Loading...
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * S390 version
4 * Copyright IBM Corp. 1999
5 *
6 * Derived from "include/asm-i386/timex.h"
7 * Copyright (C) 1992, Linus Torvalds
8 */
9
10#ifndef _ASM_S390_TIMEX_H
11#define _ASM_S390_TIMEX_H
12
13#include <linux/preempt.h>
14#include <linux/time64.h>
15#include <asm/lowcore.h>
16
17/* The value of the TOD clock for 1.1.1970. */
18#define TOD_UNIX_EPOCH 0x7d91048bca000000ULL
19
20extern u64 clock_comparator_max;
21
22union tod_clock {
23 __uint128_t val;
24 struct {
25 __uint128_t ei : 8; /* epoch index */
26 __uint128_t tod : 64; /* bits 0-63 of tod clock */
27 __uint128_t : 40;
28 __uint128_t pf : 16; /* programmable field */
29 };
30 struct {
31 __uint128_t eitod : 72; /* epoch index + bits 0-63 tod clock */
32 __uint128_t : 56;
33 };
34 struct {
35 __uint128_t us : 60; /* micro-seconds */
36 __uint128_t sus : 12; /* sub-microseconds */
37 __uint128_t : 56;
38 };
39} __packed;
40
41/* Inline functions for clock register access. */
42static inline int set_tod_clock(__u64 time)
43{
44 int cc;
45
46 asm volatile(
47 " sck %1\n"
48 " ipm %0\n"
49 " srl %0,28\n"
50 : "=d" (cc) : "Q" (time) : "cc");
51 return cc;
52}
53
54static inline int store_tod_clock_ext_cc(union tod_clock *clk)
55{
56 int cc;
57
58 asm volatile(
59 " stcke %1\n"
60 " ipm %0\n"
61 " srl %0,28\n"
62 : "=d" (cc), "=Q" (*clk) : : "cc");
63 return cc;
64}
65
66static inline void store_tod_clock_ext(union tod_clock *tod)
67{
68 asm volatile("stcke %0" : "=Q" (*tod) : : "cc");
69}
70
71static inline void set_clock_comparator(__u64 time)
72{
73 asm volatile("sckc %0" : : "Q" (time));
74}
75
76static inline void set_tod_programmable_field(u16 val)
77{
78 asm volatile(
79 " lgr 0,%[val]\n"
80 " sckpf\n"
81 :
82 : [val] "d" ((unsigned long)val)
83 : "0");
84}
85
86void clock_comparator_work(void);
87
88void __init time_early_init(void);
89
90extern unsigned char ptff_function_mask[16];
91
92/* Function codes for the ptff instruction. */
93#define PTFF_QAF 0x00 /* query available functions */
94#define PTFF_QTO 0x01 /* query tod offset */
95#define PTFF_QSI 0x02 /* query steering information */
96#define PTFF_QUI 0x04 /* query UTC information */
97#define PTFF_ATO 0x40 /* adjust tod offset */
98#define PTFF_STO 0x41 /* set tod offset */
99#define PTFF_SFS 0x42 /* set fine steering rate */
100#define PTFF_SGS 0x43 /* set gross steering rate */
101
102/* Query TOD offset result */
103struct ptff_qto {
104 unsigned long physical_clock;
105 unsigned long tod_offset;
106 unsigned long logical_tod_offset;
107 unsigned long tod_epoch_difference;
108} __packed;
109
110static inline int ptff_query(unsigned int nr)
111{
112 unsigned char *ptr;
113
114 ptr = ptff_function_mask + (nr >> 3);
115 return (*ptr & (0x80 >> (nr & 7))) != 0;
116}
117
118/* Query UTC information result */
119struct ptff_qui {
120 unsigned int tm : 2;
121 unsigned int ts : 2;
122 unsigned int : 28;
123 unsigned int pad_0x04;
124 unsigned long leap_event;
