Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * MMCIF eMMC driver.
   4 *
   5 * Copyright (C) 2010 Renesas Solutions Corp.
   6 * Yusuke Goda <yusuke.goda.sx@renesas.com>
   7 */
   8
   9/*
  10 * The MMCIF driver is now processing MMC requests asynchronously, according
  11 * to the Linux MMC API requirement.
  12 *
  13 * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
  14 * data, and optional stop. To achieve asynchronous processing each of these
  15 * stages is split into two halves: a top and a bottom half. The top half
  16 * initialises the hardware, installs a timeout handler to handle completion
  17 * timeouts, and returns. In case of the command stage this immediately returns
  18 * control to the caller, leaving all further processing to run asynchronously.
  19 * All further request processing is performed by the bottom halves.
  20 *
  21 * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
  22 * thread, a DMA completion callback, if DMA is used, a timeout work, and
  23 * request- and stage-specific handler methods.
  24 *
  25 * Each bottom half run begins with either a hardware interrupt, a DMA callback
  26 * invocation, or a timeout work run. In case of an error or a successful
  27 * processing completion, the MMC core is informed and the request processing is
  28 * finished. In case processing has to continue, i.e., if data has to be read
  29 * from or written to the card, or if a stop command has to be sent, the next
  30 * top half is called, which performs the necessary hardware handling and
  31 * reschedules the timeout work. This returns the driver state machine into the
  32 * bottom half waiting state.
  33 */
  34
  35#include <linux/bitops.h>
  36#include <linux/clk.h>
  37#include <linux/completion.h>
  38#include <linux/delay.h>
  39#include <linux/dma-mapping.h>
  40#include <linux/dmaengine.h>
  41#include <linux/mmc/card.h>
  42#include <linux/mmc/core.h>
  43#include <linux/mmc/host.h>
  44#include <linux/mmc/mmc.h>
  45#include <linux/mmc/sdio.h>
 
  46#include <linux/mmc/slot-gpio.h>
  47#include <linux/mod_devicetable.h>
  48#include <linux/mutex.h>
  49#include <linux/of_device.h>
  50#include <linux/pagemap.h>
  51#include <linux/platform_data/sh_mmcif.h>
  52#include <linux/platform_device.h>
  53#include <linux/pm_qos.h>
  54#include <linux/pm_runtime.h>
  55#include <linux/sh_dma.h>
  56#include <linux/spinlock.h>
  57#include <linux/module.h>
  58
  59#define DRIVER_NAME	"sh_mmcif"
  60
  61/* CE_CMD_SET */
  62#define CMD_MASK		0x3f000000
  63#define CMD_SET_RTYP_NO		((0 << 23) | (0 << 22))
  64#define CMD_SET_RTYP_6B		((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
  65#define CMD_SET_RTYP_17B	((1 << 23) | (0 << 22)) /* R2 */
  66#define CMD_SET_RBSY		(1 << 21) /* R1b */
  67#define CMD_SET_CCSEN		(1 << 20)
  68#define CMD_SET_WDAT		(1 << 19) /* 1: on data, 0: no data */
  69#define CMD_SET_DWEN		(1 << 18) /* 1: write, 0: read */
  70#define CMD_SET_CMLTE		(1 << 17) /* 1: multi block trans, 0: single */
  71#define CMD_SET_CMD12EN		(1 << 16) /* 1: CMD12 auto issue */
  72#define CMD_SET_RIDXC_INDEX	((0 << 15) | (0 << 14)) /* index check */
  73#define CMD_SET_RIDXC_BITS	((0 << 15) | (1 << 14)) /* check bits check */
  74#define CMD_SET_RIDXC_NO	((1 << 15) | (0 << 14)) /* no check */
  75#define CMD_SET_CRC7C		((0 << 13) | (0 << 12)) /* CRC7 check*/
  76#define CMD_SET_CRC7C_BITS	((0 << 13) | (1 << 12)) /* check bits check*/
  77#define CMD_SET_CRC7C_INTERNAL	((1 << 13) | (0 << 12)) /* internal CRC7 check*/
  78#define CMD_SET_CRC16C		(1 << 10) /* 0: CRC16 check*/
  79#define CMD_SET_CRCSTE		(1 << 8) /* 1: not receive CRC status */
  80#define CMD_SET_TBIT		(1 << 7) /* 1: tran mission bit "Low" */
  81#define CMD_SET_OPDM		(1 << 6) /* 1: open/drain */
  82#define CMD_SET_CCSH		(1 << 5)
  83#define CMD_SET_DARS		(1 << 2) /* Dual Data Rate */
  84#define CMD_SET_DATW_1		((0 << 1) | (0 << 0)) /* 1bit */
  85#define CMD_SET_DATW_4		((0 << 1) | (1 << 0)) /* 4bit */
  86#define CMD_SET_DATW_8		((1 << 1) | (0 << 0)) /* 8bit */
  87
  88/* CE_CMD_CTRL */
  89#define CMD_CTRL_BREAK		(1 << 0)
  90
  91/* CE_BLOCK_SET */
  92#define BLOCK_SIZE_MASK		0x0000ffff
  93
  94/* CE_INT */
  95#define INT_CCSDE		(1 << 29)
  96#define INT_CMD12DRE		(1 << 26)
  97#define INT_CMD12RBE		(1 << 25)
  98#define INT_CMD12CRE		(1 << 24)
  99#define INT_DTRANE		(1 << 23)
 100#define INT_BUFRE		(1 << 22)
 101#define INT_BUFWEN		(1 << 21)
 102#define INT_BUFREN		(1 << 20)
 103#define INT_CCSRCV		(1 << 19)
 104#define INT_RBSYE		(1 << 17)
 105#define INT_CRSPE		(1 << 16)
 106#define INT_CMDVIO		(1 << 15)
 107#define INT_BUFVIO		(1 << 14)
 108#define INT_WDATERR		(1 << 11)
 109#define INT_RDATERR		(1 << 10)
 110#define INT_RIDXERR		(1 << 9)
 111#define INT_RSPERR		(1 << 8)
 112#define INT_CCSTO		(1 << 5)
 113#define INT_CRCSTO		(1 << 4)
 114#define INT_WDATTO		(1 << 3)
 115#define INT_RDATTO		(1 << 2)
 116#define INT_RBSYTO		(1 << 1)
 117#define INT_RSPTO		(1 << 0)
 118#define INT_ERR_STS		(INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
 119				 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
 120				 INT_CCSTO | INT_CRCSTO | INT_WDATTO |	  \
 121				 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
 122
 123#define INT_ALL			(INT_RBSYE | INT_CRSPE | INT_BUFREN |	 \
 124				 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
 125				 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
 126
 127#define INT_CCS			(INT_CCSTO | INT_CCSRCV | INT_CCSDE)
 128
 129/* CE_INT_MASK */
 130#define MASK_ALL		0x00000000
 131#define MASK_MCCSDE		(1 << 29)
 132#define MASK_MCMD12DRE		(1 << 26)
 133#define MASK_MCMD12RBE		(1 << 25)
 134#define MASK_MCMD12CRE		(1 << 24)
 135#define MASK_MDTRANE		(1 << 23)
 136#define MASK_MBUFRE		(1 << 22)
 137#define MASK_MBUFWEN		(1 << 21)
 138#define MASK_MBUFREN		(1 << 20)
 139#define MASK_MCCSRCV		(1 << 19)
 140#define MASK_MRBSYE		(1 << 17)
 141#define MASK_MCRSPE		(1 << 16)
 142#define MASK_MCMDVIO		(1 << 15)
 143#define MASK_MBUFVIO		(1 << 14)
 144#define MASK_MWDATERR		(1 << 11)
 145#define MASK_MRDATERR		(1 << 10)
 146#define MASK_MRIDXERR		(1 << 9)
 147#define MASK_MRSPERR		(1 << 8)
 148#define MASK_MCCSTO		(1 << 5)
 149#define MASK_MCRCSTO		(1 << 4)
 150#define MASK_MWDATTO		(1 << 3)
 151#define MASK_MRDATTO		(1 << 2)
 152#define MASK_MRBSYTO		(1 << 1)
 153#define MASK_MRSPTO		(1 << 0)
 154
 155#define MASK_START_CMD		(MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
 156				 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
 157				 MASK_MCRCSTO | MASK_MWDATTO | \
 158				 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
 159
 160#define MASK_CLEAN		(INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE |	\
 161				 MASK_MBUFREN | MASK_MBUFWEN |			\
 162				 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE |	\
 163				 MASK_MCMD12RBE | MASK_MCMD12CRE)
 164
 165/* CE_HOST_STS1 */
 166#define STS1_CMDSEQ		(1 << 31)
 167
 168/* CE_HOST_STS2 */
 169#define STS2_CRCSTE		(1 << 31)
 170#define STS2_CRC16E		(1 << 30)
 171#define STS2_AC12CRCE		(1 << 29)
 172#define STS2_RSPCRC7E		(1 << 28)
 173#define STS2_CRCSTEBE		(1 << 27)
 174#define STS2_RDATEBE		(1 << 26)
 175#define STS2_AC12REBE		(1 << 25)
 176#define STS2_RSPEBE		(1 << 24)
 177#define STS2_AC12IDXE		(1 << 23)
 178#define STS2_RSPIDXE		(1 << 22)
 179#define STS2_CCSTO		(1 << 15)
 180#define STS2_RDATTO		(1 << 14)
 181#define STS2_DATBSYTO		(1 << 13)
 182#define STS2_CRCSTTO		(1 << 12)
 183#define STS2_AC12BSYTO		(1 << 11)
 184#define STS2_RSPBSYTO		(1 << 10)
 185#define STS2_AC12RSPTO		(1 << 9)
 186#define STS2_RSPTO		(1 << 8)
 187#define STS2_CRC_ERR		(STS2_CRCSTE | STS2_CRC16E |		\
 188				 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
 189#define STS2_TIMEOUT_ERR	(STS2_CCSTO | STS2_RDATTO |		\
 190				 STS2_DATBSYTO | STS2_CRCSTTO |		\
 191				 STS2_AC12BSYTO | STS2_RSPBSYTO |	\
 192				 STS2_AC12RSPTO | STS2_RSPTO)
 193
 194#define CLKDEV_EMMC_DATA	52000000 /* 52 MHz */
 195#define CLKDEV_MMC_DATA		20000000 /* 20 MHz */
 196#define CLKDEV_INIT		400000   /* 400 kHz */
 197
 198enum sh_mmcif_state {
 199	STATE_IDLE,
 200	STATE_REQUEST,
 201	STATE_IOS,
 202	STATE_TIMEOUT,
 203};
 204
 205enum sh_mmcif_wait_for {
 206	MMCIF_WAIT_FOR_REQUEST,
 207	MMCIF_WAIT_FOR_CMD,
 208	MMCIF_WAIT_FOR_MREAD,
 209	MMCIF_WAIT_FOR_MWRITE,
 210	MMCIF_WAIT_FOR_READ,
 211	MMCIF_WAIT_FOR_WRITE,
 212	MMCIF_WAIT_FOR_READ_END,
 213	MMCIF_WAIT_FOR_WRITE_END,
 214	MMCIF_WAIT_FOR_STOP,
 215};
 216
 217/*
 218 * difference for each SoC
 219 */
 220struct sh_mmcif_host {
 221	struct mmc_host *mmc;
 222	struct mmc_request *mrq;
 223	struct platform_device *pd;
 224	struct clk *clk;
 225	int bus_width;
 226	unsigned char timing;
 227	bool sd_error;
 228	bool dying;
 229	long timeout;
 230	void __iomem *addr;
 231	u32 *pio_ptr;
 232	spinlock_t lock;		/* protect sh_mmcif_host::state */
 233	enum sh_mmcif_state state;
 234	enum sh_mmcif_wait_for wait_for;
 235	struct delayed_work timeout_work;
 236	size_t blocksize;
 237	int sg_idx;
 238	int sg_blkidx;
 239	bool power;
 240	bool ccs_enable;		/* Command Completion Signal support */
 241	bool clk_ctrl2_enable;
 242	struct mutex thread_lock;
 243	u32 clkdiv_map;         /* see CE_CLK_CTRL::CLKDIV */
 244
 245	/* DMA support */
 246	struct dma_chan		*chan_rx;
 247	struct dma_chan		*chan_tx;
 248	struct completion	dma_complete;
 249	bool			dma_active;
 250};
 251
 252static const struct of_device_id sh_mmcif_of_match[] = {
 253	{ .compatible = "renesas,sh-mmcif" },
 254	{ }
 255};
 256MODULE_DEVICE_TABLE(of, sh_mmcif_of_match);
 257
 258#define sh_mmcif_host_to_dev(host) (&host->pd->dev)
 259
 260static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
 261					unsigned int reg, u32 val)
 262{
 263	writel(val | readl(host->addr + reg), host->addr + reg);
 264}
 265
 266static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
 267					unsigned int reg, u32 val)
 268{
 269	writel(~val & readl(host->addr + reg), host->addr + reg);
 270}
 271
 272static void sh_mmcif_dma_complete(void *arg)
 273{
 274	struct sh_mmcif_host *host = arg;
 275	struct mmc_request *mrq = host->mrq;
 276	struct device *dev = sh_mmcif_host_to_dev(host);
 277
 278	dev_dbg(dev, "Command completed\n");
 279
 280	if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
 281		 dev_name(dev)))
 282		return;
 283
 284	complete(&host->dma_complete);
 285}
 286
 287static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
 288{
 289	struct mmc_data *data = host->mrq->data;
 290	struct scatterlist *sg = data->sg;
 291	struct dma_async_tx_descriptor *desc = NULL;
 292	struct dma_chan *chan = host->chan_rx;
 293	struct device *dev = sh_mmcif_host_to_dev(host);
 294	dma_cookie_t cookie = -EINVAL;
 295	int ret;
 296
 297	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
 298			 DMA_FROM_DEVICE);
 299	if (ret > 0) {
 300		host->dma_active = true;
 301		desc = dmaengine_prep_slave_sg(chan, sg, ret,
 302			DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 303	}
 304
 305	if (desc) {
 306		desc->callback = sh_mmcif_dma_complete;
 307		desc->callback_param = host;
 308		cookie = dmaengine_submit(desc);
 309		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
 310		dma_async_issue_pending(chan);
 311	}
 312	dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
 313		__func__, data->sg_len, ret, cookie);
 314
 315	if (!desc) {
 316		/* DMA failed, fall back to PIO */
 317		if (ret >= 0)
 318			ret = -EIO;
 319		host->chan_rx = NULL;
 320		host->dma_active = false;
 321		dma_release_channel(chan);
 322		/* Free the Tx channel too */
 323		chan = host->chan_tx;
 324		if (chan) {
 325			host->chan_tx = NULL;
 326			dma_release_channel(chan);
 327		}
 328		dev_warn(dev,
 329			 "DMA failed: %d, falling back to PIO\n", ret);
 330		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
 331	}
 332
 333	dev_dbg(dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
 334		desc, cookie, data->sg_len);
 335}
 336
 337static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
 338{
 339	struct mmc_data *data = host->mrq->data;
 340	struct scatterlist *sg = data->sg;
 341	struct dma_async_tx_descriptor *desc = NULL;
 342	struct dma_chan *chan = host->chan_tx;
 343	struct device *dev = sh_mmcif_host_to_dev(host);
 344	dma_cookie_t cookie = -EINVAL;
 345	int ret;
 346
 347	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
 348			 DMA_TO_DEVICE);
 349	if (ret > 0) {
 350		host->dma_active = true;
 351		desc = dmaengine_prep_slave_sg(chan, sg, ret,
 352			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 353	}
 354
 355	if (desc) {
 356		desc->callback = sh_mmcif_dma_complete;
 357		desc->callback_param = host;
 358		cookie = dmaengine_submit(desc);
 359		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
 360		dma_async_issue_pending(chan);
 361	}
 362	dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
 363		__func__, data->sg_len, ret, cookie);
 364
 365	if (!desc) {
 366		/* DMA failed, fall back to PIO */
 367		if (ret >= 0)
 368			ret = -EIO;
 369		host->chan_tx = NULL;
 370		host->dma_active = false;
 371		dma_release_channel(chan);
 372		/* Free the Rx channel too */
 373		chan = host->chan_rx;
 374		if (chan) {
 375			host->chan_rx = NULL;
 376			dma_release_channel(chan);
 377		}
 378		dev_warn(dev,
 379			 "DMA failed: %d, falling back to PIO\n", ret);
 380		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
 381	}
 382
 383	dev_dbg(dev, "%s(): desc %p, cookie %d\n", __func__,
 384		desc, cookie);
 385}
 386
 387static struct dma_chan *
 388sh_mmcif_request_dma_pdata(struct sh_mmcif_host *host, uintptr_t slave_id)
 389{
