Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * linux/net/sunrpc/svc_xprt.c
   4 *
   5 * Author: Tom Tucker <tom@opengridcomputing.com>
   6 */
   7
   8#include <linux/sched.h>
   9#include <linux/sched/mm.h>
  10#include <linux/errno.h>
  11#include <linux/freezer.h>
  12#include <linux/kthread.h>
  13#include <linux/slab.h>
  14#include <net/sock.h>
  15#include <linux/sunrpc/addr.h>
  16#include <linux/sunrpc/stats.h>
  17#include <linux/sunrpc/svc_xprt.h>
  18#include <linux/sunrpc/svcsock.h>
  19#include <linux/sunrpc/xprt.h>
  20#include <linux/module.h>
  21#include <linux/netdevice.h>
  22#include <trace/events/sunrpc.h>
  23
  24#define RPCDBG_FACILITY	RPCDBG_SVCXPRT
  25
  26static unsigned int svc_rpc_per_connection_limit __read_mostly;
  27module_param(svc_rpc_per_connection_limit, uint, 0644);
  28
  29
  30static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
  31static int svc_deferred_recv(struct svc_rqst *rqstp);
  32static struct cache_deferred_req *svc_defer(struct cache_req *req);
  33static void svc_age_temp_xprts(struct timer_list *t);
  34static void svc_delete_xprt(struct svc_xprt *xprt);
  35
  36/* apparently the "standard" is that clients close
  37 * idle connections after 5 minutes, servers after
  38 * 6 minutes
  39 *   http://nfsv4bat.org/Documents/ConnectAThon/1996/nfstcp.pdf
  40 */
  41static int svc_conn_age_period = 6*60;
  42
  43/* List of registered transport classes */
  44static DEFINE_SPINLOCK(svc_xprt_class_lock);
  45static LIST_HEAD(svc_xprt_class_list);
  46
  47/* SMP locking strategy:
  48 *
  49 *	svc_pool->sp_lock protects most of the fields of that pool.
  50 *	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
  51 *	when both need to be taken (rare), svc_serv->sv_lock is first.
  52 *	The "service mutex" protects svc_serv->sv_nrthread.
  53 *	svc_sock->sk_lock protects the svc_sock->sk_deferred list
  54 *             and the ->sk_info_authunix cache.
  55 *
  56 *	The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
  57 *	enqueued multiply. During normal transport processing this bit
  58 *	is set by svc_xprt_enqueue and cleared by svc_xprt_received.
  59 *	Providers should not manipulate this bit directly.
  60 *
  61 *	Some flags can be set to certain values at any time
  62 *	providing that certain rules are followed:
  63 *
  64 *	XPT_CONN, XPT_DATA:
  65 *		- Can be set or cleared at any time.
  66 *		- After a set, svc_xprt_enqueue must be called to enqueue
  67 *		  the transport for processing.
  68 *		- After a clear, the transport must be read/accepted.
  69 *		  If this succeeds, it must be set again.
  70 *	XPT_CLOSE:
  71 *		- Can set at any time. It is never cleared.
  72 *      XPT_DEAD:
  73 *		- Can only be set while XPT_BUSY is held which ensures
  74 *		  that no other thread will be using the transport or will
  75 *		  try to set XPT_DEAD.
  76 */
  77int svc_reg_xprt_class(struct svc_xprt_class *xcl)
  78{
  79	struct svc_xprt_class *cl;
  80	int res = -EEXIST;
  81
  82	dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
  83
  84	INIT_LIST_HEAD(&xcl->xcl_list);
  85	spin_lock(&svc_xprt_class_lock);
  86	/* Make sure there isn't already a class with the same name */
  87	list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
  88		if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
  89			goto out;
  90	}
  91	list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
  92	res = 0;
  93out:
  94	spin_unlock(&svc_xprt_class_lock);
  95	return res;
  96}
  97EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
  98
  99void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
 100{
 101	dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
 102	spin_lock(&svc_xprt_class_lock);
 103	list_del_init(&xcl->xcl_list);
 104	spin_unlock(&svc_xprt_class_lock);
 105}
 106EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
 107
 108/**
 109 * svc_print_xprts - Format the transport list for printing
 110 * @buf: target buffer for formatted address
 111 * @maxlen: length of target buffer
 112 *
 113 * Fills in @buf with a string containing a list of transport names, each name
 114 * terminated with '\n'. If the buffer is too small, some entries may be
 115 * missing, but it is guaranteed that all lines in the output buffer are
 116 * complete.
 117 *
 118 * Returns positive length of the filled-in string.
 119 */
 120int svc_print_xprts(char *buf, int maxlen)
 121{
 122	struct svc_xprt_class *xcl;
 123	char tmpstr[80];
 124	int len = 0;
 125	buf[0] = '\0';
 126
 127	spin_lock(&svc_xprt_class_lock);
 128	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
 129		int slen;
 130
 131		slen = snprintf(tmpstr, sizeof(tmpstr), "%s %d\n",
 132				xcl->xcl_name, xcl->xcl_max_payload);
 133		if (slen >= sizeof(tmpstr) || len + slen >= maxlen)
 134			break;
 135		len += slen;
 136		strcat(buf, tmpstr);
 137	}
 138	spin_unlock(&svc_xprt_class_lock);
 139
 140	return len;
 141}
 142
 143/**
 144 * svc_xprt_deferred_close - Close a transport
 145 * @xprt: transport instance
 146 *
 147 * Used in contexts that need to defer the work of shutting down
 148 * the transport to an nfsd thread.
 149 */
 150void svc_xprt_deferred_close(struct svc_xprt *xprt)
 151{
 152	if (!test_and_set_bit(XPT_CLOSE, &xprt->xpt_flags))
 153		svc_xprt_enqueue(xprt);
 154}
 155EXPORT_SYMBOL_GPL(svc_xprt_deferred_close);
 156
 157static void svc_xprt_free(struct kref *kref)
 158{
 159	struct svc_xprt *xprt =
 160		container_of(kref, struct svc_xprt, xpt_ref);
 161	struct module *owner = xprt->xpt_class->xcl_owner;
 162	if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
 163		svcauth_unix_info_release(xprt);
 164	put_cred(xprt->xpt_cred);
 165	put_net_track(xprt->xpt_net, &xprt->ns_tracker);
 166	/* See comment on corresponding get in xs_setup_bc_tcp(): */
 167	if (xprt->xpt_bc_xprt)
 168		xprt_put(xprt->xpt_bc_xprt);
 169	if (xprt->xpt_bc_xps)
 170		xprt_switch_put(xprt->xpt_bc_xps);
 171	trace_svc_xprt_free(xprt);
 172	xprt->xpt_ops->xpo_free(xprt);
 173	module_put(owner);
 174}
 175
 176void svc_xprt_put(struct svc_xprt *xprt)
 177{
 178	kref_put(&xprt->xpt_ref, svc_xprt_free);
 179}
 180EXPORT_SYMBOL_GPL(svc_xprt_put);
 181
 182/*
 183 * Called by transport drivers to initialize the transport independent
 184 * portion of the transport instance.
 185 */
 186void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
 187		   struct svc_xprt *xprt, struct svc_serv *serv)
 188{
 189	memset(xprt, 0, sizeof(*xprt));
 190	xprt->xpt_class = xcl;
 191	xprt->xpt_ops = xcl->xcl_ops;
 192	kref_init(&xprt->xpt_ref);
 193	xprt->xpt_server = serv;
 194	INIT_LIST_HEAD(&xprt->xpt_list);
 195	INIT_LIST_HEAD(&xprt->xpt_ready);
 196	INIT_LIST_HEAD(&xprt->xpt_deferred);
 197	INIT_LIST_HEAD(&xprt->xpt_users);
 198	mutex_init(&xprt->xpt_mutex);
 199	spin_lock_init(&xprt->xpt_lock);
 200	set_bit(XPT_BUSY, &xprt->xpt_flags);
 201	xprt->xpt_net = get_net_track(net, &xprt->ns_tracker, GFP_ATOMIC);
 202	strcpy(xprt->xpt_remotebuf, "uninitialized");
 203}
 204EXPORT_SYMBOL_GPL(svc_xprt_init);
 205
 206static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
 207					 struct svc_serv *serv,
 208					 struct net *net,
 209					 const int family,
 210					 const unsigned short port,
 211					 int flags)
 212{
 213	struct sockaddr_in sin = {
 214		.sin_family		= AF_INET,
 215		.sin_addr.s_addr	= htonl(INADDR_ANY),
 216		.sin_port		= htons(port),
 217	};
 218#if IS_ENABLED(CONFIG_IPV6)
 219	struct sockaddr_in6 sin6 = {
 220		.sin6_family		= AF_INET6,
 221		.sin6_addr		= IN6ADDR_ANY_INIT,
 222		.sin6_port		= htons(port),
 223	};
 224#endif
 225	struct svc_xprt *xprt;
 226	struct sockaddr *sap;
 227	size_t len;
 228
 229	switch (family) {
 230	case PF_INET:
 231		sap = (struct sockaddr *)&sin;
 232		len = sizeof(sin);
 233		break;
 234#if IS_ENABLED(CONFIG_IPV6)
 235	case PF_INET6:
 236		sap = (struct sockaddr *)&sin6;
 237		len = sizeof(sin6);
 238		break;
 239#endif
 240	default:
 241		return ERR_PTR(-EAFNOSUPPORT);
 242	}
 243
 244	xprt = xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
 245	if (IS_ERR(xprt))
 246		trace_svc_xprt_create_err(serv->sv_program->pg_name,
 247					  xcl->xcl_name, sap, len, xprt);
 248	return xprt;
 249}
 250
 251/**
 252 * svc_xprt_received - start next receiver thread
 253 * @xprt: controlling transport
 254 *
 255 * The caller must hold the XPT_BUSY bit and must
 256 * not thereafter touch transport data.
 257 *
 258 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
 259 * insufficient) data.
 260 */
 261void svc_xprt_received(struct svc_xprt *xprt)
 262{
 263	if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
 264		WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
 265		return;
 266	}
 267
 268	/* As soon as we clear busy, the xprt could be closed and
 269	 * 'put', so we need a reference to call svc_xprt_enqueue with:
 270	 */
 271	svc_xprt_get(xprt);
 272	smp_mb__before_atomic();
 273	clear_bit(XPT_BUSY, &xprt->xpt_flags);
 274	svc_xprt_enqueue(xprt);
 275	svc_xprt_put(xprt);
 276}
 277EXPORT_SYMBOL_GPL(svc_xprt_received);
 278
 279void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
 280{
 281	clear_bit(XPT_TEMP, &new->xpt_flags);
 282	spin_lock_bh(&serv->sv_lock);
 283	list_add(&new->xpt_list, &serv->sv_permsocks);
 284	spin_unlock_bh(&serv->sv_lock);
 285	svc_xprt_received(new);
 286}
 287
 288static int _svc_xprt_create(struct svc_serv *serv, const char *xprt_name,
 289			    struct net *net, const int family,
 290			    const unsigned short port, int flags,
 291			    const struct cred *cred)
 292{
 293	struct svc_xprt_class *xcl;
 294
 295	spin_lock(&svc_xprt_class_lock);
 296	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
 297		struct svc_xprt *newxprt;
 298		unsigned short newport;
 299
 300		if (strcmp(xprt_name, xcl->xcl_name))
 301			continue;
 302
 303		if (!try_module_get(xcl->xcl_owner))
 304			goto err;
 305
 306		spin_unlock(&svc_xprt_class_lock);
 307		newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
 308		if (IS_ERR(newxprt)) {
 309			module_put(xcl->xcl_owner);
 310			return PTR_ERR(newxprt);
 311		}
 312		newxprt->xpt_cred = get_cred(cred);
 313		svc_add_new_perm_xprt(serv, newxprt);
 314		newport = svc_xprt_local_port(newxprt);
 315		return newport;
 316	}
 317 err:
 318	spin_unlock(&svc_xprt_class_lock);
 319	/* This errno is exposed to user space.  Provide a reasonable
 320	 * perror msg for a bad transport. */
 321	return -EPROTONOSUPPORT;
 322}
 323
 324/**
 325 * svc_xprt_create - Add a new listener to @serv
 326 * @serv: target RPC service
 327 * @xprt_name: transport class name
 328 * @net: network namespace
 329 * @family: network address family
 330 * @port: listener port
 331 * @flags: SVC_SOCK flags
 332 * @cred: credential to bind to this transport
 333 *
 334 * Return values:
 335 *   %0: New listener added successfully
 336 *   %-EPROTONOSUPPORT: Requested transport type not supported
 337 */
 338int svc_xprt_create(struct svc_serv *serv, const char *xprt_name,
 339		    struct net *net, const int family,
 340		    const unsigned short port, int flags,
 341		    const struct cred *cred)
 342{
 343	int err;
 344
 345	err = _svc_xprt_create(serv, xprt_name, net, family, port, flags, cred);
 
