Linux Audio

Check our new training course

Loading...
v6.2
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 *  S390 version
  4 *    Copyright IBM Corp. 1999
  5 *
  6 *  Derived from "include/asm-i386/timex.h"
  7 *    Copyright (C) 1992, Linus Torvalds
  8 */
  9
 10#ifndef _ASM_S390_TIMEX_H
 11#define _ASM_S390_TIMEX_H
 12
 13#include <linux/preempt.h>
 14#include <linux/time64.h>
 15#include <asm/lowcore.h>
 
 16
 17/* The value of the TOD clock for 1.1.1970. */
 18#define TOD_UNIX_EPOCH 0x7d91048bca000000ULL
 19
 20extern u64 clock_comparator_max;
 21
 22union tod_clock {
 23	__uint128_t val;
 24	struct {
 25		__uint128_t ei	:  8; /* epoch index */
 26		__uint128_t tod : 64; /* bits 0-63 of tod clock */
 27		__uint128_t	: 40;
 28		__uint128_t pf	: 16; /* programmable field */
 29	};
 30	struct {
 31		__uint128_t eitod : 72; /* epoch index + bits 0-63 tod clock */
 32		__uint128_t	  : 56;
 33	};
 34	struct {
 35		__uint128_t us	: 60; /* micro-seconds */
 36		__uint128_t sus	: 12; /* sub-microseconds */
 37		__uint128_t	: 56;
 38	};
 39} __packed;
 40
 41/* Inline functions for clock register access. */
 42static inline int set_tod_clock(__u64 time)
 43{
 44	int cc;
 45
 46	asm volatile(
 47		"   sck   %1\n"
 48		"   ipm   %0\n"
 49		"   srl   %0,28\n"
 50		: "=d" (cc) : "Q" (time) : "cc");
 51	return cc;
 
 52}
 53
 54static inline int store_tod_clock_ext_cc(union tod_clock *clk)
 55{
 56	int cc;
 57
 58	asm volatile(
 59		"   stcke  %1\n"
 60		"   ipm   %0\n"
 61		"   srl   %0,28\n"
 62		: "=d" (cc), "=Q" (*clk) : : "cc");
 63	return cc;
 
 64}
 65
 66static inline void store_tod_clock_ext(union tod_clock *tod)
 67{
 68	asm volatile("stcke %0" : "=Q" (*tod) : : "cc");
 69}
 70
 71static inline void set_clock_comparator(__u64 time)
 72{
 73	asm volatile("sckc %0" : : "Q" (time));
 74}
 75
 76static inline void set_tod_programmable_field(u16 val)
 77{
 78	asm volatile(
 79		"	lgr	0,%[val]\n"
 80		"	sckpf\n"
 81		:
 82		: [val] "d" ((unsigned long)val)
 83		: "0");
 84}
 85
 86void clock_comparator_work(void);
 87
 88void __init time_early_init(void);
 89
 90extern unsigned char ptff_function_mask[16];
 91
 92/* Function codes for the ptff instruction. */
 93#define PTFF_QAF	0x00	/* query available functions */
 94#define PTFF_QTO	0x01	/* query tod offset */
 95#define PTFF_QSI	0x02	/* query steering information */
 
