Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Implementation of the SID table type.
  4 *
  5 * Original author: Stephen Smalley, <sds@tycho.nsa.gov>
  6 * Author: Ondrej Mosnacek, <omosnacek@gmail.com>
  7 *
  8 * Copyright (C) 2018 Red Hat, Inc.
  9 */
 10#include <linux/errno.h>
 11#include <linux/kernel.h>
 12#include <linux/list.h>
 13#include <linux/rcupdate.h>
 14#include <linux/slab.h>
 15#include <linux/sched.h>
 16#include <linux/spinlock.h>
 17#include <asm/barrier.h>
 18#include "flask.h"
 19#include "security.h"
 20#include "sidtab.h"
 21#include "services.h"
 22
 23struct sidtab_str_cache {
 24	struct rcu_head rcu_member;
 25	struct list_head lru_member;
 26	struct sidtab_entry *parent;
 27	u32 len;
 28	char str[];
 29};
 30
 31#define index_to_sid(index) ((index) + SECINITSID_NUM + 1)
 32#define sid_to_index(sid) ((sid) - (SECINITSID_NUM + 1))
 33
 34int sidtab_init(struct sidtab *s)
 35{
 36	u32 i;
 37
 38	memset(s->roots, 0, sizeof(s->roots));
 39
 40	for (i = 0; i < SECINITSID_NUM; i++)
 41		s->isids[i].set = 0;
 42
 43	s->frozen = false;
 44	s->count = 0;
 45	s->convert = NULL;
 46	hash_init(s->context_to_sid);
 47
 48	spin_lock_init(&s->lock);
 49
 50#if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
 51	s->cache_free_slots = CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE;
 52	INIT_LIST_HEAD(&s->cache_lru_list);
 53	spin_lock_init(&s->cache_lock);
 54#endif
 55
 56	return 0;
 57}
 58
 59static u32 context_to_sid(struct sidtab *s, struct context *context, u32 hash)
 60{
 61	struct sidtab_entry *entry;
 62	u32 sid = 0;
 63
 64	rcu_read_lock();
 65	hash_for_each_possible_rcu(s->context_to_sid, entry, list, hash) {
 66		if (entry->hash != hash)
 67			continue;
 68		if (context_cmp(&entry->context, context)) {
 69			sid = entry->sid;
 70			break;
 71		}
 72	}
 73	rcu_read_unlock();
 74	return sid;
 75}
 76
 77int sidtab_set_initial(struct sidtab *s, u32 sid, struct context *context)
 78{
 79	struct sidtab_isid_entry *isid;
 80	u32 hash;
 81	int rc;
 82
 83	if (sid == 0 || sid > SECINITSID_NUM)
 84		return -EINVAL;
 85
 86	isid = &s->isids[sid - 1];
 87
 88	rc = context_cpy(&isid->entry.context, context);
 89	if (rc)
 90		return rc;
 91
 92#if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
 93	isid->entry.cache = NULL;
 94#endif
 95	isid->set = 1;
 96
 97	hash = context_compute_hash(context);
 98
 99	/*
100	 * Multiple initial sids may map to the same context. Check that this
101	 * context is not already represented in the context_to_sid hashtable
102	 * to avoid duplicate entries and long linked lists upon hash
103	 * collision.
104	 */
105	if (!context_to_sid(s, context, hash)) {
106		isid->entry.sid = sid;
107		isid->entry.hash = hash;
108		hash_add(s->context_to_sid, &isid->entry.list, hash);
109	}
110
111	return 0;
112}
113
114int sidtab_hash_stats(struct sidtab *sidtab, char *page)
115{
116	int i;
117	int chain_len = 0;
118	int slots_used = 0;
119	int entries = 0;
120	int max_chain_len = 0;
121	int cur_bucket = 0;
122	struct sidtab_entry *entry;
123
124	rcu_read_lock();
125	hash_for_each_rcu(sidtab->context_to_sid, i, entry, list) {
126		entries++;
127		if (i == cur_bucket) {
128			chain_len++;
129			if (chain_len == 1)
130				slots_used++;
131		} else {
132			cur_bucket = i;
133			if (chain_len > max_chain_len)
134				max_chain_len = chain_len;
135			chain_len = 0;
136		}
137	}
138	rcu_read_unlock();
139
140	if (chain_len > max_chain_len)
141		max_chain_len = chain_len;
142
143	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
144			 "longest chain: %d\n", entries,
145			 slots_used, SIDTAB_HASH_BUCKETS, max_chain_len);
146}
147
148static u32 sidtab_level_from_count(u32 count)
149{
150	u32 capacity = SIDTAB_LEAF_ENTRIES;
151	u32 level = 0;
152