 346	if (err == -EPROTONOSUPPORT) {
 347		request_module("svc%s", xprt_name);
 348		err = _svc_xprt_create(serv, xprt_name, net, family, port, flags, cred);
 349	}
 
 
 
 350	return err;
 351}
 352EXPORT_SYMBOL_GPL(svc_xprt_create);
 353
 354/*
 355 * Copy the local and remote xprt addresses to the rqstp structure
 356 */
 357void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
 358{
 359	memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
 360	rqstp->rq_addrlen = xprt->xpt_remotelen;
 361
 362	/*
 363	 * Destination address in request is needed for binding the
 364	 * source address in RPC replies/callbacks later.
 365	 */
 366	memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
 367	rqstp->rq_daddrlen = xprt->xpt_locallen;
 368}
 369EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
 370
 371/**
 372 * svc_print_addr - Format rq_addr field for printing
 373 * @rqstp: svc_rqst struct containing address to print
 374 * @buf: target buffer for formatted address
 375 * @len: length of target buffer
 376 *
 377 */
 378char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
 379{
 380	return __svc_print_addr(svc_addr(rqstp), buf, len);
 381}
 382EXPORT_SYMBOL_GPL(svc_print_addr);
 383
 384static bool svc_xprt_slots_in_range(struct svc_xprt *xprt)
 385{
 386	unsigned int limit = svc_rpc_per_connection_limit;
 387	int nrqsts = atomic_read(&xprt->xpt_nr_rqsts);
 388
 389	return limit == 0 || (nrqsts >= 0 && nrqsts < limit);
 390}
 391
 392static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt)
 393{
 394	if (!test_bit(RQ_DATA, &rqstp->rq_flags)) {
 395		if (!svc_xprt_slots_in_range(xprt))
 396			return false;
 397		atomic_inc(&xprt->xpt_nr_rqsts);
 398		set_bit(RQ_DATA, &rqstp->rq_flags);
 399	}
 400	return true;
 401}
 402
 403static void svc_xprt_release_slot(struct svc_rqst *rqstp)
 404{
 405	struct svc_xprt	*xprt = rqstp->rq_xprt;
 406	if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) {
 407		atomic_dec(&xprt->xpt_nr_rqsts);
 408		smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
 409		svc_xprt_enqueue(xprt);
 410	}
 411}
 412
 413static bool svc_xprt_ready(struct svc_xprt *xprt)
 414{
 415	unsigned long xpt_flags;
 416
 417	/*
 418	 * If another cpu has recently updated xpt_flags,
 419	 * sk_sock->flags, xpt_reserved, or xpt_nr_rqsts, we need to
 420	 * know about it; otherwise it's possible that both that cpu and
 421	 * this one could call svc_xprt_enqueue() without either
 422	 * svc_xprt_enqueue() recognizing that the conditions below
 423	 * are satisfied, and we could stall indefinitely:
 424	 */
 425	smp_rmb();
 426	xpt_flags = READ_ONCE(xprt->xpt_flags);
 427
 428	if (xpt_flags & BIT(XPT_BUSY))
 429		return false;
 430	if (xpt_flags & (BIT(XPT_CONN) | BIT(XPT_CLOSE)))
 431		return true;
 432	if (xpt_flags & (BIT(XPT_DATA) | BIT(XPT_DEFERRED))) {
 433		if (xprt->xpt_ops->xpo_has_wspace(xprt) &&
 434		    svc_xprt_slots_in_range(xprt))
 435			return true;
 436		trace_svc_xprt_no_write_space(xprt);
 437		return false;
 438	}
 439	return false;
 440}
 441
 442/**
 443 * svc_xprt_enqueue - Queue a transport on an idle nfsd thread
 444 * @xprt: transport with data pending
 445 *
 446 */
 447void svc_xprt_enqueue(struct svc_xprt *xprt)
 448{
 449	struct svc_pool *pool;
 450	struct svc_rqst	*rqstp = NULL;
 
 
 451
 452	if (!svc_xprt_ready(xprt))
 453		return;
 454
 455	/* Mark transport as busy. It will remain in this state until
 456	 * the provider calls svc_xprt_received. We update XPT_BUSY
 457	 * atomically because it also guards against trying to enqueue
 458	 * the transport twice.
 459	 */
 460	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
 461		return;
 
 
 
 462
 463	pool = svc_pool_for_cpu(xprt->xpt_server);
 
 464
 465	atomic_long_inc(&pool->sp_stats.packets);
 466
 467	spin_lock_bh(&pool->sp_lock);
 468	list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
 469	pool->sp_stats.sockets_queued++;
 470	spin_unlock_bh(&pool->sp_lock);
 471
 472	/* find a thread for this xprt */
 473	rcu_read_lock();
 474	list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
 475		if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags))
 
 476			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 477		atomic_long_inc(&pool->sp_stats.threads_woken);
 478		rqstp->rq_qtime = ktime_get();
 479		wake_up_process(rqstp->rq_task);
 480		goto out_unlock;
 
 481	}
 482	set_bit(SP_CONGESTED, &pool->sp_flags);
 483	rqstp = NULL;
 484out_unlock:
 485	rcu_read_unlock();
 486	trace_svc_xprt_enqueue(xprt, rqstp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 487}
 488EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
 489
 490/*
 491 * Dequeue the first transport, if there is one.
 492 */
 493static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
 494{
 495	struct svc_xprt	*xprt = NULL;
 496
 497	if (list_empty(&pool->sp_sockets))
 498		goto out;
 499
 500	spin_lock_bh(&pool->sp_lock);
 501	if (likely(!list_empty(&pool->sp_sockets))) {
 502		xprt = list_first_entry(&pool->sp_sockets,
 503					struct svc_xprt, xpt_ready);
 504		list_del_init(&xprt->xpt_ready);
 505		svc_xprt_get(xprt);
 
 
 
 506	}
 507	spin_unlock_bh(&pool->sp_lock);
 508out:
 
 509	return xprt;
 510}
 511
 512/**
 513 * svc_reserve - change the space reserved for the reply to a request.
 514 * @rqstp:  The request in question
 515 * @space: new max space to reserve
 516 *
 517 * Each request reserves some space on the output queue of the transport
 518 * to make sure the reply fits.  This function reduces that reserved
 519 * space to be the amount of space used already, plus @space.
 520 *
 521 */
 522void svc_reserve(struct svc_rqst *rqstp, int space)
 523{
 524	struct svc_xprt *xprt = rqstp->rq_xprt;
 525
 526	space += rqstp->rq_res.head[0].iov_len;
 527
 528	if (xprt && space < rqstp->rq_reserved) {
 
 529		atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
 530		rqstp->rq_reserved = space;
 531		smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
 532		svc_xprt_enqueue(xprt);
 533	}
 534}
 535EXPORT_SYMBOL_GPL(svc_reserve);
 536
 537static void svc_xprt_release(struct svc_rqst *rqstp)
 538{
 539	struct svc_xprt	*xprt = rqstp->rq_xprt;
 540
 541	xprt->xpt_ops->xpo_release_rqst(rqstp);
 542
 543	kfree(rqstp->rq_deferred);
 544	rqstp->rq_deferred = NULL;
 545
 546	pagevec_release(&rqstp->rq_pvec);
 547	svc_free_res_pages(rqstp);
 548	rqstp->rq_res.page_len = 0;
 549	rqstp->rq_res.page_base = 0;
 550
 551	/* Reset response buffer and release
 552	 * the reservation.
 553	 * But first, check that enough space was reserved
 554	 * for the reply, otherwise we have a bug!
 555	 */
 556	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
 557		printk(KERN_ERR "RPC request reserved %d but used %d\n",
 558		       rqstp->rq_reserved,
 559		       rqstp->rq_res.len);
 560
 561	rqstp->rq_res.head[0].iov_len = 0;
 562	svc_reserve(rqstp, 0);
 563	svc_xprt_release_slot(rqstp);
 564	rqstp->rq_xprt = NULL;
 565	svc_xprt_put(xprt);
 566}
 567
 568/*
 569 * Some svc_serv's will have occasional work to do, even when a xprt is not
 570 * waiting to be serviced. This function is there to "kick" a task in one of
 571 * those services so that it can wake up and do that work. Note that we only
 572 * bother with pool 0 as we don't need to wake up more than one thread for
 573 * this purpose.
 574 */
 575void svc_wake_up(struct svc_serv *serv)
 576{
 577	struct svc_rqst	*rqstp;
 578	struct svc_pool *pool;
 579
 580	pool = &serv->sv_pools[0];
 581
 582	rcu_read_lock();
 583	list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
 584		/* skip any that aren't queued */
 585		if (test_bit(RQ_BUSY, &rqstp->rq_flags))
 586			continue;
 587		rcu_read_unlock();
 
 588		wake_up_process(rqstp->rq_task);
 589		trace_svc_wake_up(rqstp->rq_task->pid);
 590		return;
 591	}
 592	rcu_read_unlock();
 593
 594	/* No free entries available */
 595	set_bit(SP_TASK_PENDING, &pool->sp_flags);
 596	smp_wmb();
 597	trace_svc_wake_up(0);
 598}
 599EXPORT_SYMBOL_GPL(svc_wake_up);
 600
 601int svc_port_is_privileged(struct sockaddr *sin)
 602{
 603	switch (sin->sa_family) {
 604	case AF_INET:
 605		return ntohs(((struct sockaddr_in *)sin)->sin_port)
 606			< PROT_SOCK;
 607	case AF_INET6:
 608		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
 609			< PROT_SOCK;
 610	default:
 611		return 0;
 612	}
 613}
 614
 615/*
 616 * Make sure that we don't have too many active connections. If we have,
 617 * something must be dropped. It's not clear what will happen if we allow
 618 * "too many" connections, but when dealing with network-facing software,
 619 * we have to code defensively. Here we do that by imposing hard limits.
 620 *
 621 * There's no point in trying to do random drop here for DoS
 622 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
 623 * attacker can easily beat that.
 624 *
 625 * The only somewhat efficient mechanism would be if drop old
 626 * connections from the same IP first. But right now we don't even
 627 * record the client IP in svc_sock.
 628 *
 629 * single-threaded services that expect a lot of clients will probably
 630 * need to set sv_maxconn to override the default value which is based
 631 * on the number of threads
 632 */
 633static void svc_check_conn_limits(struct svc_serv *serv)
 634{
 635	unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
 636				(serv->sv_nrthreads+3) * 20;
 637
 638	if (serv->sv_tmpcnt > limit) {
 639		struct svc_xprt *xprt = NULL;
 640		spin_lock_bh(&serv->sv_lock);
 641		if (!list_empty(&serv->sv_tempsocks)) {
 642			/* Try to help the admin */
 643			net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
 644					       serv->sv_name, serv->sv_maxconn ?
 645					       "max number of connections" :
 646					       "number of threads");
 647			/*
 648			 * Always select the oldest connection. It's not fair,
 649			 * but so is life
 650			 */
 651			xprt = list_entry(serv->sv_tempsocks.prev,
 652					  struct svc_xprt,
 653					  xpt_list);
 654			set_bit(XPT_CLOSE, &xprt->xpt_flags);
 655			svc_xprt_get(xprt);
 656		}
 657		spin_unlock_bh(&serv->sv_lock);
 658
 659		if (xprt) {
 660			svc_xprt_enqueue(xprt);
 661			svc_xprt_put(xprt);
 662		}
 663	}
 664}
 665
 666static int svc_alloc_arg(struct svc_rqst *rqstp)
 667{
 668	struct svc_serv *serv = rqstp->rq_server;
 669	struct xdr_buf *arg = &rqstp->rq_arg;
 670	unsigned long pages, filled, ret;
 671
 672	pagevec_init(&rqstp->rq_pvec);
 673
 674	pages = (serv->sv_max_mesg + 2 * PAGE_SIZE) >> PAGE_SHIFT;
 675	if (pages > RPCSVC_MAXPAGES) {
 676		pr_warn_once("svc: warning: pages=%lu > RPCSVC_MAXPAGES=%lu\n",
 677			     pages, RPCSVC_MAXPAGES);
 678		/* use as many pages as possible */
 679		pages = RPCSVC_MAXPAGES;
 680	}
 681
 682	for (filled = 0; filled < pages; filled = ret) {
 683		ret = alloc_pages_bulk_array(GFP_KERNEL, pages,
 684					     rqstp->rq_pages);
 685		if (ret > filled)
 686			/* Made progress, don't sleep yet */
 687			continue;
 688
 689		set_current_state(TASK_INTERRUPTIBLE);
 690		if (signalled() || kthread_should_stop()) {
 691			set_current_state(TASK_RUNNING);
 692			return -EINTR;
 693		}
 694		trace_svc_alloc_arg_err(pages, ret);
 695		memalloc_retry_wait(GFP_KERNEL);
 696	}
 697	rqstp->rq_page_end = &rqstp->rq_pages[pages];
 698	rqstp->rq_pages[pages] = NULL; /* this might be seen in nfsd_splice_actor() */
 699
 700	/* Make arg->head point to first page and arg->pages point to rest */
 