 390	dma_cap_mask_t mask;
 391
 392	dma_cap_zero(mask);
 393	dma_cap_set(DMA_SLAVE, mask);
 394	if (slave_id <= 0)
 395		return NULL;
 396
 397	return dma_request_channel(mask, shdma_chan_filter, (void *)slave_id);
 398}
 399
 400static int sh_mmcif_dma_slave_config(struct sh_mmcif_host *host,
 401				     struct dma_chan *chan,
 402				     enum dma_transfer_direction direction)
 403{
 404	struct resource *res;
 405	struct dma_slave_config cfg = { 0, };
 406
 407	res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
 408	if (!res)
 409		return -EINVAL;
 410
 411	cfg.direction = direction;
 412
 413	if (direction == DMA_DEV_TO_MEM) {
 414		cfg.src_addr = res->start + MMCIF_CE_DATA;
 415		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 416	} else {
 417		cfg.dst_addr = res->start + MMCIF_CE_DATA;
 418		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 419	}
 420
 421	return dmaengine_slave_config(chan, &cfg);
 422}
 423
 424static void sh_mmcif_request_dma(struct sh_mmcif_host *host)
 425{
 426	struct device *dev = sh_mmcif_host_to_dev(host);
 427	host->dma_active = false;
 428
 429	/* We can only either use DMA for both Tx and Rx or not use it at all */
 430	if (IS_ENABLED(CONFIG_SUPERH) && dev->platform_data) {
 431		struct sh_mmcif_plat_data *pdata = dev->platform_data;
 432
 433		host->chan_tx = sh_mmcif_request_dma_pdata(host,
 434							pdata->slave_id_tx);
 435		host->chan_rx = sh_mmcif_request_dma_pdata(host,
 436							pdata->slave_id_rx);
 437	} else {
 438		host->chan_tx = dma_request_chan(dev, "tx");
 439		if (IS_ERR(host->chan_tx))
 440			host->chan_tx = NULL;
 441		host->chan_rx = dma_request_chan(dev, "rx");
 442		if (IS_ERR(host->chan_rx))
 443			host->chan_rx = NULL;
 444	}
 445	dev_dbg(dev, "%s: got channel TX %p RX %p\n", __func__, host->chan_tx,
 446		host->chan_rx);
 447
 448	if (!host->chan_tx || !host->chan_rx ||
 449	    sh_mmcif_dma_slave_config(host, host->chan_tx, DMA_MEM_TO_DEV) ||
 450	    sh_mmcif_dma_slave_config(host, host->chan_rx, DMA_DEV_TO_MEM))
 451		goto error;
 452
 453	return;
 454
 455error:
 456	if (host->chan_tx)
 457		dma_release_channel(host->chan_tx);
 458	if (host->chan_rx)
 459		dma_release_channel(host->chan_rx);
 460	host->chan_tx = host->chan_rx = NULL;
 461}
 462
 463static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
 464{
 465	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
 466	/* Descriptors are freed automatically */
 467	if (host->chan_tx) {
 468		struct dma_chan *chan = host->chan_tx;
 469		host->chan_tx = NULL;
 470		dma_release_channel(chan);
 471	}
 472	if (host->chan_rx) {
 473		struct dma_chan *chan = host->chan_rx;
 474		host->chan_rx = NULL;
 475		dma_release_channel(chan);
 476	}
 477
 478	host->dma_active = false;
 479}
 480
 481static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
 482{
 483	struct device *dev = sh_mmcif_host_to_dev(host);
 484	struct sh_mmcif_plat_data *p = dev->platform_data;
 485	bool sup_pclk = p ? p->sup_pclk : false;
 486	unsigned int current_clk = clk_get_rate(host->clk);
 487	unsigned int clkdiv;
 488
 489	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
 490	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
 491
 492	if (!clk)
 493		return;
 494
 495	if (host->clkdiv_map) {
 496		unsigned int freq, best_freq, myclk, div, diff_min, diff;
 497		int i;
 498
 499		clkdiv = 0;
 500		diff_min = ~0;
 501		best_freq = 0;
 502		for (i = 31; i >= 0; i--) {
 503			if (!((1 << i) & host->clkdiv_map))
 504				continue;
 505
 506			/*
 507			 * clk = parent_freq / div
 508			 * -> parent_freq = clk x div
 509			 */
 510
 511			div = 1 << (i + 1);
 512			freq = clk_round_rate(host->clk, clk * div);
 513			myclk = freq / div;
 514			diff = (myclk > clk) ? myclk - clk : clk - myclk;
 515
 516			if (diff <= diff_min) {
 517				best_freq = freq;
 518				clkdiv = i;
 519				diff_min = diff;
 520			}
 521		}
 522
 523		dev_dbg(dev, "clk %u/%u (%u, 0x%x)\n",
 524			(best_freq >> (clkdiv + 1)), clk, best_freq, clkdiv);
 
 525
 526		clk_set_rate(host->clk, best_freq);
 527		clkdiv = clkdiv << 16;
 528	} else if (sup_pclk && clk == current_clk) {
 529		clkdiv = CLK_SUP_PCLK;
 530	} else {
 531		clkdiv = (fls(DIV_ROUND_UP(current_clk, clk) - 1) - 1) << 16;
 532	}
 533
 534	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR & clkdiv);
 535	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
 536}
 537
 538static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
 539{
 540	u32 tmp;
 541
 542	tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
 543
 544	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
 545	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
 546	if (host->ccs_enable)
 547		tmp |= SCCSTO_29;
 548	if (host->clk_ctrl2_enable)
 549		sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
 550	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
 551		SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
 552	/* byte swap on */
 553	sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
 554}
 555
 556static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
 557{
 558	struct device *dev = sh_mmcif_host_to_dev(host);
 559	u32 state1, state2;
 560	int ret, timeout;
 561
 562	host->sd_error = false;
 563
 564	state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
 565	state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
 566	dev_dbg(dev, "ERR HOST_STS1 = %08x\n", state1);
 567	dev_dbg(dev, "ERR HOST_STS2 = %08x\n", state2);
 568
 569	if (state1 & STS1_CMDSEQ) {
 570		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
 571		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
 572		for (timeout = 10000; timeout; timeout--) {
 573			if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
 574			      & STS1_CMDSEQ))
 575				break;
 576			mdelay(1);
 577		}
 578		if (!timeout) {
 579			dev_err(dev,
 580				"Forced end of command sequence timeout err\n");
 581			return -EIO;
 582		}
 583		sh_mmcif_sync_reset(host);
 584		dev_dbg(dev, "Forced end of command sequence\n");
 585		return -EIO;
 586	}
 587
 588	if (state2 & STS2_CRC_ERR) {
 589		dev_err(dev, " CRC error: state %u, wait %u\n",
 590			host->state, host->wait_for);
 591		ret = -EIO;
 592	} else if (state2 & STS2_TIMEOUT_ERR) {
 593		dev_err(dev, " Timeout: state %u, wait %u\n",
 594			host->state, host->wait_for);
 595		ret = -ETIMEDOUT;
 596	} else {
 597		dev_dbg(dev, " End/Index error: state %u, wait %u\n",
 598			host->state, host->wait_for);
 599		ret = -EIO;
 600	}
 601	return ret;
 602}
 603
 604static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
 605{
 606	struct mmc_data *data = host->mrq->data;
 607
 608	host->sg_blkidx += host->blocksize;
 609
 610	/* data->sg->length must be a multiple of host->blocksize? */
 611	BUG_ON(host->sg_blkidx > data->sg->length);
 612
 613	if (host->sg_blkidx == data->sg->length) {
 614		host->sg_blkidx = 0;
 615		if (++host->sg_idx < data->sg_len)
 616			host->pio_ptr = sg_virt(++data->sg);
 617	} else {
 618		host->pio_ptr = p;
 619	}
 620
 621	return host->sg_idx != data->sg_len;
 622}
 623
 624static void sh_mmcif_single_read(struct sh_mmcif_host *host,
 625				 struct mmc_request *mrq)
 626{
 627	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 628			   BLOCK_SIZE_MASK) + 3;
 629
 630	host->wait_for = MMCIF_WAIT_FOR_READ;
 631
 632	/* buf read enable */
 633	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
 634}
 635
 636static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
 637{
 638	struct device *dev = sh_mmcif_host_to_dev(host);
 639	struct mmc_data *data = host->mrq->data;
 640	u32 *p = sg_virt(data->sg);
 641	int i;
 642
 643	if (host->sd_error) {
 644		data->error = sh_mmcif_error_manage(host);
 645		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
 646		return false;
 647	}
 648
 649	for (i = 0; i < host->blocksize / 4; i++)
 650		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
 651
 652	/* buffer read end */
 653	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
 654	host->wait_for = MMCIF_WAIT_FOR_READ_END;
 655
 656	return true;
 657}
 658
 659static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
 660				struct mmc_request *mrq)
 661{
 662	struct mmc_data *data = mrq->data;
 663
 664	if (!data->sg_len || !data->sg->length)
 665		return;
 666
 667	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 668		BLOCK_SIZE_MASK;
 669
 670	host->wait_for = MMCIF_WAIT_FOR_MREAD;
 671	host->sg_idx = 0;
 672	host->sg_blkidx = 0;
 673	host->pio_ptr = sg_virt(data->sg);
 674
 675	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
 676}
 677
 678static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
 679{
 680	struct device *dev = sh_mmcif_host_to_dev(host);
 681	struct mmc_data *data = host->mrq->data;
 682	u32 *p = host->pio_ptr;
 683	int i;
 684
 685	if (host->sd_error) {
 686		data->error = sh_mmcif_error_manage(host);
 687		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
 688		return false;
 689	}
 690
 691	BUG_ON(!data->sg->length);
 692
 693	for (i = 0; i < host->blocksize / 4; i++)
 694		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
 695
 696	if (!sh_mmcif_next_block(host, p))
 697		return false;
 698
 699	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
 700
 701	return true;
 702}
 703
 704static void sh_mmcif_single_write(struct sh_mmcif_host *host,
 705					struct mmc_request *mrq)
 706{
 707	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 708			   BLOCK_SIZE_MASK) + 3;
 709
 710	host->wait_for = MMCIF_WAIT_FOR_WRITE;
 711
 712	/* buf write enable */
 713	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
 714}
 715
 716static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
 717{
 718	struct device *dev = sh_mmcif_host_to_dev(host);
 719	struct mmc_data *data = host->mrq->data;
 720	u32 *p = sg_virt(data->sg);
 721	int i;
 722
 723	if (host->sd_error) {
 724		data->error = sh_mmcif_error_manage(host);
 725		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
 726		return false;
 727	}
 728
 729	for (i = 0; i < host->blocksize / 4; i++)
 730		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
 731
 732	/* buffer write end */
 733	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
 734	host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
 735
 736	return true;
 737}
 738
 739static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
 740				struct mmc_request *mrq)
 741{
 742	struct mmc_data *data = mrq->data;
 743
 744	if (!data->sg_len || !data->sg->length)
 745		return;
 746
 747	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 748		BLOCK_SIZE_MASK;
 749
 750	host->wait_for = MMCIF_WAIT_FOR_MWRITE;
 751	host->sg_idx = 0;
 752	host->sg_blkidx = 0;
 753	host->pio_ptr = sg_virt(data->sg);
 754
 755	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
 756}
 757
 758static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
 759{
 760	struct device *dev = sh_mmcif_host_to_dev(host);
 761	struct mmc_data *data = host->mrq->data;
 762	u32 *p = host->pio_ptr;
 763	int i;
 764
 765	if (host->sd_error) {
 766		data->error = sh_mmcif_error_manage(host);
 767		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
 768		return false;
 769	}
 770
 771	BUG_ON(!data->sg->length);
 772
 773	for (i = 0; i < host->blocksize / 4; i++)
 774		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
 775
 776	if (!sh_mmcif_next_block(host, p))
 777		return false;
 778
 779	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
 780
 781	return true;
 782}
 783
 784static void sh_mmcif_get_response(struct sh_mmcif_host *host,
 785						struct mmc_command *cmd)
 786{
 787	if (cmd->flags & MMC_RSP_136) {
 788		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
 789		cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
 790		cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
 791		cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
 792	} else
 793		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
 794}
 795
 796static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
 797						struct mmc_command *cmd)
 798{
 799	cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
 800}
 801
 802static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
 803			    struct mmc_request *mrq)
 804{
 805	struct device *dev = sh_mmcif_host_to_dev(host);
 806	struct mmc_data *data = mrq->data;
 807	struct mmc_command *cmd = mrq->cmd;
 808	u32 opc = cmd->opcode;
 809	u32 tmp = 0;
 810
 811	/* Response Type check */
 812	switch (mmc_resp_type(cmd)) {
 813	case MMC_RSP_NONE:
 814		tmp |= CMD_SET_RTYP_NO;
 815		break;
 816	case MMC_RSP_R1:
 817	case MMC_RSP_R3:
 818		tmp |= CMD_SET_RTYP_6B;
 819		break;
 820	case MMC_RSP_R1B:
 821		tmp |= CMD_SET_RBSY | CMD_SET_RTYP_6B;
 822		break;
 823	case MMC_RSP_R2:
 824		tmp |= CMD_SET_RTYP_17B;
 825		break;
 826	default:
 827		dev_err(dev, "Unsupported response type.\n");
 828		break;
 829	}
 830
 831	/* WDAT / DATW */
 832	if (data) {
 833		tmp |= CMD_SET_WDAT;
 834		switch (host->bus_width) {
 835		case MMC_BUS_WIDTH_1:
 836			tmp |= CMD_SET_DATW_1;
 837			break;
 838		case MMC_BUS_WIDTH_4:
 839			tmp |= CMD_SET_DATW_4;
 840			break;
 841		case MMC_BUS_WIDTH_8:
 842			tmp |= CMD_SET_DATW_8;
 843			break;
 844		default:
 845			dev_err(dev, "Unsupported bus width.\n");
 846			break;
 847		}
 848		switch (host->timing) {
 849		case MMC_TIMING_MMC_DDR52:
 850			/*
 851			 * MMC core will only set this timing, if the host
 852			 * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
 853			 * capability. MMCIF implementations with this
 854			 * capability, e.g. sh73a0, will have to set it
 855			 * in their platform data.
