Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* auditsc.c -- System-call auditing support
   3 * Handles all system-call specific auditing features.
   4 *
   5 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
   6 * Copyright 2005 Hewlett-Packard Development Company, L.P.
   7 * Copyright (C) 2005, 2006 IBM Corporation
   8 * All Rights Reserved.
   9 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  10 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  11 *
  12 * Many of the ideas implemented here are from Stephen C. Tweedie,
  13 * especially the idea of avoiding a copy by using getname.
  14 *
  15 * The method for actual interception of syscall entry and exit (not in
  16 * this file -- see entry.S) is based on a GPL'd patch written by
  17 * okir@suse.de and Copyright 2003 SuSE Linux AG.
  18 *
  19 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
  20 * 2006.
  21 *
  22 * The support of additional filter rules compares (>, <, >=, <=) was
  23 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
  24 *
  25 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
  26 * filesystem information.
  27 *
  28 * Subject and object context labeling support added by <danjones@us.ibm.com>
  29 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
  30 */
  31
  32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  33
  34#include <linux/init.h>
  35#include <asm/types.h>
  36#include <linux/atomic.h>
  37#include <linux/fs.h>
  38#include <linux/namei.h>
  39#include <linux/mm.h>
  40#include <linux/export.h>
  41#include <linux/slab.h>
  42#include <linux/mount.h>
  43#include <linux/socket.h>
  44#include <linux/mqueue.h>
  45#include <linux/audit.h>
  46#include <linux/personality.h>
  47#include <linux/time.h>
  48#include <linux/netlink.h>
  49#include <linux/compiler.h>
  50#include <asm/unistd.h>
  51#include <linux/security.h>
  52#include <linux/list.h>
  53#include <linux/binfmts.h>
  54#include <linux/highmem.h>
  55#include <linux/syscalls.h>
  56#include <asm/syscall.h>
  57#include <linux/capability.h>
  58#include <linux/fs_struct.h>
  59#include <linux/compat.h>
  60#include <linux/ctype.h>
  61#include <linux/string.h>
  62#include <linux/uaccess.h>
  63#include <linux/fsnotify_backend.h>
  64#include <uapi/linux/limits.h>
  65#include <uapi/linux/netfilter/nf_tables.h>
  66#include <uapi/linux/openat2.h> // struct open_how
  67
  68#include "audit.h"
  69
  70/* flags stating the success for a syscall */
  71#define AUDITSC_INVALID 0
  72#define AUDITSC_SUCCESS 1
  73#define AUDITSC_FAILURE 2
  74
  75/* no execve audit message should be longer than this (userspace limits),
  76 * see the note near the top of audit_log_execve_info() about this value */
  77#define MAX_EXECVE_AUDIT_LEN 7500
  78
  79/* max length to print of cmdline/proctitle value during audit */
  80#define MAX_PROCTITLE_AUDIT_LEN 128
  81
  82/* number of audit rules */
  83int audit_n_rules;
  84
  85/* determines whether we collect data for signals sent */
  86int audit_signals;
  87
  88struct audit_aux_data {
  89	struct audit_aux_data	*next;
  90	int			type;
  91};
  92
 
 
  93/* Number of target pids per aux struct. */
  94#define AUDIT_AUX_PIDS	16
  95
  96struct audit_aux_data_pids {
  97	struct audit_aux_data	d;
  98	pid_t			target_pid[AUDIT_AUX_PIDS];
  99	kuid_t			target_auid[AUDIT_AUX_PIDS];
 100	kuid_t			target_uid[AUDIT_AUX_PIDS];
 101	unsigned int		target_sessionid[AUDIT_AUX_PIDS];
 102	u32			target_sid[AUDIT_AUX_PIDS];
 103	char 			target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
 104	int			pid_count;
 105};
 106
 107struct audit_aux_data_bprm_fcaps {
 108	struct audit_aux_data	d;
 109	struct audit_cap_data	fcap;
 110	unsigned int		fcap_ver;
 111	struct audit_cap_data	old_pcap;
 112	struct audit_cap_data	new_pcap;
 113};
 114
 115struct audit_tree_refs {
 116	struct audit_tree_refs *next;
 117	struct audit_chunk *c[31];
 118};
 119
 120struct audit_nfcfgop_tab {
 121	enum audit_nfcfgop	op;
 122	const char		*s;
 123};
 124
 125static const struct audit_nfcfgop_tab audit_nfcfgs[] = {
 126	{ AUDIT_XT_OP_REGISTER,			"xt_register"		   },
 127	{ AUDIT_XT_OP_REPLACE,			"xt_replace"		   },
 128	{ AUDIT_XT_OP_UNREGISTER,		"xt_unregister"		   },
 129	{ AUDIT_NFT_OP_TABLE_REGISTER,		"nft_register_table"	   },
 130	{ AUDIT_NFT_OP_TABLE_UNREGISTER,	"nft_unregister_table"	   },
 131	{ AUDIT_NFT_OP_CHAIN_REGISTER,		"nft_register_chain"	   },
 132	{ AUDIT_NFT_OP_CHAIN_UNREGISTER,	"nft_unregister_chain"	   },
 133	{ AUDIT_NFT_OP_RULE_REGISTER,		"nft_register_rule"	   },
 134	{ AUDIT_NFT_OP_RULE_UNREGISTER,		"nft_unregister_rule"	   },
 135	{ AUDIT_NFT_OP_SET_REGISTER,		"nft_register_set"	   },
 136	{ AUDIT_NFT_OP_SET_UNREGISTER,		"nft_unregister_set"	   },
 137	{ AUDIT_NFT_OP_SETELEM_REGISTER,	"nft_register_setelem"	   },
 138	{ AUDIT_NFT_OP_SETELEM_UNREGISTER,	"nft_unregister_setelem"   },
 139	{ AUDIT_NFT_OP_GEN_REGISTER,		"nft_register_gen"	   },
 140	{ AUDIT_NFT_OP_OBJ_REGISTER,		"nft_register_obj"	   },
 141	{ AUDIT_NFT_OP_OBJ_UNREGISTER,		"nft_unregister_obj"	   },
 142	{ AUDIT_NFT_OP_OBJ_RESET,		"nft_reset_obj"		   },
 143	{ AUDIT_NFT_OP_FLOWTABLE_REGISTER,	"nft_register_flowtable"   },
 144	{ AUDIT_NFT_OP_FLOWTABLE_UNREGISTER,	"nft_unregister_flowtable" },
 145	{ AUDIT_NFT_OP_INVALID,			"nft_invalid"		   },
 146};
 147
 148static int audit_match_perm(struct audit_context *ctx, int mask)
 149{
 150	unsigned n;
 151
 152	if (unlikely(!ctx))
 153		return 0;
 154	n = ctx->major;
 155
 156	switch (audit_classify_syscall(ctx->arch, n)) {
 157	case AUDITSC_NATIVE:
 158		if ((mask & AUDIT_PERM_WRITE) &&
 159		     audit_match_class(AUDIT_CLASS_WRITE, n))
 160			return 1;
 161		if ((mask & AUDIT_PERM_READ) &&
 162		     audit_match_class(AUDIT_CLASS_READ, n))
 163			return 1;
 164		if ((mask & AUDIT_PERM_ATTR) &&
 165		     audit_match_class(AUDIT_CLASS_CHATTR, n))
 166			return 1;
 167		return 0;
 168	case AUDITSC_COMPAT: /* 32bit on biarch */
 169		if ((mask & AUDIT_PERM_WRITE) &&
 170		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
 171			return 1;
 172		if ((mask & AUDIT_PERM_READ) &&
 173		     audit_match_class(AUDIT_CLASS_READ_32, n))
 174			return 1;
 175		if ((mask & AUDIT_PERM_ATTR) &&
 176		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
 177			return 1;
 178		return 0;
 179	case AUDITSC_OPEN:
 180		return mask & ACC_MODE(ctx->argv[1]);
 181	case AUDITSC_OPENAT:
 182		return mask & ACC_MODE(ctx->argv[2]);
 183	case AUDITSC_SOCKETCALL:
 184		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
 185	case AUDITSC_EXECVE:
 186		return mask & AUDIT_PERM_EXEC;
 187	case AUDITSC_OPENAT2:
 188		return mask & ACC_MODE((u32)ctx->openat2.flags);
 189	default:
 190		return 0;
 191	}
 192}
 193
 194static int audit_match_filetype(struct audit_context *ctx, int val)
 195{
 196	struct audit_names *n;
 197	umode_t mode = (umode_t)val;
 198
 199	if (unlikely(!ctx))
 200		return 0;
 201
 202	list_for_each_entry(n, &ctx->names_list, list) {
 203		if ((n->ino != AUDIT_INO_UNSET) &&
 204		    ((n->mode & S_IFMT) == mode))
 205			return 1;
 206	}
 207
 208	return 0;
 209}
 210
 211/*
 212 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
 213 * ->first_trees points to its beginning, ->trees - to the current end of data.
 214 * ->tree_count is the number of free entries in array pointed to by ->trees.
 215 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
 216 * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
 217 * it's going to remain 1-element for almost any setup) until we free context itself.
 218 * References in it _are_ dropped - at the same time we free/drop aux stuff.
 219 */
 220
 221static void audit_set_auditable(struct audit_context *ctx)
 222{
 223	if (!ctx->prio) {
 224		ctx->prio = 1;
 225		ctx->current_state = AUDIT_STATE_RECORD;
 226	}
 227}
 228
 229static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
 230{
 231	struct audit_tree_refs *p = ctx->trees;
 232	int left = ctx->tree_count;
 233
 234	if (likely(left)) {
 235		p->c[--left] = chunk;
 236		ctx->tree_count = left;
 237		return 1;
 238	}
 239	if (!p)
 240		return 0;
 241	p = p->next;
 242	if (p) {
 243		p->c[30] = chunk;
 244		ctx->trees = p;
 245		ctx->tree_count = 30;
 246		return 1;
 247	}
 248	return 0;
 249}
 250
 251static int grow_tree_refs(struct audit_context *ctx)
 252{
 253	struct audit_tree_refs *p = ctx->trees;
 254
 255	ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
 256	if (!ctx->trees) {
 257		ctx->trees = p;
 258		return 0;
 259	}
 260	if (p)
 261		p->next = ctx->trees;
 262	else
 263		ctx->first_trees = ctx->trees;
 264	ctx->tree_count = 31;
 265	return 1;
 266}
 267
 268static void unroll_tree_refs(struct audit_context *ctx,
 269		      struct audit_tree_refs *p, int count)
 270{
 271	struct audit_tree_refs *q;
 272	int n;
 273
 274	if (!p) {
 275		/* we started with empty chain */
 276		p = ctx->first_trees;
 277		count = 31;
 278		/* if the very first allocation has failed, nothing to do */
 279		if (!p)
 280			return;
 281	}
 282	n = count;
 283	for (q = p; q != ctx->trees; q = q->next, n = 31) {
 284		while (n--) {
 285			audit_put_chunk(q->c[n]);
 286			q->c[n] = NULL;
 287		}
 288	}
 289	while (n-- > ctx->tree_count) {
 290		audit_put_chunk(q->c[n]);
 291		q->c[n] = NULL;
 292	}
 293	ctx->trees = p;
 294	ctx->tree_count = count;
 295}
 296
 297static void free_tree_refs(struct audit_context *ctx)
 298{
 299	struct audit_tree_refs *p, *q;
 300
 301	for (p = ctx->first_trees; p; p = q) {
 302		q = p->next;
 303		kfree(p);
 304	}
 305}
 306
 307static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
 308{
 309	struct audit_tree_refs *p;
 310	int n;
 311
 312	if (!tree)
 313		return 0;
 314	/* full ones */
 315	for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
 316		for (n = 0; n < 31; n++)
 317			if (audit_tree_match(p->c[n], tree))
 318				return 1;
 319	}
 320	/* partial */
 321	if (p) {
 322		for (n = ctx->tree_count; n < 31; n++)
 323			if (audit_tree_match(p->c[n], tree))
 324				return 1;
 325	}
 326	return 0;
 327}
 328
 329static int audit_compare_uid(kuid_t uid,
 330			     struct audit_names *name,
 331			     struct audit_field *f,
 332			     struct audit_context *ctx)
 333{
 334	struct audit_names *n;
 335	int rc;
 336
 337	if (name) {
 338		rc = audit_uid_comparator(uid, f->op, name->uid);
 339		if (rc)
 340			return rc;
 341	}
 342
 343	if (ctx) {
 344		list_for_each_entry(n, &ctx->names_list, list) {
 345			rc = audit_uid_comparator(uid, f->op, n->uid);
 346			if (rc)
 347				return rc;
 348		}
 349	}
 350	return 0;
 351}
 352
 353static int audit_compare_gid(kgid_t gid,
 354			     struct audit_names *name,
 355			     struct audit_field *f,
 356			     struct audit_context *ctx)
 357{
 358	struct audit_names *n;
 359	int rc;
 360
 361	if (name) {
 362		rc = audit_gid_comparator(gid, f->op, name->gid);
 363		if (rc)
 364			return rc;
 365	}
 366
 367	if (ctx) {
 368		list_for_each_entry(n, &ctx->names_list, list) {
 369			rc = audit_gid_comparator(gid, f->op, n->gid);
 370			if (rc)
 371				return rc;
 372		}
 373	}
 374	return 0;
 375}
 376
 377static int audit_field_compare(struct task_struct *tsk,
 378			       const struct cred *cred,
 379			       struct audit_field *f,
 380			       struct audit_context *ctx,
 381			       struct audit_names *name)
 382{
 383	switch (f->val) {
 384	/* process to file object comparisons */
 385	case AUDIT_COMPARE_UID_TO_OBJ_UID:
 386		return audit_compare_uid(cred->uid, name, f, ctx);
 387	case AUDIT_COMPARE_GID_TO_OBJ_GID:
 388		return audit_compare_gid(cred->gid, name, f, ctx);
 389	case AUDIT_COMPARE_EUID_TO_OBJ_UID:
 390		return audit_compare_uid(cred->euid, name, f, ctx);
 391	case AUDIT_COMPARE_EGID_TO_OBJ_GID:
 392		return audit_compare_gid(cred->egid, name, f, ctx);
 393	case AUDIT_COMPARE_AUID_TO_OBJ_UID:
 394		return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
 395	case AUDIT_COMPARE_SUID_TO_OBJ_UID:
 396		return audit_compare_uid(cred->suid, name, f, ctx);
 397	case AUDIT_COMPARE_SGID_TO_OBJ_GID:
 398		return audit_compare_gid(cred->sgid, name, f, ctx);
 399	case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
 400		return audit_compare_uid(cred->fsuid, name, f, ctx);
 401	case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
 402		return audit_compare_gid(cred->fsgid, name, f, ctx);
 403	/* uid comparisons */
 404	case AUDIT_COMPARE_UID_TO_AUID:
 405		return audit_uid_comparator(cred->uid, f->op,
 406					    audit_get_loginuid(tsk));
 407	case AUDIT_COMPARE_UID_TO_EUID:
 408		return audit_uid_comparator(cred->uid, f->op, cred->euid);
 409	case AUDIT_COMPARE_UID_TO_SUID:
 410		return audit_uid_comparator(cred->uid, f->op, cred->suid);
 411	case AUDIT_COMPARE_UID_TO_FSUID:
 412		return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
 413	/* auid comparisons */
 414	case AUDIT_COMPARE_AUID_TO_EUID:
 415		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
 416					    cred->euid);
 417	case AUDIT_COMPARE_AUID_TO_SUID:
 418		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
 419					    cred->suid);
 420	case AUDIT_COMPARE_AUID_TO_FSUID:
 421		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
 422					    cred->fsuid);
 423	/* euid comparisons */
 424	case AUDIT_COMPARE_EUID_TO_SUID:
 425		return audit_uid_comparator(cred->euid, f->op, cred->suid);
 426	case AUDIT_COMPARE_EUID_TO_FSUID:
 427		return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
 428	/* suid comparisons */
 429	case AUDIT_COMPARE_SUID_TO_FSUID:
 430		return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
 431	/* gid comparisons */
 432	case AUDIT_COMPARE_GID_TO_EGID:
 433		return audit_gid_comparator(cred->gid, f->op, cred->egid);
 434	case AUDIT_COMPARE_GID_TO_SGID:
 435		return audit_gid_comparator(cred->gid, f->op, cred->sgid);
 436	case AUDIT_COMPARE_GID_TO_FSGID:
 437		return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
 438	/* egid comparisons */
 439	case AUDIT_COMPARE_EGID_TO_SGID:
 440		return audit_gid_comparator(cred->egid, f->op, cred->sgid);
 441	case AUDIT_COMPARE_EGID_TO_FSGID:
 442		return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
 443	/* sgid comparison */
 444	case AUDIT_COMPARE_SGID_TO_FSGID:
 445		return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
 446	default:
 447		WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
 448		return 0;
 449	}
 450	return 0;
 451}
 452
 453/* Determine if any context name data matches a rule's watch data */
 454/* Compare a task_struct with an audit_rule.  Return 1 on match, 0
 455 * otherwise.
 456 *
 457 * If task_creation is true, this is an explicit indication that we are
 458 * filtering a task rule at task creation time.  This and tsk == current are
 459 * the only situations where tsk->cred may be accessed without an rcu read lock.
 460 */
 461static int audit_filter_rules(struct task_struct *tsk,
 462			      struct audit_krule *rule,
 463			      struct audit_context *ctx,
 464			      struct audit_names *name,
 465			      enum audit_state *state,
 466			      bool task_creation)
 467{
 468	const struct cred *cred;
 469	int i, need_sid = 1;
 470	u32 sid;
 471	unsigned int sessionid;
 472
 473	if (ctx && rule->prio <= ctx->prio)
 474		return 0;
 475
 476	cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
 477
 478	for (i = 0; i < rule->field_count; i++) {
 479		struct audit_field *f = &rule->fields[i];
 480		struct audit_names *n;
 481		int result = 0;
 482		pid_t pid;
 483
 484		switch (f->type) {
 485		case AUDIT_PID:
 486			pid = task_tgid_nr(tsk);
 487			result = audit_comparator(pid, f->op, f->val);
 488			break;
 489		case AUDIT_PPID:
 490			if (ctx) {
 491				if (!ctx->ppid)
 492					ctx->ppid = task_ppid_nr(tsk);
 493				result = audit_comparator(ctx->ppid, f->op, f->val);
 494			}
 495			break;
 496		case AUDIT_EXE:
 497			result = audit_exe_compare(tsk, rule->exe);
 498			if (f->op == Audit_not_equal)
 499				result = !result;
 500			break;
 501		case AUDIT_UID:
 502			result = audit_uid_comparator(cred->uid, f->op, f->uid);
 503			break;
 504		case AUDIT_EUID:
 505			result = audit_uid_comparator(cred->euid, f->op, f->uid);
 506			break;
 507		case AUDIT_SUID:
 508			result = audit_uid_comparator(cred->suid, f->op, f->uid);
 509			break;
 510		case AUDIT_FSUID:
 511			result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
 512			break;
 513		case AUDIT_GID:
 514			result = audit_gid_comparator(cred->gid, f->op, f->gid);
 515			if (f->op == Audit_equal) {
 516				if (!result)
 517					result = groups_search(cred->group_info, f->gid);
 518			} else if (f->op == Audit_not_equal) {
 519				if (result)
 520					result = !groups_search(cred->group_info, f->gid);
 521			}
 522			break;
 523		case AUDIT_EGID:
 524			result = audit_gid_comparator(cred->egid, f->op, f->gid);
 525			if (f->op == Audit_equal) {
 526				if (!result)
 527					result = groups_search(cred->group_info, f->gid);
 528			} else if (f->op == Audit_not_equal) {
 529				if (result)
 530					result = !groups_search(cred->group_info, f->gid);
 531			}
 532			break;
 533		case AUDIT_SGID:
 534			result = audit_gid_comparator(cred->sgid, f->op, f->gid);
 535			break;
 536		case AUDIT_FSGID:
 537			result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
 538			break;
 539		case AUDIT_SESSIONID:
 540			sessionid = audit_get_sessionid(tsk);
 541			result = audit_comparator(sessionid, f->op, f->val);
 542			break;
 543		case AUDIT_PERS:
 544			result = audit_comparator(tsk->personality, f->op, f->val);
 545			break;
 546		case AUDIT_ARCH:
 547			if (ctx)
 548				result = audit_comparator(ctx->arch, f->op, f->val);
 549			break;
 550
 551		case AUDIT_EXIT:
 552			if (ctx && ctx->return_valid != AUDITSC_INVALID)
 553				result = audit_comparator(ctx->return_code, f->op, f->val);
 554			break;
 555		case AUDIT_SUCCESS:
 556			if (ctx && ctx->return_valid != AUDITSC_INVALID) {
 557				if (f->val)
 558					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
 559				else
 560					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
 561			}
 562			break;
 563		case AUDIT_DEVMAJOR:
 564			if (name) {
 565				if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
 566				    audit_comparator(MAJOR(name->rdev), f->op, f->val))
 567					++result;
 568			} else if (ctx) {
 569				list_for_each_entry(n, &ctx->names_list, list) {
 570					if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
 571					    audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
 572						++result;
 573						break;
 574					}
 575				}
 576			}
 577			break;
 578		case AUDIT_DEVMINOR:
 579			if (name) {
 580				if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
 581				    audit_comparator(MINOR(name->rdev), f->op, f->val))
 582					++result;
 583			} else if (ctx) {
 584				list_for_each_entry(n, &ctx->names_list, list) {
 585					if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
 586					    audit_comparator(MINOR(n->rdev), f->op, f->val)) {
 587						++result;
 588						break;
 589					}
 590				}
 591			}
 592			break;
 593		case AUDIT_INODE:
 594			if (name)
 595				result = audit_comparator(name->ino, f->op, f->val);
 596			else if (ctx) {
 597				list_for_each_entry(n, &ctx->names_list, list) {
 598					if (audit_comparator(n->ino, f->op, f->val)) {
 599						++result;
 600						break;
 601					}
 602				}
 603			}
 604			break;
 605		case AUDIT_OBJ_UID:
 606			if (name) {
 607				result = audit_uid_comparator(name->uid, f->op, f->uid);
 608			} else if (ctx) {
 609				list_for_each_entry(n, &ctx->names_list, list) {
 610					if (audit_uid_comparator(n->uid, f->op, f->uid)) {
 611						++result;
 612						break;
 613					}
 614				}
 615			}
 616			break;
 617		case AUDIT_OBJ_GID:
 618			if (name) {
 619				result = audit_gid_comparator(name->gid, f->op, f->gid);
 620			} else if (ctx) {
 621				list_for_each_entry(n, &ctx->names_list, list) {
 622					if (audit_gid_comparator(n->gid, f->op, f->gid)) {
 623						++result;
 624						break;
 625					}
 626				}
 627			}
 628			break;
 629		case AUDIT_WATCH:
 630			if (name) {
 631				result = audit_watch_compare(rule->watch,
 632							     name->ino,
 633							     name->dev);
 634				if (f->op == Audit_not_equal)
 635					result = !result;
 636			}
 637			break;
 638		case AUDIT_DIR:
 639			if (ctx) {
 640				result = match_tree_refs(ctx, rule->tree);
 641				if (f->op == Audit_not_equal)
 642					result = !result;
 643			}
 644			break;
 645		case AUDIT_LOGINUID:
 646			result = audit_uid_comparator(audit_get_loginuid(tsk),
 647						      f->op, f->uid);
 648			break;
 649		case AUDIT_LOGINUID_SET:
 650			result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
 651			break;
 652		case AUDIT_SADDR_FAM:
 653			if (ctx && ctx->sockaddr)
 654				result = audit_comparator(ctx->sockaddr->ss_family,
 655							  f->op, f->val);
 656			break;
 657		case AUDIT_SUBJ_USER:
 658		case AUDIT_SUBJ_ROLE:
 659		case AUDIT_SUBJ_TYPE:
 660		case AUDIT_SUBJ_SEN:
 661		case AUDIT_SUBJ_CLR:
 662			/* NOTE: this may return negative values indicating
 663			   a temporary error.  We simply treat this as a
 664			   match for now to avoid losing information that
 665			   may be wanted.   An error message will also be
 666			   logged upon error */
 667			if (f->lsm_rule) {
 668				if (need_sid) {
 669					/* @tsk should always be equal to
 670					 * @current with the exception of
 671					 * fork()/copy_process() in which case
 672					 * the new @tsk creds are still a dup
 673					 * of @current's creds so we can still
 674					 * use security_current_getsecid_subj()
 675					 * here even though it always refs
 676					 * @current's creds
 677					 */
 678					security_current_getsecid_subj(&sid);
 679					need_sid = 0;
 680				}
 681				result = security_audit_rule_match(sid, f->type,
 682								   f->op,
 683								   f->lsm_rule);
 684			}
 685			break;
 686		case AUDIT_OBJ_USER:
 687		case AUDIT_OBJ_ROLE:
 688		case AUDIT_OBJ_TYPE:
 689		case AUDIT_OBJ_LEV_LOW:
 690		case AUDIT_OBJ_LEV_HIGH:
 691			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
 692			   also applies here */
 693			if (f->lsm_rule) {
 694				/* Find files that match */
 695				if (name) {
 696					result = security_audit_rule_match(
 697								name->osid,
 698								f->type,
 699								f->op,
 700								f->lsm_rule);
 701				} else if (ctx) {
 702					list_for_each_entry(n, &ctx->names_list, list) {
 703						if (security_audit_rule_match(
 704								n->osid,
 705								f->type,
 706								f->op,
 707								f->lsm_rule)) {
 708							++result;
 709							break;
 710						}
 711					}
 712				}
 713				/* Find ipc objects that match */
 714				if (!ctx || ctx->type != AUDIT_IPC)
 715					break;
 716				if (security_audit_rule_match(ctx->ipc.osid,
 717							      f->type, f->op,
 718							      f->lsm_rule))
 719					++result;
 720			}
 721			break;
 722		case AUDIT_ARG0:
 723		case AUDIT_ARG1:
 724		case AUDIT_ARG2:
 725		case AUDIT_ARG3:
 726			if (ctx)
 727				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
 728			break;
 729		case AUDIT_FILTERKEY:
 730			/* ignore this field for filtering */
 731			result = 1;
 732			break;
 733		case AUDIT_PERM:
 734			result = audit_match_perm(ctx, f->val);
 735			if (f->op == Audit_not_equal)
 736				result = !result;
 737			break;
 738		case AUDIT_FILETYPE:
 739			result = audit_match_filetype(ctx, f->val);
 740			if (f->op == Audit_not_equal)
 741				result = !result;
 742			break;
 743		case AUDIT_FIELD_COMPARE:
 744			result = audit_field_compare(tsk, cred, f, ctx, name);
 745			break;
 746		}
 747		if (!result)
 748			return 0;
 749	}
 750
 751	if (ctx) {
 
