Linux Audio

Check our new training course

Embedded Linux training

Mar 31-Apr 8, 2025
Register
Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Xilinx Zynq UltraScale+ MPSoC Quad-SPI (QSPI) controller driver
   4 * (master mode only)
   5 *
   6 * Copyright (C) 2009 - 2015 Xilinx, Inc.
 
 
 
 
 
   7 */
   8
   9#include <linux/clk.h>
  10#include <linux/delay.h>
  11#include <linux/dma-mapping.h>
  12#include <linux/dmaengine.h>
  13#include <linux/firmware/xlnx-zynqmp.h>
  14#include <linux/interrupt.h>
  15#include <linux/io.h>
  16#include <linux/module.h>
  17#include <linux/of_irq.h>
  18#include <linux/of_address.h>
  19#include <linux/of_device.h>
  20#include <linux/platform_device.h>
  21#include <linux/pm_runtime.h>
  22#include <linux/spi/spi.h>
  23#include <linux/spinlock.h>
  24#include <linux/workqueue.h>
  25#include <linux/spi/spi-mem.h>
  26
  27/* Generic QSPI register offsets */
  28#define GQSPI_CONFIG_OFST		0x00000100
  29#define GQSPI_ISR_OFST			0x00000104
  30#define GQSPI_IDR_OFST			0x0000010C
  31#define GQSPI_IER_OFST			0x00000108
  32#define GQSPI_IMASK_OFST		0x00000110
  33#define GQSPI_EN_OFST			0x00000114
  34#define GQSPI_TXD_OFST			0x0000011C
  35#define GQSPI_RXD_OFST			0x00000120
  36#define GQSPI_TX_THRESHOLD_OFST		0x00000128
  37#define GQSPI_RX_THRESHOLD_OFST		0x0000012C
  38#define IOU_TAPDLY_BYPASS_OFST		0x0000003C
  39#define GQSPI_LPBK_DLY_ADJ_OFST		0x00000138
  40#define GQSPI_GEN_FIFO_OFST		0x00000140
  41#define GQSPI_SEL_OFST			0x00000144
  42#define GQSPI_GF_THRESHOLD_OFST		0x00000150
  43#define GQSPI_FIFO_CTRL_OFST		0x0000014C
  44#define GQSPI_QSPIDMA_DST_CTRL_OFST	0x0000080C
  45#define GQSPI_QSPIDMA_DST_SIZE_OFST	0x00000804
  46#define GQSPI_QSPIDMA_DST_STS_OFST	0x00000808
  47#define GQSPI_QSPIDMA_DST_I_STS_OFST	0x00000814
  48#define GQSPI_QSPIDMA_DST_I_EN_OFST	0x00000818
  49#define GQSPI_QSPIDMA_DST_I_DIS_OFST	0x0000081C
  50#define GQSPI_QSPIDMA_DST_I_MASK_OFST	0x00000820
  51#define GQSPI_QSPIDMA_DST_ADDR_OFST	0x00000800
  52#define GQSPI_QSPIDMA_DST_ADDR_MSB_OFST 0x00000828
  53#define GQSPI_DATA_DLY_ADJ_OFST         0x000001F8
  54
  55/* GQSPI register bit masks */
  56#define GQSPI_SEL_MASK				0x00000001
  57#define GQSPI_EN_MASK				0x00000001
  58#define GQSPI_LPBK_DLY_ADJ_USE_LPBK_MASK	0x00000020
  59#define GQSPI_ISR_WR_TO_CLR_MASK		0x00000002
  60#define GQSPI_IDR_ALL_MASK			0x00000FBE
  61#define GQSPI_CFG_MODE_EN_MASK			0xC0000000
  62#define GQSPI_CFG_GEN_FIFO_START_MODE_MASK	0x20000000
  63#define GQSPI_CFG_ENDIAN_MASK			0x04000000
  64#define GQSPI_CFG_EN_POLL_TO_MASK		0x00100000
  65#define GQSPI_CFG_WP_HOLD_MASK			0x00080000
  66#define GQSPI_CFG_BAUD_RATE_DIV_MASK		0x00000038
  67#define GQSPI_CFG_CLK_PHA_MASK			0x00000004
  68#define GQSPI_CFG_CLK_POL_MASK			0x00000002
  69#define GQSPI_CFG_START_GEN_FIFO_MASK		0x10000000
  70#define GQSPI_GENFIFO_IMM_DATA_MASK		0x000000FF
  71#define GQSPI_GENFIFO_DATA_XFER			0x00000100
  72#define GQSPI_GENFIFO_EXP			0x00000200
  73#define GQSPI_GENFIFO_MODE_SPI			0x00000400
  74#define GQSPI_GENFIFO_MODE_DUALSPI		0x00000800
  75#define GQSPI_GENFIFO_MODE_QUADSPI		0x00000C00
  76#define GQSPI_GENFIFO_MODE_MASK			0x00000C00
  77#define GQSPI_GENFIFO_CS_LOWER			0x00001000
  78#define GQSPI_GENFIFO_CS_UPPER			0x00002000
  79#define GQSPI_GENFIFO_BUS_LOWER			0x00004000
  80#define GQSPI_GENFIFO_BUS_UPPER			0x00008000
  81#define GQSPI_GENFIFO_BUS_BOTH			0x0000C000
  82#define GQSPI_GENFIFO_BUS_MASK			0x0000C000
  83#define GQSPI_GENFIFO_TX			0x00010000
  84#define GQSPI_GENFIFO_RX			0x00020000
  85#define GQSPI_GENFIFO_STRIPE			0x00040000
  86#define GQSPI_GENFIFO_POLL			0x00080000
  87#define GQSPI_GENFIFO_EXP_START			0x00000100
  88#define GQSPI_FIFO_CTRL_RST_RX_FIFO_MASK	0x00000004
  89#define GQSPI_FIFO_CTRL_RST_TX_FIFO_MASK	0x00000002
  90#define GQSPI_FIFO_CTRL_RST_GEN_FIFO_MASK	0x00000001
  91#define GQSPI_ISR_RXEMPTY_MASK			0x00000800
  92#define GQSPI_ISR_GENFIFOFULL_MASK		0x00000400
  93#define GQSPI_ISR_GENFIFONOT_FULL_MASK		0x00000200
  94#define GQSPI_ISR_TXEMPTY_MASK			0x00000100
  95#define GQSPI_ISR_GENFIFOEMPTY_MASK		0x00000080
  96#define GQSPI_ISR_RXFULL_MASK			0x00000020
  97#define GQSPI_ISR_RXNEMPTY_MASK			0x00000010
  98#define GQSPI_ISR_TXFULL_MASK			0x00000008
  99#define GQSPI_ISR_TXNOT_FULL_MASK		0x00000004
 100#define GQSPI_ISR_POLL_TIME_EXPIRE_MASK		0x00000002
 101#define GQSPI_IER_TXNOT_FULL_MASK		0x00000004
 102#define GQSPI_IER_RXEMPTY_MASK			0x00000800
 103#define GQSPI_IER_POLL_TIME_EXPIRE_MASK		0x00000002
 104#define GQSPI_IER_RXNEMPTY_MASK			0x00000010
 105#define GQSPI_IER_GENFIFOEMPTY_MASK		0x00000080
 106#define GQSPI_IER_TXEMPTY_MASK			0x00000100
 107#define GQSPI_QSPIDMA_DST_INTR_ALL_MASK		0x000000FE
 108#define GQSPI_QSPIDMA_DST_STS_WTC		0x0000E000
 109#define GQSPI_CFG_MODE_EN_DMA_MASK		0x80000000
 110#define GQSPI_ISR_IDR_MASK			0x00000994
 111#define GQSPI_QSPIDMA_DST_I_EN_DONE_MASK	0x00000002
 112#define GQSPI_QSPIDMA_DST_I_STS_DONE_MASK	0x00000002
 113#define GQSPI_IRQ_MASK				0x00000980
 114
 115#define GQSPI_CFG_BAUD_RATE_DIV_SHIFT		3
 116#define GQSPI_GENFIFO_CS_SETUP			0x4
 117#define GQSPI_GENFIFO_CS_HOLD			0x3
 118#define GQSPI_TXD_DEPTH				64
 119#define GQSPI_RX_FIFO_THRESHOLD			32
 120#define GQSPI_RX_FIFO_FILL	(GQSPI_RX_FIFO_THRESHOLD * 4)
 121#define GQSPI_TX_FIFO_THRESHOLD_RESET_VAL	32
 122#define GQSPI_TX_FIFO_FILL	(GQSPI_TXD_DEPTH -\
 123				GQSPI_TX_FIFO_THRESHOLD_RESET_VAL)
 124#define GQSPI_GEN_FIFO_THRESHOLD_RESET_VAL	0X10
 125#define GQSPI_QSPIDMA_DST_CTRL_RESET_VAL	0x803FFA00
 126#define GQSPI_SELECT_FLASH_CS_LOWER		0x1
 127#define GQSPI_SELECT_FLASH_CS_UPPER		0x2
 128#define GQSPI_SELECT_FLASH_CS_BOTH		0x3
 129#define GQSPI_SELECT_FLASH_BUS_LOWER		0x1
 130#define GQSPI_SELECT_FLASH_BUS_UPPER		0x2
 131#define GQSPI_SELECT_FLASH_BUS_BOTH		0x3
 132#define GQSPI_BAUD_DIV_MAX	7	/* Baud rate divisor maximum */
 133#define GQSPI_BAUD_DIV_SHIFT	2	/* Baud rate divisor shift */
 134#define GQSPI_SELECT_MODE_SPI		0x1
 135#define GQSPI_SELECT_MODE_DUALSPI	0x2
 136#define GQSPI_SELECT_MODE_QUADSPI	0x4
 137#define GQSPI_DMA_UNALIGN		0x3
 138#define GQSPI_DEFAULT_NUM_CS	1	/* Default number of chip selects */
 139
 140#define GQSPI_MAX_NUM_CS	2	/* Maximum number of chip selects */
 141
 142#define GQSPI_USE_DATA_DLY		0x1
 143#define GQSPI_USE_DATA_DLY_SHIFT	31
 144#define GQSPI_DATA_DLY_ADJ_VALUE	0x2
 145#define GQSPI_DATA_DLY_ADJ_SHIFT	28
 146#define GQSPI_LPBK_DLY_ADJ_DLY_1	0x1
 147#define GQSPI_LPBK_DLY_ADJ_DLY_1_SHIFT	0x3
 148#define TAP_DLY_BYPASS_LQSPI_RX_VALUE	0x1
 149#define TAP_DLY_BYPASS_LQSPI_RX_SHIFT	0x2
 150
 151/* set to differentiate versal from zynqmp, 1=versal, 0=zynqmp */
 152#define QSPI_QUIRK_HAS_TAPDELAY		BIT(0)
 153
 154#define GQSPI_FREQ_37_5MHZ	37500000
 155#define GQSPI_FREQ_40MHZ	40000000
 156#define GQSPI_FREQ_100MHZ	100000000
 157#define GQSPI_FREQ_150MHZ	150000000
 158
 159#define SPI_AUTOSUSPEND_TIMEOUT		3000
 160enum mode_type {GQSPI_MODE_IO, GQSPI_MODE_DMA};
 161
 162/**
 163 * struct qspi_platform_data - zynqmp qspi platform data structure
 164 * @quirks:    Flags is used to identify the platform
 165 */
 166struct qspi_platform_data {
 167	u32 quirks;
 168};
 169
 170/**
 171 * struct zynqmp_qspi - Defines qspi driver instance
 172 * @ctlr:		Pointer to the spi controller information
 173 * @regs:		Virtual address of the QSPI controller registers
 174 * @refclk:		Pointer to the peripheral clock
 175 * @pclk:		Pointer to the APB clock
 176 * @irq:		IRQ number
 177 * @dev:		Pointer to struct device
 178 * @txbuf:		Pointer to the TX buffer
 179 * @rxbuf:		Pointer to the RX buffer
 180 * @bytes_to_transfer:	Number of bytes left to transfer
 181 * @bytes_to_receive:	Number of bytes left to receive
 182 * @genfifocs:		Used for chip select
 183 * @genfifobus:		Used to select the upper or lower bus
 184 * @dma_rx_bytes:	Remaining bytes to receive by DMA mode
 185 * @dma_addr:		DMA address after mapping the kernel buffer
 186 * @genfifoentry:	Used for storing the genfifoentry instruction.
 187 * @mode:		Defines the mode in which QSPI is operating
 188 * @data_completion:	completion structure
 189 * @op_lock:		Operational lock
 190 * @speed_hz:          Current SPI bus clock speed in hz
 191 * @has_tapdelay:	Used for tapdelay register available in qspi
 192 */
 193struct zynqmp_qspi {
 194	struct spi_controller *ctlr;
 195	void __iomem *regs;
 196	struct clk *refclk;
 197	struct clk *pclk;
 198	int irq;
 199	struct device *dev;
 200	const void *txbuf;
 201	void *rxbuf;
 202	int bytes_to_transfer;
 203	int bytes_to_receive;
 204	u32 genfifocs;
 205	u32 genfifobus;
 206	u32 dma_rx_bytes;
 207	dma_addr_t dma_addr;
 208	u32 genfifoentry;
 209	enum mode_type mode;
 210	struct completion data_completion;
 211	struct mutex op_lock;
 212	u32 speed_hz;
 213	bool has_tapdelay;
 214};
 215
 216/**
 217 * zynqmp_gqspi_read - For GQSPI controller read operation
 218 * @xqspi:	Pointer to the zynqmp_qspi structure
 219 * @offset:	Offset from where to read
 220 * Return:      Value at the offset
 221 */
 222static u32 zynqmp_gqspi_read(struct zynqmp_qspi *xqspi, u32 offset)
 223{
 224	return readl_relaxed(xqspi->regs + offset);
 225}
 226
 227/**
 228 * zynqmp_gqspi_write - For GQSPI controller write operation
 229 * @xqspi:	Pointer to the zynqmp_qspi structure
 230 * @offset:	Offset where to write
 231 * @val:	Value to be written
 232 */
 233static inline void zynqmp_gqspi_write(struct zynqmp_qspi *xqspi, u32 offset,
 234				      u32 val)
 235{
 236	writel_relaxed(val, (xqspi->regs + offset));
 237}
 238
 239/**
 240 * zynqmp_gqspi_selectslave - For selection of slave device
 241 * @instanceptr:	Pointer to the zynqmp_qspi structure
 242 * @slavecs:	For chip select
 243 * @slavebus:	To check which bus is selected- upper or lower
 244 */
 245static void zynqmp_gqspi_selectslave(struct zynqmp_qspi *instanceptr,
 246				     u8 slavecs, u8 slavebus)
 247{
 248	/*
 249	 * Bus and CS lines selected here will be updated in the instance and
 250	 * used for subsequent GENFIFO entries during transfer.
 251	 */
 252
 253	/* Choose slave select line */
 254	switch (slavecs) {
 255	case GQSPI_SELECT_FLASH_CS_BOTH:
 256		instanceptr->genfifocs = GQSPI_GENFIFO_CS_LOWER |
 257			GQSPI_GENFIFO_CS_UPPER;
 258		break;
 259	case GQSPI_SELECT_FLASH_CS_UPPER:
 260		instanceptr->genfifocs = GQSPI_GENFIFO_CS_UPPER;
 261		break;
 262	case GQSPI_SELECT_FLASH_CS_LOWER:
 263		instanceptr->genfifocs = GQSPI_GENFIFO_CS_LOWER;
 264		break;
 265	default:
 266		dev_warn(instanceptr->dev, "Invalid slave select\n");
 267	}
 268
 269	/* Choose the bus */
 270	switch (slavebus) {
 271	case GQSPI_SELECT_FLASH_BUS_BOTH:
 272		instanceptr->genfifobus = GQSPI_GENFIFO_BUS_LOWER |
 273			GQSPI_GENFIFO_BUS_UPPER;
 274		break;
 275	case GQSPI_SELECT_FLASH_BUS_UPPER:
 276		instanceptr->genfifobus = GQSPI_GENFIFO_BUS_UPPER;
 277		break;
 278	case GQSPI_SELECT_FLASH_BUS_LOWER:
 279		instanceptr->genfifobus = GQSPI_GENFIFO_BUS_LOWER;
 280		break;
 281	default:
 282		dev_warn(instanceptr->dev, "Invalid slave bus\n");
 283	}
 284}
 285
 286/**
 287 * zynqmp_qspi_set_tapdelay:   To configure qspi tap delays
 288 * @xqspi:             Pointer to the zynqmp_qspi structure
 289 * @baudrateval:       Buadrate to configure
 290 */
 291static void zynqmp_qspi_set_tapdelay(struct zynqmp_qspi *xqspi, u32 baudrateval)
 292{
 293	u32 tapdlybypass = 0, lpbkdlyadj = 0, datadlyadj = 0, clk_rate;
 294	u32 reqhz = 0;
 295
 296	clk_rate = clk_get_rate(xqspi->refclk);
 297	reqhz = (clk_rate / (GQSPI_BAUD_DIV_SHIFT << baudrateval));
 298
 299	if (!xqspi->has_tapdelay) {
 300		if (reqhz <= GQSPI_FREQ_40MHZ) {
 301			zynqmp_pm_set_tapdelay_bypass(PM_TAPDELAY_QSPI,
 302						      PM_TAPDELAY_BYPASS_ENABLE);
 303		} else if (reqhz <= GQSPI_FREQ_100MHZ) {
 304			zynqmp_pm_set_tapdelay_bypass(PM_TAPDELAY_QSPI,
 305						      PM_TAPDELAY_BYPASS_ENABLE);
 306			lpbkdlyadj |= (GQSPI_LPBK_DLY_ADJ_USE_LPBK_MASK);
 307			datadlyadj |= ((GQSPI_USE_DATA_DLY <<
 308					GQSPI_USE_DATA_DLY_SHIFT)
 309					| (GQSPI_DATA_DLY_ADJ_VALUE <<
 310						GQSPI_DATA_DLY_ADJ_SHIFT));
 311		} else if (reqhz <= GQSPI_FREQ_150MHZ) {
 312			lpbkdlyadj |= GQSPI_LPBK_DLY_ADJ_USE_LPBK_MASK;
 313		}
 314	} else {
 315		if (reqhz <= GQSPI_FREQ_37_5MHZ) {
 316			tapdlybypass |= (TAP_DLY_BYPASS_LQSPI_RX_VALUE <<
 317					TAP_DLY_BYPASS_LQSPI_RX_SHIFT);
 318		} else if (reqhz <= GQSPI_FREQ_100MHZ) {
 319			tapdlybypass |= (TAP_DLY_BYPASS_LQSPI_RX_VALUE <<
 320					TAP_DLY_BYPASS_LQSPI_RX_SHIFT);
 321			lpbkdlyadj |= (GQSPI_LPBK_DLY_ADJ_USE_LPBK_MASK);
 322			datadlyadj |= (GQSPI_USE_DATA_DLY <<
 323					GQSPI_USE_DATA_DLY_SHIFT);
 324		} else if (reqhz <= GQSPI_FREQ_150MHZ) {
 325			lpbkdlyadj |= (GQSPI_LPBK_DLY_ADJ_USE_LPBK_MASK
 326				       | (GQSPI_LPBK_DLY_ADJ_DLY_1 <<
 327					       GQSPI_LPBK_DLY_ADJ_DLY_1_SHIFT));
 328		}
 329		zynqmp_gqspi_write(xqspi,
 330				   IOU_TAPDLY_BYPASS_OFST, tapdlybypass);
 331	}
 332	zynqmp_gqspi_write(xqspi, GQSPI_LPBK_DLY_ADJ_OFST, lpbkdlyadj);
 333	zynqmp_gqspi_write(xqspi, GQSPI_DATA_DLY_ADJ_OFST, datadlyadj);
 334}
 335
 336/**
 337 * zynqmp_qspi_init_hw - Initialize the hardware
 338 * @xqspi:	Pointer to the zynqmp_qspi structure
 339 *
 340 * The default settings of the QSPI controller's configurable parameters on
 341 * reset are
 342 *	- Master mode
 343 *	- TX threshold set to 1
 344 *	- RX threshold set to 1
 345 *	- Flash memory interface mode enabled
 346 * This function performs the following actions
 347 *	- Disable and clear all the interrupts
 348 *	- Enable manual slave select
 349 *	- Enable manual start
 350 *	- Deselect all the chip select lines
 351 *	- Set the little endian mode of TX FIFO
 352 *	- Set clock phase
 353 *	- Set clock polarity and
 354 *	- Enable the QSPI controller
 355 */
 356static void zynqmp_qspi_init_hw(struct zynqmp_qspi *xqspi)
 357{
 358	u32 config_reg, baud_rate_val = 0;
 359	ulong clk_rate;
 360
 361	/* Select the GQSPI mode */
 362	zynqmp_gqspi_write(xqspi, GQSPI_SEL_OFST, GQSPI_SEL_MASK);
 363	/* Clear and disable interrupts */
 364	zynqmp_gqspi_write(xqspi, GQSPI_ISR_OFST,
 365			   zynqmp_gqspi_read(xqspi, GQSPI_ISR_OFST) |
 366			   GQSPI_ISR_WR_TO_CLR_MASK);
 367	/* Clear the DMA STS */
 368	zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_I_STS_OFST,
 369			   zynqmp_gqspi_read(xqspi,
 370					     GQSPI_QSPIDMA_DST_I_STS_OFST));
 371	zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_STS_OFST,
 372			   zynqmp_gqspi_read(xqspi,
 373					     GQSPI_QSPIDMA_DST_STS_OFST) |
 374					     GQSPI_QSPIDMA_DST_STS_WTC);
 375	zynqmp_gqspi_write(xqspi, GQSPI_IDR_OFST, GQSPI_IDR_ALL_MASK);
 376	zynqmp_gqspi_write(xqspi,
 377			   GQSPI_QSPIDMA_DST_I_DIS_OFST,
 378			   GQSPI_QSPIDMA_DST_INTR_ALL_MASK);
 379	/* Disable the GQSPI */
 380	zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, 0x0);
 381	config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST);
 382	config_reg &= ~GQSPI_CFG_MODE_EN_MASK;
 383	/* Manual start */
 384	config_reg |= GQSPI_CFG_GEN_FIFO_START_MODE_MASK;
 385	/* Little endian by default */
 386	config_reg &= ~GQSPI_CFG_ENDIAN_MASK;
 387	/* Disable poll time out */
 388	config_reg &= ~GQSPI_CFG_EN_POLL_TO_MASK;
 389	/* Set hold bit */
 390	config_reg |= GQSPI_CFG_WP_HOLD_MASK;
 391	/* Clear pre-scalar by default */
 392	config_reg &= ~GQSPI_CFG_BAUD_RATE_DIV_MASK;
 393	/* Set CPHA */
 394	if (xqspi->ctlr->mode_bits & SPI_CPHA)
 395		config_reg |= GQSPI_CFG_CLK_PHA_MASK;
 396	else
 397		config_reg &= ~GQSPI_CFG_CLK_PHA_MASK;
 398	/* Set CPOL */
 399	if (xqspi->ctlr->mode_bits & SPI_CPOL)
 400		config_reg |= GQSPI_CFG_CLK_POL_MASK;
 401	else
 402		config_reg &= ~GQSPI_CFG_CLK_POL_MASK;
 403
 404	/* Set the clock frequency */
 405	clk_rate = clk_get_rate(xqspi->refclk);
 406	while ((baud_rate_val < GQSPI_BAUD_DIV_MAX) &&
 407	       (clk_rate /
 408		(GQSPI_BAUD_DIV_SHIFT << baud_rate_val)) > xqspi->speed_hz)
 409		baud_rate_val++;
 410
 411	config_reg &= ~GQSPI_CFG_BAUD_RATE_DIV_MASK;
 412	config_reg |= (baud_rate_val << GQSPI_CFG_BAUD_RATE_DIV_SHIFT);
 413
 414	zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg);
 415
 416	/* Set the tapdelay for clock frequency */
 417	zynqmp_qspi_set_tapdelay(xqspi, baud_rate_val);
 418
 419	/* Clear the TX and RX FIFO */
 420	zynqmp_gqspi_write(xqspi, GQSPI_FIFO_CTRL_OFST,
 421			   GQSPI_FIFO_CTRL_RST_RX_FIFO_MASK |
 422			   GQSPI_FIFO_CTRL_RST_TX_FIFO_MASK |
 423			   GQSPI_FIFO_CTRL_RST_GEN_FIFO_MASK);
 