153	while (count > capacity) {
154		capacity <<= SIDTAB_INNER_SHIFT;
155		++level;
156	}
157	return level;
158}
159
160static int sidtab_alloc_roots(struct sidtab *s, u32 level)
161{
162	u32 l;
163
164	if (!s->roots[0].ptr_leaf) {
165		s->roots[0].ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
166					       GFP_ATOMIC);
167		if (!s->roots[0].ptr_leaf)
168			return -ENOMEM;
169	}
170	for (l = 1; l <= level; ++l)
171		if (!s->roots[l].ptr_inner) {
172			s->roots[l].ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
173							GFP_ATOMIC);
174			if (!s->roots[l].ptr_inner)
175				return -ENOMEM;
176			s->roots[l].ptr_inner->entries[0] = s->roots[l - 1];
177		}
178	return 0;
179}
180
181static struct sidtab_entry *sidtab_do_lookup(struct sidtab *s, u32 index,
182					     int alloc)
183{
184	union sidtab_entry_inner *entry;
185	u32 level, capacity_shift, leaf_index = index / SIDTAB_LEAF_ENTRIES;
186
187	/* find the level of the subtree we need */
188	level = sidtab_level_from_count(index + 1);
189	capacity_shift = level * SIDTAB_INNER_SHIFT;
190
191	/* allocate roots if needed */
192	if (alloc && sidtab_alloc_roots(s, level) != 0)
193		return NULL;
194
195	/* lookup inside the subtree */
196	entry = &s->roots[level];
197	while (level != 0) {
198		capacity_shift -= SIDTAB_INNER_SHIFT;
199		--level;
200
201		entry = &entry->ptr_inner->entries[leaf_index >> capacity_shift];
202		leaf_index &= ((u32)1 << capacity_shift) - 1;
203
204		if (!entry->ptr_inner) {
205			if (alloc)
206				entry->ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
207							   GFP_ATOMIC);
208			if (!entry->ptr_inner)
209				return NULL;
210		}
211	}
212	if (!entry->ptr_leaf) {
213		if (alloc)
214			entry->ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
215						  GFP_ATOMIC);
216		if (!entry->ptr_leaf)
217			return NULL;
218	}
219	return &entry->ptr_leaf->entries[index % SIDTAB_LEAF_ENTRIES];
220}
221
222static struct sidtab_entry *sidtab_lookup(struct sidtab *s, u32 index)
223{
224	/* read entries only after reading count */
225	u32 count = smp_load_acquire(&s->count);
226
227	if (index >= count)
228		return NULL;
229
230	return sidtab_do_lookup(s, index, 0);
231}
232
233static struct sidtab_entry *sidtab_lookup_initial(struct sidtab *s, u32 sid)
234{
235	return s->isids[sid - 1].set ? &s->isids[sid - 1].entry : NULL;
236}
237
238static struct sidtab_entry *sidtab_search_core(struct sidtab *s, u32 sid,
239					       int force)
240{
241	if (sid != 0) {
242		struct sidtab_entry *entry;
243
244		if (sid > SECINITSID_NUM)
245			entry = sidtab_lookup(s, sid_to_index(sid));
246		else
247			entry = sidtab_lookup_initial(s, sid);
248		if (entry && (!entry->context.len || force))
249			return entry;
250	}
251
252	return sidtab_lookup_initial(s, SECINITSID_UNLABELED);
253}
254
255struct sidtab_entry *sidtab_search_entry(struct sidtab *s, u32 sid)
256{
257	return sidtab_search_core(s, sid, 0);
258}
259
260struct sidtab_entry *sidtab_search_entry_force(struct sidtab *s, u32 sid)
261{
262	return sidtab_search_core(s, sid, 1);
263}
264
265int sidtab_context_to_sid(struct sidtab *s, struct context *context,
266			  u32 *sid)
267{
268	unsigned long flags;
269	u32 count, hash = context_compute_hash(context);
270	struct sidtab_convert_params *convert;
271	struct sidtab_entry *dst, *dst_convert;
272	int rc;
273
274	*sid = context_to_sid(s, context, hash);
275	if (*sid)
276		return 0;
277
278	/* lock-free search failed: lock, re-search, and insert if not found */
279	spin_lock_irqsave(&s->lock, flags);
280
281	rc = 0;
282	*sid = context_to_sid(s, context, hash);
283	if (*sid)
284		goto out_unlock;
285
286	if (unlikely(s->frozen)) {
287		/*
288		 * This sidtab is now frozen - tell the caller to abort and
289		 * get the new one.