 
 752		if (rule->filterkey) {
 753			kfree(ctx->filterkey);
 754			ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
 755		}
 756		ctx->prio = rule->prio;
 757	}
 758	switch (rule->action) {
 759	case AUDIT_NEVER:
 760		*state = AUDIT_STATE_DISABLED;
 761		break;
 762	case AUDIT_ALWAYS:
 763		*state = AUDIT_STATE_RECORD;
 764		break;
 765	}
 766	return 1;
 767}
 768
 769/* At process creation time, we can determine if system-call auditing is
 770 * completely disabled for this task.  Since we only have the task
 771 * structure at this point, we can only check uid and gid.
 772 */
 773static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
 774{
 775	struct audit_entry *e;
 776	enum audit_state   state;
 777
 778	rcu_read_lock();
 779	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
 780		if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
 781				       &state, true)) {
 782			if (state == AUDIT_STATE_RECORD)
 783				*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
 784			rcu_read_unlock();
 785			return state;
 786		}
 787	}
 788	rcu_read_unlock();
 789	return AUDIT_STATE_BUILD;
 790}
 791
 792static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
 793{
 794	int word, bit;
 795
 796	if (val > 0xffffffff)
 797		return false;
 798
 799	word = AUDIT_WORD(val);
 800	if (word >= AUDIT_BITMASK_SIZE)
 801		return false;
 802
 803	bit = AUDIT_BIT(val);
 804
 805	return rule->mask[word] & bit;
 806}
 807
 808/**
 809 * __audit_filter_op - common filter helper for operations (syscall/uring/etc)
 810 * @tsk: associated task
 811 * @ctx: audit context
 812 * @list: audit filter list
 813 * @name: audit_name (can be NULL)
 814 * @op: current syscall/uring_op
 815 *
 816 * Run the udit filters specified in @list against @tsk using @ctx,
 817 * @name, and @op, as necessary; the caller is responsible for ensuring
 818 * that the call is made while the RCU read lock is held. The @name
 819 * parameter can be NULL, but all others must be specified.
 820 * Returns 1/true if the filter finds a match, 0/false if none are found.
 821 */
 822static int __audit_filter_op(struct task_struct *tsk,
 823			   struct audit_context *ctx,
 824			   struct list_head *list,
 825			   struct audit_names *name,
 826			   unsigned long op)
 827{
 828	struct audit_entry *e;
 829	enum audit_state state;
 830
 
 
 
 
 831	list_for_each_entry_rcu(e, list, list) {
 832		if (audit_in_mask(&e->rule, op) &&
 833		    audit_filter_rules(tsk, &e->rule, ctx, name,
 834				       &state, false)) {
 
 835			ctx->current_state = state;
 836			return 1;
 837		}
 838	}
 839	return 0;
 840}
 841
 842/**
 843 * audit_filter_uring - apply filters to an io_uring operation
 844 * @tsk: associated task
 845 * @ctx: audit context
 846 */
 847static void audit_filter_uring(struct task_struct *tsk,
 848			       struct audit_context *ctx)
 849{
 850	if (auditd_test_task(tsk))
 851		return;
 852
 853	rcu_read_lock();
 854	__audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_URING_EXIT],
 855			NULL, ctx->uring_op);
 856	rcu_read_unlock();
 857}
 858
 859/* At syscall exit time, this filter is called if the audit_state is
 860 * not low enough that auditing cannot take place, but is also not
 861 * high enough that we already know we have to write an audit record
 862 * (i.e., the state is AUDIT_STATE_BUILD).
 863 */
 864static void audit_filter_syscall(struct task_struct *tsk,
 865				 struct audit_context *ctx)
 866{
 867	if (auditd_test_task(tsk))
 868		return;
 869
 870	rcu_read_lock();
 871	__audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_EXIT],
 872			NULL, ctx->major);
 873	rcu_read_unlock();
 
 874}
 875
 876/*
 877 * Given an audit_name check the inode hash table to see if they match.
 878 * Called holding the rcu read lock to protect the use of audit_inode_hash
 879 */
 880static int audit_filter_inode_name(struct task_struct *tsk,
 881				   struct audit_names *n,
 882				   struct audit_context *ctx) {
 883	int h = audit_hash_ino((u32)n->ino);
 884	struct list_head *list = &audit_inode_hash[h];
 
 
 885
 886	return __audit_filter_op(tsk, ctx, list, n, ctx->major);
 
 
 
 
 
 
 
 887}
 888
 889/* At syscall exit time, this filter is called if any audit_names have been
 890 * collected during syscall processing.  We only check rules in sublists at hash
 891 * buckets applicable to the inode numbers in audit_names.
 892 * Regarding audit_state, same rules apply as for audit_filter_syscall().
 893 */
 894void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
 895{
 896	struct audit_names *n;
 897
 898	if (auditd_test_task(tsk))
 899		return;
 900
 901	rcu_read_lock();
 902
 903	list_for_each_entry(n, &ctx->names_list, list) {
 904		if (audit_filter_inode_name(tsk, n, ctx))
 905			break;
 906	}
 907	rcu_read_unlock();
 908}
 909
 910static inline void audit_proctitle_free(struct audit_context *context)
 911{
 912	kfree(context->proctitle.value);
 913	context->proctitle.value = NULL;
 914	context->proctitle.len = 0;
 915}
 916
 917static inline void audit_free_module(struct audit_context *context)
 918{
 919	if (context->type == AUDIT_KERN_MODULE) {
 920		kfree(context->module.name);
 921		context->module.name = NULL;
 922	}
 923}
 924static inline void audit_free_names(struct audit_context *context)
 925{
 926	struct audit_names *n, *next;
 927
 928	list_for_each_entry_safe(n, next, &context->names_list, list) {
 929		list_del(&n->list);
 930		if (n->name)
 931			putname(n->name);
 932		if (n->should_free)
 933			kfree(n);
 934	}
 935	context->name_count = 0;
 936	path_put(&context->pwd);
 937	context->pwd.dentry = NULL;
 938	context->pwd.mnt = NULL;
 939}
 940
 941static inline void audit_free_aux(struct audit_context *context)
 942{
 943	struct audit_aux_data *aux;
 944
 945	while ((aux = context->aux)) {
 946		context->aux = aux->next;
 947		kfree(aux);
 948	}
 949	context->aux = NULL;
 950	while ((aux = context->aux_pids)) {
 951		context->aux_pids = aux->next;
 952		kfree(aux);
 953	}
 954	context->aux_pids = NULL;
 955}
 956
 957/**
 958 * audit_reset_context - reset a audit_context structure
 959 * @ctx: the audit_context to reset
 960 *
 961 * All fields in the audit_context will be reset to an initial state, all
 962 * references held by fields will be dropped, and private memory will be
 963 * released.  When this function returns the audit_context will be suitable
 964 * for reuse, so long as the passed context is not NULL or a dummy context.
 965 */
 966static void audit_reset_context(struct audit_context *ctx)
 967{
 968	if (!ctx)
 969		return;
 970
 971	/* if ctx is non-null, reset the "ctx->context" regardless */
 972	ctx->context = AUDIT_CTX_UNUSED;
 973	if (ctx->dummy)
 974		return;
 975
 976	/*
 977	 * NOTE: It shouldn't matter in what order we release the fields, so
 978	 *       release them in the order in which they appear in the struct;
 979	 *       this gives us some hope of quickly making sure we are
 980	 *       resetting the audit_context properly.
 981	 *
 982	 *       Other things worth mentioning:
 983	 *       - we don't reset "dummy"
 984	 *       - we don't reset "state", we do reset "current_state"
 985	 *       - we preserve "filterkey" if "state" is AUDIT_STATE_RECORD
 986	 *       - much of this is likely overkill, but play it safe for now
 987	 *       - we really need to work on improving the audit_context struct
 988	 */
 989
 990	ctx->current_state = ctx->state;
 991	ctx->serial = 0;
 992	ctx->major = 0;
 993	ctx->uring_op = 0;
 994	ctx->ctime = (struct timespec64){ .tv_sec = 0, .tv_nsec = 0 };
 995	memset(ctx->argv, 0, sizeof(ctx->argv));
 996	ctx->return_code = 0;
 997	ctx->prio = (ctx->state == AUDIT_STATE_RECORD ? ~0ULL : 0);
 998	ctx->return_valid = AUDITSC_INVALID;
 999	audit_free_names(ctx);
1000	if (ctx->state != AUDIT_STATE_RECORD) {
1001		kfree(ctx->filterkey);
1002		ctx->filterkey = NULL;
1003	}
1004	audit_free_aux(ctx);
1005	kfree(ctx->sockaddr);
1006	ctx->sockaddr = NULL;
1007	ctx->sockaddr_len = 0;
1008	ctx->ppid = 0;
1009	ctx->uid = ctx->euid = ctx->suid = ctx->fsuid = KUIDT_INIT(0);
1010	ctx->gid = ctx->egid = ctx->sgid = ctx->fsgid = KGIDT_INIT(0);
1011	ctx->personality = 0;
1012	ctx->arch = 0;
1013	ctx->target_pid = 0;
1014	ctx->target_auid = ctx->target_uid = KUIDT_INIT(0);
1015	ctx->target_sessionid = 0;
1016	ctx->target_sid = 0;
1017	ctx->target_comm[0] = '\0';
1018	unroll_tree_refs(ctx, NULL, 0);
1019	WARN_ON(!list_empty(&ctx->killed_trees));
1020	audit_free_module(ctx);
1021	ctx->fds[0] = -1;
1022	ctx->type = 0; /* reset last for audit_free_*() */
1023}
1024
1025static inline struct audit_context *audit_alloc_context(enum audit_state state)
1026{
1027	struct audit_context *context;
1028
1029	context = kzalloc(sizeof(*context), GFP_KERNEL);
1030	if (!context)
1031		return NULL;
1032	context->context = AUDIT_CTX_UNUSED;
1033	context->state = state;
1034	context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0;
1035	INIT_LIST_HEAD(&context->killed_trees);
1036	INIT_LIST_HEAD(&context->names_list);
1037	context->fds[0] = -1;
1038	context->return_valid = AUDITSC_INVALID;
1039	return context;
1040}
1041
1042/**
1043 * audit_alloc - allocate an audit context block for a task
1044 * @tsk: task
1045 *
1046 * Filter on the task information and allocate a per-task audit context
1047 * if necessary.  Doing so turns on system call auditing for the
1048 * specified task.  This is called from copy_process, so no lock is
1049 * needed.
1050 */
1051int audit_alloc(struct task_struct *tsk)
1052{
1053	struct audit_context *context;
1054	enum audit_state     state;
1055	char *key = NULL;
1056
1057	if (likely(!audit_ever_enabled))
1058		return 0;
1059
1060	state = audit_filter_task(tsk, &key);
1061	if (state == AUDIT_STATE_DISABLED) {
1062		clear_task_syscall_work(tsk, SYSCALL_AUDIT);
1063		return 0;
1064	}
1065
1066	if (!(context = audit_alloc_context(state))) {
1067		kfree(key);
1068		audit_log_lost("out of memory in audit_alloc");
1069		return -ENOMEM;
1070	}
1071	context->filterkey = key;
1072
1073	audit_set_context(tsk, context);
1074	set_task_syscall_work(tsk, SYSCALL_AUDIT);
1075	return 0;
1076}
1077
1078static inline void audit_free_context(struct audit_context *context)
1079{
1080	/* resetting is extra work, but it is likely just noise */
1081	audit_reset_context(context);
1082	audit_proctitle_free(context);
1083	free_tree_refs(context);
 
1084	kfree(context->filterkey);
 
 
1085	kfree(context);
1086}
1087
1088static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1089				 kuid_t auid, kuid_t uid, unsigned int sessionid,
1090				 u32 sid, char *comm)
1091{
1092	struct audit_buffer *ab;
1093	char *ctx = NULL;
1094	u32 len;
1095	int rc = 0;
1096
1097	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1098	if (!ab)
1099		return rc;
1100
1101	audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1102			 from_kuid(&init_user_ns, auid),
1103			 from_kuid(&init_user_ns, uid), sessionid);
1104	if (sid) {
1105		if (security_secid_to_secctx(sid, &ctx, &len)) {
1106			audit_log_format(ab, " obj=(none)");
1107			rc = 1;
1108		} else {
1109			audit_log_format(ab, " obj=%s", ctx);
1110			security_release_secctx(ctx, len);
1111		}
1112	}
1113	audit_log_format(ab, " ocomm=");
1114	audit_log_untrustedstring(ab, comm);
1115	audit_log_end(ab);
1116
1117	return rc;
1118}
1119
1120static void audit_log_execve_info(struct audit_context *context,
1121				  struct audit_buffer **ab)
1122{
1123	long len_max;
1124	long len_rem;
1125	long len_full;
1126	long len_buf;
1127	long len_abuf = 0;
1128	long len_tmp;
1129	bool require_data;
1130	bool encode;
1131	unsigned int iter;
1132	unsigned int arg;
1133	char *buf_head;
1134	char *buf;
1135	const char __user *p = (const char __user *)current->mm->arg_start;
1136
1137	/* NOTE: this buffer needs to be large enough to hold all the non-arg
1138	 *       data we put in the audit record for this argument (see the
1139	 *       code below) ... at this point in time 96 is plenty */
1140	char abuf[96];
1141
1142	/* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1143	 *       current value of 7500 is not as important as the fact that it
1144	 *       is less than 8k, a setting of 7500 gives us plenty of wiggle
1145	 *       room if we go over a little bit in the logging below */
1146	WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1147	len_max = MAX_EXECVE_AUDIT_LEN;
1148
1149	/* scratch buffer to hold the userspace args */
1150	buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1151	if (!buf_head) {
1152		audit_panic("out of memory for argv string");
1153		return;
1154	}
1155	buf = buf_head;
1156
1157	audit_log_format(*ab, "argc=%d", context->execve.argc);
1158
1159	len_rem = len_max;
1160	len_buf = 0;
1161	len_full = 0;
1162	require_data = true;
1163	encode = false;
1164	iter = 0;
1165	arg = 0;
1166	do {
1167		/* NOTE: we don't ever want to trust this value for anything
1168		 *       serious, but the audit record format insists we
1169		 *       provide an argument length for really long arguments,
1170		 *       e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1171		 *       to use strncpy_from_user() to obtain this value for
1172		 *       recording in the log, although we don't use it
1173		 *       anywhere here to avoid a double-fetch problem */
1174		if (len_full == 0)
1175			len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1176
1177		/* read more data from userspace */
1178		if (require_data) {
1179			/* can we make more room in the buffer? */
1180			if (buf != buf_head) {
1181				memmove(buf_head, buf, len_buf);
1182				buf = buf_head;
1183			}
1184
1185			/* fetch as much as we can of the argument */
1186			len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1187						    len_max - len_buf);
1188			if (len_tmp == -EFAULT) {
1189				/* unable to copy from userspace */
1190				send_sig(SIGKILL, current, 0);
1191				goto out;
1192			} else if (len_tmp == (len_max - len_buf)) {
1193				/* buffer is not large enough */
1194				require_data = true;
1195				/* NOTE: if we are going to span multiple
1196				 *       buffers force the encoding so we stand
1197				 *       a chance at a sane len_full value and
1198				 *       consistent record encoding */
1199				encode = true;
1200				len_full = len_full * 2;
1201				p += len_tmp;
1202			} else {
1203				require_data = false;
1204				if (!encode)
1205					encode = audit_string_contains_control(
1206								buf, len_tmp);
1207				/* try to use a trusted value for len_full */
1208				if (len_full < len_max)
1209					len_full = (encode ?
1210						    len_tmp * 2 : len_tmp);
1211				p += len_tmp + 1;
1212			}
1213			len_buf += len_tmp;
1214			buf_head[len_buf] = '\0';
1215
1216			/* length of the buffer in the audit record? */
1217			len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1218		}
1219
1220		/* write as much as we can to the audit log */
1221		if (len_buf >= 0) {
1222			/* NOTE: some magic numbers here - basically if we
1223			 *       can't fit a reasonable amount of data into the
1224			 *       existing audit buffer, flush it and start with
1225			 *       a new buffer */
1226			if ((sizeof(abuf) + 8) > len_rem) {
1227				len_rem = len_max;
1228				audit_log_end(*ab);
1229				*ab = audit_log_start(context,
1230						      GFP_KERNEL, AUDIT_EXECVE);
1231				if (!*ab)
1232					goto out;
1233			}
1234
1235			/* create the non-arg portion of the arg record */
1236			len_tmp = 0;
1237			if (require_data || (iter > 0) ||
1238			    ((len_abuf + sizeof(abuf)) > len_rem)) {
1239				if (iter == 0) {
1240					len_tmp += snprintf(&abuf[len_tmp],
1241							sizeof(abuf) - len_tmp,
1242							" a%d_len=%lu",
1243							arg, len_full);
1244				}
1245				len_tmp += snprintf(&abuf[len_tmp],
1246						    sizeof(abuf) - len_tmp,
1247						    " a%d[%d]=", arg, iter++);
1248			} else
1249				len_tmp += snprintf(&abuf[len_tmp],
1250						    sizeof(abuf) - len_tmp,
1251						    " a%d=", arg);
1252			WARN_ON(len_tmp >= sizeof(abuf));
1253			abuf[sizeof(abuf) - 1] = '\0';
1254
1255			/* log the arg in the audit record */
1256			audit_log_format(*ab, "%s", abuf);
1257			len_rem -= len_tmp;
1258			len_tmp = len_buf;
1259			if (encode) {
1260				if (len_abuf > len_rem)
1261					len_tmp = len_rem / 2; /* encoding */
1262				audit_log_n_hex(*ab, buf, len_tmp);
1263				len_rem -= len_tmp * 2;
1264				len_abuf -= len_tmp * 2;
1265			} else {
1266				if (len_abuf > len_rem)
1267					len_tmp = len_rem - 2; /* quotes */
1268				audit_log_n_string(*ab, buf, len_tmp);
1269				len_rem -= len_tmp + 2;
1270				/* don't subtract the "2" because we still need
1271				 * to add quotes to the remaining string */
1272				len_abuf -= len_tmp;
1273			}
1274			len_buf -= len_tmp;
1275			buf += len_tmp;
1276		}
1277
1278		/* ready to move to the next argument? */
1279		if ((len_buf == 0) && !require_data) {
1280			arg++;
1281			iter = 0;
1282			len_full = 0;
1283			require_data = true;
1284			encode = false;
1285		}
1286	} while (arg < context->execve.argc);
1287
1288	/* NOTE: the caller handles the final audit_log_end() call */
1289
1290out:
1291	kfree(buf_head);
1292}
1293
1294static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1295			  kernel_cap_t *cap)
1296{
1297	int i;
1298
1299	if (cap_isclear(*cap)) {
1300		audit_log_format(ab, " %s=0", prefix);
1301		return;
1302	}
1303	audit_log_format(ab, " %s=", prefix);
1304	CAP_FOR_EACH_U32(i)
1305		audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]);
1306}
1307
1308static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1309{
1310	if (name->fcap_ver == -1) {
1311		audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1312		return;
1313	}
1314	audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1315	audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1316	audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1317			 name->fcap.fE, name->fcap_ver,
1318			 from_kuid(&init_user_ns, name->fcap.rootid));
1319}
1320
1321static void audit_log_time(struct audit_context *context, struct audit_buffer **ab)
1322{
1323	const struct audit_ntp_data *ntp = &context->time.ntp_data;
1324	const struct timespec64 *tk = &context->time.tk_injoffset;
1325	static const char * const ntp_name[] = {
1326		"offset",
1327		"freq",
1328		"status",
1329		"tai",
1330		"tick",
1331		"adjust",
1332	};
1333	int type;
1334
1335	if (context->type == AUDIT_TIME_ADJNTPVAL) {
1336		for (type = 0; type < AUDIT_NTP_NVALS; type++) {
1337			if (ntp->vals[type].newval != ntp->vals[type].oldval) {
1338				if (!*ab) {
1339					*ab = audit_log_start(context,
1340							GFP_KERNEL,
1341							AUDIT_TIME_ADJNTPVAL);
1342					if (!*ab)
1343						return;
1344				}
1345				audit_log_format(*ab, "op=%s old=%lli new=%lli",
1346						 ntp_name[type],
1347						 ntp->vals[type].oldval,
1348						 ntp->vals[type].newval);
1349				audit_log_end(*ab);
1350				*ab = NULL;
1351			}
1352		}
1353	}
1354	if (tk->tv_sec != 0 || tk->tv_nsec != 0) {
1355		if (!*ab) {
1356			*ab = audit_log_start(context, GFP_KERNEL,
1357					      AUDIT_TIME_INJOFFSET);
1358			if (!*ab)
1359				return;
1360		}
1361		audit_log_format(*ab, "sec=%lli nsec=%li",
1362				 (long long)tk->tv_sec, tk->tv_nsec);
1363		audit_log_end(*ab);
1364		*ab = NULL;
1365	}
1366}
1367
1368static void show_special(struct audit_context *context, int *call_panic)
1369{
1370	struct audit_buffer *ab;
1371	int i;
1372
1373	ab = audit_log_start(context, GFP_KERNEL, context->type);
1374	if (!ab)
1375		return;
1376
1377	switch (context->type) {
1378	case AUDIT_SOCKETCALL: {
1379		int nargs = context->socketcall.nargs;
1380
1381		audit_log_format(ab, "nargs=%d", nargs);
1382		for (i = 0; i < nargs; i++)
1383			audit_log_format(ab, " a%d=%lx", i,
1384				context->socketcall.args[i]);
1385		break; }
1386	case AUDIT_IPC: {
1387		u32 osid = context->ipc.osid;
1388
1389		audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1390				 from_kuid(&init_user_ns, context->ipc.uid),
1391				 from_kgid(&init_user_ns, context->ipc.gid),
1392				 context->ipc.mode);
1393		if (osid) {
1394			char *ctx = NULL;
1395			u32 len;
1396
1397			if (security_secid_to_secctx(osid, &ctx, &len)) {
1398				audit_log_format(ab, " osid=%u", osid);
1399				*call_panic = 1;
1400			} else {
1401				audit_log_format(ab, " obj=%s", ctx);
1402				security_release_secctx(ctx, len);
1403			}
1404		}
1405		if (context->ipc.has_perm) {
1406			audit_log_end(ab);
1407			ab = audit_log_start(context, GFP_KERNEL,
1408					     AUDIT_IPC_SET_PERM);
1409			if (unlikely(!ab))
1410				return;
1411			audit_log_format(ab,
1412				"qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1413				context->ipc.qbytes,
1414				context->ipc.perm_uid,
1415				context->ipc.perm_gid,
1416				context->ipc.perm_mode);
1417		}
1418		break; }
1419	case AUDIT_MQ_OPEN:
1420		audit_log_format(ab,
1421			"oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1422			"mq_msgsize=%ld mq_curmsgs=%ld",
1423			context->mq_open.oflag, context->mq_open.mode,
1424			context->mq_open.attr.mq_flags,
1425			context->mq_open.attr.mq_maxmsg,
1426			context->mq_open.attr.mq_msgsize,
1427			context->mq_open.attr.mq_curmsgs);
1428		break;
1429	case AUDIT_MQ_SENDRECV:
1430		audit_log_format(ab,
1431			"mqdes=%d msg_len=%zd msg_prio=%u "
1432			"abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1433			context->mq_sendrecv.mqdes,
1434			context->mq_sendrecv.msg_len,
1435			context->mq_sendrecv.msg_prio,
1436			(long long) context->mq_sendrecv.abs_timeout.tv_sec,
1437			context->mq_sendrecv.abs_timeout.tv_nsec);
1438		break;
1439	case AUDIT_MQ_NOTIFY:
1440		audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1441				context->mq_notify.mqdes,
1442				context->mq_notify.sigev_signo);
1443		break;
1444	case AUDIT_MQ_GETSETATTR: {
1445		struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1446
1447		audit_log_format(ab,
1448			"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1449			"mq_curmsgs=%ld ",
1450			context->mq_getsetattr.mqdes,
1451			attr->mq_flags, attr->mq_maxmsg,
1452			attr->mq_msgsize, attr->mq_curmsgs);
1453		break; }
1454	case AUDIT_CAPSET:
1455		audit_log_format(ab, "pid=%d", context->capset.pid);
1456		audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1457		audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1458		audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1459		audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1460		break;
1461	case AUDIT_MMAP:
1462		audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1463				 context->mmap.flags);
1464		break;
1465	case AUDIT_OPENAT2:
1466		audit_log_format(ab, "oflag=0%llo mode=0%llo resolve=0x%llx",
1467				 context->openat2.flags,
1468				 context->openat2.mode,
1469				 context->openat2.resolve);
1470		break;
1471	case AUDIT_EXECVE:
1472		audit_log_execve_info(context, &ab);
1473		break;
1474	case AUDIT_KERN_MODULE:
1475		audit_log_format(ab, "name=");
1476		if (context->module.name) {
1477			audit_log_untrustedstring(ab, context->module.name);
1478		} else
1479			audit_log_format(ab, "(null)");
1480
1481		break;
1482	case AUDIT_TIME_ADJNTPVAL:
1483	case AUDIT_TIME_INJOFFSET:
1484		/* this call deviates from the rest, eating the buffer */
1485		audit_log_time(context, &ab);
1486		break;
1487	}
1488	audit_log_end(ab);
1489}
1490
1491static inline int audit_proctitle_rtrim(char *proctitle, int len)
1492{
1493	char *end = proctitle + len - 1;
1494
1495	while (end > proctitle && !isprint(*end))
1496		end--;
1497
1498	/* catch the case where proctitle is only 1 non-print character */
1499	len = end - proctitle + 1;
1500	len -= isprint(proctitle[len-1]) == 0;
1501	return len;
1502}
1503
1504/*
1505 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1506 * @context: audit_context for the task
1507 * @n: audit_names structure with reportable details
1508 * @path: optional path to report instead of audit_names->name
1509 * @record_num: record number to report when handling a list of names
1510 * @call_panic: optional pointer to int that will be updated if secid fails
1511 */
1512static void audit_log_name(struct audit_context *context, struct audit_names *n,
1513		    const struct path *path, int record_num, int *call_panic)
1514{
1515	struct audit_buffer *ab;
1516
1517	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1518	if (!ab)
1519		return;
1520
1521	audit_log_format(ab, "item=%d", record_num);
1522
1523	if (path)
1524		audit_log_d_path(ab, " name=", path);
1525	else if (n->name) {
1526		switch (n->name_len) {
1527		case AUDIT_NAME_FULL:
1528			/* log the full path */
1529			audit_log_format(ab, " name=");
1530			audit_log_untrustedstring(ab, n->name->name);
1531			break;
1532		case 0:
1533			/* name was specified as a relative path and the
1534			 * directory component is the cwd
1535			 */
1536			if (context->pwd.dentry && context->pwd.mnt)
1537				audit_log_d_path(ab, " name=", &context->pwd);
1538			else
1539				audit_log_format(ab, " name=(null)");
1540			break;
1541		default:
1542			/* log the name's directory component */
1543			audit_log_format(ab, " name=");
1544			audit_log_n_untrustedstring(ab, n->name->name,
1545						    n->name_len);
1546		}
1547	} else
1548		audit_log_format(ab, " name=(null)");
1549
1550	if (n->ino != AUDIT_INO_UNSET)
1551		audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1552				 n->ino,
1553				 MAJOR(n->dev),
1554				 MINOR(n->dev),
1555				 n->mode,
1556				 from_kuid(&init_user_ns, n->uid),
1557				 from_kgid(&init_user_ns, n->gid),
1558				 MAJOR(n->rdev),
1559				 MINOR(n->rdev));
1560	if (n->osid != 0) {
1561		char *ctx = NULL;
1562		u32 len;
1563
1564		if (security_secid_to_secctx(
1565			n->osid, &ctx, &len)) {
1566			audit_log_format(ab, " osid=%u", n->osid);
1567			if (call_panic)
1568				*call_panic = 2;
1569		} else {
1570			audit_log_format(ab, " obj=%s", ctx);
1571			security_release_secctx(ctx, len);
1572		}
1573	}
1574
1575	/* log the audit_names record type */
1576	switch (n->type) {
1577	case AUDIT_TYPE_NORMAL:
1578		audit_log_format(ab, " nametype=NORMAL");
1579		break;
1580	case AUDIT_TYPE_PARENT:
1581		audit_log_format(ab, " nametype=PARENT");
1582		break;
1583	case AUDIT_TYPE_CHILD_DELETE:
1584		audit_log_format(ab, " nametype=DELETE");
1585		break;
1586	case AUDIT_TYPE_CHILD_CREATE:
1587		audit_log_format(ab, " nametype=CREATE");
1588		break;
1589	default:
1590		audit_log_format(ab, " nametype=UNKNOWN");
1591		break;
1592	}
1593
1594	audit_log_fcaps(ab, n);
1595	audit_log_end(ab);
1596}
1597
1598static void audit_log_proctitle(void)
1599{
1600	int res;
1601	char *buf;
1602	char *msg = "(null)";
1603	int len = strlen(msg);
1604	struct audit_context *context = audit_context();
1605	struct audit_buffer *ab;
1606
 