125 short old_leap;
126 short new_leap;
127 unsigned int pad_0x14;
128 unsigned long prt[5];
129 unsigned long cst[3];
130 unsigned int skew;
131 unsigned int pad_0x5c[41];
132} __packed;
133
134/*
135 * ptff - Perform timing facility function
136 * @ptff_block: Pointer to ptff parameter block
137 * @len: Length of parameter block
138 * @func: Function code
139 * Returns: Condition code (0 on success)
140 */
141#define ptff(ptff_block, len, func) \
142({ \
143 struct addrtype { char _[len]; }; \
144 unsigned int reg0 = func; \
145 unsigned long reg1 = (unsigned long)(ptff_block); \
146 int rc; \
147 \
148 asm volatile( \
149 " lgr 0,%[reg0]\n" \
150 " lgr 1,%[reg1]\n" \
151 " ptff\n" \
152 " ipm %[rc]\n" \
153 " srl %[rc],28\n" \
154 : [rc] "=&d" (rc), "+m" (*(struct addrtype *)reg1) \
155 : [reg0] "d" (reg0), [reg1] "d" (reg1) \
156 : "cc", "0", "1"); \
157 rc; \
158})
159
160static inline unsigned long local_tick_disable(void)
161{
162 unsigned long old;
163
164 old = S390_lowcore.clock_comparator;
165 S390_lowcore.clock_comparator = clock_comparator_max;
166 set_clock_comparator(S390_lowcore.clock_comparator);
167 return old;
168}
169
170static inline void local_tick_enable(unsigned long comp)
171{
172 S390_lowcore.clock_comparator = comp;
173 set_clock_comparator(S390_lowcore.clock_comparator);
174}
175
176#define CLOCK_TICK_RATE 1193180 /* Underlying HZ */
177
178typedef unsigned long cycles_t;
179
180static inline unsigned long get_tod_clock(void)
181{
182 union tod_clock clk;
183
184 store_tod_clock_ext(&clk);
185 return clk.tod;
186}
187
188static inline unsigned long get_tod_clock_fast(void)
189{
190 unsigned long clk;
191
192 asm volatile("stckf %0" : "=Q" (clk) : : "cc");
193 return clk;
194}
195
196static inline cycles_t get_cycles(void)
197{
198 return (cycles_t) get_tod_clock() >> 2;
199}
200#define get_cycles get_cycles
201
202int get_phys_clock(unsigned long *clock);
203void init_cpu_timer(void);
204
205extern union tod_clock tod_clock_base;
206
207/**
208 * get_clock_monotonic - returns current time in clock rate units
209 *
210 * The clock and tod_clock_base get changed via stop_machine.
211 * Therefore preemption must be disabled, otherwise the returned
212 * value is not guaranteed to be monotonic.
213 */
214static inline unsigned long get_tod_clock_monotonic(void)
215{
216 unsigned long tod;
217
218 preempt_disable_notrace();
219 tod = get_tod_clock() - tod_clock_base.tod;
220 preempt_enable_notrace();
221 return tod;
222}
223
224/**
225 * tod_to_ns - convert a TOD format value to nanoseconds
226 * @todval: to be converted TOD format value
227 * Returns: number of nanoseconds that correspond to the TOD format value
228 *
229 * Converting a 64 Bit TOD format value to nanoseconds means that the value
230 * must be divided by 4.096. In order to achieve that we multiply with 125
231 * and divide by 512:
232 *
233 * ns = (todval * 125) >> 9;
234 *
235 * In order to avoid an overflow with the multiplication we can rewrite this.