 
 
 
 424	/* Reset thresholds */
 425	zynqmp_gqspi_write(xqspi, GQSPI_TX_THRESHOLD_OFST,
 426			   GQSPI_TX_FIFO_THRESHOLD_RESET_VAL);
 427	zynqmp_gqspi_write(xqspi, GQSPI_RX_THRESHOLD_OFST,
 428			   GQSPI_RX_FIFO_THRESHOLD);
 429	zynqmp_gqspi_write(xqspi, GQSPI_GF_THRESHOLD_OFST,
 430			   GQSPI_GEN_FIFO_THRESHOLD_RESET_VAL);
 431	zynqmp_gqspi_selectslave(xqspi,
 432				 GQSPI_SELECT_FLASH_CS_LOWER,
 433				 GQSPI_SELECT_FLASH_BUS_LOWER);
 434	/* Initialize DMA */
 435	zynqmp_gqspi_write(xqspi,
 436			   GQSPI_QSPIDMA_DST_CTRL_OFST,
 437			   GQSPI_QSPIDMA_DST_CTRL_RESET_VAL);
 438
 439	/* Enable the GQSPI */
 440	zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, GQSPI_EN_MASK);
 441}
 442
 443/**
 444 * zynqmp_qspi_copy_read_data - Copy data to RX buffer
 445 * @xqspi:	Pointer to the zynqmp_qspi structure
 446 * @data:	The variable where data is stored
 447 * @size:	Number of bytes to be copied from data to RX buffer
 448 */
 449static void zynqmp_qspi_copy_read_data(struct zynqmp_qspi *xqspi,
 450				       ulong data, u8 size)
 451{
 452	memcpy(xqspi->rxbuf, &data, size);
 453	xqspi->rxbuf += size;
 454	xqspi->bytes_to_receive -= size;
 455}
 456
 457/**
 458 * zynqmp_qspi_chipselect - Select or deselect the chip select line
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 459 * @qspi:	Pointer to the spi_device structure
 460 * @is_high:	Select(0) or deselect (1) the chip select line
 461 */
 462static void zynqmp_qspi_chipselect(struct spi_device *qspi, bool is_high)
 463{
 464	struct zynqmp_qspi *xqspi = spi_master_get_devdata(qspi->master);
 465	ulong timeout;
 466	u32 genfifoentry = 0, statusreg;
 467
 468	genfifoentry |= GQSPI_GENFIFO_MODE_SPI;
 
 469
 470	if (!is_high) {
 471		if (!qspi->chip_select) {
 472			xqspi->genfifobus = GQSPI_GENFIFO_BUS_LOWER;
 473			xqspi->genfifocs = GQSPI_GENFIFO_CS_LOWER;
 474		} else {
 475			xqspi->genfifobus = GQSPI_GENFIFO_BUS_UPPER;
 476			xqspi->genfifocs = GQSPI_GENFIFO_CS_UPPER;
 477		}
 478		genfifoentry |= xqspi->genfifobus;
 479		genfifoentry |= xqspi->genfifocs;
 480		genfifoentry |= GQSPI_GENFIFO_CS_SETUP;
 481	} else {
 482		genfifoentry |= GQSPI_GENFIFO_CS_HOLD;
 483	}
 484
 485	zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, genfifoentry);
 486
 
 
 
 487	/* Manually start the generic FIFO command */
 488	zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
 489			   zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST) |
 490			   GQSPI_CFG_START_GEN_FIFO_MASK);
 491
 492	timeout = jiffies + msecs_to_jiffies(1000);
 493
 494	/* Wait until the generic FIFO command is empty */
 495	do {
 496		statusreg = zynqmp_gqspi_read(xqspi, GQSPI_ISR_OFST);
 497
 498		if ((statusreg & GQSPI_ISR_GENFIFOEMPTY_MASK) &&
 499		    (statusreg & GQSPI_ISR_TXEMPTY_MASK))
 500			break;
 501		cpu_relax();
 
 502	} while (!time_after_eq(jiffies, timeout));
 503
 504	if (time_after_eq(jiffies, timeout))
 505		dev_err(xqspi->dev, "Chip select timed out\n");
 506}
 507
 508/**
 509 * zynqmp_qspi_selectspimode - Selects SPI mode - x1 or x2 or x4.
 510 * @xqspi:	xqspi is a pointer to the GQSPI instance
 511 * @spimode:	spimode - SPI or DUAL or QUAD.
 512 * Return:	Mask to set desired SPI mode in GENFIFO entry.
 513 */
 514static inline u32 zynqmp_qspi_selectspimode(struct zynqmp_qspi *xqspi,
 515					    u8 spimode)
 516{
 517	u32 mask = 0;
 518
 519	switch (spimode) {
 520	case GQSPI_SELECT_MODE_DUALSPI:
 521		mask = GQSPI_GENFIFO_MODE_DUALSPI;
 522		break;
 523	case GQSPI_SELECT_MODE_QUADSPI:
 524		mask = GQSPI_GENFIFO_MODE_QUADSPI;
 525		break;
 526	case GQSPI_SELECT_MODE_SPI:
 527		mask = GQSPI_GENFIFO_MODE_SPI;
 528		break;
 529	default:
 530		dev_warn(xqspi->dev, "Invalid SPI mode\n");
 531	}
 532
 533	return mask;
 534}
 535
 536/**
 537 * zynqmp_qspi_config_op - Configure QSPI controller for specified
 538 *				transfer
 539 * @xqspi:	Pointer to the zynqmp_qspi structure
 540 * @qspi:	Pointer to the spi_device structure
 