 
 
1607	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1608	if (!ab)
1609		return;	/* audit_panic or being filtered */
1610
1611	audit_log_format(ab, "proctitle=");
1612
1613	/* Not  cached */
1614	if (!context->proctitle.value) {
1615		buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1616		if (!buf)
1617			goto out;
1618		/* Historically called this from procfs naming */
1619		res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1620		if (res == 0) {
1621			kfree(buf);
1622			goto out;
1623		}
1624		res = audit_proctitle_rtrim(buf, res);
1625		if (res == 0) {
1626			kfree(buf);
1627			goto out;
1628		}
1629		context->proctitle.value = buf;
1630		context->proctitle.len = res;
1631	}
1632	msg = context->proctitle.value;
1633	len = context->proctitle.len;
1634out:
1635	audit_log_n_untrustedstring(ab, msg, len);
1636	audit_log_end(ab);
1637}
1638
1639/**
1640 * audit_log_uring - generate a AUDIT_URINGOP record
1641 * @ctx: the audit context
1642 */
1643static void audit_log_uring(struct audit_context *ctx)
1644{
1645	struct audit_buffer *ab;
1646	const struct cred *cred;
1647
1648	ab = audit_log_start(ctx, GFP_ATOMIC, AUDIT_URINGOP);
1649	if (!ab)
1650		return;
1651	cred = current_cred();
1652	audit_log_format(ab, "uring_op=%d", ctx->uring_op);
1653	if (ctx->return_valid != AUDITSC_INVALID)
1654		audit_log_format(ab, " success=%s exit=%ld",
1655				 (ctx->return_valid == AUDITSC_SUCCESS ?
1656				  "yes" : "no"),
1657				 ctx->return_code);
1658	audit_log_format(ab,
1659			 " items=%d"
1660			 " ppid=%d pid=%d uid=%u gid=%u euid=%u suid=%u"
1661			 " fsuid=%u egid=%u sgid=%u fsgid=%u",
1662			 ctx->name_count,
1663			 task_ppid_nr(current), task_tgid_nr(current),
1664			 from_kuid(&init_user_ns, cred->uid),
1665			 from_kgid(&init_user_ns, cred->gid),
1666			 from_kuid(&init_user_ns, cred->euid),
1667			 from_kuid(&init_user_ns, cred->suid),
1668			 from_kuid(&init_user_ns, cred->fsuid),
1669			 from_kgid(&init_user_ns, cred->egid),
1670			 from_kgid(&init_user_ns, cred->sgid),
1671			 from_kgid(&init_user_ns, cred->fsgid));
1672	audit_log_task_context(ab);
1673	audit_log_key(ab, ctx->filterkey);
1674	audit_log_end(ab);
1675}
1676
1677static void audit_log_exit(void)
1678{
1679	int i, call_panic = 0;
1680	struct audit_context *context = audit_context();
1681	struct audit_buffer *ab;
1682	struct audit_aux_data *aux;
1683	struct audit_names *n;
1684
1685	context->personality = current->personality;
1686
1687	switch (context->context) {
1688	case AUDIT_CTX_SYSCALL:
1689		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1690		if (!ab)
1691			return;
1692		audit_log_format(ab, "arch=%x syscall=%d",
1693				 context->arch, context->major);
1694		if (context->personality != PER_LINUX)
1695			audit_log_format(ab, " per=%lx", context->personality);
1696		if (context->return_valid != AUDITSC_INVALID)
1697			audit_log_format(ab, " success=%s exit=%ld",
1698					 (context->return_valid == AUDITSC_SUCCESS ?
1699					  "yes" : "no"),
1700					 context->return_code);
1701		audit_log_format(ab,
1702				 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1703				 context->argv[0],
1704				 context->argv[1],
1705				 context->argv[2],
1706				 context->argv[3],
1707				 context->name_count);
1708		audit_log_task_info(ab);
1709		audit_log_key(ab, context->filterkey);
1710		audit_log_end(ab);
1711		break;
1712	case AUDIT_CTX_URING:
1713		audit_log_uring(context);
1714		break;
1715	default:
1716		BUG();
1717		break;
1718	}
1719
1720	for (aux = context->aux; aux; aux = aux->next) {
1721
1722		ab = audit_log_start(context, GFP_KERNEL, aux->type);
1723		if (!ab)
1724			continue; /* audit_panic has been called */
1725
1726		switch (aux->type) {
1727
1728		case AUDIT_BPRM_FCAPS: {
1729			struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1730
1731			audit_log_format(ab, "fver=%x", axs->fcap_ver);
1732			audit_log_cap(ab, "fp", &axs->fcap.permitted);
1733			audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1734			audit_log_format(ab, " fe=%d", axs->fcap.fE);
1735			audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1736			audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1737			audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1738			audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1739			audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1740			audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1741			audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1742			audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1743			audit_log_format(ab, " frootid=%d",
1744					 from_kuid(&init_user_ns,
1745						   axs->fcap.rootid));
1746			break; }
1747
1748		}
1749		audit_log_end(ab);
1750	}
1751
1752	if (context->type)
1753		show_special(context, &call_panic);
1754
1755	if (context->fds[0] >= 0) {
1756		ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1757		if (ab) {
1758			audit_log_format(ab, "fd0=%d fd1=%d",
1759					context->fds[0], context->fds[1]);
1760			audit_log_end(ab);
1761		}
1762	}
1763
1764	if (context->sockaddr_len) {
1765		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1766		if (ab) {
1767			audit_log_format(ab, "saddr=");
1768			audit_log_n_hex(ab, (void *)context->sockaddr,
1769					context->sockaddr_len);
1770			audit_log_end(ab);
1771		}
1772	}
1773
1774	for (aux = context->aux_pids; aux; aux = aux->next) {
1775		struct audit_aux_data_pids *axs = (void *)aux;
1776
1777		for (i = 0; i < axs->pid_count; i++)
1778			if (audit_log_pid_context(context, axs->target_pid[i],
1779						  axs->target_auid[i],
1780						  axs->target_uid[i],
1781						  axs->target_sessionid[i],
1782						  axs->target_sid[i],
1783						  axs->target_comm[i]))
1784				call_panic = 1;
1785	}
1786
1787	if (context->target_pid &&
1788	    audit_log_pid_context(context, context->target_pid,
1789				  context->target_auid, context->target_uid,
1790				  context->target_sessionid,
1791				  context->target_sid, context->target_comm))
1792			call_panic = 1;
1793
1794	if (context->pwd.dentry && context->pwd.mnt) {
1795		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1796		if (ab) {
1797			audit_log_d_path(ab, "cwd=", &context->pwd);
1798			audit_log_end(ab);
1799		}
1800	}
1801
1802	i = 0;
1803	list_for_each_entry(n, &context->names_list, list) {
1804		if (n->hidden)
1805			continue;
1806		audit_log_name(context, n, NULL, i++, &call_panic);
1807	}
1808
1809	if (context->context == AUDIT_CTX_SYSCALL)
1810		audit_log_proctitle();
1811
1812	/* Send end of event record to help user space know we are finished */
1813	ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1814	if (ab)
1815		audit_log_end(ab);
1816	if (call_panic)
1817		audit_panic("error in audit_log_exit()");
1818}
1819
1820/**
1821 * __audit_free - free a per-task audit context
1822 * @tsk: task whose audit context block to free
1823 *
1824 * Called from copy_process, do_exit, and the io_uring code
1825 */
1826void __audit_free(struct task_struct *tsk)
1827{
1828	struct audit_context *context = tsk->audit_context;
1829
1830	if (!context)
1831		return;
1832
1833	/* this may generate CONFIG_CHANGE records */
1834	if (!list_empty(&context->killed_trees))
1835		audit_kill_trees(context);
1836
1837	/* We are called either by do_exit() or the fork() error handling code;
1838	 * in the former case tsk == current and in the latter tsk is a
1839	 * random task_struct that doesn't have any meaningful data we
1840	 * need to log via audit_log_exit().
1841	 */
1842	if (tsk == current && !context->dummy) {
1843		context->return_valid = AUDITSC_INVALID;
1844		context->return_code = 0;
1845		if (context->context == AUDIT_CTX_SYSCALL) {
1846			audit_filter_syscall(tsk, context);
1847			audit_filter_inodes(tsk, context);
1848			if (context->current_state == AUDIT_STATE_RECORD)
1849				audit_log_exit();
1850		} else if (context->context == AUDIT_CTX_URING) {
1851			/* TODO: verify this case is real and valid */
1852			audit_filter_uring(tsk, context);
1853			audit_filter_inodes(tsk, context);
1854			if (context->current_state == AUDIT_STATE_RECORD)
1855				audit_log_uring(context);
1856		}
1857	}
1858
1859	audit_set_context(tsk, NULL);
1860	audit_free_context(context);
1861}
1862
1863/**
1864 * audit_return_fixup - fixup the return codes in the audit_context
1865 * @ctx: the audit_context
1866 * @success: true/false value to indicate if the operation succeeded or not
1867 * @code: operation return code
1868 *
1869 * We need to fixup the return code in the audit logs if the actual return
1870 * codes are later going to be fixed by the arch specific signal handlers.
1871 */
1872static void audit_return_fixup(struct audit_context *ctx,
1873			       int success, long code)
1874{
1875	/*
1876	 * This is actually a test for:
1877	 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1878	 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1879	 *
1880	 * but is faster than a bunch of ||
1881	 */
1882	if (unlikely(code <= -ERESTARTSYS) &&
1883	    (code >= -ERESTART_RESTARTBLOCK) &&
1884	    (code != -ENOIOCTLCMD))
1885		ctx->return_code = -EINTR;
1886	else
1887		ctx->return_code  = code;
1888	ctx->return_valid = (success ? AUDITSC_SUCCESS : AUDITSC_FAILURE);
1889}
1890
1891/**
1892 * __audit_uring_entry - prepare the kernel task's audit context for io_uring
1893 * @op: the io_uring opcode
1894 *
1895 * This is similar to audit_syscall_entry() but is intended for use by io_uring
1896 * operations.  This function should only ever be called from
1897 * audit_uring_entry() as we rely on the audit context checking present in that
1898 * function.
1899 */
1900void __audit_uring_entry(u8 op)
1901{
1902	struct audit_context *ctx = audit_context();
1903
1904	if (ctx->state == AUDIT_STATE_DISABLED)
1905		return;
1906
1907	/*
1908	 * NOTE: It's possible that we can be called from the process' context
1909	 *       before it returns to userspace, and before audit_syscall_exit()
1910	 *       is called.  In this case there is not much to do, just record
1911	 *       the io_uring details and return.
1912	 */
1913	ctx->uring_op = op;
1914	if (ctx->context == AUDIT_CTX_SYSCALL)
1915		return;
1916
1917	ctx->dummy = !audit_n_rules;
1918	if (!ctx->dummy && ctx->state == AUDIT_STATE_BUILD)
1919		ctx->prio = 0;
1920
1921	ctx->context = AUDIT_CTX_URING;
1922	ctx->current_state = ctx->state;
1923	ktime_get_coarse_real_ts64(&ctx->ctime);
1924}
1925
1926/**
1927 * __audit_uring_exit - wrap up the kernel task's audit context after io_uring
1928 * @success: true/false value to indicate if the operation succeeded or not
1929 * @code: operation return code
1930 *
1931 * This is similar to audit_syscall_exit() but is intended for use by io_uring
1932 * operations.  This function should only ever be called from
1933 * audit_uring_exit() as we rely on the audit context checking present in that
1934 * function.
1935 */
1936void __audit_uring_exit(int success, long code)
1937{
1938	struct audit_context *ctx = audit_context();
1939
1940	if (ctx->dummy) {
1941		if (ctx->context != AUDIT_CTX_URING)
1942			return;
1943		goto out;
1944	}
1945
1946	audit_return_fixup(ctx, success, code);
1947	if (ctx->context == AUDIT_CTX_SYSCALL) {
1948		/*
1949		 * NOTE: See the note in __audit_uring_entry() about the case
1950		 *       where we may be called from process context before we
1951		 *       return to userspace via audit_syscall_exit().  In this
1952		 *       case we simply emit a URINGOP record and bail, the
1953		 *       normal syscall exit handling will take care of
1954		 *       everything else.
1955		 *       It is also worth mentioning that when we are called,
1956		 *       the current process creds may differ from the creds
1957		 *       used during the normal syscall processing; keep that
1958		 *       in mind if/when we move the record generation code.
1959		 */
1960
1961		/*
1962		 * We need to filter on the syscall info here to decide if we
1963		 * should emit a URINGOP record.  I know it seems odd but this
1964		 * solves the problem where users have a filter to block *all*
1965		 * syscall records in the "exit" filter; we want to preserve
1966		 * the behavior here.
1967		 */
1968		audit_filter_syscall(current, ctx);
1969		if (ctx->current_state != AUDIT_STATE_RECORD)
1970			audit_filter_uring(current, ctx);
1971		audit_filter_inodes(current, ctx);
1972		if (ctx->current_state != AUDIT_STATE_RECORD)
1973			return;
1974
1975		audit_log_uring(ctx);
1976		return;
1977	}
1978
1979	/* this may generate CONFIG_CHANGE records */
1980	if (!list_empty(&ctx->killed_trees))
1981		audit_kill_trees(ctx);
1982
1983	/* run through both filters to ensure we set the filterkey properly */
1984	audit_filter_uring(current, ctx);
1985	audit_filter_inodes(current, ctx);
1986	if (ctx->current_state != AUDIT_STATE_RECORD)
1987		goto out;
1988	audit_log_exit();
1989
1990out:
1991	audit_reset_context(ctx);
1992}
1993
1994/**
1995 * __audit_syscall_entry - fill in an audit record at syscall entry
1996 * @major: major syscall type (function)
1997 * @a1: additional syscall register 1
1998 * @a2: additional syscall register 2
1999 * @a3: additional syscall register 3
2000 * @a4: additional syscall register 4
2001 *
2002 * Fill in audit context at syscall entry.  This only happens if the
2003 * audit context was created when the task was created and the state or
2004 * filters demand the audit context be built.  If the state from the
2005 * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD,
2006 * then the record will be written at syscall exit time (otherwise, it
2007 * will only be written if another part of the kernel requests that it
2008 * be written).
2009 */
2010void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
2011			   unsigned long a3, unsigned long a4)
2012{
2013	struct audit_context *context = audit_context();
2014	enum audit_state     state;
2015
2016	if (!audit_enabled || !context)
2017		return;
2018
2019	WARN_ON(context->context != AUDIT_CTX_UNUSED);
2020	WARN_ON(context->name_count);
2021	if (context->context != AUDIT_CTX_UNUSED || context->name_count) {
2022		audit_panic("unrecoverable error in audit_syscall_entry()");
2023		return;
2024	}
2025
2026	state = context->state;
2027	if (state == AUDIT_STATE_DISABLED)
2028		return;
2029
2030	context->dummy = !audit_n_rules;
2031	if (!context->dummy && state == AUDIT_STATE_BUILD) {
2032		context->prio = 0;
2033		if (auditd_test_task(current))
2034			return;
2035	}
2036
2037	context->arch	    = syscall_get_arch(current);
2038	context->major      = major;
2039	context->argv[0]    = a1;
2040	context->argv[1]    = a2;
2041	context->argv[2]    = a3;
2042	context->argv[3]    = a4;
2043	context->context = AUDIT_CTX_SYSCALL;
 
2044	context->current_state  = state;
 
