Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Implementation of the SID table type.
4 *
5 * Original author: Stephen Smalley, <sds@tycho.nsa.gov>
6 * Author: Ondrej Mosnacek, <omosnacek@gmail.com>
7 *
8 * Copyright (C) 2018 Red Hat, Inc.
9 */
10#include <linux/errno.h>
11#include <linux/kernel.h>
12#include <linux/list.h>
13#include <linux/rcupdate.h>
14#include <linux/slab.h>
15#include <linux/sched.h>
16#include <linux/spinlock.h>
17#include <asm/barrier.h>
18#include "flask.h"
19#include "security.h"
20#include "sidtab.h"
21#include "services.h"
22
23struct sidtab_str_cache {
24 struct rcu_head rcu_member;
25 struct list_head lru_member;
26 struct sidtab_entry *parent;
27 u32 len;
28 char str[];
29};
30
31#define index_to_sid(index) ((index) + SECINITSID_NUM + 1)
32#define sid_to_index(sid) ((sid) - (SECINITSID_NUM + 1))
33
34int sidtab_init(struct sidtab *s)
35{
36 u32 i;
37
38 memset(s->roots, 0, sizeof(s->roots));
39
40 for (i = 0; i < SECINITSID_NUM; i++)
41 s->isids[i].set = 0;
42
43 s->frozen = false;
44 s->count = 0;
45 s->convert = NULL;
46 hash_init(s->context_to_sid);
47
48 spin_lock_init(&s->lock);
49
50#if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
51 s->cache_free_slots = CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE;
52 INIT_LIST_HEAD(&s->cache_lru_list);
53 spin_lock_init(&s->cache_lock);
54#endif
55
56 return 0;
57}
58
59static u32 context_to_sid(struct sidtab *s, struct context *context, u32 hash)
60{
61 struct sidtab_entry *entry;
62 u32 sid = 0;
63
64 rcu_read_lock();
65 hash_for_each_possible_rcu(s->context_to_sid, entry, list, hash) {
66 if (entry->hash != hash)
67 continue;
68 if (context_cmp(&entry->context, context)) {
69 sid = entry->sid;
70 break;
71 }
72 }
73 rcu_read_unlock();
74 return sid;
75}
76
77int sidtab_set_initial(struct sidtab *s, u32 sid, struct context *context)
78{
79 struct sidtab_isid_entry *isid;
80 u32 hash;
81 int rc;
82
83 if (sid == 0 || sid > SECINITSID_NUM)
84 return -EINVAL;
85
86 isid = &s->isids[sid - 1];
87
88 rc = context_cpy(&isid->entry.context, context);
89 if (rc)
90 return rc;
91
92#if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
93 isid->entry.cache = NULL;
94#endif
95 isid->set = 1;
96
97 hash = context_compute_hash(context);
98
99 /*
100 * Multiple initial sids may map to the same context. Check that this
101 * context is not already represented in the context_to_sid hashtable
102 * to avoid duplicate entries and long linked lists upon hash
103 * collision.
104 */
105 if (!context_to_sid(s, context, hash)) {
106 isid->entry.sid = sid;
107 isid->entry.hash = hash;
108 hash_add(s->context_to_sid, &isid->entry.list, hash);
109 }
110
111 return 0;
112}
113
114int sidtab_hash_stats(struct sidtab *sidtab, char *page)
115{
116 int i;
117 int chain_len = 0;
118 int slots_used = 0;
119 int entries = 0;
120 int max_chain_len = 0;
121 int cur_bucket = 0;
122 struct sidtab_entry *entry;
123
124 rcu_read_lock();
125 hash_for_each_rcu(sidtab->context_to_sid, i, entry, list) {
126 entries++;
127 if (i == cur_bucket) {
128 chain_len++;
129 if (chain_len == 1)
130 slots_used++;
131 } else {
132 cur_bucket = i;
133 if (chain_len > max_chain_len)
134 max_chain_len = chain_len;
135 chain_len = 0;
136 }
137 }
138 rcu_read_unlock();
139
140 if (chain_len > max_chain_len)
141 max_chain_len = chain_len;
142
143 return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
144 "longest chain: %d\n", entries,
145 slots_used, SIDTAB_HASH_BUCKETS, max_chain_len);
146}
147
148static u32 sidtab_level_from_count(u32 count)
149{
150 u32 capacity = SIDTAB_LEAF_ENTRIES;
151 u32 level = 0;
152
