))
202			clk_enable(priv->clk);
 
 
 
 
 
203
204		regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN,
205				   TIM_CR1_CEN);
206	} else {
207		regmap_read(priv->regmap, TIM_CR1, &cr1);
208		regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
209		if (cr1 & TIM_CR1_CEN)
210			clk_disable(priv->clk);
211	}
212
213	/* Keep enabled state to properly handle low power states */
214	priv->enabled = enable;
215
216	return 0;
217}
218
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
219static struct counter_comp stm32_count_ext[] = {
220	COUNTER_COMP_DIRECTION(stm32_count_direction_read),
221	COUNTER_COMP_ENABLE(stm32_count_enable_read, stm32_count_enable_write),
222	COUNTER_COMP_CEILING(stm32_count_ceiling_read,
223			     stm32_count_ceiling_write),
 
 
 
 
 
 
 
 
224};
225
226static const enum counter_synapse_action stm32_synapse_actions[] = {
227	COUNTER_SYNAPSE_ACTION_NONE,
228	COUNTER_SYNAPSE_ACTION_BOTH_EDGES
229};
230
231static int stm32_action_read(struct counter_device *counter,
232			     struct counter_count *count,
233			     struct counter_synapse *synapse,
234			     enum counter_synapse_action *action)
235{
236	enum counter_function function;
237	int err;
238
239	err = stm32_count_function_read(counter, count, &function);
240	if (err)
241		return err;
242
243	switch (function) {
244	case COUNTER_FUNCTION_INCREASE:
245		/* counts on internal clock when CEN=1 */
246		*action = COUNTER_SYNAPSE_ACTION_NONE;
 
 
 
247		return 0;
248	case COUNTER_FUNCTION_QUADRATURE_X2_A:
249		/* counts up/down on TI1FP1 edge depending on TI2FP2 level */
250		if (synapse->signal->id == count->synapses[0].signal->id)
251			*action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
252		else
253			*action = COUNTER_SYNAPSE_ACTION_NONE;
254		return 0;
255	case COUNTER_FUNCTION_QUADRATURE_X2_B:
256		/* counts up/down on TI2FP2 edge depending on TI1FP1 level */
257		if (synapse->signal->id == count->synapses[1].signal->id)
258			*action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
259		else
260			*action = COUNTER_SYNAPSE_ACTION_NONE;
261		return 0;
262	case COUNTER_FUNCTION_QUADRATURE_X4:
263		/* counts up/down on both TI1FP1 and TI2FP2 edges */
264		*action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
265		return 0;
266	default:
267		return -EINVAL;
268	}
269}
270
271static const struct counter_ops stm32_timer_cnt_ops = {
272	.count_read = stm32_count_read,
273	.count_write = stm32_count_write,
274	.function_read = stm32_count_function_read,
275	.function_write = stm32_count_function_write,
276	.action_read = stm32_action_read,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
277};
278
279static struct counter_signal stm32_signals[] = {
 
 
 
 
 
 
 
 
 
280	{
281		.id = 0,
282		.name = "Channel 1 Quadrature A"
283	},
284	{
285		.id = 1,
286		.name = "Channel 1 Quadrature B"
287	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
288};
289
290static struct counter_synapse stm32_count_synapses[] = {
291	{
292		.actions_list = stm32_synapse_actions,
293		.num_actions = ARRAY_SIZE(stm32_synapse_actions),
294		.signal = &stm32_signals[0]
295	},
296	{
297		.actions_list = stm32_synapse_actions,
298		.num_actions = ARRAY_SIZE(stm32_synapse_actions),
299		.signal = &stm32_signals[1]
300	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
301};
302
303static struct counter_count stm32_counts = {
304	.id = 0,
305	.name = "Channel 1 Count",
306	.functions_list = stm32_count_functions,
307	.num_functions = ARRAY_SIZE(stm32_count_functions),
308	.synapses = stm32_count_synapses,
309	.num_synapses = ARRAY_SIZE(stm32_count_synapses),
310	.ext = stm32_count_ext,
311	.num_ext = ARRAY_SIZE(stm32_count_ext)
312};
313
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
314static int stm32_timer_cnt_probe(struct platform_device *pdev)
315{
316	struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent);
317	struct device *dev = &pdev->dev;
318	struct stm32_timer_cnt *priv;
319	struct counter_device *counter;
320	int ret;
321
322	if (IS_ERR_OR_NULL(ddata))
323		return -EINVAL;
324
325	counter = devm_counter_alloc(dev, sizeof(*priv));
326	if (!counter)
327		return -ENOMEM;
328
329	priv = counter_priv(counter);
330
331	priv->regmap = ddata->regmap;
332	priv->clk = ddata->clk;
333	priv->max_arr = ddata->max_arr;
 
 
 
 
 
 
 
334
335	counter->name = dev_name(dev);
336	counter->parent = dev;
337	counter->ops = &stm32_timer_cnt_ops;
338	counter->counts = &stm32_counts;
339	counter->num_counts = 1;
340	counter->signals = stm32_signals;
341	counter->num_signals = ARRAY_SIZE(stm32_signals);
342
 