2045	ktime_get_coarse_real_ts64(&context->ctime);
2046}
2047
2048/**
2049 * __audit_syscall_exit - deallocate audit context after a system call
2050 * @success: success value of the syscall
2051 * @return_code: return value of the syscall
2052 *
2053 * Tear down after system call.  If the audit context has been marked as
2054 * auditable (either because of the AUDIT_STATE_RECORD state from
2055 * filtering, or because some other part of the kernel wrote an audit
2056 * message), then write out the syscall information.  In call cases,
2057 * free the names stored from getname().
2058 */
2059void __audit_syscall_exit(int success, long return_code)
2060{
2061	struct audit_context *context = audit_context();
2062
2063	if (!context || context->dummy ||
2064	    context->context != AUDIT_CTX_SYSCALL)
2065		goto out;
2066
2067	/* this may generate CONFIG_CHANGE records */
2068	if (!list_empty(&context->killed_trees))
2069		audit_kill_trees(context);
2070
2071	audit_return_fixup(context, success, return_code);
2072	/* run through both filters to ensure we set the filterkey properly */
2073	audit_filter_syscall(current, context);
2074	audit_filter_inodes(current, context);
2075	if (context->current_state != AUDIT_STATE_RECORD)
2076		goto out;
2077
2078	audit_log_exit();
2079
2080out:
2081	audit_reset_context(context);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2082}
2083
2084static inline void handle_one(const struct inode *inode)
2085{
2086	struct audit_context *context;
2087	struct audit_tree_refs *p;
2088	struct audit_chunk *chunk;
2089	int count;
2090
2091	if (likely(!inode->i_fsnotify_marks))
2092		return;
2093	context = audit_context();
2094	p = context->trees;
2095	count = context->tree_count;
2096	rcu_read_lock();
2097	chunk = audit_tree_lookup(inode);
2098	rcu_read_unlock();
2099	if (!chunk)
2100		return;
2101	if (likely(put_tree_ref(context, chunk)))
2102		return;
2103	if (unlikely(!grow_tree_refs(context))) {
2104		pr_warn("out of memory, audit has lost a tree reference\n");
2105		audit_set_auditable(context);
2106		audit_put_chunk(chunk);
2107		unroll_tree_refs(context, p, count);
2108		return;
2109	}
2110	put_tree_ref(context, chunk);
2111}
2112
2113static void handle_path(const struct dentry *dentry)
2114{
2115	struct audit_context *context;
2116	struct audit_tree_refs *p;
2117	const struct dentry *d, *parent;
2118	struct audit_chunk *drop;
2119	unsigned long seq;
2120	int count;
2121
2122	context = audit_context();
2123	p = context->trees;
2124	count = context->tree_count;
2125retry:
2126	drop = NULL;
2127	d = dentry;
2128	rcu_read_lock();
2129	seq = read_seqbegin(&rename_lock);
2130	for(;;) {
2131		struct inode *inode = d_backing_inode(d);
2132
2133		if (inode && unlikely(inode->i_fsnotify_marks)) {
2134			struct audit_chunk *chunk;
2135
2136			chunk = audit_tree_lookup(inode);
2137			if (chunk) {
2138				if (unlikely(!put_tree_ref(context, chunk))) {
2139					drop = chunk;
2140					break;
2141				}
2142			}
2143		}
2144		parent = d->d_parent;
2145		if (parent == d)
2146			break;
2147		d = parent;
2148	}
2149	if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
2150		rcu_read_unlock();
2151		if (!drop) {
2152			/* just a race with rename */
2153			unroll_tree_refs(context, p, count);
2154			goto retry;
2155		}
2156		audit_put_chunk(drop);
2157		if (grow_tree_refs(context)) {
2158			/* OK, got more space */
2159			unroll_tree_refs(context, p, count);
2160			goto retry;
2161		}
2162		/* too bad */
2163		pr_warn("out of memory, audit has lost a tree reference\n");
2164		unroll_tree_refs(context, p, count);
2165		audit_set_auditable(context);
2166		return;
2167	}
2168	rcu_read_unlock();
2169}
2170
2171static struct audit_names *audit_alloc_name(struct audit_context *context,
2172						unsigned char type)
2173{
2174	struct audit_names *aname;
2175
2176	if (context->name_count < AUDIT_NAMES) {
2177		aname = &context->preallocated_names[context->name_count];
2178		memset(aname, 0, sizeof(*aname));
2179	} else {
2180		aname = kzalloc(sizeof(*aname), GFP_NOFS);
2181		if (!aname)
2182			return NULL;
2183		aname->should_free = true;
2184	}
2185
2186	aname->ino = AUDIT_INO_UNSET;
2187	aname->type = type;
2188	list_add_tail(&aname->list, &context->names_list);
2189
2190	context->name_count++;
2191	if (!context->pwd.dentry)
2192		get_fs_pwd(current->fs, &context->pwd);
2193	return aname;
2194}
2195
2196/**
2197 * __audit_reusename - fill out filename with info from existing entry
2198 * @uptr: userland ptr to pathname
2199 *
2200 * Search the audit_names list for the current audit context. If there is an
2201 * existing entry with a matching "uptr" then return the filename
2202 * associated with that audit_name. If not, return NULL.
2203 */
2204struct filename *
2205__audit_reusename(const __user char *uptr)
2206{
2207	struct audit_context *context = audit_context();
2208	struct audit_names *n;
2209
2210	list_for_each_entry(n, &context->names_list, list) {
2211		if (!n->name)
2212			continue;
2213		if (n->name->uptr == uptr) {
2214			n->name->refcnt++;
2215			return n->name;
2216		}
2217	}
2218	return NULL;
2219}
2220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2221/**
2222 * __audit_getname - add a name to the list
2223 * @name: name to add
2224 *
2225 * Add a name to the list of audit names for this context.
2226 * Called from fs/namei.c:getname().
2227 */
2228void __audit_getname(struct filename *name)
2229{
2230	struct audit_context *context = audit_context();
2231	struct audit_names *n;
2232
2233	if (context->context == AUDIT_CTX_UNUSED)
2234		return;
2235
2236	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2237	if (!n)
2238		return;
2239
2240	n->name = name;
2241	n->name_len = AUDIT_NAME_FULL;
2242	name->aname = n;
2243	name->refcnt++;
 
 
2244}
2245
2246static inline int audit_copy_fcaps(struct audit_names *name,
2247				   const struct dentry *dentry)
2248{
2249	struct cpu_vfs_cap_data caps;
2250	int rc;
2251
2252	if (!dentry)
2253		return 0;
2254
2255	rc = get_vfs_caps_from_disk(&init_user_ns, dentry, &caps);
2256	if (rc)
2257		return rc;
2258
2259	name->fcap.permitted = caps.permitted;
2260	name->fcap.inheritable = caps.inheritable;
2261	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2262	name->fcap.rootid = caps.rootid;
2263	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
2264				VFS_CAP_REVISION_SHIFT;
2265
2266	return 0;
2267}
2268
2269/* Copy inode data into an audit_names. */
2270static void audit_copy_inode(struct audit_names *name,
2271			     const struct dentry *dentry,
2272			     struct inode *inode, unsigned int flags)
2273{
2274	name->ino   = inode->i_ino;
2275	name->dev   = inode->i_sb->s_dev;
2276	name->mode  = inode->i_mode;
2277	name->uid   = inode->i_uid;
2278	name->gid   = inode->i_gid;
2279	name->rdev  = inode->i_rdev;
2280	security_inode_getsecid(inode, &name->osid);
2281	if (flags & AUDIT_INODE_NOEVAL) {
2282		name->fcap_ver = -1;
2283		return;
2284	}
2285	audit_copy_fcaps(name, dentry);
2286}
2287
2288/**
2289 * __audit_inode - store the inode and device from a lookup
2290 * @name: name being audited
2291 * @dentry: dentry being audited
2292 * @flags: attributes for this particular entry
2293 */
2294void __audit_inode(struct filename *name, const struct dentry *dentry,
2295		   unsigned int flags)
2296{
2297	struct audit_context *context = audit_context();
2298	struct inode *inode = d_backing_inode(dentry);
2299	struct audit_names *n;
2300	bool parent = flags & AUDIT_INODE_PARENT;
2301	struct audit_entry *e;
2302	struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2303	int i;
2304
2305	if (context->context == AUDIT_CTX_UNUSED)
2306		return;
2307
2308	rcu_read_lock();
2309	list_for_each_entry_rcu(e, list, list) {
2310		for (i = 0; i < e->rule.field_count; i++) {
2311			struct audit_field *f = &e->rule.fields[i];
2312
2313			if (f->type == AUDIT_FSTYPE
2314			    && audit_comparator(inode->i_sb->s_magic,
2315						f->op, f->val)
2316			    && e->rule.action == AUDIT_NEVER) {
2317				rcu_read_unlock();
2318				return;
2319			}
2320		}
2321	}
2322	rcu_read_unlock();
2323
2324	if (!name)
2325		goto out_alloc;
2326
2327	/*
2328	 * If we have a pointer to an audit_names entry already, then we can
2329	 * just use it directly if the type is correct.
2330	 */
2331	n = name->aname;
2332	if (n) {
2333		if (parent) {
2334			if (n->type == AUDIT_TYPE_PARENT ||
2335			    n->type == AUDIT_TYPE_UNKNOWN)
2336				goto out;
2337		} else {
2338			if (n->type != AUDIT_TYPE_PARENT)
2339				goto out;
2340		}
2341	}
2342
2343	list_for_each_entry_reverse(n, &context->names_list, list) {
2344		if (n->ino) {
2345			/* valid inode number, use that for the comparison */
2346			if (n->ino != inode->i_ino ||
2347			    n->dev != inode->i_sb->s_dev)
2348				continue;
2349		} else if (n->name) {
2350			/* inode number has not been set, check the name */
2351			if (strcmp(n->name->name, name->name))
2352				continue;
2353		} else
2354			/* no inode and no name (?!) ... this is odd ... */
2355			continue;
2356
2357		/* match the correct record type */
2358		if (parent) {
2359			if (n->type == AUDIT_TYPE_PARENT ||
2360			    n->type == AUDIT_TYPE_UNKNOWN)
2361				goto out;
2362		} else {
2363			if (n->type != AUDIT_TYPE_PARENT)
2364				goto out;
2365		}
2366	}
2367
2368out_alloc:
2369	/* unable to find an entry with both a matching name and type */
2370	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2371	if (!n)
2372		return;
2373	if (name) {
2374		n->name = name;
2375		name->refcnt++;
2376	}
2377
2378out:
2379	if (parent) {
2380		n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2381		n->type = AUDIT_TYPE_PARENT;
2382		if (flags & AUDIT_INODE_HIDDEN)
2383			n->hidden = true;
2384	} else {
2385		n->name_len = AUDIT_NAME_FULL;
2386		n->type = AUDIT_TYPE_NORMAL;
2387	}
2388	handle_path(dentry);
2389	audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2390}
2391
2392void __audit_file(const struct file *file)
2393{
2394	__audit_inode(NULL, file->f_path.dentry, 0);
2395}
2396
2397/**
2398 * __audit_inode_child - collect inode info for created/removed objects
2399 * @parent: inode of dentry parent
2400 * @dentry: dentry being audited
2401 * @type:   AUDIT_TYPE_* value that we're looking for
2402 *
2403 * For syscalls that create or remove filesystem objects, audit_inode
2404 * can only collect information for the filesystem object's parent.
2405 * This call updates the audit context with the child's information.
2406 * Syscalls that create a new filesystem object must be hooked after
2407 * the object is created.  Syscalls that remove a filesystem object
2408 * must be hooked prior, in order to capture the target inode during
2409 * unsuccessful attempts.
2410 */
2411void __audit_inode_child(struct inode *parent,
2412			 const struct dentry *dentry,
2413			 const unsigned char type)
2414{
2415	struct audit_context *context = audit_context();
2416	struct inode *inode = d_backing_inode(dentry);
2417	const struct qstr *dname = &dentry->d_name;
2418	struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2419	struct audit_entry *e;
2420	struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2421	int i;
2422
2423	if (context->context == AUDIT_CTX_UNUSED)
2424		return;
2425
2426	rcu_read_lock();
2427	list_for_each_entry_rcu(e, list, list) {
2428		for (i = 0; i < e->rule.field_count; i++) {
2429			struct audit_field *f = &e->rule.fields[i];
2430
2431			if (f->type == AUDIT_FSTYPE
2432			    && audit_comparator(parent->i_sb->s_magic,
2433						f->op, f->val)
2434			    && e->rule.action == AUDIT_NEVER) {
2435				rcu_read_unlock();
2436				return;
2437			}
2438		}
2439	}
2440	rcu_read_unlock();
2441
2442	if (inode)
2443		handle_one(inode);
2444
2445	/* look for a parent entry first */
2446	list_for_each_entry(n, &context->names_list, list) {
2447		if (!n->name ||
2448		    (n->type != AUDIT_TYPE_PARENT &&
2449		     n->type != AUDIT_TYPE_UNKNOWN))
2450			continue;
2451
2452		if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2453		    !audit_compare_dname_path(dname,
2454					      n->name->name, n->name_len)) {
2455			if (n->type == AUDIT_TYPE_UNKNOWN)
2456				n->type = AUDIT_TYPE_PARENT;
2457			found_parent = n;
2458			break;
2459		}
2460	}
2461
2462	/* is there a matching child entry? */
2463	list_for_each_entry(n, &context->names_list, list) {
2464		/* can only match entries that have a name */
2465		if (!n->name ||
2466		    (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2467			continue;
2468
2469		if (!strcmp(dname->name, n->name->name) ||
2470		    !audit_compare_dname_path(dname, n->name->name,
2471						found_parent ?
2472						found_parent->name_len :
2473						AUDIT_NAME_FULL)) {
2474			if (n->type == AUDIT_TYPE_UNKNOWN)
2475				n->type = type;
2476			found_child = n;
2477			break;
2478		}
2479	}
2480
2481	if (!found_parent) {
2482		/* create a new, "anonymous" parent record */
2483		n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2484		if (!n)
2485			return;
2486		audit_copy_inode(n, NULL, parent, 0);
2487	}
2488
2489	if (!found_child) {
2490		found_child = audit_alloc_name(context, type);
2491		if (!found_child)
2492			return;
2493
2494		/* Re-use the name belonging to the slot for a matching parent
2495		 * directory. All names for this context are relinquished in
2496		 * audit_free_names() */
2497		if (found_parent) {
2498			found_child->name = found_parent->name;
2499			found_child->name_len = AUDIT_NAME_FULL;
2500			found_child->name->refcnt++;
2501		}
2502	}
2503
2504	if (inode)
2505		audit_copy_inode(found_child, dentry, inode, 0);
2506	else
2507		found_child->ino = AUDIT_INO_UNSET;
2508}
2509EXPORT_SYMBOL_GPL(__audit_inode_child);
2510
2511/**
2512 * auditsc_get_stamp - get local copies of audit_context values
2513 * @ctx: audit_context for the task
2514 * @t: timespec64 to store time recorded in the audit_context
2515 * @serial: serial value that is recorded in the audit_context
2516 *
2517 * Also sets the context as auditable.
2518 */
2519int auditsc_get_stamp(struct audit_context *ctx,
2520		       struct timespec64 *t, unsigned int *serial)
2521{
2522	if (ctx->context == AUDIT_CTX_UNUSED)
2523		return 0;
2524	if (!ctx->serial)
2525		ctx->serial = audit_serial();
2526	t->tv_sec  = ctx->ctime.tv_sec;
2527	t->tv_nsec = ctx->ctime.tv_nsec;
2528	*serial    = ctx->serial;
2529	if (!ctx->prio) {
2530		ctx->prio = 1;
2531		ctx->current_state = AUDIT_STATE_RECORD;
2532	}
2533	return 1;
2534}
2535
2536/**
2537 * __audit_mq_open - record audit data for a POSIX MQ open
2538 * @oflag: open flag
2539 * @mode: mode bits
2540 * @attr: queue attributes
2541 *
2542 */
2543void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2544{
2545	struct audit_context *context = audit_context();
2546
2547	if (attr)
2548		memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2549	else
2550		memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2551
2552	context->mq_open.oflag = oflag;
2553	context->mq_open.mode = mode;
2554
2555	context->type = AUDIT_MQ_OPEN;
2556}
2557
2558/**
2559 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2560 * @mqdes: MQ descriptor
2561 * @msg_len: Message length
2562 * @msg_prio: Message priority
2563 * @abs_timeout: Message timeout in absolute time
2564 *
2565 */
2566void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2567			const struct timespec64 *abs_timeout)
2568{
2569	struct audit_context *context = audit_context();
2570	struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2571
2572	if (abs_timeout)
2573		memcpy(p, abs_timeout, sizeof(*p));
2574	else
2575		memset(p, 0, sizeof(*p));
2576
2577	context->mq_sendrecv.mqdes = mqdes;
2578	context->mq_sendrecv.msg_len = msg_len;
2579	context->mq_sendrecv.msg_prio = msg_prio;
2580
2581	context->type = AUDIT_MQ_SENDRECV;
2582}
2583
2584/**
2585 * __audit_mq_notify - record audit data for a POSIX MQ notify
2586 * @mqdes: MQ descriptor
2587 * @notification: Notification event
2588 *
2589 */
2590
2591void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2592{
2593	struct audit_context *context = audit_context();
2594
2595	if (notification)
2596		context->mq_notify.sigev_signo = notification->sigev_signo;
2597	else
2598		context->mq_notify.sigev_signo = 0;
2599
2600	context->mq_notify.mqdes = mqdes;
2601	context->type = AUDIT_MQ_NOTIFY;
2602}
2603
2604/**
2605 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2606 * @mqdes: MQ descriptor
2607 * @mqstat: MQ flags
2608 *
2609 */
2610void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2611{
2612	struct audit_context *context = audit_context();
2613
2614	context->mq_getsetattr.mqdes = mqdes;
2615	context->mq_getsetattr.mqstat = *mqstat;
2616	context->type = AUDIT_MQ_GETSETATTR;
2617}
2618
2619/**
2620 * __audit_ipc_obj - record audit data for ipc object
2621 * @ipcp: ipc permissions
2622 *
2623 */
2624void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2625{
2626	struct audit_context *context = audit_context();
2627
2628	context->ipc.uid = ipcp->uid;
2629	context->ipc.gid = ipcp->gid;
2630	context->ipc.mode = ipcp->mode;
2631	context->ipc.has_perm = 0;
2632	security_ipc_getsecid(ipcp, &context->ipc.osid);
2633	context->type = AUDIT_IPC;
2634}
2635
2636/**
2637 * __audit_ipc_set_perm - record audit data for new ipc permissions
2638 * @qbytes: msgq bytes
2639 * @uid: msgq user id
2640 * @gid: msgq group id
2641 * @mode: msgq mode (permissions)
2642 *
2643 * Called only after audit_ipc_obj().
2644 */
2645void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2646{
2647	struct audit_context *context = audit_context();
2648
2649	context->ipc.qbytes = qbytes;
2650	context->ipc.perm_uid = uid;
2651	context->ipc.perm_gid = gid;
2652	context->ipc.perm_mode = mode;
2653	context->ipc.has_perm = 1;
2654}
2655
2656void __audit_bprm(struct linux_binprm *bprm)
2657{
2658	struct audit_context *context = audit_context();
2659
2660	context->type = AUDIT_EXECVE;
2661	context->execve.argc = bprm->argc;
2662}
2663
2664
2665/**
2666 * __audit_socketcall - record audit data for sys_socketcall
2667 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2668 * @args: args array
2669 *
2670 */
2671int __audit_socketcall(int nargs, unsigned long *args)
2672{
2673	struct audit_context *context = audit_context();
2674
2675	if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2676		return -EINVAL;
2677	context->type = AUDIT_SOCKETCALL;
2678	context->socketcall.nargs = nargs;
2679	memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2680	return 0;
2681}
2682
2683/**
2684 * __audit_fd_pair - record audit data for pipe and socketpair
2685 * @fd1: the first file descriptor
2686 * @fd2: the second file descriptor
2687 *
2688 */
2689void __audit_fd_pair(int fd1, int fd2)
2690{
2691	struct audit_context *context = audit_context();
2692
2693	context->fds[0] = fd1;
2694	context->fds[1] = fd2;
2695}
2696
2697/**
2698 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2699 * @len: data length in user space
2700 * @a: data address in kernel space
2701 *
2702 * Returns 0 for success or NULL context or < 0 on error.
2703 */
2704int __audit_sockaddr(int len, void *a)
2705{
2706	struct audit_context *context = audit_context();
2707
2708	if (!context->sockaddr) {
2709		void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2710
2711		if (!p)
2712			return -ENOMEM;
2713		context->sockaddr = p;
2714	}
2715
2716	context->sockaddr_len = len;
2717	memcpy(context->sockaddr, a, len);
2718	return 0;
2719}
2720
2721void __audit_ptrace(struct task_struct *t)
2722{
2723	struct audit_context *context = audit_context();
2724
2725	context->target_pid = task_tgid_nr(t);
2726	context->target_auid = audit_get_loginuid(t);
2727	context->target_uid = task_uid(t);
2728	context->target_sessionid = audit_get_sessionid(t);
2729	security_task_getsecid_obj(t, &context->target_sid);
2730	memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2731}
2732
2733/**
2734 * audit_signal_info_syscall - record signal info for syscalls
2735 * @t: task being signaled
2736 *
2737 * If the audit subsystem is being terminated, record the task (pid)
2738 * and uid that is doing that.
2739 */
2740int audit_signal_info_syscall(struct task_struct *t)
2741{
2742	struct audit_aux_data_pids *axp;
2743	struct audit_context *ctx = audit_context();
2744	kuid_t t_uid = task_uid(t);
2745
2746	if (!audit_signals || audit_dummy_context())
2747		return 0;
2748
2749	/* optimize the common case by putting first signal recipient directly
2750	 * in audit_context */
2751	if (!ctx->target_pid) {
2752		ctx->target_pid = task_tgid_nr(t);
2753		ctx->target_auid = audit_get_loginuid(t);
2754		ctx->target_uid = t_uid;
2755		ctx->target_sessionid = audit_get_sessionid(t);
2756		security_task_getsecid_obj(t, &ctx->target_sid);
2757		memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2758		return 0;
2759	}
2760
2761	axp = (void *)ctx->aux_pids;
2762	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2763		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2764		if (!axp)
2765			return -ENOMEM;
2766
2767		axp->d.type = AUDIT_OBJ_PID;
2768		axp->d.next = ctx->aux_pids;
2769		ctx->aux_pids = (void *)axp;
2770	}
2771	BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2772
2773	axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2774	axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2775	axp->target_uid[axp->pid_count] = t_uid;
2776	axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2777	security_task_getsecid_obj(t, &axp->target_sid[axp->pid_count]);
2778	memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2779	axp->pid_count++;
2780
2781	return 0;
2782}
2783
2784/**
2785 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2786 * @bprm: pointer to the bprm being processed
2787 * @new: the proposed new credentials
2788 * @old: the old credentials
2789 *
2790 * Simply check if the proc already has the caps given by the file and if not
2791 * store the priv escalation info for later auditing at the end of the syscall
2792 *
2793 * -Eric
2794 */
2795int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2796			   const struct cred *new, const struct cred *old)
2797{
2798	struct audit_aux_data_bprm_fcaps *ax;
2799	struct audit_context *context = audit_context();
2800	struct cpu_vfs_cap_data vcaps;
2801
2802	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2803	if (!ax)
2804		return -ENOMEM;
2805
2806	ax->d.type = AUDIT_BPRM_FCAPS;
2807	ax->d.next = context->aux;
2808	context->aux = (void *)ax;
2809
2810	get_vfs_caps_from_disk(&init_user_ns,
2811			       bprm->file->f_path.dentry, &vcaps);
2812
2813	ax->fcap.permitted = vcaps.permitted;
2814	ax->fcap.inheritable = vcaps.inheritable;
2815	ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2816	ax->fcap.rootid = vcaps.rootid;
2817	ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2818
2819	ax->old_pcap.permitted   = old->cap_permitted;
2820	ax->old_pcap.inheritable = old->cap_inheritable;
2821	ax->old_pcap.effective   = old->cap_effective;
2822	ax->old_pcap.ambient     = old->cap_ambient;
2823
2824	ax->new_pcap.permitted   = new->cap_permitted;
2825	ax->new_pcap.inheritable = new->cap_inheritable;
2826	ax->new_pcap.effective   = new->cap_effective;
2827	ax->new_pcap.ambient     = new->cap_ambient;
2828	return 0;
2829}
2830
2831/**
2832 * __audit_log_capset - store information about the arguments to the capset syscall
2833 * @new: the new credentials
2834 * @old: the old (current) credentials
2835 *
2836 * Record the arguments userspace sent to sys_capset for later printing by the
2837 * audit system if applicable
2838 */
2839void __audit_log_capset(const struct cred *new, const struct cred *old)
2840{
2841	struct audit_context *context = audit_context();
2842
2843	context->capset.pid = task_tgid_nr(current);
2844	context->capset.cap.effective   = new->cap_effective;
2845	context->capset.cap.inheritable = new->cap_effective;
2846	context->capset.cap.permitted   = new->cap_permitted;
2847	context->capset.cap.ambient     = new->cap_ambient;
2848	context->type = AUDIT_CAPSET;
2849}
2850
2851void __audit_mmap_fd(int fd, int flags)
2852{
2853	struct audit_context *context = audit_context();
2854
2855	context->mmap.fd = fd;
2856	context->mmap.flags = flags;
2857	context->type = AUDIT_MMAP;
2858}
2859
2860void __audit_openat2_how(struct open_how *how)
2861{
2862	struct audit_context *context = audit_context();
2863
2864	context->openat2.flags = how->flags;
2865	context->openat2.mode = how->mode;
2866	context->openat2.resolve = how->resolve;
2867	context->type = AUDIT_OPENAT2;
2868}
2869
2870void __audit_log_kern_module(char *name)
2871{
2872	struct audit_context *context = audit_context();
2873
2874	context->module.name = kstrdup(name, GFP_KERNEL);
2875	if (!context->module.name)
2876		audit_log_lost("out of memory in __audit_log_kern_module");
2877	context->type = AUDIT_KERN_MODULE;
2878}
2879
2880void __audit_fanotify(unsigned int response)
2881{
2882	audit_log(audit_context(), GFP_KERNEL,
2883		AUDIT_FANOTIFY,	"resp=%u", response);
2884}
2885
2886void __audit_tk_injoffset(struct timespec64 offset)
2887{
2888	struct audit_context *context = audit_context();
 