 701	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
 702	arg->head[0].iov_len = PAGE_SIZE;
 703	arg->pages = rqstp->rq_pages + 1;
 704	arg->page_base = 0;
 705	/* save at least one page for response */
 706	arg->page_len = (pages-2)*PAGE_SIZE;
 707	arg->len = (pages-1)*PAGE_SIZE;
 708	arg->tail[0].iov_len = 0;
 709	return 0;
 710}
 711
 712static bool
 713rqst_should_sleep(struct svc_rqst *rqstp)
 714{
 715	struct svc_pool		*pool = rqstp->rq_pool;
 716
 717	/* did someone call svc_wake_up? */
 718	if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags))
 719		return false;
 720
 721	/* was a socket queued? */
 722	if (!list_empty(&pool->sp_sockets))
 723		return false;
 724
 725	/* are we shutting down? */
 726	if (signalled() || kthread_should_stop())
 727		return false;
 728
 729	/* are we freezing? */
 730	if (freezing(current))
 731		return false;
 732
 733	return true;
 734}
 735
 736static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
 737{
 
 738	struct svc_pool		*pool = rqstp->rq_pool;
 739	long			time_left = 0;
 740
 741	/* rq_xprt should be clear on entry */
 742	WARN_ON_ONCE(rqstp->rq_xprt);
 743
 744	rqstp->rq_xprt = svc_xprt_dequeue(pool);
 745	if (rqstp->rq_xprt)
 746		goto out_found;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 747
 748	/*
 749	 * We have to be able to interrupt this wait
 750	 * to bring down the daemons ...
 751	 */
 752	set_current_state(TASK_INTERRUPTIBLE);
 753	smp_mb__before_atomic();
 754	clear_bit(SP_CONGESTED, &pool->sp_flags);
 755	clear_bit(RQ_BUSY, &rqstp->rq_flags);
 756	smp_mb__after_atomic();
 757
 758	if (likely(rqst_should_sleep(rqstp)))
 759		time_left = schedule_timeout(timeout);
 760	else
 761		__set_current_state(TASK_RUNNING);
 762
 763	try_to_freeze();
 764
 
 765	set_bit(RQ_BUSY, &rqstp->rq_flags);
 766	smp_mb__after_atomic();
 767	rqstp->rq_xprt = svc_xprt_dequeue(pool);
 768	if (rqstp->rq_xprt)
 769		goto out_found;
 
 770
 771	if (!time_left)
 772		atomic_long_inc(&pool->sp_stats.threads_timedout);
 773
 774	if (signalled() || kthread_should_stop())
 775		return ERR_PTR(-EINTR);
 776	return ERR_PTR(-EAGAIN);
 777out_found:
 778	/* Normally we will wait up to 5 seconds for any required
 779	 * cache information to be provided.
 780	 */
 781	if (!test_bit(SP_CONGESTED, &pool->sp_flags))
 782		rqstp->rq_chandle.thread_wait = 5*HZ;
 783	else
 784		rqstp->rq_chandle.thread_wait = 1*HZ;
 785	trace_svc_xprt_dequeue(rqstp);
 786	return rqstp->rq_xprt;
 787}
 788
 789static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
 790{
 791	spin_lock_bh(&serv->sv_lock);
 792	set_bit(XPT_TEMP, &newxpt->xpt_flags);
 793	list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
 794	serv->sv_tmpcnt++;
 795	if (serv->sv_temptimer.function == NULL) {
 796		/* setup timer to age temp transports */
 797		serv->sv_temptimer.function = svc_age_temp_xprts;
 
 798		mod_timer(&serv->sv_temptimer,
 799			  jiffies + svc_conn_age_period * HZ);
 800	}
 801	spin_unlock_bh(&serv->sv_lock);
 802	svc_xprt_received(newxpt);
 803}
 804
 805static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
 806{
 807	struct svc_serv *serv = rqstp->rq_server;
 808	int len = 0;
 809
 810	if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
 
 811		if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags))
 812			xprt->xpt_ops->xpo_kill_temp_xprt(xprt);
 813		svc_delete_xprt(xprt);
 814		/* Leave XPT_BUSY set on the dead xprt: */
 815		goto out;
 816	}
 817	if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
 818		struct svc_xprt *newxpt;
 819		/*
 820		 * We know this module_get will succeed because the
 821		 * listener holds a reference too
 822		 */
 823		__module_get(xprt->xpt_class->xcl_owner);
 824		svc_check_conn_limits(xprt->xpt_server);
 825		newxpt = xprt->xpt_ops->xpo_accept(xprt);
 826		if (newxpt) {
 827			newxpt->xpt_cred = get_cred(xprt->xpt_cred);
 828			svc_add_new_temp_xprt(serv, newxpt);
 829			trace_svc_xprt_accept(newxpt, serv->sv_name);
 830		} else {
 831			module_put(xprt->xpt_class->xcl_owner);
 832		}
 833		svc_xprt_received(xprt);
 834	} else if (svc_xprt_reserve_slot(rqstp, xprt)) {
 835		/* XPT_DATA|XPT_DEFERRED case: */
 836		dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
 837			rqstp, rqstp->rq_pool->sp_id, xprt,
 838			kref_read(&xprt->xpt_ref));
 839		rqstp->rq_deferred = svc_deferred_dequeue(xprt);
 840		if (rqstp->rq_deferred)
 841			len = svc_deferred_recv(rqstp);
 842		else
 843			len = xprt->xpt_ops->xpo_recvfrom(rqstp);
 844		rqstp->rq_stime = ktime_get();
 845		rqstp->rq_reserved = serv->sv_max_mesg;
 846		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
 847	} else
 848		svc_xprt_received(xprt);
 849
 850out:
 
 851	return len;
 852}
 853
 854/*
 855 * Receive the next request on any transport.  This code is carefully
 856 * organised not to touch any cachelines in the shared svc_serv
 857 * structure, only cachelines in the local svc_pool.
 858 */
 859int svc_recv(struct svc_rqst *rqstp, long timeout)
 860{
 861	struct svc_xprt		*xprt = NULL;
 862	struct svc_serv		*serv = rqstp->rq_server;
 863	int			len, err;
 864
 
 
 
 
 
 
 
 
 865	err = svc_alloc_arg(rqstp);
 866	if (err)
 867		goto out;
 868
 869	try_to_freeze();
 870	cond_resched();
 871	err = -EINTR;
 872	if (signalled() || kthread_should_stop())
 873		goto out;
 874
 875	xprt = svc_get_next_xprt(rqstp, timeout);
 876	if (IS_ERR(xprt)) {
 877		err = PTR_ERR(xprt);
 878		goto out;
 879	}
 880
 881	len = svc_handle_xprt(rqstp, xprt);
 882
 883	/* No data, incomplete (TCP) read, or accept() */
 884	err = -EAGAIN;
 885	if (len <= 0)
 886		goto out_release;
 887	trace_svc_xdr_recvfrom(&rqstp->rq_arg);
 888
 889	clear_bit(XPT_OLD, &xprt->xpt_flags);
 890
 891	xprt->xpt_ops->xpo_secure_port(rqstp);
 
 
 
 892	rqstp->rq_chandle.defer = svc_defer;
 893	rqstp->rq_xid = svc_getu32(&rqstp->rq_arg.head[0]);
 894
 895	if (serv->sv_stats)
 896		serv->sv_stats->netcnt++;
 
 897	return len;
 898out_release:
 899	rqstp->rq_res.len = 0;
 900	svc_xprt_release(rqstp);
 901out:
 
 902	return err;
 903}
 904EXPORT_SYMBOL_GPL(svc_recv);
 905
 906/*
 907 * Drop request
 908 */
 909void svc_drop(struct svc_rqst *rqstp)
 910{
 911	trace_svc_drop(rqstp);
 
 912	svc_xprt_release(rqstp);
 913}
 914EXPORT_SYMBOL_GPL(svc_drop);
 915
 916/*
 917 * Return reply to client.
 918 */
 919int svc_send(struct svc_rqst *rqstp)
 920{
 921	struct svc_xprt	*xprt;
 922	int		len = -EFAULT;
 923	struct xdr_buf	*xb;
 924
 925	xprt = rqstp->rq_xprt;
 926	if (!xprt)
 927		goto out;
 928
 
 
 
 929	/* calculate over-all length */
 930	xb = &rqstp->rq_res;
 931	xb->len = xb->head[0].iov_len +
 932		xb->page_len +
 933		xb->tail[0].iov_len;
 934	trace_svc_xdr_sendto(rqstp->rq_xid, xb);
 935	trace_svc_stats_latency(rqstp);
 936
 937	len = xprt->xpt_ops->xpo_sendto(rqstp);
 938
 939	trace_svc_send(rqstp, len);
 
 
 
 
 
 
 
 
 940	svc_xprt_release(rqstp);
 941
 942	if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
 943		len = 0;
 944out:
 
 945	return len;
 946}
 947
 948/*
 949 * Timer function to close old temporary transports, using
 950 * a mark-and-sweep algorithm.
 951 */
 952static void svc_age_temp_xprts(struct timer_list *t)
 953{
 954	struct svc_serv *serv = from_timer(serv, t, sv_temptimer);
 955	struct svc_xprt *xprt;
 956	struct list_head *le, *next;
 957
 958	dprintk("svc_age_temp_xprts\n");
 959
 960	if (!spin_trylock_bh(&serv->sv_lock)) {
 961		/* busy, try again 1 sec later */
 962		dprintk("svc_age_temp_xprts: busy\n");
 963		mod_timer(&serv->sv_temptimer, jiffies + HZ);
 964		return;
 965	}
 966
 967	list_for_each_safe(le, next, &serv->sv_tempsocks) {
 968		xprt = list_entry(le, struct svc_xprt, xpt_list);
 969
 970		/* First time through, just mark it OLD. Second time
 971		 * through, close it. */
 972		if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
 973			continue;
 974		if (kref_read(&xprt->xpt_ref) > 1 ||
 975		    test_bit(XPT_BUSY, &xprt->xpt_flags))
 976			continue;
 977		list_del_init(le);
 978		set_bit(XPT_CLOSE, &xprt->xpt_flags);
 979		dprintk("queuing xprt %p for closing\n", xprt);
 980
 981		/* a thread will dequeue and close it soon */
 982		svc_xprt_enqueue(xprt);
 983	}
 984	spin_unlock_bh(&serv->sv_lock);
 985
 986	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
 987}
 988
 989/* Close temporary transports whose xpt_local matches server_addr immediately
 990 * instead of waiting for them to be picked up by the timer.
 991 *
 992 * This is meant to be called from a notifier_block that runs when an ip
 993 * address is deleted.
 994 */
 995void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr)
 996{
 997	struct svc_xprt *xprt;
 998	struct list_head *le, *next;
 999	LIST_HEAD(to_be_closed);
1000
1001	spin_lock_bh(&serv->sv_lock);
1002	list_for_each_safe(le, next, &serv->sv_tempsocks) {
1003		xprt = list_entry(le, struct svc_xprt, xpt_list);
1004		if (rpc_cmp_addr(server_addr, (struct sockaddr *)
1005				&xprt->xpt_local)) {
1006			dprintk("svc_age_temp_xprts_now: found %p\n", xprt);
1007			list_move(le, &to_be_closed);
1008		}
1009	}
1010	spin_unlock_bh(&serv->sv_lock);
1011
1012	while (!list_empty(&to_be_closed)) {
1013		le = to_be_closed.next;
1014		list_del_init(le);
1015		xprt = list_entry(le, struct svc_xprt, xpt_list);
1016		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1017		set_bit(XPT_KILL_TEMP, &xprt->xpt_flags);
1018		dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n",
1019				xprt);
1020		svc_xprt_enqueue(xprt);
1021	}
1022}
1023EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now);
1024
1025static void call_xpt_users(struct svc_xprt *xprt)
1026{
1027	struct svc_xpt_user *u;
1028
1029	spin_lock(&xprt->xpt_lock);
1030	while (!list_empty(&xprt->xpt_users)) {
1031		u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
1032		list_del_init(&u->list);
1033		u->callback(u);
1034	}
1035	spin_unlock(&xprt->xpt_lock);
1036}
1037
1038/*
1039 * Remove a dead transport
1040 */
1041static void svc_delete_xprt(struct svc_xprt *xprt)
1042{
1043	struct svc_serv	*serv = xprt->xpt_server;
1044	struct svc_deferred_req *dr;
1045
 