236 * With a split todval == 2^9 * th + tl (th upper 55 bits, tl lower 9 bits)
237 * we end up with
238 *
239 * ns = ((2^9 * th + tl) * 125 ) >> 9;
240 * -> ns = (th * 125) + ((tl * 125) >> 9);
241 *
242 */
243static inline unsigned long tod_to_ns(unsigned long todval)
244{
245 return ((todval >> 9) * 125) + (((todval & 0x1ff) * 125) >> 9);
246}
247
248/**
249 * tod_after - compare two 64 bit TOD values
250 * @a: first 64 bit TOD timestamp
251 * @b: second 64 bit TOD timestamp
252 *
253 * Returns: true if a is later than b
254 */
255static inline int tod_after(unsigned long a, unsigned long b)
256{
257 if (MACHINE_HAS_SCC)
258 return (long) a > (long) b;
259 return a > b;
260}
261
262/**
263 * tod_after_eq - compare two 64 bit TOD values
264 * @a: first 64 bit TOD timestamp
265 * @b: second 64 bit TOD timestamp
266 *
267 * Returns: true if a is later than b
268 */
269static inline int tod_after_eq(unsigned long a, unsigned long b)
270{
271 if (MACHINE_HAS_SCC)
272 return (long) a >= (long) b;
273 return a >= b;
274}
275
276#endif
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * S390 version
4 * Copyright IBM Corp. 1999
5 *
6 * Derived from "include/asm-i386/timex.h"
7 * Copyright (C) 1992, Linus Torvalds
8 */
9
10#ifndef _ASM_S390_TIMEX_H
11#define _ASM_S390_TIMEX_H
12
13#include <asm/lowcore.h>
14#include <linux/time64.h>
15
16/* The value of the TOD clock for 1.1.1970. */
17#define TOD_UNIX_EPOCH 0x7d91048bca000000ULL
18
19extern u64 clock_comparator_max;
20
21/* Inline functions for clock register access. */
22static inline int set_tod_clock(__u64 time)
23{
24 int cc;
25
26 asm volatile(
27 " sck %1\n"
28 " ipm %0\n"
29 " srl %0,28\n"
30 : "=d" (cc) : "Q" (time) : "cc");
31 return cc;
32}
33
34static inline int store_tod_clock(__u64 *time)
35{
36 int cc;
37
38 asm volatile(
39 " stck %1\n"
40 " ipm %0\n"
41 " srl %0,28\n"
42 : "=d" (cc), "=Q" (*time) : : "cc");
43 return cc;
44}
45
46static inline void set_clock_comparator(__u64 time)
47{
48 asm volatile("sckc %0" : : "Q" (time));
49}
50
51static inline void store_clock_comparator(__u64 *time)
52{
53 asm volatile("stckc %0" : "=Q" (*time));
54}
55
56void clock_comparator_work(void);
57
58void __init time_early_init(void);
59
60extern unsigned char ptff_function_mask[16];
61
62/* Function codes for the ptff instruction. */
63#define PTFF_QAF 0x00 /* query available functions */
64#define PTFF_QTO 0x01 /* query tod offset */
65#define PTFF_QSI 0x02 /* query steering information */
66#define PTFF_QUI 0x04 /* query UTC information */
67#define PTFF_ATO 0x40 /* adjust tod offset */
68#define PTFF_STO 0x41 /* set tod offset */
69#define PTFF_SFS 0x42 /* set fine steering rate */
70#define PTFF_SGS 0x43 /* set gross steering rate */
71
72/* Query TOD offset result */
73struct ptff_qto {
74 unsigned long long physical_clock;
75 unsigned long long tod_offset;
76 unsigned long long logical_tod_offset;
77 unsigned long long tod_epoch_difference;
78} __packed;
79
80static inline int ptff_query(unsigned int nr)
81{
82 unsigned char *ptr;
83
84 ptr = ptff_function_mask + (nr >> 3);
85 return (*ptr & (0x80 >> (nr & 7))) != 0;
86}
87
88/* Query UTC information result */
89struct ptff_qui {
90 unsigned int tm : 2;
91 unsigned int ts : 2;
92 unsigned int : 28;
93 unsigned int pad_0x04;
94 unsigned long leap_event;
95 short old_leap;
96 short new_leap;
97 unsigned int pad_0x14;
98 unsigned long prt[5];
99 unsigned long cst[3];
100 unsigned int skew;
101 unsigned int pad_0x5c[41];
102} __packed;
103
104/*
105 * ptff - Perform timing facility function
106 * @ptff_block: Pointer to ptff parameter block
107 * @len: Length of parameter block
108 * @func: Function code
109 * Returns: Condition code (0 on success)
110 */
111#define ptff(ptff_block, len, func) \
112({ \
113 struct addrtype { char _[len]; }; \
114 register unsigned int reg0 asm("0") = func; \
115 register unsigned long reg1 asm("1") = (unsigned long) (ptff_block);\
