Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/net/sunrpc/svc_xprt.c
4 *
5 * Author: Tom Tucker <tom@opengridcomputing.com>
6 */
7
8#include <linux/sched.h>
9#include <linux/sched/mm.h>
10#include <linux/errno.h>
11#include <linux/freezer.h>
12#include <linux/kthread.h>
13#include <linux/slab.h>
14#include <net/sock.h>
15#include <linux/sunrpc/addr.h>
16#include <linux/sunrpc/stats.h>
17#include <linux/sunrpc/svc_xprt.h>
18#include <linux/sunrpc/svcsock.h>
19#include <linux/sunrpc/xprt.h>
20#include <linux/module.h>
21#include <linux/netdevice.h>
22#include <trace/events/sunrpc.h>
23
24#define RPCDBG_FACILITY RPCDBG_SVCXPRT
25
26static unsigned int svc_rpc_per_connection_limit __read_mostly;
27module_param(svc_rpc_per_connection_limit, uint, 0644);
28
29
30static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
31static int svc_deferred_recv(struct svc_rqst *rqstp);
32static struct cache_deferred_req *svc_defer(struct cache_req *req);
33static void svc_age_temp_xprts(struct timer_list *t);
34static void svc_delete_xprt(struct svc_xprt *xprt);
35
36/* apparently the "standard" is that clients close
37 * idle connections after 5 minutes, servers after
38 * 6 minutes
39 * http://nfsv4bat.org/Documents/ConnectAThon/1996/nfstcp.pdf
40 */
41static int svc_conn_age_period = 6*60;
42
43/* List of registered transport classes */
44static DEFINE_SPINLOCK(svc_xprt_class_lock);
45static LIST_HEAD(svc_xprt_class_list);
46
47/* SMP locking strategy:
48 *
49 * svc_pool->sp_lock protects most of the fields of that pool.
50 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
51 * when both need to be taken (rare), svc_serv->sv_lock is first.
52 * The "service mutex" protects svc_serv->sv_nrthread.
53 * svc_sock->sk_lock protects the svc_sock->sk_deferred list
54 * and the ->sk_info_authunix cache.
55 *
56 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
57 * enqueued multiply. During normal transport processing this bit
58 * is set by svc_xprt_enqueue and cleared by svc_xprt_received.
59 * Providers should not manipulate this bit directly.
60 *
61 * Some flags can be set to certain values at any time
62 * providing that certain rules are followed:
63 *
64 * XPT_CONN, XPT_DATA:
65 * - Can be set or cleared at any time.
66 * - After a set, svc_xprt_enqueue must be called to enqueue
67 * the transport for processing.
68 * - After a clear, the transport must be read/accepted.
69 * If this succeeds, it must be set again.
70 * XPT_CLOSE:
71 * - Can set at any time. It is never cleared.
72 * XPT_DEAD:
73 * - Can only be set while XPT_BUSY is held which ensures
74 * that no other thread will be using the transport or will
75 * try to set XPT_DEAD.
76 */
77int svc_reg_xprt_class(struct svc_xprt_class *xcl)
78{
79 struct svc_xprt_class *cl;
80 int res = -EEXIST;
81
82 dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
83
84 INIT_LIST_HEAD(&xcl->xcl_list);
85 spin_lock(&svc_xprt_class_lock);
86 /* Make sure there isn't already a class with the same name */
87 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
88 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
89 goto out;
90 }
91 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
92 res = 0;
93out:
94 spin_unlock(&svc_xprt_class_lock);
95 return res;
96}
97EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
98
99void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
100{
101 dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
102 spin_lock(&svc_xprt_class_lock);
103 list_del_init(&xcl->xcl_list);
104 spin_unlock(&svc_xprt_class_lock);
105}
106EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
107
108/**
109 * svc_print_xprts - Format the transport list for printing
110 * @buf: target buffer for formatted address
111 * @maxlen: length of target buffer
112 *
113 * Fills in @buf with a string containing a list of transport names, each name
114 * terminated with '\n'. If the buffer is too small, some entries may be
115 * missing, but it is guaranteed that all lines in the output buffer are
116 * complete.
117 *
118 * Returns positive length of the filled-in string.
119 */
120int svc_print_xprts(char *buf, int maxlen)
121{
122 struct svc_xprt_class *xcl;
123 char tmpstr[80];
124 int len = 0;
125 buf[0] = '\0';
126
127 spin_lock(&svc_xprt_class_lock);
128 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
129 int slen;
130
131 slen = snprintf(tmpstr, sizeof(tmpstr), "%s %d\n",
132 xcl->xcl_name, xcl->xcl_max_payload);
133 if (slen >= sizeof(tmpstr) || len + slen >= maxlen)
134 break;
135 len += slen;
136 strcat(buf, tmpstr);
137 }
138 spin_unlock(&svc_xprt_class_lock);
139
140 return len;
141}
142
143/**
144 * svc_xprt_deferred_close - Close a transport
145 * @xprt: transport instance
146 *
147 * Used in contexts that need to defer the work of shutting down
148 * the transport to an nfsd thread.
149 */
150void svc_xprt_deferred_close(struct svc_xprt *xprt)
151{
152 if (!test_and_set_bit(XPT_CLOSE, &xprt->xpt_flags))
153 svc_xprt_enqueue(xprt);
154}
155EXPORT_SYMBOL_GPL(svc_xprt_deferred_close);
156
157static void svc_xprt_free(struct kref *kref)
158{
159 struct svc_xprt *xprt =
160 container_of(kref, struct svc_xprt, xpt_ref);
161 struct module *owner = xprt->xpt_class->xcl_owner;
162 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
163 svcauth_unix_info_release(xprt);
164 put_cred(xprt->xpt_cred);
165 put_net_track(xprt->xpt_net, &xprt->ns_tracker);
166 /* See comment on corresponding get in xs_setup_bc_tcp(): */
167 if (xprt->xpt_bc_xprt)
168 xprt_put(xprt->xpt_bc_xprt);
169 if (xprt->xpt_bc_xps)
170 xprt_switch_put(xprt->xpt_bc_xps);
171 trace_svc_xprt_free(xprt);
172 xprt->xpt_ops->xpo_free(xprt);
173 module_put(owner);
174}
175
176void svc_xprt_put(struct svc_xprt *xprt)
177{
178 kref_put(&xprt->xpt_ref, svc_xprt_free);
179}
180EXPORT_SYMBOL_GPL(svc_xprt_put);
181
182/*
183 * Called by transport drivers to initialize the transport independent
184 * portion of the transport instance.
185 */
186void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
187 struct svc_xprt *xprt, struct svc_serv *serv)
188{
189 memset(xprt, 0, sizeof(*xprt));
190 xprt->xpt_class = xcl;
191 xprt->xpt_ops = xcl->xcl_ops;
192 kref_init(&xprt->xpt_ref);
193 xprt->xpt_server = serv;
194 INIT_LIST_HEAD(&xprt->xpt_list);
195 INIT_LIST_HEAD(&xprt->xpt_ready);
196 INIT_LIST_HEAD(&xprt->xpt_deferred);
197 INIT_LIST_HEAD(&xprt->xpt_users);
198 mutex_init(&xprt->xpt_mutex);
199 spin_lock_init(&xprt->xpt_lock);
200 set_bit(XPT_BUSY, &xprt->xpt_flags);
201 xprt->xpt_net = get_net_track(net, &xprt->ns_tracker, GFP_ATOMIC);
202 strcpy(xprt->xpt_remotebuf, "uninitialized");
203}
204EXPORT_SYMBOL_GPL(svc_xprt_init);
205
206static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
207 struct svc_serv *serv,
208 struct net *net,
209 const int family,
210 const unsigned short port,
211 int flags)
212{
213 struct sockaddr_in sin = {
214 .sin_family = AF_INET,
215 .sin_addr.s_addr = htonl(INADDR_ANY),
216 .sin_port = htons(port),
217 };
218#if IS_ENABLED(CONFIG_IPV6)
219 struct sockaddr_in6 sin6 = {
220 .sin6_family = AF_INET6,
221 .sin6_addr = IN6ADDR_ANY_INIT,
222 .sin6_port = htons(port),
223 };
224#endif
225 struct svc_xprt *xprt;
226 struct sockaddr *sap;
227 size_t len;
228
229 switch (family) {
230 case PF_INET:
231 sap = (struct sockaddr *)&sin;
232 len = sizeof(sin);
233 break;
234#if IS_ENABLED(CONFIG_IPV6)
235 case PF_INET6:
236 sap = (struct sockaddr *)&sin6;
237 len = sizeof(sin6);
238 break;
239#endif
240 default:
241 return ERR_PTR(-EAFNOSUPPORT);
242 }
243
244 xprt = xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
245 if (IS_ERR(xprt))
246 trace_svc_xprt_create_err(serv->sv_program->pg_name,
247 xcl->xcl_name, sap, len, xprt);
248 return xprt;
249}
250
251/**
252 * svc_xprt_received - start next receiver thread
253 * @xprt: controlling transport
254 *
255 * The caller must hold the XPT_BUSY bit and must
256 * not thereafter touch transport data.
257 *
258 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
259 * insufficient) data.
260 */
261void svc_xprt_received(struct svc_xprt *xprt)
262{
263 if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
264 WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
265 return;
266 }
267
268 /* As soon as we clear busy, the xprt could be closed and
269 * 'put', so we need a reference to call svc_xprt_enqueue with:
270 */
271 svc_xprt_get(xprt);
272 smp_mb__before_atomic();
273 clear_bit(XPT_BUSY, &xprt->xpt_flags);
274 svc_xprt_enqueue(xprt);
275 svc_xprt_put(xprt);
276}
277EXPORT_SYMBOL_GPL(svc_xprt_received);
278
279void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
280{
281 clear_bit(XPT_TEMP, &new->xpt_flags);
282 spin_lock_bh(&serv->sv_lock);
283 list_add(&new->xpt_list, &serv->sv_permsocks);
284 spin_unlock_bh(&serv->sv_lock);
285 svc_xprt_received(new);
286}
287
288static int _svc_xprt_create(struct svc_serv *serv, const char *xprt_name,
289 struct net *net, const int family,
290 const unsigned short port, int flags,
291 const struct cred *cred)
292{
293 struct svc_xprt_class *xcl;
294
295 spin_lock(&svc_xprt_class_lock);
296 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
297 struct svc_xprt *newxprt;
298 unsigned short newport;
299
300 if (strcmp(xprt_name, xcl->xcl_name))
301 continue;
302
303 if (!try_module_get(xcl->xcl_owner))
304 goto err;
305
306 spin_unlock(&svc_xprt_class_lock);
307 newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
308 if (IS_ERR(newxprt)) {
309 module_put(xcl->xcl_owner);
310 return PTR_ERR(newxprt);
311 }
312 newxprt->xpt_cred = get_cred(cred);
313 svc_add_new_perm_xprt(serv, newxprt);
314 newport = svc_xprt_local_port(newxprt);
315 return newport;
316 }
317 err:
318 spin_unlock(&svc_xprt_class_lock);
319 /* This errno is exposed to user space. Provide a reasonable
320 * perror msg for a bad transport. */
321 return -EPROTONOSUPPORT;
322}
323
324/**
325 * svc_xprt_create - Add a new listener to @serv
326 * @serv: target RPC service
327 * @xprt_name: transport class name
328 * @net: network namespace
329 * @family: network address family
330 * @port: listener port
331 * @flags: SVC_SOCK flags
332 * @cred: credential to bind to this transport
333 *
334 * Return values:
335 * %0: New listener added successfully
336 * %-EPROTONOSUPPORT: Requested transport type not supported
337 */
338int svc_xprt_create(struct svc_serv *serv, const char *xprt_name,
339 struct net *net, const int family,
340 const unsigned short port, int flags,
341 const struct cred *cred)
342{
343 int err;
344
345 err = _svc_xprt_create(serv, xprt_name, net, family, port, flags, cred);
346 if (err == -EPROTONOSUPPORT) {
347 request_module("svc%s", xprt_name);
348 err = _svc_xprt_create(serv, xprt_name, net, family, port, flags, cred);
349 }
350 return err;
351}
352EXPORT_SYMBOL_GPL(svc_xprt_create);
353
354/*
355 * Copy the local and remote xprt addresses to the rqstp structure
356 */
357void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
358{
359 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
360 rqstp->rq_addrlen = xprt->xpt_remotelen;
361
362 /*
363 * Destination address in request is needed for binding the
364 * source address in RPC replies/callbacks later.