1046	if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
1047		return;
1048
1049	trace_svc_xprt_detach(xprt);
1050	xprt->xpt_ops->xpo_detach(xprt);
1051	if (xprt->xpt_bc_xprt)
1052		xprt->xpt_bc_xprt->ops->close(xprt->xpt_bc_xprt);
1053
1054	spin_lock_bh(&serv->sv_lock);
1055	list_del_init(&xprt->xpt_list);
1056	WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
1057	if (test_bit(XPT_TEMP, &xprt->xpt_flags))
1058		serv->sv_tmpcnt--;
1059	spin_unlock_bh(&serv->sv_lock);
1060
1061	while ((dr = svc_deferred_dequeue(xprt)) != NULL)
1062		kfree(dr);
1063
1064	call_xpt_users(xprt);
1065	svc_xprt_put(xprt);
1066}
1067
1068/**
1069 * svc_xprt_close - Close a client connection
1070 * @xprt: transport to disconnect
1071 *
1072 */
1073void svc_xprt_close(struct svc_xprt *xprt)
1074{
1075	trace_svc_xprt_close(xprt);
1076	set_bit(XPT_CLOSE, &xprt->xpt_flags);
1077	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1078		/* someone else will have to effect the close */
1079		return;
1080	/*
1081	 * We expect svc_close_xprt() to work even when no threads are
1082	 * running (e.g., while configuring the server before starting
1083	 * any threads), so if the transport isn't busy, we delete
1084	 * it ourself:
1085	 */
1086	svc_delete_xprt(xprt);
1087}
1088EXPORT_SYMBOL_GPL(svc_xprt_close);
1089
1090static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1091{
1092	struct svc_xprt *xprt;
1093	int ret = 0;
1094
1095	spin_lock_bh(&serv->sv_lock);
1096	list_for_each_entry(xprt, xprt_list, xpt_list) {
1097		if (xprt->xpt_net != net)
1098			continue;
1099		ret++;
1100		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1101		svc_xprt_enqueue(xprt);
1102	}
1103	spin_unlock_bh(&serv->sv_lock);
1104	return ret;
1105}
1106
1107static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
1108{
1109	struct svc_pool *pool;
1110	struct svc_xprt *xprt;
1111	struct svc_xprt *tmp;
1112	int i;
1113
1114	for (i = 0; i < serv->sv_nrpools; i++) {
1115		pool = &serv->sv_pools[i];
1116
1117		spin_lock_bh(&pool->sp_lock);
1118		list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
1119			if (xprt->xpt_net != net)
1120				continue;
1121			list_del_init(&xprt->xpt_ready);
1122			spin_unlock_bh(&pool->sp_lock);
1123			return xprt;
1124		}
1125		spin_unlock_bh(&pool->sp_lock);
1126	}
1127	return NULL;
1128}
1129
1130static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1131{
1132	struct svc_xprt *xprt;
1133
1134	while ((xprt = svc_dequeue_net(serv, net))) {
1135		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1136		svc_delete_xprt(xprt);
1137	}
1138}
1139
1140/**
1141 * svc_xprt_destroy_all - Destroy transports associated with @serv
1142 * @serv: RPC service to be shut down
1143 * @net: target network namespace
1144 *
1145 * Server threads may still be running (especially in the case where the
1146 * service is still running in other network namespaces).
1147 *
1148 * So we shut down sockets the same way we would on a running server, by
1149 * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1150 * the close.  In the case there are no such other threads,
1151 * threads running, svc_clean_up_xprts() does a simple version of a
1152 * server's main event loop, and in the case where there are other
1153 * threads, we may need to wait a little while and then check again to
1154 * see if they're done.
1155 */
1156void svc_xprt_destroy_all(struct svc_serv *serv, struct net *net)
1157{
1158	int delay = 0;
1159
1160	while (svc_close_list(serv, &serv->sv_permsocks, net) +
1161	       svc_close_list(serv, &serv->sv_tempsocks, net)) {
1162
1163		svc_clean_up_xprts(serv, net);
1164		msleep(delay++);
1165	}
1166}
1167EXPORT_SYMBOL_GPL(svc_xprt_destroy_all);
1168
1169/*
1170 * Handle defer and revisit of requests
1171 */
1172
1173static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1174{
1175	struct svc_deferred_req *dr =
1176		container_of(dreq, struct svc_deferred_req, handle);
1177	struct svc_xprt *xprt = dr->xprt;
1178
1179	spin_lock(&xprt->xpt_lock);
1180	set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1181	if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1182		spin_unlock(&xprt->xpt_lock);
1183		trace_svc_defer_drop(dr);
1184		svc_xprt_put(xprt);
 
1185		kfree(dr);
1186		return;
1187	}
 
1188	dr->xprt = NULL;
1189	list_add(&dr->handle.recent, &xprt->xpt_deferred);
1190	spin_unlock(&xprt->xpt_lock);
1191	trace_svc_defer_queue(dr);
1192	svc_xprt_enqueue(xprt);
1193	svc_xprt_put(xprt);
1194}
1195
1196/*
1197 * Save the request off for later processing. The request buffer looks
1198 * like this:
1199 *
1200 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1201 *
1202 * This code can only handle requests that consist of an xprt-header
1203 * and rpc-header.
1204 */
1205static struct cache_deferred_req *svc_defer(struct cache_req *req)
1206{
1207	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1208	struct svc_deferred_req *dr;
1209
1210	if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1211		return NULL; /* if more than a page, give up FIXME */
1212	if (rqstp->rq_deferred) {
1213		dr = rqstp->rq_deferred;
1214		rqstp->rq_deferred = NULL;
1215	} else {
1216		size_t skip;
1217		size_t size;
1218		/* FIXME maybe discard if size too large */
1219		size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1220		dr = kmalloc(size, GFP_KERNEL);
1221		if (dr == NULL)
1222			return NULL;
1223
1224		dr->handle.owner = rqstp->rq_server;
1225		dr->prot = rqstp->rq_prot;
1226		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1227		dr->addrlen = rqstp->rq_addrlen;
1228		dr->daddr = rqstp->rq_daddr;
1229		dr->argslen = rqstp->rq_arg.len >> 2;
1230		dr->xprt_ctxt = rqstp->rq_xprt_ctxt;
1231		rqstp->rq_xprt_ctxt = NULL;
1232
1233		/* back up head to the start of the buffer and copy */
1234		skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1235		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1236		       dr->argslen << 2);
1237	}
1238	trace_svc_defer(rqstp);
1239	svc_xprt_get(rqstp->rq_xprt);
1240	dr->xprt = rqstp->rq_xprt;
1241	set_bit(RQ_DROPME, &rqstp->rq_flags);
1242
1243	dr->handle.revisit = svc_revisit;
 
1244	return &dr->handle;
1245}
1246
1247/*
1248 * recv data from a deferred request into an active one
1249 */
1250static noinline int svc_deferred_recv(struct svc_rqst *rqstp)
1251{
1252	struct svc_deferred_req *dr = rqstp->rq_deferred;
1253
1254	trace_svc_defer_recv(dr);
1255
1256	/* setup iov_base past transport header */
1257	rqstp->rq_arg.head[0].iov_base = dr->args;
1258	/* The iov_len does not include the transport header bytes */
1259	rqstp->rq_arg.head[0].iov_len = dr->argslen << 2;
1260	rqstp->rq_arg.page_len = 0;
1261	/* The rq_arg.len includes the transport header bytes */
1262	rqstp->rq_arg.len     = dr->argslen << 2;
1263	rqstp->rq_prot        = dr->prot;
1264	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1265	rqstp->rq_addrlen     = dr->addrlen;
1266	/* Save off transport header len in case we get deferred again */
 
1267	rqstp->rq_daddr       = dr->daddr;
1268	rqstp->rq_respages    = rqstp->rq_pages;
1269	rqstp->rq_xprt_ctxt   = dr->xprt_ctxt;
1270	svc_xprt_received(rqstp->rq_xprt);
1271	return dr->argslen << 2;
1272}
1273
1274
1275static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1276{
1277	struct svc_deferred_req *dr = NULL;
1278
1279	if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1280		return NULL;
1281	spin_lock(&xprt->xpt_lock);
1282	if (!list_empty(&xprt->xpt_deferred)) {
1283		dr = list_entry(xprt->xpt_deferred.next,
1284				struct svc_deferred_req,
1285				handle.recent);
1286		list_del_init(&dr->handle.recent);
 
1287	} else
1288		clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1289	spin_unlock(&xprt->xpt_lock);
1290	return dr;
1291}
1292
1293/**
1294 * svc_find_xprt - find an RPC transport instance
1295 * @serv: pointer to svc_serv to search
1296 * @xcl_name: C string containing transport's class name
1297 * @net: owner net pointer
1298 * @af: Address family of transport's local address
1299 * @port: transport's IP port number
1300 *
1301 * Return the transport instance pointer for the endpoint accepting
1302 * connections/peer traffic from the specified transport class,
1303 * address family and port.
1304 *
1305 * Specifying 0 for the address family or port is effectively a
1306 * wild-card, and will result in matching the first transport in the
1307 * service's list that has a matching class name.
1308 */
1309struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1310			       struct net *net, const sa_family_t af,
1311			       const unsigned short port)
1312{
1313	struct svc_xprt *xprt;
1314	struct svc_xprt *found = NULL;
1315
1316	/* Sanity check the args */
1317	if (serv == NULL || xcl_name == NULL)
1318		return found;
1319
1320	spin_lock_bh(&serv->sv_lock);
1321	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1322		if (xprt->xpt_net != net)
1323			continue;
1324		if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1325			continue;
1326		if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1327			continue;
1328		if (port != 0 && port != svc_xprt_local_port(xprt))
1329			continue;
1330		found = xprt;
1331		svc_xprt_get(xprt);
1332		break;
1333	}
1334	spin_unlock_bh(&serv->sv_lock);
1335	return found;
1336}
1337EXPORT_SYMBOL_GPL(svc_find_xprt);
1338
1339static int svc_one_xprt_name(const struct svc_xprt *xprt,
1340			     char *pos, int remaining)
1341{
1342	int len;
1343
1344	len = snprintf(pos, remaining, "%s %u\n",
1345			xprt->xpt_class->xcl_name,
1346			svc_xprt_local_port(xprt));
1347	if (len >= remaining)
1348		return -ENAMETOOLONG;
1349	return len;
1350}
1351
1352/**
1353 * svc_xprt_names - format a buffer with a list of transport names
1354 * @serv: pointer to an RPC service
1355 * @buf: pointer to a buffer to be filled in
1356 * @buflen: length of buffer to be filled in
1357 *
1358 * Fills in @buf with a string containing a list of transport names,
1359 * each name terminated with '\n'.
1360 *
1361 * Returns positive length of the filled-in string on success; otherwise
1362 * a negative errno value is returned if an error occurs.
1363 */
1364int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1365{
1366	struct svc_xprt *xprt;
1367	int len, totlen;
1368	char *pos;
1369
1370	/* Sanity check args */
1371	if (!serv)
1372		return 0;
1373
1374	spin_lock_bh(&serv->sv_lock);
1375
1376	pos = buf;
1377	totlen = 0;
1378	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1379		len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1380		if (len < 0) {
1381			*buf = '\0';
1382			totlen = len;
1383		}
1384		if (len <= 0)
1385			break;
1386
1387		pos += len;
1388		totlen += len;
1389	}
1390
1391	spin_unlock_bh(&serv->sv_lock);
1392	return totlen;
1393}
1394EXPORT_SYMBOL_GPL(svc_xprt_names);
1395
1396
1397/*----------------------------------------------------------------------------*/
1398
1399static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1400{
1401	unsigned int pidx = (unsigned int)*pos;
1402	struct svc_serv *serv = m->private;
1403
1404	dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1405
1406	if (!pidx)
1407		return SEQ_START_TOKEN;
1408	return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1409}
1410
1411static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1412{
1413	struct svc_pool *pool = p;
1414	struct svc_serv *serv = m->private;
1415
1416	dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1417
1418	if (p == SEQ_START_TOKEN) {
1419		pool = &serv->sv_pools[0];
1420	} else {
1421		unsigned int pidx = (pool - &serv->sv_pools[0]);
1422		if (pidx < serv->sv_nrpools-1)
1423			pool = &serv->sv_pools[pidx+1];
1424		else
1425			pool = NULL;
1426	}
1427	++*pos;
1428	return pool;
1429}
1430
1431static void svc_pool_stats_stop(struct seq_file *m, void *p)
1432{
1433}
1434
1435static int svc_pool_stats_show(struct seq_file *m, void *p)
1436{
1437	struct svc_pool *pool = p;
1438
1439	if (p == SEQ_START_TOKEN) {
1440		seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1441		return 0;
1442	}
1443
1444	seq_printf(m, "%u %lu %lu %lu %lu\n",
1445		pool->sp_id,
1446		(unsigned long)atomic_long_read(&pool->sp_stats.packets),
1447		pool->sp_stats.sockets_queued,
1448		(unsigned long)atomic_long_read(&pool->sp_stats.threads_woken),
1449		(unsigned long)atomic_long_read(&pool->sp_stats.threads_timedout));
1450
1451	return 0;
1452}
1453
1454static const struct seq_operations svc_pool_stats_seq_ops = {
1455	.start	= svc_pool_stats_start,
1456	.next	= svc_pool_stats_next,
1457	.stop	= svc_pool_stats_stop,
1458	.show	= svc_pool_stats_show,
1459};
1460
1461int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1462{
1463	int err;
1464
1465	err = seq_open(file, &svc_pool_stats_seq_ops);
1466	if (!err)
1467		((struct seq_file *) file->private_data)->private = serv;
1468	return err;
1469}
1470EXPORT_SYMBOL(svc_pool_stats_open);
1471
1472/*----------------------------------------------------------------------------*/
v4.10.11
 