290		 */
291		rc = -ESTALE;
292		goto out_unlock;
293	}
294
295	count = s->count;
 
296
297	/* bail out if we already reached max entries */
298	rc = -EOVERFLOW;
299	if (count >= SIDTAB_MAX)
300		goto out_unlock;
301
302	/* insert context into new entry */
303	rc = -ENOMEM;
304	dst = sidtab_do_lookup(s, count, 1);
305	if (!dst)
306		goto out_unlock;
307
308	dst->sid = index_to_sid(count);
309	dst->hash = hash;
310
311	rc = context_cpy(&dst->context, context);
312	if (rc)
313		goto out_unlock;
314
315	/*
316	 * if we are building a new sidtab, we need to convert the context
317	 * and insert it there as well
318	 */
319	convert = s->convert;
320	if (convert) {
321		struct sidtab *target = convert->target;
322
323		rc = -ENOMEM;
324		dst_convert = sidtab_do_lookup(target, count, 1);
325		if (!dst_convert) {
326			context_destroy(&dst->context);
327			goto out_unlock;
328		}
329
330		rc = services_convert_context(convert->args,
331					      context, &dst_convert->context,
332					      GFP_ATOMIC);
333		if (rc) {
334			context_destroy(&dst->context);
335			goto out_unlock;
336		}
337		dst_convert->sid = index_to_sid(count);
338		dst_convert->hash = context_compute_hash(&dst_convert->context);
339		target->count = count + 1;
340
341		hash_add_rcu(target->context_to_sid,
342			     &dst_convert->list, dst_convert->hash);
343	}
344
345	if (context->len)
346		pr_info("SELinux:  Context %s is not valid (left unmapped).\n",
347			context->str);
348
349	*sid = index_to_sid(count);
350
351	/* write entries before updating count */
352	smp_store_release(&s->count, count + 1);
353	hash_add_rcu(s->context_to_sid, &dst->list, dst->hash);
354
355	rc = 0;
356out_unlock:
357	spin_unlock_irqrestore(&s->lock, flags);
358	return rc;
359}
360
361static void sidtab_convert_hashtable(struct sidtab *s, u32 count)
362{
363	struct sidtab_entry *entry;
364	u32 i;
365
366	for (i = 0; i < count; i++) {
367		entry = sidtab_do_lookup(s, i, 0);
368		entry->sid = index_to_sid(i);
369		entry->hash = context_compute_hash(&entry->context);
370
371		hash_add_rcu(s->context_to_sid, &entry->list, entry->hash);
372	}
373}
374
375static int sidtab_convert_tree(union sidtab_entry_inner *edst,
376			       union sidtab_entry_inner *esrc,
377			       u32 *pos, u32 count, u32 level,
378			       struct sidtab_convert_params *convert)
379{
380	int rc;
381	u32 i;
382
383	if (level != 0) {
384		if (!edst->ptr_inner) {
385			edst->ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
386						  GFP_KERNEL);
387			if (!edst->ptr_inner)
388				return -ENOMEM;
389		}
390		i = 0;
391		while (i < SIDTAB_INNER_ENTRIES && *pos < count) {
392			rc = sidtab_convert_tree(&edst->ptr_inner->entries[i],
393						 &esrc->ptr_inner->entries[i],
394						 pos, count, level - 1,
395						 convert);
396			if (rc)
397				return rc;
398			i++;
399		}
400	} else {
401		if (!edst->ptr_leaf) {
402			edst->ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
403						 GFP_KERNEL);
404			if (!edst->ptr_leaf)
405				return -ENOMEM;
406		}
407		i = 0;
408		while (i < SIDTAB_LEAF_ENTRIES && *pos < count) {
409			rc = services_convert_context(convert->args,
410					&esrc->ptr_leaf->entries[i].context,
411					&edst->ptr_leaf->entries[i].context,
412					GFP_KERNEL);
413			if (rc)
414				return rc;
415			(*pos)++;
416			i++;
417		}
418		cond_resched();
419	}
420	return 0;
421}
422
423int sidtab_convert(struct sidtab *s, struct sidtab_convert_params *params)
424{
425	unsigned long flags;
426	u32 count, level, pos;
427	int rc;
428
429	spin_lock_irqsave(&s->lock, flags);
430
431	/* concurrent policy loads are not allowed */
432	if (s->convert) {
433		spin_unlock_irqrestore(&s->lock, flags);
434		return -EBUSY;
435	}
436
437	count = s->count;
438	level = sidtab_level_from_count(count);
439
440	/* allocate last leaf in the new sidtab (to avoid race with
441	 * live convert)
442	 */
443	rc = sidtab_do_lookup(params->target, count - 1, 1) ? 0 : -ENOMEM;
444	if (rc) {
445		spin_unlock_irqrestore(&s->lock, flags);
446		return rc;
447	}
448
449	/* set count in case no new entries are added during conversion */
450	params->target->count = count;
451
452	/* enable live convert of new entries */
453	s->convert = params;
454
455	/* we can safely convert the tree outside the lock */
456	spin_unlock_irqrestore(&s->lock, flags);
457
458	pr_info("SELinux:  Converting %u SID table entries...\n", count);
459
460	/* convert all entries not covered by live convert */
461	pos = 0;
462	rc = sidtab_convert_tree(&params->target->roots[level],
463				 &s->roots[level], &pos, count, level, params);
464	if (rc) {
465		/* we need to keep the old table - disable live convert */
466		spin_lock_irqsave(&s->lock, flags);
467		s->convert = NULL;
468		spin_unlock_irqrestore(&s->lock, flags);
469		return rc;
470	}
471	/*
472	 * The hashtable can also be modified in sidtab_context_to_sid()
473	 * so we must re-acquire the lock here.
