Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Xilinx Zynq UltraScale+ MPSoC Quad-SPI (QSPI) controller driver
   4 * (master mode only)
   5 *
   6 * Copyright (C) 2009 - 2015 Xilinx, Inc.
   7 */
   8
   9#include <linux/clk.h>
  10#include <linux/delay.h>
  11#include <linux/dma-mapping.h>
  12#include <linux/dmaengine.h>
  13#include <linux/firmware/xlnx-zynqmp.h>
  14#include <linux/interrupt.h>
  15#include <linux/io.h>
  16#include <linux/module.h>
  17#include <linux/of_irq.h>
  18#include <linux/of_address.h>
  19#include <linux/of_device.h>
  20#include <linux/platform_device.h>
  21#include <linux/pm_runtime.h>
  22#include <linux/spi/spi.h>
  23#include <linux/spinlock.h>
  24#include <linux/workqueue.h>
  25#include <linux/spi/spi-mem.h>
  26
  27/* Generic QSPI register offsets */
  28#define GQSPI_CONFIG_OFST		0x00000100
  29#define GQSPI_ISR_OFST			0x00000104
  30#define GQSPI_IDR_OFST			0x0000010C
  31#define GQSPI_IER_OFST			0x00000108
  32#define GQSPI_IMASK_OFST		0x00000110
  33#define GQSPI_EN_OFST			0x00000114
  34#define GQSPI_TXD_OFST			0x0000011C
  35#define GQSPI_RXD_OFST			0x00000120
  36#define GQSPI_TX_THRESHOLD_OFST		0x00000128
  37#define GQSPI_RX_THRESHOLD_OFST		0x0000012C
  38#define IOU_TAPDLY_BYPASS_OFST		0x0000003C
  39#define GQSPI_LPBK_DLY_ADJ_OFST		0x00000138
  40#define GQSPI_GEN_FIFO_OFST		0x00000140
  41#define GQSPI_SEL_OFST			0x00000144
  42#define GQSPI_GF_THRESHOLD_OFST		0x00000150
  43#define GQSPI_FIFO_CTRL_OFST		0x0000014C
  44#define GQSPI_QSPIDMA_DST_CTRL_OFST	0x0000080C
  45#define GQSPI_QSPIDMA_DST_SIZE_OFST	0x00000804
  46#define GQSPI_QSPIDMA_DST_STS_OFST	0x00000808
  47#define GQSPI_QSPIDMA_DST_I_STS_OFST	0x00000814
  48#define GQSPI_QSPIDMA_DST_I_EN_OFST	0x00000818
  49#define GQSPI_QSPIDMA_DST_I_DIS_OFST	0x0000081C
  50#define GQSPI_QSPIDMA_DST_I_MASK_OFST	0x00000820
  51#define GQSPI_QSPIDMA_DST_ADDR_OFST	0x00000800
  52#define GQSPI_QSPIDMA_DST_ADDR_MSB_OFST 0x00000828
  53#define GQSPI_DATA_DLY_ADJ_OFST         0x000001F8
  54
  55/* GQSPI register bit masks */
  56#define GQSPI_SEL_MASK				0x00000001
  57#define GQSPI_EN_MASK				0x00000001
  58#define GQSPI_LPBK_DLY_ADJ_USE_LPBK_MASK	0x00000020
  59#define GQSPI_ISR_WR_TO_CLR_MASK		0x00000002
  60#define GQSPI_IDR_ALL_MASK			0x00000FBE
  61#define GQSPI_CFG_MODE_EN_MASK			0xC0000000
  62#define GQSPI_CFG_GEN_FIFO_START_MODE_MASK	0x20000000
  63#define GQSPI_CFG_ENDIAN_MASK			0x04000000
  64#define GQSPI_CFG_EN_POLL_TO_MASK		0x00100000
  65#define GQSPI_CFG_WP_HOLD_MASK			0x00080000
  66#define GQSPI_CFG_BAUD_RATE_DIV_MASK		0x00000038
  67#define GQSPI_CFG_CLK_PHA_MASK			0x00000004
  68#define GQSPI_CFG_CLK_POL_MASK			0x00000002
  69#define GQSPI_CFG_START_GEN_FIFO_MASK		0x10000000
  70#define GQSPI_GENFIFO_IMM_DATA_MASK		0x000000FF
  71#define GQSPI_GENFIFO_DATA_XFER			0x00000100
  72#define GQSPI_GENFIFO_EXP			0x00000200
  73#define GQSPI_GENFIFO_MODE_SPI			0x00000400
  74#define GQSPI_GENFIFO_MODE_DUALSPI		0x00000800
  75#define GQSPI_GENFIFO_MODE_QUADSPI		0x00000C00
  76#define GQSPI_GENFIFO_MODE_MASK			0x00000C00
  77#define GQSPI_GENFIFO_CS_LOWER			0x00001000
  78#define GQSPI_GENFIFO_CS_UPPER			0x00002000
  79#define GQSPI_GENFIFO_BUS_LOWER			0x00004000
  80#define GQSPI_GENFIFO_BUS_UPPER			0x00008000
  81#define GQSPI_GENFIFO_BUS_BOTH			0x0000C000
  82#define GQSPI_GENFIFO_BUS_MASK			0x0000C000
  83#define GQSPI_GENFIFO_TX			0x00010000
  84#define GQSPI_GENFIFO_RX			0x00020000
  85#define GQSPI_GENFIFO_STRIPE			0x00040000
  86#define GQSPI_GENFIFO_POLL			0x00080000
  87#define GQSPI_GENFIFO_EXP_START			0x00000100
  88#define GQSPI_FIFO_CTRL_RST_RX_FIFO_MASK	0x00000004
  89#define GQSPI_FIFO_CTRL_RST_TX_FIFO_MASK	0x00000002
  90#define GQSPI_FIFO_CTRL_RST_GEN_FIFO_MASK	0x00000001
  91#define GQSPI_ISR_RXEMPTY_MASK			0x00000800
  92#define GQSPI_ISR_GENFIFOFULL_MASK		0x00000400
  93#define GQSPI_ISR_GENFIFONOT_FULL_MASK		0x00000200
  94#define GQSPI_ISR_TXEMPTY_MASK			0x00000100
  95#define GQSPI_ISR_GENFIFOEMPTY_MASK		0x00000080
  96#define GQSPI_ISR_RXFULL_MASK			0x00000020
  97#define GQSPI_ISR_RXNEMPTY_MASK			0x00000010
  98#define GQSPI_ISR_TXFULL_MASK			0x00000008
  99#define GQSPI_ISR_TXNOT_FULL_MASK		0x00000004
 100#define GQSPI_ISR_POLL_TIME_EXPIRE_MASK		0x00000002
 101#define GQSPI_IER_TXNOT_FULL_MASK		0x00000004
 102#define GQSPI_IER_RXEMPTY_MASK			0x00000800
 103#define GQSPI_IER_POLL_TIME_EXPIRE_MASK		0x00000002
 104#define GQSPI_IER_RXNEMPTY_MASK			0x00000010
 105#define GQSPI_IER_GENFIFOEMPTY_MASK		0x00000080
 106#define GQSPI_IER_TXEMPTY_MASK			0x00000100
 107#define GQSPI_QSPIDMA_DST_INTR_ALL_MASK		0x000000FE
 108#define GQSPI_QSPIDMA_DST_STS_WTC		0x0000E000
 109#define GQSPI_CFG_MODE_EN_DMA_MASK		0x80000000
 110#define GQSPI_ISR_IDR_MASK			0x00000994
 111#define GQSPI_QSPIDMA_DST_I_EN_DONE_MASK	0x00000002
 112#define GQSPI_QSPIDMA_DST_I_STS_DONE_MASK	0x00000002
 113#define GQSPI_IRQ_MASK				0x00000980
 114
 115#define GQSPI_CFG_BAUD_RATE_DIV_SHIFT		3
 116#define GQSPI_GENFIFO_CS_SETUP			0x4
 117#define GQSPI_GENFIFO_CS_HOLD			0x3
 118#define GQSPI_TXD_DEPTH				64
 119#define GQSPI_RX_FIFO_THRESHOLD			32
 120#define GQSPI_RX_FIFO_FILL	(GQSPI_RX_FIFO_THRESHOLD * 4)
 121#define GQSPI_TX_FIFO_THRESHOLD_RESET_VAL	32
 122#define GQSPI_TX_FIFO_FILL	(GQSPI_TXD_DEPTH -\
 123				GQSPI_TX_FIFO_THRESHOLD_RESET_VAL)
 124#define GQSPI_GEN_FIFO_THRESHOLD_RESET_VAL	0X10
 125#define GQSPI_QSPIDMA_DST_CTRL_RESET_VAL	0x803FFA00
 126#define GQSPI_SELECT_FLASH_CS_LOWER		0x1
 127#define GQSPI_SELECT_FLASH_CS_UPPER		0x2
 128#define GQSPI_SELECT_FLASH_CS_BOTH		0x3
 129#define GQSPI_SELECT_FLASH_BUS_LOWER		0x1
 130#define GQSPI_SELECT_FLASH_BUS_UPPER		0x2
 131#define GQSPI_SELECT_FLASH_BUS_BOTH		0x3
 132#define GQSPI_BAUD_DIV_MAX	7	/* Baud rate divisor maximum */
 133#define GQSPI_BAUD_DIV_SHIFT	2	/* Baud rate divisor shift */
 134#define GQSPI_SELECT_MODE_SPI		0x1
 135#define GQSPI_SELECT_MODE_DUALSPI	0x2
 136#define GQSPI_SELECT_MODE_QUADSPI	0x4
 137#define GQSPI_DMA_UNALIGN		0x3
 138#define GQSPI_DEFAULT_NUM_CS	1	/* Default number of chip selects */
 139
 140#define GQSPI_MAX_NUM_CS	2	/* Maximum number of chip selects */
 141
 142#define GQSPI_USE_DATA_DLY		0x1
 143#define GQSPI_USE_DATA_DLY_SHIFT	31
 144#define GQSPI_DATA_DLY_ADJ_VALUE	0x2
 145#define GQSPI_DATA_DLY_ADJ_SHIFT	28
 146#define GQSPI_LPBK_DLY_ADJ_DLY_1	0x1
 147#define GQSPI_LPBK_DLY_ADJ_DLY_1_SHIFT	0x3
 148#define TAP_DLY_BYPASS_LQSPI_RX_VALUE	0x1
 149#define TAP_DLY_BYPASS_LQSPI_RX_SHIFT	0x2
 150
 151/* set to differentiate versal from zynqmp, 1=versal, 0=zynqmp */
 152#define QSPI_QUIRK_HAS_TAPDELAY		BIT(0)
 153
 154#define GQSPI_FREQ_37_5MHZ	37500000
 155#define GQSPI_FREQ_40MHZ	40000000
 156#define GQSPI_FREQ_100MHZ	100000000
 157#define GQSPI_FREQ_150MHZ	150000000
 158
 159#define SPI_AUTOSUSPEND_TIMEOUT		3000
 160enum mode_type {GQSPI_MODE_IO, GQSPI_MODE_DMA};
 161
 162/**
 163 * struct qspi_platform_data - zynqmp qspi platform data structure
 164 * @quirks:    Flags is used to identify the platform
 165 */
 166struct qspi_platform_data {
 167	u32 quirks;
 168};
 169
 170/**
 171 * struct zynqmp_qspi - Defines qspi driver instance
 172 * @ctlr:		Pointer to the spi controller information
 173 * @regs:		Virtual address of the QSPI controller registers
 174 * @refclk:		Pointer to the peripheral clock
 175 * @pclk:		Pointer to the APB clock
 176 * @irq:		IRQ number
 177 * @dev:		Pointer to struct device
 178 * @txbuf:		Pointer to the TX buffer
 179 * @rxbuf:		Pointer to the RX buffer
 180 * @bytes_to_transfer:	Number of bytes left to transfer
 181 * @bytes_to_receive:	Number of bytes left to receive
 182 * @genfifocs:		Used for chip select
 183 * @genfifobus:		Used to select the upper or lower bus
 184 * @dma_rx_bytes:	Remaining bytes to receive by DMA mode
 185 * @dma_addr:		DMA address after mapping the kernel buffer
 186 * @genfifoentry:	Used for storing the genfifoentry instruction.
 187 * @mode:		Defines the mode in which QSPI is operating
 188 * @data_completion:	completion structure
 189 * @op_lock:		Operational lock
 190 * @speed_hz:          Current SPI bus clock speed in hz
 191 * @has_tapdelay:	Used for tapdelay register available in qspi
 192 */
 193struct zynqmp_qspi {
 194	struct spi_controller *ctlr;
 195	void __iomem *regs;
 196	struct clk *refclk;
 197	struct clk *pclk;
 198	int irq;
 199	struct device *dev;
 200	const void *txbuf;
 201	void *rxbuf;
 202	int bytes_to_transfer;
 203	int bytes_to_receive;
 204	u32 genfifocs;
 205	u32 genfifobus;
 206	u32 dma_rx_bytes;
 207	dma_addr_t dma_addr;
 208	u32 genfifoentry;
 209	enum mode_type mode;
 210	struct completion data_completion;
 211	struct mutex op_lock;
 212	u32 speed_hz;
 213	bool has_tapdelay;
 214};
 215
 216/**
 217 * zynqmp_gqspi_read - For GQSPI controller read operation
 218 * @xqspi:	Pointer to the zynqmp_qspi structure
 219 * @offset:	Offset from where to read
 220 * Return:      Value at the offset
 221 */
 222static u32 zynqmp_gqspi_read(struct zynqmp_qspi *xqspi, u32 offset)
 223{
 224	return readl_relaxed(xqspi->regs + offset);
 225}
 226
 227/**
 228 * zynqmp_gqspi_write - For GQSPI controller write operation
 229 * @xqspi:	Pointer to the zynqmp_qspi structure
 230 * @offset:	Offset where to write
 231 * @val:	Value to be written
 232 */
 233static inline void zynqmp_gqspi_write(struct zynqmp_qspi *xqspi, u32 offset,
 234				      u32 val)
 235{
 236	writel_relaxed(val, (xqspi->regs + offset));
 237}
 238
 239/**
 240 * zynqmp_gqspi_selectslave - For selection of slave device
 241 * @instanceptr:	Pointer to the zynqmp_qspi structure
 242 * @slavecs:	For chip select
 243 * @slavebus:	To check which bus is selected- upper or lower
 244 */
 245static void zynqmp_gqspi_selectslave(struct zynqmp_qspi *instanceptr,
 246				     u8 slavecs, u8 slavebus)
 247{
 248	/*
 249	 * Bus and CS lines selected here will be updated in the instance and
 250	 * used for subsequent GENFIFO entries during transfer.
 251	 */
 252
 253	/* Choose slave select line */
 254	switch (slavecs) {
 255	case GQSPI_SELECT_FLASH_CS_BOTH:
 256		instanceptr->genfifocs = GQSPI_GENFIFO_CS_LOWER |
 257			GQSPI_GENFIFO_CS_UPPER;
 258		break;
 259	case GQSPI_SELECT_FLASH_CS_UPPER:
 260		instanceptr->genfifocs = GQSPI_GENFIFO_CS_UPPER;
 261		break;
 262	case GQSPI_SELECT_FLASH_CS_LOWER:
 263		instanceptr->genfifocs = GQSPI_GENFIFO_CS_LOWER;
 264		break;
 265	default:
 266		dev_warn(instanceptr->dev, "Invalid slave select\n");
 267	}
 268
 269	/* Choose the bus */
 270	switch (slavebus) {
 271	case GQSPI_SELECT_FLASH_BUS_BOTH:
 272		instanceptr->genfifobus = GQSPI_GENFIFO_BUS_LOWER |
 273			GQSPI_GENFIFO_BUS_UPPER;
 274		break;
 275	case GQSPI_SELECT_FLASH_BUS_UPPER:
 276		instanceptr->genfifobus = GQSPI_GENFIFO_BUS_UPPER;
 277		break;
 278	case GQSPI_SELECT_FLASH_BUS_LOWER:
 279		instanceptr->genfifobus = GQSPI_GENFIFO_BUS_LOWER;
 280		break;
 281	default:
 282		dev_warn(instanceptr->dev, "Invalid slave bus\n");
 283	}
 284}
 285
 286/**
 287 * zynqmp_qspi_set_tapdelay:   To configure qspi tap delays
 288 * @xqspi:             Pointer to the zynqmp_qspi structure
 289 * @baudrateval:       Buadrate to configure
 290 */
 291static void zynqmp_qspi_set_tapdelay(struct zynqmp_qspi *xqspi, u32 baudrateval)
 292{
 293	u32 tapdlybypass = 0, lpbkdlyadj = 0, datadlyadj = 0, clk_rate;
 294	u32 reqhz = 0;
 295
 296	clk_rate = clk_get_rate(xqspi->refclk);
 297	reqhz = (clk_rate / (GQSPI_BAUD_DIV_SHIFT << baudrateval));
 298
 299	if (!xqspi->has_tapdelay) {
 300		if (reqhz <= GQSPI_FREQ_40MHZ) {
 301			zynqmp_pm_set_tapdelay_bypass(PM_TAPDELAY_QSPI,
 302						      PM_TAPDELAY_BYPASS_ENABLE);
 303		} else if (reqhz <= GQSPI_FREQ_100MHZ) {
 304			zynqmp_pm_set_tapdelay_bypass(PM_TAPDELAY_QSPI,
 305						      PM_TAPDELAY_BYPASS_ENABLE);
 306			lpbkdlyadj |= (GQSPI_LPBK_DLY_ADJ_USE_LPBK_MASK);
 307			datadlyadj |= ((GQSPI_USE_DATA_DLY <<
 308					GQSPI_USE_DATA_DLY_SHIFT)
 309					| (GQSPI_DATA_DLY_ADJ_VALUE <<
 310						GQSPI_DATA_DLY_ADJ_SHIFT));
 311		} else if (reqhz <= GQSPI_FREQ_150MHZ) {
 312			lpbkdlyadj |= GQSPI_LPBK_DLY_ADJ_USE_LPBK_MASK;
 313		}
 314	} else {
 315		if (reqhz <= GQSPI_FREQ_37_5MHZ) {
 316			tapdlybypass |= (TAP_DLY_BYPASS_LQSPI_RX_VALUE <<
 317					TAP_DLY_BYPASS_LQSPI_RX_SHIFT);
 318		} else if (reqhz <= GQSPI_FREQ_100MHZ) {
 319			tapdlybypass |= (TAP_DLY_BYPASS_LQSPI_RX_VALUE <<
 320					TAP_DLY_BYPASS_LQSPI_RX_SHIFT);
 321			lpbkdlyadj |= (GQSPI_LPBK_DLY_ADJ_USE_LPBK_MASK);
 322			datadlyadj |= (GQSPI_USE_DATA_DLY <<
 323					GQSPI_USE_DATA_DLY_SHIFT);
 324		} else if (reqhz <= GQSPI_FREQ_150MHZ) {
 325			lpbkdlyadj |= (GQSPI_LPBK_DLY_ADJ_USE_LPBK_MASK
 326				       | (GQSPI_LPBK_DLY_ADJ_DLY_1 <<
 327					       GQSPI_LPBK_DLY_ADJ_DLY_1_SHIFT));
 328		}
 329		zynqmp_gqspi_write(xqspi,
 330				   IOU_TAPDLY_BYPASS_OFST, tapdlybypass);
 331	}
 332	zynqmp_gqspi_write(xqspi, GQSPI_LPBK_DLY_ADJ_OFST, lpbkdlyadj);
 333	zynqmp_gqspi_write(xqspi, GQSPI_DATA_DLY_ADJ_OFST, datadlyadj);
 334}
 335
 336/**
 337 * zynqmp_qspi_init_hw - Initialize the hardware
 338 * @xqspi:	Pointer to the zynqmp_qspi structure
 339 *
 340 * The default settings of the QSPI controller's configurable parameters on
 341 * reset are
 342 *	- Master mode
 343 *	- TX threshold set to 1
 344 *	- RX threshold set to 1
 345 *	- Flash memory interface mode enabled
 346 * This function performs the following actions
 347 *	- Disable and clear all the interrupts
 348 *	- Enable manual slave select
 349 *	- Enable manual start
 350 *	- Deselect all the chip select lines
 351 *	- Set the little endian mode of TX FIFO
 352 *	- Set clock phase
 353 *	- Set clock polarity and
 354 *	- Enable the QSPI controller
 355 */
 356static void zynqmp_qspi_init_hw(struct zynqmp_qspi *xqspi)
 357{
 358	u32 config_reg, baud_rate_val = 0;
 359	ulong clk_rate;
 360
 361	/* Select the GQSPI mode */
 362	zynqmp_gqspi_write(xqspi, GQSPI_SEL_OFST, GQSPI_SEL_MASK);
 363	/* Clear and disable interrupts */
 364	zynqmp_gqspi_write(xqspi, GQSPI_ISR_OFST,
 365			   zynqmp_gqspi_read(xqspi, GQSPI_ISR_OFST) |
 366			   GQSPI_ISR_WR_TO_CLR_MASK);
 367	/* Clear the DMA STS */
 368	zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_I_STS_OFST,
 369			   zynqmp_gqspi_read(xqspi,
 370					     GQSPI_QSPIDMA_DST_I_STS_OFST));
 371	zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_STS_OFST,
 372			   zynqmp_gqspi_read(xqspi,
 373					     GQSPI_QSPIDMA_DST_STS_OFST) |
 374					     GQSPI_QSPIDMA_DST_STS_WTC);
 375	zynqmp_gqspi_write(xqspi, GQSPI_IDR_OFST, GQSPI_IDR_ALL_MASK);
 376	zynqmp_gqspi_write(xqspi,
 377			   GQSPI_QSPIDMA_DST_I_DIS_OFST,
 378			   GQSPI_QSPIDMA_DST_INTR_ALL_MASK);
 379	/* Disable the GQSPI */
 380	zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, 0x0);
 381	config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST);
 382	config_reg &= ~GQSPI_CFG_MODE_EN_MASK;
 383	/* Manual start */
 384	config_reg |= GQSPI_CFG_GEN_FIFO_START_MODE_MASK;
 385	/* Little endian by default */
 386	config_reg &= ~GQSPI_CFG_ENDIAN_MASK;
 387	/* Disable poll time out */
 388	config_reg &= ~GQSPI_CFG_EN_POLL_TO_MASK;
 389	/* Set hold bit */
 390	config_reg |= GQSPI_CFG_WP_HOLD_MASK;
 391	/* Clear pre-scalar by default */
 392	config_reg &= ~GQSPI_CFG_BAUD_RATE_DIV_MASK;
 393	/* Set CPHA */
 394	if (xqspi->ctlr->mode_bits & SPI_CPHA)
 395		config_reg |= GQSPI_CFG_CLK_PHA_MASK;
 396	else
 397		config_reg &= ~GQSPI_CFG_CLK_PHA_MASK;
 398	/* Set CPOL */
 399	if (xqspi->ctlr->mode_bits & SPI_CPOL)
 400		config_reg |= GQSPI_CFG_CLK_POL_MASK;
 401	else
 402		config_reg &= ~GQSPI_CFG_CLK_POL_MASK;
 403
 404	/* Set the clock frequency */
 405	clk_rate = clk_get_rate(xqspi->refclk);
 406	while ((baud_rate_val < GQSPI_BAUD_DIV_MAX) &&
 407	       (clk_rate /
 408		(GQSPI_BAUD_DIV_SHIFT << baud_rate_val)) > xqspi->speed_hz)
 409		baud_rate_val++;
 410
 411	config_reg &= ~GQSPI_CFG_BAUD_RATE_DIV_MASK;
 412	config_reg |= (baud_rate_val << GQSPI_CFG_BAUD_RATE_DIV_SHIFT);
 413
 414	zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg);
 415
 416	/* Set the tapdelay for clock frequency */
 417	zynqmp_qspi_set_tapdelay(xqspi, baud_rate_val);
 418
 419	/* Clear the TX and RX FIFO */
 420	zynqmp_gqspi_write(xqspi, GQSPI_FIFO_CTRL_OFST,
 421			   GQSPI_FIFO_CTRL_RST_RX_FIFO_MASK |
 422			   GQSPI_FIFO_CTRL_RST_TX_FIFO_MASK |
 423			   GQSPI_FIFO_CTRL_RST_GEN_FIFO_MASK);
 