 
343	platform_set_drvdata(pdev, priv);
344
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
345	/* Register Counter device */
346	ret = devm_counter_add(dev, counter);
347	if (ret < 0)
348		dev_err_probe(dev, ret, "Failed to add counter\n");
349
350	return ret;
351}
352
353static int __maybe_unused stm32_timer_cnt_suspend(struct device *dev)
354{
355	struct stm32_timer_cnt *priv = dev_get_drvdata(dev);
356
357	/* Only take care of enabled counter: don't disturb other MFD child */
358	if (priv->enabled) {
359		/* Backup registers that may get lost in low power mode */
360		regmap_read(priv->regmap, TIM_SMCR, &priv->bak.smcr);
361		regmap_read(priv->regmap, TIM_ARR, &priv->bak.arr);
362		regmap_read(priv->regmap, TIM_CNT, &priv->bak.cnt);
363		regmap_read(priv->regmap, TIM_CR1, &priv->bak.cr1);
364
365		/* Disable the counter */
366		regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
367		clk_disable(priv->clk);
368	}
369
370	return pinctrl_pm_select_sleep_state(dev);
371}
372
373static int __maybe_unused stm32_timer_cnt_resume(struct device *dev)
374{
375	struct stm32_timer_cnt *priv = dev_get_drvdata(dev);
376	int ret;
377
378	ret = pinctrl_pm_select_default_state(dev);
379	if (ret)
380		return ret;
381
382	if (priv->enabled) {
383		clk_enable(priv->clk);
 
 
 