 856			 */
 857			tmp |= CMD_SET_DARS;
 858			break;
 859		}
 860	}
 861	/* DWEN */
 862	if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
 863		tmp |= CMD_SET_DWEN;
 864	/* CMLTE/CMD12EN */
 865	if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
 866		tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
 867		sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
 868				data->blocks << 16);
 869	}
 870	/* RIDXC[1:0] check bits */
 871	if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
 872	    opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
 873		tmp |= CMD_SET_RIDXC_BITS;
 874	/* RCRC7C[1:0] check bits */
 875	if (opc == MMC_SEND_OP_COND)
 876		tmp |= CMD_SET_CRC7C_BITS;
 877	/* RCRC7C[1:0] internal CRC7 */
 878	if (opc == MMC_ALL_SEND_CID ||
 879		opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
 880		tmp |= CMD_SET_CRC7C_INTERNAL;
 881
 882	return (opc << 24) | tmp;
 883}
 884
 885static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
 886			       struct mmc_request *mrq, u32 opc)
 887{
 888	struct device *dev = sh_mmcif_host_to_dev(host);
 889
 890	switch (opc) {
 891	case MMC_READ_MULTIPLE_BLOCK:
 892		sh_mmcif_multi_read(host, mrq);
 893		return 0;
 894	case MMC_WRITE_MULTIPLE_BLOCK:
 895		sh_mmcif_multi_write(host, mrq);
 896		return 0;
 897	case MMC_WRITE_BLOCK:
 898		sh_mmcif_single_write(host, mrq);
 899		return 0;
 900	case MMC_READ_SINGLE_BLOCK:
 901	case MMC_SEND_EXT_CSD:
 902		sh_mmcif_single_read(host, mrq);
 903		return 0;
 904	default:
 905		dev_err(dev, "Unsupported CMD%d\n", opc);
 906		return -EINVAL;
 907	}
 908}
 909
 910static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
 911			       struct mmc_request *mrq)
 912{
 913	struct mmc_command *cmd = mrq->cmd;
 914	u32 opc;
 915	u32 mask = 0;
 916	unsigned long flags;
 917
 918	if (cmd->flags & MMC_RSP_BUSY)
 919		mask = MASK_START_CMD | MASK_MRBSYE;
 920	else
 921		mask = MASK_START_CMD | MASK_MCRSPE;
 922
 923	if (host->ccs_enable)
 924		mask |= MASK_MCCSTO;
 925
 926	if (mrq->data) {
 927		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
 928		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
 929				mrq->data->blksz);
 930	}
 931	opc = sh_mmcif_set_cmd(host, mrq);
 932
 933	if (host->ccs_enable)
 934		sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
 935	else
 936		sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
 937	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
 938	/* set arg */
 939	sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
 940	/* set cmd */
 941	spin_lock_irqsave(&host->lock, flags);
 942	sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
 943
 944	host->wait_for = MMCIF_WAIT_FOR_CMD;
 945	schedule_delayed_work(&host->timeout_work, host->timeout);
 946	spin_unlock_irqrestore(&host->lock, flags);
 947}
 948
 949static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
 950			      struct mmc_request *mrq)
 951{
 952	struct device *dev = sh_mmcif_host_to_dev(host);
 953
 954	switch (mrq->cmd->opcode) {
 955	case MMC_READ_MULTIPLE_BLOCK:
 956		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
 957		break;
 958	case MMC_WRITE_MULTIPLE_BLOCK:
 959		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
 960		break;
 961	default:
 962		dev_err(dev, "unsupported stop cmd\n");
 963		mrq->stop->error = sh_mmcif_error_manage(host);
 964		return;
 965	}
 966
 967	host->wait_for = MMCIF_WAIT_FOR_STOP;
 968}
 969
 970static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
 971{
 972	struct sh_mmcif_host *host = mmc_priv(mmc);
 973	struct device *dev = sh_mmcif_host_to_dev(host);
 974	unsigned long flags;
 975
 976	spin_lock_irqsave(&host->lock, flags);
 977	if (host->state != STATE_IDLE) {
 978		dev_dbg(dev, "%s() rejected, state %u\n",
 979			__func__, host->state);
 980		spin_unlock_irqrestore(&host->lock, flags);
 981		mrq->cmd->error = -EAGAIN;
 982		mmc_request_done(mmc, mrq);
 983		return;
 984	}
 985
 986	host->state = STATE_REQUEST;
 987	spin_unlock_irqrestore(&host->lock, flags);
 988
 989	host->mrq = mrq;
 990
 991	sh_mmcif_start_cmd(host, mrq);
 992}
 993
 994static void sh_mmcif_clk_setup(struct sh_mmcif_host *host)
 995{
 996	struct device *dev = sh_mmcif_host_to_dev(host);
 997
 998	if (host->mmc->f_max) {
 999		unsigned int f_max, f_min = 0, f_min_old;
1000
1001		f_max = host->mmc->f_max;
1002		for (f_min_old = f_max; f_min_old > 2;) {
1003			f_min = clk_round_rate(host->clk, f_min_old / 2);
1004			if (f_min == f_min_old)
1005				break;
1006			f_min_old = f_min;
1007		}
1008
1009		/*
1010		 * This driver assumes this SoC is R-Car Gen2 or later
1011		 */
1012		host->clkdiv_map = 0x3ff;
1013
1014		host->mmc->f_max = f_max >> ffs(host->clkdiv_map);
1015		host->mmc->f_min = f_min >> fls(host->clkdiv_map);
1016	} else {
1017		unsigned int clk = clk_get_rate(host->clk);
1018
1019		host->mmc->f_max = clk / 2;
1020		host->mmc->f_min = clk / 512;
1021	}
1022
1023	dev_dbg(dev, "clk max/min = %d/%d\n",
1024		host->mmc->f_max, host->mmc->f_min);
1025}
1026
1027static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1028{
1029	struct sh_mmcif_host *host = mmc_priv(mmc);
1030	struct device *dev = sh_mmcif_host_to_dev(host);
1031	unsigned long flags;
1032
1033	spin_lock_irqsave(&host->lock, flags);
1034	if (host->state != STATE_IDLE) {
1035		dev_dbg(dev, "%s() rejected, state %u\n",
1036			__func__, host->state);
1037		spin_unlock_irqrestore(&host->lock, flags);
1038		return;
1039	}
1040
1041	host->state = STATE_IOS;
1042	spin_unlock_irqrestore(&host->lock, flags);
1043
1044	switch (ios->power_mode) {
1045	case MMC_POWER_UP:
1046		if (!IS_ERR(mmc->supply.vmmc))
1047			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1048		if (!host->power) {
1049			clk_prepare_enable(host->clk);
1050			pm_runtime_get_sync(dev);
1051			sh_mmcif_sync_reset(host);
1052			sh_mmcif_request_dma(host);
1053			host->power = true;
1054		}
1055		break;
1056	case MMC_POWER_OFF:
1057		if (!IS_ERR(mmc->supply.vmmc))
1058			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1059		if (host->power) {
1060			sh_mmcif_clock_control(host, 0);
1061			sh_mmcif_release_dma(host);
1062			pm_runtime_put(dev);
1063			clk_disable_unprepare(host->clk);
1064			host->power = false;
1065		}
1066		break;
1067	case MMC_POWER_ON:
1068		sh_mmcif_clock_control(host, ios->clock);
1069		break;
1070	}
1071
1072	host->timing = ios->timing;
1073	host->bus_width = ios->bus_width;
1074	host->state = STATE_IDLE;
1075}
1076
1077static const struct mmc_host_ops sh_mmcif_ops = {
1078	.request	= sh_mmcif_request,
1079	.set_ios	= sh_mmcif_set_ios,
1080	.get_cd		= mmc_gpio_get_cd,
1081};
1082
1083static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1084{
1085	struct mmc_command *cmd = host->mrq->cmd;
1086	struct mmc_data *data = host->mrq->data;
1087	struct device *dev = sh_mmcif_host_to_dev(host);
1088	long time;
1089
1090	if (host->sd_error) {
1091		switch (cmd->opcode) {
1092		case MMC_ALL_SEND_CID:
1093		case MMC_SELECT_CARD:
1094		case MMC_APP_CMD:
1095			cmd->error = -ETIMEDOUT;
1096			break;
1097		default:
1098			cmd->error = sh_mmcif_error_manage(host);
1099			break;
1100		}
1101		dev_dbg(dev, "CMD%d error %d\n",
1102			cmd->opcode, cmd->error);
1103		host->sd_error = false;
1104		return false;
1105	}
1106	if (!(cmd->flags & MMC_RSP_PRESENT)) {
1107		cmd->error = 0;
1108		return false;
1109	}
1110
1111	sh_mmcif_get_response(host, cmd);
1112
1113	if (!data)
1114		return false;
1115
1116	/*
1117	 * Completion can be signalled from DMA callback and error, so, have to
1118	 * reset here, before setting .dma_active
1119	 */
1120	init_completion(&host->dma_complete);
1121
1122	if (data->flags & MMC_DATA_READ) {
1123		if (host->chan_rx)
1124			sh_mmcif_start_dma_rx(host);
1125	} else {
1126		if (host->chan_tx)
1127			sh_mmcif_start_dma_tx(host);
1128	}
1129
1130	if (!host->dma_active) {
1131		data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1132		return !data->error;
1133	}
1134
1135	/* Running in the IRQ thread, can sleep */
1136	time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1137							 host->timeout);
1138
1139	if (data->flags & MMC_DATA_READ)
1140		dma_unmap_sg(host->chan_rx->device->dev,
1141			     data->sg, data->sg_len,
1142			     DMA_FROM_DEVICE);
1143	else
1144		dma_unmap_sg(host->chan_tx->device->dev,
1145			     data->sg, data->sg_len,
1146			     DMA_TO_DEVICE);
1147
1148	if (host->sd_error) {
1149		dev_err(host->mmc->parent,
1150			"Error IRQ while waiting for DMA completion!\n");
1151		/* Woken up by an error IRQ: abort DMA */
1152		data->error = sh_mmcif_error_manage(host);
1153	} else if (!time) {
1154		dev_err(host->mmc->parent, "DMA timeout!\n");
1155		data->error = -ETIMEDOUT;
1156	} else if (time < 0) {
1157		dev_err(host->mmc->parent,
1158			"wait_for_completion_...() error %ld!\n", time);
1159		data->error = time;
1160	}
1161	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1162			BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1163	host->dma_active = false;
1164
1165	if (data->error) {
1166		data->bytes_xfered = 0;
1167		/* Abort DMA */
1168		if (data->flags & MMC_DATA_READ)
1169			dmaengine_terminate_sync(host->chan_rx);
1170		else
1171			dmaengine_terminate_sync(host->chan_tx);
1172	}
1173
1174	return false;
1175}
1176
1177static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1178{
1179	struct sh_mmcif_host *host = dev_id;
1180	struct mmc_request *mrq;
1181	struct device *dev = sh_mmcif_host_to_dev(host);
1182	bool wait = false;
1183	unsigned long flags;
1184	int wait_work;
1185
1186	spin_lock_irqsave(&host->lock, flags);
1187	wait_work = host->wait_for;
1188	spin_unlock_irqrestore(&host->lock, flags);
1189
1190	cancel_delayed_work_sync(&host->timeout_work);
1191
1192	mutex_lock(&host->thread_lock);
1193
1194	mrq = host->mrq;
1195	if (!mrq) {
1196		dev_dbg(dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1197			host->state, host->wait_for);
1198		mutex_unlock(&host->thread_lock);
1199		return IRQ_HANDLED;
1200	}
1201
1202	/*
1203	 * All handlers return true, if processing continues, and false, if the
1204	 * request has to be completed - successfully or not
1205	 */
1206	switch (wait_work) {
1207	case MMCIF_WAIT_FOR_REQUEST:
1208		/* We're too late, the timeout has already kicked in */
1209		mutex_unlock(&host->thread_lock);
1210		return IRQ_HANDLED;
1211	case MMCIF_WAIT_FOR_CMD:
1212		/* Wait for data? */
1213		wait = sh_mmcif_end_cmd(host);