 
 
 
 424	/* Reset thresholds */
 425	zynqmp_gqspi_write(xqspi, GQSPI_TX_THRESHOLD_OFST,
 426			   GQSPI_TX_FIFO_THRESHOLD_RESET_VAL);
 427	zynqmp_gqspi_write(xqspi, GQSPI_RX_THRESHOLD_OFST,
 428			   GQSPI_RX_FIFO_THRESHOLD);
 429	zynqmp_gqspi_write(xqspi, GQSPI_GF_THRESHOLD_OFST,
 430			   GQSPI_GEN_FIFO_THRESHOLD_RESET_VAL);
 431	zynqmp_gqspi_selectslave(xqspi,
 432				 GQSPI_SELECT_FLASH_CS_LOWER,
 433				 GQSPI_SELECT_FLASH_BUS_LOWER);
 434	/* Initialize DMA */
 435	zynqmp_gqspi_write(xqspi,
 436			   GQSPI_QSPIDMA_DST_CTRL_OFST,
 437			   GQSPI_QSPIDMA_DST_CTRL_RESET_VAL);
 438
 439	/* Enable the GQSPI */
 440	zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, GQSPI_EN_MASK);
 441}
 442
 443/**
 444 * zynqmp_qspi_copy_read_data - Copy data to RX buffer
 445 * @xqspi:	Pointer to the zynqmp_qspi structure
 446 * @data:	The variable where data is stored
 447 * @size:	Number of bytes to be copied from data to RX buffer
 448 */
 449static void zynqmp_qspi_copy_read_data(struct zynqmp_qspi *xqspi,
 450				       ulong data, u8 size)
 451{
 452	memcpy(xqspi->rxbuf, &data, size);
 453	xqspi->rxbuf += size;
 454	xqspi->bytes_to_receive -= size;
 455}
 456
 457/**
 458 * zynqmp_qspi_chipselect - Select or deselect the chip select line
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 459 * @qspi:	Pointer to the spi_device structure
 460 * @is_high:	Select(0) or deselect (1) the chip select line
 461 */
 462static void zynqmp_qspi_chipselect(struct spi_device *qspi, bool is_high)
 463{
 464	struct zynqmp_qspi *xqspi = spi_master_get_devdata(qspi->master);
 465	ulong timeout;
 466	u32 genfifoentry = 0, statusreg;
 467
 468	genfifoentry |= GQSPI_GENFIFO_MODE_SPI;
 
 469
 470	if (!is_high) {
 471		if (!qspi->chip_select) {
 472			xqspi->genfifobus = GQSPI_GENFIFO_BUS_LOWER;
 473			xqspi->genfifocs = GQSPI_GENFIFO_CS_LOWER;
 474		} else {
 475			xqspi->genfifobus = GQSPI_GENFIFO_BUS_UPPER;
 476			xqspi->genfifocs = GQSPI_GENFIFO_CS_UPPER;
 477		}
 478		genfifoentry |= xqspi->genfifobus;
 479		genfifoentry |= xqspi->genfifocs;
 480		genfifoentry |= GQSPI_GENFIFO_CS_SETUP;
 481	} else {
 482		genfifoentry |= GQSPI_GENFIFO_CS_HOLD;
 483	}
 484
 485	zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, genfifoentry);
 486
 487	/* Manually start the generic FIFO command */
 488	zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
 489			   zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST) |
 490			   GQSPI_CFG_START_GEN_FIFO_MASK);
 491
 492	timeout = jiffies + msecs_to_jiffies(1000);
 493
 494	/* Wait until the generic FIFO command is empty */
 495	do {
 496		statusreg = zynqmp_gqspi_read(xqspi, GQSPI_ISR_OFST);
 497
 498		if ((statusreg & GQSPI_ISR_GENFIFOEMPTY_MASK) &&
 499		    (statusreg & GQSPI_ISR_TXEMPTY_MASK))
 500			break;
 501		cpu_relax();
 
 502	} while (!time_after_eq(jiffies, timeout));
 503
 504	if (time_after_eq(jiffies, timeout))
 505		dev_err(xqspi->dev, "Chip select timed out\n");
 506}
 507
 508/**
 509 * zynqmp_qspi_selectspimode - Selects SPI mode - x1 or x2 or x4.
 510 * @xqspi:	xqspi is a pointer to the GQSPI instance
 511 * @spimode:	spimode - SPI or DUAL or QUAD.
 512 * Return:	Mask to set desired SPI mode in GENFIFO entry.
 513 */
 514static inline u32 zynqmp_qspi_selectspimode(struct zynqmp_qspi *xqspi,
 515					    u8 spimode)
 516{
 517	u32 mask = 0;
 518
 519	switch (spimode) {
 520	case GQSPI_SELECT_MODE_DUALSPI:
 521		mask = GQSPI_GENFIFO_MODE_DUALSPI;
 522		break;
 523	case GQSPI_SELECT_MODE_QUADSPI:
 524		mask = GQSPI_GENFIFO_MODE_QUADSPI;
 525		break;
 526	case GQSPI_SELECT_MODE_SPI:
 527		mask = GQSPI_GENFIFO_MODE_SPI;
 528		break;
 529	default:
 530		dev_warn(xqspi->dev, "Invalid SPI mode\n");
 531	}
 532
 533	return mask;
 534}
 535
 536/**
 537 * zynqmp_qspi_config_op - Configure QSPI controller for specified
 538 *				transfer
 539 * @xqspi:	Pointer to the zynqmp_qspi structure
 540 * @qspi:	Pointer to the spi_device structure
 
