Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * MMCIF eMMC driver.
   4 *
   5 * Copyright (C) 2010 Renesas Solutions Corp.
   6 * Yusuke Goda <yusuke.goda.sx@renesas.com>
   7 */
   8
   9/*
  10 * The MMCIF driver is now processing MMC requests asynchronously, according
  11 * to the Linux MMC API requirement.
  12 *
  13 * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
  14 * data, and optional stop. To achieve asynchronous processing each of these
  15 * stages is split into two halves: a top and a bottom half. The top half
  16 * initialises the hardware, installs a timeout handler to handle completion
  17 * timeouts, and returns. In case of the command stage this immediately returns
  18 * control to the caller, leaving all further processing to run asynchronously.
  19 * All further request processing is performed by the bottom halves.
  20 *
  21 * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
  22 * thread, a DMA completion callback, if DMA is used, a timeout work, and
  23 * request- and stage-specific handler methods.
  24 *
  25 * Each bottom half run begins with either a hardware interrupt, a DMA callback
  26 * invocation, or a timeout work run. In case of an error or a successful
  27 * processing completion, the MMC core is informed and the request processing is
  28 * finished. In case processing has to continue, i.e., if data has to be read
  29 * from or written to the card, or if a stop command has to be sent, the next
  30 * top half is called, which performs the necessary hardware handling and
  31 * reschedules the timeout work. This returns the driver state machine into the
  32 * bottom half waiting state.
  33 */
  34
  35#include <linux/bitops.h>
  36#include <linux/clk.h>
  37#include <linux/completion.h>
  38#include <linux/delay.h>
  39#include <linux/dma-mapping.h>
  40#include <linux/dmaengine.h>
  41#include <linux/mmc/card.h>
  42#include <linux/mmc/core.h>
  43#include <linux/mmc/host.h>
  44#include <linux/mmc/mmc.h>
  45#include <linux/mmc/sdio.h>
  46#include <linux/mmc/slot-gpio.h>
  47#include <linux/mod_devicetable.h>
  48#include <linux/mutex.h>
  49#include <linux/of_device.h>
  50#include <linux/pagemap.h>
  51#include <linux/platform_data/sh_mmcif.h>
  52#include <linux/platform_device.h>
  53#include <linux/pm_qos.h>
  54#include <linux/pm_runtime.h>
  55#include <linux/sh_dma.h>
  56#include <linux/spinlock.h>
  57#include <linux/module.h>
  58
  59#define DRIVER_NAME	"sh_mmcif"
  60
  61/* CE_CMD_SET */
  62#define CMD_MASK		0x3f000000
  63#define CMD_SET_RTYP_NO		((0 << 23) | (0 << 22))
  64#define CMD_SET_RTYP_6B		((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
  65#define CMD_SET_RTYP_17B	((1 << 23) | (0 << 22)) /* R2 */
  66#define CMD_SET_RBSY		(1 << 21) /* R1b */
  67#define CMD_SET_CCSEN		(1 << 20)
  68#define CMD_SET_WDAT		(1 << 19) /* 1: on data, 0: no data */
  69#define CMD_SET_DWEN		(1 << 18) /* 1: write, 0: read */
  70#define CMD_SET_CMLTE		(1 << 17) /* 1: multi block trans, 0: single */
  71#define CMD_SET_CMD12EN		(1 << 16) /* 1: CMD12 auto issue */
  72#define CMD_SET_RIDXC_INDEX	((0 << 15) | (0 << 14)) /* index check */