365 */
366 memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
367 rqstp->rq_daddrlen = xprt->xpt_locallen;
368}
369EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
370
371/**
372 * svc_print_addr - Format rq_addr field for printing
373 * @rqstp: svc_rqst struct containing address to print
374 * @buf: target buffer for formatted address
375 * @len: length of target buffer
376 *
377 */
378char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
379{
380 return __svc_print_addr(svc_addr(rqstp), buf, len);
381}
382EXPORT_SYMBOL_GPL(svc_print_addr);
383
384static bool svc_xprt_slots_in_range(struct svc_xprt *xprt)
385{
386 unsigned int limit = svc_rpc_per_connection_limit;
387 int nrqsts = atomic_read(&xprt->xpt_nr_rqsts);
388
389 return limit == 0 || (nrqsts >= 0 && nrqsts < limit);
390}
391
392static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt)
393{
394 if (!test_bit(RQ_DATA, &rqstp->rq_flags)) {
395 if (!svc_xprt_slots_in_range(xprt))
396 return false;
397 atomic_inc(&xprt->xpt_nr_rqsts);
398 set_bit(RQ_DATA, &rqstp->rq_flags);
399 }
400 return true;
401}
402
403static void svc_xprt_release_slot(struct svc_rqst *rqstp)
404{
405 struct svc_xprt *xprt = rqstp->rq_xprt;
406 if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) {
407 atomic_dec(&xprt->xpt_nr_rqsts);
408 smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
409 svc_xprt_enqueue(xprt);
410 }
411}
412
413static bool svc_xprt_ready(struct svc_xprt *xprt)
414{
415 unsigned long xpt_flags;
416
417 /*
418 * If another cpu has recently updated xpt_flags,
419 * sk_sock->flags, xpt_reserved, or xpt_nr_rqsts, we need to
420 * know about it; otherwise it's possible that both that cpu and
421 * this one could call svc_xprt_enqueue() without either
422 * svc_xprt_enqueue() recognizing that the conditions below
423 * are satisfied, and we could stall indefinitely:
424 */
425 smp_rmb();
426 xpt_flags = READ_ONCE(xprt->xpt_flags);
427
428 if (xpt_flags & BIT(XPT_BUSY))
429 return false;
430 if (xpt_flags & (BIT(XPT_CONN) | BIT(XPT_CLOSE)))
431 return true;
432 if (xpt_flags & (BIT(XPT_DATA) | BIT(XPT_DEFERRED))) {
433 if (xprt->xpt_ops->xpo_has_wspace(xprt) &&
434 svc_xprt_slots_in_range(xprt))
435 return true;
436 trace_svc_xprt_no_write_space(xprt);
437 return false;
438 }
439 return false;
440}
441
442/**
443 * svc_xprt_enqueue - Queue a transport on an idle nfsd thread
444 * @xprt: transport with data pending
445 *
446 */
447void svc_xprt_enqueue(struct svc_xprt *xprt)
448{
449 struct svc_pool *pool;
450 struct svc_rqst *rqstp = NULL;
451
452 if (!svc_xprt_ready(xprt))
453 return;
454
455 /* Mark transport as busy. It will remain in this state until
456 * the provider calls svc_xprt_received. We update XPT_BUSY
457 * atomically because it also guards against trying to enqueue
458 * the transport twice.
459 */
460 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
461 return;
462
463 pool = svc_pool_for_cpu(xprt->xpt_server);
464
465 atomic_long_inc(&pool->sp_stats.packets);
466
467 spin_lock_bh(&pool->sp_lock);
468 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
469 pool->sp_stats.sockets_queued++;
470 spin_unlock_bh(&pool->sp_lock);
471
472 /* find a thread for this xprt */
473 rcu_read_lock();
474 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
475 if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags))
476 continue;
477 atomic_long_inc(&pool->sp_stats.threads_woken);
478 rqstp->rq_qtime = ktime_get();
479 wake_up_process(rqstp->rq_task);
480 goto out_unlock;
481 }
482 set_bit(SP_CONGESTED, &pool->sp_flags);
483 rqstp = NULL;
484out_unlock:
485 rcu_read_unlock();
486 trace_svc_xprt_enqueue(xprt, rqstp);
487}
488EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
489
490/*
491 * Dequeue the first transport, if there is one.
492 */
493static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
494{
495 struct svc_xprt *xprt = NULL;
496
497 if (list_empty(&pool->sp_sockets))
498 goto out;
499
500 spin_lock_bh(&pool->sp_lock);
501 if (likely(!list_empty(&pool->sp_sockets))) {
502 xprt = list_first_entry(&pool->sp_sockets,
503 struct svc_xprt, xpt_ready);
504 list_del_init(&xprt->xpt_ready);
505 svc_xprt_get(xprt);
506 }
507 spin_unlock_bh(&pool->sp_lock);
508out:
509 return xprt;
510}
511
512/**
513 * svc_reserve - change the space reserved for the reply to a request.
514 * @rqstp: The request in question
515 * @space: new max space to reserve
516 *
517 * Each request reserves some space on the output queue of the transport
518 * to make sure the reply fits. This function reduces that reserved
519 * space to be the amount of space used already, plus @space.
520 *
521 */
522void svc_reserve(struct svc_rqst *rqstp, int space)
523{
524 struct svc_xprt *xprt = rqstp->rq_xprt;
525
526 space += rqstp->rq_res.head[0].iov_len;
527
528 if (xprt && space < rqstp->rq_reserved) {
529 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
530 rqstp->rq_reserved = space;
531 smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
532 svc_xprt_enqueue(xprt);
533 }
534}
535EXPORT_SYMBOL_GPL(svc_reserve);
536
537static void svc_xprt_release(struct svc_rqst *rqstp)
538{
539 struct svc_xprt *xprt = rqstp->rq_xprt;
540
541 xprt->xpt_ops->xpo_release_rqst(rqstp);
542
543 kfree(rqstp->rq_deferred);
544 rqstp->rq_deferred = NULL;
545
546 pagevec_release(&rqstp->rq_pvec);
547 svc_free_res_pages(rqstp);
548 rqstp->rq_res.page_len = 0;
549 rqstp->rq_res.page_base = 0;
550
551 /* Reset response buffer and release
552 * the reservation.
553 * But first, check that enough space was reserved
554 * for the reply, otherwise we have a bug!
555 */
556 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
557 printk(KERN_ERR "RPC request reserved %d but used %d\n",
558 rqstp->rq_reserved,
559 rqstp->rq_res.len);
560
561 rqstp->rq_res.head[0].iov_len = 0;
562 svc_reserve(rqstp, 0);
563 svc_xprt_release_slot(rqstp);
564 rqstp->rq_xprt = NULL;
565 svc_xprt_put(xprt);
566}
567
568/*
569 * Some svc_serv's will have occasional work to do, even when a xprt is not
570 * waiting to be serviced. This function is there to "kick" a task in one of
571 * those services so that it can wake up and do that work. Note that we only
572 * bother with pool 0 as we don't need to wake up more than one thread for
573 * this purpose.
574 */
575void svc_wake_up(struct svc_serv *serv)
576{
577 struct svc_rqst *rqstp;
578 struct svc_pool *pool;
579
580 pool = &serv->sv_pools[0];
581
582 rcu_read_lock();
583 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
584 /* skip any that aren't queued */
585 if (test_bit(RQ_BUSY, &rqstp->rq_flags))
586 continue;
587 rcu_read_unlock();
588 wake_up_process(rqstp->rq_task);
589 trace_svc_wake_up(rqstp->rq_task->pid);
590 return;
591 }
592 rcu_read_unlock();
593
594 /* No free entries available */
595 set_bit(SP_TASK_PENDING, &pool->sp_flags);
596 smp_wmb();
597 trace_svc_wake_up(0);
598}
599EXPORT_SYMBOL_GPL(svc_wake_up);
600
601int svc_port_is_privileged(struct sockaddr *sin)
602{
603 switch (sin->sa_family) {
604 case AF_INET:
605 return ntohs(((struct sockaddr_in *)sin)->sin_port)
606 < PROT_SOCK;
607 case AF_INET6:
608 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
609 < PROT_SOCK;
610 default:
611 return 0;
612 }
613}
614
615/*
616 * Make sure that we don't have too many active connections. If we have,
617 * something must be dropped. It's not clear what will happen if we allow
618 * "too many" connections, but when dealing with network-facing software,
619 * we have to code defensively. Here we do that by imposing hard limits.
620 *
621 * There's no point in trying to do random drop here for DoS
622 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
623 * attacker can easily beat that.
624 *
625 * The only somewhat efficient mechanism would be if drop old
626 * connections from the same IP first. But right now we don't even
627 * record the client IP in svc_sock.
628 *
629 * single-threaded services that expect a lot of clients will probably
630 * need to set sv_maxconn to override the default value which is based
631 * on the number of threads
632 */
633static void svc_check_conn_limits(struct svc_serv *serv)
634{
635 unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
636 (serv->sv_nrthreads+3) * 20;
637
638 if (serv->sv_tmpcnt > limit) {
639 struct svc_xprt *xprt = NULL;
640 spin_lock_bh(&serv->sv_lock);
641 if (!list_empty(&serv->sv_tempsocks)) {
642 /* Try to help the admin */
643 net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
644 serv->sv_name, serv->sv_maxconn ?
645 "max number of connections" :
646 "number of threads");
647 /*
648 * Always select the oldest connection. It's not fair,
649 * but so is life
650 */
651 xprt = list_entry(serv->sv_tempsocks.prev,
652 struct svc_xprt,
653 xpt_list);
654 set_bit(XPT_CLOSE, &xprt->xpt_flags);
655 svc_xprt_get(xprt);
656 }
657 spin_unlock_bh(&serv->sv_lock);
658
659 if (xprt) {
660 svc_xprt_enqueue(xprt);
661 svc_xprt_put(xprt);
662 }
663 }
664}
665
666static int svc_alloc_arg(struct svc_rqst *rqstp)
667{
668 struct svc_serv *serv = rqstp->rq_server;
669 struct xdr_buf *arg = &rqstp->rq_arg;
670 unsigned long pages, filled, ret;
671
672 pagevec_init(&rqstp->rq_pvec);
673
674 pages = (serv->sv_max_mesg + 2 * PAGE_SIZE) >> PAGE_SHIFT;
675 if (pages > RPCSVC_MAXPAGES) {
676 pr_warn_once("svc: warning: pages=%lu > RPCSVC_MAXPAGES=%lu\n",
677 pages, RPCSVC_MAXPAGES);
678 /* use as many pages as possible */
679 pages = RPCSVC_MAXPAGES;
680 }
681
682 for (filled = 0; filled < pages; filled = ret) {
683 ret = alloc_pages_bulk_array(GFP_KERNEL, pages,
684 rqstp->rq_pages);
685 if (ret > filled)
686 /* Made progress, don't sleep yet */
687 continue;
688
689 set_current_state(TASK_INTERRUPTIBLE);
690 if (signalled() || kthread_should_stop()) {
691 set_current_state(TASK_RUNNING);
692 return -EINTR;
693 }
694 trace_svc_alloc_arg_err(pages, ret);
695 memalloc_retry_wait(GFP_KERNEL);
696 }
697 rqstp->rq_page_end = &rqstp->rq_pages[pages];
698 rqstp->rq_pages[pages] = NULL; /* this might be seen in nfsd_splice_actor() */
699
700 /* Make arg->head point to first page and arg->pages point to rest */
701 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
702 arg->head[0].iov_len = PAGE_SIZE;
703 arg->pages = rqstp->rq_pages + 1;
704 arg->page_base = 0;
705 /* save at least one page for response */
706 arg->page_len = (pages-2)*PAGE_SIZE;
707 arg->len = (pages-1)*PAGE_SIZE;
708 arg->tail[0].iov_len = 0;
709 return 0;
710}
711
712static bool
713rqst_should_sleep(struct svc_rqst *rqstp)
714{
715 struct svc_pool *pool = rqstp->rq_pool;
716
717 /* did someone call svc_wake_up? */
718 if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags))
719 return false;
720
721 /* was a socket queued? */
722 if (!list_empty(&pool->sp_sockets))
723 return false;
724
725 /* are we shutting down? */
726 if (signalled() || kthread_should_stop())
727 return false;
728
729 /* are we freezing? */
730 if (freezing(current))
731 return false;
732
733 return true;
734}
735
736static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
737{
738 struct svc_pool *pool = rqstp->rq_pool;
739 long time_left = 0;
740
741 /* rq_xprt should be clear on entry */
742 WARN_ON_ONCE(rqstp->rq_xprt);
743
744 rqstp->rq_xprt = svc_xprt_dequeue(pool);
745 if (rqstp->rq_xprt)
746 goto out_found;
747
748 /*
749 * We have to be able to interrupt this wait
750 * to bring down the daemons ...
