Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * STM32 Timer Encoder and Counter driver
  4 *
  5 * Copyright (C) STMicroelectronics 2018
  6 *
  7 * Author: Benjamin Gaignard <benjamin.gaignard@st.com>
  8 *
  9 */
 10#include <linux/counter.h>
 11#include <linux/mfd/stm32-timers.h>
 12#include <linux/mod_devicetable.h>
 13#include <linux/module.h>
 14#include <linux/pinctrl/consumer.h>
 15#include <linux/platform_device.h>
 16#include <linux/types.h>
 17
 18#define TIM_CCMR_CCXS	(BIT(8) | BIT(0))
 19#define TIM_CCMR_MASK	(TIM_CCMR_CC1S | TIM_CCMR_CC2S | \
 20			 TIM_CCMR_IC1F | TIM_CCMR_IC2F)
 21#define TIM_CCER_MASK	(TIM_CCER_CC1P | TIM_CCER_CC1NP | \
 22			 TIM_CCER_CC2P | TIM_CCER_CC2NP)
 23
 24struct stm32_timer_regs {
 25	u32 cr1;
 26	u32 cnt;
 27	u32 smcr;
 28	u32 arr;
 29};
 30
 31struct stm32_timer_cnt {
 
 32	struct regmap *regmap;
 33	struct clk *clk;
 34	u32 max_arr;
 35	bool enabled;
 36	struct stm32_timer_regs bak;
 37};
 38
 39static const enum counter_function stm32_count_functions[] = {
 40	COUNTER_FUNCTION_INCREASE,
 41	COUNTER_FUNCTION_QUADRATURE_X2_A,
 42	COUNTER_FUNCTION_QUADRATURE_X2_B,
 43	COUNTER_FUNCTION_QUADRATURE_X4,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 44};
 45
 46static int stm32_count_read(struct counter_device *counter,
 47			    struct counter_count *count, u64 *val)
 48{
 49	struct stm32_timer_cnt *const priv = counter_priv(counter);
 50	u32 cnt;
 51
 52	regmap_read(priv->regmap, TIM_CNT, &cnt);
 53	*val = cnt;
 54
 55	return 0;
 56}
 57
 58static int stm32_count_write(struct counter_device *counter,
 59			     struct counter_count *count, const u64 val)
 
 60{
 61	struct stm32_timer_cnt *const priv = counter_priv(counter);
 62	u32 ceiling;
 63
 64	regmap_read(priv->regmap, TIM_ARR, &ceiling);
 65	if (val > ceiling)
 66		return -EINVAL;
 67
 68	return regmap_write(priv->regmap, TIM_CNT, val);
 69}
 70
 71static int stm32_count_function_read(struct counter_device *counter,
 72				     struct counter_count *count,
 73				     enum counter_function *function)
 74{
 75	struct stm32_timer_cnt *const priv = counter_priv(counter);
 76	u32 smcr;
 77
 78	regmap_read(priv->regmap, TIM_SMCR, &smcr);
 79
 80	switch (smcr & TIM_SMCR_SMS) {
 81	case TIM_SMCR_SMS_SLAVE_MODE_DISABLED:
 82		*function = COUNTER_FUNCTION_INCREASE;
 83		return 0;
 84	case TIM_SMCR_SMS_ENCODER_MODE_1:
 85		*function = COUNTER_FUNCTION_QUADRATURE_X2_A;
 86		return 0;
 87	case TIM_SMCR_SMS_ENCODER_MODE_2:
 88		*function = COUNTER_FUNCTION_QUADRATURE_X2_B;
 89		return 0;
 90	case TIM_SMCR_SMS_ENCODER_MODE_3:
 91		*function = COUNTER_FUNCTION_QUADRATURE_X4;
 92		return 0;
 93	default:
 94		return -EINVAL;
 95	}
 96}
 97
 98static int stm32_count_function_write(struct counter_device *counter,
 99				      struct counter_count *count,
100				      enum counter_function function)
101{
102	struct stm32_timer_cnt *const priv = counter_priv(counter);
103	u32 cr1, sms;
104
105	switch (function) {
106	case COUNTER_FUNCTION_INCREASE:
107		sms = TIM_SMCR_SMS_SLAVE_MODE_DISABLED;
108		break;
109	case COUNTER_FUNCTION_QUADRATURE_X2_A:
110		sms = TIM_SMCR_SMS_ENCODER_MODE_1;
111		break;
112	case COUNTER_FUNCTION_QUADRATURE_X2_B:
113		sms = TIM_SMCR_SMS_ENCODER_MODE_2;
114		break;
115	case COUNTER_FUNCTION_QUADRATURE_X4:
116		sms = TIM_SMCR_SMS_ENCODER_MODE_3;
117		break;
118	default:
119		return -EINVAL;
120	}
121
122	/* Store enable status */
123	regmap_read(priv->regmap, TIM_CR1, &cr1);
124
125	regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
126
127	regmap_update_bits(priv->regmap, TIM_SMCR, TIM_SMCR_SMS, sms);
128
129	/* Make sure that registers are updated */
130	regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG);
131
132	/* Restore the enable status */
133	regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, cr1);
134
135	return 0;
136}
137
138static int stm32_count_direction_read(struct counter_device *counter,
139				      struct counter_count *count,
140				      enum counter_count_direction *direction)
141{
142	struct stm32_timer_cnt *const priv = counter_priv(counter);
 