 
 541 *
 542 * Sets the operational mode of QSPI controller for the next QSPI transfer and
 543 * sets the requested clock frequency.
 544 *
 545 * Return:	Always 0
 546 *
 547 * Note:
 548 *	If the requested frequency is not an exact match with what can be
 549 *	obtained using the pre-scalar value, the driver sets the clock
 550 *	frequency which is lower than the requested frequency (maximum lower)
 551 *	for the transfer.
 552 *
 553 *	If the requested frequency is higher or lower than that is supported
 554 *	by the QSPI controller the driver will set the highest or lowest
 555 *	frequency supported by controller.
 556 */
 557static int zynqmp_qspi_config_op(struct zynqmp_qspi *xqspi,
 558				 struct spi_device *qspi)
 559{
 
 560	ulong clk_rate;
 561	u32 config_reg, req_speed_hz, baud_rate_val = 0;
 562
 563	req_speed_hz = qspi->max_speed_hz;
 
 
 
 564
 565	if (xqspi->speed_hz != req_speed_hz) {
 566		xqspi->speed_hz = req_speed_hz;
 
 567
 568		/* Set the clock frequency */
 569		/* If req_speed_hz == 0, default to lowest speed */
 570		clk_rate = clk_get_rate(xqspi->refclk);
 571
 572		while ((baud_rate_val < GQSPI_BAUD_DIV_MAX) &&
 573		       (clk_rate /
 574			(GQSPI_BAUD_DIV_SHIFT << baud_rate_val)) >
 575		       req_speed_hz)
 576			baud_rate_val++;
 577
 578		config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST);
 579
 580		config_reg &= ~GQSPI_CFG_BAUD_RATE_DIV_MASK;
 581		config_reg |= (baud_rate_val << GQSPI_CFG_BAUD_RATE_DIV_SHIFT);
 582		zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg);
 583		zynqmp_qspi_set_tapdelay(xqspi, baud_rate_val);
 584	}
 
 
 
 
 
 
 585	return 0;
 586}
 587
 588/**
 589 * zynqmp_qspi_setup_op - Configure the QSPI controller
 590 * @qspi:	Pointer to the spi_device structure
 591 *
 592 * Sets the operational mode of QSPI controller for the next QSPI transfer,
 593 * baud rate and divisor value to setup the requested qspi clock.
 594 *
 595 * Return:	0 on success; error value otherwise.
 596 */
 597static int zynqmp_qspi_setup_op(struct spi_device *qspi)
 598{
 599	struct spi_controller *ctlr = qspi->master;
 600	struct zynqmp_qspi *xqspi = spi_controller_get_devdata(ctlr);
 601
 602	if (ctlr->busy)
 603		return -EBUSY;
 604
 605	zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, GQSPI_EN_MASK);
 606
 607	return 0;
 608}
 609
 610/**
 611 * zynqmp_qspi_filltxfifo - Fills the TX FIFO as long as there is room in
 612 *				the FIFO or the bytes required to be
 613 *				transmitted.
 614 * @xqspi:	Pointer to the zynqmp_qspi structure
 615 * @size:	Number of bytes to be copied from TX buffer to TX FIFO
 616 */
 617static void zynqmp_qspi_filltxfifo(struct zynqmp_qspi *xqspi, int size)
 618{
 619	u32 count = 0, intermediate;
 620
 621	while ((xqspi->bytes_to_transfer > 0) && (count < size) && (xqspi->txbuf)) {
 
 
 
 622		if (xqspi->bytes_to_transfer >= 4) {
 623			memcpy(&intermediate, xqspi->txbuf, 4);
 624			xqspi->txbuf += 4;
 625			xqspi->bytes_to_transfer -= 4;
 626			count += 4;
 627		} else {
 628			memcpy(&intermediate, xqspi->txbuf,
 629			       xqspi->bytes_to_transfer);
 630			xqspi->txbuf += xqspi->bytes_to_transfer;
 631			xqspi->bytes_to_transfer = 0;
 632			count += xqspi->bytes_to_transfer;
 633		}
 634		zynqmp_gqspi_write(xqspi, GQSPI_TXD_OFST, intermediate);
 635	}
 636}
 637
 638/**
 639 * zynqmp_qspi_readrxfifo - Fills the RX FIFO as long as there is room in
 640 *				the FIFO.
 641 * @xqspi:	Pointer to the zynqmp_qspi structure
 642 * @size:	Number of bytes to be copied from RX buffer to RX FIFO
 643 */
 644static void zynqmp_qspi_readrxfifo(struct zynqmp_qspi *xqspi, u32 size)
 645{
 646	ulong data;
 647	int count = 0;
 648
 649	while ((count < size) && (xqspi->bytes_to_receive > 0)) {
 650		if (xqspi->bytes_to_receive >= 4) {
 651			(*(u32 *)xqspi->rxbuf) =
 652			zynqmp_gqspi_read(xqspi, GQSPI_RXD_OFST);
 653			xqspi->rxbuf += 4;
 654			xqspi->bytes_to_receive -= 4;
 655			count += 4;
 656		} else {
 657			data = zynqmp_gqspi_read(xqspi, GQSPI_RXD_OFST);
 658			count += xqspi->bytes_to_receive;
 659			zynqmp_qspi_copy_read_data(xqspi, data,
 660						   xqspi->bytes_to_receive);
 661			xqspi->bytes_to_receive = 0;
 662		}
 663	}
 664}
 665
 666/**
 667 * zynqmp_qspi_fillgenfifo - Fills the GENFIFO.
 668 * @xqspi:	Pointer to the zynqmp_qspi structure
 669 * @nbits:	Transfer/Receive buswidth.
 670 * @genfifoentry:       Variable in which GENFIFO mask is saved
 671 */
 672static void zynqmp_qspi_fillgenfifo(struct zynqmp_qspi *xqspi, u8 nbits,
 673				    u32 genfifoentry)
 674{
 675	u32 transfer_len = 0;
 676
 677	if (xqspi->txbuf) {
 678		genfifoentry &= ~GQSPI_GENFIFO_RX;
 679		genfifoentry |= GQSPI_GENFIFO_DATA_XFER;
 680		genfifoentry |= GQSPI_GENFIFO_TX;
 681		transfer_len = xqspi->bytes_to_transfer;
 682	} else if (xqspi->rxbuf) {
 683		genfifoentry &= ~GQSPI_GENFIFO_TX;
 684		genfifoentry |= GQSPI_GENFIFO_DATA_XFER;
 685		genfifoentry |= GQSPI_GENFIFO_RX;
 686		if (xqspi->mode == GQSPI_MODE_DMA)
 687			transfer_len = xqspi->dma_rx_bytes;
 688		else
 689			transfer_len = xqspi->bytes_to_receive;
 690	} else {
 691		/* Sending dummy circles here */
 692		genfifoentry &= ~(GQSPI_GENFIFO_TX | GQSPI_GENFIFO_RX);
 693		genfifoentry |= GQSPI_GENFIFO_DATA_XFER;
 694		transfer_len = xqspi->bytes_to_transfer;
 695	}
 696	genfifoentry |= zynqmp_qspi_selectspimode(xqspi, nbits);
 697	xqspi->genfifoentry = genfifoentry;
 698
 699	if ((transfer_len) < GQSPI_GENFIFO_IMM_DATA_MASK) {
 700		genfifoentry &= ~GQSPI_GENFIFO_IMM_DATA_MASK;
 701		genfifoentry |= transfer_len;
 702		zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, genfifoentry);
 703	} else {
 704		int tempcount = transfer_len;
 705		u32 exponent = 8;	/* 2^8 = 256 */
 706		u8 imm_data = tempcount & 0xFF;
 707
 708		tempcount &= ~(tempcount & 0xFF);
 709		/* Immediate entry */
 710		if (tempcount != 0) {
 711			/* Exponent entries */
 712			genfifoentry |= GQSPI_GENFIFO_EXP;
 713			while (tempcount != 0) {
 714				if (tempcount & GQSPI_GENFIFO_EXP_START) {
 715					genfifoentry &=
 716						~GQSPI_GENFIFO_IMM_DATA_MASK;
 717					genfifoentry |= exponent;
 718					zynqmp_gqspi_write(xqspi,
 719							   GQSPI_GEN_FIFO_OFST,
 720							   genfifoentry);
 721				}
 722				tempcount = tempcount >> 1;
 723				exponent++;
 724			}
 725		}
 726		if (imm_data != 0) {
 727			genfifoentry &= ~GQSPI_GENFIFO_EXP;
 728			genfifoentry &= ~GQSPI_GENFIFO_IMM_DATA_MASK;
 729			genfifoentry |= (u8)(imm_data & 0xFF);
 730			zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST,
 731					   genfifoentry);
 732		}
 733	}
 734	if (xqspi->mode == GQSPI_MODE_IO && xqspi->rxbuf) {
 735		/* Dummy generic FIFO entry */
 736		zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, 0x0);
 737	}
 738}
 739
 740/**
 741 * zynqmp_process_dma_irq - Handler for DMA done interrupt of QSPI
 742 *				controller
 743 * @xqspi:	zynqmp_qspi instance pointer
 744 *
 745 * This function handles DMA interrupt only.
 746 */
 747static void zynqmp_process_dma_irq(struct zynqmp_qspi *xqspi)
 748{
 749	u32 config_reg, genfifoentry;
 750
 751	dma_unmap_single(xqspi->dev, xqspi->dma_addr,
 752			 xqspi->dma_rx_bytes, DMA_FROM_DEVICE);
 753	xqspi->rxbuf += xqspi->dma_rx_bytes;
 754	xqspi->bytes_to_receive -= xqspi->dma_rx_bytes;
 755	xqspi->dma_rx_bytes = 0;
 756
 757	/* Disabling the DMA interrupts */
 758	zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_I_DIS_OFST,
 759			   GQSPI_QSPIDMA_DST_I_EN_DONE_MASK);
 760
 761	if (xqspi->bytes_to_receive > 0) {
 762		/* Switch to IO mode,for remaining bytes to receive */
 763		config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST);
 764		config_reg &= ~GQSPI_CFG_MODE_EN_MASK;
 765		zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg);
 766
 767		/* Initiate the transfer of remaining bytes */
 768		genfifoentry = xqspi->genfifoentry;
 769		genfifoentry |= xqspi->bytes_to_receive;
 770		zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, genfifoentry);
 771
 772		/* Dummy generic FIFO entry */
 773		zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, 0x0);
 774
 775		/* Manual start */
 776		zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
 777				   (zynqmp_gqspi_read(xqspi,
 778						      GQSPI_CONFIG_OFST) |
 779				   GQSPI_CFG_START_GEN_FIFO_MASK));
 780
 781		/* Enable the RX interrupts for IO mode */
 782		zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST,
 783				   GQSPI_IER_GENFIFOEMPTY_MASK |
 784				   GQSPI_IER_RXNEMPTY_MASK |
 785				   GQSPI_IER_RXEMPTY_MASK);
 786	}
 787}
 788
 789/**
 790 * zynqmp_qspi_irq - Interrupt service routine of the QSPI controller
 791 * @irq:	IRQ number
 792 * @dev_id:	Pointer to the xqspi structure
 793 *
 794 * This function handles TX empty only.
 795 * On TX empty interrupt this function reads the received data from RX FIFO
 796 * and fills the TX FIFO if there is any data remaining to be transferred.
 797 *
 798 * Return:	IRQ_HANDLED when interrupt is handled
 799 *		IRQ_NONE otherwise.
 800 */
 801static irqreturn_t zynqmp_qspi_irq(int irq, void *dev_id)
 802{
 803	struct zynqmp_qspi *xqspi = (struct zynqmp_qspi *)dev_id;
 804	irqreturn_t ret = IRQ_NONE;
 