474	 */
475	spin_lock_irqsave(&s->lock, flags);
476	sidtab_convert_hashtable(params->target, count);
477	spin_unlock_irqrestore(&s->lock, flags);
478
479	return 0;
480}
481
482void sidtab_cancel_convert(struct sidtab *s)
483{
484	unsigned long flags;
485
486	/* cancelling policy load - disable live convert of sidtab */
487	spin_lock_irqsave(&s->lock, flags);
488	s->convert = NULL;
489	spin_unlock_irqrestore(&s->lock, flags);
490}
491
492void sidtab_freeze_begin(struct sidtab *s, unsigned long *flags) __acquires(&s->lock)
493{
494	spin_lock_irqsave(&s->lock, *flags);
495	s->frozen = true;
496	s->convert = NULL;
497}
498void sidtab_freeze_end(struct sidtab *s, unsigned long *flags) __releases(&s->lock)
499{
500	spin_unlock_irqrestore(&s->lock, *flags);
501}
502
503static void sidtab_destroy_entry(struct sidtab_entry *entry)
504{
505	context_destroy(&entry->context);
506#if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
507	kfree(rcu_dereference_raw(entry->cache));
508#endif
509}
510
511static void sidtab_destroy_tree(union sidtab_entry_inner entry, u32 level)
512{
513	u32 i;
514
515	if (level != 0) {
516		struct sidtab_node_inner *node = entry.ptr_inner;
517
518		if (!node)
519			return;
520
521		for (i = 0; i < SIDTAB_INNER_ENTRIES; i++)
522			sidtab_destroy_tree(node->entries[i], level - 1);
523		kfree(node);
524	} else {
525		struct sidtab_node_leaf *node = entry.ptr_leaf;
526
527		if (!node)
528			return;
529
530		for (i = 0; i < SIDTAB_LEAF_ENTRIES; i++)
531			sidtab_destroy_entry(&node->entries[i]);
532		kfree(node);
533	}
534}
535
536void sidtab_destroy(struct sidtab *s)
537{
538	u32 i, level;
539
540	for (i = 0; i < SECINITSID_NUM; i++)
541		if (s->isids[i].set)
542			sidtab_destroy_entry(&s->isids[i].entry);
543
544	level = SIDTAB_MAX_LEVEL;
545	while (level && !s->roots[level].ptr_inner)
546		--level;
547
548	sidtab_destroy_tree(s->roots[level], level);
549	/*
550	 * The context_to_sid hashtable's objects are all shared
551	 * with the isids array and context tree, and so don't need
552	 * to be cleaned up here.
553	 */
554}
555
556#if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
557
558void sidtab_sid2str_put(struct sidtab *s, struct sidtab_entry *entry,
559			const char *str, u32 str_len)
560{
561	struct sidtab_str_cache *cache, *victim = NULL;
562	unsigned long flags;
563
564	/* do not cache invalid contexts */
565	if (entry->context.len)
566		return;
567
568	spin_lock_irqsave(&s->cache_lock, flags);
569
570	cache = rcu_dereference_protected(entry->cache,
571					  lockdep_is_held(&s->cache_lock));
572	if (cache) {
573		/* entry in cache - just bump to the head of LRU list */
574		list_move(&cache->lru_member, &s->cache_lru_list);
575		goto out_unlock;
576	}
577
578	cache = kmalloc(struct_size(cache, str, str_len), GFP_ATOMIC);
579	if (!cache)
580		goto out_unlock;
581
582	if (s->cache_free_slots == 0) {
583		/* pop a cache entry from the tail and free it */
584		victim = container_of(s->cache_lru_list.prev,
585				      struct sidtab_str_cache, lru_member);
586		list_del(&victim->lru_member);
587		rcu_assign_pointer(victim->parent->cache, NULL);
588	} else {
589		s->cache_free_slots--;
590	}
591	cache->parent = entry;
592	cache->len = str_len;
593	memcpy(cache->str, str, str_len);
594	list_add(&cache->lru_member, &s->cache_lru_list);
595
596	rcu_assign_pointer(entry->cache, cache);
597
598out_unlock:
599	spin_unlock_irqrestore(&s->cache_lock, flags);
600	kfree_rcu(victim, rcu_member);
601}
602
603int sidtab_sid2str_get(struct sidtab *s, struct sidtab_entry *entry,
604		       char **out, u32 *out_len)
605{
606	struct sidtab_str_cache *cache;
607	int rc = 0;
608
609	if (entry->context.len)
610		return -ENOENT; /* do not cache invalid contexts */
611
612	rcu_read_lock();
613
614	cache = rcu_dereference(entry->cache);
615	if (!cache) {
616		rc = -ENOENT;
617	} else {
618		*out_len = cache->len;
619		if (out) {
620			*out = kmemdup(cache->str, cache->len, GFP_ATOMIC);
621			if (!*out)
622				rc = -ENOMEM;
623		}
624	}
625
626	rcu_read_unlock();
627
628	if (!rc && out)
629		sidtab_sid2str_put(s, entry, *out, *out_len);
630	return rc;
631}
632
633#endif /* CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0 */
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Implementation of the SID table type.