143	u32 cr1;
144
145	regmap_read(priv->regmap, TIM_CR1, &cr1);
146	*direction = (cr1 & TIM_CR1_DIR) ? COUNTER_COUNT_DIRECTION_BACKWARD :
147		COUNTER_COUNT_DIRECTION_FORWARD;
148
149	return 0;
150}
151
152static int stm32_count_ceiling_read(struct counter_device *counter,
153				    struct counter_count *count, u64 *ceiling)
 
154{
155	struct stm32_timer_cnt *const priv = counter_priv(counter);
156	u32 arr;
157
158	regmap_read(priv->regmap, TIM_ARR, &arr);
159
160	*ceiling = arr;
161
162	return 0;
163}
164
165static int stm32_count_ceiling_write(struct counter_device *counter,
166				     struct counter_count *count, u64 ceiling)
 
 
167{
168	struct stm32_timer_cnt *const priv = counter_priv(counter);
 
 
 
 
 
 
169
170	if (ceiling > priv->max_arr)
171		return -ERANGE;
172
173	/* TIMx_ARR register shouldn't be buffered (ARPE=0) */
174	regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, 0);
175	regmap_write(priv->regmap, TIM_ARR, ceiling);
176
177	return 0;
178}
179
180static int stm32_count_enable_read(struct counter_device *counter,
181				   struct counter_count *count, u8 *enable)
 
182{
183	struct stm32_timer_cnt *const priv = counter_priv(counter);
184	u32 cr1;
185
186	regmap_read(priv->regmap, TIM_CR1, &cr1);
187
188	*enable = cr1 & TIM_CR1_CEN;
189
190	return 0;
191}
192
193static int stm32_count_enable_write(struct counter_device *counter,
194				    struct counter_count *count, u8 enable)
 
 
195{
196	struct stm32_timer_cnt *const priv = counter_priv(counter);
 
197	u32 cr1;
 
 
 
 
 