 
 541 *
 542 * Sets the operational mode of QSPI controller for the next QSPI transfer and
 543 * sets the requested clock frequency.
 544 *
 545 * Return:	Always 0
 546 *
 547 * Note:
 548 *	If the requested frequency is not an exact match with what can be
 549 *	obtained using the pre-scalar value, the driver sets the clock
 550 *	frequency which is lower than the requested frequency (maximum lower)
 551 *	for the transfer.
 552 *
 553 *	If the requested frequency is higher or lower than that is supported
 554 *	by the QSPI controller the driver will set the highest or lowest
 555 *	frequency supported by controller.
 556 */
 557static int zynqmp_qspi_config_op(struct zynqmp_qspi *xqspi,
 558				 struct spi_device *qspi)
 559{
 
 560	ulong clk_rate;
 561	u32 config_reg, req_speed_hz, baud_rate_val = 0;
 562
 563	req_speed_hz = qspi->max_speed_hz;
 
 
 
 564
 565	if (xqspi->speed_hz != req_speed_hz) {
 566		xqspi->speed_hz = req_speed_hz;
 
 567
 568		/* Set the clock frequency */
 569		/* If req_speed_hz == 0, default to lowest speed */
 570		clk_rate = clk_get_rate(xqspi->refclk);
 571
 572		while ((baud_rate_val < GQSPI_BAUD_DIV_MAX) &&
 573		       (clk_rate /
 574			(GQSPI_BAUD_DIV_SHIFT << baud_rate_val)) >
 575		       req_speed_hz)
 576			baud_rate_val++;
 577
 578		config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST);
 579
 580		config_reg &= ~GQSPI_CFG_BAUD_RATE_DIV_MASK;
 581		config_reg |= (baud_rate_val << GQSPI_CFG_BAUD_RATE_DIV_SHIFT);
 582		zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg);
 583		zynqmp_qspi_set_tapdelay(xqspi, baud_rate_val);
 584	}
 
 
 
 
 
 
 585	return 0;
 586}
 587
 588/**
 589 * zynqmp_qspi_setup_op - Configure the QSPI controller
 590 * @qspi:	Pointer to the spi_device structure
 591 *
 592 * Sets the operational mode of QSPI controller for the next QSPI transfer,
 593 * baud rate and divisor value to setup the requested qspi clock.
 594 *
 595 * Return:	0 on success; error value otherwise.
 596 */
 597static int zynqmp_qspi_setup_op(struct spi_device *qspi)
 598{
 599	struct spi_controller *ctlr = qspi->master;
 600	struct zynqmp_qspi *xqspi = spi_controller_get_devdata(ctlr);
 601
 602	if (ctlr->busy)
 603		return -EBUSY;
 604
 605	zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, GQSPI_EN_MASK);
 606
 607	return 0;
 608}
 609
 610/**
 611 * zynqmp_qspi_filltxfifo - Fills the TX FIFO as long as there is room in
 612 *				the FIFO or the bytes required to be
 613 *				transmitted.
 614 * @xqspi:	Pointer to the zynqmp_qspi structure
 615 * @size:	Number of bytes to be copied from TX buffer to TX FIFO
 616 */
 617static void zynqmp_qspi_filltxfifo(struct zynqmp_qspi *xqspi, int size)
 618{
 619	u32 count = 0, intermediate;
 620
 621	while ((xqspi->bytes_to_transfer > 0) && (count < size) && (xqspi->txbuf)) {
 
 
 
 622		if (xqspi->bytes_to_transfer >= 4) {
 623			memcpy(&intermediate, xqspi->txbuf, 4);
 624			xqspi->txbuf += 4;
 625			xqspi->bytes_to_transfer -= 4;
 626			count += 4;
 627		} else {
 628			memcpy(&intermediate, xqspi->txbuf,
 629			       xqspi->bytes_to_transfer);
 630			xqspi->txbuf += xqspi->bytes_to_transfer;
 631			xqspi->bytes_to_transfer = 0;
 632			count += xqspi->bytes_to_transfer;
 633		}
 634		zynqmp_gqspi_write(xqspi, GQSPI_TXD_OFST, intermediate);
 635	}
 636}
 637
 638/**
 639 * zynqmp_qspi_readrxfifo - Fills the RX FIFO as long as there is room in
 640 *				the FIFO.
 641 * @xqspi:	Pointer to the zynqmp_qspi structure
 642 * @size:	Number of bytes to be copied from RX buffer to RX FIFO
 643 */
 644static void zynqmp_qspi_readrxfifo(struct zynqmp_qspi *xqspi, u32 size)
 645{
 646	ulong data;
 647	int count = 0;
 648
 649	while ((count < size) && (xqspi->bytes_to_receive > 0)) {
 650		if (xqspi->bytes_to_receive >= 4) {
 651			(*(u32 *)xqspi->rxbuf) =
 652			zynqmp_gqspi_read(xqspi, GQSPI_RXD_OFST);
 653			xqspi->rxbuf += 4;
 654			xqspi->bytes_to_receive -= 4;
 655			count += 4;
 656		} else {
 657			data = zynqmp_gqspi_read(xqspi, GQSPI_RXD_OFST);
 658			count += xqspi->bytes_to_receive;
 659			zynqmp_qspi_copy_read_data(xqspi, data,
 660						   xqspi->bytes_to_receive);
 661			xqspi->bytes_to_receive = 0;
 662		}
 663	}
 664}
 665
 666/**
 667 * zynqmp_qspi_fillgenfifo - Fills the GENFIFO.
 668 * @xqspi:	Pointer to the zynqmp_qspi structure
 669 * @nbits:	Transfer/Receive buswidth.
 670 * @genfifoentry:       Variable in which GENFIFO mask is saved
 671 */
 672static void zynqmp_qspi_fillgenfifo(struct zynqmp_qspi *xqspi, u8 nbits,
 673				    u32 genfifoentry)
 674{
 675	u32 transfer_len = 0;
 676
 677	if (xqspi->txbuf) {
 678		genfifoentry &= ~GQSPI_GENFIFO_RX;
 679		genfifoentry |= GQSPI_GENFIFO_DATA_XFER;
 680		genfifoentry |= GQSPI_GENFIFO_TX;
 681		transfer_len = xqspi->bytes_to_transfer;
 682	} else if (xqspi->rxbuf) {
 683		genfifoentry &= ~GQSPI_GENFIFO_TX;
 684		genfifoentry |= GQSPI_GENFIFO_DATA_XFER;
 685		genfifoentry |= GQSPI_GENFIFO_RX;
 686		if (xqspi->mode == GQSPI_MODE_DMA)
 687			transfer_len = xqspi->dma_rx_bytes;
 688		else
 689			transfer_len = xqspi->bytes_to_receive;
 690	} else {
 691		/* Sending dummy circles here */
 692		genfifoentry &= ~(GQSPI_GENFIFO_TX | GQSPI_GENFIFO_RX);
 693		genfifoentry |= GQSPI_GENFIFO_DATA_XFER;
 694		transfer_len = xqspi->bytes_to_transfer;
 695	}
 696	genfifoentry |= zynqmp_qspi_selectspimode(xqspi, nbits);
 697	xqspi->genfifoentry = genfifoentry;
 698
 699	if ((transfer_len) < GQSPI_GENFIFO_IMM_DATA_MASK) {
 700		genfifoentry &= ~GQSPI_GENFIFO_IMM_DATA_MASK;
 701		genfifoentry |= transfer_len;
 702		zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, genfifoentry);
 703	} else {
 704		int tempcount = transfer_len;
 705		u32 exponent = 8;	/* 2^8 = 256 */
 706		u8 imm_data = tempcount & 0xFF;
 707
 708		tempcount &= ~(tempcount & 0xFF);
 709		/* Immediate entry */
 710		if (tempcount != 0) {
 711			/* Exponent entries */
 712			genfifoentry |= GQSPI_GENFIFO_EXP;
 713			while (tempcount != 0) {
 714				if (tempcount & GQSPI_GENFIFO_EXP_START) {
 715					genfifoentry &=
 716						~GQSPI_GENFIFO_IMM_DATA_MASK;
 717					genfifoentry |= exponent;
 718					zynqmp_gqspi_write(xqspi,
 719							   GQSPI_GEN_FIFO_OFST,
 720							   genfifoentry);
 721				}
 722				tempcount = tempcount >> 1;
 723				exponent++;
 724			}
 725		}
 726		if (imm_data != 0) {
 727			genfifoentry &= ~GQSPI_GENFIFO_EXP;
 728			genfifoentry &= ~GQSPI_GENFIFO_IMM_DATA_MASK;
 729			genfifoentry |= (u8)(imm_data & 0xFF);
 730			zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST,
 731					   genfifoentry);
 732		}
 733	}
 734	if (xqspi->mode == GQSPI_MODE_IO && xqspi->rxbuf) {
 735		/* Dummy generic FIFO entry */
 736		zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, 0x0);
 737	}
 738}
 739
 740/**
 741 * zynqmp_process_dma_irq - Handler for DMA done interrupt of QSPI
 742 *				controller
 743 * @xqspi:	zynqmp_qspi instance pointer
 744 *
 745 * This function handles DMA interrupt only.
 746 */
 747static void zynqmp_process_dma_irq(struct zynqmp_qspi *xqspi)
 748{
 749	u32 config_reg, genfifoentry;
 750
 751	dma_unmap_single(xqspi->dev, xqspi->dma_addr,
 752			 xqspi->dma_rx_bytes, DMA_FROM_DEVICE);
 753	xqspi->rxbuf += xqspi->dma_rx_bytes;
 754	xqspi->bytes_to_receive -= xqspi->dma_rx_bytes;
 755	xqspi->dma_rx_bytes = 0;
 756
 757	/* Disabling the DMA interrupts */
 758	zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_I_DIS_OFST,
 759			   GQSPI_QSPIDMA_DST_I_EN_DONE_MASK);
 760
 761	if (xqspi->bytes_to_receive > 0) {
 762		/* Switch to IO mode,for remaining bytes to receive */
 763		config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST);
 764		config_reg &= ~GQSPI_CFG_MODE_EN_MASK;
 765		zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg);
 766
 767		/* Initiate the transfer of remaining bytes */
 768		genfifoentry = xqspi->genfifoentry;
 769		genfifoentry |= xqspi->bytes_to_receive;
 770		zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, genfifoentry);
 771
 772		/* Dummy generic FIFO entry */
 773		zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, 0x0);
 774
 775		/* Manual start */
 776		zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
 777				   (zynqmp_gqspi_read(xqspi,
 778						      GQSPI_CONFIG_OFST) |
 779				   GQSPI_CFG_START_GEN_FIFO_MASK));
 780
 781		/* Enable the RX interrupts for IO mode */
 782		zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST,
 783				   GQSPI_IER_GENFIFOEMPTY_MASK |
 784				   GQSPI_IER_RXNEMPTY_MASK |
 785				   GQSPI_IER_RXEMPTY_MASK);
 786	}
 787}
 788
 789/**
 790 * zynqmp_qspi_irq - Interrupt service routine of the QSPI controller
 791 * @irq:	IRQ number
 792 * @dev_id:	Pointer to the xqspi structure
 793 *
 794 * This function handles TX empty only.
 795 * On TX empty interrupt this function reads the received data from RX FIFO
 796 * and fills the TX FIFO if there is any data remaining to be transferred.
 797 *
 798 * Return:	IRQ_HANDLED when interrupt is handled
 799 *		IRQ_NONE otherwise.
 800 */
 801static irqreturn_t zynqmp_qspi_irq(int irq, void *dev_id)
 802{
 803	struct zynqmp_qspi *xqspi = (struct zynqmp_qspi *)dev_id;
 804	irqreturn_t ret = IRQ_NONE;
 
 805	u32 status, mask, dma_status = 0;
 806
 807	status = zynqmp_gqspi_read(xqspi, GQSPI_ISR_OFST);
 808	zynqmp_gqspi_write(xqspi, GQSPI_ISR_OFST, status);
 809	mask = (status & ~(zynqmp_gqspi_read(xqspi, GQSPI_IMASK_OFST)));
 810
 811	/* Read and clear DMA status */
 812	if (xqspi->mode == GQSPI_MODE_DMA) {
 813		dma_status =
 814			zynqmp_gqspi_read(xqspi, GQSPI_QSPIDMA_DST_I_STS_OFST);
 815		zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_I_STS_OFST,
 816				   dma_status);
 817	}
 818
 819	if (mask & GQSPI_ISR_TXNOT_FULL_MASK) {
 820		zynqmp_qspi_filltxfifo(xqspi, GQSPI_TX_FIFO_FILL);
 821		ret = IRQ_HANDLED;
 822	}
 823
 824	if (dma_status & GQSPI_QSPIDMA_DST_I_STS_DONE_MASK) {
 825		zynqmp_process_dma_irq(xqspi);
 826		ret = IRQ_HANDLED;
 827	} else if (!(mask & GQSPI_IER_RXEMPTY_MASK) &&
 828			(mask & GQSPI_IER_GENFIFOEMPTY_MASK)) {
 829		zynqmp_qspi_readrxfifo(xqspi, GQSPI_RX_FIFO_FILL);
 830		ret = IRQ_HANDLED;
 831	}
 832
 833	if (xqspi->bytes_to_receive == 0 && xqspi->bytes_to_transfer == 0 &&
 834	    ((status & GQSPI_IRQ_MASK) == GQSPI_IRQ_MASK)) {
 835		zynqmp_gqspi_write(xqspi, GQSPI_IDR_OFST, GQSPI_ISR_IDR_MASK);
 836		complete(&xqspi->data_completion);
 837		ret = IRQ_HANDLED;
 838	}
 839	return ret;
 840}
 841
 842/**
 843 * zynqmp_qspi_setuprxdma - This function sets up the RX DMA operation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 844 * @xqspi:	xqspi is a pointer to the GQSPI instance.
 845 *
 846 * Return:	0 on success; error value otherwise.
 847 */
 848static int zynqmp_qspi_setuprxdma(struct zynqmp_qspi *xqspi)
 849{
 850	u32 rx_bytes, rx_rem, config_reg;
 851	dma_addr_t addr;
 852	u64 dma_align =  (u64)(uintptr_t)xqspi->rxbuf;
 853
 854	if (xqspi->bytes_to_receive < 8 ||
 855	    ((dma_align & GQSPI_DMA_UNALIGN) != 0x0)) {
 856		/* Setting to IO mode */
 857		config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST);
 858		config_reg &= ~GQSPI_CFG_MODE_EN_MASK;
 859		zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg);
 860		xqspi->mode = GQSPI_MODE_IO;
 861		xqspi->dma_rx_bytes = 0;
 862		return 0;
 863	}
 864
 865	rx_rem = xqspi->bytes_to_receive % 4;
 866	rx_bytes = (xqspi->bytes_to_receive - rx_rem);
 867
 868	addr = dma_map_single(xqspi->dev, (void *)xqspi->rxbuf,
 869			      rx_bytes, DMA_FROM_DEVICE);
 870	if (dma_mapping_error(xqspi->dev, addr)) {
 871		dev_err(xqspi->dev, "ERR:rxdma:memory not mapped\n");
 872		return -ENOMEM;
 873	}
 874
 875	xqspi->dma_rx_bytes = rx_bytes;
 876	xqspi->dma_addr = addr;
 877	zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_ADDR_OFST,
 878			   (u32)(addr & 0xffffffff));
 879	addr = ((addr >> 16) >> 16);
 880	zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_ADDR_MSB_OFST,
 881			   ((u32)addr) & 0xfff);
 882
 883	/* Enabling the DMA mode */
 884	config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST);
 885	config_reg &= ~GQSPI_CFG_MODE_EN_MASK;
 886	config_reg |= GQSPI_CFG_MODE_EN_DMA_MASK;
 887	zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg);
 888
 889	/* Switch to DMA mode */
 890	xqspi->mode = GQSPI_MODE_DMA;
 891
 892	/* Write the number of bytes to transfer */
 893	zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_SIZE_OFST, rx_bytes);
 894
 895	return 0;
 896}
 897
 898/**
 899 * zynqmp_qspi_write_op - This function sets up the GENFIFO entries,
 900 *			TX FIFO, and fills the TX FIFO with as many
 901 *			bytes as possible.
 902 * @xqspi:	Pointer to the GQSPI instance.
 903 * @tx_nbits:	Transfer buswidth.
 904 * @genfifoentry:	Variable in which GENFIFO mask is returned
 905 *			to calling function
 906 */
 907static void zynqmp_qspi_write_op(struct zynqmp_qspi *xqspi, u8 tx_nbits,
 908				 u32 genfifoentry)
 