   1/*
   2 * linux/net/sunrpc/svc_xprt.c
   3 *
   4 * Author: Tom Tucker <tom@opengridcomputing.com>
   5 */
   6
   7#include <linux/sched.h>
 
   8#include <linux/errno.h>
   9#include <linux/freezer.h>
  10#include <linux/kthread.h>
  11#include <linux/slab.h>
  12#include <net/sock.h>
  13#include <linux/sunrpc/addr.h>
  14#include <linux/sunrpc/stats.h>
  15#include <linux/sunrpc/svc_xprt.h>
  16#include <linux/sunrpc/svcsock.h>
  17#include <linux/sunrpc/xprt.h>
  18#include <linux/module.h>
  19#include <linux/netdevice.h>
  20#include <trace/events/sunrpc.h>
  21
  22#define RPCDBG_FACILITY	RPCDBG_SVCXPRT
  23
  24static unsigned int svc_rpc_per_connection_limit __read_mostly;
  25module_param(svc_rpc_per_connection_limit, uint, 0644);
  26
  27
  28static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
  29static int svc_deferred_recv(struct svc_rqst *rqstp);
  30static struct cache_deferred_req *svc_defer(struct cache_req *req);
  31static void svc_age_temp_xprts(unsigned long closure);
  32static void svc_delete_xprt(struct svc_xprt *xprt);
  33
  34/* apparently the "standard" is that clients close
  35 * idle connections after 5 minutes, servers after
  36 * 6 minutes
  37 *   http://www.connectathon.org/talks96/nfstcp.pdf
  38 */
  39static int svc_conn_age_period = 6*60;
  40
  41/* List of registered transport classes */
  42static DEFINE_SPINLOCK(svc_xprt_class_lock);
  43static LIST_HEAD(svc_xprt_class_list);
  44
  45/* SMP locking strategy:
  46 *
  47 *	svc_pool->sp_lock protects most of the fields of that pool.
  48 *	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
  49 *	when both need to be taken (rare), svc_serv->sv_lock is first.
  50 *	The "service mutex" protects svc_serv->sv_nrthread.
  51 *	svc_sock->sk_lock protects the svc_sock->sk_deferred list
  52 *             and the ->sk_info_authunix cache.
  53 *
  54 *	The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
  55 *	enqueued multiply. During normal transport processing this bit
  56 *	is set by svc_xprt_enqueue and cleared by svc_xprt_received.
  57 *	Providers should not manipulate this bit directly.
  58 *
  59 *	Some flags can be set to certain values at any time
  60 *	providing that certain rules are followed:
  61 *
  62 *	XPT_CONN, XPT_DATA:
  63 *		- Can be set or cleared at any time.
  64 *		- After a set, svc_xprt_enqueue must be called to enqueue
  65 *		  the transport for processing.
  66 *		- After a clear, the transport must be read/accepted.
  67 *		  If this succeeds, it must be set again.
  68 *	XPT_CLOSE:
  69 *		- Can set at any time. It is never cleared.
  70 *      XPT_DEAD:
  71 *		- Can only be set while XPT_BUSY is held which ensures
  72 *		  that no other thread will be using the transport or will
  73 *		  try to set XPT_DEAD.
  74 */
  75int svc_reg_xprt_class(struct svc_xprt_class *xcl)
  76{
  77	struct svc_xprt_class *cl;
  78	int res = -EEXIST;
  79
  80	dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
  81
  82	INIT_LIST_HEAD(&xcl->xcl_list);
  83	spin_lock(&svc_xprt_class_lock);
  84	/* Make sure there isn't already a class with the same name */
  85	list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
  86		if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
  87			goto out;
  88	}
  89	list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
  90	res = 0;
  91out:
  92	spin_unlock(&svc_xprt_class_lock);
  93	return res;
  94}
  95EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
  96
  97void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
  98{
  99	dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
 100	spin_lock(&svc_xprt_class_lock);
 101	list_del_init(&xcl->xcl_list);
 102	spin_unlock(&svc_xprt_class_lock);
 103}
 104EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
 105
 106/*
 107 * Format the transport list for printing
 
 
 
 
 
 
 
 
 
 108 */
 109int svc_print_xprts(char *buf, int maxlen)
 110{
 111	struct svc_xprt_class *xcl;
 112	char tmpstr[80];
 113	int len = 0;
 114	buf[0] = '\0';
 115
 116	spin_lock(&svc_xprt_class_lock);
 117	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
 118		int slen;
 119
 120		sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
 121		slen = strlen(tmpstr);
 122		if (len + slen > maxlen)
 123			break;
 124		len += slen;
 125		strcat(buf, tmpstr);
 126	}
 127	spin_unlock(&svc_xprt_class_lock);
 128
 129	return len;
 130}
 131
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 132static void svc_xprt_free(struct kref *kref)
 133{
 134	struct svc_xprt *xprt =
 135		container_of(kref, struct svc_xprt, xpt_ref);
 136	struct module *owner = xprt->xpt_class->xcl_owner;
 137	if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
 138		svcauth_unix_info_release(xprt);
 139	put_net(xprt->xpt_net);
 
 140	/* See comment on corresponding get in xs_setup_bc_tcp(): */
 141	if (xprt->xpt_bc_xprt)
 142		xprt_put(xprt->xpt_bc_xprt);
 143	if (xprt->xpt_bc_xps)
 144		xprt_switch_put(xprt->xpt_bc_xps);
 
 145	xprt->xpt_ops->xpo_free(xprt);
 146	module_put(owner);
 147}
 148
 149void svc_xprt_put(struct svc_xprt *xprt)
 150{
 151	kref_put(&xprt->xpt_ref, svc_xprt_free);
 152}
 153EXPORT_SYMBOL_GPL(svc_xprt_put);
 154
 155/*
 156 * Called by transport drivers to initialize the transport independent
 157 * portion of the transport instance.
 158 */
 159void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
 160		   struct svc_xprt *xprt, struct svc_serv *serv)
 161{
 162	memset(xprt, 0, sizeof(*xprt));
 163	xprt->xpt_class = xcl;
 164	xprt->xpt_ops = xcl->xcl_ops;
 165	kref_init(&xprt->xpt_ref);
 166	xprt->xpt_server = serv;
 167	INIT_LIST_HEAD(&xprt->xpt_list);
 168	INIT_LIST_HEAD(&xprt->xpt_ready);
 169	INIT_LIST_HEAD(&xprt->xpt_deferred);
 170	INIT_LIST_HEAD(&xprt->xpt_users);
 171	mutex_init(&xprt->xpt_mutex);
 172	spin_lock_init(&xprt->xpt_lock);
 173	set_bit(XPT_BUSY, &xprt->xpt_flags);
 174	rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
 175	xprt->xpt_net = get_net(net);
 176}
 177EXPORT_SYMBOL_GPL(svc_xprt_init);
 178
 179static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
 180					 struct svc_serv *serv,
 181					 struct net *net,
 182					 const int family,
 183					 const unsigned short port,
 184					 int flags)
 185{
 186	struct sockaddr_in sin = {
 187		.sin_family		= AF_INET,
 188		.sin_addr.s_addr	= htonl(INADDR_ANY),
 189		.sin_port		= htons(port),
 190	};
 191#if IS_ENABLED(CONFIG_IPV6)
 192	struct sockaddr_in6 sin6 = {
 193		.sin6_family		= AF_INET6,
 194		.sin6_addr		= IN6ADDR_ANY_INIT,
 195		.sin6_port		= htons(port),
 196	};
 197#endif
 
 198	struct sockaddr *sap;
 199	size_t len;
 200
 201	switch (family) {
 202	case PF_INET:
 203		sap = (struct sockaddr *)&sin;
 204		len = sizeof(sin);
 205		break;
 206#if IS_ENABLED(CONFIG_IPV6)
 207	case PF_INET6:
 208		sap = (struct sockaddr *)&sin6;
 209		len = sizeof(sin6);
 210		break;
 211#endif
 212	default:
 213		return ERR_PTR(-EAFNOSUPPORT);
 214	}
 215
 216	return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
 
 
 
 
 217}
 218
 219/*
 220 * svc_xprt_received conditionally queues the transport for processing
 221 * by another thread. The caller must hold the XPT_BUSY bit and must
 
 
 222 * not thereafter touch transport data.
 223 *
 224 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
 225 * insufficient) data.
 226 */
 227static void svc_xprt_received(struct svc_xprt *xprt)
 228{
 229	if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
 230		WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
 231		return;
 232	}
 233
 234	/* As soon as we clear busy, the xprt could be closed and
 235	 * 'put', so we need a reference to call svc_enqueue_xprt with:
 236	 */
 237	svc_xprt_get(xprt);
 238	smp_mb__before_atomic();
 239	clear_bit(XPT_BUSY, &xprt->xpt_flags);
 240	xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
 241	svc_xprt_put(xprt);
 242}
 
 243
 244void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
 245{
 246	clear_bit(XPT_TEMP, &new->xpt_flags);
 247	spin_lock_bh(&serv->sv_lock);
 248	list_add(&new->xpt_list, &serv->sv_permsocks);
 249	spin_unlock_bh(&serv->sv_lock);
 250	svc_xprt_received(new);
 251}
 252
 253int _svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
 254		    struct net *net, const int family,
 255		    const unsigned short port, int flags)
 
 256{
 257	struct svc_xprt_class *xcl;
 258
 259	spin_lock(&svc_xprt_class_lock);
 260	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
 261		struct svc_xprt *newxprt;
 262		unsigned short newport;
 263
 264		if (strcmp(xprt_name, xcl->xcl_name))
 265			continue;
 266
 267		if (!try_module_get(xcl->xcl_owner))
 268			goto err;
 269
 270		spin_unlock(&svc_xprt_class_lock);
 271		newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
 272		if (IS_ERR(newxprt)) {
 273			module_put(xcl->xcl_owner);
 274			return PTR_ERR(newxprt);
 275		}
 
 276		svc_add_new_perm_xprt(serv, newxprt);
 277		newport = svc_xprt_local_port(newxprt);
 278		return newport;
 279	}
 280 err:
 281	spin_unlock(&svc_xprt_class_lock);
 282	/* This errno is exposed to user space.  Provide a reasonable
 283	 * perror msg for a bad transport. */
 284	return -EPROTONOSUPPORT;
 285}
 286
 287int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 288		    struct net *net, const int family,
 289		    const unsigned short port, int flags)
 
 290{
 291	int err;
 292
 293	dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
 294	err = _svc_create_xprt(serv, xprt_name, net, family, port, flags);
 295	if (err == -EPROTONOSUPPORT) {
 296		request_module("svc%s", xprt_name);
 297		err = _svc_create_xprt(serv, xprt_name, net, family, port, flags);
 298	}
 299	if (err)
 300		dprintk("svc: transport %s not found, err %d\n",
 301			xprt_name, err);
 302	return err;
 303}
 304EXPORT_SYMBOL_GPL(svc_create_xprt);
 305
 306/*
 307 * Copy the local and remote xprt addresses to the rqstp structure
 308 */
 309void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
 310{
 311	memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
 312	rqstp->rq_addrlen = xprt->xpt_remotelen;
 313
 314	/*
 315	 * Destination address in request is needed for binding the
 316	 * source address in RPC replies/callbacks later.
 317	 */
 318	memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
 319	rqstp->rq_daddrlen = xprt->xpt_locallen;
 320}
 321EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
 322
 323/**
 324 * svc_print_addr - Format rq_addr field for printing
 325 * @rqstp: svc_rqst struct containing address to print
 326 * @buf: target buffer for formatted address
 327 * @len: length of target buffer
 328 *
 329 */
 330char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
 331{
 332	return __svc_print_addr(svc_addr(rqstp), buf, len);
 333}
 334EXPORT_SYMBOL_GPL(svc_print_addr);
 335
 336static bool svc_xprt_slots_in_range(struct svc_xprt *xprt)
 337{
 338	unsigned int limit = svc_rpc_per_connection_limit;
 339	int nrqsts = atomic_read(&xprt->xpt_nr_rqsts);
 340
 341	return limit == 0 || (nrqsts >= 0 && nrqsts < limit);
 342}
 343
 344static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt)
 345{
 346	if (!test_bit(RQ_DATA, &rqstp->rq_flags)) {
 347		if (!svc_xprt_slots_in_range(xprt))
 348			return false;
 349		atomic_inc(&xprt->xpt_nr_rqsts);
 350		set_bit(RQ_DATA, &rqstp->rq_flags);
 351	}
 352	return true;
 353}
 354
 355static void svc_xprt_release_slot(struct svc_rqst *rqstp)
 356{
 357	struct svc_xprt	*xprt = rqstp->rq_xprt;
 358	if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) {
 359		atomic_dec(&xprt->xpt_nr_rqsts);
 