198
199	if (enable) {
200		regmap_read(priv->regmap, TIM_CR1, &cr1);
201		if (!(cr1 & TIM_CR1_CEN))
202			clk_enable(priv->clk);
203
204		regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN,
205				   TIM_CR1_CEN);
206	} else {
207		regmap_read(priv->regmap, TIM_CR1, &cr1);
208		regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
209		if (cr1 & TIM_CR1_CEN)
210			clk_disable(priv->clk);
211	}
212
213	/* Keep enabled state to properly handle low power states */
214	priv->enabled = enable;
215
216	return 0;
217}
218
219static struct counter_comp stm32_count_ext[] = {
220	COUNTER_COMP_DIRECTION(stm32_count_direction_read),
221	COUNTER_COMP_ENABLE(stm32_count_enable_read, stm32_count_enable_write),
222	COUNTER_COMP_CEILING(stm32_count_ceiling_read,
223			     stm32_count_ceiling_write),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
224};
225
226static const enum counter_synapse_action stm32_synapse_actions[] = {
227	COUNTER_SYNAPSE_ACTION_NONE,
228	COUNTER_SYNAPSE_ACTION_BOTH_EDGES
229};
230
231static int stm32_action_read(struct counter_device *counter,
232			     struct counter_count *count,
233			     struct counter_synapse *synapse,
234			     enum counter_synapse_action *action)
235{
236	enum counter_function function;
237	int err;
238
239	err = stm32_count_function_read(counter, count, &function);
240	if (err)
241		return err;
242
243	switch (function) {
244	case COUNTER_FUNCTION_INCREASE:
245		/* counts on internal clock when CEN=1 */
246		*action = COUNTER_SYNAPSE_ACTION_NONE;
247		return 0;
248	case COUNTER_FUNCTION_QUADRATURE_X2_A:
249		/* counts up/down on TI1FP1 edge depending on TI2FP2 level */
250		if (synapse->signal->id == count->synapses[0].signal->id)
251			*action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
252		else
253			*action = COUNTER_SYNAPSE_ACTION_NONE;
254		return 0;
255	case COUNTER_FUNCTION_QUADRATURE_X2_B:
256		/* counts up/down on TI2FP2 edge depending on TI1FP1 level */
257		if (synapse->signal->id == count->synapses[1].signal->id)
258			*action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
259		else
260			*action = COUNTER_SYNAPSE_ACTION_NONE;
261		return 0;
262	case COUNTER_FUNCTION_QUADRATURE_X4:
263		/* counts up/down on both TI1FP1 and TI2FP2 edges */
264		*action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
265		return 0;
266	default:
267		return -EINVAL;
268	}
269}
270
271static const struct counter_ops stm32_timer_cnt_ops = {
272	.count_read = stm32_count_read,
273	.count_write = stm32_count_write,
274	.function_read = stm32_count_function_read,
275	.function_write = stm32_count_function_write,
276	.action_read = stm32_action_read,
277};
278
279static struct counter_signal stm32_signals[] = {
280	{
281		.id = 0,
282		.name = "Channel 1 Quadrature A"
283	},
284	{
285		.id = 1,
286		.name = "Channel 1 Quadrature B"
287	}
288};
289
290static struct counter_synapse stm32_count_synapses[] = {
291	{
292		.actions_list = stm32_synapse_actions,
293		.num_actions = ARRAY_SIZE(stm32_synapse_actions),
294		.signal = &stm32_signals[0]
295	},
296	{
297		.actions_list = stm32_synapse_actions,
298		.num_actions = ARRAY_SIZE(stm32_synapse_actions),
299		.signal = &stm32_signals[1]
300	}
301};
302
303static struct counter_count stm32_counts = {
304	.id = 0,
305	.name = "Channel 1 Count",
306	.functions_list = stm32_count_functions,
307	.num_functions = ARRAY_SIZE(stm32_count_functions),
308	.synapses = stm32_count_synapses,
309	.num_synapses = ARRAY_SIZE(stm32_count_synapses),
310	.ext = stm32_count_ext,
311	.num_ext = ARRAY_SIZE(stm32_count_ext)
312};
313
314static int stm32_timer_cnt_probe(struct platform_device *pdev)
315{
316	struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent);
317	struct device *dev = &pdev->dev;
318	struct stm32_timer_cnt *priv;
319	struct counter_device *counter;
320	int ret;
321
322	if (IS_ERR_OR_NULL(ddata))
323		return -EINVAL;
324
325	counter = devm_counter_alloc(dev, sizeof(*priv));
326	if (!counter)
327		return -ENOMEM;
328
329	priv = counter_priv(counter);
330
331	priv->regmap = ddata->regmap;
332	priv->clk = ddata->clk;
333	priv->max_arr = ddata->max_arr;
334
335	counter->name = dev_name(dev);
336	counter->parent = dev;
337	counter->ops = &stm32_timer_cnt_ops;
338	counter->counts = &stm32_counts;
339	counter->num_counts = 1;
340	counter->signals = stm32_signals;
341	counter->num_signals = ARRAY_SIZE(stm32_signals);
 