 909{
 910	u32 config_reg;
 911
 912	zynqmp_qspi_fillgenfifo(xqspi, tx_nbits, genfifoentry);
 913	zynqmp_qspi_filltxfifo(xqspi, GQSPI_TXD_DEPTH);
 914	if (xqspi->mode == GQSPI_MODE_DMA) {
 915		config_reg = zynqmp_gqspi_read(xqspi,
 916					       GQSPI_CONFIG_OFST);
 917		config_reg &= ~GQSPI_CFG_MODE_EN_MASK;
 918		zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
 919				   config_reg);
 920		xqspi->mode = GQSPI_MODE_IO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 921	}
 922}
 923
 924/**
 925 * zynqmp_qspi_read_op - This function sets up the GENFIFO entries and
 926 *				RX DMA operation.
 927 * @xqspi:	xqspi is a pointer to the GQSPI instance.
 928 * @rx_nbits:	Receive buswidth.
 929 * @genfifoentry:	genfifoentry is pointer to the variable in which
 930 *			GENFIFO	mask is returned to calling function
 931 *
 932 * Return:	0 on success; error value otherwise.
 
 
 
 933 */
 934static int zynqmp_qspi_read_op(struct zynqmp_qspi *xqspi, u8 rx_nbits,
 935				u32 genfifoentry)
 
 936{
 937	int ret;
 
 938
 939	ret = zynqmp_qspi_setuprxdma(xqspi);
 940	if (ret)
 941		return ret;
 942	zynqmp_qspi_fillgenfifo(xqspi, rx_nbits, genfifoentry);
 943
 944	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 945}
 946
 947/**
 948 * zynqmp_qspi_suspend - Suspend method for the QSPI driver
 949 * @dev:	Address of the platform_device structure
 950 *
 951 * This function stops the QSPI driver queue and disables the QSPI controller
 952 *
 953 * Return:	Always 0
 954 */
 955static int __maybe_unused zynqmp_qspi_suspend(struct device *dev)
 956{
 957	struct zynqmp_qspi *xqspi = dev_get_drvdata(dev);
 958	struct spi_controller *ctlr = xqspi->ctlr;
 959	int ret;
 960
 961	ret = spi_controller_suspend(ctlr);
 962	if (ret)
 963		return ret;
 964
 965	zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, 0x0);
 966
 967	return 0;
 968}
 969
 970/**
 971 * zynqmp_qspi_resume - Resume method for the QSPI driver
 972 * @dev:	Address of the platform_device structure
 973 *
 974 * The function starts the QSPI driver queue and initializes the QSPI
 975 * controller
 976 *
 977 * Return:	0 on success; error value otherwise
 978 */
 979static int __maybe_unused zynqmp_qspi_resume(struct device *dev)
 980{
 981	struct zynqmp_qspi *xqspi = dev_get_drvdata(dev);
 982	struct spi_controller *ctlr = xqspi->ctlr;
 
 983
 984	zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, GQSPI_EN_MASK);
 
 
 
 
 
 
 
 
 
 
 
 985
 986	spi_controller_resume(ctlr);
 987
 
 
 988	return 0;
 989}
 990
 991/**
 992 * zynqmp_runtime_suspend - Runtime suspend method for the SPI driver
 993 * @dev:	Address of the platform_device structure
 994 *
 995 * This function disables the clocks
 996 *
 997 * Return:	Always 0
 998 */
 999static int __maybe_unused zynqmp_runtime_suspend(struct device *dev)
1000{
1001	struct zynqmp_qspi *xqspi = dev_get_drvdata(dev);
 
1002
1003	clk_disable_unprepare(xqspi->refclk);
1004	clk_disable_unprepare(xqspi->pclk);
1005
1006	return 0;
1007}
1008
1009/**
1010 * zynqmp_runtime_resume - Runtime resume method for the SPI driver
1011 * @dev:	Address of the platform_device structure
1012 *
1013 * This function enables the clocks
1014 *
1015 * Return:	0 on success and error value on error
1016 */
1017static int __maybe_unused zynqmp_runtime_resume(struct device *dev)
1018{
1019	struct zynqmp_qspi *xqspi = dev_get_drvdata(dev);
 
1020	int ret;
1021
1022	ret = clk_prepare_enable(xqspi->pclk);
1023	if (ret) {
1024		dev_err(dev, "Cannot enable APB clock.\n");
1025		return ret;
1026	}
1027
1028	ret = clk_prepare_enable(xqspi->refclk);
1029	if (ret) {
1030		dev_err(dev, "Cannot enable device clock.\n");
1031		clk_disable_unprepare(xqspi->pclk);
1032		return ret;
1033	}
1034
1035	return 0;
1036}
1037
1038/**
1039 * zynqmp_qspi_exec_op() - Initiates the QSPI transfer
1040 * @mem: The SPI memory
1041 * @op: The memory operation to execute
1042 *
1043 * Executes a memory operation.
1044 *
1045 * This function first selects the chip and starts the memory operation.
1046 *
1047 * Return: 0 in case of success, a negative error code otherwise.
1048 */
1049static int zynqmp_qspi_exec_op(struct spi_mem *mem,
1050			       const struct spi_mem_op *op)
1051{
1052	struct zynqmp_qspi *xqspi = spi_controller_get_devdata
1053				    (mem->spi->master);
1054	int err = 0, i;
1055	u32 genfifoentry = 0;
1056	u16 opcode = op->cmd.opcode;
1057	u64 opaddr;
1058
1059	dev_dbg(xqspi->dev, "cmd:%#x mode:%d.%d.%d.%d\n",
1060		op->cmd.opcode, op->cmd.buswidth, op->addr.buswidth,
1061		op->dummy.buswidth, op->data.buswidth);
1062
1063	mutex_lock(&xqspi->op_lock);
1064	zynqmp_qspi_config_op(xqspi, mem->spi);
1065	zynqmp_qspi_chipselect(mem->spi, false);
1066	genfifoentry |= xqspi->genfifocs;
1067	genfifoentry |= xqspi->genfifobus;
1068
1069	if (op->cmd.opcode) {
1070		reinit_completion(&xqspi->data_completion);
1071		xqspi->txbuf = &opcode;
1072		xqspi->rxbuf = NULL;
1073		xqspi->bytes_to_transfer = op->cmd.nbytes;
1074		xqspi->bytes_to_receive = 0;
1075		zynqmp_qspi_write_op(xqspi, op->cmd.buswidth, genfifoentry);
1076		zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
1077				   zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST) |
1078				   GQSPI_CFG_START_GEN_FIFO_MASK);
1079		zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST,
1080				   GQSPI_IER_GENFIFOEMPTY_MASK |
1081				   GQSPI_IER_TXNOT_FULL_MASK);
1082		if (!wait_for_completion_timeout
1083		    (&xqspi->data_completion, msecs_to_jiffies(1000))) {
1084			err = -ETIMEDOUT;
1085			goto return_err;
1086		}
1087	}
1088
1089	if (op->addr.nbytes) {
1090		xqspi->txbuf = &opaddr;
1091		for (i = 0; i < op->addr.nbytes; i++) {
1092			*(((u8 *)xqspi->txbuf) + i) = op->addr.val >>
1093					(8 * (op->addr.nbytes - i - 1));
1094		}
1095
1096		reinit_completion(&xqspi->data_completion);
1097		xqspi->rxbuf = NULL;
1098		xqspi->bytes_to_transfer = op->addr.nbytes;
1099		xqspi->bytes_to_receive = 0;
1100		zynqmp_qspi_write_op(xqspi, op->addr.buswidth, genfifoentry);
1101		zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
1102				   zynqmp_gqspi_read(xqspi,
1103						     GQSPI_CONFIG_OFST) |
1104				   GQSPI_CFG_START_GEN_FIFO_MASK);
1105		zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST,
1106				   GQSPI_IER_TXEMPTY_MASK |
1107				   GQSPI_IER_GENFIFOEMPTY_MASK |
1108				   GQSPI_IER_TXNOT_FULL_MASK);
1109		if (!wait_for_completion_timeout
1110		    (&xqspi->data_completion, msecs_to_jiffies(1000))) {
1111			err = -ETIMEDOUT;
1112			goto return_err;
1113		}
1114	}
1115
1116	if (op->dummy.nbytes) {
1117		xqspi->txbuf = NULL;
1118		xqspi->rxbuf = NULL;
1119		/*
1120		 * xqspi->bytes_to_transfer here represents the dummy circles
1121		 * which need to be sent.
1122		 */
1123		xqspi->bytes_to_transfer = op->dummy.nbytes * 8 / op->dummy.buswidth;
1124		xqspi->bytes_to_receive = 0;
1125		/*
1126		 * Using op->data.buswidth instead of op->dummy.buswidth here because
1127		 * we need to use it to configure the correct SPI mode.
1128		 */
1129		zynqmp_qspi_write_op(xqspi, op->data.buswidth,
1130				     genfifoentry);
1131		zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
1132				   zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST) |
1133				   GQSPI_CFG_START_GEN_FIFO_MASK);
1134	}
1135
1136	if (op->data.nbytes) {
1137		reinit_completion(&xqspi->data_completion);
1138		if (op->data.dir == SPI_MEM_DATA_OUT) {
1139			xqspi->txbuf = (u8 *)op->data.buf.out;
1140			xqspi->rxbuf = NULL;
1141			xqspi->bytes_to_transfer = op->data.nbytes;
1142			xqspi->bytes_to_receive = 0;
1143			zynqmp_qspi_write_op(xqspi, op->data.buswidth,
1144					     genfifoentry);
1145			zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
1146					   zynqmp_gqspi_read
1147					   (xqspi, GQSPI_CONFIG_OFST) |
1148					   GQSPI_CFG_START_GEN_FIFO_MASK);
1149			zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST,
1150					   GQSPI_IER_TXEMPTY_MASK |
1151					   GQSPI_IER_GENFIFOEMPTY_MASK |
1152					   GQSPI_IER_TXNOT_FULL_MASK);
1153		} else {
1154			xqspi->txbuf = NULL;
1155			xqspi->rxbuf = (u8 *)op->data.buf.in;
1156			xqspi->bytes_to_receive = op->data.nbytes;
1157			xqspi->bytes_to_transfer = 0;
1158			err = zynqmp_qspi_read_op(xqspi, op->data.buswidth,
1159					    genfifoentry);
1160			if (err)
1161				goto return_err;
1162
1163			zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
1164					   zynqmp_gqspi_read
1165					   (xqspi, GQSPI_CONFIG_OFST) |
1166					   GQSPI_CFG_START_GEN_FIFO_MASK);
1167			if (xqspi->mode == GQSPI_MODE_DMA) {
1168				zynqmp_gqspi_write
1169					(xqspi, GQSPI_QSPIDMA_DST_I_EN_OFST,
1170					 GQSPI_QSPIDMA_DST_I_EN_DONE_MASK);
1171			} else {
1172				zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST,
1173						   GQSPI_IER_GENFIFOEMPTY_MASK |
1174						   GQSPI_IER_RXNEMPTY_MASK |
1175						   GQSPI_IER_RXEMPTY_MASK);
1176			}
1177		}
1178		if (!wait_for_completion_timeout
1179		    (&xqspi->data_completion, msecs_to_jiffies(1000)))
1180			err = -ETIMEDOUT;
1181	}
1182
1183return_err:
1184
1185	zynqmp_qspi_chipselect(mem->spi, true);
1186	mutex_unlock(&xqspi->op_lock);
1187
1188	return err;
1189}
1190
1191static const struct dev_pm_ops zynqmp_qspi_dev_pm_ops = {
1192	SET_RUNTIME_PM_OPS(zynqmp_runtime_suspend,
1193			   zynqmp_runtime_resume, NULL)
1194	SET_SYSTEM_SLEEP_PM_OPS(zynqmp_qspi_suspend, zynqmp_qspi_resume)
1195};
1196
1197static const struct qspi_platform_data versal_qspi_def = {
1198	.quirks = QSPI_QUIRK_HAS_TAPDELAY,
1199};
1200
1201static const struct of_device_id zynqmp_qspi_of_match[] = {
1202	{ .compatible = "xlnx,zynqmp-qspi-1.0"},
1203	{ .compatible = "xlnx,versal-qspi-1.0", .data = &versal_qspi_def },
1204	{ /* End of table */ }
1205};
1206
1207static const struct spi_controller_mem_ops zynqmp_qspi_mem_ops = {
1208	.exec_op = zynqmp_qspi_exec_op,
1209};
1210
1211/**
1212 * zynqmp_qspi_probe - Probe method for the QSPI driver
1213 * @pdev:	Pointer to the platform_device structure
1214 *
1215 * This function initializes the driver data structures and the hardware.
1216 *
1217 * Return:	0 on success; error value otherwise
1218 */
1219static int zynqmp_qspi_probe(struct platform_device *pdev)
1220{
1221	int ret = 0;
1222	struct spi_controller *ctlr;
1223	struct zynqmp_qspi *xqspi;
1224	struct device *dev = &pdev->dev;
1225	struct device_node *np = dev->of_node;
1226	u32 num_cs;
1227	const struct qspi_platform_data *p_data;
1228
1229	ctlr = spi_alloc_master(&pdev->dev, sizeof(*xqspi));
1230	if (!ctlr)
1231		return -ENOMEM;
1232
1233	xqspi = spi_controller_get_devdata(ctlr);
1234	xqspi->dev = dev;
1235	xqspi->ctlr = ctlr;
1236	platform_set_drvdata(pdev, xqspi);
1237
1238	p_data = of_device_get_match_data(&pdev->dev);
1239	if (p_data && (p_data->quirks & QSPI_QUIRK_HAS_TAPDELAY))
1240		xqspi->has_tapdelay = true;
1241
1242	xqspi->regs = devm_platform_ioremap_resource(pdev, 0);
1243	if (IS_ERR(xqspi->regs)) {
1244		ret = PTR_ERR(xqspi->regs);
1245		goto remove_master;
1246	}
1247
 