153 while (count > capacity) {
154 capacity <<= SIDTAB_INNER_SHIFT;
155 ++level;
156 }
157 return level;
158}
159
160static int sidtab_alloc_roots(struct sidtab *s, u32 level)
161{
162 u32 l;
163
164 if (!s->roots[0].ptr_leaf) {
165 s->roots[0].ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
166 GFP_ATOMIC);
167 if (!s->roots[0].ptr_leaf)
168 return -ENOMEM;
169 }
170 for (l = 1; l <= level; ++l)
171 if (!s->roots[l].ptr_inner) {
172 s->roots[l].ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
173 GFP_ATOMIC);
174 if (!s->roots[l].ptr_inner)
175 return -ENOMEM;
176 s->roots[l].ptr_inner->entries[0] = s->roots[l - 1];
177 }
178 return 0;
179}
180
181static struct sidtab_entry *sidtab_do_lookup(struct sidtab *s, u32 index,
182 int alloc)
183{
184 union sidtab_entry_inner *entry;
185 u32 level, capacity_shift, leaf_index = index / SIDTAB_LEAF_ENTRIES;
186
187 /* find the level of the subtree we need */
188 level = sidtab_level_from_count(index + 1);
189 capacity_shift = level * SIDTAB_INNER_SHIFT;
190
191 /* allocate roots if needed */
192 if (alloc && sidtab_alloc_roots(s, level) != 0)
193 return NULL;
194
195 /* lookup inside the subtree */
196 entry = &s->roots[level];
197 while (level != 0) {
198 capacity_shift -= SIDTAB_INNER_SHIFT;
199 --level;
200
201 entry = &entry->ptr_inner->entries[leaf_index >> capacity_shift];
202 leaf_index &= ((u32)1 << capacity_shift) - 1;
203
204 if (!entry->ptr_inner) {
205 if (alloc)
206 entry->ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
207 GFP_ATOMIC);
208 if (!entry->ptr_inner)
209 return NULL;
210 }
211 }
212 if (!entry->ptr_leaf) {
213 if (alloc)
214 entry->ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
215 GFP_ATOMIC);
216 if (!entry->ptr_leaf)
217 return NULL;
218 }
219 return &entry->ptr_leaf->entries[index % SIDTAB_LEAF_ENTRIES];
220}
221
222static struct sidtab_entry *sidtab_lookup(struct sidtab *s, u32 index)
223{
224 /* read entries only after reading count */
225 u32 count = smp_load_acquire(&s->count);
226
227 if (index >= count)
228 return NULL;
229
230 return sidtab_do_lookup(s, index, 0);
231}
232
233static struct sidtab_entry *sidtab_lookup_initial(struct sidtab *s, u32 sid)
234{
235 return s->isids[sid - 1].set ? &s->isids[sid - 1].entry : NULL;
236}
237
238static struct sidtab_entry *sidtab_search_core(struct sidtab *s, u32 sid,
239 int force)
240{
241 if (sid != 0) {
242 struct sidtab_entry *entry;
243
244 if (sid > SECINITSID_NUM)
245 entry = sidtab_lookup(s, sid_to_index(sid));
246 else
247 entry = sidtab_lookup_initial(s, sid);
248 if (entry && (!entry->context.len || force))
249 return entry;
250 }
251
252 return sidtab_lookup_initial(s, SECINITSID_UNLABELED);
253}
254
255struct sidtab_entry *sidtab_search_entry(struct sidtab *s, u32 sid)
256{
257 return sidtab_search_core(s, sid, 0);
258}
259
260struct sidtab_entry *sidtab_search_entry_force(struct sidtab *s, u32 sid)
261{
262 return sidtab_search_core(s, sid, 1);
263}
264
265int sidtab_context_to_sid(struct sidtab *s, struct context *context,
266 u32 *sid)
267{
268 unsigned long flags;
269 u32 count, hash = context_compute_hash(context);
270 struct sidtab_convert_params *convert;
271 struct sidtab_entry *dst, *dst_convert;
272 int rc;
273
274 *sid = context_to_sid(s, context, hash);
275 if (*sid)
276 return 0;
277
278 /* lock-free search failed: lock, re-search, and insert if not found */
279 spin_lock_irqsave(&s->lock, flags);
280
281 rc = 0;
282 *sid = context_to_sid(s, context, hash);
283 if (*sid)
284 goto out_unlock;
285
286 if (unlikely(s->frozen)) {
287 /*
288 * This sidtab is now frozen - tell the caller to abort and
289 * get the new one.