  4 *
  5 * Original author: Stephen Smalley, <sds@tycho.nsa.gov>
  6 * Author: Ondrej Mosnacek, <omosnacek@gmail.com>
  7 *
  8 * Copyright (C) 2018 Red Hat, Inc.
  9 */
 10#include <linux/errno.h>
 11#include <linux/kernel.h>
 12#include <linux/list.h>
 13#include <linux/rcupdate.h>
 14#include <linux/slab.h>
 15#include <linux/sched.h>
 16#include <linux/spinlock.h>
 17#include <asm/barrier.h>
 18#include "flask.h"
 19#include "security.h"
 20#include "sidtab.h"
 
 21
 22struct sidtab_str_cache {
 23	struct rcu_head rcu_member;
 24	struct list_head lru_member;
 25	struct sidtab_entry *parent;
 26	u32 len;
 27	char str[];
 28};
 29
 30#define index_to_sid(index) (index + SECINITSID_NUM + 1)
 31#define sid_to_index(sid) (sid - (SECINITSID_NUM + 1))
 32
 33int sidtab_init(struct sidtab *s)
 34{
 35	u32 i;
 36
 37	memset(s->roots, 0, sizeof(s->roots));
 38
 39	for (i = 0; i < SECINITSID_NUM; i++)
 40		s->isids[i].set = 0;
 41
 
 42	s->count = 0;
 43	s->convert = NULL;
 44	hash_init(s->context_to_sid);
 45
 46	spin_lock_init(&s->lock);
 47
 48#if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
 49	s->cache_free_slots = CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE;
 50	INIT_LIST_HEAD(&s->cache_lru_list);
 51	spin_lock_init(&s->cache_lock);
 52#endif
 53
 54	return 0;
 55}
 56
 57static u32 context_to_sid(struct sidtab *s, struct context *context, u32 hash)
 58{
 59	struct sidtab_entry *entry;
 60	u32 sid = 0;
 61
 62	rcu_read_lock();
 63	hash_for_each_possible_rcu(s->context_to_sid, entry, list, hash) {
 64		if (entry->hash != hash)
 65			continue;
 66		if (context_cmp(&entry->context, context)) {
 67			sid = entry->sid;
 68			break;
 69		}
 70	}
 71	rcu_read_unlock();
 72	return sid;
 73}
 74
 75int sidtab_set_initial(struct sidtab *s, u32 sid, struct context *context)
 76{
 77	struct sidtab_isid_entry *isid;
 78	u32 hash;
 79	int rc;
 80
 81	if (sid == 0 || sid > SECINITSID_NUM)
 82		return -EINVAL;
 83
 84	isid = &s->isids[sid - 1];
 85
 86	rc = context_cpy(&isid->entry.context, context);
 87	if (rc)
 88		return rc;
 89
 90#if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
 91	isid->entry.cache = NULL;
 92#endif
 93	isid->set = 1;
 94
 95	hash = context_compute_hash(context);
 96
 97	/*
 98	 * Multiple initial sids may map to the same context. Check that this
 99	 * context is not already represented in the context_to_sid hashtable
100	 * to avoid duplicate entries and long linked lists upon hash
101	 * collision.