1248	xqspi->pclk = devm_clk_get(&pdev->dev, "pclk");
1249	if (IS_ERR(xqspi->pclk)) {
1250		dev_err(dev, "pclk clock not found.\n");
1251		ret = PTR_ERR(xqspi->pclk);
1252		goto remove_master;
1253	}
1254
1255	xqspi->refclk = devm_clk_get(&pdev->dev, "ref_clk");
1256	if (IS_ERR(xqspi->refclk)) {
1257		dev_err(dev, "ref_clk clock not found.\n");
1258		ret = PTR_ERR(xqspi->refclk);
1259		goto remove_master;
1260	}
1261
1262	ret = clk_prepare_enable(xqspi->pclk);
1263	if (ret) {
1264		dev_err(dev, "Unable to enable APB clock.\n");
1265		goto remove_master;
1266	}
1267
 
 
 
 
 
 
 
1268	ret = clk_prepare_enable(xqspi->refclk);
1269	if (ret) {
1270		dev_err(dev, "Unable to enable device clock.\n");
1271		goto clk_dis_pclk;
1272	}
1273
1274	init_completion(&xqspi->data_completion);
1275
1276	mutex_init(&xqspi->op_lock);
1277
1278	pm_runtime_use_autosuspend(&pdev->dev);
1279	pm_runtime_set_autosuspend_delay(&pdev->dev, SPI_AUTOSUSPEND_TIMEOUT);
1280	pm_runtime_set_active(&pdev->dev);
1281	pm_runtime_enable(&pdev->dev);
1282
1283	ret = pm_runtime_get_sync(&pdev->dev);
1284	if (ret < 0) {
1285		dev_err(&pdev->dev, "Failed to pm_runtime_get_sync: %d\n", ret);
1286		goto clk_dis_all;
1287	}
1288
1289	ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_RX_DUAL | SPI_RX_QUAD |
1290		SPI_TX_DUAL | SPI_TX_QUAD;
1291	ctlr->max_speed_hz = clk_get_rate(xqspi->refclk) / 2;
1292	xqspi->speed_hz = ctlr->max_speed_hz;
1293
1294	/* QSPI controller initializations */
1295	zynqmp_qspi_init_hw(xqspi);
1296
 
 
1297	xqspi->irq = platform_get_irq(pdev, 0);
1298	if (xqspi->irq <= 0) {
1299		ret = -ENXIO;
1300		goto clk_dis_all;
1301	}
1302	ret = devm_request_irq(&pdev->dev, xqspi->irq, zynqmp_qspi_irq,
1303			       0, pdev->name, xqspi);
1304	if (ret != 0) {
1305		ret = -ENXIO;
1306		dev_err(dev, "request_irq failed\n");
1307		goto clk_dis_all;
1308	}
1309
1310	ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(44));
1311	if (ret)
1312		goto clk_dis_all;
1313
1314	ret = of_property_read_u32(np, "num-cs", &num_cs);
1315	if (ret < 0) {
1316		ctlr->num_chipselect = GQSPI_DEFAULT_NUM_CS;
1317	} else if (num_cs > GQSPI_MAX_NUM_CS) {
1318		ret = -EINVAL;
1319		dev_err(&pdev->dev, "only %d chip selects are available\n",
1320			GQSPI_MAX_NUM_CS);
1321		goto clk_dis_all;
1322	} else {
1323		ctlr->num_chipselect = num_cs;
1324	}
1325
1326	ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
1327	ctlr->mem_ops = &zynqmp_qspi_mem_ops;
1328	ctlr->setup = zynqmp_qspi_setup_op;
1329	ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
1330	ctlr->dev.of_node = np;
1331	ctlr->auto_runtime_pm = true;
1332
1333	ret = devm_spi_register_controller(&pdev->dev, ctlr);
1334	if (ret) {
1335		dev_err(&pdev->dev, "spi_register_controller failed\n");
1336		goto clk_dis_all;
1337	}
1338
1339	pm_runtime_mark_last_busy(&pdev->dev);
1340	pm_runtime_put_autosuspend(&pdev->dev);
1341
1342	return 0;
1343
1344clk_dis_all:
1345	pm_runtime_put_sync(&pdev->dev);
1346	pm_runtime_set_suspended(&pdev->dev);
1347	pm_runtime_disable(&pdev->dev);
1348	clk_disable_unprepare(xqspi->refclk);
1349clk_dis_pclk:
1350	clk_disable_unprepare(xqspi->pclk);
1351remove_master:
1352	spi_controller_put(ctlr);
1353
1354	return ret;
1355}
1356
1357/**
1358 * zynqmp_qspi_remove - Remove method for the QSPI driver
1359 * @pdev:	Pointer to the platform_device structure
1360 *
1361 * This function is called if a device is physically removed from the system or
1362 * if the driver module is being unloaded. It frees all resources allocated to
1363 * the device.
1364 *
1365 * Return:	0 Always
1366 */
1367static int zynqmp_qspi_remove(struct platform_device *pdev)
1368{
1369	struct zynqmp_qspi *xqspi = platform_get_drvdata(pdev);
 
1370
1371	zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, 0x0);
1372	clk_disable_unprepare(xqspi->refclk);
1373	clk_disable_unprepare(xqspi->pclk);
1374	pm_runtime_set_suspended(&pdev->dev);
1375	pm_runtime_disable(&pdev->dev);
1376
 
 
1377	return 0;
1378}
 
 
 
 
 
1379
1380MODULE_DEVICE_TABLE(of, zynqmp_qspi_of_match);
1381
1382static struct platform_driver zynqmp_qspi_driver = {
1383	.probe = zynqmp_qspi_probe,
1384	.remove = zynqmp_qspi_remove,
1385	.driver = {
1386		.name = "zynqmp-qspi",
1387		.of_match_table = zynqmp_qspi_of_match,
1388		.pm = &zynqmp_qspi_dev_pm_ops,
1389	},
1390};
1391
1392module_platform_driver(zynqmp_qspi_driver);
1393
1394MODULE_AUTHOR("Xilinx, Inc.");
1395MODULE_DESCRIPTION("Xilinx Zynqmp QSPI driver");
1396MODULE_LICENSE("GPL");
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Xilinx Zynq UltraScale+ MPSoC Quad-SPI (QSPI) controller driver
   4 * (master mode only)
   5 *
   6 * Copyright (C) 2009 - 2015 Xilinx, Inc.
   7 */
   8
   9#include <linux/clk.h>
  10#include <linux/delay.h>
  11#include <linux/dma-mapping.h>
  12#include <linux/dmaengine.h>
  13#include <linux/firmware/xlnx-zynqmp.h>
  14#include <linux/interrupt.h>
  15#include <linux/io.h>
  16#include <linux/module.h>
  17#include <linux/of_irq.h>
  18#include <linux/of_address.h>
 
  19#include <linux/platform_device.h>
  20#include <linux/pm_runtime.h>
  21#include <linux/spi/spi.h>
  22#include <linux/spinlock.h>
  23#include <linux/workqueue.h>
 
  24
  25/* Generic QSPI register offsets */
  26#define GQSPI_CONFIG_OFST		0x00000100
  27#define GQSPI_ISR_OFST			0x00000104
  28#define GQSPI_IDR_OFST			0x0000010C
  29#define GQSPI_IER_OFST			0x00000108
  30#define GQSPI_IMASK_OFST		0x00000110
  31#define GQSPI_EN_OFST			0x00000114
  32#define GQSPI_TXD_OFST			0x0000011C
  33#define GQSPI_RXD_OFST			0x00000120
  34#define GQSPI_TX_THRESHOLD_OFST		0x00000128
  35#define GQSPI_RX_THRESHOLD_OFST		0x0000012C
 
  36#define GQSPI_LPBK_DLY_ADJ_OFST		0x00000138
  37#define GQSPI_GEN_FIFO_OFST		0x00000140
  38#define GQSPI_SEL_OFST			0x00000144
  39#define GQSPI_GF_THRESHOLD_OFST		0x00000150
  40#define GQSPI_FIFO_CTRL_OFST		0x0000014C
  41#define GQSPI_QSPIDMA_DST_CTRL_OFST	0x0000080C
  42#define GQSPI_QSPIDMA_DST_SIZE_OFST	0x00000804
  43#define GQSPI_QSPIDMA_DST_STS_OFST	0x00000808
  44#define GQSPI_QSPIDMA_DST_I_STS_OFST	0x00000814
  45#define GQSPI_QSPIDMA_DST_I_EN_OFST	0x00000818
  46#define GQSPI_QSPIDMA_DST_I_DIS_OFST	0x0000081C
  47#define GQSPI_QSPIDMA_DST_I_MASK_OFST	0x00000820
  48#define GQSPI_QSPIDMA_DST_ADDR_OFST	0x00000800
  49#define GQSPI_QSPIDMA_DST_ADDR_MSB_OFST 0x00000828
 
  50
  51/* GQSPI register bit masks */
  52#define GQSPI_SEL_MASK				0x00000001
  53#define GQSPI_EN_MASK				0x00000001
  54#define GQSPI_LPBK_DLY_ADJ_USE_LPBK_MASK	0x00000020
  55#define GQSPI_ISR_WR_TO_CLR_MASK		0x00000002
  56#define GQSPI_IDR_ALL_MASK			0x00000FBE
  57#define GQSPI_CFG_MODE_EN_MASK			0xC0000000
  58#define GQSPI_CFG_GEN_FIFO_START_MODE_MASK	0x20000000
  59#define GQSPI_CFG_ENDIAN_MASK			0x04000000
  60#define GQSPI_CFG_EN_POLL_TO_MASK		0x00100000
  61#define GQSPI_CFG_WP_HOLD_MASK			0x00080000
  62#define GQSPI_CFG_BAUD_RATE_DIV_MASK		0x00000038
  63#define GQSPI_CFG_CLK_PHA_MASK			0x00000004
  64#define GQSPI_CFG_CLK_POL_MASK			0x00000002
  65#define GQSPI_CFG_START_GEN_FIFO_MASK		0x10000000
  66#define GQSPI_GENFIFO_IMM_DATA_MASK		0x000000FF
  67#define GQSPI_GENFIFO_DATA_XFER			0x00000100
  68#define GQSPI_GENFIFO_EXP			0x00000200
  69#define GQSPI_GENFIFO_MODE_SPI			0x00000400
  70#define GQSPI_GENFIFO_MODE_DUALSPI		0x00000800
  71#define GQSPI_GENFIFO_MODE_QUADSPI		0x00000C00
  72#define GQSPI_GENFIFO_MODE_MASK			0x00000C00
  73#define GQSPI_GENFIFO_CS_LOWER			0x00001000
  74#define GQSPI_GENFIFO_CS_UPPER			0x00002000
  75#define GQSPI_GENFIFO_BUS_LOWER			0x00004000
  76#define GQSPI_GENFIFO_BUS_UPPER			0x00008000
  77#define GQSPI_GENFIFO_BUS_BOTH			0x0000C000
  78#define GQSPI_GENFIFO_BUS_MASK			0x0000C000
  79#define GQSPI_GENFIFO_TX			0x00010000
  80#define GQSPI_GENFIFO_RX			0x00020000
  81#define GQSPI_GENFIFO_STRIPE			0x00040000
  82#define GQSPI_GENFIFO_POLL			0x00080000
  83#define GQSPI_GENFIFO_EXP_START			0x00000100
  84#define GQSPI_FIFO_CTRL_RST_RX_FIFO_MASK	0x00000004
  85#define GQSPI_FIFO_CTRL_RST_TX_FIFO_MASK	0x00000002
  86#define GQSPI_FIFO_CTRL_RST_GEN_FIFO_MASK	0x00000001
  87#define GQSPI_ISR_RXEMPTY_MASK			0x00000800
  88#define GQSPI_ISR_GENFIFOFULL_MASK		0x00000400
  89#define GQSPI_ISR_GENFIFONOT_FULL_MASK		0x00000200
  90#define GQSPI_ISR_TXEMPTY_MASK			0x00000100
  91#define GQSPI_ISR_GENFIFOEMPTY_MASK		0x00000080
  92#define GQSPI_ISR_RXFULL_MASK			0x00000020
  93#define GQSPI_ISR_RXNEMPTY_MASK			0x00000010
  94#define GQSPI_ISR_TXFULL_MASK			0x00000008
  95#define GQSPI_ISR_TXNOT_FULL_MASK		0x00000004
  96#define GQSPI_ISR_POLL_TIME_EXPIRE_MASK		0x00000002
  97#define GQSPI_IER_TXNOT_FULL_MASK		0x00000004
  98#define GQSPI_IER_RXEMPTY_MASK			0x00000800
  99#define GQSPI_IER_POLL_TIME_EXPIRE_MASK		0x00000002
 100#define GQSPI_IER_RXNEMPTY_MASK			0x00000010
 101#define GQSPI_IER_GENFIFOEMPTY_MASK		0x00000080
 102#define GQSPI_IER_TXEMPTY_MASK			0x00000100
 103#define GQSPI_QSPIDMA_DST_INTR_ALL_MASK		0x000000FE
 104#define GQSPI_QSPIDMA_DST_STS_WTC		0x0000E000
 105#define GQSPI_CFG_MODE_EN_DMA_MASK		0x80000000
 106#define GQSPI_ISR_IDR_MASK			0x00000994
 107#define GQSPI_QSPIDMA_DST_I_EN_DONE_MASK	0x00000002
 108#define GQSPI_QSPIDMA_DST_I_STS_DONE_MASK	0x00000002
 109#define GQSPI_IRQ_MASK				0x00000980
 110
 111#define GQSPI_CFG_BAUD_RATE_DIV_SHIFT		3
 112#define GQSPI_GENFIFO_CS_SETUP			0x4
 113#define GQSPI_GENFIFO_CS_HOLD			0x3
 114#define GQSPI_TXD_DEPTH				64
 115#define GQSPI_RX_FIFO_THRESHOLD			32
 116#define GQSPI_RX_FIFO_FILL	(GQSPI_RX_FIFO_THRESHOLD * 4)
 117#define GQSPI_TX_FIFO_THRESHOLD_RESET_VAL	32
 118#define GQSPI_TX_FIFO_FILL	(GQSPI_TXD_DEPTH -\
 119				GQSPI_TX_FIFO_THRESHOLD_RESET_VAL)
 120#define GQSPI_GEN_FIFO_THRESHOLD_RESET_VAL	0X10
 121#define GQSPI_QSPIDMA_DST_CTRL_RESET_VAL	0x803FFA00
 122#define GQSPI_SELECT_FLASH_CS_LOWER		0x1
 123#define GQSPI_SELECT_FLASH_CS_UPPER		0x2
 124#define GQSPI_SELECT_FLASH_CS_BOTH		0x3
 125#define GQSPI_SELECT_FLASH_BUS_LOWER		0x1
 126#define GQSPI_SELECT_FLASH_BUS_UPPER		0x2
 127#define GQSPI_SELECT_FLASH_BUS_BOTH		0x3
 128#define GQSPI_BAUD_DIV_MAX	7	/* Baud rate divisor maximum */
 129#define GQSPI_BAUD_DIV_SHIFT	2	/* Baud rate divisor shift */
 130#define GQSPI_SELECT_MODE_SPI		0x1
 131#define GQSPI_SELECT_MODE_DUALSPI	0x2
 132#define GQSPI_SELECT_MODE_QUADSPI	0x4
 133#define GQSPI_DMA_UNALIGN		0x3
 134#define GQSPI_DEFAULT_NUM_CS	1	/* Default number of chip selects */
 135
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 136#define SPI_AUTOSUSPEND_TIMEOUT		3000
 137enum mode_type {GQSPI_MODE_IO, GQSPI_MODE_DMA};
 138
 139/**
 