290 */
291 rc = -ESTALE;
292 goto out_unlock;
293 }
294
295 count = s->count;
296
297 /* bail out if we already reached max entries */
298 rc = -EOVERFLOW;
299 if (count >= SIDTAB_MAX)
300 goto out_unlock;
301
302 /* insert context into new entry */
303 rc = -ENOMEM;
304 dst = sidtab_do_lookup(s, count, 1);
305 if (!dst)
306 goto out_unlock;
307
308 dst->sid = index_to_sid(count);
309 dst->hash = hash;
310
311 rc = context_cpy(&dst->context, context);
312 if (rc)
313 goto out_unlock;
314
315 /*
316 * if we are building a new sidtab, we need to convert the context
317 * and insert it there as well
318 */
319 convert = s->convert;
320 if (convert) {
321 struct sidtab *target = convert->target;
322
323 rc = -ENOMEM;
324 dst_convert = sidtab_do_lookup(target, count, 1);
325 if (!dst_convert) {
326 context_destroy(&dst->context);
327 goto out_unlock;
328 }
329
330 rc = services_convert_context(convert->args,
331 context, &dst_convert->context,
332 GFP_ATOMIC);
333 if (rc) {
334 context_destroy(&dst->context);
335 goto out_unlock;
336 }
337 dst_convert->sid = index_to_sid(count);
338 dst_convert->hash = context_compute_hash(&dst_convert->context);
339 target->count = count + 1;
340
341 hash_add_rcu(target->context_to_sid,
342 &dst_convert->list, dst_convert->hash);
343 }
344
345 if (context->len)
346 pr_info("SELinux: Context %s is not valid (left unmapped).\n",
347 context->str);
348
349 *sid = index_to_sid(count);
350
351 /* write entries before updating count */
352 smp_store_release(&s->count, count + 1);
353 hash_add_rcu(s->context_to_sid, &dst->list, dst->hash);
354
355 rc = 0;
356out_unlock:
357 spin_unlock_irqrestore(&s->lock, flags);
358 return rc;
359}
360
361static void sidtab_convert_hashtable(struct sidtab *s, u32 count)
362{
363 struct sidtab_entry *entry;
364 u32 i;
365
366 for (i = 0; i < count; i++) {
367 entry = sidtab_do_lookup(s, i, 0);
368 entry->sid = index_to_sid(i);
369 entry->hash = context_compute_hash(&entry->context);
370
371 hash_add_rcu(s->context_to_sid, &entry->list, entry->hash);
372 }
373}
374
375static int sidtab_convert_tree(union sidtab_entry_inner *edst,
376 union sidtab_entry_inner *esrc,
377 u32 *pos, u32 count, u32 level,
378 struct sidtab_convert_params *convert)
379{
380 int rc;
381 u32 i;
382
383 if (level != 0) {
384 if (!edst->ptr_inner) {
385 edst->ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
386 GFP_KERNEL);
387 if (!edst->ptr_inner)
388 return -ENOMEM;
389 }
390 i = 0;
391 while (i < SIDTAB_INNER_ENTRIES && *pos < count) {
392 rc = sidtab_convert_tree(&edst->ptr_inner->entries[i],
393 &esrc->ptr_inner->entries[i],
394 pos, count, level - 1,
395 convert);
396 if (rc)
397 return rc;
398 i++;
399 }
400 } else {
401 if (!edst->ptr_leaf) {
402 edst->ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
403 GFP_KERNEL);
404 if (!edst->ptr_leaf)
405 return -ENOMEM;
406 }
407 i = 0;
408 while (i < SIDTAB_LEAF_ENTRIES && *pos < count) {
409 rc = services_convert_context(convert->args,
410 &esrc->ptr_leaf->entries[i].context,
411 &edst->ptr_leaf->entries[i].context,
412 GFP_KERNEL);
413 if (rc)
414 return rc;
415 (*pos)++;
416 i++;
417 }
418 cond_resched();
419 }
420 return 0;
421}
422
423int sidtab_convert(struct sidtab *s, struct sidtab_convert_params *params)
424{
425 unsigned long flags;
426 u32 count, level, pos;
427 int rc;
428
429 spin_lock_irqsave(&s->lock, flags);