 
 
 
 
 
 
 
2889
2890	/* only set type if not already set by NTP */
2891	if (!context->type)
2892		context->type = AUDIT_TIME_INJOFFSET;
2893	memcpy(&context->time.tk_injoffset, &offset, sizeof(offset));
 
2894}
2895
2896void __audit_ntp_log(const struct audit_ntp_data *ad)
2897{
2898	struct audit_context *context = audit_context();
2899	int type;
2900
2901	for (type = 0; type < AUDIT_NTP_NVALS; type++)
2902		if (ad->vals[type].newval != ad->vals[type].oldval) {
2903			/* unconditionally set type, overwriting TK */
2904			context->type = AUDIT_TIME_ADJNTPVAL;
2905			memcpy(&context->time.ntp_data, ad, sizeof(*ad));
2906			break;
2907		}
2908}
2909
2910void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries,
2911		       enum audit_nfcfgop op, gfp_t gfp)
2912{
2913	struct audit_buffer *ab;
2914	char comm[sizeof(current->comm)];
2915
2916	ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG);
2917	if (!ab)
2918		return;
2919	audit_log_format(ab, "table=%s family=%u entries=%u op=%s",
2920			 name, af, nentries, audit_nfcfgs[op].s);
2921
2922	audit_log_format(ab, " pid=%u", task_pid_nr(current));
2923	audit_log_task_context(ab); /* subj= */
2924	audit_log_format(ab, " comm=");
2925	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2926	audit_log_end(ab);
2927}
2928EXPORT_SYMBOL_GPL(__audit_log_nfcfg);
2929
2930static void audit_log_task(struct audit_buffer *ab)
2931{
2932	kuid_t auid, uid;
2933	kgid_t gid;
2934	unsigned int sessionid;
2935	char comm[sizeof(current->comm)];
2936
2937	auid = audit_get_loginuid(current);
2938	sessionid = audit_get_sessionid(current);
2939	current_uid_gid(&uid, &gid);
2940
2941	audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2942			 from_kuid(&init_user_ns, auid),
2943			 from_kuid(&init_user_ns, uid),
2944			 from_kgid(&init_user_ns, gid),
2945			 sessionid);
2946	audit_log_task_context(ab);
2947	audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2948	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2949	audit_log_d_path_exe(ab, current->mm);
2950}
2951
2952/**
2953 * audit_core_dumps - record information about processes that end abnormally
2954 * @signr: signal value
2955 *
2956 * If a process ends with a core dump, something fishy is going on and we
2957 * should record the event for investigation.
2958 */
2959void audit_core_dumps(long signr)
2960{
2961	struct audit_buffer *ab;
2962
2963	if (!audit_enabled)
2964		return;
2965
2966	if (signr == SIGQUIT)	/* don't care for those */
2967		return;
2968
2969	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2970	if (unlikely(!ab))
2971		return;
2972	audit_log_task(ab);
2973	audit_log_format(ab, " sig=%ld res=1", signr);
2974	audit_log_end(ab);
2975}
2976
2977/**
2978 * audit_seccomp - record information about a seccomp action
2979 * @syscall: syscall number
2980 * @signr: signal value
2981 * @code: the seccomp action
2982 *
2983 * Record the information associated with a seccomp action. Event filtering for
2984 * seccomp actions that are not to be logged is done in seccomp_log().
2985 * Therefore, this function forces auditing independent of the audit_enabled
2986 * and dummy context state because seccomp actions should be logged even when
2987 * audit is not in use.
2988 */
2989void audit_seccomp(unsigned long syscall, long signr, int code)
2990{
2991	struct audit_buffer *ab;
2992
2993	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
2994	if (unlikely(!ab))
2995		return;
2996	audit_log_task(ab);
2997	audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2998			 signr, syscall_get_arch(current), syscall,
2999			 in_compat_syscall(), KSTK_EIP(current), code);
3000	audit_log_end(ab);
3001}
3002
3003void audit_seccomp_actions_logged(const char *names, const char *old_names,
3004				  int res)
3005{
3006	struct audit_buffer *ab;
3007
3008	if (!audit_enabled)
3009		return;
3010
3011	ab = audit_log_start(audit_context(), GFP_KERNEL,
3012			     AUDIT_CONFIG_CHANGE);
3013	if (unlikely(!ab))
3014		return;
3015
3016	audit_log_format(ab,
3017			 "op=seccomp-logging actions=%s old-actions=%s res=%d",
3018			 names, old_names, res);
3019	audit_log_end(ab);
3020}
3021
3022struct list_head *audit_killed_trees(void)
3023{
3024	struct audit_context *ctx = audit_context();
3025	if (likely(!ctx || ctx->context == AUDIT_CTX_UNUSED))
3026		return NULL;
3027	return &ctx->killed_trees;
3028}
v5.9
 
   1/* auditsc.c -- System-call auditing support
   2 * Handles all system-call specific auditing features.
   3 *
   4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
   5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
   6 * Copyright (C) 2005, 2006 IBM Corporation
   7 * All Rights Reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License as published by
  11 * the Free Software Foundation; either version 2 of the License, or
  12 * (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  22 *
  23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  24 *
  25 * Many of the ideas implemented here are from Stephen C. Tweedie,
  26 * especially the idea of avoiding a copy by using getname.
  27 *
  28 * The method for actual interception of syscall entry and exit (not in
  29 * this file -- see entry.S) is based on a GPL'd patch written by
  30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
  31 *
  32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
  33 * 2006.
  34 *
  35 * The support of additional filter rules compares (>, <, >=, <=) was
  36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
  37 *
  38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
  39 * filesystem information.
  40 *
  41 * Subject and object context labeling support added by <danjones@us.ibm.com>
  42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
  43 */
  44
  45#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  46
  47#include <linux/init.h>
  48#include <asm/types.h>
  49#include <linux/atomic.h>
  50#include <linux/fs.h>
  51#include <linux/namei.h>
  52#include <linux/mm.h>
  53#include <linux/export.h>
  54#include <linux/slab.h>
  55#include <linux/mount.h>
  56#include <linux/socket.h>
  57#include <linux/mqueue.h>
  58#include <linux/audit.h>
  59#include <linux/personality.h>
  60#include <linux/time.h>
  61#include <linux/netlink.h>
  62#include <linux/compiler.h>
  63#include <asm/unistd.h>
  64#include <linux/security.h>
  65#include <linux/list.h>
  66#include <linux/binfmts.h>
  67#include <linux/highmem.h>
  68#include <linux/syscalls.h>
  69#include <asm/syscall.h>
  70#include <linux/capability.h>
  71#include <linux/fs_struct.h>
  72#include <linux/compat.h>
  73#include <linux/ctype.h>
  74#include <linux/string.h>
  75#include <linux/uaccess.h>
  76#include <linux/fsnotify_backend.h>
  77#include <uapi/linux/limits.h>
  78#include <uapi/linux/netfilter/nf_tables.h>
 
  79
  80#include "audit.h"
  81
  82/* flags stating the success for a syscall */
  83#define AUDITSC_INVALID 0
  84#define AUDITSC_SUCCESS 1
  85#define AUDITSC_FAILURE 2
  86
  87/* no execve audit message should be longer than this (userspace limits),
  88 * see the note near the top of audit_log_execve_info() about this value */
  89#define MAX_EXECVE_AUDIT_LEN 7500
  90
  91/* max length to print of cmdline/proctitle value during audit */
  92#define MAX_PROCTITLE_AUDIT_LEN 128
  93
  94/* number of audit rules */
  95int audit_n_rules;
  96
  97/* determines whether we collect data for signals sent */
  98int audit_signals;
  99
 100struct audit_aux_data {
 101	struct audit_aux_data	*next;
 102	int			type;
 103};
 104
 105#define AUDIT_AUX_IPCPERM	0
 106
 107/* Number of target pids per aux struct. */
 108#define AUDIT_AUX_PIDS	16
 109
 110struct audit_aux_data_pids {
 111	struct audit_aux_data	d;
 112	pid_t			target_pid[AUDIT_AUX_PIDS];
 113	kuid_t			target_auid[AUDIT_AUX_PIDS];
 114	kuid_t			target_uid[AUDIT_AUX_PIDS];
 115	unsigned int		target_sessionid[AUDIT_AUX_PIDS];
 116	u32			target_sid[AUDIT_AUX_PIDS];
 117	char 			target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
 118	int			pid_count;
 119};
 120
 121struct audit_aux_data_bprm_fcaps {
 122	struct audit_aux_data	d;
 123	struct audit_cap_data	fcap;
 124	unsigned int		fcap_ver;
 125	struct audit_cap_data	old_pcap;
 126	struct audit_cap_data	new_pcap;
 127};
 128
 129struct audit_tree_refs {
 130	struct audit_tree_refs *next;
 131	struct audit_chunk *c[31];
 132};
 133
 134struct audit_nfcfgop_tab {
 135	enum audit_nfcfgop	op;
 136	const char		*s;
 137};
 138
 139static const struct audit_nfcfgop_tab audit_nfcfgs[] = {
 140	{ AUDIT_XT_OP_REGISTER,			"xt_register"		   },
 141	{ AUDIT_XT_OP_REPLACE,			"xt_replace"		   },
 142	{ AUDIT_XT_OP_UNREGISTER,		"xt_unregister"		   },
 143	{ AUDIT_NFT_OP_TABLE_REGISTER,		"nft_register_table"	   },
 144	{ AUDIT_NFT_OP_TABLE_UNREGISTER,	"nft_unregister_table"	   },
 145	{ AUDIT_NFT_OP_CHAIN_REGISTER,		"nft_register_chain"	   },
 146	{ AUDIT_NFT_OP_CHAIN_UNREGISTER,	"nft_unregister_chain"	   },
 147	{ AUDIT_NFT_OP_RULE_REGISTER,		"nft_register_rule"	   },
 148	{ AUDIT_NFT_OP_RULE_UNREGISTER,		"nft_unregister_rule"	   },
 149	{ AUDIT_NFT_OP_SET_REGISTER,		"nft_register_set"	   },
 150	{ AUDIT_NFT_OP_SET_UNREGISTER,		"nft_unregister_set"	   },
 151	{ AUDIT_NFT_OP_SETELEM_REGISTER,	"nft_register_setelem"	   },
 152	{ AUDIT_NFT_OP_SETELEM_UNREGISTER,	"nft_unregister_setelem"   },
 153	{ AUDIT_NFT_OP_GEN_REGISTER,		"nft_register_gen"	   },
 154	{ AUDIT_NFT_OP_OBJ_REGISTER,		"nft_register_obj"	   },
 155	{ AUDIT_NFT_OP_OBJ_UNREGISTER,		"nft_unregister_obj"	   },
 156	{ AUDIT_NFT_OP_OBJ_RESET,		"nft_reset_obj"		   },
 157	{ AUDIT_NFT_OP_FLOWTABLE_REGISTER,	"nft_register_flowtable"   },
 158	{ AUDIT_NFT_OP_FLOWTABLE_UNREGISTER,	"nft_unregister_flowtable" },
 159	{ AUDIT_NFT_OP_INVALID,			"nft_invalid"		   },
 160};
 161
 162static int audit_match_perm(struct audit_context *ctx, int mask)
 163{
 164	unsigned n;
 
 165	if (unlikely(!ctx))
 166		return 0;
 167	n = ctx->major;
 168
 169	switch (audit_classify_syscall(ctx->arch, n)) {
 170	case 0:	/* native */
 171		if ((mask & AUDIT_PERM_WRITE) &&
 172		     audit_match_class(AUDIT_CLASS_WRITE, n))
 173			return 1;
 174		if ((mask & AUDIT_PERM_READ) &&
 175		     audit_match_class(AUDIT_CLASS_READ, n))
 176			return 1;
 177		if ((mask & AUDIT_PERM_ATTR) &&
 178		     audit_match_class(AUDIT_CLASS_CHATTR, n))
 179			return 1;
 180		return 0;
 181	case 1: /* 32bit on biarch */
 182		if ((mask & AUDIT_PERM_WRITE) &&
 183		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
 184			return 1;
 185		if ((mask & AUDIT_PERM_READ) &&
 186		     audit_match_class(AUDIT_CLASS_READ_32, n))
 187			return 1;
 188		if ((mask & AUDIT_PERM_ATTR) &&
 189		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
 190			return 1;
 191		return 0;
 192	case 2: /* open */
 193		return mask & ACC_MODE(ctx->argv[1]);
 194	case 3: /* openat */
 195		return mask & ACC_MODE(ctx->argv[2]);
 196	case 4: /* socketcall */
 197		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
 198	case 5: /* execve */
 199		return mask & AUDIT_PERM_EXEC;
 
 
 200	default:
 201		return 0;
 202	}
 203}
 204
 205static int audit_match_filetype(struct audit_context *ctx, int val)
 206{
 207	struct audit_names *n;
 208	umode_t mode = (umode_t)val;
 209
 210	if (unlikely(!ctx))
 211		return 0;
 212
 213	list_for_each_entry(n, &ctx->names_list, list) {
 214		if ((n->ino != AUDIT_INO_UNSET) &&
 215		    ((n->mode & S_IFMT) == mode))
 216			return 1;
 217	}
 218
 219	return 0;
 220}
 221
 222/*
 223 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
 224 * ->first_trees points to its beginning, ->trees - to the current end of data.
 225 * ->tree_count is the number of free entries in array pointed to by ->trees.
 226 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
 227 * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
 228 * it's going to remain 1-element for almost any setup) until we free context itself.
 229 * References in it _are_ dropped - at the same time we free/drop aux stuff.
 230 */
 231
 232static void audit_set_auditable(struct audit_context *ctx)
 233{
 234	if (!ctx->prio) {
 235		ctx->prio = 1;
 236		ctx->current_state = AUDIT_RECORD_CONTEXT;
 237	}
 238}
 239
 240static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
 241{
 242	struct audit_tree_refs *p = ctx->trees;
 243	int left = ctx->tree_count;
 
 244	if (likely(left)) {
 245		p->c[--left] = chunk;
 246		ctx->tree_count = left;
 247		return 1;
 248	}
 249	if (!p)
 250		return 0;
 251	p = p->next;
 252	if (p) {
 253		p->c[30] = chunk;
 254		ctx->trees = p;
 255		ctx->tree_count = 30;
 256		return 1;
 257	}
 258	return 0;
 259}
 260
 261static int grow_tree_refs(struct audit_context *ctx)
 262{
 263	struct audit_tree_refs *p = ctx->trees;
 
 264	ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
 265	if (!ctx->trees) {
 266		ctx->trees = p;
 267		return 0;
 268	}
 269	if (p)
 270		p->next = ctx->trees;
 271	else
 272		ctx->first_trees = ctx->trees;
 273	ctx->tree_count = 31;
 274	return 1;
 275}
 276
 277static void unroll_tree_refs(struct audit_context *ctx,
 278		      struct audit_tree_refs *p, int count)
 279{
 280	struct audit_tree_refs *q;
 281	int n;
 
 282	if (!p) {
 283		/* we started with empty chain */
 284		p = ctx->first_trees;
 285		count = 31;
 286		/* if the very first allocation has failed, nothing to do */
 287		if (!p)
 288			return;
 289	}
 290	n = count;
 291	for (q = p; q != ctx->trees; q = q->next, n = 31) {
 292		while (n--) {
 293			audit_put_chunk(q->c[n]);
 294			q->c[n] = NULL;
 295		}
 296	}
 297	while (n-- > ctx->tree_count) {
 298		audit_put_chunk(q->c[n]);
 299		q->c[n] = NULL;
 300	}
 301	ctx->trees = p;
 302	ctx->tree_count = count;
 303}
 304
 305static void free_tree_refs(struct audit_context *ctx)
 306{
 307	struct audit_tree_refs *p, *q;
 
 308	for (p = ctx->first_trees; p; p = q) {
 309		q = p->next;
 310		kfree(p);
 311	}
 312}
 313
 314static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
 315{
 316	struct audit_tree_refs *p;
 317	int n;
 
 318	if (!tree)
 319		return 0;
 320	/* full ones */
 321	for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
 322		for (n = 0; n < 31; n++)
 323			if (audit_tree_match(p->c[n], tree))
 324				return 1;
 325	}
 326	/* partial */
 327	if (p) {
 328		for (n = ctx->tree_count; n < 31; n++)
 329			if (audit_tree_match(p->c[n], tree))
 330				return 1;
 331	}
 332	return 0;
 333}
 334
 335static int audit_compare_uid(kuid_t uid,
 336			     struct audit_names *name,
 337			     struct audit_field *f,
 338			     struct audit_context *ctx)
 339{
 340	struct audit_names *n;
 341	int rc;
 342 
 343	if (name) {
 344		rc = audit_uid_comparator(uid, f->op, name->uid);
 345		if (rc)
 346			return rc;
 347	}
 348 
 349	if (ctx) {
 350		list_for_each_entry(n, &ctx->names_list, list) {
 351			rc = audit_uid_comparator(uid, f->op, n->uid);
 352			if (rc)
 353				return rc;
 354		}
 355	}
 356	return 0;
 357}
 358
 359static int audit_compare_gid(kgid_t gid,
 360			     struct audit_names *name,
 361			     struct audit_field *f,
 362			     struct audit_context *ctx)
 363{
 364	struct audit_names *n;
 365	int rc;
 366 
 367	if (name) {
 368		rc = audit_gid_comparator(gid, f->op, name->gid);
 369		if (rc)
 370			return rc;
 371	}
 372 
 373	if (ctx) {
 374		list_for_each_entry(n, &ctx->names_list, list) {
 375			rc = audit_gid_comparator(gid, f->op, n->gid);
 376			if (rc)
 377				return rc;
 378		}
 379	}
 380	return 0;
 381}
 382
 383static int audit_field_compare(struct task_struct *tsk,
 384			       const struct cred *cred,
 385			       struct audit_field *f,
 386			       struct audit_context *ctx,
 387			       struct audit_names *name)
 388{
 389	switch (f->val) {
 390	/* process to file object comparisons */
 391	case AUDIT_COMPARE_UID_TO_OBJ_UID:
 392		return audit_compare_uid(cred->uid, name, f, ctx);
 393	case AUDIT_COMPARE_GID_TO_OBJ_GID:
 394		return audit_compare_gid(cred->gid, name, f, ctx);
 395	case AUDIT_COMPARE_EUID_TO_OBJ_UID:
 396		return audit_compare_uid(cred->euid, name, f, ctx);
 397	case AUDIT_COMPARE_EGID_TO_OBJ_GID:
 398		return audit_compare_gid(cred->egid, name, f, ctx);
 399	case AUDIT_COMPARE_AUID_TO_OBJ_UID:
 400		return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
 401	case AUDIT_COMPARE_SUID_TO_OBJ_UID:
 402		return audit_compare_uid(cred->suid, name, f, ctx);
 403	case AUDIT_COMPARE_SGID_TO_OBJ_GID:
 404		return audit_compare_gid(cred->sgid, name, f, ctx);
 405	case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
 406		return audit_compare_uid(cred->fsuid, name, f, ctx);
 407	case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
 408		return audit_compare_gid(cred->fsgid, name, f, ctx);
 409	/* uid comparisons */
 410	case AUDIT_COMPARE_UID_TO_AUID:
 411		return audit_uid_comparator(cred->uid, f->op,
 412					    audit_get_loginuid(tsk));
 413	case AUDIT_COMPARE_UID_TO_EUID:
 414		return audit_uid_comparator(cred->uid, f->op, cred->euid);
 415	case AUDIT_COMPARE_UID_TO_SUID:
 416		return audit_uid_comparator(cred->uid, f->op, cred->suid);
 417	case AUDIT_COMPARE_UID_TO_FSUID:
 418		return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
 419	/* auid comparisons */
 420	case AUDIT_COMPARE_AUID_TO_EUID:
 421		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
 422					    cred->euid);
 423	case AUDIT_COMPARE_AUID_TO_SUID:
 424		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
 425					    cred->suid);
 426	case AUDIT_COMPARE_AUID_TO_FSUID:
 427		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
 428					    cred->fsuid);
 429	/* euid comparisons */
 430	case AUDIT_COMPARE_EUID_TO_SUID:
 431		return audit_uid_comparator(cred->euid, f->op, cred->suid);
 432	case AUDIT_COMPARE_EUID_TO_FSUID:
 433		return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
 434	/* suid comparisons */
 435	case AUDIT_COMPARE_SUID_TO_FSUID:
 436		return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
 437	/* gid comparisons */
 438	case AUDIT_COMPARE_GID_TO_EGID:
 439		return audit_gid_comparator(cred->gid, f->op, cred->egid);
 440	case AUDIT_COMPARE_GID_TO_SGID:
 441		return audit_gid_comparator(cred->gid, f->op, cred->sgid);
 442	case AUDIT_COMPARE_GID_TO_FSGID:
 443		return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
 444	/* egid comparisons */
 445	case AUDIT_COMPARE_EGID_TO_SGID:
 446		return audit_gid_comparator(cred->egid, f->op, cred->sgid);
 447	case AUDIT_COMPARE_EGID_TO_FSGID:
 448		return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
 449	/* sgid comparison */
 450	case AUDIT_COMPARE_SGID_TO_FSGID:
 451		return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
 452	default:
 453		WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
 454		return 0;
 455	}
 456	return 0;
 457}
 458
 459/* Determine if any context name data matches a rule's watch data */
 460/* Compare a task_struct with an audit_rule.  Return 1 on match, 0
 461 * otherwise.
 462 *
 463 * If task_creation is true, this is an explicit indication that we are
 464 * filtering a task rule at task creation time.  This and tsk == current are
 465 * the only situations where tsk->cred may be accessed without an rcu read lock.
 466 */
 467static int audit_filter_rules(struct task_struct *tsk,
 468			      struct audit_krule *rule,
 469			      struct audit_context *ctx,
 470			      struct audit_names *name,
 471			      enum audit_state *state,
 472			      bool task_creation)
 473{
 474	const struct cred *cred;
 475	int i, need_sid = 1;
 476	u32 sid;
 477	unsigned int sessionid;
 478
 