 96#define PTFF_QUI	0x04	/* query UTC information */
 97#define PTFF_ATO	0x40	/* adjust tod offset */
 98#define PTFF_STO	0x41	/* set tod offset */
 99#define PTFF_SFS	0x42	/* set fine steering rate */
100#define PTFF_SGS	0x43	/* set gross steering rate */
101
102/* Query TOD offset result */
103struct ptff_qto {
104	unsigned long physical_clock;
105	unsigned long tod_offset;
106	unsigned long logical_tod_offset;
107	unsigned long tod_epoch_difference;
108} __packed;
109
110static inline int ptff_query(unsigned int nr)
111{
112	unsigned char *ptr;
113
114	ptr = ptff_function_mask + (nr >> 3);
115	return (*ptr & (0x80 >> (nr & 7))) != 0;
116}
117
118/* Query UTC information result */
119struct ptff_qui {
120	unsigned int tm : 2;
121	unsigned int ts : 2;
122	unsigned int : 28;
123	unsigned int pad_0x04;
124	unsigned long leap_event;
125	short old_leap;
126	short new_leap;
127	unsigned int pad_0x14;
128	unsigned long prt[5];
129	unsigned long cst[3];
130	unsigned int skew;
131	unsigned int pad_0x5c[41];
132} __packed;
133
134/*
135 * ptff - Perform timing facility function
136 * @ptff_block: Pointer to ptff parameter block
137 * @len: Length of parameter block
138 * @func: Function code
139 * Returns: Condition code (0 on success)
140 */
141#define ptff(ptff_block, len, func)					\
142({									\
143	struct addrtype { char _[len]; };				\
144	unsigned int reg0 = func;					\
145	unsigned long reg1 = (unsigned long)(ptff_block);		\
146	int rc;								\
147									\
148	asm volatile(							\
149		"	lgr	0,%[reg0]\n"				\
150		"	lgr	1,%[reg1]\n"				\
151		"	ptff\n"						\
152		"	ipm	%[rc]\n"				\
153		"	srl	%[rc],28\n"				\
154		: [rc] "=&d" (rc), "+m" (*(struct addrtype *)reg1)	\
155		: [reg0] "d" (reg0), [reg1] "d" (reg1)			\
156		: "cc", "0", "1");					\
157	rc;								\
158})
159
160static inline unsigned long local_tick_disable(void)
161{
162	unsigned long old;
163
164	old = S390_lowcore.clock_comparator;
165	S390_lowcore.clock_comparator = clock_comparator_max;
166	set_clock_comparator(S390_lowcore.clock_comparator);
167	return old;
168}
169
170static inline void local_tick_enable(unsigned long comp)
171{
172	S390_lowcore.clock_comparator = comp;
173	set_clock_comparator(S390_lowcore.clock_comparator);
174}
175
176#define CLOCK_TICK_RATE		1193180 /* Underlying HZ */
177
178typedef unsigned long cycles_t;
179
180static inline unsigned long get_tod_clock(void)
181{
182	union tod_clock clk;
183
184	store_tod_clock_ext(&clk);
185	return clk.tod;
186}
187
188static inline unsigned long get_tod_clock_fast(void)
189{
190	unsigned long clk;
191
192	asm volatile("stckf %0" : "=Q" (clk) : : "cc");
193	return clk;
194}
195
196static inline cycles_t get_cycles(void)
197{
198	return (cycles_t) get_tod_clock() >> 2;
199}
200#define get_cycles get_cycles
201
202int get_phys_clock(unsigned long *clock);
203void init_cpu_timer(void);
204
205extern union tod_clock tod_clock_base;
206
 
 
 
 
 
207/**
208 * get_clock_monotonic - returns current time in clock rate units
209 *
210 * The clock and tod_clock_base get changed via stop_machine.
211 * Therefore preemption must be disabled, otherwise the returned
212 * value is not guaranteed to be monotonic.
213 */
214static inline unsigned long get_tod_clock_monotonic(void)
215{
216	unsigned long tod;
217
218	preempt_disable_notrace();
219	tod = get_tod_clock() - tod_clock_base.tod;
220	preempt_enable_notrace();
221	return tod;
222}
223
224/**
225 * tod_to_ns - convert a TOD format value to nanoseconds
226 * @todval: to be converted TOD format value
227 * Returns: number of nanoseconds that correspond to the TOD format value
228 *
229 * Converting a 64 Bit TOD format value to nanoseconds means that the value
230 * must be divided by 4.096. In order to achieve that we multiply with 125
231 * and divide by 512:
232 *
233 *    ns = (todval * 125) >> 9;
234 *
235 * In order to avoid an overflow with the multiplication we can rewrite this.
236 * With a split todval == 2^9 * th + tl (th upper 55 bits, tl lower 9 bits)
237 * we end up with
238 *
239 *    ns = ((2^9 * th + tl) * 125 ) >> 9;
240 * -> ns = (th * 125) + ((tl * 125) >> 9);
241 *
242 */
243static inline unsigned long tod_to_ns(unsigned long todval)
244{
245	return ((todval >> 9) * 125) + (((todval & 0x1ff) * 125) >> 9);
 
 
 
 
 