342
343	platform_set_drvdata(pdev, priv);
344
345	/* Register Counter device */
346	ret = devm_counter_add(dev, counter);
347	if (ret < 0)
348		dev_err_probe(dev, ret, "Failed to add counter\n");
349
350	return ret;
351}
352
353static int __maybe_unused stm32_timer_cnt_suspend(struct device *dev)
354{
355	struct stm32_timer_cnt *priv = dev_get_drvdata(dev);
356
357	/* Only take care of enabled counter: don't disturb other MFD child */
358	if (priv->enabled) {
359		/* Backup registers that may get lost in low power mode */
360		regmap_read(priv->regmap, TIM_SMCR, &priv->bak.smcr);
361		regmap_read(priv->regmap, TIM_ARR, &priv->bak.arr);
362		regmap_read(priv->regmap, TIM_CNT, &priv->bak.cnt);
363		regmap_read(priv->regmap, TIM_CR1, &priv->bak.cr1);
364
365		/* Disable the counter */
366		regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
367		clk_disable(priv->clk);
368	}
369
370	return pinctrl_pm_select_sleep_state(dev);
371}
372
373static int __maybe_unused stm32_timer_cnt_resume(struct device *dev)
374{
375	struct stm32_timer_cnt *priv = dev_get_drvdata(dev);
376	int ret;
377
378	ret = pinctrl_pm_select_default_state(dev);
379	if (ret)
380		return ret;
381
382	if (priv->enabled) {
383		clk_enable(priv->clk);
384
385		/* Restore registers that may have been lost */
386		regmap_write(priv->regmap, TIM_SMCR, priv->bak.smcr);
387		regmap_write(priv->regmap, TIM_ARR, priv->bak.arr);
388		regmap_write(priv->regmap, TIM_CNT, priv->bak.cnt);
389
390		/* Also re-enables the counter */
391		regmap_write(priv->regmap, TIM_CR1, priv->bak.cr1);
392	}
393
394	return 0;
395}
396
397static SIMPLE_DEV_PM_OPS(stm32_timer_cnt_pm_ops, stm32_timer_cnt_suspend,
398			 stm32_timer_cnt_resume);
399
400static const struct of_device_id stm32_timer_cnt_of_match[] = {
401	{ .compatible = "st,stm32-timer-counter", },
402	{},
403};
404MODULE_DEVICE_TABLE(of, stm32_timer_cnt_of_match);
405
406static struct platform_driver stm32_timer_cnt_driver = {
407	.probe = stm32_timer_cnt_probe,
408	.driver = {
409		.name = "stm32-timer-counter",
410		.of_match_table = stm32_timer_cnt_of_match,
411		.pm = &stm32_timer_cnt_pm_ops,
412	},
413};
414module_platform_driver(stm32_timer_cnt_driver);
415
416MODULE_AUTHOR("Benjamin Gaignard <benjamin.gaignard@st.com>");
417MODULE_ALIAS("platform:stm32-timer-counter");
418MODULE_DESCRIPTION("STMicroelectronics STM32 TIMER counter driver");
419MODULE_LICENSE("GPL v2");
420MODULE_IMPORT_NS(COUNTER);
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * STM32 Timer Encoder and Counter driver
  4 *
  5 * Copyright (C) STMicroelectronics 2018
  6 *
  7 * Author: Benjamin Gaignard <benjamin.gaignard@st.com>
  8 *
  9 */
 10#include <linux/counter.h>
 11#include <linux/mfd/stm32-timers.h>
 12#include <linux/mod_devicetable.h>
 13#include <linux/module.h>
 14#include <linux/pinctrl/consumer.h>
 15#include <linux/platform_device.h>
 