116 int rc; \
117 \
118 asm volatile( \
119 " .word 0x0104\n" \
120 " ipm %0\n" \
121 " srl %0,28\n" \
122 : "=d" (rc), "+m" (*(struct addrtype *) reg1) \
123 : "d" (reg0), "d" (reg1) : "cc"); \
124 rc; \
125})
126
127static inline unsigned long long local_tick_disable(void)
128{
129 unsigned long long old;
130
131 old = S390_lowcore.clock_comparator;
132 S390_lowcore.clock_comparator = clock_comparator_max;
133 set_clock_comparator(S390_lowcore.clock_comparator);
134 return old;
135}
136
137static inline void local_tick_enable(unsigned long long comp)
138{
139 S390_lowcore.clock_comparator = comp;
140 set_clock_comparator(S390_lowcore.clock_comparator);
141}
142
143#define CLOCK_TICK_RATE 1193180 /* Underlying HZ */
144#define STORE_CLOCK_EXT_SIZE 16 /* stcke writes 16 bytes */
145
146typedef unsigned long long cycles_t;
147
148static inline void get_tod_clock_ext(char *clk)
149{
150 typedef struct { char _[STORE_CLOCK_EXT_SIZE]; } addrtype;
151
152 asm volatile("stcke %0" : "=Q" (*(addrtype *) clk) : : "cc");
153}
154
155static inline unsigned long long get_tod_clock(void)
156{
157 unsigned char clk[STORE_CLOCK_EXT_SIZE];
158
159 get_tod_clock_ext(clk);
160 return *((unsigned long long *)&clk[1]);
161}
162
163static inline unsigned long long get_tod_clock_fast(void)
164{
165#ifdef CONFIG_HAVE_MARCH_Z9_109_FEATURES
166 unsigned long long clk;
167
168 asm volatile("stckf %0" : "=Q" (clk) : : "cc");
169 return clk;
170#else
171 return get_tod_clock();
172#endif
173}
174
175static inline cycles_t get_cycles(void)
176{
177 return (cycles_t) get_tod_clock() >> 2;
178}
179
180int get_phys_clock(unsigned long *clock);
181void init_cpu_timer(void);
182unsigned long long monotonic_clock(void);
183
184extern unsigned char tod_clock_base[16] __aligned(8);
185
186/**
187 * get_clock_monotonic - returns current time in clock rate units
188 *
189 * The caller must ensure that preemption is disabled.
190 * The clock and tod_clock_base get changed via stop_machine.
191 * Therefore preemption must be disabled when calling this
192 * function, otherwise the returned value is not guaranteed to
193 * be monotonic.
194 */
195static inline unsigned long long get_tod_clock_monotonic(void)
196{
197 return get_tod_clock() - *(unsigned long long *) &tod_clock_base[1];
198}
199
200/**
201 * tod_to_ns - convert a TOD format value to nanoseconds
202 * @todval: to be converted TOD format value
203 * Returns: number of nanoseconds that correspond to the TOD format value
204 *
205 * Converting a 64 Bit TOD format value to nanoseconds means that the value
206 * must be divided by 4.096. In order to achieve that we multiply with 125
207 * and divide by 512:
208 *
209 * ns = (todval * 125) >> 9;
210 *
211 * In order to avoid an overflow with the multiplication we can rewrite this.
212 * With a split todval == 2^9 * th + tl (th upper 55 bits, tl lower 9 bits)
213 * we end up with
214 *
215 * ns = ((2^9 * th + tl) * 125 ) >> 9;
216 * -> ns = (th * 125) + ((tl * 125) >> 9);
217 *
218 */
219static inline unsigned long long tod_to_ns(unsigned long long todval)
220{
221 return ((todval >> 9) * 125) + (((todval & 0x1ff) * 125) >> 9);
222}
223
224/**
225 * tod_after - compare two 64 bit TOD values
226 * @a: first 64 bit TOD timestamp
227 * @b: second 64 bit TOD timestamp
228 *
229 * Returns: true if a is later than b
230 */
231static inline int tod_after(unsigned long long a, unsigned long long b)
232{
233 if (MACHINE_HAS_SCC)
234 return (long long) a > (long long) b;
235 return a > b;
236}
237
238/**
239 * tod_after_eq - compare two 64 bit TOD values
240 * @a: first 64 bit TOD timestamp
241 * @b: second 64 bit TOD timestamp
242 *
243 * Returns: true if a is later than b
244 */
245static inline int tod_after_eq(unsigned long long a, unsigned long long b)
246{
247 if (MACHINE_HAS_SCC)
248 return (long long) a >= (long long) b;
249 return a >= b;
250}
251
252#endif