 805	u32 status, mask, dma_status = 0;
 806
 807	status = zynqmp_gqspi_read(xqspi, GQSPI_ISR_OFST);
 808	zynqmp_gqspi_write(xqspi, GQSPI_ISR_OFST, status);
 809	mask = (status & ~(zynqmp_gqspi_read(xqspi, GQSPI_IMASK_OFST)));
 810
 811	/* Read and clear DMA status */
 812	if (xqspi->mode == GQSPI_MODE_DMA) {
 813		dma_status =
 814			zynqmp_gqspi_read(xqspi, GQSPI_QSPIDMA_DST_I_STS_OFST);
 815		zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_I_STS_OFST,
 816				   dma_status);
 817	}
 818
 819	if (mask & GQSPI_ISR_TXNOT_FULL_MASK) {
 820		zynqmp_qspi_filltxfifo(xqspi, GQSPI_TX_FIFO_FILL);
 821		ret = IRQ_HANDLED;
 822	}
 823
 824	if (dma_status & GQSPI_QSPIDMA_DST_I_STS_DONE_MASK) {
 825		zynqmp_process_dma_irq(xqspi);
 826		ret = IRQ_HANDLED;
 827	} else if (!(mask & GQSPI_IER_RXEMPTY_MASK) &&
 828			(mask & GQSPI_IER_GENFIFOEMPTY_MASK)) {
 829		zynqmp_qspi_readrxfifo(xqspi, GQSPI_RX_FIFO_FILL);
 830		ret = IRQ_HANDLED;
 831	}
 832
 833	if (xqspi->bytes_to_receive == 0 && xqspi->bytes_to_transfer == 0 &&
 834	    ((status & GQSPI_IRQ_MASK) == GQSPI_IRQ_MASK)) {
 835		zynqmp_gqspi_write(xqspi, GQSPI_IDR_OFST, GQSPI_ISR_IDR_MASK);
 836		complete(&xqspi->data_completion);
 837		ret = IRQ_HANDLED;
 838	}
 839	return ret;
 840}
 841
 842/**
 843 * zynqmp_qspi_setuprxdma - This function sets up the RX DMA operation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 844 * @xqspi:	xqspi is a pointer to the GQSPI instance.
 845 *
 846 * Return:	0 on success; error value otherwise.
 847 */
 848static int zynqmp_qspi_setuprxdma(struct zynqmp_qspi *xqspi)
 849{
 850	u32 rx_bytes, rx_rem, config_reg;
 851	dma_addr_t addr;
 852	u64 dma_align =  (u64)(uintptr_t)xqspi->rxbuf;
 853
 854	if (xqspi->bytes_to_receive < 8 ||
 855	    ((dma_align & GQSPI_DMA_UNALIGN) != 0x0)) {
 856		/* Setting to IO mode */
 857		config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST);
 858		config_reg &= ~GQSPI_CFG_MODE_EN_MASK;
 859		zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg);
 860		xqspi->mode = GQSPI_MODE_IO;
 861		xqspi->dma_rx_bytes = 0;
 862		return 0;
 863	}
 864
 865	rx_rem = xqspi->bytes_to_receive % 4;
 866	rx_bytes = (xqspi->bytes_to_receive - rx_rem);
 867
 868	addr = dma_map_single(xqspi->dev, (void *)xqspi->rxbuf,
 869			      rx_bytes, DMA_FROM_DEVICE);
 870	if (dma_mapping_error(xqspi->dev, addr)) {
 871		dev_err(xqspi->dev, "ERR:rxdma:memory not mapped\n");
 872		return -ENOMEM;
 873	}
 874
 875	xqspi->dma_rx_bytes = rx_bytes;
 876	xqspi->dma_addr = addr;
 877	zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_ADDR_OFST,
 878			   (u32)(addr & 0xffffffff));
 879	addr = ((addr >> 16) >> 16);
 880	zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_ADDR_MSB_OFST,
 881			   ((u32)addr) & 0xfff);
 882
 883	/* Enabling the DMA mode */
 884	config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST);
 885	config_reg &= ~GQSPI_CFG_MODE_EN_MASK;
 886	config_reg |= GQSPI_CFG_MODE_EN_DMA_MASK;
 887	zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg);
 888
 889	/* Switch to DMA mode */
 890	xqspi->mode = GQSPI_MODE_DMA;
 891
 892	/* Write the number of bytes to transfer */
 893	zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_SIZE_OFST, rx_bytes);
 894
 895	return 0;
 896}
 897
 898/**
 899 * zynqmp_qspi_write_op - This function sets up the GENFIFO entries,
 900 *			TX FIFO, and fills the TX FIFO with as many
 901 *			bytes as possible.
 902 * @xqspi:	Pointer to the GQSPI instance.
 903 * @tx_nbits:	Transfer buswidth.
 904 * @genfifoentry:	Variable in which GENFIFO mask is returned
 905 *			to calling function
 906 */
 907static void zynqmp_qspi_write_op(struct zynqmp_qspi *xqspi, u8 tx_nbits,
 908				 u32 genfifoentry)
 909{
 910	u32 config_reg;
 911
 912	zynqmp_qspi_fillgenfifo(xqspi, tx_nbits, genfifoentry);
 913	zynqmp_qspi_filltxfifo(xqspi, GQSPI_TXD_DEPTH);
 914	if (xqspi->mode == GQSPI_MODE_DMA) {
 915		config_reg = zynqmp_gqspi_read(xqspi,
 916					       GQSPI_CONFIG_OFST);
 917		config_reg &= ~GQSPI_CFG_MODE_EN_MASK;
 918		zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
 919				   config_reg);
 920		xqspi->mode = GQSPI_MODE_IO;
 921	}
 922}
 923
 924/**
 925 * zynqmp_qspi_read_op - This function sets up the GENFIFO entries and
 926 *				RX DMA operation.
 927 * @xqspi:	xqspi is a pointer to the GQSPI instance.
 928 * @rx_nbits:	Receive buswidth.
 929 * @genfifoentry:	genfifoentry is pointer to the variable in which
 930 *			GENFIFO	mask is returned to calling function
 931 *
 932 * Return:	0 on success; error value otherwise.
 933 */
 934static int zynqmp_qspi_read_op(struct zynqmp_qspi *xqspi, u8 rx_nbits,
 935				u32 genfifoentry)
 
 936{
 937	int ret;
 938
 939	ret = zynqmp_qspi_setuprxdma(xqspi);
 940	if (ret)
 941		return ret;
 942	zynqmp_qspi_fillgenfifo(xqspi, rx_nbits, genfifoentry);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 943
 944	return 0;
 
 
 
 
 
 
 
 
 
 
 945}
 946
 947/**
 948 * zynqmp_qspi_suspend - Suspend method for the QSPI driver
 949 * @dev:	Address of the platform_device structure
 
 
 
 
 950 *
 951 * This function stops the QSPI driver queue and disables the QSPI controller
 
 952 *
 953 * Return:	Always 0
 954 */
 955static int __maybe_unused zynqmp_qspi_suspend(struct device *dev)
 
 
 956{
 957	struct zynqmp_qspi *xqspi = dev_get_drvdata(dev);
 958	struct spi_controller *ctlr = xqspi->ctlr;
 959	int ret;
 960
 961	ret = spi_controller_suspend(ctlr);
 962	if (ret)
 963		return ret;
 964
 965	zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, 0x0);
 966
 967	return 0;
 968}
 969
 970/**
 971 * zynqmp_qspi_resume - Resume method for the QSPI driver
 972 * @dev:	Address of the platform_device structure
 973 *
 974 * The function starts the QSPI driver queue and initializes the QSPI
 975 * controller
 976 *
 977 * Return:	0 on success; error value otherwise
 978 */
 979static int __maybe_unused zynqmp_qspi_resume(struct device *dev)
 980{
 981	struct zynqmp_qspi *xqspi = dev_get_drvdata(dev);
 982	struct spi_controller *ctlr = xqspi->ctlr;
 983
 984	zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, GQSPI_EN_MASK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 985
 986	spi_controller_resume(ctlr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 987
 988	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 989}
 990
 991/**
 992 * zynqmp_runtime_suspend - Runtime suspend method for the SPI driver
 993 * @dev:	Address of the platform_device structure
 994 *
 995 * This function disables the clocks
 996 *
 997 * Return:	Always 0
 998 */
 999static int __maybe_unused zynqmp_runtime_suspend(struct device *dev)
1000{
1001	struct zynqmp_qspi *xqspi = dev_get_drvdata(dev);
 
1002
1003	clk_disable_unprepare(xqspi->refclk);
1004	clk_disable_unprepare(xqspi->pclk);
 
1005
1006	return 0;
1007}
1008
1009/**
1010 * zynqmp_runtime_resume - Runtime resume method for the SPI driver
1011 * @dev:	Address of the platform_device structure
1012 *
1013 * This function enables the clocks
 
1014 *
1015 * Return:	0 on success and error value on error
1016 */
1017static int __maybe_unused zynqmp_runtime_resume(struct device *dev)
1018{
1019	struct zynqmp_qspi *xqspi = dev_get_drvdata(dev);
1020	int ret;
 
 
1021
1022	ret = clk_prepare_enable(xqspi->pclk);
1023	if (ret) {
1024		dev_err(dev, "Cannot enable APB clock.\n");
1025		return ret;
1026	}
1027
1028	ret = clk_prepare_enable(xqspi->refclk);
1029	if (ret) {
1030		dev_err(dev, "Cannot enable device clock.\n");
1031		clk_disable_unprepare(xqspi->pclk);
1032		return ret;
1033	}
1034
1035	return 0;
1036}
1037
1038/**
1039 * zynqmp_qspi_exec_op() - Initiates the QSPI transfer
1040 * @mem: The SPI memory
1041 * @op: The memory operation to execute
1042 *
1043 * Executes a memory operation.
1044 *
1045 * This function first selects the chip and starts the memory operation.
1046 *
1047 * Return: 0 in case of success, a negative error code otherwise.
1048 */
1049static int zynqmp_qspi_exec_op(struct spi_mem *mem,
1050			       const struct spi_mem_op *op)
1051{
1052	struct zynqmp_qspi *xqspi = spi_controller_get_devdata
1053				    (mem->spi->master);
1054	int err = 0, i;
1055	u32 genfifoentry = 0;
1056	u16 opcode = op->cmd.opcode;
1057	u64 opaddr;
1058
1059	dev_dbg(xqspi->dev, "cmd:%#x mode:%d.%d.%d.%d\n",
1060		op->cmd.opcode, op->cmd.buswidth, op->addr.buswidth,
1061		op->dummy.buswidth, op->data.buswidth);
1062
1063	mutex_lock(&xqspi->op_lock);
1064	zynqmp_qspi_config_op(xqspi, mem->spi);
1065	zynqmp_qspi_chipselect(mem->spi, false);
1066	genfifoentry |= xqspi->genfifocs;
1067	genfifoentry |= xqspi->genfifobus;
1068
1069	if (op->cmd.opcode) {
1070		reinit_completion(&xqspi->data_completion);
1071		xqspi->txbuf = &opcode;
1072		xqspi->rxbuf = NULL;
1073		xqspi->bytes_to_transfer = op->cmd.nbytes;
1074		xqspi->bytes_to_receive = 0;
1075		zynqmp_qspi_write_op(xqspi, op->cmd.buswidth, genfifoentry);
1076		zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
1077				   zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST) |
1078				   GQSPI_CFG_START_GEN_FIFO_MASK);
1079		zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST,
1080				   GQSPI_IER_GENFIFOEMPTY_MASK |
1081				   GQSPI_IER_TXNOT_FULL_MASK);
1082		if (!wait_for_completion_timeout
1083		    (&xqspi->data_completion, msecs_to_jiffies(1000))) {
1084			err = -ETIMEDOUT;
1085			goto return_err;
1086		}
1087	}
1088
1089	if (op->addr.nbytes) {
1090		xqspi->txbuf = &opaddr;
1091		for (i = 0; i < op->addr.nbytes; i++) {
1092			*(((u8 *)xqspi->txbuf) + i) = op->addr.val >>
1093					(8 * (op->addr.nbytes - i - 1));
1094		}
1095
1096		reinit_completion(&xqspi->data_completion);
1097		xqspi->rxbuf = NULL;
1098		xqspi->bytes_to_transfer = op->addr.nbytes;
1099		xqspi->bytes_to_receive = 0;
1100		zynqmp_qspi_write_op(xqspi, op->addr.buswidth, genfifoentry);
1101		zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
1102				   zynqmp_gqspi_read(xqspi,
1103						     GQSPI_CONFIG_OFST) |
1104				   GQSPI_CFG_START_GEN_FIFO_MASK);
1105		zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST,
1106				   GQSPI_IER_TXEMPTY_MASK |
1107				   GQSPI_IER_GENFIFOEMPTY_MASK |
1108				   GQSPI_IER_TXNOT_FULL_MASK);
1109		if (!wait_for_completion_timeout
1110		    (&xqspi->data_completion, msecs_to_jiffies(1000))) {
1111			err = -ETIMEDOUT;
1112			goto return_err;
1113		}
1114	}
1115
1116	if (op->dummy.nbytes) {
1117		xqspi->txbuf = NULL;
1118		xqspi->rxbuf = NULL;
1119		/*
1120		 * xqspi->bytes_to_transfer here represents the dummy circles
1121		 * which need to be sent.
1122		 */
1123		xqspi->bytes_to_transfer = op->dummy.nbytes * 8 / op->dummy.buswidth;
1124		xqspi->bytes_to_receive = 0;
1125		/*
1126		 * Using op->data.buswidth instead of op->dummy.buswidth here because
1127		 * we need to use it to configure the correct SPI mode.
1128		 */
1129		zynqmp_qspi_write_op(xqspi, op->data.buswidth,
1130				     genfifoentry);
1131		zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
1132				   zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST) |
1133				   GQSPI_CFG_START_GEN_FIFO_MASK);
1134	}
1135
1136	if (op->data.nbytes) {
1137		reinit_completion(&xqspi->data_completion);
1138		if (op->data.dir == SPI_MEM_DATA_OUT) {
1139			xqspi->txbuf = (u8 *)op->data.buf.out;
1140			xqspi->rxbuf = NULL;
1141			xqspi->bytes_to_transfer = op->data.nbytes;
1142			xqspi->bytes_to_receive = 0;
1143			zynqmp_qspi_write_op(xqspi, op->data.buswidth,
1144					     genfifoentry);
1145			zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
1146					   zynqmp_gqspi_read
1147					   (xqspi, GQSPI_CONFIG_OFST) |
1148					   GQSPI_CFG_START_GEN_FIFO_MASK);
1149			zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST,
1150					   GQSPI_IER_TXEMPTY_MASK |
1151					   GQSPI_IER_GENFIFOEMPTY_MASK |
1152					   GQSPI_IER_TXNOT_FULL_MASK);
1153		} else {
1154			xqspi->txbuf = NULL;
1155			xqspi->rxbuf = (u8 *)op->data.buf.in;
1156			xqspi->bytes_to_receive = op->data.nbytes;
1157			xqspi->bytes_to_transfer = 0;
1158			err = zynqmp_qspi_read_op(xqspi, op->data.buswidth,
1159					    genfifoentry);
1160			if (err)
1161				goto return_err;
1162
1163			zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
1164					   zynqmp_gqspi_read
1165					   (xqspi, GQSPI_CONFIG_OFST) |
1166					   GQSPI_CFG_START_GEN_FIFO_MASK);
1167			if (xqspi->mode == GQSPI_MODE_DMA) {
1168				zynqmp_gqspi_write
1169					(xqspi, GQSPI_QSPIDMA_DST_I_EN_OFST,
1170					 GQSPI_QSPIDMA_DST_I_EN_DONE_MASK);
1171			} else {
1172				zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST,
1173						   GQSPI_IER_GENFIFOEMPTY_MASK |
1174						   GQSPI_IER_RXNEMPTY_MASK |
1175						   GQSPI_IER_RXEMPTY_MASK);
1176			}
1177		}
1178		if (!wait_for_completion_timeout
1179		    (&xqspi->data_completion, msecs_to_jiffies(1000)))
1180			err = -ETIMEDOUT;
1181	}
1182
1183return_err:
1184
1185	zynqmp_qspi_chipselect(mem->spi, true);
1186	mutex_unlock(&xqspi->op_lock);
1187
1188	return err;
1189}
1190
1191static const struct dev_pm_ops zynqmp_qspi_dev_pm_ops = {
1192	SET_RUNTIME_PM_OPS(zynqmp_runtime_suspend,
1193			   zynqmp_runtime_resume, NULL)
1194	SET_SYSTEM_SLEEP_PM_OPS(zynqmp_qspi_suspend, zynqmp_qspi_resume)
1195};
1196
1197static const struct qspi_platform_data versal_qspi_def = {
1198	.quirks = QSPI_QUIRK_HAS_TAPDELAY,
1199};
1200
1201static const struct of_device_id zynqmp_qspi_of_match[] = {
1202	{ .compatible = "xlnx,zynqmp-qspi-1.0"},
1203	{ .compatible = "xlnx,versal-qspi-1.0", .data = &versal_qspi_def },
1204	{ /* End of table */ }
1205};
1206
1207static const struct spi_controller_mem_ops zynqmp_qspi_mem_ops = {
1208	.exec_op = zynqmp_qspi_exec_op,
1209};
1210
1211/**
1212 * zynqmp_qspi_probe - Probe method for the QSPI driver
1213 * @pdev:	Pointer to the platform_device structure
1214 *
1215 * This function initializes the driver data structures and the hardware.
1216 *
1217 * Return:	0 on success; error value otherwise
1218 */
1219static int zynqmp_qspi_probe(struct platform_device *pdev)
1220{
1221	int ret = 0;
1222	struct spi_controller *ctlr;
1223	struct zynqmp_qspi *xqspi;
 