1214		break;
1215	case MMCIF_WAIT_FOR_MREAD:
1216		/* Wait for more data? */
1217		wait = sh_mmcif_mread_block(host);
1218		break;
1219	case MMCIF_WAIT_FOR_READ:
1220		/* Wait for data end? */
1221		wait = sh_mmcif_read_block(host);
1222		break;
1223	case MMCIF_WAIT_FOR_MWRITE:
1224		/* Wait data to write? */
1225		wait = sh_mmcif_mwrite_block(host);
1226		break;
1227	case MMCIF_WAIT_FOR_WRITE:
1228		/* Wait for data end? */
1229		wait = sh_mmcif_write_block(host);
1230		break;
1231	case MMCIF_WAIT_FOR_STOP:
1232		if (host->sd_error) {
1233			mrq->stop->error = sh_mmcif_error_manage(host);
1234			dev_dbg(dev, "%s(): %d\n", __func__, mrq->stop->error);
1235			break;
1236		}
1237		sh_mmcif_get_cmd12response(host, mrq->stop);
1238		mrq->stop->error = 0;
1239		break;
1240	case MMCIF_WAIT_FOR_READ_END:
1241	case MMCIF_WAIT_FOR_WRITE_END:
1242		if (host->sd_error) {
1243			mrq->data->error = sh_mmcif_error_manage(host);
1244			dev_dbg(dev, "%s(): %d\n", __func__, mrq->data->error);
1245		}
1246		break;
1247	default:
1248		BUG();
1249	}
1250
1251	if (wait) {
1252		schedule_delayed_work(&host->timeout_work, host->timeout);
1253		/* Wait for more data */
1254		mutex_unlock(&host->thread_lock);
1255		return IRQ_HANDLED;
1256	}
1257
1258	if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1259		struct mmc_data *data = mrq->data;
1260		if (!mrq->cmd->error && data && !data->error)
1261			data->bytes_xfered =
1262				data->blocks * data->blksz;
1263
1264		if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1265			sh_mmcif_stop_cmd(host, mrq);
1266			if (!mrq->stop->error) {
1267				schedule_delayed_work(&host->timeout_work, host->timeout);
1268				mutex_unlock(&host->thread_lock);
1269				return IRQ_HANDLED;
1270			}
1271		}
1272	}
1273
1274	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1275	host->state = STATE_IDLE;
1276	host->mrq = NULL;
1277	mmc_request_done(host->mmc, mrq);
1278
1279	mutex_unlock(&host->thread_lock);
1280
1281	return IRQ_HANDLED;
1282}
1283
1284static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1285{
1286	struct sh_mmcif_host *host = dev_id;
1287	struct device *dev = sh_mmcif_host_to_dev(host);
1288	u32 state, mask;
1289
1290	state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1291	mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1292	if (host->ccs_enable)
1293		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1294	else
1295		sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1296	sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1297
1298	if (state & ~MASK_CLEAN)
1299		dev_dbg(dev, "IRQ state = 0x%08x incompletely cleared\n",
1300			state);
1301
1302	if (state & INT_ERR_STS || state & ~INT_ALL) {
1303		host->sd_error = true;
1304		dev_dbg(dev, "int err state = 0x%08x\n", state);
1305	}
1306	if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1307		if (!host->mrq)
1308			dev_dbg(dev, "NULL IRQ state = 0x%08x\n", state);
1309		if (!host->dma_active)
1310			return IRQ_WAKE_THREAD;
1311		else if (host->sd_error)
1312			sh_mmcif_dma_complete(host);
1313	} else {
1314		dev_dbg(dev, "Unexpected IRQ 0x%x\n", state);
1315	}
1316
1317	return IRQ_HANDLED;
1318}
1319
1320static void sh_mmcif_timeout_work(struct work_struct *work)
1321{
1322	struct delayed_work *d = to_delayed_work(work);
1323	struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1324	struct mmc_request *mrq = host->mrq;
1325	struct device *dev = sh_mmcif_host_to_dev(host);
1326	unsigned long flags;
1327
1328	if (host->dying)
1329		/* Don't run after mmc_remove_host() */
1330		return;
1331
1332	spin_lock_irqsave(&host->lock, flags);
1333	if (host->state == STATE_IDLE) {
1334		spin_unlock_irqrestore(&host->lock, flags);
1335		return;
1336	}
1337
1338	dev_err(dev, "Timeout waiting for %u on CMD%u\n",
1339		host->wait_for, mrq->cmd->opcode);
1340
1341	host->state = STATE_TIMEOUT;
1342	spin_unlock_irqrestore(&host->lock, flags);
1343
1344	/*
1345	 * Handle races with cancel_delayed_work(), unless
1346	 * cancel_delayed_work_sync() is used
1347	 */
1348	switch (host->wait_for) {
1349	case MMCIF_WAIT_FOR_CMD:
1350		mrq->cmd->error = sh_mmcif_error_manage(host);
1351		break;
1352	case MMCIF_WAIT_FOR_STOP:
1353		mrq->stop->error = sh_mmcif_error_manage(host);
1354		break;
1355	case MMCIF_WAIT_FOR_MREAD:
1356	case MMCIF_WAIT_FOR_MWRITE:
1357	case MMCIF_WAIT_FOR_READ:
1358	case MMCIF_WAIT_FOR_WRITE:
1359	case MMCIF_WAIT_FOR_READ_END:
1360	case MMCIF_WAIT_FOR_WRITE_END:
1361		mrq->data->error = sh_mmcif_error_manage(host);
1362		break;
1363	default:
1364		BUG();
1365	}
1366
1367	host->state = STATE_IDLE;
1368	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1369	host->mrq = NULL;
1370	mmc_request_done(host->mmc, mrq);
1371}
1372
1373static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1374{
1375	struct device *dev = sh_mmcif_host_to_dev(host);
1376	struct sh_mmcif_plat_data *pd = dev->platform_data;
1377	struct mmc_host *mmc = host->mmc;
1378
1379	mmc_regulator_get_supply(mmc);
1380
1381	if (!pd)
1382		return;
1383
1384	if (!mmc->ocr_avail)
1385		mmc->ocr_avail = pd->ocr;
1386	else if (pd->ocr)
1387		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1388}
1389
1390static int sh_mmcif_probe(struct platform_device *pdev)
1391{
1392	int ret = 0, irq[2];
1393	struct mmc_host *mmc;
1394	struct sh_mmcif_host *host;
1395	struct device *dev = &pdev->dev;
1396	struct sh_mmcif_plat_data *pd = dev->platform_data;
1397	void __iomem *reg;
1398	const char *name;
1399
1400	irq[0] = platform_get_irq(pdev, 0);
1401	irq[1] = platform_get_irq_optional(pdev, 1);
1402	if (irq[0] < 0)
1403		return -ENXIO;
1404
1405	reg = devm_platform_ioremap_resource(pdev, 0);
1406	if (IS_ERR(reg))
1407		return PTR_ERR(reg);
1408
1409	mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), dev);
1410	if (!mmc)
1411		return -ENOMEM;
1412
1413	ret = mmc_of_parse(mmc);
1414	if (ret < 0)
1415		goto err_host;
1416
1417	host		= mmc_priv(mmc);
1418	host->mmc	= mmc;
1419	host->addr	= reg;
1420	host->timeout	= msecs_to_jiffies(10000);
1421	host->ccs_enable = true;
1422	host->clk_ctrl2_enable = false;
1423
1424	host->pd = pdev;
1425
1426	spin_lock_init(&host->lock);
1427
1428	mmc->ops = &sh_mmcif_ops;
1429	sh_mmcif_init_ocr(host);
1430
1431	mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1432	mmc->caps2 |= MMC_CAP2_NO_SD | MMC_CAP2_NO_SDIO;
1433	mmc->max_busy_timeout = 10000;
1434
1435	if (pd && pd->caps)
1436		mmc->caps |= pd->caps;
1437	mmc->max_segs = 32;
1438	mmc->max_blk_size = 512;
1439	mmc->max_req_size = PAGE_SIZE * mmc->max_segs;
1440	mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1441	mmc->max_seg_size = mmc->max_req_size;
1442
1443	platform_set_drvdata(pdev, host);
1444
1445	host->clk = devm_clk_get(dev, NULL);
1446	if (IS_ERR(host->clk)) {
1447		ret = PTR_ERR(host->clk);
1448		dev_err(dev, "cannot get clock: %d\n", ret);
1449		goto err_host;
1450	}
1451
1452	ret = clk_prepare_enable(host->clk);
1453	if (ret < 0)
1454		goto err_host;
1455
1456	sh_mmcif_clk_setup(host);
1457
1458	pm_runtime_enable(dev);
1459	host->power = false;
1460
1461	ret = pm_runtime_get_sync(dev);
1462	if (ret < 0)
1463		goto err_clk;
1464
1465	INIT_DELAYED_WORK(&host->timeout_work, sh_mmcif_timeout_work);
1466
1467	sh_mmcif_sync_reset(host);
1468	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1469
1470	name = irq[1] < 0 ? dev_name(dev) : "sh_mmc:error";
1471	ret = devm_request_threaded_irq(dev, irq[0], sh_mmcif_intr,
1472					sh_mmcif_irqt, 0, name, host);
1473	if (ret) {
1474		dev_err(dev, "request_irq error (%s)\n", name);
1475		goto err_clk;
1476	}
1477	if (irq[1] >= 0) {
1478		ret = devm_request_threaded_irq(dev, irq[1],
1479						sh_mmcif_intr, sh_mmcif_irqt,
1480						0, "sh_mmc:int", host);
1481		if (ret) {
1482			dev_err(dev, "request_irq error (sh_mmc:int)\n");
1483			goto err_clk;
1484		}
1485	}
1486
1487	mutex_init(&host->thread_lock);
1488
1489	ret = mmc_add_host(mmc);
1490	if (ret < 0)
1491		goto err_clk;
1492
1493	dev_pm_qos_expose_latency_limit(dev, 100);
1494
1495	dev_info(dev, "Chip version 0x%04x, clock rate %luMHz\n",
1496		 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff,
1497		 clk_get_rate(host->clk) / 1000000UL);
1498
1499	pm_runtime_put(dev);
1500	clk_disable_unprepare(host->clk);
1501	return ret;
1502
1503err_clk:
1504	clk_disable_unprepare(host->clk);
1505	pm_runtime_put_sync(dev);
1506	pm_runtime_disable(dev);
1507err_host:
1508	mmc_free_host(mmc);
1509	return ret;
1510}
1511
1512static int sh_mmcif_remove(struct platform_device *pdev)
1513{
1514	struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1515
1516	host->dying = true;
1517	clk_prepare_enable(host->clk);
1518	pm_runtime_get_sync(&pdev->dev);
1519
1520	dev_pm_qos_hide_latency_limit(&pdev->dev);
1521
1522	mmc_remove_host(host->mmc);
1523	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1524
1525	/*
1526	 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1527	 * mmc_remove_host() call above. But swapping order doesn't help either
1528	 * (a query on the linux-mmc mailing list didn't bring any replies).
1529	 */
1530	cancel_delayed_work_sync(&host->timeout_work);
1531
1532	clk_disable_unprepare(host->clk);
1533	mmc_free_host(host->mmc);
1534	pm_runtime_put_sync(&pdev->dev);
1535	pm_runtime_disable(&pdev->dev);
1536
1537	return 0;
1538}
1539
1540#ifdef CONFIG_PM_SLEEP
1541static int sh_mmcif_suspend(struct device *dev)
1542{
1543	struct sh_mmcif_host *host = dev_get_drvdata(dev);
1544
1545	pm_runtime_get_sync(dev);
1546	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1547	pm_runtime_put(dev);
1548
1549	return 0;
1550}
1551
1552static int sh_mmcif_resume(struct device *dev)
1553{
1554	return 0;
1555}
1556#endif
1557
1558static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1559	SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
1560};
1561
1562static struct platform_driver sh_mmcif_driver = {
1563	.probe		= sh_mmcif_probe,
1564	.remove		= sh_mmcif_remove,
1565	.driver		= {
1566		.name	= DRIVER_NAME,
1567		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
1568		.pm	= &sh_mmcif_dev_pm_ops,
1569		.of_match_table = sh_mmcif_of_match,
1570	},
1571};
1572
1573module_platform_driver(sh_mmcif_driver);
1574
1575MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1576MODULE_LICENSE("GPL v2");
1577MODULE_ALIAS("platform:" DRIVER_NAME);
1578MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * MMCIF eMMC driver.