246}
247
248/**
249 * tod_after - compare two 64 bit TOD values
250 * @a: first 64 bit TOD timestamp
251 * @b: second 64 bit TOD timestamp
252 *
253 * Returns: true if a is later than b
254 */
255static inline int tod_after(unsigned long a, unsigned long b)
256{
257	if (MACHINE_HAS_SCC)
258		return (long) a > (long) b;
259	return a > b;
260}
261
262/**
263 * tod_after_eq - compare two 64 bit TOD values
264 * @a: first 64 bit TOD timestamp
265 * @b: second 64 bit TOD timestamp
266 *
267 * Returns: true if a is later than b
268 */
269static inline int tod_after_eq(unsigned long a, unsigned long b)
270{
271	if (MACHINE_HAS_SCC)
272		return (long) a >= (long) b;
273	return a >= b;
274}
275
276#endif
v6.13.7
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 *  S390 version
  4 *    Copyright IBM Corp. 1999
  5 *
  6 *  Derived from "include/asm-i386/timex.h"
  7 *    Copyright (C) 1992, Linus Torvalds
  8 */
  9
 10#ifndef _ASM_S390_TIMEX_H
 11#define _ASM_S390_TIMEX_H
 12
 13#include <linux/preempt.h>
 14#include <linux/time64.h>
 15#include <asm/lowcore.h>
 16#include <asm/asm.h>
 17
 18/* The value of the TOD clock for 1.1.1970. */
 19#define TOD_UNIX_EPOCH 0x7d91048bca000000ULL
 20
 21extern u64 clock_comparator_max;
 22
 23union tod_clock {
 24	__uint128_t val;
 25	struct {
 26		__uint128_t ei	:  8; /* epoch index */
 27		__uint128_t tod : 64; /* bits 0-63 of tod clock */
 28		__uint128_t	: 40;
 29		__uint128_t pf	: 16; /* programmable field */
 30	};
 31	struct {
 32		__uint128_t eitod : 72; /* epoch index + bits 0-63 tod clock */
 33		__uint128_t	  : 56;
 34	};
 35	struct {
 36		__uint128_t us	: 60; /* micro-seconds */
 37		__uint128_t sus	: 12; /* sub-microseconds */
 38		__uint128_t	: 56;
 39	};
 40} __packed;
 41
 42/* Inline functions for clock register access. */
 43static inline int set_tod_clock(__u64 time)
 44{
 45	int cc;
 46
 47	asm volatile(
 48		"	sck	%[time]\n"
 49		CC_IPM(cc)
 50		: CC_OUT(cc, cc)
 51		: [time] "Q" (time)
 52		: CC_CLOBBER);
 53	return CC_TRANSFORM(cc);
 54}
 55
 56static inline int store_tod_clock_ext_cc(union tod_clock *clk)
 57{
 58	int cc;
 59
 60	asm volatile(
 61		"	stcke	%[clk]\n"
 62		CC_IPM(cc)
 63		: CC_OUT(cc, cc), [clk] "=Q" (*clk)
 64		:
 65		: CC_CLOBBER);
 66	return CC_TRANSFORM(cc);
 67}
 68
 69static __always_inline void store_tod_clock_ext(union tod_clock *tod)
 70{
 71	asm volatile("stcke %0" : "=Q" (*tod) : : "cc");
 72}
 73
 74static inline void set_clock_comparator(__u64 time)
 75{
 76	asm volatile("sckc %0" : : "Q" (time));
 77}
 78
 79static inline void set_tod_programmable_field(u16 val)
 80{
 81	asm volatile(
 82		"	lgr	0,%[val]\n"
 83		"	sckpf\n"
 84		:
 85		: [val] "d" ((unsigned long)val)
 86		: "0");
 87}
 88
 89void clock_comparator_work(void);
 90
 91void __init time_early_init(void);
 92
 93extern unsigned char ptff_function_mask[16];
 94
 95/* Function codes for the ptff instruction. */
 96#define PTFF_QAF	0x00	/* query available functions */
 97#define PTFF_QTO	0x01	/* query tod offset */
 98#define PTFF_QSI	0x02	/* query steering information */
 99#define PTFF_QPT	0x03	/* query physical clock */
100#define PTFF_QUI	0x04	/* query UTC information */
101#define PTFF_ATO	0x40	/* adjust tod offset */
102#define PTFF_STO	0x41	/* set tod offset */
103#define PTFF_SFS	0x42	/* set fine steering rate */
104#define PTFF_SGS	0x43	/* set gross steering rate */
105
106/* Query TOD offset result */
107struct ptff_qto {
108	unsigned long physical_clock;
109	unsigned long tod_offset;
110	unsigned long logical_tod_offset;
111	unsigned long tod_epoch_difference;
112} __packed;
113
114static inline int ptff_query(unsigned int nr)
115{
116	unsigned char *ptr;
117
118	ptr = ptff_function_mask + (nr >> 3);
119	return (*ptr & (0x80 >> (nr & 7))) != 0;
120}
121
122/* Query UTC information result */
123struct ptff_qui {
124	unsigned int tm : 2;
125	unsigned int ts : 2;
126	unsigned int : 28;
127	unsigned int pad_0x04;
128	unsigned long leap_event;
129	short old_leap;
130	short new_leap;
131	unsigned int pad_0x14;
132	unsigned long prt[5];
133	unsigned long cst[3];
134	unsigned int skew;
135	unsigned int pad_0x5c[41];
136} __packed;
137
138/*
139 * ptff - Perform timing facility function
140 * @ptff_block: Pointer to ptff parameter block
141 * @len: Length of parameter block
142 * @func: Function code
143 * Returns: Condition code (0 on success)
144 */
145#define ptff(ptff_block, len, func)					\
146({									\
147	struct addrtype { char _[len]; };				\
148	unsigned int reg0 = func;					\
149	unsigned long reg1 = (unsigned long)(ptff_block);		\
150	int rc;								\
151									\
152	asm volatile(							\
153		"	lgr	0,%[reg0]\n"				\
154		"	lgr	1,%[reg1]\n"				\
155		"	ptff\n"						\
156		CC_IPM(rc)						\
157		: CC_OUT(rc, rc), "+m" (*(struct addrtype *)reg1)	\
 