430
431 /* concurrent policy loads are not allowed */
432 if (s->convert) {
433 spin_unlock_irqrestore(&s->lock, flags);
434 return -EBUSY;
435 }
436
437 count = s->count;
438 level = sidtab_level_from_count(count);
439
440 /* allocate last leaf in the new sidtab (to avoid race with
441 * live convert)
442 */
443 rc = sidtab_do_lookup(params->target, count - 1, 1) ? 0 : -ENOMEM;
444 if (rc) {
445 spin_unlock_irqrestore(&s->lock, flags);
446 return rc;
447 }
448
449 /* set count in case no new entries are added during conversion */
450 params->target->count = count;
451
452 /* enable live convert of new entries */
453 s->convert = params;
454
455 /* we can safely convert the tree outside the lock */
456 spin_unlock_irqrestore(&s->lock, flags);
457
458 pr_info("SELinux: Converting %u SID table entries...\n", count);
459
460 /* convert all entries not covered by live convert */
461 pos = 0;
462 rc = sidtab_convert_tree(¶ms->target->roots[level],
463 &s->roots[level], &pos, count, level, params);
464 if (rc) {
465 /* we need to keep the old table - disable live convert */
466 spin_lock_irqsave(&s->lock, flags);
467 s->convert = NULL;
468 spin_unlock_irqrestore(&s->lock, flags);
469 return rc;
470 }
471 /*
472 * The hashtable can also be modified in sidtab_context_to_sid()
473 * so we must re-acquire the lock here.
474 */
475 spin_lock_irqsave(&s->lock, flags);
476 sidtab_convert_hashtable(params->target, count);
477 spin_unlock_irqrestore(&s->lock, flags);
478
479 return 0;
480}
481
482void sidtab_cancel_convert(struct sidtab *s)
483{
484 unsigned long flags;
485
486 /* cancelling policy load - disable live convert of sidtab */
487 spin_lock_irqsave(&s->lock, flags);
488 s->convert = NULL;
489 spin_unlock_irqrestore(&s->lock, flags);
490}
491
492void sidtab_freeze_begin(struct sidtab *s, unsigned long *flags) __acquires(&s->lock)
493{
494 spin_lock_irqsave(&s->lock, *flags);
495 s->frozen = true;
496 s->convert = NULL;
497}
498void sidtab_freeze_end(struct sidtab *s, unsigned long *flags) __releases(&s->lock)
499{
500 spin_unlock_irqrestore(&s->lock, *flags);
501}
502
503static void sidtab_destroy_entry(struct sidtab_entry *entry)
504{
505 context_destroy(&entry->context);
506#if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
507 kfree(rcu_dereference_raw(entry->cache));
508#endif
509}
510
511static void sidtab_destroy_tree(union sidtab_entry_inner entry, u32 level)
512{
513 u32 i;
514
515 if (level != 0) {
516 struct sidtab_node_inner *node = entry.ptr_inner;
517
518 if (!node)
519 return;
520
521 for (i = 0; i < SIDTAB_INNER_ENTRIES; i++)
522 sidtab_destroy_tree(node->entries[i], level - 1);
523 kfree(node);
524 } else {
525 struct sidtab_node_leaf *node = entry.ptr_leaf;
526
527 if (!node)
528 return;
529
530 for (i = 0; i < SIDTAB_LEAF_ENTRIES; i++)
531 sidtab_destroy_entry(&node->entries[i]);
532 kfree(node);
533 }
534}
535
536void sidtab_destroy(struct sidtab *s)
537{
538 u32 i, level;
539
540 for (i = 0; i < SECINITSID_NUM; i++)
541 if (s->isids[i].set)
542 sidtab_destroy_entry(&s->isids[i].entry);
543
544 level = SIDTAB_MAX_LEVEL;
545 while (level && !s->roots[level].ptr_inner)
546 --level;
547
548 sidtab_destroy_tree(s->roots[level], level);
549 /*
550 * The context_to_sid hashtable's objects are all shared
551 * with the isids array and context tree, and so don't need
552 * to be cleaned up here.