   4 *
   5 * Copyright (C) 2010 Renesas Solutions Corp.
   6 * Yusuke Goda <yusuke.goda.sx@renesas.com>
   7 */
   8
   9/*
  10 * The MMCIF driver is now processing MMC requests asynchronously, according
  11 * to the Linux MMC API requirement.
  12 *
  13 * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
  14 * data, and optional stop. To achieve asynchronous processing each of these
  15 * stages is split into two halves: a top and a bottom half. The top half
  16 * initialises the hardware, installs a timeout handler to handle completion
  17 * timeouts, and returns. In case of the command stage this immediately returns
  18 * control to the caller, leaving all further processing to run asynchronously.
  19 * All further request processing is performed by the bottom halves.
  20 *
  21 * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
  22 * thread, a DMA completion callback, if DMA is used, a timeout work, and
  23 * request- and stage-specific handler methods.
  24 *
  25 * Each bottom half run begins with either a hardware interrupt, a DMA callback
  26 * invocation, or a timeout work run. In case of an error or a successful
  27 * processing completion, the MMC core is informed and the request processing is
  28 * finished. In case processing has to continue, i.e., if data has to be read
  29 * from or written to the card, or if a stop command has to be sent, the next
  30 * top half is called, which performs the necessary hardware handling and
  31 * reschedules the timeout work. This returns the driver state machine into the
  32 * bottom half waiting state.
  33 */
  34
  35#include <linux/bitops.h>
  36#include <linux/clk.h>
  37#include <linux/completion.h>
  38#include <linux/delay.h>
  39#include <linux/dma-mapping.h>
  40#include <linux/dmaengine.h>
  41#include <linux/mmc/card.h>
  42#include <linux/mmc/core.h>
  43#include <linux/mmc/host.h>
  44#include <linux/mmc/mmc.h>
  45#include <linux/mmc/sdio.h>
  46#include <linux/mmc/sh_mmcif.h>
  47#include <linux/mmc/slot-gpio.h>
  48#include <linux/mod_devicetable.h>
  49#include <linux/mutex.h>
  50#include <linux/of_device.h>
  51#include <linux/pagemap.h>
 
  52#include <linux/platform_device.h>
  53#include <linux/pm_qos.h>
  54#include <linux/pm_runtime.h>
  55#include <linux/sh_dma.h>
  56#include <linux/spinlock.h>
  57#include <linux/module.h>
  58
  59#define DRIVER_NAME	"sh_mmcif"
  60
  61/* CE_CMD_SET */
  62#define CMD_MASK		0x3f000000
  63#define CMD_SET_RTYP_NO		((0 << 23) | (0 << 22))
  64#define CMD_SET_RTYP_6B		((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
  65#define CMD_SET_RTYP_17B	((1 << 23) | (0 << 22)) /* R2 */
  66#define CMD_SET_RBSY		(1 << 21) /* R1b */
  67#define CMD_SET_CCSEN		(1 << 20)
  68#define CMD_SET_WDAT		(1 << 19) /* 1: on data, 0: no data */
  69#define CMD_SET_DWEN		(1 << 18) /* 1: write, 0: read */
  70#define CMD_SET_CMLTE		(1 << 17) /* 1: multi block trans, 0: single */
  71#define CMD_SET_CMD12EN		(1 << 16) /* 1: CMD12 auto issue */
  72#define CMD_SET_RIDXC_INDEX	((0 << 15) | (0 << 14)) /* index check */
  73#define CMD_SET_RIDXC_BITS	((0 << 15) | (1 << 14)) /* check bits check */
  74#define CMD_SET_RIDXC_NO	((1 << 15) | (0 << 14)) /* no check */
  75#define CMD_SET_CRC7C		((0 << 13) | (0 << 12)) /* CRC7 check*/
  76#define CMD_SET_CRC7C_BITS	((0 << 13) | (1 << 12)) /* check bits check*/
  77#define CMD_SET_CRC7C_INTERNAL	((1 << 13) | (0 << 12)) /* internal CRC7 check*/
  78#define CMD_SET_CRC16C		(1 << 10) /* 0: CRC16 check*/
  79#define CMD_SET_CRCSTE		(1 << 8) /* 1: not receive CRC status */
  80#define CMD_SET_TBIT		(1 << 7) /* 1: tran mission bit "Low" */
  81#define CMD_SET_OPDM		(1 << 6) /* 1: open/drain */
  82#define CMD_SET_CCSH		(1 << 5)
  83#define CMD_SET_DARS		(1 << 2) /* Dual Data Rate */
  84#define CMD_SET_DATW_1		((0 << 1) | (0 << 0)) /* 1bit */
  85#define CMD_SET_DATW_4		((0 << 1) | (1 << 0)) /* 4bit */
  86#define CMD_SET_DATW_8		((1 << 1) | (0 << 0)) /* 8bit */
  87
  88/* CE_CMD_CTRL */
  89#define CMD_CTRL_BREAK		(1 << 0)
  90
  91/* CE_BLOCK_SET */
  92#define BLOCK_SIZE_MASK		0x0000ffff
  93
  94/* CE_INT */
  95#define INT_CCSDE		(1 << 29)
  96#define INT_CMD12DRE		(1 << 26)
  97#define INT_CMD12RBE		(1 << 25)
  98#define INT_CMD12CRE		(1 << 24)
  99#define INT_DTRANE		(1 << 23)
 100#define INT_BUFRE		(1 << 22)
 101#define INT_BUFWEN		(1 << 21)
 102#define INT_BUFREN		(1 << 20)
 103#define INT_CCSRCV		(1 << 19)
 104#define INT_RBSYE		(1 << 17)
 105#define INT_CRSPE		(1 << 16)
 106#define INT_CMDVIO		(1 << 15)
 107#define INT_BUFVIO		(1 << 14)
 108#define INT_WDATERR		(1 << 11)
 109#define INT_RDATERR		(1 << 10)
 110#define INT_RIDXERR		(1 << 9)
 111#define INT_RSPERR		(1 << 8)
 112#define INT_CCSTO		(1 << 5)
 113#define INT_CRCSTO		(1 << 4)
 114#define INT_WDATTO		(1 << 3)
 115#define INT_RDATTO		(1 << 2)
 116#define INT_RBSYTO		(1 << 1)
 117#define INT_RSPTO		(1 << 0)
 118#define INT_ERR_STS		(INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
 119				 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
 120				 INT_CCSTO | INT_CRCSTO | INT_WDATTO |	  \
 121				 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
 122
 123#define INT_ALL			(INT_RBSYE | INT_CRSPE | INT_BUFREN |	 \
 124				 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
 125				 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
 126
 127#define INT_CCS			(INT_CCSTO | INT_CCSRCV | INT_CCSDE)
 128
 129/* CE_INT_MASK */
 130#define MASK_ALL		0x00000000
 131#define MASK_MCCSDE		(1 << 29)
 132#define MASK_MCMD12DRE		(1 << 26)
 133#define MASK_MCMD12RBE		(1 << 25)
 134#define MASK_MCMD12CRE		(1 << 24)
 135#define MASK_MDTRANE		(1 << 23)
 136#define MASK_MBUFRE		(1 << 22)
 137#define MASK_MBUFWEN		(1 << 21)
 138#define MASK_MBUFREN		(1 << 20)
 139#define MASK_MCCSRCV		(1 << 19)
 140#define MASK_MRBSYE		(1 << 17)
 141#define MASK_MCRSPE		(1 << 16)
 142#define MASK_MCMDVIO		(1 << 15)
 143#define MASK_MBUFVIO		(1 << 14)
 144#define MASK_MWDATERR		(1 << 11)
 145#define MASK_MRDATERR		(1 << 10)
 146#define MASK_MRIDXERR		(1 << 9)
 147#define MASK_MRSPERR		(1 << 8)
 148#define MASK_MCCSTO		(1 << 5)
 149#define MASK_MCRCSTO		(1 << 4)
 150#define MASK_MWDATTO		(1 << 3)
 151#define MASK_MRDATTO		(1 << 2)
 152#define MASK_MRBSYTO		(1 << 1)
 153#define MASK_MRSPTO		(1 << 0)
 154
 155#define MASK_START_CMD		(MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
 156				 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
 157				 MASK_MCRCSTO | MASK_MWDATTO | \
 158				 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
 159
 160#define MASK_CLEAN		(INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE |	\
 161				 MASK_MBUFREN | MASK_MBUFWEN |			\
 162				 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE |	\
 163				 MASK_MCMD12RBE | MASK_MCMD12CRE)
 164
 165/* CE_HOST_STS1 */
 166#define STS1_CMDSEQ		(1 << 31)
 167
 168/* CE_HOST_STS2 */
 169#define STS2_CRCSTE		(1 << 31)
 170#define STS2_CRC16E		(1 << 30)
 171#define STS2_AC12CRCE		(1 << 29)
 172#define STS2_RSPCRC7E		(1 << 28)
 173#define STS2_CRCSTEBE		(1 << 27)
 174#define STS2_RDATEBE		(1 << 26)
 175#define STS2_AC12REBE		(1 << 25)
 176#define STS2_RSPEBE		(1 << 24)
 177#define STS2_AC12IDXE		(1 << 23)
 178#define STS2_RSPIDXE		(1 << 22)
 179#define STS2_CCSTO		(1 << 15)
 180#define STS2_RDATTO		(1 << 14)
 181#define STS2_DATBSYTO		(1 << 13)
 182#define STS2_CRCSTTO		(1 << 12)
 183#define STS2_AC12BSYTO		(1 << 11)
 184#define STS2_RSPBSYTO		(1 << 10)
 185#define STS2_AC12RSPTO		(1 << 9)
 186#define STS2_RSPTO		(1 << 8)
 187#define STS2_CRC_ERR		(STS2_CRCSTE | STS2_CRC16E |		\
 188				 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
 189#define STS2_TIMEOUT_ERR	(STS2_CCSTO | STS2_RDATTO |		\
 190				 STS2_DATBSYTO | STS2_CRCSTTO |		\
 191				 STS2_AC12BSYTO | STS2_RSPBSYTO |	\
 192				 STS2_AC12RSPTO | STS2_RSPTO)
 193
 194#define CLKDEV_EMMC_DATA	52000000 /* 52 MHz */
 195#define CLKDEV_MMC_DATA		20000000 /* 20 MHz */
 196#define CLKDEV_INIT		400000   /* 400 kHz */
 197
 198enum sh_mmcif_state {
 199	STATE_IDLE,
 200	STATE_REQUEST,
 201	STATE_IOS,
 202	STATE_TIMEOUT,
 203};
 204
 205enum sh_mmcif_wait_for {
 206	MMCIF_WAIT_FOR_REQUEST,
 207	MMCIF_WAIT_FOR_CMD,
 208	MMCIF_WAIT_FOR_MREAD,
 209	MMCIF_WAIT_FOR_MWRITE,
 210	MMCIF_WAIT_FOR_READ,
 211	MMCIF_WAIT_FOR_WRITE,
 212	MMCIF_WAIT_FOR_READ_END,
 213	MMCIF_WAIT_FOR_WRITE_END,
 214	MMCIF_WAIT_FOR_STOP,
 215};
 216
 217/*
 218 * difference for each SoC
 219 */
 220struct sh_mmcif_host {
 221	struct mmc_host *mmc;
 222	struct mmc_request *mrq;
 223	struct platform_device *pd;
 224	struct clk *clk;
 225	int bus_width;
 226	unsigned char timing;
 227	bool sd_error;
 228	bool dying;
 229	long timeout;
 230	void __iomem *addr;
 231	u32 *pio_ptr;
 232	spinlock_t lock;		/* protect sh_mmcif_host::state */
 233	enum sh_mmcif_state state;
 234	enum sh_mmcif_wait_for wait_for;
 235	struct delayed_work timeout_work;
 236	size_t blocksize;
 237	int sg_idx;
 238	int sg_blkidx;
 239	bool power;
 240	bool ccs_enable;		/* Command Completion Signal support */
 241	bool clk_ctrl2_enable;
 242	struct mutex thread_lock;
 243	u32 clkdiv_map;         /* see CE_CLK_CTRL::CLKDIV */
 244
 245	/* DMA support */
 246	struct dma_chan		*chan_rx;
 247	struct dma_chan		*chan_tx;
 248	struct completion	dma_complete;
 249	bool			dma_active;
 250};
 251
 252static const struct of_device_id sh_mmcif_of_match[] = {
 253	{ .compatible = "renesas,sh-mmcif" },
 254	{ }
 255};
 256MODULE_DEVICE_TABLE(of, sh_mmcif_of_match);
 257
 258#define sh_mmcif_host_to_dev(host) (&host->pd->dev)
 259
 260static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
 261					unsigned int reg, u32 val)
 262{
 263	writel(val | readl(host->addr + reg), host->addr + reg);
 264}
 265
 266static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
 267					unsigned int reg, u32 val)
 268{
 269	writel(~val & readl(host->addr + reg), host->addr + reg);
 270}
 271
 272static void sh_mmcif_dma_complete(void *arg)
 273{
 274	struct sh_mmcif_host *host = arg;
 275	struct mmc_request *mrq = host->mrq;
 276	struct device *dev = sh_mmcif_host_to_dev(host);
 277
 278	dev_dbg(dev, "Command completed\n");
 279
 280	if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
 281		 dev_name(dev)))
 282		return;
 283
 284	complete(&host->dma_complete);
 285}
 286
 287static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
 288{
 289	struct mmc_data *data = host->mrq->data;
 290	struct scatterlist *sg = data->sg;
 291	struct dma_async_tx_descriptor *desc = NULL;
 292	struct dma_chan *chan = host->chan_rx;
 293	struct device *dev = sh_mmcif_host_to_dev(host);
 294	dma_cookie_t cookie = -EINVAL;
 295	int ret;
 296
 297	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
 298			 DMA_FROM_DEVICE);
 299	if (ret > 0) {
 300		host->dma_active = true;
 301		desc = dmaengine_prep_slave_sg(chan, sg, ret,
 302			DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 303	}
 304
 305	if (desc) {
 306		desc->callback = sh_mmcif_dma_complete;
 307		desc->callback_param = host;
 308		cookie = dmaengine_submit(desc);
 309		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
 310		dma_async_issue_pending(chan);
 311	}
 312	dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
 313		__func__, data->sg_len, ret, cookie);
 314
 315	if (!desc) {
 316		/* DMA failed, fall back to PIO */
 317		if (ret >= 0)
 318			ret = -EIO;
 319		host->chan_rx = NULL;
 320		host->dma_active = false;
 321		dma_release_channel(chan);
 322		/* Free the Tx channel too */
 323		chan = host->chan_tx;
 324		if (chan) {
 325			host->chan_tx = NULL;
 326			dma_release_channel(chan);
 327		}
 328		dev_warn(dev,
 329			 "DMA failed: %d, falling back to PIO\n", ret);
 330		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
 331	}
 332
 333	dev_dbg(dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
 334		desc, cookie, data->sg_len);
 335}
 336
 337static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
 338{
 339	struct mmc_data *data = host->mrq->data;
 340	struct scatterlist *sg = data->sg;
 341	struct dma_async_tx_descriptor *desc = NULL;
 342	struct dma_chan *chan = host->chan_tx;
 343	struct device *dev = sh_mmcif_host_to_dev(host);
 344	dma_cookie_t cookie = -EINVAL;
 345	int ret;
 346
 347	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
 348			 DMA_TO_DEVICE);
 349	if (ret > 0) {
 350		host->dma_active = true;
 351		desc = dmaengine_prep_slave_sg(chan, sg, ret,
 352			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 353	}
 354
 355	if (desc) {
 356		desc->callback = sh_mmcif_dma_complete;
 357		desc->callback_param = host;
 358		cookie = dmaengine_submit(desc);
 359		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
 360		dma_async_issue_pending(chan);
 361	}
 362	dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
 363		__func__, data->sg_len, ret, cookie);
 364
 365	if (!desc) {
 366		/* DMA failed, fall back to PIO */
 367		if (ret >= 0)
 368			ret = -EIO;
 369		host->chan_tx = NULL;
 370		host->dma_active = false;
 371		dma_release_channel(chan);
 372		/* Free the Rx channel too */
 373		chan = host->chan_rx;
 374		if (chan) {
 375			host->chan_rx = NULL;
 376			dma_release_channel(chan);
 377		}
 378		dev_warn(dev,
 379			 "DMA failed: %d, falling back to PIO\n", ret);
 380		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
 381	}
 382
 383	dev_dbg(dev, "%s(): desc %p, cookie %d\n", __func__,
 384		desc, cookie);
 385}
 386
 387static struct dma_chan *
 388sh_mmcif_request_dma_pdata(struct sh_mmcif_host *host, uintptr_t slave_id)
 389{
 390	dma_cap_mask_t mask;
 391