102	 */
103	if (!context_to_sid(s, context, hash)) {
104		isid->entry.sid = sid;
105		isid->entry.hash = hash;
106		hash_add(s->context_to_sid, &isid->entry.list, hash);
107	}
108
109	return 0;
110}
111
112int sidtab_hash_stats(struct sidtab *sidtab, char *page)
113{
114	int i;
115	int chain_len = 0;
116	int slots_used = 0;
117	int entries = 0;
118	int max_chain_len = 0;
119	int cur_bucket = 0;
120	struct sidtab_entry *entry;
121
122	rcu_read_lock();
123	hash_for_each_rcu(sidtab->context_to_sid, i, entry, list) {
124		entries++;
125		if (i == cur_bucket) {
126			chain_len++;
127			if (chain_len == 1)
128				slots_used++;
129		} else {
130			cur_bucket = i;
131			if (chain_len > max_chain_len)
132				max_chain_len = chain_len;
133			chain_len = 0;
134		}
135	}
136	rcu_read_unlock();
137
138	if (chain_len > max_chain_len)
139		max_chain_len = chain_len;
140
141	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
142			 "longest chain: %d\n", entries,
143			 slots_used, SIDTAB_HASH_BUCKETS, max_chain_len);
144}
145
146static u32 sidtab_level_from_count(u32 count)
147{
148	u32 capacity = SIDTAB_LEAF_ENTRIES;
149	u32 level = 0;
150
151	while (count > capacity) {
152		capacity <<= SIDTAB_INNER_SHIFT;
153		++level;
154	}
155	return level;
156}
157
158static int sidtab_alloc_roots(struct sidtab *s, u32 level)
159{
160	u32 l;
161
162	if (!s->roots[0].ptr_leaf) {
163		s->roots[0].ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
164					       GFP_ATOMIC);
165		if (!s->roots[0].ptr_leaf)
166			return -ENOMEM;
167	}
168	for (l = 1; l <= level; ++l)
169		if (!s->roots[l].ptr_inner) {
170			s->roots[l].ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
171							GFP_ATOMIC);
172			if (!s->roots[l].ptr_inner)
173				return -ENOMEM;
174			s->roots[l].ptr_inner->entries[0] = s->roots[l - 1];
175		}
176	return 0;
177}
178
179static struct sidtab_entry *sidtab_do_lookup(struct sidtab *s, u32 index,
180					     int alloc)
181{
182	union sidtab_entry_inner *entry;
183	u32 level, capacity_shift, leaf_index = index / SIDTAB_LEAF_ENTRIES;
184
185	/* find the level of the subtree we need */
186	level = sidtab_level_from_count(index + 1);
187	capacity_shift = level * SIDTAB_INNER_SHIFT;
188
189	/* allocate roots if needed */
190	if (alloc && sidtab_alloc_roots(s, level) != 0)
191		return NULL;
192
193	/* lookup inside the subtree */
194	entry = &s->roots[level];
195	while (level != 0) {
196		capacity_shift -= SIDTAB_INNER_SHIFT;
197		--level;
198
199		entry = &entry->ptr_inner->entries[leaf_index >> capacity_shift];
200		leaf_index &= ((u32)1 << capacity_shift) - 1;
201
202		if (!entry->ptr_inner) {
203			if (alloc)
204				entry->ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
205							   GFP_ATOMIC);
206			if (!entry->ptr_inner)
207				return NULL;
208		}
209	}
210	if (!entry->ptr_leaf) {
211		if (alloc)
212			entry->ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
213						  GFP_ATOMIC);
214		if (!entry->ptr_leaf)
215			return NULL;
216	}
217	return &entry->ptr_leaf->entries[index % SIDTAB_LEAF_ENTRIES];
218}
219
220static struct sidtab_entry *sidtab_lookup(struct sidtab *s, u32 index)
221{
222	/* read entries only after reading count */
223	u32 count = smp_load_acquire(&s->count);
224
225	if (index >= count)
226		return NULL;
227
228	return sidtab_do_lookup(s, index, 0);
229}
230
231static struct sidtab_entry *sidtab_lookup_initial(struct sidtab *s, u32 sid)
232{
233	return s->isids[sid - 1].set ? &s->isids[sid - 1].entry : NULL;
234}
235
236static struct sidtab_entry *sidtab_search_core(struct sidtab *s, u32 sid,
237					       int force)
238{
239	if (sid != 0) {
240		struct sidtab_entry *entry;
241
242		if (sid > SECINITSID_NUM)
243			entry = sidtab_lookup(s, sid_to_index(sid));
244		else
245			entry = sidtab_lookup_initial(s, sid);
246		if (entry && (!entry->context.len || force))
247			return entry;
248	}
249
250	return sidtab_lookup_initial(s, SECINITSID_UNLABELED);
251}
252
253struct sidtab_entry *sidtab_search_entry(struct sidtab *s, u32 sid)
254{
255	return sidtab_search_core(s, sid, 0);
256}
257
258struct sidtab_entry *sidtab_search_entry_force(struct sidtab *s, u32 sid)
259{
260	return sidtab_search_core(s, sid, 1);
261}
262
263int sidtab_context_to_sid(struct sidtab *s, struct context *context,
264			  u32 *sid)
265{
266	unsigned long flags;
267	u32 count, hash = context_compute_hash(context);
268	struct sidtab_convert_params *convert;
269	struct sidtab_entry *dst, *dst_convert;
270	int rc;
271
272	*sid = context_to_sid(s, context, hash);
273	if (*sid)
274		return 0;
275
276	/* lock-free search failed: lock, re-search, and insert if not found */
277	spin_lock_irqsave(&s->lock, flags);
278
279	rc = 0;
280	*sid = context_to_sid(s, context, hash);
281	if (*sid)
282		goto out_unlock;