553 */
554}
555
556#if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
557
558void sidtab_sid2str_put(struct sidtab *s, struct sidtab_entry *entry,
559 const char *str, u32 str_len)
560{
561 struct sidtab_str_cache *cache, *victim = NULL;
562 unsigned long flags;
563
564 /* do not cache invalid contexts */
565 if (entry->context.len)
566 return;
567
568 spin_lock_irqsave(&s->cache_lock, flags);
569
570 cache = rcu_dereference_protected(entry->cache,
571 lockdep_is_held(&s->cache_lock));
572 if (cache) {
573 /* entry in cache - just bump to the head of LRU list */
574 list_move(&cache->lru_member, &s->cache_lru_list);
575 goto out_unlock;
576 }
577
578 cache = kmalloc(struct_size(cache, str, str_len), GFP_ATOMIC);
579 if (!cache)
580 goto out_unlock;
581
582 if (s->cache_free_slots == 0) {
583 /* pop a cache entry from the tail and free it */
584 victim = container_of(s->cache_lru_list.prev,
585 struct sidtab_str_cache, lru_member);
586 list_del(&victim->lru_member);
587 rcu_assign_pointer(victim->parent->cache, NULL);
588 } else {
589 s->cache_free_slots--;
590 }
591 cache->parent = entry;
592 cache->len = str_len;
593 memcpy(cache->str, str, str_len);
594 list_add(&cache->lru_member, &s->cache_lru_list);
595
596 rcu_assign_pointer(entry->cache, cache);
597
598out_unlock:
599 spin_unlock_irqrestore(&s->cache_lock, flags);
600 kfree_rcu(victim, rcu_member);
601}
602
603int sidtab_sid2str_get(struct sidtab *s, struct sidtab_entry *entry,
604 char **out, u32 *out_len)
605{
606 struct sidtab_str_cache *cache;
607 int rc = 0;
608
609 if (entry->context.len)
610 return -ENOENT; /* do not cache invalid contexts */
611
612 rcu_read_lock();
613
614 cache = rcu_dereference(entry->cache);
615 if (!cache) {
616 rc = -ENOENT;
617 } else {
618 *out_len = cache->len;
619 if (out) {
620 *out = kmemdup(cache->str, cache->len, GFP_ATOMIC);
621 if (!*out)
622 rc = -ENOMEM;
623 }
624 }
625
626 rcu_read_unlock();
627
628 if (!rc && out)
629 sidtab_sid2str_put(s, entry, *out, *out_len);
630 return rc;
631}
632
633#endif /* CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0 */
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Implementation of the SID table type.
4 *
5 * Original author: Stephen Smalley, <sds@tycho.nsa.gov>
6 * Author: Ondrej Mosnacek, <omosnacek@gmail.com>
7 *
8 * Copyright (C) 2018 Red Hat, Inc.
9 */
10#include <linux/errno.h>
11#include <linux/kernel.h>
12#include <linux/slab.h>
13#include <linux/sched.h>
14#include <linux/spinlock.h>
15#include <asm/barrier.h>
16#include "flask.h"
17#include "security.h"
18#include "sidtab.h"
19
20int sidtab_init(struct sidtab *s)
21{
22 u32 i;
23
24 memset(s->roots, 0, sizeof(s->roots));
25
26 /* max count is SIDTAB_MAX so valid index is always < SIDTAB_MAX */
27 for (i = 0; i < SIDTAB_RCACHE_SIZE; i++)
28 s->rcache[i] = SIDTAB_MAX;
29
30 for (i = 0; i < SECINITSID_NUM; i++)
31 s->isids[i].set = 0;
32
33 s->count = 0;
34 s->convert = NULL;
35
36 spin_lock_init(&s->lock);
37 return 0;
38}
39
40int sidtab_set_initial(struct sidtab *s, u32 sid, struct context *context)
41{
42 struct sidtab_isid_entry *entry;
43 int rc;
44
45 if (sid == 0 || sid > SECINITSID_NUM)
46 return -EINVAL;
47
48 entry = &s->isids[sid - 1];
49
50 rc = context_cpy(&entry->context, context);
51 if (rc)
52 return rc;
53
54 entry->set = 1;
55 return 0;
56}
57
58static u32 sidtab_level_from_count(u32 count)
59{
60 u32 capacity = SIDTAB_LEAF_ENTRIES;
61 u32 level = 0;
62
63 while (count > capacity) {
64 capacity <<= SIDTAB_INNER_SHIFT;
65 ++level;
66 }
67 return level;