 360		svc_xprt_enqueue(xprt);
 361	}
 362}
 363
 364static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt)
 365{
 366	if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 367		return true;
 368	if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED))) {
 369		if (xprt->xpt_ops->xpo_has_wspace(xprt) &&
 370		    svc_xprt_slots_in_range(xprt))
 371			return true;
 372		trace_svc_xprt_no_write_space(xprt);
 373		return false;
 374	}
 375	return false;
 376}
 377
 378void svc_xprt_do_enqueue(struct svc_xprt *xprt)
 
 
 
 
 
 379{
 380	struct svc_pool *pool;
 381	struct svc_rqst	*rqstp = NULL;
 382	int cpu;
 383	bool queued = false;
 384
 385	if (!svc_xprt_has_something_to_do(xprt))
 386		goto out;
 387
 388	/* Mark transport as busy. It will remain in this state until
 389	 * the provider calls svc_xprt_received. We update XPT_BUSY
 390	 * atomically because it also guards against trying to enqueue
 391	 * the transport twice.
 392	 */
 393	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
 394		/* Don't enqueue transport while already enqueued */
 395		dprintk("svc: transport %p busy, not enqueued\n", xprt);
 396		goto out;
 397	}
 398
 399	cpu = get_cpu();
 400	pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
 401
 402	atomic_long_inc(&pool->sp_stats.packets);
 403
 404redo_search:
 
 
 
 
 405	/* find a thread for this xprt */
 406	rcu_read_lock();
 407	list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
 408		/* Do a lockless check first */
 409		if (test_bit(RQ_BUSY, &rqstp->rq_flags))
 410			continue;
 411
 412		/*
 413		 * Once the xprt has been queued, it can only be dequeued by
 414		 * the task that intends to service it. All we can do at that
 415		 * point is to try to wake this thread back up so that it can
 416		 * do so.
 417		 */
 418		if (!queued) {
 419			spin_lock_bh(&rqstp->rq_lock);
 420			if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags)) {
 421				/* already busy, move on... */
 422				spin_unlock_bh(&rqstp->rq_lock);
 423				continue;
 424			}
 425
 426			/* this one will do */
 427			rqstp->rq_xprt = xprt;
 428			svc_xprt_get(xprt);
 429			spin_unlock_bh(&rqstp->rq_lock);
 430		}
 431		rcu_read_unlock();
 432
 433		atomic_long_inc(&pool->sp_stats.threads_woken);
 
 434		wake_up_process(rqstp->rq_task);
 435		put_cpu();
 436		goto out;
 437	}
 
 
 
 438	rcu_read_unlock();
 439
 440	/*
 441	 * We didn't find an idle thread to use, so we need to queue the xprt.
 442	 * Do so and then search again. If we find one, we can't hook this one
 443	 * up to it directly but we can wake the thread up in the hopes that it
 444	 * will pick it up once it searches for a xprt to service.
 445	 */
 446	if (!queued) {
 447		queued = true;
 448		dprintk("svc: transport %p put into queue\n", xprt);
 449		spin_lock_bh(&pool->sp_lock);
 450		list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
 451		pool->sp_stats.sockets_queued++;
 452		spin_unlock_bh(&pool->sp_lock);
 453		goto redo_search;
 454	}
 455	rqstp = NULL;
 456	put_cpu();
 457out:
 458	trace_svc_xprt_do_enqueue(xprt, rqstp);
 459}
 460EXPORT_SYMBOL_GPL(svc_xprt_do_enqueue);
 461
 462/*
 463 * Queue up a transport with data pending. If there are idle nfsd
 464 * processes, wake 'em up.
 465 *
 466 */
 467void svc_xprt_enqueue(struct svc_xprt *xprt)
 468{
 469	if (test_bit(XPT_BUSY, &xprt->xpt_flags))
 470		return;
 471	xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
 472}
 473EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
 474
 475/*
 476 * Dequeue the first transport, if there is one.
 477 */
 478static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
 479{
 480	struct svc_xprt	*xprt = NULL;
 481
 482	if (list_empty(&pool->sp_sockets))
 483		goto out;
 484
 485	spin_lock_bh(&pool->sp_lock);
 486	if (likely(!list_empty(&pool->sp_sockets))) {
 487		xprt = list_first_entry(&pool->sp_sockets,
 488					struct svc_xprt, xpt_ready);
 489		list_del_init(&xprt->xpt_ready);
 490		svc_xprt_get(xprt);
 491
 492		dprintk("svc: transport %p dequeued, inuse=%d\n",
 493			xprt, atomic_read(&xprt->xpt_ref.refcount));
 494	}
 495	spin_unlock_bh(&pool->sp_lock);
 496out:
 497	trace_svc_xprt_dequeue(xprt);
 498	return xprt;
 499}
 500
 501/**
 502 * svc_reserve - change the space reserved for the reply to a request.
 503 * @rqstp:  The request in question
 504 * @space: new max space to reserve
 505 *
 506 * Each request reserves some space on the output queue of the transport
 507 * to make sure the reply fits.  This function reduces that reserved
 508 * space to be the amount of space used already, plus @space.
 509 *
 510 */
 511void svc_reserve(struct svc_rqst *rqstp, int space)
 512{
 
 
 513	space += rqstp->rq_res.head[0].iov_len;
 514
 515	if (space < rqstp->rq_reserved) {
 516		struct svc_xprt *xprt = rqstp->rq_xprt;
 517		atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
 518		rqstp->rq_reserved = space;
 519
 520		svc_xprt_enqueue(xprt);
 521	}
 522}
 523EXPORT_SYMBOL_GPL(svc_reserve);
 524
 525static void svc_xprt_release(struct svc_rqst *rqstp)
 526{
 527	struct svc_xprt	*xprt = rqstp->rq_xprt;
 528
 529	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
 530
 531	kfree(rqstp->rq_deferred);
 532	rqstp->rq_deferred = NULL;
 533
 
 534	svc_free_res_pages(rqstp);
 535	rqstp->rq_res.page_len = 0;
 536	rqstp->rq_res.page_base = 0;
 537
 538	/* Reset response buffer and release
 539	 * the reservation.
 540	 * But first, check that enough space was reserved
 541	 * for the reply, otherwise we have a bug!
 542	 */
 543	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
 544		printk(KERN_ERR "RPC request reserved %d but used %d\n",
 545		       rqstp->rq_reserved,
 546		       rqstp->rq_res.len);
 547
 548	rqstp->rq_res.head[0].iov_len = 0;
 549	svc_reserve(rqstp, 0);
 550	svc_xprt_release_slot(rqstp);
 551	rqstp->rq_xprt = NULL;
 552	svc_xprt_put(xprt);
 553}
 554
 555/*
 556 * Some svc_serv's will have occasional work to do, even when a xprt is not
 557 * waiting to be serviced. This function is there to "kick" a task in one of
 558 * those services so that it can wake up and do that work. Note that we only
 559 * bother with pool 0 as we don't need to wake up more than one thread for
 560 * this purpose.
 561 */
 562void svc_wake_up(struct svc_serv *serv)
 563{
 564	struct svc_rqst	*rqstp;
 565	struct svc_pool *pool;
 566
 567	pool = &serv->sv_pools[0];
 568
 569	rcu_read_lock();
 570	list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
 571		/* skip any that aren't queued */
 572		if (test_bit(RQ_BUSY, &rqstp->rq_flags))
 573			continue;
 574		rcu_read_unlock();
 575		dprintk("svc: daemon %p woken up.\n", rqstp);
 576		wake_up_process(rqstp->rq_task);
 577		trace_svc_wake_up(rqstp->rq_task->pid);
 578		return;
 579	}
 580	rcu_read_unlock();
 581
 582	/* No free entries available */
 583	set_bit(SP_TASK_PENDING, &pool->sp_flags);
 584	smp_wmb();
 585	trace_svc_wake_up(0);
 586}
 587EXPORT_SYMBOL_GPL(svc_wake_up);
 588
 589int svc_port_is_privileged(struct sockaddr *sin)
 590{
 591	switch (sin->sa_family) {
 592	case AF_INET:
 593		return ntohs(((struct sockaddr_in *)sin)->sin_port)
 594			< PROT_SOCK;
 595	case AF_INET6:
 596		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
 597			< PROT_SOCK;
 598	default:
 599		return 0;
 600	}
 601}
 602
 603/*
 604 * Make sure that we don't have too many active connections. If we have,
 605 * something must be dropped. It's not clear what will happen if we allow
 606 * "too many" connections, but when dealing with network-facing software,
 607 * we have to code defensively. Here we do that by imposing hard limits.
 608 *
 609 * There's no point in trying to do random drop here for DoS
 610 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
 611 * attacker can easily beat that.
 612 *
 613 * The only somewhat efficient mechanism would be if drop old
 614 * connections from the same IP first. But right now we don't even
 615 * record the client IP in svc_sock.
 616 *
 617 * single-threaded services that expect a lot of clients will probably
 618 * need to set sv_maxconn to override the default value which is based
 619 * on the number of threads
 620 */
 621static void svc_check_conn_limits(struct svc_serv *serv)
 622{
 623	unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
 624				(serv->sv_nrthreads+3) * 20;
 625
 626	if (serv->sv_tmpcnt > limit) {
 627		struct svc_xprt *xprt = NULL;
 628		spin_lock_bh(&serv->sv_lock);
 629		if (!list_empty(&serv->sv_tempsocks)) {
 630			/* Try to help the admin */
 631			net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
 632					       serv->sv_name, serv->sv_maxconn ?
 633					       "max number of connections" :
 634					       "number of threads");
 635			/*
 636			 * Always select the oldest connection. It's not fair,
 637			 * but so is life
 638			 */
 639			xprt = list_entry(serv->sv_tempsocks.prev,
 640					  struct svc_xprt,
 641					  xpt_list);
 642			set_bit(XPT_CLOSE, &xprt->xpt_flags);
 643			svc_xprt_get(xprt);
 644		}
 645		spin_unlock_bh(&serv->sv_lock);
 646
 647		if (xprt) {
 648			svc_xprt_enqueue(xprt);
 649			svc_xprt_put(xprt);
 650		}
 651	}
 652}
 653
 654static int svc_alloc_arg(struct svc_rqst *rqstp)
 655{
 656	struct svc_serv *serv = rqstp->rq_server;
 657	struct xdr_buf *arg;
 658	int pages;
 659	int i;
 
 660
 661	/* now allocate needed pages.  If we get a failure, sleep briefly */
 662	pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
 663	WARN_ON_ONCE(pages >= RPCSVC_MAXPAGES);
 664	if (pages >= RPCSVC_MAXPAGES)
 665		/* use as many pages as possible */
 666		pages = RPCSVC_MAXPAGES - 1;
 667	for (i = 0; i < pages ; i++)
 668		while (rqstp->rq_pages[i] == NULL) {
 669			struct page *p = alloc_page(GFP_KERNEL);
 670			if (!p) {
 671				set_current_state(TASK_INTERRUPTIBLE);
 672				if (signalled() || kthread_should_stop()) {
 673					set_current_state(TASK_RUNNING);
 674					return -EINTR;
 675				}
 676				schedule_timeout(msecs_to_jiffies(500));
 677			}
 678			rqstp->rq_pages[i] = p;
 
 679		}
 680	rqstp->rq_page_end = &rqstp->rq_pages[i];
 681	rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
 
 
 