1224	struct device *dev = &pdev->dev;
1225	struct device_node *np = dev->of_node;
1226	u32 num_cs;
1227	const struct qspi_platform_data *p_data;
1228
1229	ctlr = spi_alloc_master(&pdev->dev, sizeof(*xqspi));
1230	if (!ctlr)
1231		return -ENOMEM;
1232
1233	xqspi = spi_controller_get_devdata(ctlr);
1234	xqspi->dev = dev;
1235	xqspi->ctlr = ctlr;
1236	platform_set_drvdata(pdev, xqspi);
1237
1238	p_data = of_device_get_match_data(&pdev->dev);
1239	if (p_data && (p_data->quirks & QSPI_QUIRK_HAS_TAPDELAY))
1240		xqspi->has_tapdelay = true;
1241
1242	xqspi->regs = devm_platform_ioremap_resource(pdev, 0);
 
1243	if (IS_ERR(xqspi->regs)) {
1244		ret = PTR_ERR(xqspi->regs);
1245		goto remove_master;
1246	}
1247
 
1248	xqspi->pclk = devm_clk_get(&pdev->dev, "pclk");
1249	if (IS_ERR(xqspi->pclk)) {
1250		dev_err(dev, "pclk clock not found.\n");
1251		ret = PTR_ERR(xqspi->pclk);
1252		goto remove_master;
1253	}
1254
1255	xqspi->refclk = devm_clk_get(&pdev->dev, "ref_clk");
1256	if (IS_ERR(xqspi->refclk)) {
1257		dev_err(dev, "ref_clk clock not found.\n");
1258		ret = PTR_ERR(xqspi->refclk);
1259		goto remove_master;
1260	}
1261
1262	ret = clk_prepare_enable(xqspi->pclk);
1263	if (ret) {
1264		dev_err(dev, "Unable to enable APB clock.\n");
1265		goto remove_master;
1266	}
1267
 
 
 
 
 
 
 
1268	ret = clk_prepare_enable(xqspi->refclk);
1269	if (ret) {
1270		dev_err(dev, "Unable to enable device clock.\n");
1271		goto clk_dis_pclk;
1272	}
1273
1274	init_completion(&xqspi->data_completion);
1275
1276	mutex_init(&xqspi->op_lock);
1277
1278	pm_runtime_use_autosuspend(&pdev->dev);
1279	pm_runtime_set_autosuspend_delay(&pdev->dev, SPI_AUTOSUSPEND_TIMEOUT);
1280	pm_runtime_set_active(&pdev->dev);
1281	pm_runtime_enable(&pdev->dev);
1282
1283	ret = pm_runtime_get_sync(&pdev->dev);
1284	if (ret < 0) {
1285		dev_err(&pdev->dev, "Failed to pm_runtime_get_sync: %d\n", ret);
1286		goto clk_dis_all;
1287	}
1288
1289	ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_RX_DUAL | SPI_RX_QUAD |
1290		SPI_TX_DUAL | SPI_TX_QUAD;
1291	ctlr->max_speed_hz = clk_get_rate(xqspi->refclk) / 2;
1292	xqspi->speed_hz = ctlr->max_speed_hz;
1293
1294	/* QSPI controller initializations */
1295	zynqmp_qspi_init_hw(xqspi);
1296
1297	xqspi->irq = platform_get_irq(pdev, 0);
1298	if (xqspi->irq <= 0) {
1299		ret = -ENXIO;
 
1300		goto clk_dis_all;
1301	}
1302	ret = devm_request_irq(&pdev->dev, xqspi->irq, zynqmp_qspi_irq,
1303			       0, pdev->name, xqspi);
1304	if (ret != 0) {
1305		ret = -ENXIO;
1306		dev_err(dev, "request_irq failed\n");
1307		goto clk_dis_all;
1308	}
1309
1310	ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(44));
1311	if (ret)
1312		goto clk_dis_all;
1313
1314	ret = of_property_read_u32(np, "num-cs", &num_cs);
1315	if (ret < 0) {
1316		ctlr->num_chipselect = GQSPI_DEFAULT_NUM_CS;
1317	} else if (num_cs > GQSPI_MAX_NUM_CS) {
1318		ret = -EINVAL;
1319		dev_err(&pdev->dev, "only %d chip selects are available\n",
1320			GQSPI_MAX_NUM_CS);
1321		goto clk_dis_all;
1322	} else {
1323		ctlr->num_chipselect = num_cs;
1324	}
1325
1326	ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
1327	ctlr->mem_ops = &zynqmp_qspi_mem_ops;
1328	ctlr->setup = zynqmp_qspi_setup_op;
1329	ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
1330	ctlr->dev.of_node = np;
1331	ctlr->auto_runtime_pm = true;
1332
1333	ret = devm_spi_register_controller(&pdev->dev, ctlr);
1334	if (ret) {
1335		dev_err(&pdev->dev, "spi_register_controller failed\n");
1336		goto clk_dis_all;
1337	}
1338
1339	pm_runtime_mark_last_busy(&pdev->dev);
1340	pm_runtime_put_autosuspend(&pdev->dev);
1341
1342	return 0;
1343
1344clk_dis_all:
1345	pm_runtime_put_sync(&pdev->dev);
1346	pm_runtime_set_suspended(&pdev->dev);
1347	pm_runtime_disable(&pdev->dev);
1348	clk_disable_unprepare(xqspi->refclk);
1349clk_dis_pclk:
1350	clk_disable_unprepare(xqspi->pclk);
1351remove_master:
1352	spi_controller_put(ctlr);
1353
1354	return ret;
1355}
1356
1357/**
1358 * zynqmp_qspi_remove - Remove method for the QSPI driver
1359 * @pdev:	Pointer to the platform_device structure
1360 *
1361 * This function is called if a device is physically removed from the system or
1362 * if the driver module is being unloaded. It frees all resources allocated to
1363 * the device.
1364 *
1365 * Return:	0 Always
1366 */
1367static int zynqmp_qspi_remove(struct platform_device *pdev)
1368{
1369	struct zynqmp_qspi *xqspi = platform_get_drvdata(pdev);
 
1370
1371	zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, 0x0);
1372	clk_disable_unprepare(xqspi->refclk);
1373	clk_disable_unprepare(xqspi->pclk);
1374	pm_runtime_set_suspended(&pdev->dev);
1375	pm_runtime_disable(&pdev->dev);
1376
1377	return 0;
1378}
 
 
 
 
 
1379
1380MODULE_DEVICE_TABLE(of, zynqmp_qspi_of_match);
1381
1382static struct platform_driver zynqmp_qspi_driver = {
1383	.probe = zynqmp_qspi_probe,
1384	.remove = zynqmp_qspi_remove,
1385	.driver = {
1386		.name = "zynqmp-qspi",
1387		.of_match_table = zynqmp_qspi_of_match,
1388		.pm = &zynqmp_qspi_dev_pm_ops,
1389	},
1390};
1391
1392module_platform_driver(zynqmp_qspi_driver);
1393
1394MODULE_AUTHOR("Xilinx, Inc.");
1395MODULE_DESCRIPTION("Xilinx Zynqmp QSPI driver");
1396MODULE_LICENSE("GPL");
v4.17
 
   1/*
   2 * Xilinx Zynq UltraScale+ MPSoC Quad-SPI (QSPI) controller driver
   3 * (master mode only)
   4 *
   5 * Copyright (C) 2009 - 2015 Xilinx, Inc.
   6 *
   7 * This program is free software; you can redistribute it and/or modify it
   8 * under the terms of the GNU General Public License version 2 as published
   9 * by the Free Software Foundation; either version 2 of the License, or
  10 * (at your option) any later version.
  11 */
  12
  13#include <linux/clk.h>
  14#include <linux/delay.h>
  15#include <linux/dma-mapping.h>
  16#include <linux/dmaengine.h>
 
  17#include <linux/interrupt.h>
  18#include <linux/io.h>
  19#include <linux/module.h>
  20#include <linux/of_irq.h>
  21#include <linux/of_address.h>
 
  22#include <linux/platform_device.h>
 
  23#include <linux/spi/spi.h>
  24#include <linux/spinlock.h>
  25#include <linux/workqueue.h>
 
  26
  27/* Generic QSPI register offsets */
  28#define GQSPI_CONFIG_OFST		0x00000100
  29#define GQSPI_ISR_OFST			0x00000104
  30#define GQSPI_IDR_OFST			0x0000010C
  31#define GQSPI_IER_OFST			0x00000108
  32#define GQSPI_IMASK_OFST		0x00000110
  33#define GQSPI_EN_OFST			0x00000114
  34#define GQSPI_TXD_OFST			0x0000011C
  35#define GQSPI_RXD_OFST			0x00000120
  36#define GQSPI_TX_THRESHOLD_OFST		0x00000128
  37#define GQSPI_RX_THRESHOLD_OFST		0x0000012C
 
  38#define GQSPI_LPBK_DLY_ADJ_OFST		0x00000138
  39#define GQSPI_GEN_FIFO_OFST		0x00000140
  40#define GQSPI_SEL_OFST			0x00000144
  41#define GQSPI_GF_THRESHOLD_OFST		0x00000150
  42#define GQSPI_FIFO_CTRL_OFST		0x0000014C
  43#define GQSPI_QSPIDMA_DST_CTRL_OFST	0x0000080C
  44#define GQSPI_QSPIDMA_DST_SIZE_OFST	0x00000804
  45#define GQSPI_QSPIDMA_DST_STS_OFST	0x00000808
  46#define GQSPI_QSPIDMA_DST_I_STS_OFST	0x00000814
  47#define GQSPI_QSPIDMA_DST_I_EN_OFST	0x00000818
  48#define GQSPI_QSPIDMA_DST_I_DIS_OFST	0x0000081C
  49#define GQSPI_QSPIDMA_DST_I_MASK_OFST	0x00000820
  50#define GQSPI_QSPIDMA_DST_ADDR_OFST	0x00000800
  51#define GQSPI_QSPIDMA_DST_ADDR_MSB_OFST 0x00000828
 
  52
  53/* GQSPI register bit masks */
  54#define GQSPI_SEL_MASK				0x00000001
  55#define GQSPI_EN_MASK				0x00000001
  56#define GQSPI_LPBK_DLY_ADJ_USE_LPBK_MASK	0x00000020
  57#define GQSPI_ISR_WR_TO_CLR_MASK		0x00000002
  58#define GQSPI_IDR_ALL_MASK			0x00000FBE
  59#define GQSPI_CFG_MODE_EN_MASK			0xC0000000
  60#define GQSPI_CFG_GEN_FIFO_START_MODE_MASK	0x20000000
  61#define GQSPI_CFG_ENDIAN_MASK			0x04000000
  62#define GQSPI_CFG_EN_POLL_TO_MASK		0x00100000
  63#define GQSPI_CFG_WP_HOLD_MASK			0x00080000
  64#define GQSPI_CFG_BAUD_RATE_DIV_MASK		0x00000038
  65#define GQSPI_CFG_CLK_PHA_MASK			0x00000004
  66#define GQSPI_CFG_CLK_POL_MASK			0x00000002
  67#define GQSPI_CFG_START_GEN_FIFO_MASK		0x10000000
  68#define GQSPI_GENFIFO_IMM_DATA_MASK		0x000000FF
  69#define GQSPI_GENFIFO_DATA_XFER			0x00000100
  70#define GQSPI_GENFIFO_EXP			0x00000200
  71#define GQSPI_GENFIFO_MODE_SPI			0x00000400
  72#define GQSPI_GENFIFO_MODE_DUALSPI		0x00000800
  73#define GQSPI_GENFIFO_MODE_QUADSPI		0x00000C00
  74#define GQSPI_GENFIFO_MODE_MASK			0x00000C00
  75#define GQSPI_GENFIFO_CS_LOWER			0x00001000
  76#define GQSPI_GENFIFO_CS_UPPER			0x00002000
  77#define GQSPI_GENFIFO_BUS_LOWER			0x00004000
  78#define GQSPI_GENFIFO_BUS_UPPER			0x00008000
  79#define GQSPI_GENFIFO_BUS_BOTH			0x0000C000
  80#define GQSPI_GENFIFO_BUS_MASK			0x0000C000
  81#define GQSPI_GENFIFO_TX			0x00010000
  82#define GQSPI_GENFIFO_RX			0x00020000
  83#define GQSPI_GENFIFO_STRIPE			0x00040000
  84#define GQSPI_GENFIFO_POLL			0x00080000
  85#define GQSPI_GENFIFO_EXP_START			0x00000100
  86#define GQSPI_FIFO_CTRL_RST_RX_FIFO_MASK	0x00000004
  87#define GQSPI_FIFO_CTRL_RST_TX_FIFO_MASK	0x00000002
  88#define GQSPI_FIFO_CTRL_RST_GEN_FIFO_MASK	0x00000001
  89#define GQSPI_ISR_RXEMPTY_MASK			0x00000800
  90#define GQSPI_ISR_GENFIFOFULL_MASK		0x00000400
  91#define GQSPI_ISR_GENFIFONOT_FULL_MASK		0x00000200
  92#define GQSPI_ISR_TXEMPTY_MASK			0x00000100
  93#define GQSPI_ISR_GENFIFOEMPTY_MASK		0x00000080
  94#define GQSPI_ISR_RXFULL_MASK			0x00000020
  95#define GQSPI_ISR_RXNEMPTY_MASK			0x00000010
  96#define GQSPI_ISR_TXFULL_MASK			0x00000008
  97#define GQSPI_ISR_TXNOT_FULL_MASK		0x00000004
  98#define GQSPI_ISR_POLL_TIME_EXPIRE_MASK		0x00000002
  99#define GQSPI_IER_TXNOT_FULL_MASK		0x00000004
 100#define GQSPI_IER_RXEMPTY_MASK			0x00000800
 101#define GQSPI_IER_POLL_TIME_EXPIRE_MASK		0x00000002
 102#define GQSPI_IER_RXNEMPTY_MASK			0x00000010
 103#define GQSPI_IER_GENFIFOEMPTY_MASK		0x00000080
 104#define GQSPI_IER_TXEMPTY_MASK			0x00000100
 105#define GQSPI_QSPIDMA_DST_INTR_ALL_MASK		0x000000FE
 106#define GQSPI_QSPIDMA_DST_STS_WTC		0x0000E000
 107#define GQSPI_CFG_MODE_EN_DMA_MASK		0x80000000
 108#define GQSPI_ISR_IDR_MASK			0x00000994
 109#define GQSPI_QSPIDMA_DST_I_EN_DONE_MASK	0x00000002
 110#define GQSPI_QSPIDMA_DST_I_STS_DONE_MASK	0x00000002
 111#define GQSPI_IRQ_MASK				0x00000980
 112
 113#define GQSPI_CFG_BAUD_RATE_DIV_SHIFT		3
 114#define GQSPI_GENFIFO_CS_SETUP			0x4
 115#define GQSPI_GENFIFO_CS_HOLD			0x3
 116#define GQSPI_TXD_DEPTH				64
 117#define GQSPI_RX_FIFO_THRESHOLD			32
 118#define GQSPI_RX_FIFO_FILL	(GQSPI_RX_FIFO_THRESHOLD * 4)
 119#define GQSPI_TX_FIFO_THRESHOLD_RESET_VAL	32
 120#define GQSPI_TX_FIFO_FILL	(GQSPI_TXD_DEPTH -\
 121				GQSPI_TX_FIFO_THRESHOLD_RESET_VAL)
 122#define GQSPI_GEN_FIFO_THRESHOLD_RESET_VAL	0X10
 123#define GQSPI_QSPIDMA_DST_CTRL_RESET_VAL	0x803FFA00
 124#define GQSPI_SELECT_FLASH_CS_LOWER		0x1
 125#define GQSPI_SELECT_FLASH_CS_UPPER		0x2
 126#define GQSPI_SELECT_FLASH_CS_BOTH		0x3
 127#define GQSPI_SELECT_FLASH_BUS_LOWER		0x1
 128#define GQSPI_SELECT_FLASH_BUS_UPPER		0x2
 129#define GQSPI_SELECT_FLASH_BUS_BOTH		0x3
 130#define GQSPI_BAUD_DIV_MAX	7	/* Baud rate divisor maximum */
 131#define GQSPI_BAUD_DIV_SHIFT	2	/* Baud rate divisor shift */
 132#define GQSPI_SELECT_MODE_SPI		0x1
 133#define GQSPI_SELECT_MODE_DUALSPI	0x2
 134#define GQSPI_SELECT_MODE_QUADSPI	0x4
 135#define GQSPI_DMA_UNALIGN		0x3
 136#define GQSPI_DEFAULT_NUM_CS	1	/* Default number of chip selects */
 137
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 138enum mode_type {GQSPI_MODE_IO, GQSPI_MODE_DMA};
 139
 140/**
 