 16
 17#define TIM_CCMR_CCXS	(BIT(8) | BIT(0))
 18#define TIM_CCMR_MASK	(TIM_CCMR_CC1S | TIM_CCMR_CC2S | \
 19			 TIM_CCMR_IC1F | TIM_CCMR_IC2F)
 20#define TIM_CCER_MASK	(TIM_CCER_CC1P | TIM_CCER_CC1NP | \
 21			 TIM_CCER_CC2P | TIM_CCER_CC2NP)
 22
 23struct stm32_timer_regs {
 24	u32 cr1;
 25	u32 cnt;
 26	u32 smcr;
 27	u32 arr;
 28};
 29
 30struct stm32_timer_cnt {
 31	struct counter_device counter;
 32	struct regmap *regmap;
 33	struct clk *clk;
 34	u32 max_arr;
 35	bool enabled;
 36	struct stm32_timer_regs bak;
 37};
 38
 39/**
 40 * enum stm32_count_function - enumerates stm32 timer counter encoder modes
 41 * @STM32_COUNT_SLAVE_MODE_DISABLED: counts on internal clock when CEN=1
 42 * @STM32_COUNT_ENCODER_MODE_1: counts TI1FP1 edges, depending on TI2FP2 level
 43 * @STM32_COUNT_ENCODER_MODE_2: counts TI2FP2 edges, depending on TI1FP1 level
 44 * @STM32_COUNT_ENCODER_MODE_3: counts on both TI1FP1 and TI2FP2 edges
 45 */
 46enum stm32_count_function {
 47	STM32_COUNT_SLAVE_MODE_DISABLED,
 48	STM32_COUNT_ENCODER_MODE_1,
 49	STM32_COUNT_ENCODER_MODE_2,
 50	STM32_COUNT_ENCODER_MODE_3,
 51};
 52
 53static const enum counter_count_function stm32_count_functions[] = {
 54	[STM32_COUNT_SLAVE_MODE_DISABLED] = COUNTER_COUNT_FUNCTION_INCREASE,
 55	[STM32_COUNT_ENCODER_MODE_1] = COUNTER_COUNT_FUNCTION_QUADRATURE_X2_A,
 56	[STM32_COUNT_ENCODER_MODE_2] = COUNTER_COUNT_FUNCTION_QUADRATURE_X2_B,
 57	[STM32_COUNT_ENCODER_MODE_3] = COUNTER_COUNT_FUNCTION_QUADRATURE_X4,
 58};
 59
 60static int stm32_count_read(struct counter_device *counter,
 61			    struct counter_count *count, unsigned long *val)
 62{
 63	struct stm32_timer_cnt *const priv = counter->priv;
 64	u32 cnt;
 65
 66	regmap_read(priv->regmap, TIM_CNT, &cnt);
 67	*val = cnt;
 68
 69	return 0;
 70}
 71
 72static int stm32_count_write(struct counter_device *counter,
 73			     struct counter_count *count,
 74			     const unsigned long val)
 75{
 76	struct stm32_timer_cnt *const priv = counter->priv;
 77	u32 ceiling;
 78
 79	regmap_read(priv->regmap, TIM_ARR, &ceiling);
 80	if (val > ceiling)
 81		return -EINVAL;
 82
 83	return regmap_write(priv->regmap, TIM_CNT, val);
 84}
 85
 86static int stm32_count_function_get(struct counter_device *counter,
 87				    struct counter_count *count,
 88				    size_t *function)
 89{
 90	struct stm32_timer_cnt *const priv = counter->priv;
 91	u32 smcr;
 92
 93	regmap_read(priv->regmap, TIM_SMCR, &smcr);
 94
 95	switch (smcr & TIM_SMCR_SMS) {
 96	case 0:
 97		*function = STM32_COUNT_SLAVE_MODE_DISABLED;
 98		return 0;
 99	case 1:
100		*function = STM32_COUNT_ENCODER_MODE_1;
101		return 0;
102	case 2:
103		*function = STM32_COUNT_ENCODER_MODE_2;
104		return 0;
105	case 3:
106		*function = STM32_COUNT_ENCODER_MODE_3;
107		return 0;
108	default:
109		return -EINVAL;
110	}
111}
112
113static int stm32_count_function_set(struct counter_device *counter,
114				    struct counter_count *count,
115				    size_t function)
116{
117	struct stm32_timer_cnt *const priv = counter->priv;
118	u32 cr1, sms;
119
120	switch (function) {
121	case STM32_COUNT_SLAVE_MODE_DISABLED:
122		sms = 0;
123		break;
124	case STM32_COUNT_ENCODER_MODE_1:
125		sms = 1;
126		break;
127	case STM32_COUNT_ENCODER_MODE_2:
128		sms = 2;
129		break;
130	case STM32_COUNT_ENCODER_MODE_3:
131		sms = 3;
132		break;
133	default:
134		return -EINVAL;
135	}
136
137	/* Store enable status */
138	regmap_read(priv->regmap, TIM_CR1, &cr1);
139
140	regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
141
142	regmap_update_bits(priv->regmap, TIM_SMCR, TIM_SMCR_SMS, sms);
143
144	/* Make sure that registers are updated */
145	regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG);
146
147	/* Restore the enable status */
148	regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, cr1);
149
150	return 0;
151}
152
153static ssize_t stm32_count_direction_read(struct counter_device *counter,
154				      struct counter_count *count,
155				      void *private, char *buf)
156{
157	struct stm32_timer_cnt *const priv = counter->priv;
158	const char *direction;
159	u32 cr1;
160
161	regmap_read(priv->regmap, TIM_CR1, &cr1);
162	direction = (cr1 & TIM_CR1_DIR) ? "backward" : "forward";
 