 682
 683	/* Make arg->head point to first page and arg->pages point to rest */
 684	arg = &rqstp->rq_arg;
 685	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
 686	arg->head[0].iov_len = PAGE_SIZE;
 687	arg->pages = rqstp->rq_pages + 1;
 688	arg->page_base = 0;
 689	/* save at least one page for response */
 690	arg->page_len = (pages-2)*PAGE_SIZE;
 691	arg->len = (pages-1)*PAGE_SIZE;
 692	arg->tail[0].iov_len = 0;
 693	return 0;
 694}
 695
 696static bool
 697rqst_should_sleep(struct svc_rqst *rqstp)
 698{
 699	struct svc_pool		*pool = rqstp->rq_pool;
 700
 701	/* did someone call svc_wake_up? */
 702	if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags))
 703		return false;
 704
 705	/* was a socket queued? */
 706	if (!list_empty(&pool->sp_sockets))
 707		return false;
 708
 709	/* are we shutting down? */
 710	if (signalled() || kthread_should_stop())
 711		return false;
 712
 713	/* are we freezing? */
 714	if (freezing(current))
 715		return false;
 716
 717	return true;
 718}
 719
 720static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
 721{
 722	struct svc_xprt *xprt;
 723	struct svc_pool		*pool = rqstp->rq_pool;
 724	long			time_left = 0;
 725
 726	/* rq_xprt should be clear on entry */
 727	WARN_ON_ONCE(rqstp->rq_xprt);
 728
 729	/* Normally we will wait up to 5 seconds for any required
 730	 * cache information to be provided.
 731	 */
 732	rqstp->rq_chandle.thread_wait = 5*HZ;
 733
 734	xprt = svc_xprt_dequeue(pool);
 735	if (xprt) {
 736		rqstp->rq_xprt = xprt;
 737
 738		/* As there is a shortage of threads and this request
 739		 * had to be queued, don't allow the thread to wait so
 740		 * long for cache updates.
 741		 */
 742		rqstp->rq_chandle.thread_wait = 1*HZ;
 743		clear_bit(SP_TASK_PENDING, &pool->sp_flags);
 744		return xprt;
 745	}
 746
 747	/*
 748	 * We have to be able to interrupt this wait
 749	 * to bring down the daemons ...
 750	 */
 751	set_current_state(TASK_INTERRUPTIBLE);
 
 
 752	clear_bit(RQ_BUSY, &rqstp->rq_flags);
 753	smp_mb();
 754
 755	if (likely(rqst_should_sleep(rqstp)))
 756		time_left = schedule_timeout(timeout);
 757	else
 758		__set_current_state(TASK_RUNNING);
 759
 760	try_to_freeze();
 761
 762	spin_lock_bh(&rqstp->rq_lock);
 763	set_bit(RQ_BUSY, &rqstp->rq_flags);
 764	spin_unlock_bh(&rqstp->rq_lock);
 765
 766	xprt = rqstp->rq_xprt;
 767	if (xprt != NULL)
 768		return xprt;
 769
 770	if (!time_left)
 771		atomic_long_inc(&pool->sp_stats.threads_timedout);
 772
 773	if (signalled() || kthread_should_stop())
 774		return ERR_PTR(-EINTR);
 775	return ERR_PTR(-EAGAIN);
 
 
 
 
 
 
 
 
 
 
 776}
 777
 778static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
 779{
 780	spin_lock_bh(&serv->sv_lock);
 781	set_bit(XPT_TEMP, &newxpt->xpt_flags);
 782	list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
 783	serv->sv_tmpcnt++;
 784	if (serv->sv_temptimer.function == NULL) {
 785		/* setup timer to age temp transports */
 786		setup_timer(&serv->sv_temptimer, svc_age_temp_xprts,
 787			    (unsigned long)serv);
 788		mod_timer(&serv->sv_temptimer,
 789			  jiffies + svc_conn_age_period * HZ);
 790	}
 791	spin_unlock_bh(&serv->sv_lock);
 792	svc_xprt_received(newxpt);
 793}
 794
 795static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
 796{
 797	struct svc_serv *serv = rqstp->rq_server;
 798	int len = 0;
 799
 800	if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
 801		dprintk("svc_recv: found XPT_CLOSE\n");
 802		if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags))
 803			xprt->xpt_ops->xpo_kill_temp_xprt(xprt);
 804		svc_delete_xprt(xprt);
 805		/* Leave XPT_BUSY set on the dead xprt: */
 806		goto out;
 807	}
 808	if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
 809		struct svc_xprt *newxpt;
 810		/*
 811		 * We know this module_get will succeed because the
 812		 * listener holds a reference too
 813		 */
 814		__module_get(xprt->xpt_class->xcl_owner);
 815		svc_check_conn_limits(xprt->xpt_server);
 816		newxpt = xprt->xpt_ops->xpo_accept(xprt);
 817		if (newxpt)
 
 818			svc_add_new_temp_xprt(serv, newxpt);
 819		else
 
 820			module_put(xprt->xpt_class->xcl_owner);
 
 
 821	} else if (svc_xprt_reserve_slot(rqstp, xprt)) {
 822		/* XPT_DATA|XPT_DEFERRED case: */
 823		dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
 824			rqstp, rqstp->rq_pool->sp_id, xprt,
 825			atomic_read(&xprt->xpt_ref.refcount));
 826		rqstp->rq_deferred = svc_deferred_dequeue(xprt);
 827		if (rqstp->rq_deferred)
 828			len = svc_deferred_recv(rqstp);
 829		else
 830			len = xprt->xpt_ops->xpo_recvfrom(rqstp);
 831		dprintk("svc: got len=%d\n", len);
 832		rqstp->rq_reserved = serv->sv_max_mesg;
 833		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
 834	}
 835	/* clear XPT_BUSY: */
 836	svc_xprt_received(xprt);
 837out:
 838	trace_svc_handle_xprt(xprt, len);
 839	return len;
 840}
 841
 842/*
 843 * Receive the next request on any transport.  This code is carefully
 844 * organised not to touch any cachelines in the shared svc_serv
 845 * structure, only cachelines in the local svc_pool.
 846 */
 847int svc_recv(struct svc_rqst *rqstp, long timeout)
 848{
 849	struct svc_xprt		*xprt = NULL;
 850	struct svc_serv		*serv = rqstp->rq_server;
 851	int			len, err;
 852
 853	dprintk("svc: server %p waiting for data (to = %ld)\n",
 854		rqstp, timeout);
 855
 856	if (rqstp->rq_xprt)
 857		printk(KERN_ERR
 858			"svc_recv: service %p, transport not NULL!\n",
 859			 rqstp);
 860
 861	err = svc_alloc_arg(rqstp);
 862	if (err)
 863		goto out;
 864
 865	try_to_freeze();
 866	cond_resched();
 867	err = -EINTR;
 868	if (signalled() || kthread_should_stop())
 869		goto out;
 870
 871	xprt = svc_get_next_xprt(rqstp, timeout);
 872	if (IS_ERR(xprt)) {
 873		err = PTR_ERR(xprt);
 874		goto out;
 875	}
 876
 877	len = svc_handle_xprt(rqstp, xprt);
 878
 879	/* No data, incomplete (TCP) read, or accept() */
 880	err = -EAGAIN;
 881	if (len <= 0)
 882		goto out_release;
 
 883
 884	clear_bit(XPT_OLD, &xprt->xpt_flags);
 885
 886	if (xprt->xpt_ops->xpo_secure_port(rqstp))
 887		set_bit(RQ_SECURE, &rqstp->rq_flags);
 888	else
 889		clear_bit(RQ_SECURE, &rqstp->rq_flags);
 890	rqstp->rq_chandle.defer = svc_defer;
 891	rqstp->rq_xid = svc_getu32(&rqstp->rq_arg.head[0]);
 892
 893	if (serv->sv_stats)
 894		serv->sv_stats->netcnt++;
 895	trace_svc_recv(rqstp, len);
 896	return len;
 897out_release:
 898	rqstp->rq_res.len = 0;
 899	svc_xprt_release(rqstp);
 900out:
 901	trace_svc_recv(rqstp, err);
 902	return err;
 903}
 904EXPORT_SYMBOL_GPL(svc_recv);
 905
 906/*
 907 * Drop request
 908 */
 909void svc_drop(struct svc_rqst *rqstp)
 910{
 911	trace_svc_drop(rqstp);
 912	dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
 913	svc_xprt_release(rqstp);
 914}
 915EXPORT_SYMBOL_GPL(svc_drop);
 916
 917/*
 918 * Return reply to client.
 919 */
 920int svc_send(struct svc_rqst *rqstp)
 921{
 922	struct svc_xprt	*xprt;
 923	int		len = -EFAULT;
 924	struct xdr_buf	*xb;
 925
 926	xprt = rqstp->rq_xprt;
 927	if (!xprt)
 928		goto out;
 929
 930	/* release the receive skb before sending the reply */
 931	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
 932
 933	/* calculate over-all length */
 934	xb = &rqstp->rq_res;
 935	xb->len = xb->head[0].iov_len +
 936		xb->page_len +
 937		xb->tail[0].iov_len;
 
 
 
 
 938
 939	/* Grab mutex to serialize outgoing data. */
 940	mutex_lock(&xprt->xpt_mutex);
 941	if (test_bit(XPT_DEAD, &xprt->xpt_flags)
 942			|| test_bit(XPT_CLOSE, &xprt->xpt_flags))
 943		len = -ENOTCONN;
 944	else
 945		len = xprt->xpt_ops->xpo_sendto(rqstp);
 946	mutex_unlock(&xprt->xpt_mutex);
 947	rpc_wake_up(&xprt->xpt_bc_pending);
 948	svc_xprt_release(rqstp);
 949
 950	if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
 951		len = 0;
 952out:
 953	trace_svc_send(rqstp, len);
 954	return len;
 955}
 956
 957/*
 958 * Timer function to close old temporary transports, using
 959 * a mark-and-sweep algorithm.
 960 */
 961static void svc_age_temp_xprts(unsigned long closure)
 962{
 963	struct svc_serv *serv = (struct svc_serv *)closure;
 964	struct svc_xprt *xprt;
 965	struct list_head *le, *next;
 966
 967	dprintk("svc_age_temp_xprts\n");
 968
 969	if (!spin_trylock_bh(&serv->sv_lock)) {
 970		/* busy, try again 1 sec later */
 971		dprintk("svc_age_temp_xprts: busy\n");
 972		mod_timer(&serv->sv_temptimer, jiffies + HZ);
 973		return;
 974	}
 975
 976	list_for_each_safe(le, next, &serv->sv_tempsocks) {
 977		xprt = list_entry(le, struct svc_xprt, xpt_list);
 978
 979		/* First time through, just mark it OLD. Second time
 980		 * through, close it. */
 981		if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
 982			continue;
 983		if (atomic_read(&xprt->xpt_ref.refcount) > 1 ||
 984		    test_bit(XPT_BUSY, &xprt->xpt_flags))
 985			continue;
 986		list_del_init(le);
 987		set_bit(XPT_CLOSE, &xprt->xpt_flags);
 988		dprintk("queuing xprt %p for closing\n", xprt);
 989
 990		/* a thread will dequeue and close it soon */
 991		svc_xprt_enqueue(xprt);
 992	}
 993	spin_unlock_bh(&serv->sv_lock);
 994
 995	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
 996}
 997
 998/* Close temporary transports whose xpt_local matches server_addr immediately
 999 * instead of waiting for them to be picked up by the timer.
1000 *
1001 * This is meant to be called from a notifier_block that runs when an ip
1002 * address is deleted.
1003 */
1004void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr)
1005{
1006	struct svc_xprt *xprt;
1007	struct list_head *le, *next;
1008	LIST_HEAD(to_be_closed);
1009
1010	spin_lock_bh(&serv->sv_lock);
1011	list_for_each_safe(le, next, &serv->sv_tempsocks) {
1012		xprt = list_entry(le, struct svc_xprt, xpt_list);
1013		if (rpc_cmp_addr(server_addr, (struct sockaddr *)
1014				&xprt->xpt_local)) {
1015			dprintk("svc_age_temp_xprts_now: found %p\n", xprt);
1016			list_move(le, &to_be_closed);
1017		}
1018	}
1019	spin_unlock_bh(&serv->sv_lock);
1020
1021	while (!list_empty(&to_be_closed)) {
1022		le = to_be_closed.next;
1023		list_del_init(le);
1024		xprt = list_entry(le, struct svc_xprt, xpt_list);
1025		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1026		set_bit(XPT_KILL_TEMP, &xprt->xpt_flags);
1027		dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n",
1028				xprt);
1029		svc_xprt_enqueue(xprt);
1030	}
1031}
1032EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now);
1033
1034static void call_xpt_users(struct svc_xprt *xprt)
1035{
1036	struct svc_xpt_user *u;
1037
1038	spin_lock(&xprt->xpt_lock);
1039	while (!list_empty(&xprt->xpt_users)) {
1040		u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
1041		list_del(&u->list);
1042		u->callback(u);
1043	}
1044	spin_unlock(&xprt->xpt_lock);
1045}
1046
1047/*
1048 * Remove a dead transport
1049 */
1050static void svc_delete_xprt(struct svc_xprt *xprt)
1051{
1052	struct svc_serv	*serv = xprt->xpt_server;
1053	struct svc_deferred_req *dr;
1054
1055	/* Only do this once */
1056	if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
1057		BUG();
1058
1059	dprintk("svc: svc_delete_xprt(%p)\n", xprt);
1060	xprt->xpt_ops->xpo_detach(xprt);
 