 
384
385		/* Restore registers that may have been lost */
386		regmap_write(priv->regmap, TIM_SMCR, priv->bak.smcr);
387		regmap_write(priv->regmap, TIM_ARR, priv->bak.arr);
388		regmap_write(priv->regmap, TIM_CNT, priv->bak.cnt);
389
390		/* Also re-enables the counter */
391		regmap_write(priv->regmap, TIM_CR1, priv->bak.cr1);
392	}
393
394	return 0;
395}
396
397static SIMPLE_DEV_PM_OPS(stm32_timer_cnt_pm_ops, stm32_timer_cnt_suspend,
398			 stm32_timer_cnt_resume);
399
400static const struct of_device_id stm32_timer_cnt_of_match[] = {
401	{ .compatible = "st,stm32-timer-counter", },
402	{},
403};
404MODULE_DEVICE_TABLE(of, stm32_timer_cnt_of_match);
405
406static struct platform_driver stm32_timer_cnt_driver = {
407	.probe = stm32_timer_cnt_probe,
408	.driver = {
409		.name = "stm32-timer-counter",
410		.of_match_table = stm32_timer_cnt_of_match,
411		.pm = &stm32_timer_cnt_pm_ops,
412	},
413};
414module_platform_driver(stm32_timer_cnt_driver);
415
416MODULE_AUTHOR("Benjamin Gaignard <benjamin.gaignard@st.com>");
417MODULE_ALIAS("platform:stm32-timer-counter");
418MODULE_DESCRIPTION("STMicroelectronics STM32 TIMER counter driver");
419MODULE_LICENSE("GPL v2");
420MODULE_IMPORT_NS(COUNTER);
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * STM32 Timer Encoder and Counter driver
  4 *
  5 * Copyright (C) STMicroelectronics 2018
  6 *
  7 * Author: Benjamin Gaignard <benjamin.gaignard@st.com>
  8 *
  9 */
 10#include <linux/counter.h>
 11#include <linux/interrupt.h>
 12#include <linux/mfd/stm32-timers.h>
 13#include <linux/mod_devicetable.h>
 14#include <linux/module.h>
 15#include <linux/of.h>
 16#include <linux/pinctrl/consumer.h>
 17#include <linux/platform_device.h>
 18#include <linux/types.h>
 19
 20#define TIM_CCMR_CCXS	(BIT(8) | BIT(0))
 21#define TIM_CCMR_MASK	(TIM_CCMR_CC1S | TIM_CCMR_CC2S | \
 22			 TIM_CCMR_IC1F | TIM_CCMR_IC2F)
 23#define TIM_CCER_MASK	(TIM_CCER_CC1P | TIM_CCER_CC1NP | \
 24			 TIM_CCER_CC2P | TIM_CCER_CC2NP)
 25
 26#define STM32_CH1_SIG		0
 27#define STM32_CH2_SIG		1
 28#define STM32_CLOCK_SIG		2
 29#define STM32_CH3_SIG		3
 30#define STM32_CH4_SIG		4
 31
 32struct stm32_timer_regs {
 33	u32 cr1;
 34	u32 cnt;
 35	u32 smcr;
 36	u32 arr;
 37};
 38
 39struct stm32_timer_cnt {
 40	struct regmap *regmap;
 41	struct clk *clk;
 42	u32 max_arr;
 43	bool enabled;
 44	struct stm32_timer_regs bak;
 45	bool has_encoder;
 46	unsigned int nchannels;
 47	unsigned int nr_irqs;
 48	spinlock_t lock; /* protects nb_ovf */
 49	u64 nb_ovf;
 50};
 51
 52static const enum counter_function stm32_count_functions[] = {
 53	COUNTER_FUNCTION_INCREASE,
 54	COUNTER_FUNCTION_QUADRATURE_X2_A,
 55	COUNTER_FUNCTION_QUADRATURE_X2_B,
 56	COUNTER_FUNCTION_QUADRATURE_X4,
 57};
 58
 59static int stm32_count_read(struct counter_device *counter,
 60			    struct counter_count *count, u64 *val)
 61{
 62	struct stm32_timer_cnt *const priv = counter_priv(counter);
 63	u32 cnt;
 64
 65	regmap_read(priv->regmap, TIM_CNT, &cnt);
 66	*val = cnt;
 67
 68	return 0;
 69}
 70
 71static int stm32_count_write(struct counter_device *counter,
 72			     struct counter_count *count, const u64 val)
 73{
 74	struct stm32_timer_cnt *const priv = counter_priv(counter);
 75	u32 ceiling;
 76
 77	regmap_read(priv->regmap, TIM_ARR, &ceiling);
 78	if (val > ceiling)
 79		return -EINVAL;
 80
 81	return regmap_write(priv->regmap, TIM_CNT, val);
 82}
 83
 84static int stm32_count_function_read(struct counter_device *counter,
 85				     struct counter_count *count,
 86				     enum counter_function *function)
 87{
 88	struct stm32_timer_cnt *const priv = counter_priv(counter);
 89	u32 smcr;
 90
 91	regmap_read(priv->regmap, TIM_SMCR, &smcr);
 92
 93	switch (smcr & TIM_SMCR_SMS) {
 94	case TIM_SMCR_SMS_SLAVE_MODE_DISABLED:
 95		*function = COUNTER_FUNCTION_INCREASE;
 96		return 0;
 97	case TIM_SMCR_SMS_ENCODER_MODE_1:
 98		*function = COUNTER_FUNCTION_QUADRATURE_X2_A;
 99		return 0;
100	case TIM_SMCR_SMS_ENCODER_MODE_2:
101		*function = COUNTER_FUNCTION_QUADRATURE_X2_B;
102		return 0;
103	case TIM_SMCR_SMS_ENCODER_MODE_3:
104		*function = COUNTER_FUNCTION_QUADRATURE_X4;
105		return 0;
106	default:
107		return -EINVAL;
108	}
109}
110
111static int stm32_count_function_write(struct counter_device *counter,
112				      struct counter_count *count,
113				      enum counter_function function)
114{
115	struct stm32_timer_cnt *const priv = counter_priv(counter);
116	u32 cr1, sms;
117
118	switch (function) {
119	case COUNTER_FUNCTION_INCREASE:
120		sms = TIM_SMCR_SMS_SLAVE_MODE_DISABLED;
121		break;
122	case COUNTER_FUNCTION_QUADRATURE_X2_A:
123		if (!priv->has_encoder)
124			return -EOPNOTSUPP;
125		sms = TIM_SMCR_SMS_ENCODER_MODE_1;
126		break;
127	case COUNTER_FUNCTION_QUADRATURE_X2_B:
128		if (!priv->has_encoder)
129			return -EOPNOTSUPP;
130		sms = TIM_SMCR_SMS_ENCODER_MODE_2;
131		break;
132	case COUNTER_FUNCTION_QUADRATURE_X4:
133		if (!priv->has_encoder)
134			return -EOPNOTSUPP;
135		sms = TIM_SMCR_SMS_ENCODER_MODE_3;
136		break;
137	default:
138		return -EINVAL;
139	}
140
141	/* Store enable status */
142	regmap_read(priv->regmap, TIM_CR1, &cr1);
143
144	regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
145
146	regmap_update_bits(priv->regmap, TIM_SMCR, TIM_SMCR_SMS, sms);
147
148	/* Make sure that registers are updated */
149	regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG);
150
151	/* Restore the enable status */
152	regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, cr1);
153
154	return 0;
155}
156
157static int stm32_count_direction_read(struct counter_device *counter,
158				      struct counter_count *count,
159				      enum counter_count_direction *direction)
160{
161	struct stm32_timer_cnt *const priv = counter_priv(counter);
162	u32 cr1;
163
164	regmap_read(priv->regmap, TIM_CR1, &cr1);
165	*direction = (cr1 & TIM_CR1_DIR) ? COUNTER_COUNT_DIRECTION_BACKWARD :
166		COUNTER_COUNT_DIRECTION_FORWARD;
167
168	return 0;
169}
170
171static int stm32_count_ceiling_read(struct counter_device *counter,
172				    struct counter_count *count, u64 *ceiling)
173{
174	struct stm32_timer_cnt *const priv = counter_priv(counter);
175	u32 arr;
176
177	regmap_read(priv->regmap, TIM_ARR, &arr);
178
179	*ceiling = arr;
180
181	return 0;
182}
183
184static int stm32_count_ceiling_write(struct counter_device *counter,
185				     struct counter_count *count, u64 ceiling)
186{
187	struct stm32_timer_cnt *const priv = counter_priv(counter);
188
189	if (ceiling > priv->max_arr)
190		return -ERANGE;
191
192	/* TIMx_ARR register shouldn't be buffered (ARPE=0) */
193	regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, 0);
194	regmap_write(priv->regmap, TIM_ARR, ceiling);
195
196	return 0;
197}
198
199static int stm32_count_enable_read(struct counter_device *counter,
200				   struct counter_count *count, u8 *enable)
201{
202	struct stm32_timer_cnt *const priv = counter_priv(counter);
203	u32 cr1;
204
205	regmap_read(priv->regmap, TIM_CR1, &cr1);
206
207	*enable = cr1 & TIM_CR1_CEN;
208
209	return 0;
210}
211
212static int stm32_count_enable_write(struct counter_device *counter,
213				    struct counter_count *count, u8 enable)
214{
215	struct stm32_timer_cnt *const priv = counter_priv(counter);
216	u32 cr1;
217	int ret;
218
219	if (enable) {
220		regmap_read(priv->regmap, TIM_CR1, &cr1);
221		if (!(cr1 & TIM_CR1_CEN)) {
222			ret = clk_enable(priv->clk);
223			if (ret) {
224				dev_err(counter->parent, "Cannot enable clock %d\n", ret);
225				return ret;
226			}
227		}
228
229		regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN,
230				   TIM_CR1_CEN);
231	} else {
232		regmap_read(priv->regmap, TIM_CR1, &cr1);
233		regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
234		if (cr1 & TIM_CR1_CEN)
235			clk_disable(priv->clk);
236	}
237
238	/* Keep enabled state to properly handle low power states */
239	priv->enabled = enable;
240
241	return 0;
242}
243
244static int stm32_count_prescaler_read(struct counter_device *counter,
245				      struct counter_count *count, u64 *prescaler)
246{
247	struct stm32_timer_cnt *const priv = counter_priv(counter);
248	u32 psc;
249
250	regmap_read(priv->regmap, TIM_PSC, &psc);
251
252	*prescaler = psc + 1;
253
254	return 0;
255}
256
257static int stm32_count_prescaler_write(struct counter_device *counter,
258				       struct counter_count *count, u64 prescaler)
259{
260	struct stm32_timer_cnt *const priv = counter_priv(counter);
261	u32 psc;
262
263	if (!prescaler || prescaler > MAX_TIM_PSC + 1)
264		return -ERANGE;
265
266	psc = prescaler - 1;
267
268	return regmap_write(priv->regmap, TIM_PSC, psc);
269}
270
271static int stm32_count_cap_read(struct counter_device *counter,
272				struct counter_count *count,
273				size_t ch, u64 *cap)
274{
275	struct stm32_timer_cnt *const priv = counter_priv(counter);
276	u32 ccrx;
277
278	if (ch >= priv->nchannels)
279		return -EOPNOTSUPP;
280
281	switch (ch) {
282	case 0:
283		regmap_read(priv->regmap, TIM_CCR1, &ccrx);
284		break;
285	case 1:
286		regmap_read(priv->regmap, TIM_CCR2, &ccrx);
287		break;
288	case 2:
289		regmap_read(priv->regmap, TIM_CCR3, &ccrx);
290		break;
291	case 3:
292		regmap_read(priv->regmap, TIM_CCR4, &ccrx);
293		break;
294	default:
295		return -EINVAL;
296	}
297
298	dev_dbg(counter->parent, "CCR%zu: 0x%08x\n", ch + 1, ccrx);
299
300	*cap = ccrx;
301
302	return 0;
303}
304
305static int stm32_count_nb_ovf_read(struct counter_device *counter,
306				   struct counter_count *count, u64 *val)
307{
308	struct stm32_timer_cnt *const priv = counter_priv(counter);
309	unsigned long irqflags;
310
311	spin_lock_irqsave(&priv->lock, irqflags);
312	*val = priv->nb_ovf;
313	spin_unlock_irqrestore(&priv->lock, irqflags);
314
315	return 0;
316}
317
318static int stm32_count_nb_ovf_write(struct counter_device *counter,
319				    struct counter_count *count, u64 val)
320{
321	struct stm32_timer_cnt *const priv = counter_priv(counter);
322	unsigned long irqflags;
323
324	spin_lock_irqsave(&priv->lock, irqflags);
325	priv->nb_ovf = val;
326	spin_unlock_irqrestore(&priv->lock, irqflags);
327
328	return 0;
329}
330
331static DEFINE_COUNTER_ARRAY_CAPTURE(stm32_count_cap_array, 4);
332
333static struct counter_comp stm32_count_ext[] = {
334	COUNTER_COMP_DIRECTION(stm32_count_direction_read),
335	COUNTER_COMP_ENABLE(stm32_count_enable_read, stm32_count_enable_write),
336	COUNTER_COMP_CEILING(stm32_count_ceiling_read,
337			     stm32_count_ceiling_write),
338	COUNTER_COMP_COUNT_U64("prescaler", stm32_count_prescaler_read,
339			       stm32_count_prescaler_write),
340	COUNTER_COMP_ARRAY_CAPTURE(stm32_count_cap_read, NULL, stm32_count_cap_array),
341	COUNTER_COMP_COUNT_U64("num_overflows", stm32_count_nb_ovf_read, stm32_count_nb_ovf_write),
342};
343
344static const enum counter_synapse_action stm32_clock_synapse_actions[] = {
345	COUNTER_SYNAPSE_ACTION_RISING_EDGE,
346};
347
348static const enum counter_synapse_action stm32_synapse_actions[] = {
349	COUNTER_SYNAPSE_ACTION_NONE,
350	COUNTER_SYNAPSE_ACTION_BOTH_EDGES
351};
352
353static int stm32_action_read(struct counter_device *counter,
354			     struct counter_count *count,
355			     struct counter_synapse *synapse,
356			     enum counter_synapse_action *action)
357{
358	enum counter_function function;
359	int err;
360
361	err = stm32_count_function_read(counter, count, &function);
362	if (err)
363		return err;
364
365	switch (function) {
366	case COUNTER_FUNCTION_INCREASE:
367		/* counts on internal clock when CEN=1 */
368		if (synapse->signal->id == STM32_CLOCK_SIG)
369			*action = COUNTER_SYNAPSE_ACTION_RISING_EDGE;
370		else
371			*action = COUNTER_SYNAPSE_ACTION_NONE;
372		return 0;
373	case COUNTER_FUNCTION_QUADRATURE_X2_A:
374		/* counts up/down on TI1FP1 edge depending on TI2FP2 level */
375		if (synapse->signal->id == STM32_CH1_SIG)
376			*action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
377		else
378			*action = COUNTER_SYNAPSE_ACTION_NONE;
379		return 0;
380	case COUNTER_FUNCTION_QUADRATURE_X2_B:
381		/* counts up/down on TI2FP2 edge depending on TI1FP1 level */
382		if (synapse->signal->id == STM32_CH2_SIG)
383			*action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
384		else
385			*action = COUNTER_SYNAPSE_ACTION_NONE;
386		return 0;
387	case COUNTER_FUNCTION_QUADRATURE_X4:
388		/* counts up/down on both TI1FP1 and TI2FP2 edges */
389		if (synapse->signal->id == STM32_CH1_SIG || synapse->signal->id == STM32_CH2_SIG)
390			*action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
391		else
392			*action = COUNTER_SYNAPSE_ACTION_NONE;
393		return 0;
394	default:
395		return -EINVAL;
396	}
397}
398
399struct stm32_count_cc_regs {
400	u32 ccmr_reg;
401	u32 ccmr_mask;
402	u32 ccmr_bits;
403	u32 ccer_bits;
404};
405
406static const struct stm32_count_cc_regs stm32_cc[] = {
407	{ TIM_CCMR1, TIM_CCMR_CC1S, TIM_CCMR_CC1S_TI1,
408		TIM_CCER_CC1E | TIM_CCER_CC1P | TIM_CCER_CC1NP },
409	{ TIM_CCMR1, TIM_CCMR_CC2S, TIM_CCMR_CC2S_TI2,
410		TIM_CCER_CC2E | TIM_CCER_CC2P | TIM_CCER_CC2NP },
411	{ TIM_CCMR2, TIM_CCMR_CC3S, TIM_CCMR_CC3S_TI3,
412		TIM_CCER_CC3E | TIM_CCER_CC3P | TIM_CCER_CC3NP },
413	{ TIM_CCMR2, TIM_CCMR_CC4S, TIM_CCMR_CC4S_TI4,
414		TIM_CCER_CC4E | TIM_CCER_CC4P | TIM_CCER_CC4NP },
415};
416
417static int stm32_count_capture_configure(struct counter_device *counter, unsigned int ch,
418					 bool enable)
419{
420	struct stm32_timer_cnt *const priv = counter_priv(counter);
421	const struct stm32_count_cc_regs *cc;
422	u32 ccmr, ccer;
423
424	if (ch >= ARRAY_SIZE(stm32_cc) || ch >= priv->nchannels) {
425		dev_err(counter->parent, "invalid ch: %d\n", ch);
426		return -EINVAL;
427	}
428
429	cc = &stm32_cc[ch];
430
431	/*
432	 * configure channel in input capture mode, map channel 1 on TI1, channel2 on TI2...