68}
69
70static int sidtab_alloc_roots(struct sidtab *s, u32 level)
71{
72 u32 l;
73
74 if (!s->roots[0].ptr_leaf) {
75 s->roots[0].ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
76 GFP_ATOMIC);
77 if (!s->roots[0].ptr_leaf)
78 return -ENOMEM;
79 }
80 for (l = 1; l <= level; ++l)
81 if (!s->roots[l].ptr_inner) {
82 s->roots[l].ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
83 GFP_ATOMIC);
84 if (!s->roots[l].ptr_inner)
85 return -ENOMEM;
86 s->roots[l].ptr_inner->entries[0] = s->roots[l - 1];
87 }
88 return 0;
89}
90
91static struct context *sidtab_do_lookup(struct sidtab *s, u32 index, int alloc)
92{
93 union sidtab_entry_inner *entry;
94 u32 level, capacity_shift, leaf_index = index / SIDTAB_LEAF_ENTRIES;
95
96 /* find the level of the subtree we need */
97 level = sidtab_level_from_count(index + 1);
98 capacity_shift = level * SIDTAB_INNER_SHIFT;
99
100 /* allocate roots if needed */
101 if (alloc && sidtab_alloc_roots(s, level) != 0)
102 return NULL;
103
104 /* lookup inside the subtree */
105 entry = &s->roots[level];
106 while (level != 0) {
107 capacity_shift -= SIDTAB_INNER_SHIFT;
108 --level;
109
110 entry = &entry->ptr_inner->entries[leaf_index >> capacity_shift];
111 leaf_index &= ((u32)1 << capacity_shift) - 1;
112
113 if (!entry->ptr_inner) {
114 if (alloc)
115 entry->ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
116 GFP_ATOMIC);
117 if (!entry->ptr_inner)
118 return NULL;
119 }
120 }
121 if (!entry->ptr_leaf) {
122 if (alloc)
123 entry->ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
124 GFP_ATOMIC);
125 if (!entry->ptr_leaf)
126 return NULL;
127 }
128 return &entry->ptr_leaf->entries[index % SIDTAB_LEAF_ENTRIES].context;
129}
130
131static struct context *sidtab_lookup(struct sidtab *s, u32 index)
132{
133 /* read entries only after reading count */
134 u32 count = smp_load_acquire(&s->count);
135
136 if (index >= count)
137 return NULL;
138
139 return sidtab_do_lookup(s, index, 0);
140}
141
142static struct context *sidtab_lookup_initial(struct sidtab *s, u32 sid)
143{
144 return s->isids[sid - 1].set ? &s->isids[sid - 1].context : NULL;
145}
146
147static struct context *sidtab_search_core(struct sidtab *s, u32 sid, int force)
148{
149 struct context *context;
150
151 if (sid != 0) {
152 if (sid > SECINITSID_NUM)
153 context = sidtab_lookup(s, sid - (SECINITSID_NUM + 1));
154 else
155 context = sidtab_lookup_initial(s, sid);
156 if (context && (!context->len || force))
157 return context;
158 }
159
160 return sidtab_lookup_initial(s, SECINITSID_UNLABELED);
161}
162
163struct context *sidtab_search(struct sidtab *s, u32 sid)
164{
165 return sidtab_search_core(s, sid, 0);
166}
167
168struct context *sidtab_search_force(struct sidtab *s, u32 sid)
169{
170 return sidtab_search_core(s, sid, 1);
171}
172
173static int sidtab_find_context(union sidtab_entry_inner entry,
174 u32 *pos, u32 count, u32 level,
175 struct context *context, u32 *index)
176{
177 int rc;
178 u32 i;
179
180 if (level != 0) {
181 struct sidtab_node_inner *node = entry.ptr_inner;
182
183 i = 0;
184 while (i < SIDTAB_INNER_ENTRIES && *pos < count) {
185 rc = sidtab_find_context(node->entries[i],
186 pos, count, level - 1,
187 context, index);
188 if (rc == 0)
189 return 0;
190 i++;
191 }
192 } else {
193 struct sidtab_node_leaf *node = entry.ptr_leaf;
194
195 i = 0;
196 while (i < SIDTAB_LEAF_ENTRIES && *pos < count) {
197 if (context_cmp(&node->entries[i].context, context)) {
198 *index = *pos;
199 return 0;
200 }
201 (*pos)++;
202 i++;
203 }
204 }
205 return -ENOENT;