283
 
 
 
 
 
 
 
 
 
284	count = s->count;
285	convert = s->convert;
286
287	/* bail out if we already reached max entries */
288	rc = -EOVERFLOW;
289	if (count >= SIDTAB_MAX)
290		goto out_unlock;
291
292	/* insert context into new entry */
293	rc = -ENOMEM;
294	dst = sidtab_do_lookup(s, count, 1);
295	if (!dst)
296		goto out_unlock;
297
298	dst->sid = index_to_sid(count);
299	dst->hash = hash;
300
301	rc = context_cpy(&dst->context, context);
302	if (rc)
303		goto out_unlock;
304
305	/*
306	 * if we are building a new sidtab, we need to convert the context
307	 * and insert it there as well
308	 */
 
309	if (convert) {
 
 
310		rc = -ENOMEM;
311		dst_convert = sidtab_do_lookup(convert->target, count, 1);
312		if (!dst_convert) {
313			context_destroy(&dst->context);
314			goto out_unlock;
315		}
316
317		rc = convert->func(context, &dst_convert->context,
318				   convert->args);
 
319		if (rc) {
320			context_destroy(&dst->context);
321			goto out_unlock;
322		}
323		dst_convert->sid = index_to_sid(count);
324		dst_convert->hash = context_compute_hash(&dst_convert->context);
325		convert->target->count = count + 1;
326
327		hash_add_rcu(convert->target->context_to_sid,
328			     &dst_convert->list, dst_convert->hash);
329	}
330
331	if (context->len)
332		pr_info("SELinux:  Context %s is not valid (left unmapped).\n",
333			context->str);
334
335	*sid = index_to_sid(count);
336
337	/* write entries before updating count */
338	smp_store_release(&s->count, count + 1);
339	hash_add_rcu(s->context_to_sid, &dst->list, dst->hash);
340
341	rc = 0;
342out_unlock:
343	spin_unlock_irqrestore(&s->lock, flags);
344	return rc;
345}
346
347static void sidtab_convert_hashtable(struct sidtab *s, u32 count)
348{
349	struct sidtab_entry *entry;
350	u32 i;
351
352	for (i = 0; i < count; i++) {
353		entry = sidtab_do_lookup(s, i, 0);
354		entry->sid = index_to_sid(i);
355		entry->hash = context_compute_hash(&entry->context);
356
357		hash_add_rcu(s->context_to_sid, &entry->list, entry->hash);
358	}
359}
360
361static int sidtab_convert_tree(union sidtab_entry_inner *edst,
362			       union sidtab_entry_inner *esrc,
363			       u32 *pos, u32 count, u32 level,
364			       struct sidtab_convert_params *convert)
365{
366	int rc;
367	u32 i;
368
369	if (level != 0) {
370		if (!edst->ptr_inner) {
371			edst->ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
372						  GFP_KERNEL);
373			if (!edst->ptr_inner)
374				return -ENOMEM;
375		}
376		i = 0;
377		while (i < SIDTAB_INNER_ENTRIES && *pos < count) {
378			rc = sidtab_convert_tree(&edst->ptr_inner->entries[i],
379						 &esrc->ptr_inner->entries[i],
380						 pos, count, level - 1,
381						 convert);
382			if (rc)
383				return rc;
384			i++;
385		}
386	} else {
387		if (!edst->ptr_leaf) {
388			edst->ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
389						 GFP_KERNEL);
390			if (!edst->ptr_leaf)
391				return -ENOMEM;
392		}
393		i = 0;
394		while (i < SIDTAB_LEAF_ENTRIES && *pos < count) {
395			rc = convert->func(&esrc->ptr_leaf->entries[i].context,
396					   &edst->ptr_leaf->entries[i].context,
397					   convert->args);
 
398			if (rc)
399				return rc;
400			(*pos)++;
401			i++;
402		}
403		cond_resched();
404	}
405	return 0;
406}
407
408int sidtab_convert(struct sidtab *s, struct sidtab_convert_params *params)
409{
410	unsigned long flags;
411	u32 count, level, pos;
412	int rc;
413
414	spin_lock_irqsave(&s->lock, flags);
415
416	/* concurrent policy loads are not allowed */
417	if (s->convert) {
418		spin_unlock_irqrestore(&s->lock, flags);
419		return -EBUSY;
420	}
421
422	count = s->count;
423	level = sidtab_level_from_count(count);
424
425	/* allocate last leaf in the new sidtab (to avoid race with
426	 * live convert)
427	 */
428	rc = sidtab_do_lookup(params->target, count - 1, 1) ? 0 : -ENOMEM;
429	if (rc) {
430		spin_unlock_irqrestore(&s->lock, flags);
431		return rc;
432	}
433
434	/* set count in case no new entries are added during conversion */
435	params->target->count = count;
436
437	/* enable live convert of new entries */
438	s->convert = params;
439
440	/* we can safely convert the tree outside the lock */
441	spin_unlock_irqrestore(&s->lock, flags);
442
443	pr_info("SELinux:  Converting %u SID table entries...\n", count);
444
445	/* convert all entries not covered by live convert */
446	pos = 0;
447	rc = sidtab_convert_tree(&params->target->roots[level],
448				 &s->roots[level], &pos, count, level, params);
449	if (rc) {
450		/* we need to keep the old table - disable live convert */
451		spin_lock_irqsave(&s->lock, flags);
452		s->convert = NULL;
453		spin_unlock_irqrestore(&s->lock, flags);
454		return rc;
455	}
456	/*
457	 * The hashtable can also be modified in sidtab_context_to_sid()
458	 * so we must re-acquire the lock here.