433	 * Select both edges / non-inverted to trigger a capture.
434	 */
435	if (enable) {
436		/* first clear possibly latched capture flag upon enabling */
437		if (!regmap_test_bits(priv->regmap, TIM_CCER, cc->ccer_bits))
438			regmap_write(priv->regmap, TIM_SR, ~TIM_SR_CC_IF(ch));
439		regmap_update_bits(priv->regmap, cc->ccmr_reg, cc->ccmr_mask,
440				   cc->ccmr_bits);
441		regmap_set_bits(priv->regmap, TIM_CCER, cc->ccer_bits);
442	} else {
443		regmap_clear_bits(priv->regmap, TIM_CCER, cc->ccer_bits);
444		regmap_clear_bits(priv->regmap, cc->ccmr_reg, cc->ccmr_mask);
445	}
446
447	regmap_read(priv->regmap, cc->ccmr_reg, &ccmr);
448	regmap_read(priv->regmap, TIM_CCER, &ccer);
449	dev_dbg(counter->parent, "%s(%s) ch%d 0x%08x 0x%08x\n", __func__, enable ? "ena" : "dis",
450		ch, ccmr, ccer);
451
452	return 0;
453}
454
455static int stm32_count_events_configure(struct counter_device *counter)
456{
457	struct stm32_timer_cnt *const priv = counter_priv(counter);
458	struct counter_event_node *event_node;
459	u32 dier = 0;
460	int i, ret;
461
462	list_for_each_entry(event_node, &counter->events_list, l) {
463		switch (event_node->event) {
464		case COUNTER_EVENT_OVERFLOW_UNDERFLOW:
465			/* first clear possibly latched UIF before enabling */
466			if (!regmap_test_bits(priv->regmap, TIM_DIER, TIM_DIER_UIE))
467				regmap_write(priv->regmap, TIM_SR, (u32)~TIM_SR_UIF);
468			dier |= TIM_DIER_UIE;
469			break;
470		case COUNTER_EVENT_CAPTURE:
471			ret = stm32_count_capture_configure(counter, event_node->channel, true);
472			if (ret)
473				return ret;
474			dier |= TIM_DIER_CCxIE(event_node->channel + 1);
475			break;
476		default:
477			/* should never reach this path */
478			return -EINVAL;
479		}
480	}
481
482	/* Enable / disable all events at once, from events_list, so write all DIER bits */
483	regmap_write(priv->regmap, TIM_DIER, dier);
484
485	/* check for disabled capture events */
486	for (i = 0 ; i < priv->nchannels; i++) {
487		if (!(dier & TIM_DIER_CCxIE(i + 1))) {
488			ret = stm32_count_capture_configure(counter, i, false);
489			if (ret)
490				return ret;
491		}
492	}
493
494	return 0;
495}
496
497static int stm32_count_watch_validate(struct counter_device *counter,
498				      const struct counter_watch *watch)
499{
500	struct stm32_timer_cnt *const priv = counter_priv(counter);
501
502	/* Interrupts are optional */
503	if (!priv->nr_irqs)
504		return -EOPNOTSUPP;
505
506	switch (watch->event) {
507	case COUNTER_EVENT_CAPTURE:
508		if (watch->channel >= priv->nchannels) {
509			dev_err(counter->parent, "Invalid channel %d\n", watch->channel);
510			return -EINVAL;
511		}
512		return 0;
513	case COUNTER_EVENT_OVERFLOW_UNDERFLOW:
514		return 0;
515	default:
516		return -EINVAL;
517	}
518}
519
520static const struct counter_ops stm32_timer_cnt_ops = {
521	.count_read = stm32_count_read,
522	.count_write = stm32_count_write,
523	.function_read = stm32_count_function_read,
524	.function_write = stm32_count_function_write,
525	.action_read = stm32_action_read,
526	.events_configure = stm32_count_events_configure,
527	.watch_validate = stm32_count_watch_validate,
528};
529
530static int stm32_count_clk_get_freq(struct counter_device *counter,
531				    struct counter_signal *signal, u64 *freq)
532{
533	struct stm32_timer_cnt *const priv = counter_priv(counter);
534
535	*freq = clk_get_rate(priv->clk);
536
537	return 0;
538}
539
540static struct counter_comp stm32_count_clock_ext[] = {
541	COUNTER_COMP_FREQUENCY(stm32_count_clk_get_freq),
542};
543
544static struct counter_signal stm32_signals[] = {
545	/*
546	 * Need to declare all the signals as a static array, and keep the signals order here,
547	 * even if they're unused or unexisting on some timer instances. It's an abstraction,
548	 * e.g. high level view of the counter features.
549	 *
550	 * Userspace programs may rely on signal0 to be "Channel 1", signal1 to be "Channel 2",
551	 * and so on. When a signal is unexisting, the COUNTER_SYNAPSE_ACTION_NONE can be used,
552	 * to indicate that a signal doesn't affect the counter.
553	 */
554	{
555		.id = STM32_CH1_SIG,
556		.name = "Channel 1"
557	},
558	{
559		.id = STM32_CH2_SIG,
560		.name = "Channel 2"
561	},
562	{
563		.id = STM32_CLOCK_SIG,
564		.name = "Clock",
565		.ext = stm32_count_clock_ext,
566		.num_ext = ARRAY_SIZE(stm32_count_clock_ext),
567	},
568	{
569		.id = STM32_CH3_SIG,
570		.name = "Channel 3"
571	},
572	{
573		.id = STM32_CH4_SIG,
574		.name = "Channel 4"
575	},
576};
577
578static struct counter_synapse stm32_count_synapses[] = {