 
 
 
 
 
 
 
 141 * struct zynqmp_qspi - Defines qspi driver instance
 
 142 * @regs:		Virtual address of the QSPI controller registers
 143 * @refclk:		Pointer to the peripheral clock
 144 * @pclk:		Pointer to the APB clock
 145 * @irq:		IRQ number
 146 * @dev:		Pointer to struct device
 147 * @txbuf:		Pointer to the TX buffer
 148 * @rxbuf:		Pointer to the RX buffer
 149 * @bytes_to_transfer:	Number of bytes left to transfer
 150 * @bytes_to_receive:	Number of bytes left to receive
 151 * @genfifocs:		Used for chip select
 152 * @genfifobus:		Used to select the upper or lower bus
 153 * @dma_rx_bytes:	Remaining bytes to receive by DMA mode
 154 * @dma_addr:		DMA address after mapping the kernel buffer
 155 * @genfifoentry:	Used for storing the genfifoentry instruction.
 156 * @mode:		Defines the mode in which QSPI is operating
 
 
 
 
 157 */
 158struct zynqmp_qspi {
 
 159	void __iomem *regs;
 160	struct clk *refclk;
 161	struct clk *pclk;
 162	int irq;
 163	struct device *dev;
 164	const void *txbuf;
 165	void *rxbuf;
 166	int bytes_to_transfer;
 167	int bytes_to_receive;
 168	u32 genfifocs;
 169	u32 genfifobus;
 170	u32 dma_rx_bytes;
 171	dma_addr_t dma_addr;
 172	u32 genfifoentry;
 173	enum mode_type mode;
 
 
 
 
 174};
 175
 176/**
 177 * zynqmp_gqspi_read:	For GQSPI controller read operation
 178 * @xqspi:	Pointer to the zynqmp_qspi structure
 179 * @offset:	Offset from where to read
 
 180 */
 181static u32 zynqmp_gqspi_read(struct zynqmp_qspi *xqspi, u32 offset)
 182{
 183	return readl_relaxed(xqspi->regs + offset);
 184}
 185
 186/**
 187 * zynqmp_gqspi_write:	For GQSPI controller write operation
 188 * @xqspi:	Pointer to the zynqmp_qspi structure
 189 * @offset:	Offset where to write
 190 * @val:	Value to be written
 191 */
 192static inline void zynqmp_gqspi_write(struct zynqmp_qspi *xqspi, u32 offset,
 193				      u32 val)
 194{
 195	writel_relaxed(val, (xqspi->regs + offset));
 196}
 197
 198/**
 199 * zynqmp_gqspi_selectslave:	For selection of slave device
 200 * @instanceptr:	Pointer to the zynqmp_qspi structure
 201 * @flashcs:	For chip select
 202 * @flashbus:	To check which bus is selected- upper or lower
 203 */
 204static void zynqmp_gqspi_selectslave(struct zynqmp_qspi *instanceptr,
 205				     u8 slavecs, u8 slavebus)
 206{
 207	/*
 208	 * Bus and CS lines selected here will be updated in the instance and
 209	 * used for subsequent GENFIFO entries during transfer.
 210	 */
 211
 212	/* Choose slave select line */
 213	switch (slavecs) {
 214	case GQSPI_SELECT_FLASH_CS_BOTH:
 215		instanceptr->genfifocs = GQSPI_GENFIFO_CS_LOWER |
 216			GQSPI_GENFIFO_CS_UPPER;
 217		break;
 218	case GQSPI_SELECT_FLASH_CS_UPPER:
 219		instanceptr->genfifocs = GQSPI_GENFIFO_CS_UPPER;
 220		break;
 221	case GQSPI_SELECT_FLASH_CS_LOWER:
 222		instanceptr->genfifocs = GQSPI_GENFIFO_CS_LOWER;
 223		break;
 224	default:
 225		dev_warn(instanceptr->dev, "Invalid slave select\n");
 226	}
 227
 228	/* Choose the bus */
 229	switch (slavebus) {
 230	case GQSPI_SELECT_FLASH_BUS_BOTH:
 231		instanceptr->genfifobus = GQSPI_GENFIFO_BUS_LOWER |
 232			GQSPI_GENFIFO_BUS_UPPER;
 233		break;
 234	case GQSPI_SELECT_FLASH_BUS_UPPER:
 235		instanceptr->genfifobus = GQSPI_GENFIFO_BUS_UPPER;
 236		break;
 237	case GQSPI_SELECT_FLASH_BUS_LOWER:
 238		instanceptr->genfifobus = GQSPI_GENFIFO_BUS_LOWER;
 239		break;
 240	default:
 241		dev_warn(instanceptr->dev, "Invalid slave bus\n");
 242	}
 243}
 244
 245/**
 246 * zynqmp_qspi_init_hw:	Initialize the hardware
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 247 * @xqspi:	Pointer to the zynqmp_qspi structure
 248 *
 249 * The default settings of the QSPI controller's configurable parameters on
 250 * reset are
 251 *	- Master mode
 252 *	- TX threshold set to 1
 253 *	- RX threshold set to 1
 254 *	- Flash memory interface mode enabled
 255 * This function performs the following actions
 256 *	- Disable and clear all the interrupts
 257 *	- Enable manual slave select
 258 *	- Enable manual start
 259 *	- Deselect all the chip select lines
 260 *	- Set the little endian mode of TX FIFO and
 
 
 261 *	- Enable the QSPI controller
 262 */
 263static void zynqmp_qspi_init_hw(struct zynqmp_qspi *xqspi)
 264{
 265	u32 config_reg;
 
 266
 267	/* Select the GQSPI mode */
 268	zynqmp_gqspi_write(xqspi, GQSPI_SEL_OFST, GQSPI_SEL_MASK);
 269	/* Clear and disable interrupts */
 270	zynqmp_gqspi_write(xqspi, GQSPI_ISR_OFST,
 271			   zynqmp_gqspi_read(xqspi, GQSPI_ISR_OFST) |
 272			   GQSPI_ISR_WR_TO_CLR_MASK);
 273	/* Clear the DMA STS */
 274	zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_I_STS_OFST,
 275			   zynqmp_gqspi_read(xqspi,
 276					     GQSPI_QSPIDMA_DST_I_STS_OFST));
 277	zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_STS_OFST,
 278			   zynqmp_gqspi_read(xqspi,
 279					     GQSPI_QSPIDMA_DST_STS_OFST) |
 280					     GQSPI_QSPIDMA_DST_STS_WTC);
 281	zynqmp_gqspi_write(xqspi, GQSPI_IDR_OFST, GQSPI_IDR_ALL_MASK);
 282	zynqmp_gqspi_write(xqspi,
 283			   GQSPI_QSPIDMA_DST_I_DIS_OFST,
 284			   GQSPI_QSPIDMA_DST_INTR_ALL_MASK);
 285	/* Disable the GQSPI */
 286	zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, 0x0);
 287	config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST);
 288	config_reg &= ~GQSPI_CFG_MODE_EN_MASK;
 289	/* Manual start */
 290	config_reg |= GQSPI_CFG_GEN_FIFO_START_MODE_MASK;
 291	/* Little endian by default */
 292	config_reg &= ~GQSPI_CFG_ENDIAN_MASK;
 293	/* Disable poll time out */
 294	config_reg &= ~GQSPI_CFG_EN_POLL_TO_MASK;
 295	/* Set hold bit */
 296	config_reg |= GQSPI_CFG_WP_HOLD_MASK;
 297	/* Clear pre-scalar by default */
 298	config_reg &= ~GQSPI_CFG_BAUD_RATE_DIV_MASK;
 299	/* CPHA 0 */
 300	config_reg &= ~GQSPI_CFG_CLK_PHA_MASK;
 301	/* CPOL 0 */
 302	config_reg &= ~GQSPI_CFG_CLK_POL_MASK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 303	zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg);
 304
 
 
 
 305	/* Clear the TX and RX FIFO */
 306	zynqmp_gqspi_write(xqspi, GQSPI_FIFO_CTRL_OFST,
 307			   GQSPI_FIFO_CTRL_RST_RX_FIFO_MASK |
 308			   GQSPI_FIFO_CTRL_RST_TX_FIFO_MASK |
 309			   GQSPI_FIFO_CTRL_RST_GEN_FIFO_MASK);
 310	/* Set by default to allow for high frequencies */
 311	zynqmp_gqspi_write(xqspi, GQSPI_LPBK_DLY_ADJ_OFST,
 312			   zynqmp_gqspi_read(xqspi, GQSPI_LPBK_DLY_ADJ_OFST) |
 313			   GQSPI_LPBK_DLY_ADJ_USE_LPBK_MASK);
 314	/* Reset thresholds */
 315	zynqmp_gqspi_write(xqspi, GQSPI_TX_THRESHOLD_OFST,
 316			   GQSPI_TX_FIFO_THRESHOLD_RESET_VAL);
 317	zynqmp_gqspi_write(xqspi, GQSPI_RX_THRESHOLD_OFST,
 318			   GQSPI_RX_FIFO_THRESHOLD);
 319	zynqmp_gqspi_write(xqspi, GQSPI_GF_THRESHOLD_OFST,
 320			   GQSPI_GEN_FIFO_THRESHOLD_RESET_VAL);
 321	zynqmp_gqspi_selectslave(xqspi,
 322				 GQSPI_SELECT_FLASH_CS_LOWER,
 323				 GQSPI_SELECT_FLASH_BUS_LOWER);
 324	/* Initialize DMA */
 325	zynqmp_gqspi_write(xqspi,
 326			GQSPI_QSPIDMA_DST_CTRL_OFST,
 327			GQSPI_QSPIDMA_DST_CTRL_RESET_VAL);
 328
 329	/* Enable the GQSPI */
 330	zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, GQSPI_EN_MASK);
 331}
 332
 333/**
 334 * zynqmp_qspi_copy_read_data:	Copy data to RX buffer
 335 * @xqspi:	Pointer to the zynqmp_qspi structure
 336 * @data:	The variable where data is stored
 337 * @size:	Number of bytes to be copied from data to RX buffer
 338 */
 339static void zynqmp_qspi_copy_read_data(struct zynqmp_qspi *xqspi,
 340				       ulong data, u8 size)
 341{
 342	memcpy(xqspi->rxbuf, &data, size);
 343	xqspi->rxbuf += size;
 344	xqspi->bytes_to_receive -= size;
 345}
 346
 347/**
 348 * zynqmp_prepare_transfer_hardware:	Prepares hardware for transfer.
 349 * @master:	Pointer to the spi_master structure which provides
 350 *		information about the controller.
 351 *
 352 * This function enables SPI master controller.
 353 *
 354 * Return:	0 on success; error value otherwise
 355 */
 356static int zynqmp_prepare_transfer_hardware(struct spi_master *master)
 357{
 358	struct zynqmp_qspi *xqspi = spi_master_get_devdata(master);
 359	int ret;
 360
 361	ret = clk_enable(xqspi->refclk);
 362	if (ret)
 363		return ret;
 364
 365	ret = clk_enable(xqspi->pclk);
 366	if (ret)
 367		goto clk_err;
 368
 369	zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, GQSPI_EN_MASK);
 370	return 0;
 371clk_err:
 372	clk_disable(xqspi->refclk);
 373	return ret;
 374}
 375
 376/**
 377 * zynqmp_unprepare_transfer_hardware:	Relaxes hardware after transfer
 378 * @master:	Pointer to the spi_master structure which provides
 379 *		information about the controller.
 380 *
 381 * This function disables the SPI master controller.
 382 *
 383 * Return:	Always 0
 384 */
 385static int zynqmp_unprepare_transfer_hardware(struct spi_master *master)
 386{
 387	struct zynqmp_qspi *xqspi = spi_master_get_devdata(master);
 388
 389	zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, 0x0);
 390	clk_disable(xqspi->refclk);
 391	clk_disable(xqspi->pclk);
 392	return 0;
 393}
 394
 395/**
 396 * zynqmp_qspi_chipselect:	Select or deselect the chip select line
 397 * @qspi:	Pointer to the spi_device structure
 398 * @is_high:	Select(0) or deselect (1) the chip select line
 399 */
 400static void zynqmp_qspi_chipselect(struct spi_device *qspi, bool is_high)
 401{
 402	struct zynqmp_qspi *xqspi = spi_master_get_devdata(qspi->master);
 403	ulong timeout;
 404	u32 genfifoentry = 0x0, statusreg;
 405
 406	genfifoentry |= GQSPI_GENFIFO_MODE_SPI;
 407	genfifoentry |= xqspi->genfifobus;
 408
 409	if (!is_high) {
 
 
 
 
 
 
 