751 */
752 set_current_state(TASK_INTERRUPTIBLE);
753 smp_mb__before_atomic();
754 clear_bit(SP_CONGESTED, &pool->sp_flags);
755 clear_bit(RQ_BUSY, &rqstp->rq_flags);
756 smp_mb__after_atomic();
757
758 if (likely(rqst_should_sleep(rqstp)))
759 time_left = schedule_timeout(timeout);
760 else
761 __set_current_state(TASK_RUNNING);
762
763 try_to_freeze();
764
765 set_bit(RQ_BUSY, &rqstp->rq_flags);
766 smp_mb__after_atomic();
767 rqstp->rq_xprt = svc_xprt_dequeue(pool);
768 if (rqstp->rq_xprt)
769 goto out_found;
770
771 if (!time_left)
772 atomic_long_inc(&pool->sp_stats.threads_timedout);
773
774 if (signalled() || kthread_should_stop())
775 return ERR_PTR(-EINTR);
776 return ERR_PTR(-EAGAIN);
777out_found:
778 /* Normally we will wait up to 5 seconds for any required
779 * cache information to be provided.
780 */
781 if (!test_bit(SP_CONGESTED, &pool->sp_flags))
782 rqstp->rq_chandle.thread_wait = 5*HZ;
783 else
784 rqstp->rq_chandle.thread_wait = 1*HZ;
785 trace_svc_xprt_dequeue(rqstp);
786 return rqstp->rq_xprt;
787}
788
789static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
790{
791 spin_lock_bh(&serv->sv_lock);
792 set_bit(XPT_TEMP, &newxpt->xpt_flags);
793 list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
794 serv->sv_tmpcnt++;
795 if (serv->sv_temptimer.function == NULL) {
796 /* setup timer to age temp transports */
797 serv->sv_temptimer.function = svc_age_temp_xprts;
798 mod_timer(&serv->sv_temptimer,
799 jiffies + svc_conn_age_period * HZ);
800 }
801 spin_unlock_bh(&serv->sv_lock);
802 svc_xprt_received(newxpt);
803}
804
805static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
806{
807 struct svc_serv *serv = rqstp->rq_server;
808 int len = 0;
809
810 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
811 if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags))
812 xprt->xpt_ops->xpo_kill_temp_xprt(xprt);
813 svc_delete_xprt(xprt);
814 /* Leave XPT_BUSY set on the dead xprt: */
815 goto out;
816 }
817 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
818 struct svc_xprt *newxpt;
819 /*
820 * We know this module_get will succeed because the
821 * listener holds a reference too
822 */
823 __module_get(xprt->xpt_class->xcl_owner);
824 svc_check_conn_limits(xprt->xpt_server);
825 newxpt = xprt->xpt_ops->xpo_accept(xprt);
826 if (newxpt) {
827 newxpt->xpt_cred = get_cred(xprt->xpt_cred);
828 svc_add_new_temp_xprt(serv, newxpt);
829 trace_svc_xprt_accept(newxpt, serv->sv_name);
830 } else {
831 module_put(xprt->xpt_class->xcl_owner);
832 }
833 svc_xprt_received(xprt);
834 } else if (svc_xprt_reserve_slot(rqstp, xprt)) {
835 /* XPT_DATA|XPT_DEFERRED case: */
836 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
837 rqstp, rqstp->rq_pool->sp_id, xprt,
838 kref_read(&xprt->xpt_ref));
839 rqstp->rq_deferred = svc_deferred_dequeue(xprt);
840 if (rqstp->rq_deferred)
841 len = svc_deferred_recv(rqstp);
842 else
843 len = xprt->xpt_ops->xpo_recvfrom(rqstp);
844 rqstp->rq_stime = ktime_get();
845 rqstp->rq_reserved = serv->sv_max_mesg;
846 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
847 } else
848 svc_xprt_received(xprt);
849
850out:
851 return len;
852}
853
854/*
855 * Receive the next request on any transport. This code is carefully
856 * organised not to touch any cachelines in the shared svc_serv
857 * structure, only cachelines in the local svc_pool.
858 */
859int svc_recv(struct svc_rqst *rqstp, long timeout)
860{
861 struct svc_xprt *xprt = NULL;
862 struct svc_serv *serv = rqstp->rq_server;
863 int len, err;
864
865 err = svc_alloc_arg(rqstp);
866 if (err)
867 goto out;
868
869 try_to_freeze();
870 cond_resched();
871 err = -EINTR;
872 if (signalled() || kthread_should_stop())
873 goto out;
874
875 xprt = svc_get_next_xprt(rqstp, timeout);
876 if (IS_ERR(xprt)) {
877 err = PTR_ERR(xprt);
878 goto out;
879 }
880
881 len = svc_handle_xprt(rqstp, xprt);
882
883 /* No data, incomplete (TCP) read, or accept() */
884 err = -EAGAIN;
885 if (len <= 0)
886 goto out_release;
887 trace_svc_xdr_recvfrom(&rqstp->rq_arg);
888
889 clear_bit(XPT_OLD, &xprt->xpt_flags);
890
891 xprt->xpt_ops->xpo_secure_port(rqstp);
892 rqstp->rq_chandle.defer = svc_defer;
893 rqstp->rq_xid = svc_getu32(&rqstp->rq_arg.head[0]);
894
895 if (serv->sv_stats)
896 serv->sv_stats->netcnt++;
897 return len;
898out_release:
899 rqstp->rq_res.len = 0;
900 svc_xprt_release(rqstp);
901out:
902 return err;
903}
904EXPORT_SYMBOL_GPL(svc_recv);
905
906/*
907 * Drop request
908 */
909void svc_drop(struct svc_rqst *rqstp)
910{
911 trace_svc_drop(rqstp);
912 svc_xprt_release(rqstp);
913}
914EXPORT_SYMBOL_GPL(svc_drop);
915
916/*
917 * Return reply to client.
918 */
919int svc_send(struct svc_rqst *rqstp)
920{
921 struct svc_xprt *xprt;
922 int len = -EFAULT;
923 struct xdr_buf *xb;
924
925 xprt = rqstp->rq_xprt;
926 if (!xprt)
927 goto out;
928
929 /* calculate over-all length */
930 xb = &rqstp->rq_res;
931 xb->len = xb->head[0].iov_len +
932 xb->page_len +
933 xb->tail[0].iov_len;
934 trace_svc_xdr_sendto(rqstp->rq_xid, xb);
935 trace_svc_stats_latency(rqstp);
936
937 len = xprt->xpt_ops->xpo_sendto(rqstp);
938
939 trace_svc_send(rqstp, len);
940 svc_xprt_release(rqstp);
941
942 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
943 len = 0;
944out:
945 return len;
946}
947
948/*
949 * Timer function to close old temporary transports, using
950 * a mark-and-sweep algorithm.
951 */
952static void svc_age_temp_xprts(struct timer_list *t)
953{
954 struct svc_serv *serv = from_timer(serv, t, sv_temptimer);
955 struct svc_xprt *xprt;
956 struct list_head *le, *next;
957
958 dprintk("svc_age_temp_xprts\n");
959
960 if (!spin_trylock_bh(&serv->sv_lock)) {
961 /* busy, try again 1 sec later */
962 dprintk("svc_age_temp_xprts: busy\n");
963 mod_timer(&serv->sv_temptimer, jiffies + HZ);
964 return;
965 }
966
967 list_for_each_safe(le, next, &serv->sv_tempsocks) {
968 xprt = list_entry(le, struct svc_xprt, xpt_list);
969
970 /* First time through, just mark it OLD. Second time
971 * through, close it. */
972 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
973 continue;
974 if (kref_read(&xprt->xpt_ref) > 1 ||
975 test_bit(XPT_BUSY, &xprt->xpt_flags))
976 continue;
977 list_del_init(le);
978 set_bit(XPT_CLOSE, &xprt->xpt_flags);
979 dprintk("queuing xprt %p for closing\n", xprt);
980
981 /* a thread will dequeue and close it soon */
982 svc_xprt_enqueue(xprt);
983 }
984 spin_unlock_bh(&serv->sv_lock);
985
986 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
987}
988
989/* Close temporary transports whose xpt_local matches server_addr immediately
990 * instead of waiting for them to be picked up by the timer.
991 *
992 * This is meant to be called from a notifier_block that runs when an ip
993 * address is deleted.
994 */
995void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr)
996{
997 struct svc_xprt *xprt;
998 struct list_head *le, *next;
999 LIST_HEAD(to_be_closed);
1000
1001 spin_lock_bh(&serv->sv_lock);
1002 list_for_each_safe(le, next, &serv->sv_tempsocks) {
1003 xprt = list_entry(le, struct svc_xprt, xpt_list);
1004 if (rpc_cmp_addr(server_addr, (struct sockaddr *)
1005 &xprt->xpt_local)) {
1006 dprintk("svc_age_temp_xprts_now: found %p\n", xprt);
1007 list_move(le, &to_be_closed);
1008 }
1009 }
1010 spin_unlock_bh(&serv->sv_lock);
1011
1012 while (!list_empty(&to_be_closed)) {
1013 le = to_be_closed.next;
1014 list_del_init(le);
1015 xprt = list_entry(le, struct svc_xprt, xpt_list);
1016 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1017 set_bit(XPT_KILL_TEMP, &xprt->xpt_flags);
1018 dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n",
1019 xprt);
1020 svc_xprt_enqueue(xprt);
1021 }
1022}
1023EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now);
1024
1025static void call_xpt_users(struct svc_xprt *xprt)
1026{
1027 struct svc_xpt_user *u;
1028
1029 spin_lock(&xprt->xpt_lock);
1030 while (!list_empty(&xprt->xpt_users)) {
1031 u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
1032 list_del_init(&u->list);
1033 u->callback(u);
1034 }
1035 spin_unlock(&xprt->xpt_lock);
1036}
1037
1038/*
1039 * Remove a dead transport
1040 */
1041static void svc_delete_xprt(struct svc_xprt *xprt)
1042{
1043 struct svc_serv *serv = xprt->xpt_server;
1044 struct svc_deferred_req *dr;
1045
1046 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
1047 return;
1048
1049 trace_svc_xprt_detach(xprt);
1050 xprt->xpt_ops->xpo_detach(xprt);
1051 if (xprt->xpt_bc_xprt)
1052 xprt->xpt_bc_xprt->ops->close(xprt->xpt_bc_xprt);
1053
1054 spin_lock_bh(&serv->sv_lock);
1055 list_del_init(&xprt->xpt_list);
1056 WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
1057 if (test_bit(XPT_TEMP, &xprt->xpt_flags))
1058 serv->sv_tmpcnt--;
1059 spin_unlock_bh(&serv->sv_lock);
1060
1061 while ((dr = svc_deferred_dequeue(xprt)) != NULL)
1062 kfree(dr);
1063
1064 call_xpt_users(xprt);
1065 svc_xprt_put(xprt);
1066}
1067
1068/**
1069 * svc_xprt_close - Close a client connection
1070 * @xprt: transport to disconnect
1071 *
1072 */
1073void svc_xprt_close(struct svc_xprt *xprt)
1074{
1075 trace_svc_xprt_close(xprt);
1076 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1077 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1078 /* someone else will have to effect the close */
1079 return;
1080 /*
1081 * We expect svc_close_xprt() to work even when no threads are
1082 * running (e.g., while configuring the server before starting
1083 * any threads), so if the transport isn't busy, we delete
1084 * it ourself:
1085 */
1086 svc_delete_xprt(xprt);
1087}
1088EXPORT_SYMBOL_GPL(svc_xprt_close);
1089
1090static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1091{
1092 struct svc_xprt *xprt;
1093 int ret = 0;
1094
1095 spin_lock_bh(&serv->sv_lock);
1096 list_for_each_entry(xprt, xprt_list, xpt_list) {
1097 if (xprt->xpt_net != net)
1098 continue;
1099 ret++;
1100 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1101 svc_xprt_enqueue(xprt);
1102 }
1103 spin_unlock_bh(&serv->sv_lock);
1104 return ret;
1105}
1106
1107static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
1108{
1109 struct svc_pool *pool;
1110 struct svc_xprt *xprt;
1111 struct svc_xprt *tmp;
1112 int i;
1113
1114 for (i = 0; i < serv->sv_nrpools; i++) {
1115 pool = &serv->sv_pools[i];
1116
1117 spin_lock_bh(&pool->sp_lock);
1118 list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
1119 if (xprt->xpt_net != net)
1120 continue;
1121 list_del_init(&xprt->xpt_ready);
1122 spin_unlock_bh(&pool->sp_lock);
1123 return xprt;
1124 }
1125 spin_unlock_bh(&pool->sp_lock);
1126 }
1127 return NULL;
1128}
1129
1130static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1131{
1132 struct svc_xprt *xprt;
1133
1134 while ((xprt = svc_dequeue_net(serv, net))) {
1135 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1136 svc_delete_xprt(xprt);
1137 }
1138}
1139
1140/**
1141 * svc_xprt_destroy_all - Destroy transports associated with @serv
1142 * @serv: RPC service to be shut down
1143 * @net: target network namespace
1144 *
1145 * Server threads may still be running (especially in the case where the
1146 * service is still running in other network namespaces).