579	{
580		.actions_list = stm32_synapse_actions,
581		.num_actions = ARRAY_SIZE(stm32_synapse_actions),
582		.signal = &stm32_signals[STM32_CH1_SIG]
583	},
584	{
585		.actions_list = stm32_synapse_actions,
586		.num_actions = ARRAY_SIZE(stm32_synapse_actions),
587		.signal = &stm32_signals[STM32_CH2_SIG]
588	},
589	{
590		.actions_list = stm32_clock_synapse_actions,
591		.num_actions = ARRAY_SIZE(stm32_clock_synapse_actions),
592		.signal = &stm32_signals[STM32_CLOCK_SIG]
593	},
594	{
595		.actions_list = stm32_synapse_actions,
596		.num_actions = ARRAY_SIZE(stm32_synapse_actions),
597		.signal = &stm32_signals[STM32_CH3_SIG]
598	},
599	{
600		.actions_list = stm32_synapse_actions,
601		.num_actions = ARRAY_SIZE(stm32_synapse_actions),
602		.signal = &stm32_signals[STM32_CH4_SIG]
603	},
604};
605
606static struct counter_count stm32_counts = {
607	.id = 0,
608	.name = "STM32 Timer Counter",
609	.functions_list = stm32_count_functions,
610	.num_functions = ARRAY_SIZE(stm32_count_functions),
611	.synapses = stm32_count_synapses,
612	.num_synapses = ARRAY_SIZE(stm32_count_synapses),
613	.ext = stm32_count_ext,
614	.num_ext = ARRAY_SIZE(stm32_count_ext)
615};
616
617static irqreturn_t stm32_timer_cnt_isr(int irq, void *ptr)
618{
619	struct counter_device *counter = ptr;
620	struct stm32_timer_cnt *const priv = counter_priv(counter);
621	u32 clr = GENMASK(31, 0); /* SR flags can be cleared by writing 0 (wr 1 has no effect) */
622	u32 sr, dier;
623	int i;
624
625	regmap_read(priv->regmap, TIM_SR, &sr);
626	regmap_read(priv->regmap, TIM_DIER, &dier);
627	/*
628	 * Some status bits in SR don't match with the enable bits in DIER. Only take care of
629	 * the possibly enabled bits in DIER (that matches in between SR and DIER).
630	 */
631	dier &= (TIM_DIER_UIE | TIM_DIER_CC1IE | TIM_DIER_CC2IE | TIM_DIER_CC3IE | TIM_DIER_CC4IE);
632	sr &= dier;
633
634	if (sr & TIM_SR_UIF) {
635		spin_lock(&priv->lock);
636		priv->nb_ovf++;
637		spin_unlock(&priv->lock);
638		counter_push_event(counter, COUNTER_EVENT_OVERFLOW_UNDERFLOW, 0);
639		dev_dbg(counter->parent, "COUNTER_EVENT_OVERFLOW_UNDERFLOW\n");
640		/* SR flags can be cleared by writing 0, only clear relevant flag */
641		clr &= ~TIM_SR_UIF;
642	}
643
644	/* Check capture events */
645	for (i = 0 ; i < priv->nchannels; i++) {
646		if (sr & TIM_SR_CC_IF(i)) {
647			counter_push_event(counter, COUNTER_EVENT_CAPTURE, i);
648			clr &= ~TIM_SR_CC_IF(i);
649			dev_dbg(counter->parent, "COUNTER_EVENT_CAPTURE, %d\n", i);
650		}
651	}
652
653	regmap_write(priv->regmap, TIM_SR, clr);
654
655	return IRQ_HANDLED;
656};
657
658static void stm32_timer_cnt_detect_channels(struct device *dev,
659					    struct stm32_timer_cnt *priv)
660{
661	u32 ccer, ccer_backup;
662
663	regmap_read(priv->regmap, TIM_CCER, &ccer_backup);
664	regmap_set_bits(priv->regmap, TIM_CCER, TIM_CCER_CCXE);
665	regmap_read(priv->regmap, TIM_CCER, &ccer);
666	regmap_write(priv->regmap, TIM_CCER, ccer_backup);
667	priv->nchannels = hweight32(ccer & TIM_CCER_CCXE);
668
669	dev_dbg(dev, "has %d cc channels\n", priv->nchannels);
670}
671
672/* encoder supported on TIM1 TIM2 TIM3 TIM4 TIM5 TIM8 */
673#define STM32_TIM_ENCODER_SUPPORTED	(BIT(0) | BIT(1) | BIT(2) | BIT(3) | BIT(4) | BIT(7))
674
675static const char * const stm32_timer_trigger_compat[] = {
676	"st,stm32-timer-trigger",
677	"st,stm32h7-timer-trigger",
678};
679
680static int stm32_timer_cnt_probe_encoder(struct device *dev,
681					 struct stm32_timer_cnt *priv)
682{
683	struct device *parent = dev->parent;
684	struct device_node *tnode = NULL, *pnode = parent->of_node;
685	int i, ret;
686	u32 idx;
687
688	/*
689	 * Need to retrieve the trigger node index from DT, to be able
690	 * to determine if the counter supports encoder mode. It also
691	 * enforce backward compatibility, and allow to support other
692	 * counter modes in this driver (when the timer doesn't support
693	 * encoder).
694	 */
695	for (i = 0; i < ARRAY_SIZE(stm32_timer_trigger_compat) && !tnode; i++)
696		tnode = of_get_compatible_child(pnode, stm32_timer_trigger_compat[i]);
697	if (!tnode) {
698		dev_err(dev, "Can't find trigger node\n");
699		return -ENODATA;
700	}
701
702	ret = of_property_read_u32(tnode, "reg", &idx);
703	of_node_put(tnode);
704	if (ret) {
705		dev_err(dev, "Can't get index (%d)\n", ret);
706		return ret;
707	}
708
709	priv->has_encoder = !!(STM32_TIM_ENCODER_SUPPORTED & BIT(idx));
710
711	dev_dbg(dev, "encoder support: %s\n", priv->has_encoder ? "yes" : "no");
712
713	return 0;
714}
715
716static int stm32_timer_cnt_probe(struct platform_device *pdev)