 
 410		genfifoentry |= xqspi->genfifocs;
 411		genfifoentry |= GQSPI_GENFIFO_CS_SETUP;
 412	} else {
 413		genfifoentry |= GQSPI_GENFIFO_CS_HOLD;
 414	}
 415
 416	zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, genfifoentry);
 417
 418	/* Dummy generic FIFO entry */
 419	zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, 0x0);
 420
 421	/* Manually start the generic FIFO command */
 422	zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
 423			zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST) |
 424			GQSPI_CFG_START_GEN_FIFO_MASK);
 425
 426	timeout = jiffies + msecs_to_jiffies(1000);
 427
 428	/* Wait until the generic FIFO command is empty */
 429	do {
 430		statusreg = zynqmp_gqspi_read(xqspi, GQSPI_ISR_OFST);
 431
 432		if ((statusreg & GQSPI_ISR_GENFIFOEMPTY_MASK) &&
 433			(statusreg & GQSPI_ISR_TXEMPTY_MASK))
 434			break;
 435		else
 436			cpu_relax();
 437	} while (!time_after_eq(jiffies, timeout));
 438
 439	if (time_after_eq(jiffies, timeout))
 440		dev_err(xqspi->dev, "Chip select timed out\n");
 441}
 442
 443/**
 444 * zynqmp_qspi_setup_transfer:	Configure QSPI controller for specified
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 445 *				transfer
 
 446 * @qspi:	Pointer to the spi_device structure
 447 * @transfer:	Pointer to the spi_transfer structure which provides
 448 *		information about next transfer setup parameters
 449 *
 450 * Sets the operational mode of QSPI controller for the next QSPI transfer and
 451 * sets the requested clock frequency.
 452 *
 453 * Return:	Always 0
 454 *
 455 * Note:
 456 *	If the requested frequency is not an exact match with what can be
 457 *	obtained using the pre-scalar value, the driver sets the clock
 458 *	frequency which is lower than the requested frequency (maximum lower)
 459 *	for the transfer.
 460 *
 461 *	If the requested frequency is higher or lower than that is supported
 462 *	by the QSPI controller the driver will set the highest or lowest
 463 *	frequency supported by controller.
 464 */
 465static int zynqmp_qspi_setup_transfer(struct spi_device *qspi,
 466				      struct spi_transfer *transfer)
 467{
 468	struct zynqmp_qspi *xqspi = spi_master_get_devdata(qspi->master);
 469	ulong clk_rate;
 470	u32 config_reg, req_hz, baud_rate_val = 0;
 471
 472	if (transfer)
 473		req_hz = transfer->speed_hz;
 474	else
 475		req_hz = qspi->max_speed_hz;
 476
 477	/* Set the clock frequency */
 478	/* If req_hz == 0, default to lowest speed */
 479	clk_rate = clk_get_rate(xqspi->refclk);
 480
 481	while ((baud_rate_val < GQSPI_BAUD_DIV_MAX) &&
 482	       (clk_rate /
 483		(GQSPI_BAUD_DIV_SHIFT << baud_rate_val)) > req_hz)
 484		baud_rate_val++;
 
 
 
 
 
 485
 486	config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST);
 487
 488	/* Set the QSPI clock phase and clock polarity */
 489	config_reg &= (~GQSPI_CFG_CLK_PHA_MASK) & (~GQSPI_CFG_CLK_POL_MASK);
 490
 491	if (qspi->mode & SPI_CPHA)
 492		config_reg |= GQSPI_CFG_CLK_PHA_MASK;
 493	if (qspi->mode & SPI_CPOL)
 494		config_reg |= GQSPI_CFG_CLK_POL_MASK;
 495
 496	config_reg &= ~GQSPI_CFG_BAUD_RATE_DIV_MASK;
 497	config_reg |= (baud_rate_val << GQSPI_CFG_BAUD_RATE_DIV_SHIFT);
 498	zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg);
 499	return 0;
 500}
 501
 502/**
 503 * zynqmp_qspi_setup:	Configure the QSPI controller
 504 * @qspi:	Pointer to the spi_device structure
 505 *
 506 * Sets the operational mode of QSPI controller for the next QSPI transfer,
 507 * baud rate and divisor value to setup the requested qspi clock.
 508 *
 509 * Return:	0 on success; error value otherwise.
 510 */
 511static int zynqmp_qspi_setup(struct spi_device *qspi)
 512{
 513	if (qspi->master->busy)
 
 
 
 514		return -EBUSY;
 
 
 
 515	return 0;
 516}
 517
 518/**
 519 * zynqmp_qspi_filltxfifo:	Fills the TX FIFO as long as there is room in
 520 *				the FIFO or the bytes required to be
 521 *				transmitted.
 522 * @xqspi:	Pointer to the zynqmp_qspi structure
 523 * @size:	Number of bytes to be copied from TX buffer to TX FIFO
 524 */
 525static void zynqmp_qspi_filltxfifo(struct zynqmp_qspi *xqspi, int size)
 526{
 527	u32 count = 0, intermediate;
 528
 529	while ((xqspi->bytes_to_transfer > 0) && (count < size)) {
 530		memcpy(&intermediate, xqspi->txbuf, 4);
 531		zynqmp_gqspi_write(xqspi, GQSPI_TXD_OFST, intermediate);
 532
 533		if (xqspi->bytes_to_transfer >= 4) {
 
 534			xqspi->txbuf += 4;
 535			xqspi->bytes_to_transfer -= 4;
 
 536		} else {
 
 
 537			xqspi->txbuf += xqspi->bytes_to_transfer;
 538			xqspi->bytes_to_transfer = 0;
 
 539		}
 540		count++;
 541	}
 542}
 543
 544/**
 545 * zynqmp_qspi_readrxfifo:	Fills the RX FIFO as long as there is room in
 546 *				the FIFO.
 547 * @xqspi:	Pointer to the zynqmp_qspi structure
 548 * @size:	Number of bytes to be copied from RX buffer to RX FIFO
 549 */
 550static void zynqmp_qspi_readrxfifo(struct zynqmp_qspi *xqspi, u32 size)
 551{
 552	ulong data;
 553	int count = 0;
 554
 555	while ((count < size) && (xqspi->bytes_to_receive > 0)) {
 556		if (xqspi->bytes_to_receive >= 4) {
 557			(*(u32 *) xqspi->rxbuf) =
 558			zynqmp_gqspi_read(xqspi, GQSPI_RXD_OFST);
 559			xqspi->rxbuf += 4;
 560			xqspi->bytes_to_receive -= 4;
 561			count += 4;
 562		} else {
 563			data = zynqmp_gqspi_read(xqspi, GQSPI_RXD_OFST);
 564			count += xqspi->bytes_to_receive;
 565			zynqmp_qspi_copy_read_data(xqspi, data,
 566						   xqspi->bytes_to_receive);
 567			xqspi->bytes_to_receive = 0;
 568		}
 569	}
 570}
 571
 572/**
 573 * zynqmp_process_dma_irq:	Handler for DMA done interrupt of QSPI
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 574 *				controller
 575 * @xqspi:	zynqmp_qspi instance pointer
 576 *
 577 * This function handles DMA interrupt only.
 578 */
 579static void zynqmp_process_dma_irq(struct zynqmp_qspi *xqspi)
 580{
 581	u32 config_reg, genfifoentry;
 582
 583	dma_unmap_single(xqspi->dev, xqspi->dma_addr,
 584				xqspi->dma_rx_bytes, DMA_FROM_DEVICE);
 585	xqspi->rxbuf += xqspi->dma_rx_bytes;
 586	xqspi->bytes_to_receive -= xqspi->dma_rx_bytes;
 587	xqspi->dma_rx_bytes = 0;
 588
 589	/* Disabling the DMA interrupts */
 590	zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_I_DIS_OFST,
 591					GQSPI_QSPIDMA_DST_I_EN_DONE_MASK);
 592
 593	if (xqspi->bytes_to_receive > 0) {
 594		/* Switch to IO mode,for remaining bytes to receive */
 595		config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST);
 596		config_reg &= ~GQSPI_CFG_MODE_EN_MASK;
 597		zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg);
 598
 599		/* Initiate the transfer of remaining bytes */
 600		genfifoentry = xqspi->genfifoentry;
 601		genfifoentry |= xqspi->bytes_to_receive;
 602		zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, genfifoentry);
 603
 604		/* Dummy generic FIFO entry */
 605		zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, 0x0);
 606
 607		/* Manual start */
 608		zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
 609			(zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST) |
 610			GQSPI_CFG_START_GEN_FIFO_MASK));
 
 611
 612		/* Enable the RX interrupts for IO mode */
 613		zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST,
 614				GQSPI_IER_GENFIFOEMPTY_MASK |
 615				GQSPI_IER_RXNEMPTY_MASK |
 616				GQSPI_IER_RXEMPTY_MASK);
 617	}
 618}
 619
 620/**
 621 * zynqmp_qspi_irq:	Interrupt service routine of the QSPI controller
 622 * @irq:	IRQ number
 623 * @dev_id:	Pointer to the xqspi structure
 624 *
 625 * This function handles TX empty only.
 626 * On TX empty interrupt this function reads the received data from RX FIFO
 627 * and fills the TX FIFO if there is any data remaining to be transferred.
 628 *
 629 * Return:	IRQ_HANDLED when interrupt is handled
 630 *		IRQ_NONE otherwise.
 631 */
 632static irqreturn_t zynqmp_qspi_irq(int irq, void *dev_id)
 633{
 634	struct spi_master *master = dev_id;
 635	struct zynqmp_qspi *xqspi = spi_master_get_devdata(master);
 636	int ret = IRQ_NONE;
 637	u32 status, mask, dma_status = 0;
 638
 639	status = zynqmp_gqspi_read(xqspi, GQSPI_ISR_OFST);
 640	zynqmp_gqspi_write(xqspi, GQSPI_ISR_OFST, status);
 641	mask = (status & ~(zynqmp_gqspi_read(xqspi, GQSPI_IMASK_OFST)));
 642
 643	/* Read and clear DMA status */
 644	if (xqspi->mode == GQSPI_MODE_DMA) {
 645		dma_status =
 646			zynqmp_gqspi_read(xqspi, GQSPI_QSPIDMA_DST_I_STS_OFST);
 647		zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_I_STS_OFST,
 648								dma_status);
 649	}
 650
 651	if (mask & GQSPI_ISR_TXNOT_FULL_MASK) {
 652		zynqmp_qspi_filltxfifo(xqspi, GQSPI_TX_FIFO_FILL);
 653		ret = IRQ_HANDLED;
 654	}
 655
 656	if (dma_status & GQSPI_QSPIDMA_DST_I_STS_DONE_MASK) {
 657		zynqmp_process_dma_irq(xqspi);
 658		ret = IRQ_HANDLED;
 659	} else if (!(mask & GQSPI_IER_RXEMPTY_MASK) &&
 660			(mask & GQSPI_IER_GENFIFOEMPTY_MASK)) {
 661		zynqmp_qspi_readrxfifo(xqspi, GQSPI_RX_FIFO_FILL);
 662		ret = IRQ_HANDLED;
 663	}
 664
 665	if ((xqspi->bytes_to_receive == 0) && (xqspi->bytes_to_transfer == 0)
 666			&& ((status & GQSPI_IRQ_MASK) == GQSPI_IRQ_MASK)) {
 667		zynqmp_gqspi_write(xqspi, GQSPI_IDR_OFST, GQSPI_ISR_IDR_MASK);
 668		spi_finalize_current_transfer(master);
 669		ret = IRQ_HANDLED;
 670	}
 671	return ret;
 672}
 673
 674/**
 675 * zynqmp_qspi_selectspimode:	Selects SPI mode - x1 or x2 or x4.
 676 * @xqspi:	xqspi is a pointer to the GQSPI instance
 677 * @spimode:	spimode - SPI or DUAL or QUAD.
 678 * Return:	Mask to set desired SPI mode in GENFIFO entry.
 679 */
 680static inline u32 zynqmp_qspi_selectspimode(struct zynqmp_qspi *xqspi,
 681						u8 spimode)
 682{
 683	u32 mask = 0;
 684
 685	switch (spimode) {
 686	case GQSPI_SELECT_MODE_DUALSPI:
 687		mask = GQSPI_GENFIFO_MODE_DUALSPI;
 688		break;
 689	case GQSPI_SELECT_MODE_QUADSPI:
 690		mask = GQSPI_GENFIFO_MODE_QUADSPI;
 691		break;
 692	case GQSPI_SELECT_MODE_SPI:
 693		mask = GQSPI_GENFIFO_MODE_SPI;
 694		break;
 695	default:
 696		dev_warn(xqspi->dev, "Invalid SPI mode\n");
 697	}
 698
 699	return mask;
 700}
 701
 702/**
 703 * zynq_qspi_setuprxdma:	This function sets up the RX DMA operation
 704 * @xqspi:	xqspi is a pointer to the GQSPI instance.
 
 
 705 */
 706static void zynq_qspi_setuprxdma(struct zynqmp_qspi *xqspi)
 707{
 708	u32 rx_bytes, rx_rem, config_reg;
 709	dma_addr_t addr;
 710	u64 dma_align =  (u64)(uintptr_t)xqspi->rxbuf;
 711
 712	if ((xqspi->bytes_to_receive < 8) ||
 713		((dma_align & GQSPI_DMA_UNALIGN) != 0x0)) {
 714		/* Setting to IO mode */
 715		config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST);
 716		config_reg &= ~GQSPI_CFG_MODE_EN_MASK;
 717		zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg);
 718		xqspi->mode = GQSPI_MODE_IO;
 719		xqspi->dma_rx_bytes = 0;
 720		return;
 721	}
 722
 723	rx_rem = xqspi->bytes_to_receive % 4;
 724	rx_bytes = (xqspi->bytes_to_receive - rx_rem);
 725
 726	addr = dma_map_single(xqspi->dev, (void *)xqspi->rxbuf,
 727						rx_bytes, DMA_FROM_DEVICE);
 728	if (dma_mapping_error(xqspi->dev, addr))
 729		dev_err(xqspi->dev, "ERR:rxdma:memory not mapped\n");
 
 
 730
 731	xqspi->dma_rx_bytes = rx_bytes;
 732	xqspi->dma_addr = addr;
 733	zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_ADDR_OFST,
 734				(u32)(addr & 0xffffffff));
 735	addr = ((addr >> 16) >> 16);
 736	zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_ADDR_MSB_OFST,
 737				((u32)addr) & 0xfff);
 738
 739	/* Enabling the DMA mode */
 740	config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST);
 741	config_reg &= ~GQSPI_CFG_MODE_EN_MASK;
 742	config_reg |= GQSPI_CFG_MODE_EN_DMA_MASK;
 743	zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg);
 744
 745	/* Switch to DMA mode */
 746	xqspi->mode = GQSPI_MODE_DMA;
 747
 748	/* Write the number of bytes to transfer */
 749	zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_SIZE_OFST, rx_bytes);
 
 
 750}
 751
 752/**
 753 * zynqmp_qspi_txrxsetup:	This function checks the TX/RX buffers in
 754 *				the transfer and sets up the GENFIFO entries,
 755 *				TX FIFO as required.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 756 * @xqspi:	xqspi is a pointer to the GQSPI instance.
 757 * @transfer:	It is a pointer to the structure containing transfer data.
 758 * @genfifoentry:	genfifoentry is pointer to the variable in which
 759 *			GENFIFO	mask is returned to calling function
 