1147 *
1148 * So we shut down sockets the same way we would on a running server, by
1149 * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1150 * the close. In the case there are no such other threads,
1151 * threads running, svc_clean_up_xprts() does a simple version of a
1152 * server's main event loop, and in the case where there are other
1153 * threads, we may need to wait a little while and then check again to
1154 * see if they're done.
1155 */
1156void svc_xprt_destroy_all(struct svc_serv *serv, struct net *net)
1157{
1158 int delay = 0;
1159
1160 while (svc_close_list(serv, &serv->sv_permsocks, net) +
1161 svc_close_list(serv, &serv->sv_tempsocks, net)) {
1162
1163 svc_clean_up_xprts(serv, net);
1164 msleep(delay++);
1165 }
1166}
1167EXPORT_SYMBOL_GPL(svc_xprt_destroy_all);
1168
1169/*
1170 * Handle defer and revisit of requests
1171 */
1172
1173static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1174{
1175 struct svc_deferred_req *dr =
1176 container_of(dreq, struct svc_deferred_req, handle);
1177 struct svc_xprt *xprt = dr->xprt;
1178
1179 spin_lock(&xprt->xpt_lock);
1180 set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1181 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1182 spin_unlock(&xprt->xpt_lock);
1183 trace_svc_defer_drop(dr);
1184 svc_xprt_put(xprt);
1185 kfree(dr);
1186 return;
1187 }
1188 dr->xprt = NULL;
1189 list_add(&dr->handle.recent, &xprt->xpt_deferred);
1190 spin_unlock(&xprt->xpt_lock);
1191 trace_svc_defer_queue(dr);
1192 svc_xprt_enqueue(xprt);
1193 svc_xprt_put(xprt);
1194}
1195
1196/*
1197 * Save the request off for later processing. The request buffer looks
1198 * like this:
1199 *
1200 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1201 *
1202 * This code can only handle requests that consist of an xprt-header
1203 * and rpc-header.
1204 */
1205static struct cache_deferred_req *svc_defer(struct cache_req *req)
1206{
1207 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1208 struct svc_deferred_req *dr;
1209
1210 if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1211 return NULL; /* if more than a page, give up FIXME */
1212 if (rqstp->rq_deferred) {
1213 dr = rqstp->rq_deferred;
1214 rqstp->rq_deferred = NULL;
1215 } else {
1216 size_t skip;
1217 size_t size;
1218 /* FIXME maybe discard if size too large */
1219 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1220 dr = kmalloc(size, GFP_KERNEL);
1221 if (dr == NULL)
1222 return NULL;
1223
1224 dr->handle.owner = rqstp->rq_server;
1225 dr->prot = rqstp->rq_prot;
1226 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1227 dr->addrlen = rqstp->rq_addrlen;
1228 dr->daddr = rqstp->rq_daddr;
1229 dr->argslen = rqstp->rq_arg.len >> 2;
1230 dr->xprt_ctxt = rqstp->rq_xprt_ctxt;
1231 rqstp->rq_xprt_ctxt = NULL;
1232
1233 /* back up head to the start of the buffer and copy */
1234 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1235 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1236 dr->argslen << 2);
1237 }
1238 trace_svc_defer(rqstp);
1239 svc_xprt_get(rqstp->rq_xprt);
1240 dr->xprt = rqstp->rq_xprt;
1241 set_bit(RQ_DROPME, &rqstp->rq_flags);
1242
1243 dr->handle.revisit = svc_revisit;
1244 return &dr->handle;
1245}
1246
1247/*
1248 * recv data from a deferred request into an active one
1249 */
1250static noinline int svc_deferred_recv(struct svc_rqst *rqstp)
1251{
1252 struct svc_deferred_req *dr = rqstp->rq_deferred;
1253
1254 trace_svc_defer_recv(dr);
1255
1256 /* setup iov_base past transport header */
1257 rqstp->rq_arg.head[0].iov_base = dr->args;
1258 /* The iov_len does not include the transport header bytes */
1259 rqstp->rq_arg.head[0].iov_len = dr->argslen << 2;
1260 rqstp->rq_arg.page_len = 0;
1261 /* The rq_arg.len includes the transport header bytes */
1262 rqstp->rq_arg.len = dr->argslen << 2;
1263 rqstp->rq_prot = dr->prot;
1264 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1265 rqstp->rq_addrlen = dr->addrlen;
1266 /* Save off transport header len in case we get deferred again */
1267 rqstp->rq_daddr = dr->daddr;
1268 rqstp->rq_respages = rqstp->rq_pages;
1269 rqstp->rq_xprt_ctxt = dr->xprt_ctxt;
1270 svc_xprt_received(rqstp->rq_xprt);
1271 return dr->argslen << 2;
1272}
1273
1274
1275static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1276{
1277 struct svc_deferred_req *dr = NULL;
1278
1279 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1280 return NULL;
1281 spin_lock(&xprt->xpt_lock);
1282 if (!list_empty(&xprt->xpt_deferred)) {
1283 dr = list_entry(xprt->xpt_deferred.next,
1284 struct svc_deferred_req,
1285 handle.recent);
1286 list_del_init(&dr->handle.recent);
1287 } else
1288 clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1289 spin_unlock(&xprt->xpt_lock);
1290 return dr;
1291}
1292
1293/**
1294 * svc_find_xprt - find an RPC transport instance
1295 * @serv: pointer to svc_serv to search
1296 * @xcl_name: C string containing transport's class name
1297 * @net: owner net pointer
1298 * @af: Address family of transport's local address
1299 * @port: transport's IP port number
1300 *
1301 * Return the transport instance pointer for the endpoint accepting
1302 * connections/peer traffic from the specified transport class,
1303 * address family and port.
1304 *
1305 * Specifying 0 for the address family or port is effectively a
1306 * wild-card, and will result in matching the first transport in the
1307 * service's list that has a matching class name.
1308 */
1309struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1310 struct net *net, const sa_family_t af,
1311 const unsigned short port)
1312{
1313 struct svc_xprt *xprt;
1314 struct svc_xprt *found = NULL;
1315
1316 /* Sanity check the args */
1317 if (serv == NULL || xcl_name == NULL)
1318 return found;
1319
1320 spin_lock_bh(&serv->sv_lock);
1321 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1322 if (xprt->xpt_net != net)
1323 continue;
1324 if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1325 continue;
1326 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1327 continue;
1328 if (port != 0 && port != svc_xprt_local_port(xprt))
1329 continue;
1330 found = xprt;
1331 svc_xprt_get(xprt);
1332 break;
1333 }
1334 spin_unlock_bh(&serv->sv_lock);
1335 return found;
1336}
1337EXPORT_SYMBOL_GPL(svc_find_xprt);
1338
1339static int svc_one_xprt_name(const struct svc_xprt *xprt,
1340 char *pos, int remaining)
1341{
1342 int len;
1343
1344 len = snprintf(pos, remaining, "%s %u\n",
1345 xprt->xpt_class->xcl_name,
1346 svc_xprt_local_port(xprt));
1347 if (len >= remaining)
1348 return -ENAMETOOLONG;
1349 return len;
1350}
1351
1352/**
1353 * svc_xprt_names - format a buffer with a list of transport names
1354 * @serv: pointer to an RPC service
1355 * @buf: pointer to a buffer to be filled in
1356 * @buflen: length of buffer to be filled in
1357 *
1358 * Fills in @buf with a string containing a list of transport names,
1359 * each name terminated with '\n'.
1360 *
1361 * Returns positive length of the filled-in string on success; otherwise
1362 * a negative errno value is returned if an error occurs.