206}
207
208static void sidtab_rcache_update(struct sidtab *s, u32 index, u32 pos)
209{
210 while (pos > 0) {
211 WRITE_ONCE(s->rcache[pos], READ_ONCE(s->rcache[pos - 1]));
212 --pos;
213 }
214 WRITE_ONCE(s->rcache[0], index);
215}
216
217static void sidtab_rcache_push(struct sidtab *s, u32 index)
218{
219 sidtab_rcache_update(s, index, SIDTAB_RCACHE_SIZE - 1);
220}
221
222static int sidtab_rcache_search(struct sidtab *s, struct context *context,
223 u32 *index)
224{
225 u32 i;
226
227 for (i = 0; i < SIDTAB_RCACHE_SIZE; i++) {
228 u32 v = READ_ONCE(s->rcache[i]);
229
230 if (v >= SIDTAB_MAX)
231 continue;
232
233 if (context_cmp(sidtab_do_lookup(s, v, 0), context)) {
234 sidtab_rcache_update(s, v, i);
235 *index = v;
236 return 0;
237 }
238 }
239 return -ENOENT;
240}
241
242static int sidtab_reverse_lookup(struct sidtab *s, struct context *context,
243 u32 *index)
244{
245 unsigned long flags;
246 u32 count, count_locked, level, pos;
247 struct sidtab_convert_params *convert;
248 struct context *dst, *dst_convert;
249 int rc;
250
251 rc = sidtab_rcache_search(s, context, index);
252 if (rc == 0)
253 return 0;
254
255 /* read entries only after reading count */
256 count = smp_load_acquire(&s->count);
257 level = sidtab_level_from_count(count);
258
259 pos = 0;
260 rc = sidtab_find_context(s->roots[level], &pos, count, level,
261 context, index);
262 if (rc == 0) {
263 sidtab_rcache_push(s, *index);
264 return 0;
265 }
266
267 /* lock-free search failed: lock, re-search, and insert if not found */
268 spin_lock_irqsave(&s->lock, flags);
269
270 convert = s->convert;
271 count_locked = s->count;
272 level = sidtab_level_from_count(count_locked);
273
274 /* if count has changed before we acquired the lock, then catch up */
275 while (count < count_locked) {
276 if (context_cmp(sidtab_do_lookup(s, count, 0), context)) {
277 sidtab_rcache_push(s, count);
278 *index = count;
279 rc = 0;
280 goto out_unlock;
281 }
282 ++count;
283 }
284
285 /* bail out if we already reached max entries */
286 rc = -EOVERFLOW;
287 if (count >= SIDTAB_MAX)
288 goto out_unlock;
289
290 /* insert context into new entry */
291 rc = -ENOMEM;
292 dst = sidtab_do_lookup(s, count, 1);
293 if (!dst)
294 goto out_unlock;
295
296 rc = context_cpy(dst, context);
297 if (rc)
298 goto out_unlock;
299
300 /*
301 * if we are building a new sidtab, we need to convert the context
302 * and insert it there as well
303 */
304 if (convert) {
305 rc = -ENOMEM;
306 dst_convert = sidtab_do_lookup(convert->target, count, 1);
307 if (!dst_convert) {
308 context_destroy(dst);
309 goto out_unlock;
310 }
311
312 rc = convert->func(context, dst_convert, convert->args);
313 if (rc) {
314 context_destroy(dst);
315 goto out_unlock;
316 }
317
318 /* at this point we know the insert won't fail */
319 convert->target->count = count + 1;
320 }
321
322 if (context->len)
323 pr_info("SELinux: Context %s is not valid (left unmapped).\n",
324 context->str);
325
326 sidtab_rcache_push(s, count);
327 *index = count;
328
329 /* write entries before writing new count */
330 smp_store_release(&s->count, count + 1);
331
332 rc = 0;
333out_unlock:
334 spin_unlock_irqrestore(&s->lock, flags);
335 return rc;
336}
337
338int sidtab_context_to_sid(struct sidtab *s, struct context *context, u32 *sid)
339{
340 int rc;
341 u32 i;
342
343 for (i = 0; i < SECINITSID_NUM; i++) {
344 struct sidtab_isid_entry *entry = &s->isids[i];
345
346 if (entry->set && context_cmp(context, &entry->context)) {
347 *sid = i + 1;
348 return 0;
349 }
350 }
351