 
 
 479	cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
 480
 481	for (i = 0; i < rule->field_count; i++) {
 482		struct audit_field *f = &rule->fields[i];
 483		struct audit_names *n;
 484		int result = 0;
 485		pid_t pid;
 486
 487		switch (f->type) {
 488		case AUDIT_PID:
 489			pid = task_tgid_nr(tsk);
 490			result = audit_comparator(pid, f->op, f->val);
 491			break;
 492		case AUDIT_PPID:
 493			if (ctx) {
 494				if (!ctx->ppid)
 495					ctx->ppid = task_ppid_nr(tsk);
 496				result = audit_comparator(ctx->ppid, f->op, f->val);
 497			}
 498			break;
 499		case AUDIT_EXE:
 500			result = audit_exe_compare(tsk, rule->exe);
 501			if (f->op == Audit_not_equal)
 502				result = !result;
 503			break;
 504		case AUDIT_UID:
 505			result = audit_uid_comparator(cred->uid, f->op, f->uid);
 506			break;
 507		case AUDIT_EUID:
 508			result = audit_uid_comparator(cred->euid, f->op, f->uid);
 509			break;
 510		case AUDIT_SUID:
 511			result = audit_uid_comparator(cred->suid, f->op, f->uid);
 512			break;
 513		case AUDIT_FSUID:
 514			result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
 515			break;
 516		case AUDIT_GID:
 517			result = audit_gid_comparator(cred->gid, f->op, f->gid);
 518			if (f->op == Audit_equal) {
 519				if (!result)
 520					result = groups_search(cred->group_info, f->gid);
 521			} else if (f->op == Audit_not_equal) {
 522				if (result)
 523					result = !groups_search(cred->group_info, f->gid);
 524			}
 525			break;
 526		case AUDIT_EGID:
 527			result = audit_gid_comparator(cred->egid, f->op, f->gid);
 528			if (f->op == Audit_equal) {
 529				if (!result)
 530					result = groups_search(cred->group_info, f->gid);
 531			} else if (f->op == Audit_not_equal) {
 532				if (result)
 533					result = !groups_search(cred->group_info, f->gid);
 534			}
 535			break;
 536		case AUDIT_SGID:
 537			result = audit_gid_comparator(cred->sgid, f->op, f->gid);
 538			break;
 539		case AUDIT_FSGID:
 540			result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
 541			break;
 542		case AUDIT_SESSIONID:
 543			sessionid = audit_get_sessionid(tsk);
 544			result = audit_comparator(sessionid, f->op, f->val);
 545			break;
 546		case AUDIT_PERS:
 547			result = audit_comparator(tsk->personality, f->op, f->val);
 548			break;
 549		case AUDIT_ARCH:
 550			if (ctx)
 551				result = audit_comparator(ctx->arch, f->op, f->val);
 552			break;
 553
 554		case AUDIT_EXIT:
 555			if (ctx && ctx->return_valid)
 556				result = audit_comparator(ctx->return_code, f->op, f->val);
 557			break;
 558		case AUDIT_SUCCESS:
 559			if (ctx && ctx->return_valid) {
 560				if (f->val)
 561					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
 562				else
 563					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
 564			}
 565			break;
 566		case AUDIT_DEVMAJOR:
 567			if (name) {
 568				if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
 569				    audit_comparator(MAJOR(name->rdev), f->op, f->val))
 570					++result;
 571			} else if (ctx) {
 572				list_for_each_entry(n, &ctx->names_list, list) {
 573					if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
 574					    audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
 575						++result;
 576						break;
 577					}
 578				}
 579			}
 580			break;
 581		case AUDIT_DEVMINOR:
 582			if (name) {
 583				if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
 584				    audit_comparator(MINOR(name->rdev), f->op, f->val))
 585					++result;
 586			} else if (ctx) {
 587				list_for_each_entry(n, &ctx->names_list, list) {
 588					if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
 589					    audit_comparator(MINOR(n->rdev), f->op, f->val)) {
 590						++result;
 591						break;
 592					}
 593				}
 594			}
 595			break;
 596		case AUDIT_INODE:
 597			if (name)
 598				result = audit_comparator(name->ino, f->op, f->val);
 599			else if (ctx) {
 600				list_for_each_entry(n, &ctx->names_list, list) {
 601					if (audit_comparator(n->ino, f->op, f->val)) {
 602						++result;
 603						break;
 604					}
 605				}
 606			}
 607			break;
 608		case AUDIT_OBJ_UID:
 609			if (name) {
 610				result = audit_uid_comparator(name->uid, f->op, f->uid);
 611			} else if (ctx) {
 612				list_for_each_entry(n, &ctx->names_list, list) {
 613					if (audit_uid_comparator(n->uid, f->op, f->uid)) {
 614						++result;
 615						break;
 616					}
 617				}
 618			}
 619			break;
 620		case AUDIT_OBJ_GID:
 621			if (name) {
 622				result = audit_gid_comparator(name->gid, f->op, f->gid);
 623			} else if (ctx) {
 624				list_for_each_entry(n, &ctx->names_list, list) {
 625					if (audit_gid_comparator(n->gid, f->op, f->gid)) {
 626						++result;
 627						break;
 628					}
 629				}
 630			}
 631			break;
 632		case AUDIT_WATCH:
 633			if (name) {
 634				result = audit_watch_compare(rule->watch,
 635							     name->ino,
 636							     name->dev);
 637				if (f->op == Audit_not_equal)
 638					result = !result;
 639			}
 640			break;
 641		case AUDIT_DIR:
 642			if (ctx) {
 643				result = match_tree_refs(ctx, rule->tree);
 644				if (f->op == Audit_not_equal)
 645					result = !result;
 646			}
 647			break;
 648		case AUDIT_LOGINUID:
 649			result = audit_uid_comparator(audit_get_loginuid(tsk),
 650						      f->op, f->uid);
 651			break;
 652		case AUDIT_LOGINUID_SET:
 653			result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
 654			break;
 655		case AUDIT_SADDR_FAM:
 656			if (ctx->sockaddr)
 657				result = audit_comparator(ctx->sockaddr->ss_family,
 658							  f->op, f->val);
 659			break;
 660		case AUDIT_SUBJ_USER:
 661		case AUDIT_SUBJ_ROLE:
 662		case AUDIT_SUBJ_TYPE:
 663		case AUDIT_SUBJ_SEN:
 664		case AUDIT_SUBJ_CLR:
 665			/* NOTE: this may return negative values indicating
 666			   a temporary error.  We simply treat this as a
 667			   match for now to avoid losing information that
 668			   may be wanted.   An error message will also be
 669			   logged upon error */
 670			if (f->lsm_rule) {
 671				if (need_sid) {
 672					security_task_getsecid(tsk, &sid);
 
 
 
 
 
 
 
 
 
 673					need_sid = 0;
 674				}
 675				result = security_audit_rule_match(sid, f->type,
 676								   f->op,
 677								   f->lsm_rule);
 678			}
 679			break;
 680		case AUDIT_OBJ_USER:
 681		case AUDIT_OBJ_ROLE:
 682		case AUDIT_OBJ_TYPE:
 683		case AUDIT_OBJ_LEV_LOW:
 684		case AUDIT_OBJ_LEV_HIGH:
 685			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
 686			   also applies here */
 687			if (f->lsm_rule) {
 688				/* Find files that match */
 689				if (name) {
 690					result = security_audit_rule_match(
 691								name->osid,
 692								f->type,
 693								f->op,
 694								f->lsm_rule);
 695				} else if (ctx) {
 696					list_for_each_entry(n, &ctx->names_list, list) {
 697						if (security_audit_rule_match(
 698								n->osid,
 699								f->type,
 700								f->op,
 701								f->lsm_rule)) {
 702							++result;
 703							break;
 704						}
 705					}
 706				}
 707				/* Find ipc objects that match */
 708				if (!ctx || ctx->type != AUDIT_IPC)
 709					break;
 710				if (security_audit_rule_match(ctx->ipc.osid,
 711							      f->type, f->op,
 712							      f->lsm_rule))
 713					++result;
 714			}
 715			break;
 716		case AUDIT_ARG0:
 717		case AUDIT_ARG1:
 718		case AUDIT_ARG2:
 719		case AUDIT_ARG3:
 720			if (ctx)
 721				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
 722			break;
 723		case AUDIT_FILTERKEY:
 724			/* ignore this field for filtering */
 725			result = 1;
 726			break;
 727		case AUDIT_PERM:
 728			result = audit_match_perm(ctx, f->val);
 729			if (f->op == Audit_not_equal)
 730				result = !result;
 731			break;
 732		case AUDIT_FILETYPE:
 733			result = audit_match_filetype(ctx, f->val);
 734			if (f->op == Audit_not_equal)
 735				result = !result;
 736			break;
 737		case AUDIT_FIELD_COMPARE:
 738			result = audit_field_compare(tsk, cred, f, ctx, name);
 739			break;
 740		}
 741		if (!result)
 742			return 0;
 743	}
 744
 745	if (ctx) {
 746		if (rule->prio <= ctx->prio)
 747			return 0;
 748		if (rule->filterkey) {
 749			kfree(ctx->filterkey);
 750			ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
 751		}
 752		ctx->prio = rule->prio;
 753	}
 754	switch (rule->action) {
 755	case AUDIT_NEVER:
 756		*state = AUDIT_DISABLED;
 757		break;
 758	case AUDIT_ALWAYS:
 759		*state = AUDIT_RECORD_CONTEXT;
 760		break;
 761	}
 762	return 1;
 763}
 764
 765/* At process creation time, we can determine if system-call auditing is
 766 * completely disabled for this task.  Since we only have the task
 767 * structure at this point, we can only check uid and gid.
 768 */
 769static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
 770{
 771	struct audit_entry *e;
 772	enum audit_state   state;
 773
 774	rcu_read_lock();
 775	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
 776		if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
 777				       &state, true)) {
 778			if (state == AUDIT_RECORD_CONTEXT)
 779				*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
 780			rcu_read_unlock();
 781			return state;
 782		}
 783	}
 784	rcu_read_unlock();
 785	return AUDIT_BUILD_CONTEXT;
 786}
 787
 788static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
 789{
 790	int word, bit;
 791
 792	if (val > 0xffffffff)
 793		return false;
 794
 795	word = AUDIT_WORD(val);
 796	if (word >= AUDIT_BITMASK_SIZE)
 797		return false;
 798
 799	bit = AUDIT_BIT(val);
 800
 801	return rule->mask[word] & bit;
 802}
 803
 804/* At syscall entry and exit time, this filter is called if the
 805 * audit_state is not low enough that auditing cannot take place, but is
 806 * also not high enough that we already know we have to write an audit
 807 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
 808 */
 809static enum audit_state audit_filter_syscall(struct task_struct *tsk,
 810					     struct audit_context *ctx,
 811					     struct list_head *list)
 
 
 
 
 
 
 
 
 
 
 
 812{
 813	struct audit_entry *e;
 814	enum audit_state state;
 815
 816	if (auditd_test_task(tsk))
 817		return AUDIT_DISABLED;
 818
 819	rcu_read_lock();
 820	list_for_each_entry_rcu(e, list, list) {
 821		if (audit_in_mask(&e->rule, ctx->major) &&
 822		    audit_filter_rules(tsk, &e->rule, ctx, NULL,
 823				       &state, false)) {
 824			rcu_read_unlock();
 825			ctx->current_state = state;
 826			return state;
 827		}
 828	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 829	rcu_read_unlock();
 830	return AUDIT_BUILD_CONTEXT;
 831}
 832
 833/*
 834 * Given an audit_name check the inode hash table to see if they match.
 835 * Called holding the rcu read lock to protect the use of audit_inode_hash
 836 */
 837static int audit_filter_inode_name(struct task_struct *tsk,
 838				   struct audit_names *n,
 839				   struct audit_context *ctx) {
 840	int h = audit_hash_ino((u32)n->ino);
 841	struct list_head *list = &audit_inode_hash[h];
 842	struct audit_entry *e;
 843	enum audit_state state;
 844
 845	list_for_each_entry_rcu(e, list, list) {
 846		if (audit_in_mask(&e->rule, ctx->major) &&
 847		    audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
 848			ctx->current_state = state;
 849			return 1;
 850		}
 851	}
 852	return 0;
 853}
 854
 855/* At syscall exit time, this filter is called if any audit_names have been
 856 * collected during syscall processing.  We only check rules in sublists at hash
 857 * buckets applicable to the inode numbers in audit_names.
 858 * Regarding audit_state, same rules apply as for audit_filter_syscall().
 859 */
 860void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
 861{
 862	struct audit_names *n;
 863
 864	if (auditd_test_task(tsk))
 865		return;
 866
 867	rcu_read_lock();
 868
 869	list_for_each_entry(n, &ctx->names_list, list) {
 870		if (audit_filter_inode_name(tsk, n, ctx))
 871			break;
 872	}
 873	rcu_read_unlock();
 874}
 875
 876static inline void audit_proctitle_free(struct audit_context *context)
 877{
 878	kfree(context->proctitle.value);
 879	context->proctitle.value = NULL;
 880	context->proctitle.len = 0;
 881}
 882
 883static inline void audit_free_module(struct audit_context *context)
 884{
 885	if (context->type == AUDIT_KERN_MODULE) {
 886		kfree(context->module.name);
 887		context->module.name = NULL;
 888	}
 889}
 890static inline void audit_free_names(struct audit_context *context)
 891{
 892	struct audit_names *n, *next;
 893
 894	list_for_each_entry_safe(n, next, &context->names_list, list) {
 895		list_del(&n->list);
 896		if (n->name)
 897			putname(n->name);
 898		if (n->should_free)
 899			kfree(n);
 900	}
 901	context->name_count = 0;
 902	path_put(&context->pwd);
 903	context->pwd.dentry = NULL;
 904	context->pwd.mnt = NULL;
 905}
 906
 907static inline void audit_free_aux(struct audit_context *context)
 908{
 909	struct audit_aux_data *aux;
 910
 911	while ((aux = context->aux)) {
 912		context->aux = aux->next;
 913		kfree(aux);
 914	}
 
 915	while ((aux = context->aux_pids)) {
 916		context->aux_pids = aux->next;
 917		kfree(aux);
 918	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 919}
 920
 921static inline struct audit_context *audit_alloc_context(enum audit_state state)
 922{
 923	struct audit_context *context;
 924
 925	context = kzalloc(sizeof(*context), GFP_KERNEL);
 926	if (!context)
 927		return NULL;
 
 928	context->state = state;
 929	context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
 930	INIT_LIST_HEAD(&context->killed_trees);
 931	INIT_LIST_HEAD(&context->names_list);
 
 
 932	return context;
 933}
 934
 935/**
 936 * audit_alloc - allocate an audit context block for a task
 937 * @tsk: task
 938 *
 939 * Filter on the task information and allocate a per-task audit context
 940 * if necessary.  Doing so turns on system call auditing for the
 941 * specified task.  This is called from copy_process, so no lock is
 942 * needed.
 943 */
 944int audit_alloc(struct task_struct *tsk)
 945{
 946	struct audit_context *context;
 947	enum audit_state     state;
 948	char *key = NULL;
 949
 950	if (likely(!audit_ever_enabled))
 951		return 0; /* Return if not auditing. */
 952
 953	state = audit_filter_task(tsk, &key);
 954	if (state == AUDIT_DISABLED) {
 955		clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
 956		return 0;
 957	}
 958
 959	if (!(context = audit_alloc_context(state))) {
 960		kfree(key);
 961		audit_log_lost("out of memory in audit_alloc");
 962		return -ENOMEM;
 963	}
 964	context->filterkey = key;
 965
 966	audit_set_context(tsk, context);
 967	set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
 968	return 0;
 969}
 970
 971static inline void audit_free_context(struct audit_context *context)
 972{
 973	audit_free_module(context);
 974	audit_free_names(context);
 975	unroll_tree_refs(context, NULL, 0);
 976	free_tree_refs(context);
 977	audit_free_aux(context);
 978	kfree(context->filterkey);
 979	kfree(context->sockaddr);
 980	audit_proctitle_free(context);
 981	kfree(context);
 982}
 983
 984static int audit_log_pid_context(struct audit_context *context, pid_t pid,
 985				 kuid_t auid, kuid_t uid, unsigned int sessionid,
 986				 u32 sid, char *comm)
 987{
 988	struct audit_buffer *ab;
 989	char *ctx = NULL;
 990	u32 len;
 991	int rc = 0;
 992
 993	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
 994	if (!ab)
 995		return rc;
 996
 997	audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
 998			 from_kuid(&init_user_ns, auid),
 999			 from_kuid(&init_user_ns, uid), sessionid);
1000	if (sid) {
1001		if (security_secid_to_secctx(sid, &ctx, &len)) {
1002			audit_log_format(ab, " obj=(none)");
1003			rc = 1;
1004		} else {
1005			audit_log_format(ab, " obj=%s", ctx);
1006			security_release_secctx(ctx, len);
1007		}
1008	}
1009	audit_log_format(ab, " ocomm=");
1010	audit_log_untrustedstring(ab, comm);
1011	audit_log_end(ab);
1012
1013	return rc;
1014}
1015
1016static void audit_log_execve_info(struct audit_context *context,
1017				  struct audit_buffer **ab)
1018{
1019	long len_max;
1020	long len_rem;
1021	long len_full;
1022	long len_buf;
1023	long len_abuf = 0;
1024	long len_tmp;
1025	bool require_data;
1026	bool encode;
1027	unsigned int iter;
1028	unsigned int arg;
1029	char *buf_head;
1030	char *buf;
1031	const char __user *p = (const char __user *)current->mm->arg_start;
1032
1033	/* NOTE: this buffer needs to be large enough to hold all the non-arg
1034	 *       data we put in the audit record for this argument (see the
1035	 *       code below) ... at this point in time 96 is plenty */
1036	char abuf[96];
1037
1038	/* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1039	 *       current value of 7500 is not as important as the fact that it
1040	 *       is less than 8k, a setting of 7500 gives us plenty of wiggle
1041	 *       room if we go over a little bit in the logging below */
1042	WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1043	len_max = MAX_EXECVE_AUDIT_LEN;
1044
1045	/* scratch buffer to hold the userspace args */
1046	buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1047	if (!buf_head) {
1048		audit_panic("out of memory for argv string");
1049		return;
1050	}
1051	buf = buf_head;
1052
1053	audit_log_format(*ab, "argc=%d", context->execve.argc);
1054
1055	len_rem = len_max;
1056	len_buf = 0;
1057	len_full = 0;
1058	require_data = true;
1059	encode = false;
1060	iter = 0;
1061	arg = 0;
1062	do {
1063		/* NOTE: we don't ever want to trust this value for anything
1064		 *       serious, but the audit record format insists we
1065		 *       provide an argument length for really long arguments,
1066		 *       e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1067		 *       to use strncpy_from_user() to obtain this value for
1068		 *       recording in the log, although we don't use it
1069		 *       anywhere here to avoid a double-fetch problem */
1070		if (len_full == 0)
1071			len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1072
1073		/* read more data from userspace */
1074		if (require_data) {
1075			/* can we make more room in the buffer? */
1076			if (buf != buf_head) {
1077				memmove(buf_head, buf, len_buf);
1078				buf = buf_head;
1079			}
1080
1081			/* fetch as much as we can of the argument */
1082			len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1083						    len_max - len_buf);
1084			if (len_tmp == -EFAULT) {
1085				/* unable to copy from userspace */
1086				send_sig(SIGKILL, current, 0);
1087				goto out;
1088			} else if (len_tmp == (len_max - len_buf)) {
1089				/* buffer is not large enough */
1090				require_data = true;
1091				/* NOTE: if we are going to span multiple
1092				 *       buffers force the encoding so we stand
1093				 *       a chance at a sane len_full value and
1094				 *       consistent record encoding */
1095				encode = true;
1096				len_full = len_full * 2;
1097				p += len_tmp;
1098			} else {
1099				require_data = false;
1100				if (!encode)
1101					encode = audit_string_contains_control(
1102								buf, len_tmp);
1103				/* try to use a trusted value for len_full */
1104				if (len_full < len_max)
1105					len_full = (encode ?
1106						    len_tmp * 2 : len_tmp);
1107				p += len_tmp + 1;
1108			}
1109			len_buf += len_tmp;
1110			buf_head[len_buf] = '\0';
1111
1112			/* length of the buffer in the audit record? */
1113			len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1114		}
1115
1116		/* write as much as we can to the audit log */
1117		if (len_buf >= 0) {
1118			/* NOTE: some magic numbers here - basically if we
1119			 *       can't fit a reasonable amount of data into the
1120			 *       existing audit buffer, flush it and start with
1121			 *       a new buffer */
1122			if ((sizeof(abuf) + 8) > len_rem) {
1123				len_rem = len_max;
1124				audit_log_end(*ab);
1125				*ab = audit_log_start(context,
1126						      GFP_KERNEL, AUDIT_EXECVE);
1127				if (!*ab)
1128					goto out;
1129			}
1130
1131			/* create the non-arg portion of the arg record */
1132			len_tmp = 0;
1133			if (require_data || (iter > 0) ||
1134			    ((len_abuf + sizeof(abuf)) > len_rem)) {
1135				if (iter == 0) {
1136					len_tmp += snprintf(&abuf[len_tmp],
1137							sizeof(abuf) - len_tmp,
1138							" a%d_len=%lu",
1139							arg, len_full);
1140				}
1141				len_tmp += snprintf(&abuf[len_tmp],
1142						    sizeof(abuf) - len_tmp,
1143						    " a%d[%d]=", arg, iter++);
1144			} else
1145				len_tmp += snprintf(&abuf[len_tmp],
1146						    sizeof(abuf) - len_tmp,
1147						    " a%d=", arg);
1148			WARN_ON(len_tmp >= sizeof(abuf));
1149			abuf[sizeof(abuf) - 1] = '\0';
1150
1151			/* log the arg in the audit record */
1152			audit_log_format(*ab, "%s", abuf);
1153			len_rem -= len_tmp;
1154			len_tmp = len_buf;
1155			if (encode) {
1156				if (len_abuf > len_rem)
1157					len_tmp = len_rem / 2; /* encoding */
1158				audit_log_n_hex(*ab, buf, len_tmp);
1159				len_rem -= len_tmp * 2;
1160				len_abuf -= len_tmp * 2;
1161			} else {
1162				if (len_abuf > len_rem)
1163					len_tmp = len_rem - 2; /* quotes */
1164				audit_log_n_string(*ab, buf, len_tmp);
1165				len_rem -= len_tmp + 2;
1166				/* don't subtract the "2" because we still need
1167				 * to add quotes to the remaining string */
1168				len_abuf -= len_tmp;
1169			}
1170			len_buf -= len_tmp;
1171			buf += len_tmp;
1172		}
1173
1174		/* ready to move to the next argument? */
1175		if ((len_buf == 0) && !require_data) {
1176			arg++;
1177			iter = 0;
1178			len_full = 0;
1179			require_data = true;
1180			encode = false;
1181		}
1182	} while (arg < context->execve.argc);
1183
1184	/* NOTE: the caller handles the final audit_log_end() call */
1185
1186out:
1187	kfree(buf_head);
1188}
1189
1190static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1191			  kernel_cap_t *cap)
1192{
1193	int i;
1194
1195	if (cap_isclear(*cap)) {
1196		audit_log_format(ab, " %s=0", prefix);
1197		return;
1198	}
1199	audit_log_format(ab, " %s=", prefix);
1200	CAP_FOR_EACH_U32(i)
1201		audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]);
1202}
1203
1204static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1205{
1206	if (name->fcap_ver == -1) {
1207		audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1208		return;
1209	}
1210	audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1211	audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1212	audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1213			 name->fcap.fE, name->fcap_ver,
1214			 from_kuid(&init_user_ns, name->fcap.rootid));
1215}
1216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1217static void show_special(struct audit_context *context, int *call_panic)
1218{
1219	struct audit_buffer *ab;
1220	int i;
1221
1222	ab = audit_log_start(context, GFP_KERNEL, context->type);
1223	if (!ab)
1224		return;
1225
1226	switch (context->type) {
1227	case AUDIT_SOCKETCALL: {
1228		int nargs = context->socketcall.nargs;
 