1363 */
1364int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1365{
1366 struct svc_xprt *xprt;
1367 int len, totlen;
1368 char *pos;
1369
1370 /* Sanity check args */
1371 if (!serv)
1372 return 0;
1373
1374 spin_lock_bh(&serv->sv_lock);
1375
1376 pos = buf;
1377 totlen = 0;
1378 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1379 len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1380 if (len < 0) {
1381 *buf = '\0';
1382 totlen = len;
1383 }
1384 if (len <= 0)
1385 break;
1386
1387 pos += len;
1388 totlen += len;
1389 }
1390
1391 spin_unlock_bh(&serv->sv_lock);
1392 return totlen;
1393}
1394EXPORT_SYMBOL_GPL(svc_xprt_names);
1395
1396
1397/*----------------------------------------------------------------------------*/
1398
1399static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1400{
1401 unsigned int pidx = (unsigned int)*pos;
1402 struct svc_serv *serv = m->private;
1403
1404 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1405
1406 if (!pidx)
1407 return SEQ_START_TOKEN;
1408 return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1409}
1410
1411static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1412{
1413 struct svc_pool *pool = p;
1414 struct svc_serv *serv = m->private;
1415
1416 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1417
1418 if (p == SEQ_START_TOKEN) {
1419 pool = &serv->sv_pools[0];
1420 } else {
1421 unsigned int pidx = (pool - &serv->sv_pools[0]);
1422 if (pidx < serv->sv_nrpools-1)
1423 pool = &serv->sv_pools[pidx+1];
1424 else
1425 pool = NULL;
1426 }
1427 ++*pos;
1428 return pool;
1429}
1430
1431static void svc_pool_stats_stop(struct seq_file *m, void *p)
1432{
1433}
1434
1435static int svc_pool_stats_show(struct seq_file *m, void *p)
1436{
1437 struct svc_pool *pool = p;
1438
1439 if (p == SEQ_START_TOKEN) {
1440 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1441 return 0;
1442 }
1443
1444 seq_printf(m, "%u %lu %lu %lu %lu\n",
1445 pool->sp_id,
1446 (unsigned long)atomic_long_read(&pool->sp_stats.packets),
1447 pool->sp_stats.sockets_queued,
1448 (unsigned long)atomic_long_read(&pool->sp_stats.threads_woken),
1449 (unsigned long)atomic_long_read(&pool->sp_stats.threads_timedout));
1450
1451 return 0;
1452}
1453
1454static const struct seq_operations svc_pool_stats_seq_ops = {
1455 .start = svc_pool_stats_start,
1456 .next = svc_pool_stats_next,
1457 .stop = svc_pool_stats_stop,
1458 .show = svc_pool_stats_show,
1459};
1460
1461int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1462{
1463 int err;
1464
1465 err = seq_open(file, &svc_pool_stats_seq_ops);
1466 if (!err)
1467 ((struct seq_file *) file->private_data)->private = serv;
1468 return err;
1469}
1470EXPORT_SYMBOL(svc_pool_stats_open);
1471
1472/*----------------------------------------------------------------------------*/
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/net/sunrpc/svc_xprt.c
4 *
5 * Author: Tom Tucker <tom@opengridcomputing.com>
6 */
7
8#include <linux/sched.h>
9#include <linux/errno.h>
10#include <linux/freezer.h>
11#include <linux/kthread.h>
12#include <linux/slab.h>
13#include <net/sock.h>
14#include <linux/sunrpc/addr.h>
15#include <linux/sunrpc/stats.h>
16#include <linux/sunrpc/svc_xprt.h>
17#include <linux/sunrpc/svcsock.h>
18#include <linux/sunrpc/xprt.h>
19#include <linux/module.h>
20#include <linux/netdevice.h>
21#include <trace/events/sunrpc.h>
22
23#define RPCDBG_FACILITY RPCDBG_SVCXPRT
24
25static unsigned int svc_rpc_per_connection_limit __read_mostly;
26module_param(svc_rpc_per_connection_limit, uint, 0644);
27
28
29static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
30static int svc_deferred_recv(struct svc_rqst *rqstp);
31static struct cache_deferred_req *svc_defer(struct cache_req *req);
32static void svc_age_temp_xprts(struct timer_list *t);
33static void svc_delete_xprt(struct svc_xprt *xprt);
34
35/* apparently the "standard" is that clients close
36 * idle connections after 5 minutes, servers after
37 * 6 minutes
38 * http://nfsv4bat.org/Documents/ConnectAThon/1996/nfstcp.pdf
39 */
40static int svc_conn_age_period = 6*60;
41
42/* List of registered transport classes */
43static DEFINE_SPINLOCK(svc_xprt_class_lock);
44static LIST_HEAD(svc_xprt_class_list);
45
46/* SMP locking strategy:
47 *
48 * svc_pool->sp_lock protects most of the fields of that pool.
49 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
50 * when both need to be taken (rare), svc_serv->sv_lock is first.
51 * The "service mutex" protects svc_serv->sv_nrthread.
52 * svc_sock->sk_lock protects the svc_sock->sk_deferred list
53 * and the ->sk_info_authunix cache.
54 *
55 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
56 * enqueued multiply. During normal transport processing this bit
57 * is set by svc_xprt_enqueue and cleared by svc_xprt_received.
58 * Providers should not manipulate this bit directly.
59 *
60 * Some flags can be set to certain values at any time
61 * providing that certain rules are followed:
62 *
63 * XPT_CONN, XPT_DATA:
64 * - Can be set or cleared at any time.
65 * - After a set, svc_xprt_enqueue must be called to enqueue
66 * the transport for processing.
67 * - After a clear, the transport must be read/accepted.
68 * If this succeeds, it must be set again.
69 * XPT_CLOSE:
70 * - Can set at any time. It is never cleared.
71 * XPT_DEAD:
72 * - Can only be set while XPT_BUSY is held which ensures
73 * that no other thread will be using the transport or will
74 * try to set XPT_DEAD.
75 */
76int svc_reg_xprt_class(struct svc_xprt_class *xcl)
77{
78 struct svc_xprt_class *cl;
79 int res = -EEXIST;
80
81 dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
82
83 INIT_LIST_HEAD(&xcl->xcl_list);
84 spin_lock(&svc_xprt_class_lock);
85 /* Make sure there isn't already a class with the same name */
86 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
87 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
88 goto out;
89 }
90 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
91 res = 0;
92out:
93 spin_unlock(&svc_xprt_class_lock);
94 return res;
95}
96EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
97
98void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
99{
100 dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
101 spin_lock(&svc_xprt_class_lock);
102 list_del_init(&xcl->xcl_list);
103 spin_unlock(&svc_xprt_class_lock);
104}
105EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
106
107/**
108 * svc_print_xprts - Format the transport list for printing
109 * @buf: target buffer for formatted address
110 * @maxlen: length of target buffer
111 *
112 * Fills in @buf with a string containing a list of transport names, each name
113 * terminated with '\n'. If the buffer is too small, some entries may be
114 * missing, but it is guaranteed that all lines in the output buffer are
115 * complete.
116 *
117 * Returns positive length of the filled-in string.
118 */
119int svc_print_xprts(char *buf, int maxlen)
120{
121 struct svc_xprt_class *xcl;
122 char tmpstr[80];
123 int len = 0;
124 buf[0] = '\0';
125
126 spin_lock(&svc_xprt_class_lock);
127 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
128 int slen;
129
130 slen = snprintf(tmpstr, sizeof(tmpstr), "%s %d\n",
131 xcl->xcl_name, xcl->xcl_max_payload);
132 if (slen >= sizeof(tmpstr) || len + slen >= maxlen)
133 break;
134 len += slen;
135 strcat(buf, tmpstr);
136 }
137 spin_unlock(&svc_xprt_class_lock);
138
139 return len;
140}
141
142static void svc_xprt_free(struct kref *kref)
143{
144 struct svc_xprt *xprt =
145 container_of(kref, struct svc_xprt, xpt_ref);
146 struct module *owner = xprt->xpt_class->xcl_owner;
147 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
148 svcauth_unix_info_release(xprt);
149 put_cred(xprt->xpt_cred);
150 put_net(xprt->xpt_net);
151 /* See comment on corresponding get in xs_setup_bc_tcp(): */
152 if (xprt->xpt_bc_xprt)
153 xprt_put(xprt->xpt_bc_xprt);
154 if (xprt->xpt_bc_xps)
155 xprt_switch_put(xprt->xpt_bc_xps);
156 trace_svc_xprt_free(xprt);
157 xprt->xpt_ops->xpo_free(xprt);
158 module_put(owner);
159}
160
161void svc_xprt_put(struct svc_xprt *xprt)
162{
163 kref_put(&xprt->xpt_ref, svc_xprt_free);
164}
165EXPORT_SYMBOL_GPL(svc_xprt_put);
166
167/*
168 * Called by transport drivers to initialize the transport independent
169 * portion of the transport instance.
170 */
171void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
172 struct svc_xprt *xprt, struct svc_serv *serv)
173{
174 memset(xprt, 0, sizeof(*xprt));
175 xprt->xpt_class = xcl;
176 xprt->xpt_ops = xcl->xcl_ops;
177 kref_init(&xprt->xpt_ref);
178 xprt->xpt_server = serv;
179 INIT_LIST_HEAD(&xprt->xpt_list);
180 INIT_LIST_HEAD(&xprt->xpt_ready);
181 INIT_LIST_HEAD(&xprt->xpt_deferred);
182 INIT_LIST_HEAD(&xprt->xpt_users);
183 mutex_init(&xprt->xpt_mutex);
184 spin_lock_init(&xprt->xpt_lock);
185 set_bit(XPT_BUSY, &xprt->xpt_flags);
186 xprt->xpt_net = get_net(net);
187 strcpy(xprt->xpt_remotebuf, "uninitialized");
188}
189EXPORT_SYMBOL_GPL(svc_xprt_init);
190
191static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
192 struct svc_serv *serv,
193 struct net *net,
194 const int family,
195 const unsigned short port,
196 int flags)
197{
198 struct sockaddr_in sin = {
199 .sin_family = AF_INET,
200 .sin_addr.s_addr = htonl(INADDR_ANY),
201 .sin_port = htons(port),
202 };
203#if IS_ENABLED(CONFIG_IPV6)
204 struct sockaddr_in6 sin6 = {
205 .sin6_family = AF_INET6,
206 .sin6_addr = IN6ADDR_ANY_INIT,
207 .sin6_port = htons(port),
208 };
209#endif
210 struct svc_xprt *xprt;
211 struct sockaddr *sap;
212 size_t len;
213
214 switch (family) {
215 case PF_INET:
216 sap = (struct sockaddr *)&sin;
217 len = sizeof(sin);
218 break;
219#if IS_ENABLED(CONFIG_IPV6)
220 case PF_INET6:
221 sap = (struct sockaddr *)&sin6;
222 len = sizeof(sin6);
223 break;
224#endif
225 default:
226 return ERR_PTR(-EAFNOSUPPORT);
227 }
228
229 xprt = xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
230 if (IS_ERR(xprt))
231 trace_svc_xprt_create_err(serv->sv_program->pg_name,
232 xcl->xcl_name, sap, xprt);
233 return xprt;
234}
235
236/*
237 * svc_xprt_received conditionally queues the transport for processing
238 * by another thread. The caller must hold the XPT_BUSY bit and must
239 * not thereafter touch transport data.
240 *
241 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
242 * insufficient) data.
243 */
244static void svc_xprt_received(struct svc_xprt *xprt)
245{
246 if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
247 WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
248 return;
249 }
250
251 /* As soon as we clear busy, the xprt could be closed and
252 * 'put', so we need a reference to call svc_enqueue_xprt with:
253 */
254 svc_xprt_get(xprt);
255 smp_mb__before_atomic();
256 clear_bit(XPT_BUSY, &xprt->xpt_flags);
257 xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
258 svc_xprt_put(xprt);
259}
260
261void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
262{
263 clear_bit(XPT_TEMP, &new->xpt_flags);
264 spin_lock_bh(&serv->sv_lock);
265 list_add(&new->xpt_list, &serv->sv_permsocks);
266 spin_unlock_bh(&serv->sv_lock);
267 svc_xprt_received(new);
268}
269
270static int _svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
271 struct net *net, const int family,
272 const unsigned short port, int flags,
273 const struct cred *cred)
274{
275 struct svc_xprt_class *xcl;
276
277 spin_lock(&svc_xprt_class_lock);
278 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
279 struct svc_xprt *newxprt;
280 unsigned short newport;
281
282 if (strcmp(xprt_name, xcl->xcl_name))
283 continue;
284
285 if (!try_module_get(xcl->xcl_owner))
286 goto err;
287
288 spin_unlock(&svc_xprt_class_lock);
289 newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
290 if (IS_ERR(newxprt)) {
291 module_put(xcl->xcl_owner);
292 return PTR_ERR(newxprt);
293 }
294 newxprt->xpt_cred = get_cred(cred);
295 svc_add_new_perm_xprt(serv, newxprt);
296 newport = svc_xprt_local_port(newxprt);
297 return newport;
298 }
299 err:
300 spin_unlock(&svc_xprt_class_lock);
301 /* This errno is exposed to user space. Provide a reasonable
302 * perror msg for a bad transport. */
303 return -EPROTONOSUPPORT;
304}
305
306int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
307 struct net *net, const int family,
308 const unsigned short port, int flags,
309 const struct cred *cred)
310{
311 int err;
312
313 err = _svc_create_xprt(serv, xprt_name, net, family, port, flags, cred);
314 if (err == -EPROTONOSUPPORT) {
315 request_module("svc%s", xprt_name);
316 err = _svc_create_xprt(serv, xprt_name, net, family, port, flags, cred);
317 }
318 return err;
319}
320EXPORT_SYMBOL_GPL(svc_create_xprt);
321
322/*
323 * Copy the local and remote xprt addresses to the rqstp structure
324 */
325void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
326{
327 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
328 rqstp->rq_addrlen = xprt->xpt_remotelen;
329
330 /*
331 * Destination address in request is needed for binding the
332 * source address in RPC replies/callbacks later.