 392	dma_cap_zero(mask);
 393	dma_cap_set(DMA_SLAVE, mask);
 394	if (slave_id <= 0)
 395		return NULL;
 396
 397	return dma_request_channel(mask, shdma_chan_filter, (void *)slave_id);
 398}
 399
 400static int sh_mmcif_dma_slave_config(struct sh_mmcif_host *host,
 401				     struct dma_chan *chan,
 402				     enum dma_transfer_direction direction)
 403{
 404	struct resource *res;
 405	struct dma_slave_config cfg = { 0, };
 406
 407	res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
 
 
 
 408	cfg.direction = direction;
 409
 410	if (direction == DMA_DEV_TO_MEM) {
 411		cfg.src_addr = res->start + MMCIF_CE_DATA;
 412		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 413	} else {
 414		cfg.dst_addr = res->start + MMCIF_CE_DATA;
 415		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 416	}
 417
 418	return dmaengine_slave_config(chan, &cfg);
 419}
 420
 421static void sh_mmcif_request_dma(struct sh_mmcif_host *host)
 422{
 423	struct device *dev = sh_mmcif_host_to_dev(host);
 424	host->dma_active = false;
 425
 426	/* We can only either use DMA for both Tx and Rx or not use it at all */
 427	if (IS_ENABLED(CONFIG_SUPERH) && dev->platform_data) {
 428		struct sh_mmcif_plat_data *pdata = dev->platform_data;
 429
 430		host->chan_tx = sh_mmcif_request_dma_pdata(host,
 431							pdata->slave_id_tx);
 432		host->chan_rx = sh_mmcif_request_dma_pdata(host,
 433							pdata->slave_id_rx);
 434	} else {
 435		host->chan_tx = dma_request_chan(dev, "tx");
 436		if (IS_ERR(host->chan_tx))
 437			host->chan_tx = NULL;
 438		host->chan_rx = dma_request_chan(dev, "rx");
 439		if (IS_ERR(host->chan_rx))
 440			host->chan_rx = NULL;
 441	}
 442	dev_dbg(dev, "%s: got channel TX %p RX %p\n", __func__, host->chan_tx,
 443		host->chan_rx);
 444
 445	if (!host->chan_tx || !host->chan_rx ||
 446	    sh_mmcif_dma_slave_config(host, host->chan_tx, DMA_MEM_TO_DEV) ||
 447	    sh_mmcif_dma_slave_config(host, host->chan_rx, DMA_DEV_TO_MEM))
 448		goto error;
 449
 450	return;
 451
 452error:
 453	if (host->chan_tx)
 454		dma_release_channel(host->chan_tx);
 455	if (host->chan_rx)
 456		dma_release_channel(host->chan_rx);
 457	host->chan_tx = host->chan_rx = NULL;
 458}
 459
 460static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
 461{
 462	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
 463	/* Descriptors are freed automatically */
 464	if (host->chan_tx) {
 465		struct dma_chan *chan = host->chan_tx;
 466		host->chan_tx = NULL;
 467		dma_release_channel(chan);
 468	}
 469	if (host->chan_rx) {
 470		struct dma_chan *chan = host->chan_rx;
 471		host->chan_rx = NULL;
 472		dma_release_channel(chan);
 473	}
 474
 475	host->dma_active = false;
 476}
 477
 478static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
 479{
 480	struct device *dev = sh_mmcif_host_to_dev(host);
 481	struct sh_mmcif_plat_data *p = dev->platform_data;
 482	bool sup_pclk = p ? p->sup_pclk : false;
 483	unsigned int current_clk = clk_get_rate(host->clk);
 484	unsigned int clkdiv;
 485
 486	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
 487	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
 488
 489	if (!clk)
 490		return;
 491
 492	if (host->clkdiv_map) {
 493		unsigned int freq, best_freq, myclk, div, diff_min, diff;
 494		int i;
 495
 496		clkdiv = 0;
 497		diff_min = ~0;
 498		best_freq = 0;
 499		for (i = 31; i >= 0; i--) {
 500			if (!((1 << i) & host->clkdiv_map))
 501				continue;
 502
 503			/*
 504			 * clk = parent_freq / div
 505			 * -> parent_freq = clk x div
 506			 */
 507
 508			div = 1 << (i + 1);
 509			freq = clk_round_rate(host->clk, clk * div);
 510			myclk = freq / div;
 511			diff = (myclk > clk) ? myclk - clk : clk - myclk;
 512
 513			if (diff <= diff_min) {
 514				best_freq = freq;
 515				clkdiv = i;
 516				diff_min = diff;
 517			}
 518		}
 519
 520		dev_dbg(dev, "clk %u/%u (%u, 0x%x)\n",
 521			(best_freq / (1 << (clkdiv + 1))), clk,
 522			best_freq, clkdiv);
 523
 524		clk_set_rate(host->clk, best_freq);
 525		clkdiv = clkdiv << 16;
 526	} else if (sup_pclk && clk == current_clk) {
 527		clkdiv = CLK_SUP_PCLK;
 528	} else {
 529		clkdiv = (fls(DIV_ROUND_UP(current_clk, clk) - 1) - 1) << 16;
 530	}
 531
 532	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR & clkdiv);
 533	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
 534}
 535
 536static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
 537{
 538	u32 tmp;
 539
 540	tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
 541
 542	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
 543	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
 544	if (host->ccs_enable)
 545		tmp |= SCCSTO_29;
 546	if (host->clk_ctrl2_enable)
 547		sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
 548	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
 549		SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
 550	/* byte swap on */
 551	sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
 552}
 553
 554static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
 555{
 556	struct device *dev = sh_mmcif_host_to_dev(host);
 557	u32 state1, state2;
 558	int ret, timeout;
 559
 560	host->sd_error = false;
 561
 562	state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
 563	state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
 564	dev_dbg(dev, "ERR HOST_STS1 = %08x\n", state1);
 565	dev_dbg(dev, "ERR HOST_STS2 = %08x\n", state2);
 566
 567	if (state1 & STS1_CMDSEQ) {
 568		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
 569		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
 570		for (timeout = 10000; timeout; timeout--) {
 571			if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
 572			      & STS1_CMDSEQ))
 573				break;
 574			mdelay(1);
 575		}
 576		if (!timeout) {
 577			dev_err(dev,
 578				"Forced end of command sequence timeout err\n");
 579			return -EIO;
 580		}
 581		sh_mmcif_sync_reset(host);
 582		dev_dbg(dev, "Forced end of command sequence\n");
 583		return -EIO;
 584	}
 585
 586	if (state2 & STS2_CRC_ERR) {
 587		dev_err(dev, " CRC error: state %u, wait %u\n",
 588			host->state, host->wait_for);
 589		ret = -EIO;
 590	} else if (state2 & STS2_TIMEOUT_ERR) {
 591		dev_err(dev, " Timeout: state %u, wait %u\n",
 592			host->state, host->wait_for);
 593		ret = -ETIMEDOUT;
 594	} else {
 595		dev_dbg(dev, " End/Index error: state %u, wait %u\n",
 596			host->state, host->wait_for);
 597		ret = -EIO;
 598	}
 599	return ret;
 600}
 601
 602static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
 603{
 604	struct mmc_data *data = host->mrq->data;
 605
 606	host->sg_blkidx += host->blocksize;
 607
 608	/* data->sg->length must be a multiple of host->blocksize? */
 609	BUG_ON(host->sg_blkidx > data->sg->length);
 610
 611	if (host->sg_blkidx == data->sg->length) {
 612		host->sg_blkidx = 0;
 613		if (++host->sg_idx < data->sg_len)
 614			host->pio_ptr = sg_virt(++data->sg);
 615	} else {
 616		host->pio_ptr = p;
 617	}
 618
 619	return host->sg_idx != data->sg_len;
 620}
 621
 622static void sh_mmcif_single_read(struct sh_mmcif_host *host,
 623				 struct mmc_request *mrq)
 624{
 625	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 626			   BLOCK_SIZE_MASK) + 3;
 627
 628	host->wait_for = MMCIF_WAIT_FOR_READ;
 629
 630	/* buf read enable */
 631	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
 632}
 633
 634static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
 635{
 636	struct device *dev = sh_mmcif_host_to_dev(host);
 637	struct mmc_data *data = host->mrq->data;
 638	u32 *p = sg_virt(data->sg);
 639	int i;
 640
 641	if (host->sd_error) {
 642		data->error = sh_mmcif_error_manage(host);
 643		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
 644		return false;
 645	}
 646
 647	for (i = 0; i < host->blocksize / 4; i++)
 648		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
 649
 650	/* buffer read end */
 651	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
 652	host->wait_for = MMCIF_WAIT_FOR_READ_END;
 653
 654	return true;
 655}
 656
 657static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
 658				struct mmc_request *mrq)
 659{
 660	struct mmc_data *data = mrq->data;
 661
 662	if (!data->sg_len || !data->sg->length)
 663		return;
 664
 665	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 666		BLOCK_SIZE_MASK;
 667
 668	host->wait_for = MMCIF_WAIT_FOR_MREAD;
 669	host->sg_idx = 0;
 670	host->sg_blkidx = 0;
 671	host->pio_ptr = sg_virt(data->sg);
 672
 673	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
 674}
 675
 676static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
 677{
 678	struct device *dev = sh_mmcif_host_to_dev(host);
 679	struct mmc_data *data = host->mrq->data;
 680	u32 *p = host->pio_ptr;
 681	int i;
 682
 683	if (host->sd_error) {
 684		data->error = sh_mmcif_error_manage(host);
 685		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
 686		return false;
 687	}
 688
 689	BUG_ON(!data->sg->length);
 690
 691	for (i = 0; i < host->blocksize / 4; i++)
 692		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
 693
 694	if (!sh_mmcif_next_block(host, p))
 695		return false;
 696
 697	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
 698
 699	return true;
 700}
 701
 702static void sh_mmcif_single_write(struct sh_mmcif_host *host,
 703					struct mmc_request *mrq)
 704{
 705	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 706			   BLOCK_SIZE_MASK) + 3;
 707
 708	host->wait_for = MMCIF_WAIT_FOR_WRITE;
 709
 710	/* buf write enable */
 711	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
 712}
 713
 714static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
 715{
 716	struct device *dev = sh_mmcif_host_to_dev(host);
 717	struct mmc_data *data = host->mrq->data;
 718	u32 *p = sg_virt(data->sg);
 719	int i;
 720
 721	if (host->sd_error) {
 722		data->error = sh_mmcif_error_manage(host);
 723		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
 724		return false;
 725	}
 726
 727	for (i = 0; i < host->blocksize / 4; i++)
 728		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
 729
 730	/* buffer write end */
 731	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
 732	host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
 733
 734	return true;
 735}
 736
 737static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
 738				struct mmc_request *mrq)
 739{
 740	struct mmc_data *data = mrq->data;
 741
 742	if (!data->sg_len || !data->sg->length)
 743		return;
 744
 745	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 746		BLOCK_SIZE_MASK;
 747
 748	host->wait_for = MMCIF_WAIT_FOR_MWRITE;
 749	host->sg_idx = 0;
 750	host->sg_blkidx = 0;
 751	host->pio_ptr = sg_virt(data->sg);
 752
 753	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
 754}
 755
 756static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
 757{
 758	struct device *dev = sh_mmcif_host_to_dev(host);
 759	struct mmc_data *data = host->mrq->data;
 760	u32 *p = host->pio_ptr;
 761	int i;
 762
 763	if (host->sd_error) {
 764		data->error = sh_mmcif_error_manage(host);
 765		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
 766		return false;
 767	}
 768
 769	BUG_ON(!data->sg->length);
 770
 771	for (i = 0; i < host->blocksize / 4; i++)
 772		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
 773
 774	if (!sh_mmcif_next_block(host, p))
 775		return false;
 776
 777	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
 778
 779	return true;
 780}
 781
 782static void sh_mmcif_get_response(struct sh_mmcif_host *host,
 783						struct mmc_command *cmd)
 784{
 785	if (cmd->flags & MMC_RSP_136) {
 786		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
 787		cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
 788		cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
 789		cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
 790	} else
 791		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
 792}
 793
 794static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
 795						struct mmc_command *cmd)
 796{
 797	cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
 798}
 799
 800static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
 801			    struct mmc_request *mrq)
 802{
 803	struct device *dev = sh_mmcif_host_to_dev(host);
 804	struct mmc_data *data = mrq->data;
 805	struct mmc_command *cmd = mrq->cmd;
 806	u32 opc = cmd->opcode;
 807	u32 tmp = 0;
 808
 809	/* Response Type check */
 810	switch (mmc_resp_type(cmd)) {
 811	case MMC_RSP_NONE:
 812		tmp |= CMD_SET_RTYP_NO;
 813		break;
 814	case MMC_RSP_R1:
 815	case MMC_RSP_R3:
 816		tmp |= CMD_SET_RTYP_6B;
 817		break;
 818	case MMC_RSP_R1B:
 819		tmp |= CMD_SET_RBSY | CMD_SET_RTYP_6B;
 820		break;
 821	case MMC_RSP_R2:
 822		tmp |= CMD_SET_RTYP_17B;
 823		break;
 824	default:
 825		dev_err(dev, "Unsupported response type.\n");
 826		break;
 827	}
 828
 829	/* WDAT / DATW */
 830	if (data) {
 831		tmp |= CMD_SET_WDAT;
 832		switch (host->bus_width) {
 833		case MMC_BUS_WIDTH_1:
 834			tmp |= CMD_SET_DATW_1;
 835			break;
 836		case MMC_BUS_WIDTH_4:
 837			tmp |= CMD_SET_DATW_4;
 838			break;
 839		case MMC_BUS_WIDTH_8:
 840			tmp |= CMD_SET_DATW_8;
 841			break;
 842		default:
 843			dev_err(dev, "Unsupported bus width.\n");
 844			break;
 845		}
 846		switch (host->timing) {
 847		case MMC_TIMING_MMC_DDR52:
 848			/*
 849			 * MMC core will only set this timing, if the host
 850			 * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
 851			 * capability. MMCIF implementations with this
 852			 * capability, e.g. sh73a0, will have to set it
 853			 * in their platform data.