717{
718	struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent);
719	struct device *dev = &pdev->dev;
720	struct stm32_timer_cnt *priv;
721	struct counter_device *counter;
722	int i, ret;
723
724	if (IS_ERR_OR_NULL(ddata))
725		return -EINVAL;
726
727	counter = devm_counter_alloc(dev, sizeof(*priv));
728	if (!counter)
729		return -ENOMEM;
730
731	priv = counter_priv(counter);
732
733	priv->regmap = ddata->regmap;
734	priv->clk = ddata->clk;
735	priv->max_arr = ddata->max_arr;
736	priv->nr_irqs = ddata->nr_irqs;
737
738	ret = stm32_timer_cnt_probe_encoder(dev, priv);
739	if (ret)
740		return ret;
741
742	stm32_timer_cnt_detect_channels(dev, priv);
743
744	counter->name = dev_name(dev);
745	counter->parent = dev;
746	counter->ops = &stm32_timer_cnt_ops;
747	counter->counts = &stm32_counts;
748	counter->num_counts = 1;
749	counter->signals = stm32_signals;
750	counter->num_signals = ARRAY_SIZE(stm32_signals);
751
752	spin_lock_init(&priv->lock);
753
754	platform_set_drvdata(pdev, priv);
755
756	/* STM32 Timers can have either 1 global, or 4 dedicated interrupts (optional) */
757	if (priv->nr_irqs == 1) {
758		/* All events reported through the global interrupt */
759		ret = devm_request_irq(&pdev->dev, ddata->irq[0], stm32_timer_cnt_isr,
760				       0, dev_name(dev), counter);
761		if (ret) {
762			dev_err(dev, "Failed to request irq %d (err %d)\n",
763				ddata->irq[0], ret);
764			return ret;
765		}
766	} else {
767		for (i = 0; i < priv->nr_irqs; i++) {
768			/*
769			 * Only take care of update IRQ for overflow events, and cc for
770			 * capture events.
771			 */
772			if (i != STM32_TIMERS_IRQ_UP && i != STM32_TIMERS_IRQ_CC)
773				continue;
774
775			ret = devm_request_irq(&pdev->dev, ddata->irq[i], stm32_timer_cnt_isr,
776					       0, dev_name(dev), counter);
777			if (ret) {
778				dev_err(dev, "Failed to request irq %d (err %d)\n",
779					ddata->irq[i], ret);
780				return ret;
781			}
782		}
783	}
784
785	/* Reset input selector to its default input */
786	regmap_write(priv->regmap, TIM_TISEL, 0x0);
787
788	/* Register Counter device */
789	ret = devm_counter_add(dev, counter);
790	if (ret < 0)
791		dev_err_probe(dev, ret, "Failed to add counter\n");
792
793	return ret;
794}
795
796static int __maybe_unused stm32_timer_cnt_suspend(struct device *dev)
797{
798	struct stm32_timer_cnt *priv = dev_get_drvdata(dev);
799
800	/* Only take care of enabled counter: don't disturb other MFD child */
801	if (priv->enabled) {
802		/* Backup registers that may get lost in low power mode */
803		regmap_read(priv->regmap, TIM_SMCR, &priv->bak.smcr);
804		regmap_read(priv->regmap, TIM_ARR, &priv->bak.arr);
805		regmap_read(priv->regmap, TIM_CNT, &priv->bak.cnt);
806		regmap_read(priv->regmap, TIM_CR1, &priv->bak.cr1);
807
808		/* Disable the counter */
809		regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
810		clk_disable(priv->clk);
811	}
812
813	return pinctrl_pm_select_sleep_state(dev);
814}
815
816static int __maybe_unused stm32_timer_cnt_resume(struct device *dev)
817{
818	struct stm32_timer_cnt *priv = dev_get_drvdata(dev);
819	int ret;
820
821	ret = pinctrl_pm_select_default_state(dev);
822	if (ret)
823		return ret;
824
825	if (priv->enabled) {
826		ret = clk_enable(priv->clk);
827		if (ret) {
828			dev_err(dev, "Cannot enable clock %d\n", ret);
829			return ret;
830		}
831
832		/* Restore registers that may have been lost */
833		regmap_write(priv->regmap, TIM_SMCR, priv->bak.smcr);
834		regmap_write(priv->regmap, TIM_ARR, priv->bak.arr);
835		regmap_write(priv->regmap, TIM_CNT, priv->bak.cnt);
836
837		/* Also re-enables the counter */
838		regmap_write(priv->regmap, TIM_CR1, priv->bak.cr1);
839	}
840
841	return 0;
842}
843
844static SIMPLE_DEV_PM_OPS(stm32_timer_cnt_pm_ops, stm32_timer_cnt_suspend,
845			 stm32_timer_cnt_resume);
846
847static const struct of_device_id stm32_timer_cnt_of_match[] = {
848	{ .compatible = "st,stm32-timer-counter", },
849	{},
850};
851MODULE_DEVICE_TABLE(of, stm32_timer_cnt_of_match);
852
853static struct platform_driver stm32_timer_cnt_driver = {
854	.probe = stm32_timer_cnt_probe,
855	.driver = {
856		.name = "stm32-timer-counter",
857		.of_match_table = stm32_timer_cnt_of_match,
858		.pm = &stm32_timer_cnt_pm_ops,
859	},
860};
861module_platform_driver(stm32_timer_cnt_driver);
862
863MODULE_AUTHOR("Benjamin Gaignard <benjamin.gaignard@st.com>");
864MODULE_ALIAS("platform:stm32-timer-counter");
865MODULE_DESCRIPTION("STMicroelectronics STM32 TIMER counter driver");
866MODULE_LICENSE("GPL v2");
867MODULE_IMPORT_NS("COUNTER");