333 */
334 memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
335 rqstp->rq_daddrlen = xprt->xpt_locallen;
336}
337EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
338
339/**
340 * svc_print_addr - Format rq_addr field for printing
341 * @rqstp: svc_rqst struct containing address to print
342 * @buf: target buffer for formatted address
343 * @len: length of target buffer
344 *
345 */
346char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
347{
348 return __svc_print_addr(svc_addr(rqstp), buf, len);
349}
350EXPORT_SYMBOL_GPL(svc_print_addr);
351
352static bool svc_xprt_slots_in_range(struct svc_xprt *xprt)
353{
354 unsigned int limit = svc_rpc_per_connection_limit;
355 int nrqsts = atomic_read(&xprt->xpt_nr_rqsts);
356
357 return limit == 0 || (nrqsts >= 0 && nrqsts < limit);
358}
359
360static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt)
361{
362 if (!test_bit(RQ_DATA, &rqstp->rq_flags)) {
363 if (!svc_xprt_slots_in_range(xprt))
364 return false;
365 atomic_inc(&xprt->xpt_nr_rqsts);
366 set_bit(RQ_DATA, &rqstp->rq_flags);
367 }
368 return true;
369}
370
371static void svc_xprt_release_slot(struct svc_rqst *rqstp)
372{
373 struct svc_xprt *xprt = rqstp->rq_xprt;
374 if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) {
375 atomic_dec(&xprt->xpt_nr_rqsts);
376 smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
377 svc_xprt_enqueue(xprt);
378 }
379}
380
381static bool svc_xprt_ready(struct svc_xprt *xprt)
382{
383 unsigned long xpt_flags;
384
385 /*
386 * If another cpu has recently updated xpt_flags,
387 * sk_sock->flags, xpt_reserved, or xpt_nr_rqsts, we need to
388 * know about it; otherwise it's possible that both that cpu and
389 * this one could call svc_xprt_enqueue() without either
390 * svc_xprt_enqueue() recognizing that the conditions below
391 * are satisfied, and we could stall indefinitely:
392 */
393 smp_rmb();
394 xpt_flags = READ_ONCE(xprt->xpt_flags);
395
396 if (xpt_flags & (BIT(XPT_CONN) | BIT(XPT_CLOSE)))
397 return true;
398 if (xpt_flags & (BIT(XPT_DATA) | BIT(XPT_DEFERRED))) {
399 if (xprt->xpt_ops->xpo_has_wspace(xprt) &&
400 svc_xprt_slots_in_range(xprt))
401 return true;
402 trace_svc_xprt_no_write_space(xprt);
403 return false;
404 }
405 return false;
406}
407
408void svc_xprt_do_enqueue(struct svc_xprt *xprt)
409{
410 struct svc_pool *pool;
411 struct svc_rqst *rqstp = NULL;
412 int cpu;
413
414 if (!svc_xprt_ready(xprt))
415 return;
416
417 /* Mark transport as busy. It will remain in this state until
418 * the provider calls svc_xprt_received. We update XPT_BUSY
419 * atomically because it also guards against trying to enqueue
420 * the transport twice.
421 */
422 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
423 return;
424
425 cpu = get_cpu();
426 pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
427
428 atomic_long_inc(&pool->sp_stats.packets);
429
430 spin_lock_bh(&pool->sp_lock);
431 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
432 pool->sp_stats.sockets_queued++;
433 spin_unlock_bh(&pool->sp_lock);
434
435 /* find a thread for this xprt */
436 rcu_read_lock();
437 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
438 if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags))
439 continue;
440 atomic_long_inc(&pool->sp_stats.threads_woken);
441 rqstp->rq_qtime = ktime_get();
442 wake_up_process(rqstp->rq_task);
443 goto out_unlock;
444 }
445 set_bit(SP_CONGESTED, &pool->sp_flags);
446 rqstp = NULL;
447out_unlock:
448 rcu_read_unlock();
449 put_cpu();
450 trace_svc_xprt_do_enqueue(xprt, rqstp);
451}
452EXPORT_SYMBOL_GPL(svc_xprt_do_enqueue);
453
454/*
455 * Queue up a transport with data pending. If there are idle nfsd
456 * processes, wake 'em up.
457 *
458 */
459void svc_xprt_enqueue(struct svc_xprt *xprt)
460{
461 if (test_bit(XPT_BUSY, &xprt->xpt_flags))
462 return;
463 xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
464}
465EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
466
467/*
468 * Dequeue the first transport, if there is one.
469 */
470static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
471{
472 struct svc_xprt *xprt = NULL;
473
474 if (list_empty(&pool->sp_sockets))
475 goto out;
476
477 spin_lock_bh(&pool->sp_lock);
478 if (likely(!list_empty(&pool->sp_sockets))) {
479 xprt = list_first_entry(&pool->sp_sockets,
480 struct svc_xprt, xpt_ready);
481 list_del_init(&xprt->xpt_ready);
482 svc_xprt_get(xprt);
483 }
484 spin_unlock_bh(&pool->sp_lock);
485out:
486 return xprt;
487}
488
489/**
490 * svc_reserve - change the space reserved for the reply to a request.
491 * @rqstp: The request in question
492 * @space: new max space to reserve
493 *
494 * Each request reserves some space on the output queue of the transport
495 * to make sure the reply fits. This function reduces that reserved
496 * space to be the amount of space used already, plus @space.
497 *
498 */
499void svc_reserve(struct svc_rqst *rqstp, int space)
500{
501 struct svc_xprt *xprt = rqstp->rq_xprt;
502
503 space += rqstp->rq_res.head[0].iov_len;
504
505 if (xprt && space < rqstp->rq_reserved) {
506 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
507 rqstp->rq_reserved = space;
508 smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
509 svc_xprt_enqueue(xprt);
510 }
511}
512EXPORT_SYMBOL_GPL(svc_reserve);
513
514static void svc_xprt_release(struct svc_rqst *rqstp)
515{
516 struct svc_xprt *xprt = rqstp->rq_xprt;
517
518 xprt->xpt_ops->xpo_release_rqst(rqstp);
519
520 kfree(rqstp->rq_deferred);
521 rqstp->rq_deferred = NULL;
522
523 svc_free_res_pages(rqstp);
524 rqstp->rq_res.page_len = 0;
525 rqstp->rq_res.page_base = 0;
526
527 /* Reset response buffer and release
528 * the reservation.
529 * But first, check that enough space was reserved
530 * for the reply, otherwise we have a bug!
531 */
532 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
533 printk(KERN_ERR "RPC request reserved %d but used %d\n",
534 rqstp->rq_reserved,
535 rqstp->rq_res.len);
536
537 rqstp->rq_res.head[0].iov_len = 0;
538 svc_reserve(rqstp, 0);
539 svc_xprt_release_slot(rqstp);
540 rqstp->rq_xprt = NULL;
541 svc_xprt_put(xprt);
542}
543
544/*
545 * Some svc_serv's will have occasional work to do, even when a xprt is not
546 * waiting to be serviced. This function is there to "kick" a task in one of
547 * those services so that it can wake up and do that work. Note that we only
548 * bother with pool 0 as we don't need to wake up more than one thread for
549 * this purpose.
550 */
551void svc_wake_up(struct svc_serv *serv)
552{
553 struct svc_rqst *rqstp;
554 struct svc_pool *pool;
555
556 pool = &serv->sv_pools[0];
557
558 rcu_read_lock();
559 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
560 /* skip any that aren't queued */
561 if (test_bit(RQ_BUSY, &rqstp->rq_flags))
562 continue;
563 rcu_read_unlock();
564 wake_up_process(rqstp->rq_task);
565 trace_svc_wake_up(rqstp->rq_task->pid);
566 return;
567 }
568 rcu_read_unlock();
569
570 /* No free entries available */
571 set_bit(SP_TASK_PENDING, &pool->sp_flags);
572 smp_wmb();
573 trace_svc_wake_up(0);
574}
575EXPORT_SYMBOL_GPL(svc_wake_up);
576
577int svc_port_is_privileged(struct sockaddr *sin)
578{
579 switch (sin->sa_family) {
580 case AF_INET:
581 return ntohs(((struct sockaddr_in *)sin)->sin_port)
582 < PROT_SOCK;
583 case AF_INET6:
584 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
585 < PROT_SOCK;
586 default:
587 return 0;
588 }
589}
590
591/*
592 * Make sure that we don't have too many active connections. If we have,
593 * something must be dropped. It's not clear what will happen if we allow
594 * "too many" connections, but when dealing with network-facing software,
595 * we have to code defensively. Here we do that by imposing hard limits.
596 *
597 * There's no point in trying to do random drop here for DoS
598 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
599 * attacker can easily beat that.
600 *
601 * The only somewhat efficient mechanism would be if drop old
602 * connections from the same IP first. But right now we don't even
603 * record the client IP in svc_sock.
604 *
605 * single-threaded services that expect a lot of clients will probably
606 * need to set sv_maxconn to override the default value which is based
607 * on the number of threads
608 */
609static void svc_check_conn_limits(struct svc_serv *serv)
610{
611 unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
612 (serv->sv_nrthreads+3) * 20;
613
614 if (serv->sv_tmpcnt > limit) {
615 struct svc_xprt *xprt = NULL;
616 spin_lock_bh(&serv->sv_lock);
617 if (!list_empty(&serv->sv_tempsocks)) {
618 /* Try to help the admin */
619 net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
620 serv->sv_name, serv->sv_maxconn ?
621 "max number of connections" :
622 "number of threads");
623 /*
624 * Always select the oldest connection. It's not fair,
625 * but so is life
626 */
627 xprt = list_entry(serv->sv_tempsocks.prev,
628 struct svc_xprt,
629 xpt_list);
630 set_bit(XPT_CLOSE, &xprt->xpt_flags);
631 svc_xprt_get(xprt);
632 }
633 spin_unlock_bh(&serv->sv_lock);
634
635 if (xprt) {
636 svc_xprt_enqueue(xprt);
637 svc_xprt_put(xprt);
638 }
639 }
640}
641
642static int svc_alloc_arg(struct svc_rqst *rqstp)
643{
644 struct svc_serv *serv = rqstp->rq_server;
645 struct xdr_buf *arg;
646 int pages;
647 int i;
648
649 /* now allocate needed pages. If we get a failure, sleep briefly */
650 pages = (serv->sv_max_mesg + 2 * PAGE_SIZE) >> PAGE_SHIFT;
651 if (pages > RPCSVC_MAXPAGES) {
652 pr_warn_once("svc: warning: pages=%u > RPCSVC_MAXPAGES=%lu\n",
653 pages, RPCSVC_MAXPAGES);
654 /* use as many pages as possible */
655 pages = RPCSVC_MAXPAGES;
656 }
657 for (i = 0; i < pages ; i++)
658 while (rqstp->rq_pages[i] == NULL) {
659 struct page *p = alloc_page(GFP_KERNEL);
660 if (!p) {
661 set_current_state(TASK_INTERRUPTIBLE);
662 if (signalled() || kthread_should_stop()) {
663 set_current_state(TASK_RUNNING);
664 return -EINTR;
665 }
666 schedule_timeout(msecs_to_jiffies(500));
667 }
668 rqstp->rq_pages[i] = p;
669 }
670 rqstp->rq_page_end = &rqstp->rq_pages[i];
671 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
672
673 /* Make arg->head point to first page and arg->pages point to rest */
674 arg = &rqstp->rq_arg;
675 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
676 arg->head[0].iov_len = PAGE_SIZE;
677 arg->pages = rqstp->rq_pages + 1;
678 arg->page_base = 0;
679 /* save at least one page for response */
680 arg->page_len = (pages-2)*PAGE_SIZE;
681 arg->len = (pages-1)*PAGE_SIZE;
682 arg->tail[0].iov_len = 0;
683 return 0;
684}
685
686static bool
687rqst_should_sleep(struct svc_rqst *rqstp)
688{
689 struct svc_pool *pool = rqstp->rq_pool;
690
691 /* did someone call svc_wake_up? */
692 if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags))
693 return false;
694
695 /* was a socket queued? */
696 if (!list_empty(&pool->sp_sockets))
697 return false;
698
699 /* are we shutting down? */
700 if (signalled() || kthread_should_stop())
701 return false;
702
703 /* are we freezing? */
704 if (freezing(current))
705 return false;
706
707 return true;
708}
709
710static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
711{
712 struct svc_pool *pool = rqstp->rq_pool;
713 long time_left = 0;
714
715 /* rq_xprt should be clear on entry */
716 WARN_ON_ONCE(rqstp->rq_xprt);
717
718 rqstp->rq_xprt = svc_xprt_dequeue(pool);
719 if (rqstp->rq_xprt)
720 goto out_found;
721
722 /*
723 * We have to be able to interrupt this wait
724 * to bring down the daemons ...