 
 
 
 
 
 
 
 140 * struct zynqmp_qspi - Defines qspi driver instance
 
 141 * @regs:		Virtual address of the QSPI controller registers
 142 * @refclk:		Pointer to the peripheral clock
 143 * @pclk:		Pointer to the APB clock
 144 * @irq:		IRQ number
 145 * @dev:		Pointer to struct device
 146 * @txbuf:		Pointer to the TX buffer
 147 * @rxbuf:		Pointer to the RX buffer
 148 * @bytes_to_transfer:	Number of bytes left to transfer
 149 * @bytes_to_receive:	Number of bytes left to receive
 150 * @genfifocs:		Used for chip select
 151 * @genfifobus:		Used to select the upper or lower bus
 152 * @dma_rx_bytes:	Remaining bytes to receive by DMA mode
 153 * @dma_addr:		DMA address after mapping the kernel buffer
 154 * @genfifoentry:	Used for storing the genfifoentry instruction.
 155 * @mode:		Defines the mode in which QSPI is operating
 
 
 
 
 156 */
 157struct zynqmp_qspi {
 
 158	void __iomem *regs;
 159	struct clk *refclk;
 160	struct clk *pclk;
 161	int irq;
 162	struct device *dev;
 163	const void *txbuf;
 164	void *rxbuf;
 165	int bytes_to_transfer;
 166	int bytes_to_receive;
 167	u32 genfifocs;
 168	u32 genfifobus;
 169	u32 dma_rx_bytes;
 170	dma_addr_t dma_addr;
 171	u32 genfifoentry;
 172	enum mode_type mode;
 
 
 
 
 173};
 174
 175/**
 176 * zynqmp_gqspi_read:	For GQSPI controller read operation
 177 * @xqspi:	Pointer to the zynqmp_qspi structure
 178 * @offset:	Offset from where to read
 
 179 */
 180static u32 zynqmp_gqspi_read(struct zynqmp_qspi *xqspi, u32 offset)
 181{
 182	return readl_relaxed(xqspi->regs + offset);
 183}
 184
 185/**
 186 * zynqmp_gqspi_write:	For GQSPI controller write operation
 187 * @xqspi:	Pointer to the zynqmp_qspi structure
 188 * @offset:	Offset where to write
 189 * @val:	Value to be written
 190 */
 191static inline void zynqmp_gqspi_write(struct zynqmp_qspi *xqspi, u32 offset,
 192				      u32 val)
 193{
 194	writel_relaxed(val, (xqspi->regs + offset));
 195}
 196
 197/**
 198 * zynqmp_gqspi_selectslave:	For selection of slave device
 199 * @instanceptr:	Pointer to the zynqmp_qspi structure
 200 * @slavecs:	For chip select
 201 * @slavebus:	To check which bus is selected- upper or lower
 202 */
 203static void zynqmp_gqspi_selectslave(struct zynqmp_qspi *instanceptr,
 204				     u8 slavecs, u8 slavebus)
 205{
 206	/*
 207	 * Bus and CS lines selected here will be updated in the instance and
 208	 * used for subsequent GENFIFO entries during transfer.
 209	 */
 210
 211	/* Choose slave select line */
 212	switch (slavecs) {
 213	case GQSPI_SELECT_FLASH_CS_BOTH:
 214		instanceptr->genfifocs = GQSPI_GENFIFO_CS_LOWER |
 215			GQSPI_GENFIFO_CS_UPPER;
 216		break;
 217	case GQSPI_SELECT_FLASH_CS_UPPER:
 218		instanceptr->genfifocs = GQSPI_GENFIFO_CS_UPPER;
 219		break;
 220	case GQSPI_SELECT_FLASH_CS_LOWER:
 221		instanceptr->genfifocs = GQSPI_GENFIFO_CS_LOWER;
 222		break;
 223	default:
 224		dev_warn(instanceptr->dev, "Invalid slave select\n");
 225	}
 226
 227	/* Choose the bus */
 228	switch (slavebus) {
 229	case GQSPI_SELECT_FLASH_BUS_BOTH:
 230		instanceptr->genfifobus = GQSPI_GENFIFO_BUS_LOWER |
 231			GQSPI_GENFIFO_BUS_UPPER;
 232		break;
 233	case GQSPI_SELECT_FLASH_BUS_UPPER:
 234		instanceptr->genfifobus = GQSPI_GENFIFO_BUS_UPPER;
 235		break;
 236	case GQSPI_SELECT_FLASH_BUS_LOWER:
 237		instanceptr->genfifobus = GQSPI_GENFIFO_BUS_LOWER;
 238		break;
 239	default:
 240		dev_warn(instanceptr->dev, "Invalid slave bus\n");
 241	}
 242}
 243
 244/**
 245 * zynqmp_qspi_init_hw:	Initialize the hardware
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 246 * @xqspi:	Pointer to the zynqmp_qspi structure
 247 *
 248 * The default settings of the QSPI controller's configurable parameters on
 249 * reset are
 250 *	- Master mode
 251 *	- TX threshold set to 1
 252 *	- RX threshold set to 1
 253 *	- Flash memory interface mode enabled
 254 * This function performs the following actions
 255 *	- Disable and clear all the interrupts
 256 *	- Enable manual slave select
 257 *	- Enable manual start
 258 *	- Deselect all the chip select lines
 259 *	- Set the little endian mode of TX FIFO and
 
 
 260 *	- Enable the QSPI controller
 261 */
 262static void zynqmp_qspi_init_hw(struct zynqmp_qspi *xqspi)
 263{
 264	u32 config_reg;
 
 265
 266	/* Select the GQSPI mode */
 267	zynqmp_gqspi_write(xqspi, GQSPI_SEL_OFST, GQSPI_SEL_MASK);
 268	/* Clear and disable interrupts */
 269	zynqmp_gqspi_write(xqspi, GQSPI_ISR_OFST,
 270			   zynqmp_gqspi_read(xqspi, GQSPI_ISR_OFST) |
 271			   GQSPI_ISR_WR_TO_CLR_MASK);
 272	/* Clear the DMA STS */
 273	zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_I_STS_OFST,
 274			   zynqmp_gqspi_read(xqspi,
 275					     GQSPI_QSPIDMA_DST_I_STS_OFST));
 276	zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_STS_OFST,
 277			   zynqmp_gqspi_read(xqspi,
 278					     GQSPI_QSPIDMA_DST_STS_OFST) |
 279					     GQSPI_QSPIDMA_DST_STS_WTC);
 280	zynqmp_gqspi_write(xqspi, GQSPI_IDR_OFST, GQSPI_IDR_ALL_MASK);
 281	zynqmp_gqspi_write(xqspi,
 282			   GQSPI_QSPIDMA_DST_I_DIS_OFST,
 283			   GQSPI_QSPIDMA_DST_INTR_ALL_MASK);
 284	/* Disable the GQSPI */
 285	zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, 0x0);
 286	config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST);
 287	config_reg &= ~GQSPI_CFG_MODE_EN_MASK;
 288	/* Manual start */
 289	config_reg |= GQSPI_CFG_GEN_FIFO_START_MODE_MASK;
 290	/* Little endian by default */
 291	config_reg &= ~GQSPI_CFG_ENDIAN_MASK;
 292	/* Disable poll time out */
 293	config_reg &= ~GQSPI_CFG_EN_POLL_TO_MASK;
 294	/* Set hold bit */
 295	config_reg |= GQSPI_CFG_WP_HOLD_MASK;
 296	/* Clear pre-scalar by default */
 297	config_reg &= ~GQSPI_CFG_BAUD_RATE_DIV_MASK;
 298	/* CPHA 0 */
 299	config_reg &= ~GQSPI_CFG_CLK_PHA_MASK;
 300	/* CPOL 0 */
 301	config_reg &= ~GQSPI_CFG_CLK_POL_MASK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 302	zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg);
 303
 
 
 
 304	/* Clear the TX and RX FIFO */
 305	zynqmp_gqspi_write(xqspi, GQSPI_FIFO_CTRL_OFST,
 306			   GQSPI_FIFO_CTRL_RST_RX_FIFO_MASK |
 307			   GQSPI_FIFO_CTRL_RST_TX_FIFO_MASK |
 308			   GQSPI_FIFO_CTRL_RST_GEN_FIFO_MASK);
 309	/* Set by default to allow for high frequencies */
 310	zynqmp_gqspi_write(xqspi, GQSPI_LPBK_DLY_ADJ_OFST,
 311			   zynqmp_gqspi_read(xqspi, GQSPI_LPBK_DLY_ADJ_OFST) |
 312			   GQSPI_LPBK_DLY_ADJ_USE_LPBK_MASK);
 313	/* Reset thresholds */
 314	zynqmp_gqspi_write(xqspi, GQSPI_TX_THRESHOLD_OFST,
 315			   GQSPI_TX_FIFO_THRESHOLD_RESET_VAL);
 316	zynqmp_gqspi_write(xqspi, GQSPI_RX_THRESHOLD_OFST,
 317			   GQSPI_RX_FIFO_THRESHOLD);
 318	zynqmp_gqspi_write(xqspi, GQSPI_GF_THRESHOLD_OFST,
 319			   GQSPI_GEN_FIFO_THRESHOLD_RESET_VAL);
 320	zynqmp_gqspi_selectslave(xqspi,
 321				 GQSPI_SELECT_FLASH_CS_LOWER,
 322				 GQSPI_SELECT_FLASH_BUS_LOWER);
 323	/* Initialize DMA */
 324	zynqmp_gqspi_write(xqspi,
 325			GQSPI_QSPIDMA_DST_CTRL_OFST,
 326			GQSPI_QSPIDMA_DST_CTRL_RESET_VAL);
 327
 328	/* Enable the GQSPI */
 329	zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, GQSPI_EN_MASK);
 330}
 331
 332/**
 333 * zynqmp_qspi_copy_read_data:	Copy data to RX buffer
 334 * @xqspi:	Pointer to the zynqmp_qspi structure
 335 * @data:	The variable where data is stored
 336 * @size:	Number of bytes to be copied from data to RX buffer
 337 */
 338static void zynqmp_qspi_copy_read_data(struct zynqmp_qspi *xqspi,
 339				       ulong data, u8 size)
 340{
 341	memcpy(xqspi->rxbuf, &data, size);
 342	xqspi->rxbuf += size;
 343	xqspi->bytes_to_receive -= size;
 344}
 345
 346/**
 347 * zynqmp_prepare_transfer_hardware:	Prepares hardware for transfer.
 348 * @master:	Pointer to the spi_master structure which provides
 349 *		information about the controller.
 350 *
 351 * This function enables SPI master controller.
 352 *
 353 * Return:	0 on success; error value otherwise
 354 */
 355static int zynqmp_prepare_transfer_hardware(struct spi_master *master)
 356{
 357	struct zynqmp_qspi *xqspi = spi_master_get_devdata(master);
 358
 359	zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, GQSPI_EN_MASK);
 360	return 0;
 361}
 362
 363/**
 364 * zynqmp_unprepare_transfer_hardware:	Relaxes hardware after transfer
 365 * @master:	Pointer to the spi_master structure which provides
 366 *		information about the controller.
 367 *
 368 * This function disables the SPI master controller.
 369 *
 370 * Return:	Always 0
 371 */
 372static int zynqmp_unprepare_transfer_hardware(struct spi_master *master)
 373{
 374	struct zynqmp_qspi *xqspi = spi_master_get_devdata(master);
 375
 376	zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, 0x0);
 377	return 0;
 378}
 379
 380/**
 381 * zynqmp_qspi_chipselect:	Select or deselect the chip select line
 382 * @qspi:	Pointer to the spi_device structure
 383 * @is_high:	Select(0) or deselect (1) the chip select line
 384 */
 385static void zynqmp_qspi_chipselect(struct spi_device *qspi, bool is_high)
 386{
 387	struct zynqmp_qspi *xqspi = spi_master_get_devdata(qspi->master);
 388	ulong timeout;
 389	u32 genfifoentry = 0x0, statusreg;
 390
 391	genfifoentry |= GQSPI_GENFIFO_MODE_SPI;
 392	genfifoentry |= xqspi->genfifobus;
 393
 394	if (!is_high) {
 
 
 
 
 
 
 
 
 395		genfifoentry |= xqspi->genfifocs;
 396		genfifoentry |= GQSPI_GENFIFO_CS_SETUP;
 397	} else {
 398		genfifoentry |= GQSPI_GENFIFO_CS_HOLD;
 399	}
 400
 401	zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, genfifoentry);
 402
 403	/* Manually start the generic FIFO command */
 404	zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
 405			zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST) |
 406			GQSPI_CFG_START_GEN_FIFO_MASK);
 407
 408	timeout = jiffies + msecs_to_jiffies(1000);
 409
 410	/* Wait until the generic FIFO command is empty */
 411	do {
 412		statusreg = zynqmp_gqspi_read(xqspi, GQSPI_ISR_OFST);
 413
 414		if ((statusreg & GQSPI_ISR_GENFIFOEMPTY_MASK) &&
 415			(statusreg & GQSPI_ISR_TXEMPTY_MASK))
 416			break;
 417		else
 418			cpu_relax();
 419	} while (!time_after_eq(jiffies, timeout));
 420
 421	if (time_after_eq(jiffies, timeout))
 422		dev_err(xqspi->dev, "Chip select timed out\n");
 423}
 424
 425/**
 426 * zynqmp_qspi_setup_transfer:	Configure QSPI controller for specified
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 427 *				transfer
 
 428 * @qspi:	Pointer to the spi_device structure
 429 * @transfer:	Pointer to the spi_transfer structure which provides
 430 *		information about next transfer setup parameters
 431 *
 432 * Sets the operational mode of QSPI controller for the next QSPI transfer and
 433 * sets the requested clock frequency.
 434 *
 435 * Return:	Always 0
 436 *
 437 * Note:
 438 *	If the requested frequency is not an exact match with what can be
 439 *	obtained using the pre-scalar value, the driver sets the clock
 440 *	frequency which is lower than the requested frequency (maximum lower)
 441 *	for the transfer.
 442 *
 443 *	If the requested frequency is higher or lower than that is supported
 444 *	by the QSPI controller the driver will set the highest or lowest
 445 *	frequency supported by controller.
 446 */
 447static int zynqmp_qspi_setup_transfer(struct spi_device *qspi,
 448				      struct spi_transfer *transfer)
 449{
 450	struct zynqmp_qspi *xqspi = spi_master_get_devdata(qspi->master);
 451	ulong clk_rate;
 452	u32 config_reg, req_hz, baud_rate_val = 0;
 453
 454	if (transfer)
 455		req_hz = transfer->speed_hz;
 456	else
 457		req_hz = qspi->max_speed_hz;
 458
 459	/* Set the clock frequency */
 460	/* If req_hz == 0, default to lowest speed */
 461	clk_rate = clk_get_rate(xqspi->refclk);
 462
 463	while ((baud_rate_val < GQSPI_BAUD_DIV_MAX) &&
 464	       (clk_rate /
 465		(GQSPI_BAUD_DIV_SHIFT << baud_rate_val)) > req_hz)
 466		baud_rate_val++;
 