163
164	return scnprintf(buf, PAGE_SIZE, "%s\n", direction);
165}
166
167static ssize_t stm32_count_ceiling_read(struct counter_device *counter,
168					struct counter_count *count,
169					void *private, char *buf)
170{
171	struct stm32_timer_cnt *const priv = counter->priv;
172	u32 arr;
173
174	regmap_read(priv->regmap, TIM_ARR, &arr);
175
176	return snprintf(buf, PAGE_SIZE, "%u\n", arr);
 
 
177}
178
179static ssize_t stm32_count_ceiling_write(struct counter_device *counter,
180					 struct counter_count *count,
181					 void *private,
182					 const char *buf, size_t len)
183{
184	struct stm32_timer_cnt *const priv = counter->priv;
185	unsigned int ceiling;
186	int ret;
187
188	ret = kstrtouint(buf, 0, &ceiling);
189	if (ret)
190		return ret;
191
192	if (ceiling > priv->max_arr)
193		return -ERANGE;
194
195	/* TIMx_ARR register shouldn't be buffered (ARPE=0) */
196	regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, 0);
197	regmap_write(priv->regmap, TIM_ARR, ceiling);
198
199	return len;
200}
201
202static ssize_t stm32_count_enable_read(struct counter_device *counter,
203				       struct counter_count *count,
204				       void *private, char *buf)
205{
206	struct stm32_timer_cnt *const priv = counter->priv;
207	u32 cr1;
208
209	regmap_read(priv->regmap, TIM_CR1, &cr1);
210
211	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)(cr1 & TIM_CR1_CEN));
 