725 */
726 set_current_state(TASK_INTERRUPTIBLE);
727 smp_mb__before_atomic();
728 clear_bit(SP_CONGESTED, &pool->sp_flags);
729 clear_bit(RQ_BUSY, &rqstp->rq_flags);
730 smp_mb__after_atomic();
731
732 if (likely(rqst_should_sleep(rqstp)))
733 time_left = schedule_timeout(timeout);
734 else
735 __set_current_state(TASK_RUNNING);
736
737 try_to_freeze();
738
739 set_bit(RQ_BUSY, &rqstp->rq_flags);
740 smp_mb__after_atomic();
741 rqstp->rq_xprt = svc_xprt_dequeue(pool);
742 if (rqstp->rq_xprt)
743 goto out_found;
744
745 if (!time_left)
746 atomic_long_inc(&pool->sp_stats.threads_timedout);
747
748 if (signalled() || kthread_should_stop())
749 return ERR_PTR(-EINTR);
750 return ERR_PTR(-EAGAIN);
751out_found:
752 /* Normally we will wait up to 5 seconds for any required
753 * cache information to be provided.
754 */
755 if (!test_bit(SP_CONGESTED, &pool->sp_flags))
756 rqstp->rq_chandle.thread_wait = 5*HZ;
757 else
758 rqstp->rq_chandle.thread_wait = 1*HZ;
759 trace_svc_xprt_dequeue(rqstp);
760 return rqstp->rq_xprt;
761}
762
763static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
764{
765 spin_lock_bh(&serv->sv_lock);
766 set_bit(XPT_TEMP, &newxpt->xpt_flags);
767 list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
768 serv->sv_tmpcnt++;
769 if (serv->sv_temptimer.function == NULL) {
770 /* setup timer to age temp transports */
771 serv->sv_temptimer.function = svc_age_temp_xprts;
772 mod_timer(&serv->sv_temptimer,
773 jiffies + svc_conn_age_period * HZ);
774 }
775 spin_unlock_bh(&serv->sv_lock);
776 svc_xprt_received(newxpt);
777}
778
779static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
780{
781 struct svc_serv *serv = rqstp->rq_server;
782 int len = 0;
783
784 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
785 if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags))
786 xprt->xpt_ops->xpo_kill_temp_xprt(xprt);
787 svc_delete_xprt(xprt);
788 /* Leave XPT_BUSY set on the dead xprt: */
789 goto out;
790 }
791 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
792 struct svc_xprt *newxpt;
793 /*
794 * We know this module_get will succeed because the
795 * listener holds a reference too
796 */
797 __module_get(xprt->xpt_class->xcl_owner);
798 svc_check_conn_limits(xprt->xpt_server);
799 newxpt = xprt->xpt_ops->xpo_accept(xprt);
800 if (newxpt) {
801 newxpt->xpt_cred = get_cred(xprt->xpt_cred);
802 svc_add_new_temp_xprt(serv, newxpt);
803 trace_svc_xprt_accept(newxpt, serv->sv_name);
804 } else
805 module_put(xprt->xpt_class->xcl_owner);
806 } else if (svc_xprt_reserve_slot(rqstp, xprt)) {
807 /* XPT_DATA|XPT_DEFERRED case: */
808 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
809 rqstp, rqstp->rq_pool->sp_id, xprt,
810 kref_read(&xprt->xpt_ref));
811 rqstp->rq_deferred = svc_deferred_dequeue(xprt);
812 if (rqstp->rq_deferred)
813 len = svc_deferred_recv(rqstp);
814 else
815 len = xprt->xpt_ops->xpo_recvfrom(rqstp);
816 if (len > 0)
817 trace_svc_xdr_recvfrom(rqstp, &rqstp->rq_arg);
818 rqstp->rq_stime = ktime_get();
819 rqstp->rq_reserved = serv->sv_max_mesg;
820 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
821 }
822 /* clear XPT_BUSY: */
823 svc_xprt_received(xprt);
824out:
825 trace_svc_handle_xprt(xprt, len);
826 return len;
827}
828
829/*
830 * Receive the next request on any transport. This code is carefully
831 * organised not to touch any cachelines in the shared svc_serv
832 * structure, only cachelines in the local svc_pool.
833 */
834int svc_recv(struct svc_rqst *rqstp, long timeout)
835{
836 struct svc_xprt *xprt = NULL;
837 struct svc_serv *serv = rqstp->rq_server;
838 int len, err;
839
840 err = svc_alloc_arg(rqstp);
841 if (err)
842 goto out;
843
844 try_to_freeze();
845 cond_resched();
846 err = -EINTR;
847 if (signalled() || kthread_should_stop())
848 goto out;
849
850 xprt = svc_get_next_xprt(rqstp, timeout);
851 if (IS_ERR(xprt)) {
852 err = PTR_ERR(xprt);
853 goto out;
854 }
855
856 len = svc_handle_xprt(rqstp, xprt);
857
858 /* No data, incomplete (TCP) read, or accept() */
859 err = -EAGAIN;
860 if (len <= 0)
861 goto out_release;
862
863 clear_bit(XPT_OLD, &xprt->xpt_flags);
864
865 xprt->xpt_ops->xpo_secure_port(rqstp);
866 rqstp->rq_chandle.defer = svc_defer;
867 rqstp->rq_xid = svc_getu32(&rqstp->rq_arg.head[0]);
868
869 if (serv->sv_stats)
870 serv->sv_stats->netcnt++;
871 trace_svc_recv(rqstp, len);
872 return len;
873out_release:
874 rqstp->rq_res.len = 0;
875 svc_xprt_release(rqstp);
876out:
877 return err;
878}
879EXPORT_SYMBOL_GPL(svc_recv);
880
881/*
882 * Drop request
883 */
884void svc_drop(struct svc_rqst *rqstp)
885{
886 trace_svc_drop(rqstp);
887 svc_xprt_release(rqstp);
888}
889EXPORT_SYMBOL_GPL(svc_drop);
890
891/*
892 * Return reply to client.
893 */
894int svc_send(struct svc_rqst *rqstp)
895{
896 struct svc_xprt *xprt;
897 int len = -EFAULT;
898 struct xdr_buf *xb;
899
900 xprt = rqstp->rq_xprt;
901 if (!xprt)
902 goto out;
903
904 /* calculate over-all length */
905 xb = &rqstp->rq_res;
906 xb->len = xb->head[0].iov_len +
907 xb->page_len +
908 xb->tail[0].iov_len;
909 trace_svc_xdr_sendto(rqstp, xb);
910 trace_svc_stats_latency(rqstp);
911
912 len = xprt->xpt_ops->xpo_sendto(rqstp);
913
914 trace_svc_send(rqstp, len);
915 svc_xprt_release(rqstp);
916
917 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
918 len = 0;
919out:
920 return len;
921}
922
923/*
924 * Timer function to close old temporary transports, using
925 * a mark-and-sweep algorithm.
926 */
927static void svc_age_temp_xprts(struct timer_list *t)
928{
929 struct svc_serv *serv = from_timer(serv, t, sv_temptimer);
930 struct svc_xprt *xprt;
931 struct list_head *le, *next;
932
933 dprintk("svc_age_temp_xprts\n");
934
935 if (!spin_trylock_bh(&serv->sv_lock)) {
936 /* busy, try again 1 sec later */
937 dprintk("svc_age_temp_xprts: busy\n");
938 mod_timer(&serv->sv_temptimer, jiffies + HZ);
939 return;
940 }
941
942 list_for_each_safe(le, next, &serv->sv_tempsocks) {
943 xprt = list_entry(le, struct svc_xprt, xpt_list);
944
945 /* First time through, just mark it OLD. Second time
946 * through, close it. */
947 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
948 continue;
949 if (kref_read(&xprt->xpt_ref) > 1 ||
950 test_bit(XPT_BUSY, &xprt->xpt_flags))
951 continue;
952 list_del_init(le);
953 set_bit(XPT_CLOSE, &xprt->xpt_flags);
954 dprintk("queuing xprt %p for closing\n", xprt);
955
956 /* a thread will dequeue and close it soon */
957 svc_xprt_enqueue(xprt);
958 }
959 spin_unlock_bh(&serv->sv_lock);
960
961 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
962}
963
964/* Close temporary transports whose xpt_local matches server_addr immediately
965 * instead of waiting for them to be picked up by the timer.
966 *
967 * This is meant to be called from a notifier_block that runs when an ip
968 * address is deleted.
969 */
970void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr)
971{
972 struct svc_xprt *xprt;
973 struct list_head *le, *next;
974 LIST_HEAD(to_be_closed);
975
976 spin_lock_bh(&serv->sv_lock);
977 list_for_each_safe(le, next, &serv->sv_tempsocks) {
978 xprt = list_entry(le, struct svc_xprt, xpt_list);
979 if (rpc_cmp_addr(server_addr, (struct sockaddr *)
980 &xprt->xpt_local)) {
981 dprintk("svc_age_temp_xprts_now: found %p\n", xprt);
982 list_move(le, &to_be_closed);
983 }
984 }
985 spin_unlock_bh(&serv->sv_lock);
986
987 while (!list_empty(&to_be_closed)) {
988 le = to_be_closed.next;
989 list_del_init(le);
990 xprt = list_entry(le, struct svc_xprt, xpt_list);
991 set_bit(XPT_CLOSE, &xprt->xpt_flags);
992 set_bit(XPT_KILL_TEMP, &xprt->xpt_flags);
993 dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n",
994 xprt);
995 svc_xprt_enqueue(xprt);
996 }
997}
998EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now);
999
1000static void call_xpt_users(struct svc_xprt *xprt)
1001{
1002 struct svc_xpt_user *u;
1003
1004 spin_lock(&xprt->xpt_lock);
1005 while (!list_empty(&xprt->xpt_users)) {
1006 u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
1007 list_del_init(&u->list);
1008 u->callback(u);
1009 }
1010 spin_unlock(&xprt->xpt_lock);
1011}
1012
1013/*
1014 * Remove a dead transport
1015 */
1016static void svc_delete_xprt(struct svc_xprt *xprt)
1017{
1018 struct svc_serv *serv = xprt->xpt_server;
1019 struct svc_deferred_req *dr;
1020
1021 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
1022 return;
1023
1024 trace_svc_xprt_detach(xprt);
1025 xprt->xpt_ops->xpo_detach(xprt);
1026 if (xprt->xpt_bc_xprt)
1027 xprt->xpt_bc_xprt->ops->close(xprt->xpt_bc_xprt);
1028
1029 spin_lock_bh(&serv->sv_lock);
1030 list_del_init(&xprt->xpt_list);
1031 WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
1032 if (test_bit(XPT_TEMP, &xprt->xpt_flags))
1033 serv->sv_tmpcnt--;
1034 spin_unlock_bh(&serv->sv_lock);
1035
1036 while ((dr = svc_deferred_dequeue(xprt)) != NULL)
1037 kfree(dr);
1038
1039 call_xpt_users(xprt);
1040 svc_xprt_put(xprt);
1041}
1042
1043void svc_close_xprt(struct svc_xprt *xprt)
1044{
1045 trace_svc_xprt_close(xprt);
1046 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1047 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1048 /* someone else will have to effect the close */
1049 return;
1050 /*
1051 * We expect svc_close_xprt() to work even when no threads are
1052 * running (e.g., while configuring the server before starting
1053 * any threads), so if the transport isn't busy, we delete
1054 * it ourself:
1055 */
1056 svc_delete_xprt(xprt);
1057}
1058EXPORT_SYMBOL_GPL(svc_close_xprt);
1059
1060static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1061{
1062 struct svc_xprt *xprt;
1063 int ret = 0;
1064
1065 spin_lock(&serv->sv_lock);
1066 list_for_each_entry(xprt, xprt_list, xpt_list) {
1067 if (xprt->xpt_net != net)
1068 continue;
1069 ret++;
1070 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1071 svc_xprt_enqueue(xprt);
1072 }
1073 spin_unlock(&serv->sv_lock);
1074 return ret;
1075}
1076
1077static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
1078{
1079 struct svc_pool *pool;
1080 struct svc_xprt *xprt;
1081 struct svc_xprt *tmp;
1082 int i;
1083
1084 for (i = 0; i < serv->sv_nrpools; i++) {
1085 pool = &serv->sv_pools[i];
1086
1087 spin_lock_bh(&pool->sp_lock);
1088 list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
1089 if (xprt->xpt_net != net)
1090 continue;
1091 list_del_init(&xprt->xpt_ready);
1092 spin_unlock_bh(&pool->sp_lock);
1093 return xprt;
1094 }
1095 spin_unlock_bh(&pool->sp_lock);
1096 }
1097 return NULL;
1098}
1099
1100static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1101{
1102 struct svc_xprt *xprt;
1103
1104 while ((xprt = svc_dequeue_net(serv, net))) {
1105 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1106 svc_delete_xprt(xprt);
1107 }
1108}
1109
1110/*
1111 * Server threads may still be running (especially in the case where the
1112 * service is still running in other network namespaces).