352 rc = sidtab_reverse_lookup(s, context, sid);
353 if (rc)
354 return rc;
355 *sid += SECINITSID_NUM + 1;
356 return 0;
357}
358
359static int sidtab_convert_tree(union sidtab_entry_inner *edst,
360 union sidtab_entry_inner *esrc,
361 u32 *pos, u32 count, u32 level,
362 struct sidtab_convert_params *convert)
363{
364 int rc;
365 u32 i;
366
367 if (level != 0) {
368 if (!edst->ptr_inner) {
369 edst->ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
370 GFP_KERNEL);
371 if (!edst->ptr_inner)
372 return -ENOMEM;
373 }
374 i = 0;
375 while (i < SIDTAB_INNER_ENTRIES && *pos < count) {
376 rc = sidtab_convert_tree(&edst->ptr_inner->entries[i],
377 &esrc->ptr_inner->entries[i],
378 pos, count, level - 1,
379 convert);
380 if (rc)
381 return rc;
382 i++;
383 }
384 } else {
385 if (!edst->ptr_leaf) {
386 edst->ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
387 GFP_KERNEL);
388 if (!edst->ptr_leaf)
389 return -ENOMEM;
390 }
391 i = 0;
392 while (i < SIDTAB_LEAF_ENTRIES && *pos < count) {
393 rc = convert->func(&esrc->ptr_leaf->entries[i].context,
394 &edst->ptr_leaf->entries[i].context,
395 convert->args);
396 if (rc)
397 return rc;
398 (*pos)++;
399 i++;
400 }
401 cond_resched();
402 }
403 return 0;
404}
405
406int sidtab_convert(struct sidtab *s, struct sidtab_convert_params *params)
407{
408 unsigned long flags;
409 u32 count, level, pos;
410 int rc;
411
412 spin_lock_irqsave(&s->lock, flags);
413
414 /* concurrent policy loads are not allowed */
415 if (s->convert) {
416 spin_unlock_irqrestore(&s->lock, flags);
417 return -EBUSY;
418 }
419
420 count = s->count;
421 level = sidtab_level_from_count(count);
422
423 /* allocate last leaf in the new sidtab (to avoid race with
424 * live convert)
425 */
426 rc = sidtab_do_lookup(params->target, count - 1, 1) ? 0 : -ENOMEM;
427 if (rc) {
428 spin_unlock_irqrestore(&s->lock, flags);
429 return rc;
430 }
431
432 /* set count in case no new entries are added during conversion */
433 params->target->count = count;
434
435 /* enable live convert of new entries */
436 s->convert = params;
437
438 /* we can safely do the rest of the conversion outside the lock */
439 spin_unlock_irqrestore(&s->lock, flags);
440
441 pr_info("SELinux: Converting %u SID table entries...\n", count);
442
443 /* convert all entries not covered by live convert */
444 pos = 0;
445 rc = sidtab_convert_tree(¶ms->target->roots[level],
446 &s->roots[level], &pos, count, level, params);
447 if (rc) {
448 /* we need to keep the old table - disable live convert */
449 spin_lock_irqsave(&s->lock, flags);
450 s->convert = NULL;
451 spin_unlock_irqrestore(&s->lock, flags);
452 }
453 return rc;
454}
455
456static void sidtab_destroy_tree(union sidtab_entry_inner entry, u32 level)
457{
458 u32 i;
459
460 if (level != 0) {
461 struct sidtab_node_inner *node = entry.ptr_inner;
462
463 if (!node)
464 return;
465
466 for (i = 0; i < SIDTAB_INNER_ENTRIES; i++)
467 sidtab_destroy_tree(node->entries[i], level - 1);
468 kfree(node);
469 } else {
470 struct sidtab_node_leaf *node = entry.ptr_leaf;
471
472 if (!node)
473 return;
474
475 for (i = 0; i < SIDTAB_LEAF_ENTRIES; i++)
476 context_destroy(&node->entries[i].context);
477 kfree(node);
478 }
479}
480
481void sidtab_destroy(struct sidtab *s)
482{
483 u32 i, level;
484
485 for (i = 0; i < SECINITSID_NUM; i++)
486 if (s->isids[i].set)
487 context_destroy(&s->isids[i].context);
488
489 level = SIDTAB_MAX_LEVEL;
490 while (level && !s->roots[level].ptr_inner)
491 --level;
492
493 sidtab_destroy_tree(s->roots[level], level);
494}