158		: [reg0] "d" (reg0), [reg1] "d" (reg1)			\
159		: CC_CLOBBER_LIST("0", "1"));				\
160	CC_TRANSFORM(rc);						\
161})
162
163static inline unsigned long local_tick_disable(void)
164{
165	unsigned long old;
166
167	old = get_lowcore()->clock_comparator;
168	get_lowcore()->clock_comparator = clock_comparator_max;
169	set_clock_comparator(get_lowcore()->clock_comparator);
170	return old;
171}
172
173static inline void local_tick_enable(unsigned long comp)
174{
175	get_lowcore()->clock_comparator = comp;
176	set_clock_comparator(get_lowcore()->clock_comparator);
177}
178
179#define CLOCK_TICK_RATE		1193180 /* Underlying HZ */
180
181typedef unsigned long cycles_t;
182
183static __always_inline unsigned long get_tod_clock(void)
184{
185	union tod_clock clk;
186
187	store_tod_clock_ext(&clk);
188	return clk.tod;
189}
190
191static inline unsigned long get_tod_clock_fast(void)
192{
193	unsigned long clk;
194
195	asm volatile("stckf %0" : "=Q" (clk) : : "cc");
196	return clk;
197}
198
199static inline cycles_t get_cycles(void)
200{
201	return (cycles_t) get_tod_clock() >> 2;
202}
203#define get_cycles get_cycles
204
205int get_phys_clock(unsigned long *clock);
206void init_cpu_timer(void);
207
208extern union tod_clock tod_clock_base;
209
210static __always_inline unsigned long __get_tod_clock_monotonic(void)
211{
212	return get_tod_clock() - tod_clock_base.tod;
213}
214
215/**
216 * get_clock_monotonic - returns current time in clock rate units
217 *
218 * The clock and tod_clock_base get changed via stop_machine.
219 * Therefore preemption must be disabled, otherwise the returned
220 * value is not guaranteed to be monotonic.
221 */
222static inline unsigned long get_tod_clock_monotonic(void)
223{
224	unsigned long tod;
225
226	preempt_disable_notrace();
227	tod = __get_tod_clock_monotonic();
228	preempt_enable_notrace();
229	return tod;
230}
231
232/**
233 * tod_to_ns - convert a TOD format value to nanoseconds
234 * @todval: to be converted TOD format value
235 * Returns: number of nanoseconds that correspond to the TOD format value
236 *
237 * Converting a 64 Bit TOD format value to nanoseconds means that the value
238 * must be divided by 4.096. In order to achieve that we multiply with 125
239 * and divide by 512:
240 *
241 *    ns = (todval * 125) >> 9;
242 *
243 * In order to avoid an overflow with the multiplication we can rewrite this.
244 * With a split todval == 2^9 * th + tl (th upper 55 bits, tl lower 9 bits)
245 * we end up with
246 *
247 *    ns = ((2^9 * th + tl) * 125 ) >> 9;
248 * -> ns = (th * 125) + ((tl * 125) >> 9);
249 *
250 */
251static __always_inline unsigned long tod_to_ns(unsigned long todval)
252{
253	return ((todval >> 9) * 125) + (((todval & 0x1ff) * 125) >> 9);
254}
255
256static __always_inline u128 eitod_to_ns(u128 todval)
257{
258	return (todval * 125) >> 9;
259}
260
261/**
262 * tod_after - compare two 64 bit TOD values
263 * @a: first 64 bit TOD timestamp
264 * @b: second 64 bit TOD timestamp
265 *
266 * Returns: true if a is later than b
267 */
268static inline int tod_after(unsigned long a, unsigned long b)
269{
270	if (MACHINE_HAS_SCC)
271		return (long) a > (long) b;
272	return a > b;
273}
274
275/**
276 * tod_after_eq - compare two 64 bit TOD values
277 * @a: first 64 bit TOD timestamp
278 * @b: second 64 bit TOD timestamp
279 *
280 * Returns: true if a is later than b
281 */
282static inline int tod_after_eq(unsigned long a, unsigned long b)
283{
284	if (MACHINE_HAS_SCC)
285		return (long) a >= (long) b;
286	return a >= b;
287}
288
289#endif