 
212}
213
214static ssize_t stm32_count_enable_write(struct counter_device *counter,
215					struct counter_count *count,
216					void *private,
217					const char *buf, size_t len)
218{
219	struct stm32_timer_cnt *const priv = counter->priv;
220	int err;
221	u32 cr1;
222	bool enable;
223
224	err = kstrtobool(buf, &enable);
225	if (err)
226		return err;
227
228	if (enable) {
229		regmap_read(priv->regmap, TIM_CR1, &cr1);
230		if (!(cr1 & TIM_CR1_CEN))
231			clk_enable(priv->clk);
232
233		regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN,
234				   TIM_CR1_CEN);
235	} else {
236		regmap_read(priv->regmap, TIM_CR1, &cr1);
237		regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
238		if (cr1 & TIM_CR1_CEN)
239			clk_disable(priv->clk);
240	}
241
242	/* Keep enabled state to properly handle low power states */
243	priv->enabled = enable;
244
245	return len;
246}
247
248static const struct counter_count_ext stm32_count_ext[] = {
249	{
250		.name = "direction",
251		.read = stm32_count_direction_read,
252	},
253	{
254		.name = "enable",
255		.read = stm32_count_enable_read,
256		.write = stm32_count_enable_write
257	},
258	{
259		.name = "ceiling",
260		.read = stm32_count_ceiling_read,
261		.write = stm32_count_ceiling_write
262	},
263};
264
265enum stm32_synapse_action {
266	STM32_SYNAPSE_ACTION_NONE,
267	STM32_SYNAPSE_ACTION_BOTH_EDGES
268};
269
270static const enum counter_synapse_action stm32_synapse_actions[] = {
271	[STM32_SYNAPSE_ACTION_NONE] = COUNTER_SYNAPSE_ACTION_NONE,
272	[STM32_SYNAPSE_ACTION_BOTH_EDGES] = COUNTER_SYNAPSE_ACTION_BOTH_EDGES
273};
274
275static int stm32_action_get(struct counter_device *counter,
276			    struct counter_count *count,
277			    struct counter_synapse *synapse,
278			    size_t *action)
279{
280	size_t function;
281	int err;
282
283	err = stm32_count_function_get(counter, count, &function);
284	if (err)
285		return err;
286
287	switch (function) {
288	case STM32_COUNT_SLAVE_MODE_DISABLED:
289		/* counts on internal clock when CEN=1 */
290		*action = STM32_SYNAPSE_ACTION_NONE;
291		return 0;
292	case STM32_COUNT_ENCODER_MODE_1:
293		/* counts up/down on TI1FP1 edge depending on TI2FP2 level */
294		if (synapse->signal->id == count->synapses[0].signal->id)
295			*action = STM32_SYNAPSE_ACTION_BOTH_EDGES;
296		else
297			*action = STM32_SYNAPSE_ACTION_NONE;
298		return 0;
299	case STM32_COUNT_ENCODER_MODE_2:
300		/* counts up/down on TI2FP2 edge depending on TI1FP1 level */
301		if (synapse->signal->id == count->synapses[1].signal->id)
302			*action = STM32_SYNAPSE_ACTION_BOTH_EDGES;
303		else
304			*action = STM32_SYNAPSE_ACTION_NONE;
305		return 0;
306	case STM32_COUNT_ENCODER_MODE_3:
307		/* counts up/down on both TI1FP1 and TI2FP2 edges */
308		*action = STM32_SYNAPSE_ACTION_BOTH_EDGES;
309		return 0;
310	default:
311		return -EINVAL;
312	}
313}
314
315static const struct counter_ops stm32_timer_cnt_ops = {
316	.count_read = stm32_count_read,
317	.count_write = stm32_count_write,
318	.function_get = stm32_count_function_get,
319	.function_set = stm32_count_function_set,
320	.action_get = stm32_action_get,
321};
322
323static struct counter_signal stm32_signals[] = {
324	{
325		.id = 0,
326		.name = "Channel 1 Quadrature A"
327	},
328	{
329		.id = 1,
330		.name = "Channel 1 Quadrature B"
331	}
332};
333
334static struct counter_synapse stm32_count_synapses[] = {
335	{
336		.actions_list = stm32_synapse_actions,
337		.num_actions = ARRAY_SIZE(stm32_synapse_actions),
338		.signal = &stm32_signals[0]
339	},
340	{
341		.actions_list = stm32_synapse_actions,
342		.num_actions = ARRAY_SIZE(stm32_synapse_actions),
343		.signal = &stm32_signals[1]
344	}
345};
346
347static struct counter_count stm32_counts = {
348	.id = 0,
349	.name = "Channel 1 Count",
350	.functions_list = stm32_count_functions,
351	.num_functions = ARRAY_SIZE(stm32_count_functions),
352	.synapses = stm32_count_synapses,
353	.num_synapses = ARRAY_SIZE(stm32_count_synapses),
354	.ext = stm32_count_ext,
355	.num_ext = ARRAY_SIZE(stm32_count_ext)
356};
357
358static int stm32_timer_cnt_probe(struct platform_device *pdev)
359{
360	struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent);
361	struct device *dev = &pdev->dev;
362	struct stm32_timer_cnt *priv;
 