1113 *
1114 * So we shut down sockets the same way we would on a running server, by
1115 * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1116 * the close. In the case there are no such other threads,
1117 * threads running, svc_clean_up_xprts() does a simple version of a
1118 * server's main event loop, and in the case where there are other
1119 * threads, we may need to wait a little while and then check again to
1120 * see if they're done.
1121 */
1122void svc_close_net(struct svc_serv *serv, struct net *net)
1123{
1124 int delay = 0;
1125
1126 while (svc_close_list(serv, &serv->sv_permsocks, net) +
1127 svc_close_list(serv, &serv->sv_tempsocks, net)) {
1128
1129 svc_clean_up_xprts(serv, net);
1130 msleep(delay++);
1131 }
1132}
1133
1134/*
1135 * Handle defer and revisit of requests
1136 */
1137
1138static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1139{
1140 struct svc_deferred_req *dr =
1141 container_of(dreq, struct svc_deferred_req, handle);
1142 struct svc_xprt *xprt = dr->xprt;
1143
1144 spin_lock(&xprt->xpt_lock);
1145 set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1146 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1147 spin_unlock(&xprt->xpt_lock);
1148 trace_svc_defer_drop(dr);
1149 svc_xprt_put(xprt);
1150 kfree(dr);
1151 return;
1152 }
1153 dr->xprt = NULL;
1154 list_add(&dr->handle.recent, &xprt->xpt_deferred);
1155 spin_unlock(&xprt->xpt_lock);
1156 trace_svc_defer_queue(dr);
1157 svc_xprt_enqueue(xprt);
1158 svc_xprt_put(xprt);
1159}
1160
1161/*
1162 * Save the request off for later processing. The request buffer looks
1163 * like this:
1164 *
1165 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1166 *
1167 * This code can only handle requests that consist of an xprt-header
1168 * and rpc-header.
1169 */
1170static struct cache_deferred_req *svc_defer(struct cache_req *req)
1171{
1172 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1173 struct svc_deferred_req *dr;
1174
1175 if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1176 return NULL; /* if more than a page, give up FIXME */
1177 if (rqstp->rq_deferred) {
1178 dr = rqstp->rq_deferred;
1179 rqstp->rq_deferred = NULL;
1180 } else {
1181 size_t skip;
1182 size_t size;
1183 /* FIXME maybe discard if size too large */
1184 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1185 dr = kmalloc(size, GFP_KERNEL);
1186 if (dr == NULL)
1187 return NULL;
1188
1189 dr->handle.owner = rqstp->rq_server;
1190 dr->prot = rqstp->rq_prot;
1191 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1192 dr->addrlen = rqstp->rq_addrlen;
1193 dr->daddr = rqstp->rq_daddr;
1194 dr->argslen = rqstp->rq_arg.len >> 2;
1195 dr->xprt_hlen = rqstp->rq_xprt_hlen;
1196
1197 /* back up head to the start of the buffer and copy */
1198 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1199 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1200 dr->argslen << 2);
1201 }
1202 trace_svc_defer(rqstp);
1203 svc_xprt_get(rqstp->rq_xprt);
1204 dr->xprt = rqstp->rq_xprt;
1205 set_bit(RQ_DROPME, &rqstp->rq_flags);
1206
1207 dr->handle.revisit = svc_revisit;
1208 return &dr->handle;
1209}
1210
1211/*
1212 * recv data from a deferred request into an active one
1213 */
1214static noinline int svc_deferred_recv(struct svc_rqst *rqstp)
1215{
1216 struct svc_deferred_req *dr = rqstp->rq_deferred;
1217
1218 trace_svc_defer_recv(dr);
1219
1220 /* setup iov_base past transport header */
1221 rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1222 /* The iov_len does not include the transport header bytes */
1223 rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1224 rqstp->rq_arg.page_len = 0;
1225 /* The rq_arg.len includes the transport header bytes */
1226 rqstp->rq_arg.len = dr->argslen<<2;
1227 rqstp->rq_prot = dr->prot;
1228 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1229 rqstp->rq_addrlen = dr->addrlen;
1230 /* Save off transport header len in case we get deferred again */
1231 rqstp->rq_xprt_hlen = dr->xprt_hlen;
1232 rqstp->rq_daddr = dr->daddr;
1233 rqstp->rq_respages = rqstp->rq_pages;
1234 return (dr->argslen<<2) - dr->xprt_hlen;
1235}
1236
1237
1238static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1239{
1240 struct svc_deferred_req *dr = NULL;
1241
1242 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1243 return NULL;
1244 spin_lock(&xprt->xpt_lock);
1245 if (!list_empty(&xprt->xpt_deferred)) {
1246 dr = list_entry(xprt->xpt_deferred.next,
1247 struct svc_deferred_req,
1248 handle.recent);
1249 list_del_init(&dr->handle.recent);
1250 } else
1251 clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1252 spin_unlock(&xprt->xpt_lock);
1253 return dr;
1254}
1255
1256/**
1257 * svc_find_xprt - find an RPC transport instance
1258 * @serv: pointer to svc_serv to search
1259 * @xcl_name: C string containing transport's class name
1260 * @net: owner net pointer
1261 * @af: Address family of transport's local address
1262 * @port: transport's IP port number
1263 *
1264 * Return the transport instance pointer for the endpoint accepting
1265 * connections/peer traffic from the specified transport class,
1266 * address family and port.
1267 *
1268 * Specifying 0 for the address family or port is effectively a
1269 * wild-card, and will result in matching the first transport in the
1270 * service's list that has a matching class name.
1271 */
1272struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1273 struct net *net, const sa_family_t af,
1274 const unsigned short port)
1275{
1276 struct svc_xprt *xprt;
1277 struct svc_xprt *found = NULL;
1278
1279 /* Sanity check the args */
1280 if (serv == NULL || xcl_name == NULL)
1281 return found;
1282
1283 spin_lock_bh(&serv->sv_lock);
1284 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1285 if (xprt->xpt_net != net)
1286 continue;
1287 if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1288 continue;
1289 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1290 continue;
1291 if (port != 0 && port != svc_xprt_local_port(xprt))
1292 continue;
1293 found = xprt;
1294 svc_xprt_get(xprt);
1295 break;
1296 }
1297 spin_unlock_bh(&serv->sv_lock);
1298 return found;
1299}
1300EXPORT_SYMBOL_GPL(svc_find_xprt);
1301
1302static int svc_one_xprt_name(const struct svc_xprt *xprt,
1303 char *pos, int remaining)
1304{
1305 int len;
1306
1307 len = snprintf(pos, remaining, "%s %u\n",
1308 xprt->xpt_class->xcl_name,
1309 svc_xprt_local_port(xprt));
1310 if (len >= remaining)
1311 return -ENAMETOOLONG;
1312 return len;
1313}
1314
1315/**
1316 * svc_xprt_names - format a buffer with a list of transport names
1317 * @serv: pointer to an RPC service
1318 * @buf: pointer to a buffer to be filled in
1319 * @buflen: length of buffer to be filled in
1320 *
1321 * Fills in @buf with a string containing a list of transport names,
1322 * each name terminated with '\n'.
1323 *
1324 * Returns positive length of the filled-in string on success; otherwise
1325 * a negative errno value is returned if an error occurs.
1326 */
1327int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1328{
1329 struct svc_xprt *xprt;
1330 int len, totlen;
1331 char *pos;
1332
1333 /* Sanity check args */
1334 if (!serv)
1335 return 0;
1336
1337 spin_lock_bh(&serv->sv_lock);
1338
1339 pos = buf;
1340 totlen = 0;
1341 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1342 len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1343 if (len < 0) {
1344 *buf = '\0';
1345 totlen = len;
1346 }
1347 if (len <= 0)
1348 break;
1349
1350 pos += len;
1351 totlen += len;
1352 }
1353
1354 spin_unlock_bh(&serv->sv_lock);
1355 return totlen;
1356}
1357EXPORT_SYMBOL_GPL(svc_xprt_names);
1358
1359
1360/*----------------------------------------------------------------------------*/
1361
1362static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1363{
1364 unsigned int pidx = (unsigned int)*pos;
1365 struct svc_serv *serv = m->private;
1366
1367 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1368
1369 if (!pidx)
1370 return SEQ_START_TOKEN;
1371 return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1372}
1373
1374static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1375{
1376 struct svc_pool *pool = p;
1377 struct svc_serv *serv = m->private;
1378
1379 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1380
1381 if (p == SEQ_START_TOKEN) {
1382 pool = &serv->sv_pools[0];
1383 } else {
1384 unsigned int pidx = (pool - &serv->sv_pools[0]);
1385 if (pidx < serv->sv_nrpools-1)
1386 pool = &serv->sv_pools[pidx+1];
1387 else
1388 pool = NULL;
1389 }
1390 ++*pos;
1391 return pool;
1392}
1393
1394static void svc_pool_stats_stop(struct seq_file *m, void *p)
1395{
1396}
1397
1398static int svc_pool_stats_show(struct seq_file *m, void *p)
1399{
1400 struct svc_pool *pool = p;
1401
1402 if (p == SEQ_START_TOKEN) {
1403 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1404 return 0;
1405 }
1406
1407 seq_printf(m, "%u %lu %lu %lu %lu\n",
1408 pool->sp_id,
1409 (unsigned long)atomic_long_read(&pool->sp_stats.packets),
1410 pool->sp_stats.sockets_queued,
1411 (unsigned long)atomic_long_read(&pool->sp_stats.threads_woken),
1412 (unsigned long)atomic_long_read(&pool->sp_stats.threads_timedout));
1413
1414 return 0;
1415}
1416
1417static const struct seq_operations svc_pool_stats_seq_ops = {
1418 .start = svc_pool_stats_start,
1419 .next = svc_pool_stats_next,
1420 .stop = svc_pool_stats_stop,
1421 .show = svc_pool_stats_show,
1422};
1423
1424int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1425{
1426 int err;
1427
1428 err = seq_open(file, &svc_pool_stats_seq_ops);
1429 if (!err)
1430 ((struct seq_file *) file->private_data)->private = serv;
1431 return err;
1432}
1433EXPORT_SYMBOL(svc_pool_stats_open);
1434
1435/*----------------------------------------------------------------------------*/