1229		audit_log_format(ab, "nargs=%d", nargs);
1230		for (i = 0; i < nargs; i++)
1231			audit_log_format(ab, " a%d=%lx", i,
1232				context->socketcall.args[i]);
1233		break; }
1234	case AUDIT_IPC: {
1235		u32 osid = context->ipc.osid;
1236
1237		audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1238				 from_kuid(&init_user_ns, context->ipc.uid),
1239				 from_kgid(&init_user_ns, context->ipc.gid),
1240				 context->ipc.mode);
1241		if (osid) {
1242			char *ctx = NULL;
1243			u32 len;
 
1244			if (security_secid_to_secctx(osid, &ctx, &len)) {
1245				audit_log_format(ab, " osid=%u", osid);
1246				*call_panic = 1;
1247			} else {
1248				audit_log_format(ab, " obj=%s", ctx);
1249				security_release_secctx(ctx, len);
1250			}
1251		}
1252		if (context->ipc.has_perm) {
1253			audit_log_end(ab);
1254			ab = audit_log_start(context, GFP_KERNEL,
1255					     AUDIT_IPC_SET_PERM);
1256			if (unlikely(!ab))
1257				return;
1258			audit_log_format(ab,
1259				"qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1260				context->ipc.qbytes,
1261				context->ipc.perm_uid,
1262				context->ipc.perm_gid,
1263				context->ipc.perm_mode);
1264		}
1265		break; }
1266	case AUDIT_MQ_OPEN:
1267		audit_log_format(ab,
1268			"oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1269			"mq_msgsize=%ld mq_curmsgs=%ld",
1270			context->mq_open.oflag, context->mq_open.mode,
1271			context->mq_open.attr.mq_flags,
1272			context->mq_open.attr.mq_maxmsg,
1273			context->mq_open.attr.mq_msgsize,
1274			context->mq_open.attr.mq_curmsgs);
1275		break;
1276	case AUDIT_MQ_SENDRECV:
1277		audit_log_format(ab,
1278			"mqdes=%d msg_len=%zd msg_prio=%u "
1279			"abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1280			context->mq_sendrecv.mqdes,
1281			context->mq_sendrecv.msg_len,
1282			context->mq_sendrecv.msg_prio,
1283			(long long) context->mq_sendrecv.abs_timeout.tv_sec,
1284			context->mq_sendrecv.abs_timeout.tv_nsec);
1285		break;
1286	case AUDIT_MQ_NOTIFY:
1287		audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1288				context->mq_notify.mqdes,
1289				context->mq_notify.sigev_signo);
1290		break;
1291	case AUDIT_MQ_GETSETATTR: {
1292		struct mq_attr *attr = &context->mq_getsetattr.mqstat;
 
1293		audit_log_format(ab,
1294			"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1295			"mq_curmsgs=%ld ",
1296			context->mq_getsetattr.mqdes,
1297			attr->mq_flags, attr->mq_maxmsg,
1298			attr->mq_msgsize, attr->mq_curmsgs);
1299		break; }
1300	case AUDIT_CAPSET:
1301		audit_log_format(ab, "pid=%d", context->capset.pid);
1302		audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1303		audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1304		audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1305		audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1306		break;
1307	case AUDIT_MMAP:
1308		audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1309				 context->mmap.flags);
1310		break;
 
 
 
 
 
 
1311	case AUDIT_EXECVE:
1312		audit_log_execve_info(context, &ab);
1313		break;
1314	case AUDIT_KERN_MODULE:
1315		audit_log_format(ab, "name=");
1316		if (context->module.name) {
1317			audit_log_untrustedstring(ab, context->module.name);
1318		} else
1319			audit_log_format(ab, "(null)");
1320
1321		break;
 
 
 
 
 
1322	}
1323	audit_log_end(ab);
1324}
1325
1326static inline int audit_proctitle_rtrim(char *proctitle, int len)
1327{
1328	char *end = proctitle + len - 1;
 
1329	while (end > proctitle && !isprint(*end))
1330		end--;
1331
1332	/* catch the case where proctitle is only 1 non-print character */
1333	len = end - proctitle + 1;
1334	len -= isprint(proctitle[len-1]) == 0;
1335	return len;
1336}
1337
1338/*
1339 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1340 * @context: audit_context for the task
1341 * @n: audit_names structure with reportable details
1342 * @path: optional path to report instead of audit_names->name
1343 * @record_num: record number to report when handling a list of names
1344 * @call_panic: optional pointer to int that will be updated if secid fails
1345 */
1346static void audit_log_name(struct audit_context *context, struct audit_names *n,
1347		    const struct path *path, int record_num, int *call_panic)
1348{
1349	struct audit_buffer *ab;
1350
1351	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1352	if (!ab)
1353		return;
1354
1355	audit_log_format(ab, "item=%d", record_num);
1356
1357	if (path)
1358		audit_log_d_path(ab, " name=", path);
1359	else if (n->name) {
1360		switch (n->name_len) {
1361		case AUDIT_NAME_FULL:
1362			/* log the full path */
1363			audit_log_format(ab, " name=");
1364			audit_log_untrustedstring(ab, n->name->name);
1365			break;
1366		case 0:
1367			/* name was specified as a relative path and the
1368			 * directory component is the cwd
1369			 */
1370			audit_log_d_path(ab, " name=", &context->pwd);
 
 
 
1371			break;
1372		default:
1373			/* log the name's directory component */
1374			audit_log_format(ab, " name=");
1375			audit_log_n_untrustedstring(ab, n->name->name,
1376						    n->name_len);
1377		}
1378	} else
1379		audit_log_format(ab, " name=(null)");
1380
1381	if (n->ino != AUDIT_INO_UNSET)
1382		audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1383				 n->ino,
1384				 MAJOR(n->dev),
1385				 MINOR(n->dev),
1386				 n->mode,
1387				 from_kuid(&init_user_ns, n->uid),
1388				 from_kgid(&init_user_ns, n->gid),
1389				 MAJOR(n->rdev),
1390				 MINOR(n->rdev));
1391	if (n->osid != 0) {
1392		char *ctx = NULL;
1393		u32 len;
1394
1395		if (security_secid_to_secctx(
1396			n->osid, &ctx, &len)) {
1397			audit_log_format(ab, " osid=%u", n->osid);
1398			if (call_panic)
1399				*call_panic = 2;
1400		} else {
1401			audit_log_format(ab, " obj=%s", ctx);
1402			security_release_secctx(ctx, len);
1403		}
1404	}
1405
1406	/* log the audit_names record type */
1407	switch (n->type) {
1408	case AUDIT_TYPE_NORMAL:
1409		audit_log_format(ab, " nametype=NORMAL");
1410		break;
1411	case AUDIT_TYPE_PARENT:
1412		audit_log_format(ab, " nametype=PARENT");
1413		break;
1414	case AUDIT_TYPE_CHILD_DELETE:
1415		audit_log_format(ab, " nametype=DELETE");
1416		break;
1417	case AUDIT_TYPE_CHILD_CREATE:
1418		audit_log_format(ab, " nametype=CREATE");
1419		break;
1420	default:
1421		audit_log_format(ab, " nametype=UNKNOWN");
1422		break;
1423	}
1424
1425	audit_log_fcaps(ab, n);
1426	audit_log_end(ab);
1427}
1428
1429static void audit_log_proctitle(void)
1430{
1431	int res;
1432	char *buf;
1433	char *msg = "(null)";
1434	int len = strlen(msg);
1435	struct audit_context *context = audit_context();
1436	struct audit_buffer *ab;
1437
1438	if (!context || context->dummy)
1439		return;
1440
1441	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1442	if (!ab)
1443		return;	/* audit_panic or being filtered */
1444
1445	audit_log_format(ab, "proctitle=");
1446
1447	/* Not  cached */
1448	if (!context->proctitle.value) {
1449		buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1450		if (!buf)
1451			goto out;
1452		/* Historically called this from procfs naming */
1453		res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1454		if (res == 0) {
1455			kfree(buf);
1456			goto out;
1457		}
1458		res = audit_proctitle_rtrim(buf, res);
1459		if (res == 0) {
1460			kfree(buf);
1461			goto out;
1462		}
1463		context->proctitle.value = buf;
1464		context->proctitle.len = res;
1465	}
1466	msg = context->proctitle.value;
1467	len = context->proctitle.len;
1468out:
1469	audit_log_n_untrustedstring(ab, msg, len);
1470	audit_log_end(ab);
1471}
1472
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1473static void audit_log_exit(void)
1474{
1475	int i, call_panic = 0;
1476	struct audit_context *context = audit_context();
1477	struct audit_buffer *ab;
1478	struct audit_aux_data *aux;
1479	struct audit_names *n;
1480
1481	context->personality = current->personality;
1482
1483	ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1484	if (!ab)
1485		return;		/* audit_panic has been called */
1486	audit_log_format(ab, "arch=%x syscall=%d",
1487			 context->arch, context->major);
1488	if (context->personality != PER_LINUX)
1489		audit_log_format(ab, " per=%lx", context->personality);
1490	if (context->return_valid)
1491		audit_log_format(ab, " success=%s exit=%ld",
1492				 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1493				 context->return_code);
1494
1495	audit_log_format(ab,
1496			 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1497			 context->argv[0],
1498			 context->argv[1],
1499			 context->argv[2],
1500			 context->argv[3],
1501			 context->name_count);
1502
1503	audit_log_task_info(ab);
1504	audit_log_key(ab, context->filterkey);
1505	audit_log_end(ab);
 
 
 
 
 
 
 
 
 
1506
1507	for (aux = context->aux; aux; aux = aux->next) {
1508
1509		ab = audit_log_start(context, GFP_KERNEL, aux->type);
1510		if (!ab)
1511			continue; /* audit_panic has been called */
1512
1513		switch (aux->type) {
1514
1515		case AUDIT_BPRM_FCAPS: {
1516			struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
 
1517			audit_log_format(ab, "fver=%x", axs->fcap_ver);
1518			audit_log_cap(ab, "fp", &axs->fcap.permitted);
1519			audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1520			audit_log_format(ab, " fe=%d", axs->fcap.fE);
1521			audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1522			audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1523			audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1524			audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1525			audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1526			audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1527			audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1528			audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1529			audit_log_format(ab, " frootid=%d",
1530					 from_kuid(&init_user_ns,
1531						   axs->fcap.rootid));
1532			break; }
1533
1534		}
1535		audit_log_end(ab);
1536	}
1537
1538	if (context->type)
1539		show_special(context, &call_panic);
1540
1541	if (context->fds[0] >= 0) {
1542		ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1543		if (ab) {
1544			audit_log_format(ab, "fd0=%d fd1=%d",
1545					context->fds[0], context->fds[1]);
1546			audit_log_end(ab);
1547		}
1548	}
1549
1550	if (context->sockaddr_len) {
1551		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1552		if (ab) {
1553			audit_log_format(ab, "saddr=");
1554			audit_log_n_hex(ab, (void *)context->sockaddr,
1555					context->sockaddr_len);
1556			audit_log_end(ab);
1557		}
1558	}
1559
1560	for (aux = context->aux_pids; aux; aux = aux->next) {
1561		struct audit_aux_data_pids *axs = (void *)aux;
1562
1563		for (i = 0; i < axs->pid_count; i++)
1564			if (audit_log_pid_context(context, axs->target_pid[i],
1565						  axs->target_auid[i],
1566						  axs->target_uid[i],
1567						  axs->target_sessionid[i],
1568						  axs->target_sid[i],
1569						  axs->target_comm[i]))
1570				call_panic = 1;
1571	}
1572
1573	if (context->target_pid &&
1574	    audit_log_pid_context(context, context->target_pid,
1575				  context->target_auid, context->target_uid,
1576				  context->target_sessionid,
1577				  context->target_sid, context->target_comm))
1578			call_panic = 1;
1579
1580	if (context->pwd.dentry && context->pwd.mnt) {
1581		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1582		if (ab) {
1583			audit_log_d_path(ab, "cwd=", &context->pwd);
1584			audit_log_end(ab);
1585		}
1586	}
1587
1588	i = 0;
1589	list_for_each_entry(n, &context->names_list, list) {
1590		if (n->hidden)
1591			continue;
1592		audit_log_name(context, n, NULL, i++, &call_panic);
1593	}
1594
1595	audit_log_proctitle();
 
1596
1597	/* Send end of event record to help user space know we are finished */
1598	ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1599	if (ab)
1600		audit_log_end(ab);
1601	if (call_panic)
1602		audit_panic("error converting sid to string");
1603}
1604
1605/**
1606 * __audit_free - free a per-task audit context
1607 * @tsk: task whose audit context block to free
1608 *
1609 * Called from copy_process and do_exit
1610 */
1611void __audit_free(struct task_struct *tsk)
1612{
1613	struct audit_context *context = tsk->audit_context;
1614
1615	if (!context)
1616		return;
1617
 
1618	if (!list_empty(&context->killed_trees))
1619		audit_kill_trees(context);
1620
1621	/* We are called either by do_exit() or the fork() error handling code;
1622	 * in the former case tsk == current and in the latter tsk is a
1623	 * random task_struct that doesn't doesn't have any meaningful data we
1624	 * need to log via audit_log_exit().
1625	 */
1626	if (tsk == current && !context->dummy && context->in_syscall) {
1627		context->return_valid = 0;
1628		context->return_code = 0;
1629
1630		audit_filter_syscall(tsk, context,
1631				     &audit_filter_list[AUDIT_FILTER_EXIT]);
1632		audit_filter_inodes(tsk, context);
1633		if (context->current_state == AUDIT_RECORD_CONTEXT)
1634			audit_log_exit();
 
 
 
 
 
 
1635	}
1636
1637	audit_set_context(tsk, NULL);
1638	audit_free_context(context);
1639}
1640
1641/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1642 * __audit_syscall_entry - fill in an audit record at syscall entry
1643 * @major: major syscall type (function)
1644 * @a1: additional syscall register 1
1645 * @a2: additional syscall register 2
1646 * @a3: additional syscall register 3
1647 * @a4: additional syscall register 4
1648 *
1649 * Fill in audit context at syscall entry.  This only happens if the
1650 * audit context was created when the task was created and the state or
1651 * filters demand the audit context be built.  If the state from the
1652 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1653 * then the record will be written at syscall exit time (otherwise, it
1654 * will only be written if another part of the kernel requests that it
1655 * be written).
1656 */
1657void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1658			   unsigned long a3, unsigned long a4)
1659{
1660	struct audit_context *context = audit_context();
1661	enum audit_state     state;
1662
1663	if (!audit_enabled || !context)
1664		return;
1665
1666	BUG_ON(context->in_syscall || context->name_count);
 
 
 
 
 
1667
1668	state = context->state;
1669	if (state == AUDIT_DISABLED)
1670		return;
1671
1672	context->dummy = !audit_n_rules;
1673	if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1674		context->prio = 0;
1675		if (auditd_test_task(current))
1676			return;
1677	}
1678
1679	context->arch	    = syscall_get_arch(current);
1680	context->major      = major;
1681	context->argv[0]    = a1;
1682	context->argv[1]    = a2;
1683	context->argv[2]    = a3;
1684	context->argv[3]    = a4;
1685	context->serial     = 0;
1686	context->in_syscall = 1;
1687	context->current_state  = state;
1688	context->ppid       = 0;
1689	ktime_get_coarse_real_ts64(&context->ctime);
1690}
1691
1692/**
1693 * __audit_syscall_exit - deallocate audit context after a system call
1694 * @success: success value of the syscall
1695 * @return_code: return value of the syscall
1696 *
1697 * Tear down after system call.  If the audit context has been marked as
1698 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1699 * filtering, or because some other part of the kernel wrote an audit
1700 * message), then write out the syscall information.  In call cases,
1701 * free the names stored from getname().
1702 */
1703void __audit_syscall_exit(int success, long return_code)
1704{
1705	struct audit_context *context;
1706
1707	context = audit_context();
1708	if (!context)
1709		return;
1710
 
1711	if (!list_empty(&context->killed_trees))
1712		audit_kill_trees(context);
1713
1714	if (!context->dummy && context->in_syscall) {
1715		if (success)
1716			context->return_valid = AUDITSC_SUCCESS;
1717		else
1718			context->return_valid = AUDITSC_FAILURE;
 
1719
1720		/*
1721		 * we need to fix up the return code in the audit logs if the
1722		 * actual return codes are later going to be fixed up by the
1723		 * arch specific signal handlers
1724		 *
1725		 * This is actually a test for:
1726		 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1727		 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1728		 *
1729		 * but is faster than a bunch of ||
1730		 */
1731		if (unlikely(return_code <= -ERESTARTSYS) &&
1732		    (return_code >= -ERESTART_RESTARTBLOCK) &&
1733		    (return_code != -ENOIOCTLCMD))
1734			context->return_code = -EINTR;
1735		else
1736			context->return_code  = return_code;
1737
1738		audit_filter_syscall(current, context,
1739				     &audit_filter_list[AUDIT_FILTER_EXIT]);
1740		audit_filter_inodes(current, context);
1741		if (context->current_state == AUDIT_RECORD_CONTEXT)
1742			audit_log_exit();
1743	}
1744
1745	context->in_syscall = 0;
1746	context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1747
1748	audit_free_module(context);
1749	audit_free_names(context);
1750	unroll_tree_refs(context, NULL, 0);
1751	audit_free_aux(context);
1752	context->aux = NULL;
1753	context->aux_pids = NULL;
1754	context->target_pid = 0;
1755	context->target_sid = 0;
1756	context->sockaddr_len = 0;
1757	context->type = 0;
1758	context->fds[0] = -1;
1759	if (context->state != AUDIT_RECORD_CONTEXT) {
1760		kfree(context->filterkey);
1761		context->filterkey = NULL;
1762	}
1763}
1764
1765static inline void handle_one(const struct inode *inode)
1766{
1767	struct audit_context *context;
1768	struct audit_tree_refs *p;
1769	struct audit_chunk *chunk;
1770	int count;
 
1771	if (likely(!inode->i_fsnotify_marks))
1772		return;
1773	context = audit_context();
1774	p = context->trees;
1775	count = context->tree_count;
1776	rcu_read_lock();
1777	chunk = audit_tree_lookup(inode);
1778	rcu_read_unlock();
1779	if (!chunk)
1780		return;
1781	if (likely(put_tree_ref(context, chunk)))
1782		return;
1783	if (unlikely(!grow_tree_refs(context))) {
1784		pr_warn("out of memory, audit has lost a tree reference\n");
1785		audit_set_auditable(context);
1786		audit_put_chunk(chunk);
1787		unroll_tree_refs(context, p, count);
1788		return;
1789	}
1790	put_tree_ref(context, chunk);
1791}
1792
1793static void handle_path(const struct dentry *dentry)
1794{
1795	struct audit_context *context;
1796	struct audit_tree_refs *p;
1797	const struct dentry *d, *parent;
1798	struct audit_chunk *drop;
1799	unsigned long seq;
1800	int count;
1801
1802	context = audit_context();
1803	p = context->trees;
1804	count = context->tree_count;
1805retry:
1806	drop = NULL;
1807	d = dentry;
1808	rcu_read_lock();
1809	seq = read_seqbegin(&rename_lock);
1810	for(;;) {
1811		struct inode *inode = d_backing_inode(d);
 
1812		if (inode && unlikely(inode->i_fsnotify_marks)) {
1813			struct audit_chunk *chunk;
 
1814			chunk = audit_tree_lookup(inode);
1815			if (chunk) {
1816				if (unlikely(!put_tree_ref(context, chunk))) {
1817					drop = chunk;
1818					break;
1819				}
1820			}
1821		}
1822		parent = d->d_parent;
1823		if (parent == d)
1824			break;
1825		d = parent;
1826	}
1827	if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1828		rcu_read_unlock();
1829		if (!drop) {
1830			/* just a race with rename */
1831			unroll_tree_refs(context, p, count);
1832			goto retry;
1833		}
1834		audit_put_chunk(drop);
1835		if (grow_tree_refs(context)) {
1836			/* OK, got more space */
1837			unroll_tree_refs(context, p, count);
1838			goto retry;
1839		}
1840		/* too bad */
1841		pr_warn("out of memory, audit has lost a tree reference\n");
1842		unroll_tree_refs(context, p, count);
1843		audit_set_auditable(context);
1844		return;
1845	}
1846	rcu_read_unlock();
1847}
1848
1849static struct audit_names *audit_alloc_name(struct audit_context *context,
1850						unsigned char type)
1851{
1852	struct audit_names *aname;
1853
1854	if (context->name_count < AUDIT_NAMES) {
1855		aname = &context->preallocated_names[context->name_count];
1856		memset(aname, 0, sizeof(*aname));
1857	} else {
1858		aname = kzalloc(sizeof(*aname), GFP_NOFS);
1859		if (!aname)
1860			return NULL;
1861		aname->should_free = true;
1862	}
1863
1864	aname->ino = AUDIT_INO_UNSET;
1865	aname->type = type;
1866	list_add_tail(&aname->list, &context->names_list);
1867
1868	context->name_count++;
 