 
1061
1062	spin_lock_bh(&serv->sv_lock);
1063	list_del_init(&xprt->xpt_list);
1064	WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
1065	if (test_bit(XPT_TEMP, &xprt->xpt_flags))
1066		serv->sv_tmpcnt--;
1067	spin_unlock_bh(&serv->sv_lock);
1068
1069	while ((dr = svc_deferred_dequeue(xprt)) != NULL)
1070		kfree(dr);
1071
1072	call_xpt_users(xprt);
1073	svc_xprt_put(xprt);
1074}
1075
1076void svc_close_xprt(struct svc_xprt *xprt)
 
 
 
 
 
1077{
 
1078	set_bit(XPT_CLOSE, &xprt->xpt_flags);
1079	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1080		/* someone else will have to effect the close */
1081		return;
1082	/*
1083	 * We expect svc_close_xprt() to work even when no threads are
1084	 * running (e.g., while configuring the server before starting
1085	 * any threads), so if the transport isn't busy, we delete
1086	 * it ourself:
1087	 */
1088	svc_delete_xprt(xprt);
1089}
1090EXPORT_SYMBOL_GPL(svc_close_xprt);
1091
1092static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1093{
1094	struct svc_xprt *xprt;
1095	int ret = 0;
1096
1097	spin_lock(&serv->sv_lock);
1098	list_for_each_entry(xprt, xprt_list, xpt_list) {
1099		if (xprt->xpt_net != net)
1100			continue;
1101		ret++;
1102		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1103		svc_xprt_enqueue(xprt);
1104	}
1105	spin_unlock(&serv->sv_lock);
1106	return ret;
1107}
1108
1109static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
1110{
1111	struct svc_pool *pool;
1112	struct svc_xprt *xprt;
1113	struct svc_xprt *tmp;
1114	int i;
1115
1116	for (i = 0; i < serv->sv_nrpools; i++) {
1117		pool = &serv->sv_pools[i];
1118
1119		spin_lock_bh(&pool->sp_lock);
1120		list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
1121			if (xprt->xpt_net != net)
1122				continue;
1123			list_del_init(&xprt->xpt_ready);
1124			spin_unlock_bh(&pool->sp_lock);
1125			return xprt;
1126		}
1127		spin_unlock_bh(&pool->sp_lock);
1128	}
1129	return NULL;
1130}
1131
1132static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1133{
1134	struct svc_xprt *xprt;
1135
1136	while ((xprt = svc_dequeue_net(serv, net))) {
1137		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1138		svc_delete_xprt(xprt);
1139	}
1140}
1141
1142/*
 
 
 
 
1143 * Server threads may still be running (especially in the case where the
1144 * service is still running in other network namespaces).
1145 *
1146 * So we shut down sockets the same way we would on a running server, by
1147 * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1148 * the close.  In the case there are no such other threads,
1149 * threads running, svc_clean_up_xprts() does a simple version of a
1150 * server's main event loop, and in the case where there are other
1151 * threads, we may need to wait a little while and then check again to
1152 * see if they're done.
1153 */
1154void svc_close_net(struct svc_serv *serv, struct net *net)
1155{
1156	int delay = 0;
1157
1158	while (svc_close_list(serv, &serv->sv_permsocks, net) +
1159	       svc_close_list(serv, &serv->sv_tempsocks, net)) {
1160
1161		svc_clean_up_xprts(serv, net);
1162		msleep(delay++);
1163	}
1164}
 
1165
1166/*
1167 * Handle defer and revisit of requests
1168 */
1169
1170static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1171{
1172	struct svc_deferred_req *dr =
1173		container_of(dreq, struct svc_deferred_req, handle);
1174	struct svc_xprt *xprt = dr->xprt;
1175
1176	spin_lock(&xprt->xpt_lock);
1177	set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1178	if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1179		spin_unlock(&xprt->xpt_lock);
1180		dprintk("revisit canceled\n");
1181		svc_xprt_put(xprt);
1182		trace_svc_drop_deferred(dr);
1183		kfree(dr);
1184		return;
1185	}
1186	dprintk("revisit queued\n");
1187	dr->xprt = NULL;
1188	list_add(&dr->handle.recent, &xprt->xpt_deferred);
1189	spin_unlock(&xprt->xpt_lock);
 
1190	svc_xprt_enqueue(xprt);
1191	svc_xprt_put(xprt);
1192}
1193
1194/*
1195 * Save the request off for later processing. The request buffer looks
1196 * like this:
1197 *
1198 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1199 *
1200 * This code can only handle requests that consist of an xprt-header
1201 * and rpc-header.
1202 */
1203static struct cache_deferred_req *svc_defer(struct cache_req *req)
1204{
1205	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1206	struct svc_deferred_req *dr;
1207
1208	if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1209		return NULL; /* if more than a page, give up FIXME */
1210	if (rqstp->rq_deferred) {
1211		dr = rqstp->rq_deferred;
1212		rqstp->rq_deferred = NULL;
1213	} else {
1214		size_t skip;
1215		size_t size;
1216		/* FIXME maybe discard if size too large */
1217		size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1218		dr = kmalloc(size, GFP_KERNEL);
1219		if (dr == NULL)
1220			return NULL;
1221
1222		dr->handle.owner = rqstp->rq_server;
1223		dr->prot = rqstp->rq_prot;
1224		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1225		dr->addrlen = rqstp->rq_addrlen;
1226		dr->daddr = rqstp->rq_daddr;
1227		dr->argslen = rqstp->rq_arg.len >> 2;
1228		dr->xprt_hlen = rqstp->rq_xprt_hlen;
 
1229
1230		/* back up head to the start of the buffer and copy */
1231		skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1232		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1233		       dr->argslen << 2);
1234	}
 
1235	svc_xprt_get(rqstp->rq_xprt);
1236	dr->xprt = rqstp->rq_xprt;
1237	set_bit(RQ_DROPME, &rqstp->rq_flags);
1238
1239	dr->handle.revisit = svc_revisit;
1240	trace_svc_defer(rqstp);
1241	return &dr->handle;
1242}
1243
1244/*
1245 * recv data from a deferred request into an active one
1246 */
1247static int svc_deferred_recv(struct svc_rqst *rqstp)
1248{
1249	struct svc_deferred_req *dr = rqstp->rq_deferred;
1250
 
 
1251	/* setup iov_base past transport header */
1252	rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1253	/* The iov_len does not include the transport header bytes */
1254	rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1255	rqstp->rq_arg.page_len = 0;
1256	/* The rq_arg.len includes the transport header bytes */
1257	rqstp->rq_arg.len     = dr->argslen<<2;
1258	rqstp->rq_prot        = dr->prot;
1259	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1260	rqstp->rq_addrlen     = dr->addrlen;
1261	/* Save off transport header len in case we get deferred again */
1262	rqstp->rq_xprt_hlen   = dr->xprt_hlen;
1263	rqstp->rq_daddr       = dr->daddr;
1264	rqstp->rq_respages    = rqstp->rq_pages;
1265	return (dr->argslen<<2) - dr->xprt_hlen;
 
 
1266}
1267
1268
1269static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1270{
1271	struct svc_deferred_req *dr = NULL;
1272
1273	if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1274		return NULL;
1275	spin_lock(&xprt->xpt_lock);
1276	if (!list_empty(&xprt->xpt_deferred)) {
1277		dr = list_entry(xprt->xpt_deferred.next,
1278				struct svc_deferred_req,
1279				handle.recent);
1280		list_del_init(&dr->handle.recent);
1281		trace_svc_revisit_deferred(dr);
1282	} else
1283		clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1284	spin_unlock(&xprt->xpt_lock);
1285	return dr;
1286}
1287
1288/**
1289 * svc_find_xprt - find an RPC transport instance
1290 * @serv: pointer to svc_serv to search
1291 * @xcl_name: C string containing transport's class name
1292 * @net: owner net pointer
1293 * @af: Address family of transport's local address
1294 * @port: transport's IP port number
1295 *
1296 * Return the transport instance pointer for the endpoint accepting
1297 * connections/peer traffic from the specified transport class,
1298 * address family and port.
1299 *
1300 * Specifying 0 for the address family or port is effectively a
1301 * wild-card, and will result in matching the first transport in the
1302 * service's list that has a matching class name.
1303 */
1304struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1305			       struct net *net, const sa_family_t af,
1306			       const unsigned short port)
1307{
1308	struct svc_xprt *xprt;
1309	struct svc_xprt *found = NULL;
1310
1311	/* Sanity check the args */
1312	if (serv == NULL || xcl_name == NULL)
1313		return found;
1314
1315	spin_lock_bh(&serv->sv_lock);
1316	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1317		if (xprt->xpt_net != net)
1318			continue;
1319		if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1320			continue;
1321		if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1322			continue;
1323		if (port != 0 && port != svc_xprt_local_port(xprt))
1324			continue;
1325		found = xprt;
1326		svc_xprt_get(xprt);
1327		break;
1328	}
1329	spin_unlock_bh(&serv->sv_lock);
1330	return found;
1331}
1332EXPORT_SYMBOL_GPL(svc_find_xprt);
1333
1334static int svc_one_xprt_name(const struct svc_xprt *xprt,
1335			     char *pos, int remaining)
1336{
1337	int len;
1338
1339	len = snprintf(pos, remaining, "%s %u\n",
1340			xprt->xpt_class->xcl_name,
1341			svc_xprt_local_port(xprt));
1342	if (len >= remaining)
1343		return -ENAMETOOLONG;
1344	return len;
1345}
1346
1347/**
1348 * svc_xprt_names - format a buffer with a list of transport names
1349 * @serv: pointer to an RPC service
1350 * @buf: pointer to a buffer to be filled in
1351 * @buflen: length of buffer to be filled in
1352 *
1353 * Fills in @buf with a string containing a list of transport names,
1354 * each name terminated with '\n'.
1355 *
1356 * Returns positive length of the filled-in string on success; otherwise
1357 * a negative errno value is returned if an error occurs.
1358 */
1359int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1360{
1361	struct svc_xprt *xprt;
1362	int len, totlen;
1363	char *pos;
1364
1365	/* Sanity check args */
1366	if (!serv)
1367		return 0;
1368
1369	spin_lock_bh(&serv->sv_lock);
1370
1371	pos = buf;
1372	totlen = 0;
1373	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1374		len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1375		if (len < 0) {
1376			*buf = '\0';
1377			totlen = len;
1378		}
1379		if (len <= 0)
1380			break;
1381
1382		pos += len;
1383		totlen += len;
1384	}
1385
1386	spin_unlock_bh(&serv->sv_lock);
1387	return totlen;
1388}
1389EXPORT_SYMBOL_GPL(svc_xprt_names);
1390
1391
1392/*----------------------------------------------------------------------------*/
1393
1394static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1395{
1396	unsigned int pidx = (unsigned int)*pos;
1397	struct svc_serv *serv = m->private;
1398
1399	dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1400
1401	if (!pidx)
1402		return SEQ_START_TOKEN;
1403	return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1404}
1405
1406static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1407{
1408	struct svc_pool *pool = p;
1409	struct svc_serv *serv = m->private;
1410
1411	dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1412
1413	if (p == SEQ_START_TOKEN) {
1414		pool = &serv->sv_pools[0];
1415	} else {
1416		unsigned int pidx = (pool - &serv->sv_pools[0]);
1417		if (pidx < serv->sv_nrpools-1)
1418			pool = &serv->sv_pools[pidx+1];
1419		else
1420			pool = NULL;
1421	}
1422	++*pos;
1423	return pool;
1424}
1425
1426static void svc_pool_stats_stop(struct seq_file *m, void *p)
1427{
1428}
1429
1430static int svc_pool_stats_show(struct seq_file *m, void *p)
1431{
1432	struct svc_pool *pool = p;
1433
1434	if (p == SEQ_START_TOKEN) {
1435		seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1436		return 0;
1437	}
1438
1439	seq_printf(m, "%u %lu %lu %lu %lu\n",
1440		pool->sp_id,
1441		(unsigned long)atomic_long_read(&pool->sp_stats.packets),
1442		pool->sp_stats.sockets_queued,
1443		(unsigned long)atomic_long_read(&pool->sp_stats.threads_woken),
1444		(unsigned long)atomic_long_read(&pool->sp_stats.threads_timedout));
1445
1446	return 0;
1447}
1448
1449static const struct seq_operations svc_pool_stats_seq_ops = {
1450	.start	= svc_pool_stats_start,
1451	.next	= svc_pool_stats_next,
1452	.stop	= svc_pool_stats_stop,
1453	.show	= svc_pool_stats_show,
1454};
1455
1456int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1457{
1458	int err;
1459
1460	err = seq_open(file, &svc_pool_stats_seq_ops);
1461	if (!err)
1462		((struct seq_file *) file->private_data)->private = serv;
1463	return err;
1464}
1465EXPORT_SYMBOL(svc_pool_stats_open);
1466
1467/*----------------------------------------------------------------------------*/