 
 760 */
 761static void zynqmp_qspi_txrxsetup(struct zynqmp_qspi *xqspi,
 762				  struct spi_transfer *transfer,
 763				  u32 *genfifoentry)
 764{
 765	u32 config_reg;
 766
 767	/* Transmit */
 768	if ((xqspi->txbuf != NULL) && (xqspi->rxbuf == NULL)) {
 769		/* Setup data to be TXed */
 770		*genfifoentry &= ~GQSPI_GENFIFO_RX;
 771		*genfifoentry |= GQSPI_GENFIFO_DATA_XFER;
 772		*genfifoentry |= GQSPI_GENFIFO_TX;
 773		*genfifoentry |=
 774			zynqmp_qspi_selectspimode(xqspi, transfer->tx_nbits);
 775		xqspi->bytes_to_transfer = transfer->len;
 776		if (xqspi->mode == GQSPI_MODE_DMA) {
 777			config_reg = zynqmp_gqspi_read(xqspi,
 778							GQSPI_CONFIG_OFST);
 779			config_reg &= ~GQSPI_CFG_MODE_EN_MASK;
 780			zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
 781								config_reg);
 782			xqspi->mode = GQSPI_MODE_IO;
 783		}
 784		zynqmp_qspi_filltxfifo(xqspi, GQSPI_TXD_DEPTH);
 785		/* Discard RX data */
 786		xqspi->bytes_to_receive = 0;
 787	} else if ((xqspi->txbuf == NULL) && (xqspi->rxbuf != NULL)) {
 788		/* Receive */
 789
 790		/* TX auto fill */
 791		*genfifoentry &= ~GQSPI_GENFIFO_TX;
 792		/* Setup RX */
 793		*genfifoentry |= GQSPI_GENFIFO_DATA_XFER;
 794		*genfifoentry |= GQSPI_GENFIFO_RX;
 795		*genfifoentry |=
 796			zynqmp_qspi_selectspimode(xqspi, transfer->rx_nbits);
 797		xqspi->bytes_to_transfer = 0;
 798		xqspi->bytes_to_receive = transfer->len;
 799		zynq_qspi_setuprxdma(xqspi);
 800	}
 801}
 802
 803/**
 804 * zynqmp_qspi_start_transfer:	Initiates the QSPI transfer
 805 * @master:	Pointer to the spi_master structure which provides
 806 *		information about the controller.
 807 * @qspi:	Pointer to the spi_device structure
 808 * @transfer:	Pointer to the spi_transfer structure which provide information
 809 *		about next transfer parameters
 810 *
 811 * This function fills the TX FIFO, starts the QSPI transfer, and waits for the
 812 * transfer to be completed.
 813 *
 814 * Return:	Number of bytes transferred in the last transfer
 815 */
 816static int zynqmp_qspi_start_transfer(struct spi_master *master,
 817				      struct spi_device *qspi,
 818				      struct spi_transfer *transfer)
 819{
 820	struct zynqmp_qspi *xqspi = spi_master_get_devdata(master);
 821	u32 genfifoentry = 0x0, transfer_len;
 
 822
 823	xqspi->txbuf = transfer->tx_buf;
 824	xqspi->rxbuf = transfer->rx_buf;
 
 825
 826	zynqmp_qspi_setup_transfer(qspi, transfer);
 827
 828	genfifoentry |= xqspi->genfifocs;
 829	genfifoentry |= xqspi->genfifobus;
 830
 831	zynqmp_qspi_txrxsetup(xqspi, transfer, &genfifoentry);
 
 
 
 
 
 
 
 
 
 
 
 
 832
 833	if (xqspi->mode == GQSPI_MODE_DMA)
 834		transfer_len = xqspi->dma_rx_bytes;
 835	else
 836		transfer_len = transfer->len;
 837
 838	xqspi->genfifoentry = genfifoentry;
 839	if ((transfer_len) < GQSPI_GENFIFO_IMM_DATA_MASK) {
 840		genfifoentry &= ~GQSPI_GENFIFO_IMM_DATA_MASK;
 841		genfifoentry |= transfer_len;
 842		zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, genfifoentry);
 843	} else {
 844		int tempcount = transfer_len;
 845		u32 exponent = 8;	/* 2^8 = 256 */
 846		u8 imm_data = tempcount & 0xFF;
 847
 848		tempcount &= ~(tempcount & 0xFF);
 849		/* Immediate entry */
 850		if (tempcount != 0) {
 851			/* Exponent entries */
 852			genfifoentry |= GQSPI_GENFIFO_EXP;
 853			while (tempcount != 0) {
 854				if (tempcount & GQSPI_GENFIFO_EXP_START) {
 855					genfifoentry &=
 856					    ~GQSPI_GENFIFO_IMM_DATA_MASK;
 857					genfifoentry |= exponent;
 858					zynqmp_gqspi_write(xqspi,
 859							   GQSPI_GEN_FIFO_OFST,
 860							   genfifoentry);
 861				}
 862				tempcount = tempcount >> 1;
 863				exponent++;
 864			}
 865		}
 866		if (imm_data != 0) {
 867			genfifoentry &= ~GQSPI_GENFIFO_EXP;
 868			genfifoentry &= ~GQSPI_GENFIFO_IMM_DATA_MASK;
 869			genfifoentry |= (u8) (imm_data & 0xFF);
 870			zynqmp_gqspi_write(xqspi,
 871					   GQSPI_GEN_FIFO_OFST, genfifoentry);
 872		}
 873	}
 874
 875	if ((xqspi->mode == GQSPI_MODE_IO) &&
 876			(xqspi->rxbuf != NULL)) {
 877		/* Dummy generic FIFO entry */
 878		zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, 0x0);
 879	}
 880
 881	/* Since we are using manual mode */
 882	zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
 883			   zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST) |
 884			   GQSPI_CFG_START_GEN_FIFO_MASK);
 885
 886	if (xqspi->txbuf != NULL)
 887		/* Enable interrupts for TX */
 888		zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST,
 889				   GQSPI_IER_TXEMPTY_MASK |
 890					GQSPI_IER_GENFIFOEMPTY_MASK |
 891					GQSPI_IER_TXNOT_FULL_MASK);
 892
 893	if (xqspi->rxbuf != NULL) {
 894		/* Enable interrupts for RX */
 895		if (xqspi->mode == GQSPI_MODE_DMA) {
 896			/* Enable DMA interrupts */
 897			zynqmp_gqspi_write(xqspi,
 898					GQSPI_QSPIDMA_DST_I_EN_OFST,
 899					GQSPI_QSPIDMA_DST_I_EN_DONE_MASK);
 900		} else {
 901			zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST,
 902					GQSPI_IER_GENFIFOEMPTY_MASK |
 903					GQSPI_IER_RXNEMPTY_MASK |
 904					GQSPI_IER_RXEMPTY_MASK);
 905		}
 906	}
 907
 908	return transfer->len;
 909}
 910
 911/**
 912 * zynqmp_qspi_suspend:	Suspend method for the QSPI driver
 913 * @_dev:	Address of the platform_device structure
 914 *
 915 * This function stops the QSPI driver queue and disables the QSPI controller
 916 *
 917 * Return:	Always 0
 918 */
 919static int __maybe_unused zynqmp_qspi_suspend(struct device *dev)
 920{
 921	struct platform_device *pdev = to_platform_device(dev);
 922	struct spi_master *master = platform_get_drvdata(pdev);
 923
 924	spi_master_suspend(master);
 925
 926	zynqmp_unprepare_transfer_hardware(master);
 927
 928	return 0;
 929}
 930
 931/**
 932 * zynqmp_qspi_resume:	Resume method for the QSPI driver
 933 * @dev:	Address of the platform_device structure
 934 *
 935 * The function starts the QSPI driver queue and initializes the QSPI
 936 * controller
 937 *
 938 * Return:	0 on success; error value otherwise
 939 */
 940static int __maybe_unused zynqmp_qspi_resume(struct device *dev)
 941{
 942	struct platform_device *pdev = to_platform_device(dev);
 943	struct spi_master *master = platform_get_drvdata(pdev);
 944	struct zynqmp_qspi *xqspi = spi_master_get_devdata(master);
 945	int ret = 0;
 946
 947	ret = clk_enable(xqspi->pclk);
 948	if (ret) {
 949		dev_err(dev, "Cannot enable APB clock.\n");
 950		return ret;
 951	}
 952
 953	ret = clk_enable(xqspi->refclk);
 954	if (ret) {
 955		dev_err(dev, "Cannot enable device clock.\n");
 956		clk_disable(xqspi->pclk);
 957		return ret;
 958	}
 959
 960	spi_master_resume(master);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 961
 962	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 963}
 964
 965static SIMPLE_DEV_PM_OPS(zynqmp_qspi_dev_pm_ops, zynqmp_qspi_suspend,
 966			 zynqmp_qspi_resume);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 967
 968/**
 969 * zynqmp_qspi_probe:	Probe method for the QSPI driver
 970 * @pdev:	Pointer to the platform_device structure
 971 *
 972 * This function initializes the driver data structures and the hardware.
 973 *
 974 * Return:	0 on success; error value otherwise
 975 */
 976static int zynqmp_qspi_probe(struct platform_device *pdev)
 977{
 978	int ret = 0;
 979	struct spi_master *master;
 980	struct zynqmp_qspi *xqspi;
 981	struct resource *res;
 982	struct device *dev = &pdev->dev;
 
 
 
 983
 984	master = spi_alloc_master(&pdev->dev, sizeof(*xqspi));
 985	if (!master)
 986		return -ENOMEM;
 987
 988	xqspi = spi_master_get_devdata(master);
 989	master->dev.of_node = pdev->dev.of_node;
 990	platform_set_drvdata(pdev, master);
 
 
 
 
 
 991
 992	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 993	xqspi->regs = devm_ioremap_resource(&pdev->dev, res);
 994	if (IS_ERR(xqspi->regs)) {
 995		ret = PTR_ERR(xqspi->regs);
 996		goto remove_master;
 997	}
 998
 999	xqspi->dev = dev;
1000	xqspi->pclk = devm_clk_get(&pdev->dev, "pclk");
1001	if (IS_ERR(xqspi->pclk)) {
1002		dev_err(dev, "pclk clock not found.\n");
1003		ret = PTR_ERR(xqspi->pclk);
1004		goto remove_master;
1005	}
1006
 
 
 
 
 
 
 
1007	ret = clk_prepare_enable(xqspi->pclk);
1008	if (ret) {
1009		dev_err(dev, "Unable to enable APB clock.\n");
1010		goto remove_master;
1011	}
1012
1013	xqspi->refclk = devm_clk_get(&pdev->dev, "ref_clk");
1014	if (IS_ERR(xqspi->refclk)) {
1015		dev_err(dev, "ref_clk clock not found.\n");
1016		ret = PTR_ERR(xqspi->refclk);
1017		goto clk_dis_pclk;
1018	}
1019
1020	ret = clk_prepare_enable(xqspi->refclk);
1021	if (ret) {
1022		dev_err(dev, "Unable to enable device clock.\n");
1023		goto clk_dis_pclk;
1024	}
1025
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1026	/* QSPI controller initializations */
1027	zynqmp_qspi_init_hw(xqspi);
1028
1029	xqspi->irq = platform_get_irq(pdev, 0);
1030	if (xqspi->irq <= 0) {
1031		ret = -ENXIO;
1032		dev_err(dev, "irq resource not found\n");
1033		goto clk_dis_all;
1034	}
1035	ret = devm_request_irq(&pdev->dev, xqspi->irq, zynqmp_qspi_irq,
1036			       0, pdev->name, master);
1037	if (ret != 0) {
1038		ret = -ENXIO;
1039		dev_err(dev, "request_irq failed\n");
1040		goto clk_dis_all;
1041	}
1042
1043	master->num_chipselect = GQSPI_DEFAULT_NUM_CS;
 
 
1044
1045	master->setup = zynqmp_qspi_setup;
1046	master->set_cs = zynqmp_qspi_chipselect;
1047	master->transfer_one = zynqmp_qspi_start_transfer;
1048	master->prepare_transfer_hardware = zynqmp_prepare_transfer_hardware;
1049	master->unprepare_transfer_hardware =
1050					zynqmp_unprepare_transfer_hardware;
1051	master->max_speed_hz = clk_get_rate(xqspi->refclk) / 2;
1052	master->bits_per_word_mask = SPI_BPW_MASK(8);
1053	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_RX_DUAL | SPI_RX_QUAD |
1054			    SPI_TX_DUAL | SPI_TX_QUAD;
 
1055
1056	if (master->dev.parent == NULL)
1057		master->dev.parent = &master->dev;
 
 
 
 
1058
1059	ret = spi_register_master(master);
1060	if (ret)
 
1061		goto clk_dis_all;
 
 
 
 
1062
1063	return 0;
1064
1065clk_dis_all:
 
 
 
1066	clk_disable_unprepare(xqspi->refclk);
1067clk_dis_pclk:
1068	clk_disable_unprepare(xqspi->pclk);
1069remove_master:
1070	spi_master_put(master);
1071
1072	return ret;
1073}
1074
1075/**
1076 * zynqmp_qspi_remove:	Remove method for the QSPI driver
1077 * @pdev:	Pointer to the platform_device structure
1078 *
1079 * This function is called if a device is physically removed from the system or
1080 * if the driver module is being unloaded. It frees all resources allocated to
1081 * the device.
1082 *
1083 * Return:	0 Always
1084 */
1085static int zynqmp_qspi_remove(struct platform_device *pdev)
1086{
1087	struct spi_master *master = platform_get_drvdata(pdev);
1088	struct zynqmp_qspi *xqspi = spi_master_get_devdata(master);
1089
1090	zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, 0x0);
1091	clk_disable_unprepare(xqspi->refclk);
1092	clk_disable_unprepare(xqspi->pclk);
1093
1094	spi_unregister_master(master);
1095
1096	return 0;
1097}
1098
1099static const struct of_device_id zynqmp_qspi_of_match[] = {
1100	{ .compatible = "xlnx,zynqmp-qspi-1.0", },
1101	{ /* End of table */ }
1102};
1103
1104MODULE_DEVICE_TABLE(of, zynqmp_qspi_of_match);
1105
1106static struct platform_driver zynqmp_qspi_driver = {
1107	.probe = zynqmp_qspi_probe,
1108	.remove = zynqmp_qspi_remove,
1109	.driver = {
1110		.name = "zynqmp-qspi",
1111		.of_match_table = zynqmp_qspi_of_match,
1112		.pm = &zynqmp_qspi_dev_pm_ops,
1113	},
1114};
1115
1116module_platform_driver(zynqmp_qspi_driver);
1117
1118MODULE_AUTHOR("Xilinx, Inc.");
1119MODULE_DESCRIPTION("Xilinx Zynqmp QSPI driver");
1120MODULE_LICENSE("GPL");