 
363
364	if (IS_ERR_OR_NULL(ddata))
365		return -EINVAL;
366
367	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
368	if (!priv)
369		return -ENOMEM;
370
 
 
371	priv->regmap = ddata->regmap;
372	priv->clk = ddata->clk;
373	priv->max_arr = ddata->max_arr;
374
375	priv->counter.name = dev_name(dev);
376	priv->counter.parent = dev;
377	priv->counter.ops = &stm32_timer_cnt_ops;
378	priv->counter.counts = &stm32_counts;
379	priv->counter.num_counts = 1;
380	priv->counter.signals = stm32_signals;
381	priv->counter.num_signals = ARRAY_SIZE(stm32_signals);
382	priv->counter.priv = priv;
383
384	platform_set_drvdata(pdev, priv);
385
386	/* Register Counter device */
387	return devm_counter_register(dev, &priv->counter);
 
 
 
 
388}
389
390static int __maybe_unused stm32_timer_cnt_suspend(struct device *dev)
391{
392	struct stm32_timer_cnt *priv = dev_get_drvdata(dev);
393
394	/* Only take care of enabled counter: don't disturb other MFD child */
395	if (priv->enabled) {
396		/* Backup registers that may get lost in low power mode */
397		regmap_read(priv->regmap, TIM_SMCR, &priv->bak.smcr);
398		regmap_read(priv->regmap, TIM_ARR, &priv->bak.arr);
399		regmap_read(priv->regmap, TIM_CNT, &priv->bak.cnt);
400		regmap_read(priv->regmap, TIM_CR1, &priv->bak.cr1);
401
402		/* Disable the counter */
403		regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
404		clk_disable(priv->clk);
405	}
406
407	return pinctrl_pm_select_sleep_state(dev);
408}
409
410static int __maybe_unused stm32_timer_cnt_resume(struct device *dev)
411{
412	struct stm32_timer_cnt *priv = dev_get_drvdata(dev);
413	int ret;
414
415	ret = pinctrl_pm_select_default_state(dev);
416	if (ret)
417		return ret;
418
419	if (priv->enabled) {
420		clk_enable(priv->clk);
421
422		/* Restore registers that may have been lost */
423		regmap_write(priv->regmap, TIM_SMCR, priv->bak.smcr);
424		regmap_write(priv->regmap, TIM_ARR, priv->bak.arr);
425		regmap_write(priv->regmap, TIM_CNT, priv->bak.cnt);
426
427		/* Also re-enables the counter */
428		regmap_write(priv->regmap, TIM_CR1, priv->bak.cr1);
429	}
430
431	return 0;
432}
433
434static SIMPLE_DEV_PM_OPS(stm32_timer_cnt_pm_ops, stm32_timer_cnt_suspend,
435			 stm32_timer_cnt_resume);
436
437static const struct of_device_id stm32_timer_cnt_of_match[] = {
438	{ .compatible = "st,stm32-timer-counter", },
439	{},
440};
441MODULE_DEVICE_TABLE(of, stm32_timer_cnt_of_match);
442
443static struct platform_driver stm32_timer_cnt_driver = {
444	.probe = stm32_timer_cnt_probe,
445	.driver = {
446		.name = "stm32-timer-counter",
447		.of_match_table = stm32_timer_cnt_of_match,
448		.pm = &stm32_timer_cnt_pm_ops,
449	},
450};
451module_platform_driver(stm32_timer_cnt_driver);
452
453MODULE_AUTHOR("Benjamin Gaignard <benjamin.gaignard@st.com>");
454MODULE_ALIAS("platform:stm32-timer-counter");
455MODULE_DESCRIPTION("STMicroelectronics STM32 TIMER counter driver");
456MODULE_LICENSE("GPL v2");