 
 
 
 
 467
 468	config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST);
 469
 470	/* Set the QSPI clock phase and clock polarity */
 471	config_reg &= (~GQSPI_CFG_CLK_PHA_MASK) & (~GQSPI_CFG_CLK_POL_MASK);
 472
 473	if (qspi->mode & SPI_CPHA)
 474		config_reg |= GQSPI_CFG_CLK_PHA_MASK;
 475	if (qspi->mode & SPI_CPOL)
 476		config_reg |= GQSPI_CFG_CLK_POL_MASK;
 477
 478	config_reg &= ~GQSPI_CFG_BAUD_RATE_DIV_MASK;
 479	config_reg |= (baud_rate_val << GQSPI_CFG_BAUD_RATE_DIV_SHIFT);
 480	zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg);
 481	return 0;
 482}
 483
 484/**
 485 * zynqmp_qspi_setup:	Configure the QSPI controller
 486 * @qspi:	Pointer to the spi_device structure
 487 *
 488 * Sets the operational mode of QSPI controller for the next QSPI transfer,
 489 * baud rate and divisor value to setup the requested qspi clock.
 490 *
 491 * Return:	0 on success; error value otherwise.
 492 */
 493static int zynqmp_qspi_setup(struct spi_device *qspi)
 494{
 495	if (qspi->master->busy)
 
 
 
 496		return -EBUSY;
 
 
 
 497	return 0;
 498}
 499
 500/**
 501 * zynqmp_qspi_filltxfifo:	Fills the TX FIFO as long as there is room in
 502 *				the FIFO or the bytes required to be
 503 *				transmitted.
 504 * @xqspi:	Pointer to the zynqmp_qspi structure
 505 * @size:	Number of bytes to be copied from TX buffer to TX FIFO
 506 */
 507static void zynqmp_qspi_filltxfifo(struct zynqmp_qspi *xqspi, int size)
 508{
 509	u32 count = 0, intermediate;
 510
 511	while ((xqspi->bytes_to_transfer > 0) && (count < size)) {
 512		memcpy(&intermediate, xqspi->txbuf, 4);
 513		zynqmp_gqspi_write(xqspi, GQSPI_TXD_OFST, intermediate);
 514
 515		if (xqspi->bytes_to_transfer >= 4) {
 
 516			xqspi->txbuf += 4;
 517			xqspi->bytes_to_transfer -= 4;
 
 518		} else {
 
 
 519			xqspi->txbuf += xqspi->bytes_to_transfer;
 520			xqspi->bytes_to_transfer = 0;
 
 521		}
 522		count++;
 523	}
 524}
 525
 526/**
 527 * zynqmp_qspi_readrxfifo:	Fills the RX FIFO as long as there is room in
 528 *				the FIFO.
 529 * @xqspi:	Pointer to the zynqmp_qspi structure
 530 * @size:	Number of bytes to be copied from RX buffer to RX FIFO
 531 */
 532static void zynqmp_qspi_readrxfifo(struct zynqmp_qspi *xqspi, u32 size)
 533{
 534	ulong data;
 535	int count = 0;
 536
 537	while ((count < size) && (xqspi->bytes_to_receive > 0)) {
 538		if (xqspi->bytes_to_receive >= 4) {
 539			(*(u32 *) xqspi->rxbuf) =
 540			zynqmp_gqspi_read(xqspi, GQSPI_RXD_OFST);
 541			xqspi->rxbuf += 4;
 542			xqspi->bytes_to_receive -= 4;
 543			count += 4;
 544		} else {
 545			data = zynqmp_gqspi_read(xqspi, GQSPI_RXD_OFST);
 546			count += xqspi->bytes_to_receive;
 547			zynqmp_qspi_copy_read_data(xqspi, data,
 548						   xqspi->bytes_to_receive);
 549			xqspi->bytes_to_receive = 0;
 550		}
 551	}
 552}
 553
 554/**
 555 * zynqmp_process_dma_irq:	Handler for DMA done interrupt of QSPI
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 556 *				controller
 557 * @xqspi:	zynqmp_qspi instance pointer
 558 *
 559 * This function handles DMA interrupt only.
 560 */
 561static void zynqmp_process_dma_irq(struct zynqmp_qspi *xqspi)
 562{
 563	u32 config_reg, genfifoentry;
 564
 565	dma_unmap_single(xqspi->dev, xqspi->dma_addr,
 566				xqspi->dma_rx_bytes, DMA_FROM_DEVICE);
 567	xqspi->rxbuf += xqspi->dma_rx_bytes;
 568	xqspi->bytes_to_receive -= xqspi->dma_rx_bytes;
 569	xqspi->dma_rx_bytes = 0;
 570
 571	/* Disabling the DMA interrupts */
 572	zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_I_DIS_OFST,
 573					GQSPI_QSPIDMA_DST_I_EN_DONE_MASK);
 574
 575	if (xqspi->bytes_to_receive > 0) {
 576		/* Switch to IO mode,for remaining bytes to receive */
 577		config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST);
 578		config_reg &= ~GQSPI_CFG_MODE_EN_MASK;
 579		zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg);
 580
 581		/* Initiate the transfer of remaining bytes */
 582		genfifoentry = xqspi->genfifoentry;
 583		genfifoentry |= xqspi->bytes_to_receive;
 584		zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, genfifoentry);
 585
 586		/* Dummy generic FIFO entry */
 587		zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, 0x0);
 588
 589		/* Manual start */
 590		zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
 591			(zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST) |
 592			GQSPI_CFG_START_GEN_FIFO_MASK));
 
 593
 594		/* Enable the RX interrupts for IO mode */
 595		zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST,
 596				GQSPI_IER_GENFIFOEMPTY_MASK |
 597				GQSPI_IER_RXNEMPTY_MASK |
 598				GQSPI_IER_RXEMPTY_MASK);
 599	}
 600}
 601
 602/**
 603 * zynqmp_qspi_irq:	Interrupt service routine of the QSPI controller
 604 * @irq:	IRQ number
 605 * @dev_id:	Pointer to the xqspi structure
 606 *
 607 * This function handles TX empty only.
 608 * On TX empty interrupt this function reads the received data from RX FIFO
 609 * and fills the TX FIFO if there is any data remaining to be transferred.
 610 *
 611 * Return:	IRQ_HANDLED when interrupt is handled
 612 *		IRQ_NONE otherwise.
 613 */
 614static irqreturn_t zynqmp_qspi_irq(int irq, void *dev_id)
 615{
 616	struct spi_master *master = dev_id;
 617	struct zynqmp_qspi *xqspi = spi_master_get_devdata(master);
 618	int ret = IRQ_NONE;
 619	u32 status, mask, dma_status = 0;
 620
 621	status = zynqmp_gqspi_read(xqspi, GQSPI_ISR_OFST);
 622	zynqmp_gqspi_write(xqspi, GQSPI_ISR_OFST, status);
 623	mask = (status & ~(zynqmp_gqspi_read(xqspi, GQSPI_IMASK_OFST)));
 624
 625	/* Read and clear DMA status */
 626	if (xqspi->mode == GQSPI_MODE_DMA) {
 627		dma_status =
 628			zynqmp_gqspi_read(xqspi, GQSPI_QSPIDMA_DST_I_STS_OFST);
 629		zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_I_STS_OFST,
 630								dma_status);
 631	}
 632
 633	if (mask & GQSPI_ISR_TXNOT_FULL_MASK) {
 634		zynqmp_qspi_filltxfifo(xqspi, GQSPI_TX_FIFO_FILL);
 635		ret = IRQ_HANDLED;
 636	}
 637
 638	if (dma_status & GQSPI_QSPIDMA_DST_I_STS_DONE_MASK) {
 639		zynqmp_process_dma_irq(xqspi);
 640		ret = IRQ_HANDLED;
 641	} else if (!(mask & GQSPI_IER_RXEMPTY_MASK) &&
 642			(mask & GQSPI_IER_GENFIFOEMPTY_MASK)) {
 643		zynqmp_qspi_readrxfifo(xqspi, GQSPI_RX_FIFO_FILL);
 644		ret = IRQ_HANDLED;
 645	}
 646
 647	if ((xqspi->bytes_to_receive == 0) && (xqspi->bytes_to_transfer == 0)
 648			&& ((status & GQSPI_IRQ_MASK) == GQSPI_IRQ_MASK)) {
 649		zynqmp_gqspi_write(xqspi, GQSPI_IDR_OFST, GQSPI_ISR_IDR_MASK);
 650		spi_finalize_current_transfer(master);
 651		ret = IRQ_HANDLED;
 652	}
 653	return ret;
 654}
 655
 656/**
 657 * zynqmp_qspi_selectspimode:	Selects SPI mode - x1 or x2 or x4.
 658 * @xqspi:	xqspi is a pointer to the GQSPI instance
 659 * @spimode:	spimode - SPI or DUAL or QUAD.
 660 * Return:	Mask to set desired SPI mode in GENFIFO entry.
 661 */
 662static inline u32 zynqmp_qspi_selectspimode(struct zynqmp_qspi *xqspi,
 663						u8 spimode)
 664{
 665	u32 mask = 0;
 666
 667	switch (spimode) {
 668	case GQSPI_SELECT_MODE_DUALSPI:
 669		mask = GQSPI_GENFIFO_MODE_DUALSPI;
 670		break;
 671	case GQSPI_SELECT_MODE_QUADSPI:
 672		mask = GQSPI_GENFIFO_MODE_QUADSPI;
 673		break;
 674	case GQSPI_SELECT_MODE_SPI:
 675		mask = GQSPI_GENFIFO_MODE_SPI;
 676		break;
 677	default:
 678		dev_warn(xqspi->dev, "Invalid SPI mode\n");
 679	}
 680
 681	return mask;
 682}
 683
 684/**
 685 * zynq_qspi_setuprxdma:	This function sets up the RX DMA operation
 686 * @xqspi:	xqspi is a pointer to the GQSPI instance.
 
 
 687 */
 688static void zynq_qspi_setuprxdma(struct zynqmp_qspi *xqspi)
 689{
 690	u32 rx_bytes, rx_rem, config_reg;
 691	dma_addr_t addr;
 692	u64 dma_align =  (u64)(uintptr_t)xqspi->rxbuf;
 693
 694	if ((xqspi->bytes_to_receive < 8) ||
 695		((dma_align & GQSPI_DMA_UNALIGN) != 0x0)) {
 696		/* Setting to IO mode */
 697		config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST);
 698		config_reg &= ~GQSPI_CFG_MODE_EN_MASK;
 699		zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg);
 700		xqspi->mode = GQSPI_MODE_IO;
 701		xqspi->dma_rx_bytes = 0;
 702		return;
 703	}
 704
 705	rx_rem = xqspi->bytes_to_receive % 4;
 706	rx_bytes = (xqspi->bytes_to_receive - rx_rem);
 707
 708	addr = dma_map_single(xqspi->dev, (void *)xqspi->rxbuf,
 709						rx_bytes, DMA_FROM_DEVICE);
 710	if (dma_mapping_error(xqspi->dev, addr))
 711		dev_err(xqspi->dev, "ERR:rxdma:memory not mapped\n");
 
 
 712
 713	xqspi->dma_rx_bytes = rx_bytes;
 714	xqspi->dma_addr = addr;
 715	zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_ADDR_OFST,
 716				(u32)(addr & 0xffffffff));
 717	addr = ((addr >> 16) >> 16);
 718	zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_ADDR_MSB_OFST,
 719				((u32)addr) & 0xfff);
 720
 721	/* Enabling the DMA mode */
 722	config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST);
 723	config_reg &= ~GQSPI_CFG_MODE_EN_MASK;
 724	config_reg |= GQSPI_CFG_MODE_EN_DMA_MASK;
 725	zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg);
 726
 727	/* Switch to DMA mode */
 728	xqspi->mode = GQSPI_MODE_DMA;
 729
 730	/* Write the number of bytes to transfer */
 731	zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_SIZE_OFST, rx_bytes);
 
 
 732}
 733
 734/**
 735 * zynqmp_qspi_txrxsetup:	This function checks the TX/RX buffers in
 736 *				the transfer and sets up the GENFIFO entries,
 737 *				TX FIFO as required.
 738 * @xqspi:	xqspi is a pointer to the GQSPI instance.
 739 * @transfer:	It is a pointer to the structure containing transfer data.
 740 * @genfifoentry:	genfifoentry is pointer to the variable in which
 741 *			GENFIFO	mask is returned to calling function
 742 */
 743static void zynqmp_qspi_txrxsetup(struct zynqmp_qspi *xqspi,
 744				  struct spi_transfer *transfer,
 745				  u32 *genfifoentry)
 746{
 747	u32 config_reg;
 748
 749	/* Transmit */
 750	if ((xqspi->txbuf != NULL) && (xqspi->rxbuf == NULL)) {
 751		/* Setup data to be TXed */
 752		*genfifoentry &= ~GQSPI_GENFIFO_RX;
 753		*genfifoentry |= GQSPI_GENFIFO_DATA_XFER;
 754		*genfifoentry |= GQSPI_GENFIFO_TX;
 755		*genfifoentry |=
 756			zynqmp_qspi_selectspimode(xqspi, transfer->tx_nbits);
 757		xqspi->bytes_to_transfer = transfer->len;
 758		if (xqspi->mode == GQSPI_MODE_DMA) {
 759			config_reg = zynqmp_gqspi_read(xqspi,
 760							GQSPI_CONFIG_OFST);
 761			config_reg &= ~GQSPI_CFG_MODE_EN_MASK;
 762			zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
 763								config_reg);
 764			xqspi->mode = GQSPI_MODE_IO;
 765		}
 766		zynqmp_qspi_filltxfifo(xqspi, GQSPI_TXD_DEPTH);
 767		/* Discard RX data */
 768		xqspi->bytes_to_receive = 0;
 769	} else if ((xqspi->txbuf == NULL) && (xqspi->rxbuf != NULL)) {
 770		/* Receive */
 771
 772		/* TX auto fill */
 773		*genfifoentry &= ~GQSPI_GENFIFO_TX;
 774		/* Setup RX */
 775		*genfifoentry |= GQSPI_GENFIFO_DATA_XFER;
 776		*genfifoentry |= GQSPI_GENFIFO_RX;
 777		*genfifoentry |=
 778			zynqmp_qspi_selectspimode(xqspi, transfer->rx_nbits);
 779		xqspi->bytes_to_transfer = 0;
 780		xqspi->bytes_to_receive = transfer->len;
 781		zynq_qspi_setuprxdma(xqspi);
 782	}
 783}
 784
 785/**
 786 * zynqmp_qspi_start_transfer:	Initiates the QSPI transfer
 787 * @master:	Pointer to the spi_master structure which provides
 788 *		information about the controller.
 789 * @qspi:	Pointer to the spi_device structure
 790 * @transfer:	Pointer to the spi_transfer structure which provide information
 791 *		about next transfer parameters
 792 *
 793 * This function fills the TX FIFO, starts the QSPI transfer, and waits for the
 794 * transfer to be completed.
 795 *
 796 * Return:	Number of bytes transferred in the last transfer
 797 */
 798static int zynqmp_qspi_start_transfer(struct spi_master *master,
 799				      struct spi_device *qspi,
 800				      struct spi_transfer *transfer)
 801{
 802	struct zynqmp_qspi *xqspi = spi_master_get_devdata(master);
 803	u32 genfifoentry = 0x0, transfer_len;
 804
 805	xqspi->txbuf = transfer->tx_buf;
 806	xqspi->rxbuf = transfer->rx_buf;
 