 
1869	return aname;
1870}
1871
1872/**
1873 * __audit_reusename - fill out filename with info from existing entry
1874 * @uptr: userland ptr to pathname
1875 *
1876 * Search the audit_names list for the current audit context. If there is an
1877 * existing entry with a matching "uptr" then return the filename
1878 * associated with that audit_name. If not, return NULL.
1879 */
1880struct filename *
1881__audit_reusename(const __user char *uptr)
1882{
1883	struct audit_context *context = audit_context();
1884	struct audit_names *n;
1885
1886	list_for_each_entry(n, &context->names_list, list) {
1887		if (!n->name)
1888			continue;
1889		if (n->name->uptr == uptr) {
1890			n->name->refcnt++;
1891			return n->name;
1892		}
1893	}
1894	return NULL;
1895}
1896
1897inline void _audit_getcwd(struct audit_context *context)
1898{
1899	if (!context->pwd.dentry)
1900		get_fs_pwd(current->fs, &context->pwd);
1901}
1902
1903void __audit_getcwd(void)
1904{
1905	struct audit_context *context = audit_context();
1906
1907	if (context->in_syscall)
1908		_audit_getcwd(context);
1909}
1910
1911/**
1912 * __audit_getname - add a name to the list
1913 * @name: name to add
1914 *
1915 * Add a name to the list of audit names for this context.
1916 * Called from fs/namei.c:getname().
1917 */
1918void __audit_getname(struct filename *name)
1919{
1920	struct audit_context *context = audit_context();
1921	struct audit_names *n;
1922
1923	if (!context->in_syscall)
1924		return;
1925
1926	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1927	if (!n)
1928		return;
1929
1930	n->name = name;
1931	n->name_len = AUDIT_NAME_FULL;
1932	name->aname = n;
1933	name->refcnt++;
1934
1935	_audit_getcwd(context);
1936}
1937
1938static inline int audit_copy_fcaps(struct audit_names *name,
1939				   const struct dentry *dentry)
1940{
1941	struct cpu_vfs_cap_data caps;
1942	int rc;
1943
1944	if (!dentry)
1945		return 0;
1946
1947	rc = get_vfs_caps_from_disk(dentry, &caps);
1948	if (rc)
1949		return rc;
1950
1951	name->fcap.permitted = caps.permitted;
1952	name->fcap.inheritable = caps.inheritable;
1953	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1954	name->fcap.rootid = caps.rootid;
1955	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1956				VFS_CAP_REVISION_SHIFT;
1957
1958	return 0;
1959}
1960
1961/* Copy inode data into an audit_names. */
1962static void audit_copy_inode(struct audit_names *name,
1963			     const struct dentry *dentry,
1964			     struct inode *inode, unsigned int flags)
1965{
1966	name->ino   = inode->i_ino;
1967	name->dev   = inode->i_sb->s_dev;
1968	name->mode  = inode->i_mode;
1969	name->uid   = inode->i_uid;
1970	name->gid   = inode->i_gid;
1971	name->rdev  = inode->i_rdev;
1972	security_inode_getsecid(inode, &name->osid);
1973	if (flags & AUDIT_INODE_NOEVAL) {
1974		name->fcap_ver = -1;
1975		return;
1976	}
1977	audit_copy_fcaps(name, dentry);
1978}
1979
1980/**
1981 * __audit_inode - store the inode and device from a lookup
1982 * @name: name being audited
1983 * @dentry: dentry being audited
1984 * @flags: attributes for this particular entry
1985 */
1986void __audit_inode(struct filename *name, const struct dentry *dentry,
1987		   unsigned int flags)
1988{
1989	struct audit_context *context = audit_context();
1990	struct inode *inode = d_backing_inode(dentry);
1991	struct audit_names *n;
1992	bool parent = flags & AUDIT_INODE_PARENT;
1993	struct audit_entry *e;
1994	struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
1995	int i;
1996
1997	if (!context->in_syscall)
1998		return;
1999
2000	rcu_read_lock();
2001	list_for_each_entry_rcu(e, list, list) {
2002		for (i = 0; i < e->rule.field_count; i++) {
2003			struct audit_field *f = &e->rule.fields[i];
2004
2005			if (f->type == AUDIT_FSTYPE
2006			    && audit_comparator(inode->i_sb->s_magic,
2007						f->op, f->val)
2008			    && e->rule.action == AUDIT_NEVER) {
2009				rcu_read_unlock();
2010				return;
2011			}
2012		}
2013	}
2014	rcu_read_unlock();
2015
2016	if (!name)
2017		goto out_alloc;
2018
2019	/*
2020	 * If we have a pointer to an audit_names entry already, then we can
2021	 * just use it directly if the type is correct.
2022	 */
2023	n = name->aname;
2024	if (n) {
2025		if (parent) {
2026			if (n->type == AUDIT_TYPE_PARENT ||
2027			    n->type == AUDIT_TYPE_UNKNOWN)
2028				goto out;
2029		} else {
2030			if (n->type != AUDIT_TYPE_PARENT)
2031				goto out;
2032		}
2033	}
2034
2035	list_for_each_entry_reverse(n, &context->names_list, list) {
2036		if (n->ino) {
2037			/* valid inode number, use that for the comparison */
2038			if (n->ino != inode->i_ino ||
2039			    n->dev != inode->i_sb->s_dev)
2040				continue;
2041		} else if (n->name) {
2042			/* inode number has not been set, check the name */
2043			if (strcmp(n->name->name, name->name))
2044				continue;
2045		} else
2046			/* no inode and no name (?!) ... this is odd ... */
2047			continue;
2048
2049		/* match the correct record type */
2050		if (parent) {
2051			if (n->type == AUDIT_TYPE_PARENT ||
2052			    n->type == AUDIT_TYPE_UNKNOWN)
2053				goto out;
2054		} else {
2055			if (n->type != AUDIT_TYPE_PARENT)
2056				goto out;
2057		}
2058	}
2059
2060out_alloc:
2061	/* unable to find an entry with both a matching name and type */
2062	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2063	if (!n)
2064		return;
2065	if (name) {
2066		n->name = name;
2067		name->refcnt++;
2068	}
2069
2070out:
2071	if (parent) {
2072		n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2073		n->type = AUDIT_TYPE_PARENT;
2074		if (flags & AUDIT_INODE_HIDDEN)
2075			n->hidden = true;
2076	} else {
2077		n->name_len = AUDIT_NAME_FULL;
2078		n->type = AUDIT_TYPE_NORMAL;
2079	}
2080	handle_path(dentry);
2081	audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2082}
2083
2084void __audit_file(const struct file *file)
2085{
2086	__audit_inode(NULL, file->f_path.dentry, 0);
2087}
2088
2089/**
2090 * __audit_inode_child - collect inode info for created/removed objects
2091 * @parent: inode of dentry parent
2092 * @dentry: dentry being audited
2093 * @type:   AUDIT_TYPE_* value that we're looking for
2094 *
2095 * For syscalls that create or remove filesystem objects, audit_inode
2096 * can only collect information for the filesystem object's parent.
2097 * This call updates the audit context with the child's information.
2098 * Syscalls that create a new filesystem object must be hooked after
2099 * the object is created.  Syscalls that remove a filesystem object
2100 * must be hooked prior, in order to capture the target inode during
2101 * unsuccessful attempts.
2102 */
2103void __audit_inode_child(struct inode *parent,
2104			 const struct dentry *dentry,
2105			 const unsigned char type)
2106{
2107	struct audit_context *context = audit_context();
2108	struct inode *inode = d_backing_inode(dentry);
2109	const struct qstr *dname = &dentry->d_name;
2110	struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2111	struct audit_entry *e;
2112	struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2113	int i;
2114
2115	if (!context->in_syscall)
2116		return;
2117
2118	rcu_read_lock();
2119	list_for_each_entry_rcu(e, list, list) {
2120		for (i = 0; i < e->rule.field_count; i++) {
2121			struct audit_field *f = &e->rule.fields[i];
2122
2123			if (f->type == AUDIT_FSTYPE
2124			    && audit_comparator(parent->i_sb->s_magic,
2125						f->op, f->val)
2126			    && e->rule.action == AUDIT_NEVER) {
2127				rcu_read_unlock();
2128				return;
2129			}
2130		}
2131	}
2132	rcu_read_unlock();
2133
2134	if (inode)
2135		handle_one(inode);
2136
2137	/* look for a parent entry first */
2138	list_for_each_entry(n, &context->names_list, list) {
2139		if (!n->name ||
2140		    (n->type != AUDIT_TYPE_PARENT &&
2141		     n->type != AUDIT_TYPE_UNKNOWN))
2142			continue;
2143
2144		if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2145		    !audit_compare_dname_path(dname,
2146					      n->name->name, n->name_len)) {
2147			if (n->type == AUDIT_TYPE_UNKNOWN)
2148				n->type = AUDIT_TYPE_PARENT;
2149			found_parent = n;
2150			break;
2151		}
2152	}
2153
2154	/* is there a matching child entry? */
2155	list_for_each_entry(n, &context->names_list, list) {
2156		/* can only match entries that have a name */
2157		if (!n->name ||
2158		    (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2159			continue;
2160
2161		if (!strcmp(dname->name, n->name->name) ||
2162		    !audit_compare_dname_path(dname, n->name->name,
2163						found_parent ?
2164						found_parent->name_len :
2165						AUDIT_NAME_FULL)) {
2166			if (n->type == AUDIT_TYPE_UNKNOWN)
2167				n->type = type;
2168			found_child = n;
2169			break;
2170		}
2171	}
2172
2173	if (!found_parent) {
2174		/* create a new, "anonymous" parent record */
2175		n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2176		if (!n)
2177			return;
2178		audit_copy_inode(n, NULL, parent, 0);
2179	}
2180
2181	if (!found_child) {
2182		found_child = audit_alloc_name(context, type);
2183		if (!found_child)
2184			return;
2185
2186		/* Re-use the name belonging to the slot for a matching parent
2187		 * directory. All names for this context are relinquished in
2188		 * audit_free_names() */
2189		if (found_parent) {
2190			found_child->name = found_parent->name;
2191			found_child->name_len = AUDIT_NAME_FULL;
2192			found_child->name->refcnt++;
2193		}
2194	}
2195
2196	if (inode)
2197		audit_copy_inode(found_child, dentry, inode, 0);
2198	else
2199		found_child->ino = AUDIT_INO_UNSET;
2200}
2201EXPORT_SYMBOL_GPL(__audit_inode_child);
2202
2203/**
2204 * auditsc_get_stamp - get local copies of audit_context values
2205 * @ctx: audit_context for the task
2206 * @t: timespec64 to store time recorded in the audit_context
2207 * @serial: serial value that is recorded in the audit_context
2208 *
2209 * Also sets the context as auditable.
2210 */
2211int auditsc_get_stamp(struct audit_context *ctx,
2212		       struct timespec64 *t, unsigned int *serial)
2213{
2214	if (!ctx->in_syscall)
2215		return 0;
2216	if (!ctx->serial)
2217		ctx->serial = audit_serial();
2218	t->tv_sec  = ctx->ctime.tv_sec;
2219	t->tv_nsec = ctx->ctime.tv_nsec;
2220	*serial    = ctx->serial;
2221	if (!ctx->prio) {
2222		ctx->prio = 1;
2223		ctx->current_state = AUDIT_RECORD_CONTEXT;
2224	}
2225	return 1;
2226}
2227
2228/**
2229 * __audit_mq_open - record audit data for a POSIX MQ open
2230 * @oflag: open flag
2231 * @mode: mode bits
2232 * @attr: queue attributes
2233 *
2234 */
2235void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2236{
2237	struct audit_context *context = audit_context();
2238
2239	if (attr)
2240		memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2241	else
2242		memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2243
2244	context->mq_open.oflag = oflag;
2245	context->mq_open.mode = mode;
2246
2247	context->type = AUDIT_MQ_OPEN;
2248}
2249
2250/**
2251 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2252 * @mqdes: MQ descriptor
2253 * @msg_len: Message length
2254 * @msg_prio: Message priority
2255 * @abs_timeout: Message timeout in absolute time
2256 *
2257 */
2258void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2259			const struct timespec64 *abs_timeout)
2260{
2261	struct audit_context *context = audit_context();
2262	struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2263
2264	if (abs_timeout)
2265		memcpy(p, abs_timeout, sizeof(*p));
2266	else
2267		memset(p, 0, sizeof(*p));
2268
2269	context->mq_sendrecv.mqdes = mqdes;
2270	context->mq_sendrecv.msg_len = msg_len;
2271	context->mq_sendrecv.msg_prio = msg_prio;
2272
2273	context->type = AUDIT_MQ_SENDRECV;
2274}
2275
2276/**
2277 * __audit_mq_notify - record audit data for a POSIX MQ notify
2278 * @mqdes: MQ descriptor
2279 * @notification: Notification event
2280 *
2281 */
2282
2283void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2284{
2285	struct audit_context *context = audit_context();
2286
2287	if (notification)
2288		context->mq_notify.sigev_signo = notification->sigev_signo;
2289	else
2290		context->mq_notify.sigev_signo = 0;
2291
2292	context->mq_notify.mqdes = mqdes;
2293	context->type = AUDIT_MQ_NOTIFY;
2294}
2295
2296/**
2297 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2298 * @mqdes: MQ descriptor
2299 * @mqstat: MQ flags
2300 *
2301 */
2302void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2303{
2304	struct audit_context *context = audit_context();
 
2305	context->mq_getsetattr.mqdes = mqdes;
2306	context->mq_getsetattr.mqstat = *mqstat;
2307	context->type = AUDIT_MQ_GETSETATTR;
2308}
2309
2310/**
2311 * __audit_ipc_obj - record audit data for ipc object
2312 * @ipcp: ipc permissions
2313 *
2314 */
2315void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2316{
2317	struct audit_context *context = audit_context();
 
2318	context->ipc.uid = ipcp->uid;
2319	context->ipc.gid = ipcp->gid;
2320	context->ipc.mode = ipcp->mode;
2321	context->ipc.has_perm = 0;
2322	security_ipc_getsecid(ipcp, &context->ipc.osid);
2323	context->type = AUDIT_IPC;
2324}
2325
2326/**
2327 * __audit_ipc_set_perm - record audit data for new ipc permissions
2328 * @qbytes: msgq bytes
2329 * @uid: msgq user id
2330 * @gid: msgq group id
2331 * @mode: msgq mode (permissions)
2332 *
2333 * Called only after audit_ipc_obj().
2334 */
2335void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2336{
2337	struct audit_context *context = audit_context();
2338
2339	context->ipc.qbytes = qbytes;
2340	context->ipc.perm_uid = uid;
2341	context->ipc.perm_gid = gid;
2342	context->ipc.perm_mode = mode;
2343	context->ipc.has_perm = 1;
2344}
2345
2346void __audit_bprm(struct linux_binprm *bprm)
2347{
2348	struct audit_context *context = audit_context();
2349
2350	context->type = AUDIT_EXECVE;
2351	context->execve.argc = bprm->argc;
2352}
2353
2354
2355/**
2356 * __audit_socketcall - record audit data for sys_socketcall
2357 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2358 * @args: args array
2359 *
2360 */
2361int __audit_socketcall(int nargs, unsigned long *args)
2362{
2363	struct audit_context *context = audit_context();
2364
2365	if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2366		return -EINVAL;
2367	context->type = AUDIT_SOCKETCALL;
2368	context->socketcall.nargs = nargs;
2369	memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2370	return 0;
2371}
2372
2373/**
2374 * __audit_fd_pair - record audit data for pipe and socketpair
2375 * @fd1: the first file descriptor
2376 * @fd2: the second file descriptor
2377 *
2378 */
2379void __audit_fd_pair(int fd1, int fd2)
2380{
2381	struct audit_context *context = audit_context();
 
2382	context->fds[0] = fd1;
2383	context->fds[1] = fd2;
2384}
2385
2386/**
2387 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2388 * @len: data length in user space
2389 * @a: data address in kernel space
2390 *
2391 * Returns 0 for success or NULL context or < 0 on error.
2392 */
2393int __audit_sockaddr(int len, void *a)
2394{
2395	struct audit_context *context = audit_context();
2396
2397	if (!context->sockaddr) {
2398		void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
 
2399		if (!p)
2400			return -ENOMEM;
2401		context->sockaddr = p;
2402	}
2403
2404	context->sockaddr_len = len;
2405	memcpy(context->sockaddr, a, len);
2406	return 0;
2407}
2408
2409void __audit_ptrace(struct task_struct *t)
2410{
2411	struct audit_context *context = audit_context();
2412
2413	context->target_pid = task_tgid_nr(t);
2414	context->target_auid = audit_get_loginuid(t);
2415	context->target_uid = task_uid(t);
2416	context->target_sessionid = audit_get_sessionid(t);
2417	security_task_getsecid(t, &context->target_sid);
2418	memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2419}
2420
2421/**
2422 * audit_signal_info_syscall - record signal info for syscalls
2423 * @t: task being signaled
2424 *
2425 * If the audit subsystem is being terminated, record the task (pid)
2426 * and uid that is doing that.
2427 */
2428int audit_signal_info_syscall(struct task_struct *t)
2429{
2430	struct audit_aux_data_pids *axp;
2431	struct audit_context *ctx = audit_context();
2432	kuid_t t_uid = task_uid(t);
2433
2434	if (!audit_signals || audit_dummy_context())
2435		return 0;
2436
2437	/* optimize the common case by putting first signal recipient directly
2438	 * in audit_context */
2439	if (!ctx->target_pid) {
2440		ctx->target_pid = task_tgid_nr(t);
2441		ctx->target_auid = audit_get_loginuid(t);
2442		ctx->target_uid = t_uid;
2443		ctx->target_sessionid = audit_get_sessionid(t);
2444		security_task_getsecid(t, &ctx->target_sid);
2445		memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2446		return 0;
2447	}
2448
2449	axp = (void *)ctx->aux_pids;
2450	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2451		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2452		if (!axp)
2453			return -ENOMEM;
2454
2455		axp->d.type = AUDIT_OBJ_PID;
2456		axp->d.next = ctx->aux_pids;
2457		ctx->aux_pids = (void *)axp;
2458	}
2459	BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2460
2461	axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2462	axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2463	axp->target_uid[axp->pid_count] = t_uid;
2464	axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2465	security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2466	memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2467	axp->pid_count++;
2468
2469	return 0;
2470}
2471
2472/**
2473 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2474 * @bprm: pointer to the bprm being processed
2475 * @new: the proposed new credentials
2476 * @old: the old credentials
2477 *
2478 * Simply check if the proc already has the caps given by the file and if not
2479 * store the priv escalation info for later auditing at the end of the syscall
2480 *
2481 * -Eric
2482 */
2483int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2484			   const struct cred *new, const struct cred *old)
2485{
2486	struct audit_aux_data_bprm_fcaps *ax;
2487	struct audit_context *context = audit_context();
2488	struct cpu_vfs_cap_data vcaps;
2489
2490	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2491	if (!ax)
2492		return -ENOMEM;
2493
2494	ax->d.type = AUDIT_BPRM_FCAPS;
2495	ax->d.next = context->aux;
2496	context->aux = (void *)ax;
2497
2498	get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
 
2499
2500	ax->fcap.permitted = vcaps.permitted;
2501	ax->fcap.inheritable = vcaps.inheritable;
2502	ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2503	ax->fcap.rootid = vcaps.rootid;
2504	ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2505
2506	ax->old_pcap.permitted   = old->cap_permitted;
2507	ax->old_pcap.inheritable = old->cap_inheritable;
2508	ax->old_pcap.effective   = old->cap_effective;
2509	ax->old_pcap.ambient     = old->cap_ambient;
2510
2511	ax->new_pcap.permitted   = new->cap_permitted;
2512	ax->new_pcap.inheritable = new->cap_inheritable;
2513	ax->new_pcap.effective   = new->cap_effective;
2514	ax->new_pcap.ambient     = new->cap_ambient;
2515	return 0;
2516}
2517
2518/**
2519 * __audit_log_capset - store information about the arguments to the capset syscall
2520 * @new: the new credentials
2521 * @old: the old (current) credentials
2522 *
2523 * Record the arguments userspace sent to sys_capset for later printing by the
2524 * audit system if applicable
2525 */
2526void __audit_log_capset(const struct cred *new, const struct cred *old)
2527{
2528	struct audit_context *context = audit_context();
 
2529	context->capset.pid = task_tgid_nr(current);
2530	context->capset.cap.effective   = new->cap_effective;
2531	context->capset.cap.inheritable = new->cap_effective;
2532	context->capset.cap.permitted   = new->cap_permitted;
2533	context->capset.cap.ambient     = new->cap_ambient;
2534	context->type = AUDIT_CAPSET;
2535}
2536
2537void __audit_mmap_fd(int fd, int flags)
2538{
2539	struct audit_context *context = audit_context();
 
2540	context->mmap.fd = fd;
2541	context->mmap.flags = flags;
2542	context->type = AUDIT_MMAP;
2543}
2544
 
 
 
 
 
 
 
 
 
 
2545void __audit_log_kern_module(char *name)
2546{
2547	struct audit_context *context = audit_context();
2548
2549	context->module.name = kstrdup(name, GFP_KERNEL);
2550	if (!context->module.name)
2551		audit_log_lost("out of memory in __audit_log_kern_module");
2552	context->type = AUDIT_KERN_MODULE;
2553}
2554
2555void __audit_fanotify(unsigned int response)
2556{
2557	audit_log(audit_context(), GFP_KERNEL,
2558		AUDIT_FANOTIFY,	"resp=%u", response);
2559}
2560
2561void __audit_tk_injoffset(struct timespec64 offset)
2562{
2563	audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_INJOFFSET,
2564		  "sec=%lli nsec=%li",
2565		  (long long)offset.tv_sec, offset.tv_nsec);
2566}
2567
2568static void audit_log_ntp_val(const struct audit_ntp_data *ad,
2569			      const char *op, enum audit_ntp_type type)
2570{
2571	const struct audit_ntp_val *val = &ad->vals[type];
2572
2573	if (val->newval == val->oldval)
2574		return;
2575
2576	audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_ADJNTPVAL,
2577		  "op=%s old=%lli new=%lli", op, val->oldval, val->newval);
2578}
2579
2580void __audit_ntp_log(const struct audit_ntp_data *ad)
2581{
2582	audit_log_ntp_val(ad, "offset",	AUDIT_NTP_OFFSET);
2583	audit_log_ntp_val(ad, "freq",	AUDIT_NTP_FREQ);
2584	audit_log_ntp_val(ad, "status",	AUDIT_NTP_STATUS);
2585	audit_log_ntp_val(ad, "tai",	AUDIT_NTP_TAI);
2586	audit_log_ntp_val(ad, "tick",	AUDIT_NTP_TICK);
2587	audit_log_ntp_val(ad, "adjust",	AUDIT_NTP_ADJUST);
 
 
 
 
2588}
2589
2590void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries,
2591		       enum audit_nfcfgop op, gfp_t gfp)
2592{
2593	struct audit_buffer *ab;
2594	char comm[sizeof(current->comm)];
2595
2596	ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG);
2597	if (!ab)
2598		return;
2599	audit_log_format(ab, "table=%s family=%u entries=%u op=%s",
2600			 name, af, nentries, audit_nfcfgs[op].s);
2601
2602	audit_log_format(ab, " pid=%u", task_pid_nr(current));
2603	audit_log_task_context(ab); /* subj= */
2604	audit_log_format(ab, " comm=");
2605	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2606	audit_log_end(ab);
2607}
2608EXPORT_SYMBOL_GPL(__audit_log_nfcfg);
2609
2610static void audit_log_task(struct audit_buffer *ab)
2611{
2612	kuid_t auid, uid;
2613	kgid_t gid;
2614	unsigned int sessionid;
2615	char comm[sizeof(current->comm)];
2616
2617	auid = audit_get_loginuid(current);
2618	sessionid = audit_get_sessionid(current);
2619	current_uid_gid(&uid, &gid);
2620
2621	audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2622			 from_kuid(&init_user_ns, auid),
2623			 from_kuid(&init_user_ns, uid),
2624			 from_kgid(&init_user_ns, gid),
2625			 sessionid);
2626	audit_log_task_context(ab);
2627	audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2628	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2629	audit_log_d_path_exe(ab, current->mm);
2630}
2631
2632/**
2633 * audit_core_dumps - record information about processes that end abnormally
2634 * @signr: signal value
2635 *
2636 * If a process ends with a core dump, something fishy is going on and we
2637 * should record the event for investigation.
2638 */
2639void audit_core_dumps(long signr)
2640{
2641	struct audit_buffer *ab;
2642
2643	if (!audit_enabled)
2644		return;
2645
2646	if (signr == SIGQUIT)	/* don't care for those */
2647		return;
2648
2649	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2650	if (unlikely(!ab))
2651		return;
2652	audit_log_task(ab);
2653	audit_log_format(ab, " sig=%ld res=1", signr);
2654	audit_log_end(ab);
2655}
2656
2657/**
2658 * audit_seccomp - record information about a seccomp action
2659 * @syscall: syscall number
2660 * @signr: signal value
2661 * @code: the seccomp action
2662 *
2663 * Record the information associated with a seccomp action. Event filtering for
2664 * seccomp actions that are not to be logged is done in seccomp_log().
2665 * Therefore, this function forces auditing independent of the audit_enabled
2666 * and dummy context state because seccomp actions should be logged even when
2667 * audit is not in use.
2668 */
2669void audit_seccomp(unsigned long syscall, long signr, int code)
2670{
2671	struct audit_buffer *ab;
2672
2673	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
2674	if (unlikely(!ab))
2675		return;
2676	audit_log_task(ab);
2677	audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2678			 signr, syscall_get_arch(current), syscall,
2679			 in_compat_syscall(), KSTK_EIP(current), code);
2680	audit_log_end(ab);
2681}
2682
2683void audit_seccomp_actions_logged(const char *names, const char *old_names,
2684				  int res)
2685{
2686	struct audit_buffer *ab;
2687
2688	if (!audit_enabled)
2689		return;
2690
2691	ab = audit_log_start(audit_context(), GFP_KERNEL,
2692			     AUDIT_CONFIG_CHANGE);
2693	if (unlikely(!ab))
2694		return;
2695
2696	audit_log_format(ab,
2697			 "op=seccomp-logging actions=%s old-actions=%s res=%d",
2698			 names, old_names, res);
2699	audit_log_end(ab);
2700}
2701
2702struct list_head *audit_killed_trees(void)
2703{
2704	struct audit_context *ctx = audit_context();
2705	if (likely(!ctx || !ctx->in_syscall))
2706		return NULL;
2707	return &ctx->killed_trees;
2708}