459	 */
460	spin_lock_irqsave(&s->lock, flags);
461	sidtab_convert_hashtable(params->target, count);
462	spin_unlock_irqrestore(&s->lock, flags);
463
464	return 0;
465}
466
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
467static void sidtab_destroy_entry(struct sidtab_entry *entry)
468{
469	context_destroy(&entry->context);
470#if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
471	kfree(rcu_dereference_raw(entry->cache));
472#endif
473}
474
475static void sidtab_destroy_tree(union sidtab_entry_inner entry, u32 level)
476{
477	u32 i;
478
479	if (level != 0) {
480		struct sidtab_node_inner *node = entry.ptr_inner;
481
482		if (!node)
483			return;
484
485		for (i = 0; i < SIDTAB_INNER_ENTRIES; i++)
486			sidtab_destroy_tree(node->entries[i], level - 1);
487		kfree(node);
488	} else {
489		struct sidtab_node_leaf *node = entry.ptr_leaf;
490
491		if (!node)
492			return;
493
494		for (i = 0; i < SIDTAB_LEAF_ENTRIES; i++)
495			sidtab_destroy_entry(&node->entries[i]);
496		kfree(node);
497	}
498}
499
500void sidtab_destroy(struct sidtab *s)
501{
502	u32 i, level;
503
504	for (i = 0; i < SECINITSID_NUM; i++)
505		if (s->isids[i].set)
506			sidtab_destroy_entry(&s->isids[i].entry);
507
508	level = SIDTAB_MAX_LEVEL;
509	while (level && !s->roots[level].ptr_inner)
510		--level;
511
512	sidtab_destroy_tree(s->roots[level], level);
513	/*
514	 * The context_to_sid hashtable's objects are all shared
515	 * with the isids array and context tree, and so don't need
516	 * to be cleaned up here.
517	 */
518}
519
520#if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
521
522void sidtab_sid2str_put(struct sidtab *s, struct sidtab_entry *entry,
523			const char *str, u32 str_len)
524{
525	struct sidtab_str_cache *cache, *victim = NULL;
526	unsigned long flags;
527
528	/* do not cache invalid contexts */
529	if (entry->context.len)
530		return;
531
532	spin_lock_irqsave(&s->cache_lock, flags);
533
534	cache = rcu_dereference_protected(entry->cache,
535					  lockdep_is_held(&s->cache_lock));
536	if (cache) {
537		/* entry in cache - just bump to the head of LRU list */
538		list_move(&cache->lru_member, &s->cache_lru_list);
539		goto out_unlock;
540	}
541
542	cache = kmalloc(sizeof(struct sidtab_str_cache) + str_len, GFP_ATOMIC);
543	if (!cache)
544		goto out_unlock;
545
546	if (s->cache_free_slots == 0) {
547		/* pop a cache entry from the tail and free it */
548		victim = container_of(s->cache_lru_list.prev,
549				      struct sidtab_str_cache, lru_member);
550		list_del(&victim->lru_member);
551		rcu_assign_pointer(victim->parent->cache, NULL);
552	} else {
553		s->cache_free_slots--;
554	}
555	cache->parent = entry;
556	cache->len = str_len;
557	memcpy(cache->str, str, str_len);
558	list_add(&cache->lru_member, &s->cache_lru_list);
559
560	rcu_assign_pointer(entry->cache, cache);
561
562out_unlock:
563	spin_unlock_irqrestore(&s->cache_lock, flags);
564	kfree_rcu(victim, rcu_member);
565}
566
567int sidtab_sid2str_get(struct sidtab *s, struct sidtab_entry *entry,
568		       char **out, u32 *out_len)
569{
570	struct sidtab_str_cache *cache;
571	int rc = 0;
572
573	if (entry->context.len)
574		return -ENOENT; /* do not cache invalid contexts */
575
576	rcu_read_lock();
577
578	cache = rcu_dereference(entry->cache);
579	if (!cache) {
580		rc = -ENOENT;
581	} else {
582		*out_len = cache->len;
583		if (out) {
584			*out = kmemdup(cache->str, cache->len, GFP_ATOMIC);
585			if (!*out)
586				rc = -ENOMEM;
587		}
588	}
589
590	rcu_read_unlock();
591
592	if (!rc && out)
593		sidtab_sid2str_put(s, entry, *out, *out_len);
594	return rc;
595}
596
597#endif /* CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0 */