 
 807
 808	zynqmp_qspi_setup_transfer(qspi, transfer);
 809
 810	genfifoentry |= xqspi->genfifocs;
 811	genfifoentry |= xqspi->genfifobus;
 812
 813	zynqmp_qspi_txrxsetup(xqspi, transfer, &genfifoentry);
 814
 815	if (xqspi->mode == GQSPI_MODE_DMA)
 816		transfer_len = xqspi->dma_rx_bytes;
 817	else
 818		transfer_len = transfer->len;
 819
 820	xqspi->genfifoentry = genfifoentry;
 821	if ((transfer_len) < GQSPI_GENFIFO_IMM_DATA_MASK) {
 822		genfifoentry &= ~GQSPI_GENFIFO_IMM_DATA_MASK;
 823		genfifoentry |= transfer_len;
 824		zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, genfifoentry);
 825	} else {
 826		int tempcount = transfer_len;
 827		u32 exponent = 8;	/* 2^8 = 256 */
 828		u8 imm_data = tempcount & 0xFF;
 829
 830		tempcount &= ~(tempcount & 0xFF);
 831		/* Immediate entry */
 832		if (tempcount != 0) {
 833			/* Exponent entries */
 834			genfifoentry |= GQSPI_GENFIFO_EXP;
 835			while (tempcount != 0) {
 836				if (tempcount & GQSPI_GENFIFO_EXP_START) {
 837					genfifoentry &=
 838					    ~GQSPI_GENFIFO_IMM_DATA_MASK;
 839					genfifoentry |= exponent;
 840					zynqmp_gqspi_write(xqspi,
 841							   GQSPI_GEN_FIFO_OFST,
 842							   genfifoentry);
 843				}
 844				tempcount = tempcount >> 1;
 845				exponent++;
 846			}
 847		}
 848		if (imm_data != 0) {
 849			genfifoentry &= ~GQSPI_GENFIFO_EXP;
 850			genfifoentry &= ~GQSPI_GENFIFO_IMM_DATA_MASK;
 851			genfifoentry |= (u8) (imm_data & 0xFF);
 852			zynqmp_gqspi_write(xqspi,
 853					   GQSPI_GEN_FIFO_OFST, genfifoentry);
 854		}
 855	}
 856
 857	if ((xqspi->mode == GQSPI_MODE_IO) &&
 858			(xqspi->rxbuf != NULL)) {
 859		/* Dummy generic FIFO entry */
 860		zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, 0x0);
 861	}
 862
 863	/* Since we are using manual mode */
 864	zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
 865			   zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST) |
 866			   GQSPI_CFG_START_GEN_FIFO_MASK);
 867
 868	if (xqspi->txbuf != NULL)
 869		/* Enable interrupts for TX */
 870		zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST,
 871				   GQSPI_IER_TXEMPTY_MASK |
 872					GQSPI_IER_GENFIFOEMPTY_MASK |
 873					GQSPI_IER_TXNOT_FULL_MASK);
 874
 875	if (xqspi->rxbuf != NULL) {
 876		/* Enable interrupts for RX */
 877		if (xqspi->mode == GQSPI_MODE_DMA) {
 878			/* Enable DMA interrupts */
 879			zynqmp_gqspi_write(xqspi,
 880					GQSPI_QSPIDMA_DST_I_EN_OFST,
 881					GQSPI_QSPIDMA_DST_I_EN_DONE_MASK);
 882		} else {
 883			zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST,
 884					GQSPI_IER_GENFIFOEMPTY_MASK |
 885					GQSPI_IER_RXNEMPTY_MASK |
 886					GQSPI_IER_RXEMPTY_MASK);
 887		}
 888	}
 889
 890	return transfer->len;
 891}
 892
 893/**
 894 * zynqmp_qspi_suspend:	Suspend method for the QSPI driver
 895 * @dev:	Address of the platform_device structure
 896 *
 897 * This function stops the QSPI driver queue and disables the QSPI controller
 898 *
 899 * Return:	Always 0
 900 */
 901static int __maybe_unused zynqmp_qspi_suspend(struct device *dev)
 902{
 903	struct spi_master *master = dev_get_drvdata(dev);
 
 
 904
 905	spi_master_suspend(master);
 
 
 906
 907	zynqmp_unprepare_transfer_hardware(master);
 908
 909	return 0;
 910}
 911
 912/**
 913 * zynqmp_qspi_resume:	Resume method for the QSPI driver
 914 * @dev:	Address of the platform_device structure
 915 *
 916 * The function starts the QSPI driver queue and initializes the QSPI
 917 * controller
 918 *
 919 * Return:	0 on success; error value otherwise
 920 */
 921static int __maybe_unused zynqmp_qspi_resume(struct device *dev)
 922{
 923	struct spi_master *master = dev_get_drvdata(dev);
 924	struct zynqmp_qspi *xqspi = spi_master_get_devdata(master);
 925	int ret = 0;
 926
 927	ret = clk_enable(xqspi->pclk);
 928	if (ret) {
 929		dev_err(dev, "Cannot enable APB clock.\n");
 930		return ret;
 931	}
 932
 933	ret = clk_enable(xqspi->refclk);
 934	if (ret) {
 935		dev_err(dev, "Cannot enable device clock.\n");
 936		clk_disable(xqspi->pclk);
 937		return ret;
 938	}
 939
 940	spi_master_resume(master);
 941
 942	clk_disable(xqspi->refclk);
 943	clk_disable(xqspi->pclk);
 944	return 0;
 945}
 946
 947/**
 948 * zynqmp_runtime_suspend - Runtime suspend method for the SPI driver
 949 * @dev:	Address of the platform_device structure
 950 *
 951 * This function disables the clocks
 952 *
 953 * Return:	Always 0
 954 */
 955static int __maybe_unused zynqmp_runtime_suspend(struct device *dev)
 956{
 957	struct spi_master *master = dev_get_drvdata(dev);
 958	struct zynqmp_qspi *xqspi = spi_master_get_devdata(master);
 959
 960	clk_disable(xqspi->refclk);
 961	clk_disable(xqspi->pclk);
 962
 963	return 0;
 964}
 965
 966/**
 967 * zynqmp_runtime_resume - Runtime resume method for the SPI driver
 968 * @dev:	Address of the platform_device structure
 969 *
 970 * This function enables the clocks
 971 *
 972 * Return:	0 on success and error value on error
 973 */
 974static int __maybe_unused zynqmp_runtime_resume(struct device *dev)
 975{
 976	struct spi_master *master = dev_get_drvdata(dev);
 977	struct zynqmp_qspi *xqspi = spi_master_get_devdata(master);
 978	int ret;
 979
 980	ret = clk_enable(xqspi->pclk);
 981	if (ret) {
 982		dev_err(dev, "Cannot enable APB clock.\n");
 983		return ret;
 984	}
 985
 986	ret = clk_enable(xqspi->refclk);
 987	if (ret) {
 988		dev_err(dev, "Cannot enable device clock.\n");
 989		clk_disable(xqspi->pclk);
 990		return ret;
 991	}
 992
 993	return 0;
 994}
 995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 996static const struct dev_pm_ops zynqmp_qspi_dev_pm_ops = {
 997	SET_RUNTIME_PM_OPS(zynqmp_runtime_suspend,
 998			   zynqmp_runtime_resume, NULL)
 999	SET_SYSTEM_SLEEP_PM_OPS(zynqmp_qspi_suspend, zynqmp_qspi_resume)
1000};
1001
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1002/**
1003 * zynqmp_qspi_probe:	Probe method for the QSPI driver
1004 * @pdev:	Pointer to the platform_device structure
1005 *
1006 * This function initializes the driver data structures and the hardware.
1007 *
1008 * Return:	0 on success; error value otherwise
1009 */
1010static int zynqmp_qspi_probe(struct platform_device *pdev)
1011{
1012	int ret = 0;
1013	struct spi_master *master;
1014	struct zynqmp_qspi *xqspi;
1015	struct device *dev = &pdev->dev;
 
 
 
1016
1017	master = spi_alloc_master(&pdev->dev, sizeof(*xqspi));
1018	if (!master)
1019		return -ENOMEM;
1020
1021	xqspi = spi_master_get_devdata(master);
1022	master->dev.of_node = pdev->dev.of_node;
1023	platform_set_drvdata(pdev, master);
 
 
 
 
 
1024
1025	xqspi->regs = devm_platform_ioremap_resource(pdev, 0);
1026	if (IS_ERR(xqspi->regs)) {
1027		ret = PTR_ERR(xqspi->regs);
1028		goto remove_master;
1029	}
1030
1031	xqspi->dev = dev;
1032	xqspi->pclk = devm_clk_get(&pdev->dev, "pclk");
1033	if (IS_ERR(xqspi->pclk)) {
1034		dev_err(dev, "pclk clock not found.\n");
1035		ret = PTR_ERR(xqspi->pclk);
1036		goto remove_master;
1037	}
1038
 
 
 
 
 
 
 
1039	ret = clk_prepare_enable(xqspi->pclk);
1040	if (ret) {
1041		dev_err(dev, "Unable to enable APB clock.\n");
1042		goto remove_master;
1043	}
1044
1045	xqspi->refclk = devm_clk_get(&pdev->dev, "ref_clk");
1046	if (IS_ERR(xqspi->refclk)) {
1047		dev_err(dev, "ref_clk clock not found.\n");
1048		ret = PTR_ERR(xqspi->refclk);
1049		goto clk_dis_pclk;
1050	}
1051
1052	ret = clk_prepare_enable(xqspi->refclk);
1053	if (ret) {
1054		dev_err(dev, "Unable to enable device clock.\n");
1055		goto clk_dis_pclk;
1056	}
1057
 
 
 
 
1058	pm_runtime_use_autosuspend(&pdev->dev);
1059	pm_runtime_set_autosuspend_delay(&pdev->dev, SPI_AUTOSUSPEND_TIMEOUT);
1060	pm_runtime_set_active(&pdev->dev);
1061	pm_runtime_enable(&pdev->dev);
 
 
 
 
 
 
 
 
 
 
 
 
1062	/* QSPI controller initializations */
1063	zynqmp_qspi_init_hw(xqspi);
1064
1065	pm_runtime_mark_last_busy(&pdev->dev);
1066	pm_runtime_put_autosuspend(&pdev->dev);
1067	xqspi->irq = platform_get_irq(pdev, 0);
1068	if (xqspi->irq <= 0) {
1069		ret = -ENXIO;
1070		goto clk_dis_all;
1071	}
1072	ret = devm_request_irq(&pdev->dev, xqspi->irq, zynqmp_qspi_irq,
1073			       0, pdev->name, master);
1074	if (ret != 0) {
1075		ret = -ENXIO;
1076		dev_err(dev, "request_irq failed\n");
1077		goto clk_dis_all;
1078	}
1079
1080	master->num_chipselect = GQSPI_DEFAULT_NUM_CS;
 
 
1081
1082	master->setup = zynqmp_qspi_setup;
1083	master->set_cs = zynqmp_qspi_chipselect;
1084	master->transfer_one = zynqmp_qspi_start_transfer;
1085	master->prepare_transfer_hardware = zynqmp_prepare_transfer_hardware;
1086	master->unprepare_transfer_hardware =
1087					zynqmp_unprepare_transfer_hardware;
1088	master->max_speed_hz = clk_get_rate(xqspi->refclk) / 2;
1089	master->bits_per_word_mask = SPI_BPW_MASK(8);
1090	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_RX_DUAL | SPI_RX_QUAD |
1091			    SPI_TX_DUAL | SPI_TX_QUAD;
 
1092
1093	if (master->dev.parent == NULL)
1094		master->dev.parent = &master->dev;
 
 
 
 
1095
1096	ret = spi_register_master(master);
1097	if (ret)
 
1098		goto clk_dis_all;
 
 
 
 
1099
1100	return 0;
1101
1102clk_dis_all:
 
1103	pm_runtime_set_suspended(&pdev->dev);
1104	pm_runtime_disable(&pdev->dev);
1105	clk_disable_unprepare(xqspi->refclk);
1106clk_dis_pclk:
1107	clk_disable_unprepare(xqspi->pclk);
1108remove_master:
1109	spi_master_put(master);
1110
1111	return ret;
1112}
1113
1114/**
1115 * zynqmp_qspi_remove:	Remove method for the QSPI driver
1116 * @pdev:	Pointer to the platform_device structure
1117 *
1118 * This function is called if a device is physically removed from the system or
1119 * if the driver module is being unloaded. It frees all resources allocated to
1120 * the device.
1121 *
1122 * Return:	0 Always
1123 */
1124static int zynqmp_qspi_remove(struct platform_device *pdev)
1125{
1126	struct spi_master *master = platform_get_drvdata(pdev);
1127	struct zynqmp_qspi *xqspi = spi_master_get_devdata(master);
1128
1129	zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, 0x0);
1130	clk_disable_unprepare(xqspi->refclk);
1131	clk_disable_unprepare(xqspi->pclk);
1132	pm_runtime_set_suspended(&pdev->dev);
1133	pm_runtime_disable(&pdev->dev);
1134
1135	spi_unregister_master(master);
1136
1137	return 0;
1138}
1139
1140static const struct of_device_id zynqmp_qspi_of_match[] = {
1141	{ .compatible = "xlnx,zynqmp-qspi-1.0", },
1142	{ /* End of table */ }
1143};
1144
1145MODULE_DEVICE_TABLE(of, zynqmp_qspi_of_match);
1146
1147static struct platform_driver zynqmp_qspi_driver = {
1148	.probe = zynqmp_qspi_probe,
1149	.remove = zynqmp_qspi_remove,
1150	.driver = {
1151		.name = "zynqmp-qspi",
1152		.of_match_table = zynqmp_qspi_of_match,
1153		.pm = &zynqmp_qspi_dev_pm_ops,
1154	},
1155};
1156
1157module_platform_driver(zynqmp_qspi_driver);
1158
1159MODULE_AUTHOR("Xilinx, Inc.");
1160MODULE_DESCRIPTION("Xilinx Zynqmp QSPI driver");
1161MODULE_LICENSE("GPL");