 854			 */
 855			tmp |= CMD_SET_DARS;
 856			break;
 857		}
 858	}
 859	/* DWEN */
 860	if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
 861		tmp |= CMD_SET_DWEN;
 862	/* CMLTE/CMD12EN */
 863	if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
 864		tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
 865		sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
 866				data->blocks << 16);
 867	}
 868	/* RIDXC[1:0] check bits */
 869	if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
 870	    opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
 871		tmp |= CMD_SET_RIDXC_BITS;
 872	/* RCRC7C[1:0] check bits */
 873	if (opc == MMC_SEND_OP_COND)
 874		tmp |= CMD_SET_CRC7C_BITS;
 875	/* RCRC7C[1:0] internal CRC7 */
 876	if (opc == MMC_ALL_SEND_CID ||
 877		opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
 878		tmp |= CMD_SET_CRC7C_INTERNAL;
 879
 880	return (opc << 24) | tmp;
 881}
 882
 883static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
 884			       struct mmc_request *mrq, u32 opc)
 885{
 886	struct device *dev = sh_mmcif_host_to_dev(host);
 887
 888	switch (opc) {
 889	case MMC_READ_MULTIPLE_BLOCK:
 890		sh_mmcif_multi_read(host, mrq);
 891		return 0;
 892	case MMC_WRITE_MULTIPLE_BLOCK:
 893		sh_mmcif_multi_write(host, mrq);
 894		return 0;
 895	case MMC_WRITE_BLOCK:
 896		sh_mmcif_single_write(host, mrq);
 897		return 0;
 898	case MMC_READ_SINGLE_BLOCK:
 899	case MMC_SEND_EXT_CSD:
 900		sh_mmcif_single_read(host, mrq);
 901		return 0;
 902	default:
 903		dev_err(dev, "Unsupported CMD%d\n", opc);
 904		return -EINVAL;
 905	}
 906}
 907
 908static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
 909			       struct mmc_request *mrq)
 910{
 911	struct mmc_command *cmd = mrq->cmd;
 912	u32 opc;
 913	u32 mask = 0;
 914	unsigned long flags;
 915
 916	if (cmd->flags & MMC_RSP_BUSY)
 917		mask = MASK_START_CMD | MASK_MRBSYE;
 918	else
 919		mask = MASK_START_CMD | MASK_MCRSPE;
 920
 921	if (host->ccs_enable)
 922		mask |= MASK_MCCSTO;
 923
 924	if (mrq->data) {
 925		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
 926		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
 927				mrq->data->blksz);
 928	}
 929	opc = sh_mmcif_set_cmd(host, mrq);
 930
 931	if (host->ccs_enable)
 932		sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
 933	else
 934		sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
 935	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
 936	/* set arg */
 937	sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
 938	/* set cmd */
 939	spin_lock_irqsave(&host->lock, flags);
 940	sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
 941
 942	host->wait_for = MMCIF_WAIT_FOR_CMD;
 943	schedule_delayed_work(&host->timeout_work, host->timeout);
 944	spin_unlock_irqrestore(&host->lock, flags);
 945}
 946
 947static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
 948			      struct mmc_request *mrq)
 949{
 950	struct device *dev = sh_mmcif_host_to_dev(host);
 951
 952	switch (mrq->cmd->opcode) {
 953	case MMC_READ_MULTIPLE_BLOCK:
 954		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
 955		break;
 956	case MMC_WRITE_MULTIPLE_BLOCK:
 957		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
 958		break;
 959	default:
 960		dev_err(dev, "unsupported stop cmd\n");
 961		mrq->stop->error = sh_mmcif_error_manage(host);
 962		return;
 963	}
 964
 965	host->wait_for = MMCIF_WAIT_FOR_STOP;
 966}
 967
 968static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
 969{
 970	struct sh_mmcif_host *host = mmc_priv(mmc);
 971	struct device *dev = sh_mmcif_host_to_dev(host);
 972	unsigned long flags;
 973
 974	spin_lock_irqsave(&host->lock, flags);
 975	if (host->state != STATE_IDLE) {
 976		dev_dbg(dev, "%s() rejected, state %u\n",
 977			__func__, host->state);
 978		spin_unlock_irqrestore(&host->lock, flags);
 979		mrq->cmd->error = -EAGAIN;
 980		mmc_request_done(mmc, mrq);
 981		return;
 982	}
 983
 984	host->state = STATE_REQUEST;
 985	spin_unlock_irqrestore(&host->lock, flags);
 986
 987	host->mrq = mrq;
 988
 989	sh_mmcif_start_cmd(host, mrq);
 990}
 991
 992static void sh_mmcif_clk_setup(struct sh_mmcif_host *host)
 993{
 994	struct device *dev = sh_mmcif_host_to_dev(host);
 995
 996	if (host->mmc->f_max) {
 997		unsigned int f_max, f_min = 0, f_min_old;
 998
 999		f_max = host->mmc->f_max;
1000		for (f_min_old = f_max; f_min_old > 2;) {
1001			f_min = clk_round_rate(host->clk, f_min_old / 2);
1002			if (f_min == f_min_old)
1003				break;
1004			f_min_old = f_min;
1005		}
1006
1007		/*
1008		 * This driver assumes this SoC is R-Car Gen2 or later
1009		 */
1010		host->clkdiv_map = 0x3ff;
1011
1012		host->mmc->f_max = f_max / (1 << ffs(host->clkdiv_map));
1013		host->mmc->f_min = f_min / (1 << fls(host->clkdiv_map));
1014	} else {
1015		unsigned int clk = clk_get_rate(host->clk);
1016
1017		host->mmc->f_max = clk / 2;
1018		host->mmc->f_min = clk / 512;
1019	}
1020
1021	dev_dbg(dev, "clk max/min = %d/%d\n",
1022		host->mmc->f_max, host->mmc->f_min);
1023}
1024
1025static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1026{
1027	struct sh_mmcif_host *host = mmc_priv(mmc);
1028	struct device *dev = sh_mmcif_host_to_dev(host);
1029	unsigned long flags;
1030
1031	spin_lock_irqsave(&host->lock, flags);
1032	if (host->state != STATE_IDLE) {
1033		dev_dbg(dev, "%s() rejected, state %u\n",
1034			__func__, host->state);
1035		spin_unlock_irqrestore(&host->lock, flags);
1036		return;
1037	}
1038
1039	host->state = STATE_IOS;
1040	spin_unlock_irqrestore(&host->lock, flags);
1041
1042	switch (ios->power_mode) {
1043	case MMC_POWER_UP:
1044		if (!IS_ERR(mmc->supply.vmmc))
1045			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1046		if (!host->power) {
1047			clk_prepare_enable(host->clk);
1048			pm_runtime_get_sync(dev);
1049			sh_mmcif_sync_reset(host);
1050			sh_mmcif_request_dma(host);
1051			host->power = true;
1052		}
1053		break;
1054	case MMC_POWER_OFF:
1055		if (!IS_ERR(mmc->supply.vmmc))
1056			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1057		if (host->power) {
1058			sh_mmcif_clock_control(host, 0);
1059			sh_mmcif_release_dma(host);
1060			pm_runtime_put(dev);
1061			clk_disable_unprepare(host->clk);
1062			host->power = false;
1063		}
1064		break;
1065	case MMC_POWER_ON:
1066		sh_mmcif_clock_control(host, ios->clock);
1067		break;
1068	}
1069
1070	host->timing = ios->timing;
1071	host->bus_width = ios->bus_width;
1072	host->state = STATE_IDLE;
1073}
1074
1075static const struct mmc_host_ops sh_mmcif_ops = {
1076	.request	= sh_mmcif_request,
1077	.set_ios	= sh_mmcif_set_ios,
1078	.get_cd		= mmc_gpio_get_cd,
1079};
1080
1081static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1082{
1083	struct mmc_command *cmd = host->mrq->cmd;
1084	struct mmc_data *data = host->mrq->data;
1085	struct device *dev = sh_mmcif_host_to_dev(host);
1086	long time;
1087
1088	if (host->sd_error) {
1089		switch (cmd->opcode) {
1090		case MMC_ALL_SEND_CID:
1091		case MMC_SELECT_CARD:
1092		case MMC_APP_CMD:
1093			cmd->error = -ETIMEDOUT;
1094			break;
1095		default:
1096			cmd->error = sh_mmcif_error_manage(host);
1097			break;
1098		}
1099		dev_dbg(dev, "CMD%d error %d\n",
1100			cmd->opcode, cmd->error);
1101		host->sd_error = false;
1102		return false;
1103	}
1104	if (!(cmd->flags & MMC_RSP_PRESENT)) {
1105		cmd->error = 0;
1106		return false;
1107	}
1108
1109	sh_mmcif_get_response(host, cmd);
1110
1111	if (!data)
1112		return false;
1113
1114	/*
1115	 * Completion can be signalled from DMA callback and error, so, have to
1116	 * reset here, before setting .dma_active
1117	 */
1118	init_completion(&host->dma_complete);
1119
1120	if (data->flags & MMC_DATA_READ) {
1121		if (host->chan_rx)
1122			sh_mmcif_start_dma_rx(host);
1123	} else {
1124		if (host->chan_tx)
1125			sh_mmcif_start_dma_tx(host);
1126	}
1127
1128	if (!host->dma_active) {
1129		data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1130		return !data->error;
1131	}
1132
1133	/* Running in the IRQ thread, can sleep */
1134	time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1135							 host->timeout);
1136
1137	if (data->flags & MMC_DATA_READ)
1138		dma_unmap_sg(host->chan_rx->device->dev,
1139			     data->sg, data->sg_len,
1140			     DMA_FROM_DEVICE);
1141	else
1142		dma_unmap_sg(host->chan_tx->device->dev,
1143			     data->sg, data->sg_len,
1144			     DMA_TO_DEVICE);
1145
1146	if (host->sd_error) {
1147		dev_err(host->mmc->parent,
1148			"Error IRQ while waiting for DMA completion!\n");
1149		/* Woken up by an error IRQ: abort DMA */
1150		data->error = sh_mmcif_error_manage(host);
1151	} else if (!time) {
1152		dev_err(host->mmc->parent, "DMA timeout!\n");
1153		data->error = -ETIMEDOUT;
1154	} else if (time < 0) {
1155		dev_err(host->mmc->parent,
1156			"wait_for_completion_...() error %ld!\n", time);
1157		data->error = time;
1158	}
1159	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1160			BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1161	host->dma_active = false;
1162
1163	if (data->error) {
1164		data->bytes_xfered = 0;
1165		/* Abort DMA */
1166		if (data->flags & MMC_DATA_READ)
1167			dmaengine_terminate_all(host->chan_rx);
1168		else
1169			dmaengine_terminate_all(host->chan_tx);
1170	}
1171
1172	return false;
1173}
1174
1175static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1176{
1177	struct sh_mmcif_host *host = dev_id;
1178	struct mmc_request *mrq;
1179	struct device *dev = sh_mmcif_host_to_dev(host);
1180	bool wait = false;
1181	unsigned long flags;
1182	int wait_work;
1183
1184	spin_lock_irqsave(&host->lock, flags);
1185	wait_work = host->wait_for;
1186	spin_unlock_irqrestore(&host->lock, flags);
1187
1188	cancel_delayed_work_sync(&host->timeout_work);
1189
1190	mutex_lock(&host->thread_lock);
1191
1192	mrq = host->mrq;
1193	if (!mrq) {
1194		dev_dbg(dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1195			host->state, host->wait_for);
1196		mutex_unlock(&host->thread_lock);
1197		return IRQ_HANDLED;
1198	}
1199
1200	/*
1201	 * All handlers return true, if processing continues, and false, if the
1202	 * request has to be completed - successfully or not
1203	 */
1204	switch (wait_work) {
1205	case MMCIF_WAIT_FOR_REQUEST:
1206		/* We're too late, the timeout has already kicked in */
1207		mutex_unlock(&host->thread_lock);
1208		return IRQ_HANDLED;
1209	case MMCIF_WAIT_FOR_CMD:
1210		/* Wait for data? */
1211		wait = sh_mmcif_end_cmd(host);
1212		break;
1213	case MMCIF_WAIT_FOR_MREAD:
1214		/* Wait for more data? */
1215		wait = sh_mmcif_mread_block(host);
1216		break;
1217	case MMCIF_WAIT_FOR_READ:
1218		/* Wait for data end? */
1219		wait = sh_mmcif_read_block(host);
1220		break;
1221	case MMCIF_WAIT_FOR_MWRITE:
1222		/* Wait data to write? */
1223		wait = sh_mmcif_mwrite_block(host);
1224		break;
1225	case MMCIF_WAIT_FOR_WRITE:
1226		/* Wait for data end? */
1227		wait = sh_mmcif_write_block(host);
1228		break;
1229	case MMCIF_WAIT_FOR_STOP:
1230		if (host->sd_error) {
1231			mrq->stop->error = sh_mmcif_error_manage(host);
1232			dev_dbg(dev, "%s(): %d\n", __func__, mrq->stop->error);
1233			break;
1234		}
1235		sh_mmcif_get_cmd12response(host, mrq->stop);
1236		mrq->stop->error = 0;
1237		break;
1238	case MMCIF_WAIT_FOR_READ_END:
1239	case MMCIF_WAIT_FOR_WRITE_END:
1240		if (host->sd_error) {
1241			mrq->data->error = sh_mmcif_error_manage(host);
1242			dev_dbg(dev, "%s(): %d\n", __func__, mrq->data->error);
1243		}
1244		break;
1245	default:
1246		BUG();
1247	}
1248
1249	if (wait) {
1250		schedule_delayed_work(&host->timeout_work, host->timeout);
1251		/* Wait for more data */
1252		mutex_unlock(&host->thread_lock);
1253		return IRQ_HANDLED;
1254	}
1255
1256	if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1257		struct mmc_data *data = mrq->data;
1258		if (!mrq->cmd->error && data && !data->error)
1259			data->bytes_xfered =
1260				data->blocks * data->blksz;
1261
1262		if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1263			sh_mmcif_stop_cmd(host, mrq);
1264			if (!mrq->stop->error) {
1265				schedule_delayed_work(&host->timeout_work, host->timeout);
1266				mutex_unlock(&host->thread_lock);
1267				return IRQ_HANDLED;
1268			}
1269		}
1270	}
1271
1272	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1273	host->state = STATE_IDLE;
1274	host->mrq = NULL;
1275	mmc_request_done(host->mmc, mrq);
1276
1277	mutex_unlock(&host->thread_lock);
1278
1279	return IRQ_HANDLED;
1280}
1281
1282static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1283{
1284	struct sh_mmcif_host *host = dev_id;
1285	struct device *dev = sh_mmcif_host_to_dev(host);
1286	u32 state, mask;
1287
1288	state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1289	mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1290	if (host->ccs_enable)
1291		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1292	else
1293		sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1294	sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1295
1296	if (state & ~MASK_CLEAN)
1297		dev_dbg(dev, "IRQ state = 0x%08x incompletely cleared\n",
1298			state);
1299
1300	if (state & INT_ERR_STS || state & ~INT_ALL) {
1301		host->sd_error = true;
1302		dev_dbg(dev, "int err state = 0x%08x\n", state);
1303	}
1304	if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1305		if (!host->mrq)
1306			dev_dbg(dev, "NULL IRQ state = 0x%08x\n", state);
1307		if (!host->dma_active)
1308			return IRQ_WAKE_THREAD;
1309		else if (host->sd_error)
1310			sh_mmcif_dma_complete(host);
1311	} else {
1312		dev_dbg(dev, "Unexpected IRQ 0x%x\n", state);
1313	}
1314
1315	return IRQ_HANDLED;
1316}
1317
1318static void sh_mmcif_timeout_work(struct work_struct *work)
1319{
1320	struct delayed_work *d = to_delayed_work(work);
1321	struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1322	struct mmc_request *mrq = host->mrq;
1323	struct device *dev = sh_mmcif_host_to_dev(host);
1324	unsigned long flags;
1325
1326	if (host->dying)
1327		/* Don't run after mmc_remove_host() */
1328		return;
1329
1330	spin_lock_irqsave(&host->lock, flags);
1331	if (host->state == STATE_IDLE) {
1332		spin_unlock_irqrestore(&host->lock, flags);
1333		return;
1334	}
1335
1336	dev_err(dev, "Timeout waiting for %u on CMD%u\n",
1337		host->wait_for, mrq->cmd->opcode);
1338
1339	host->state = STATE_TIMEOUT;
1340	spin_unlock_irqrestore(&host->lock, flags);
1341
1342	/*
1343	 * Handle races with cancel_delayed_work(), unless
1344	 * cancel_delayed_work_sync() is used
1345	 */
1346	switch (host->wait_for) {
1347	case MMCIF_WAIT_FOR_CMD:
1348		mrq->cmd->error = sh_mmcif_error_manage(host);
1349		break;
1350	case MMCIF_WAIT_FOR_STOP:
1351		mrq->stop->error = sh_mmcif_error_manage(host);
1352		break;
1353	case MMCIF_WAIT_FOR_MREAD:
1354	case MMCIF_WAIT_FOR_MWRITE:
1355	case MMCIF_WAIT_FOR_READ:
1356	case MMCIF_WAIT_FOR_WRITE:
1357	case MMCIF_WAIT_FOR_READ_END:
1358	case MMCIF_WAIT_FOR_WRITE_END:
1359		mrq->data->error = sh_mmcif_error_manage(host);
1360		break;
1361	default:
1362		BUG();
1363	}
1364
1365	host->state = STATE_IDLE;
1366	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1367	host->mrq = NULL;
1368	mmc_request_done(host->mmc, mrq);
1369}
1370
1371static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1372{
1373	struct device *dev = sh_mmcif_host_to_dev(host);
1374	struct sh_mmcif_plat_data *pd = dev->platform_data;
1375	struct mmc_host *mmc = host->mmc;
1376
1377	mmc_regulator_get_supply(mmc);
1378
1379	if (!pd)
1380		return;
1381
1382	if (!mmc->ocr_avail)
1383		mmc->ocr_avail = pd->ocr;
1384	else if (pd->ocr)
1385		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1386}
1387
1388static int sh_mmcif_probe(struct platform_device *pdev)
1389{
1390	int ret = 0, irq[2];
1391	struct mmc_host *mmc;
1392	struct sh_mmcif_host *host;
1393	struct device *dev = &pdev->dev;
1394	struct sh_mmcif_plat_data *pd = dev->platform_data;
1395	void __iomem *reg;
1396	const char *name;
1397
1398	irq[0] = platform_get_irq(pdev, 0);
1399	irq[1] = platform_get_irq_optional(pdev, 1);
1400	if (irq[0] < 0)
1401		return -ENXIO;
1402
1403	reg = devm_platform_ioremap_resource(pdev, 0);
1404	if (IS_ERR(reg))
1405		return PTR_ERR(reg);
1406
1407	mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), dev);
1408	if (!mmc)
1409		return -ENOMEM;
1410
1411	ret = mmc_of_parse(mmc);
1412	if (ret < 0)
1413		goto err_host;
1414
1415	host		= mmc_priv(mmc);
1416	host->mmc	= mmc;
1417	host->addr	= reg;
1418	host->timeout	= msecs_to_jiffies(10000);
1419	host->ccs_enable = true;
1420	host->clk_ctrl2_enable = false;
1421
1422	host->pd = pdev;
1423
1424	spin_lock_init(&host->lock);
1425
1426	mmc->ops = &sh_mmcif_ops;
1427	sh_mmcif_init_ocr(host);
1428
1429	mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1430	mmc->caps2 |= MMC_CAP2_NO_SD | MMC_CAP2_NO_SDIO;
1431	mmc->max_busy_timeout = 10000;
1432
1433	if (pd && pd->caps)
1434		mmc->caps |= pd->caps;
1435	mmc->max_segs = 32;
1436	mmc->max_blk_size = 512;
1437	mmc->max_req_size = PAGE_SIZE * mmc->max_segs;
1438	mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1439	mmc->max_seg_size = mmc->max_req_size;
1440
1441	platform_set_drvdata(pdev, host);
1442
1443	host->clk = devm_clk_get(dev, NULL);
1444	if (IS_ERR(host->clk)) {
1445		ret = PTR_ERR(host->clk);
1446		dev_err(dev, "cannot get clock: %d\n", ret);
1447		goto err_host;
1448	}
1449
1450	ret = clk_prepare_enable(host->clk);
1451	if (ret < 0)
1452		goto err_host;
1453
1454	sh_mmcif_clk_setup(host);
1455
1456	pm_runtime_enable(dev);
1457	host->power = false;
1458
1459	ret = pm_runtime_get_sync(dev);
1460	if (ret < 0)
1461		goto err_clk;
1462
1463	INIT_DELAYED_WORK(&host->timeout_work, sh_mmcif_timeout_work);
1464
1465	sh_mmcif_sync_reset(host);
1466	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1467
1468	name = irq[1] < 0 ? dev_name(dev) : "sh_mmc:error";
1469	ret = devm_request_threaded_irq(dev, irq[0], sh_mmcif_intr,
1470					sh_mmcif_irqt, 0, name, host);
1471	if (ret) {
1472		dev_err(dev, "request_irq error (%s)\n", name);
1473		goto err_clk;
1474	}
1475	if (irq[1] >= 0) {
1476		ret = devm_request_threaded_irq(dev, irq[1],
1477						sh_mmcif_intr, sh_mmcif_irqt,
1478						0, "sh_mmc:int", host);
1479		if (ret) {
1480			dev_err(dev, "request_irq error (sh_mmc:int)\n");
1481			goto err_clk;
1482		}
1483	}
1484
1485	mutex_init(&host->thread_lock);
1486
1487	ret = mmc_add_host(mmc);
1488	if (ret < 0)
1489		goto err_clk;
1490
1491	dev_pm_qos_expose_latency_limit(dev, 100);
1492
1493	dev_info(dev, "Chip version 0x%04x, clock rate %luMHz\n",
1494		 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff,
1495		 clk_get_rate(host->clk) / 1000000UL);
1496
1497	pm_runtime_put(dev);
1498	clk_disable_unprepare(host->clk);
1499	return ret;
1500
1501err_clk:
1502	clk_disable_unprepare(host->clk);
1503	pm_runtime_put_sync(dev);
1504	pm_runtime_disable(dev);
1505err_host:
1506	mmc_free_host(mmc);
1507	return ret;
1508}
1509
1510static int sh_mmcif_remove(struct platform_device *pdev)
1511{
1512	struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1513
1514	host->dying = true;
1515	clk_prepare_enable(host->clk);
1516	pm_runtime_get_sync(&pdev->dev);
1517
1518	dev_pm_qos_hide_latency_limit(&pdev->dev);
1519
1520	mmc_remove_host(host->mmc);
1521	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1522
1523	/*
1524	 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1525	 * mmc_remove_host() call above. But swapping order doesn't help either
1526	 * (a query on the linux-mmc mailing list didn't bring any replies).
1527	 */
1528	cancel_delayed_work_sync(&host->timeout_work);
1529
1530	clk_disable_unprepare(host->clk);
1531	mmc_free_host(host->mmc);
1532	pm_runtime_put_sync(&pdev->dev);
1533	pm_runtime_disable(&pdev->dev);
1534
1535	return 0;
1536}
1537
1538#ifdef CONFIG_PM_SLEEP
1539static int sh_mmcif_suspend(struct device *dev)
1540{
1541	struct sh_mmcif_host *host = dev_get_drvdata(dev);
1542
1543	pm_runtime_get_sync(dev);
1544	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1545	pm_runtime_put(dev);
1546
1547	return 0;
1548}
1549
1550static int sh_mmcif_resume(struct device *dev)
1551{
1552	return 0;
1553}
1554#endif
1555
1556static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1557	SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
1558};
1559
1560static struct platform_driver sh_mmcif_driver = {
1561	.probe		= sh_mmcif_probe,
1562	.remove		= sh_mmcif_remove,
1563	.driver		= {
1564		.name	= DRIVER_NAME,
 
1565		.pm	= &sh_mmcif_dev_pm_ops,
1566		.of_match_table = sh_mmcif_of_match,
1567	},
1568};
1569
1570module_platform_driver(sh_mmcif_driver);
1571
1572MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1573MODULE_LICENSE("GPL v2");
1574MODULE_ALIAS("platform:" DRIVER_NAME);
1575MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");