  73#define CMD_SET_RIDXC_BITS	((0 << 15) | (1 << 14)) /* check bits check */
  74#define CMD_SET_RIDXC_NO	((1 << 15) | (0 << 14)) /* no check */
  75#define CMD_SET_CRC7C		((0 << 13) | (0 << 12)) /* CRC7 check*/
  76#define CMD_SET_CRC7C_BITS	((0 << 13) | (1 << 12)) /* check bits check*/
  77#define CMD_SET_CRC7C_INTERNAL	((1 << 13) | (0 << 12)) /* internal CRC7 check*/
  78#define CMD_SET_CRC16C		(1 << 10) /* 0: CRC16 check*/
  79#define CMD_SET_CRCSTE		(1 << 8) /* 1: not receive CRC status */
  80#define CMD_SET_TBIT		(1 << 7) /* 1: tran mission bit "Low" */
  81#define CMD_SET_OPDM		(1 << 6) /* 1: open/drain */
  82#define CMD_SET_CCSH		(1 << 5)
  83#define CMD_SET_DARS		(1 << 2) /* Dual Data Rate */
  84#define CMD_SET_DATW_1		((0 << 1) | (0 << 0)) /* 1bit */
  85#define CMD_SET_DATW_4		((0 << 1) | (1 << 0)) /* 4bit */
  86#define CMD_SET_DATW_8		((1 << 1) | (0 << 0)) /* 8bit */
  87
  88/* CE_CMD_CTRL */
  89#define CMD_CTRL_BREAK		(1 << 0)
  90
  91/* CE_BLOCK_SET */
  92#define BLOCK_SIZE_MASK		0x0000ffff
  93
  94/* CE_INT */
  95#define INT_CCSDE		(1 << 29)
  96#define INT_CMD12DRE		(1 << 26)
  97#define INT_CMD12RBE		(1 << 25)
  98#define INT_CMD12CRE		(1 << 24)
  99#define INT_DTRANE		(1 << 23)
 100#define INT_BUFRE		(1 << 22)
 101#define INT_BUFWEN		(1 << 21)
 102#define INT_BUFREN		(1 << 20)
 103#define INT_CCSRCV		(1 << 19)
 104#define INT_RBSYE		(1 << 17)
 105#define INT_CRSPE		(1 << 16)
 106#define INT_CMDVIO		(1 << 15)
 107#define INT_BUFVIO		(1 << 14)
 108#define INT_WDATERR		(1 << 11)
 109#define INT_RDATERR		(1 << 10)
 110#define INT_RIDXERR		(1 << 9)
 111#define INT_RSPERR		(1 << 8)
 112#define INT_CCSTO		(1 << 5)
 113#define INT_CRCSTO		(1 << 4)
 114#define INT_WDATTO		(1 << 3)
 115#define INT_RDATTO		(1 << 2)
 116#define INT_RBSYTO		(1 << 1)
 117#define INT_RSPTO		(1 << 0)
 118#define INT_ERR_STS		(INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
 119				 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
 120				 INT_CCSTO | INT_CRCSTO | INT_WDATTO |	  \
 121				 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
 122
 123#define INT_ALL			(INT_RBSYE | INT_CRSPE | INT_BUFREN |	 \
 124				 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
 125				 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
 126
 127#define INT_CCS			(INT_CCSTO | INT_CCSRCV | INT_CCSDE)
 128
 129/* CE_INT_MASK */
 130#define MASK_ALL		0x00000000
 131#define MASK_MCCSDE		(1 << 29)
 132#define MASK_MCMD12DRE		(1 << 26)
 133#define MASK_MCMD12RBE		(1 << 25)
 134#define MASK_MCMD12CRE		(1 << 24)
 135#define MASK_MDTRANE		(1 << 23)
 136#define MASK_MBUFRE		(1 << 22)
 137#define MASK_MBUFWEN		(1 << 21)
 138#define MASK_MBUFREN		(1 << 20)
 139#define MASK_MCCSRCV		(1 << 19)
 140#define MASK_MRBSYE		(1 << 17)
 141#define MASK_MCRSPE		(1 << 16)
 142#define MASK_MCMDVIO		(1 << 15)
 143#define MASK_MBUFVIO		(1 << 14)
 144#define MASK_MWDATERR		(1 << 11)
 145#define MASK_MRDATERR		(1 << 10)
 146#define MASK_MRIDXERR		(1 << 9)
 147#define MASK_MRSPERR		(1 << 8)
 148#define MASK_MCCSTO		(1 << 5)
 149#define MASK_MCRCSTO		(1 << 4)
 150#define MASK_MWDATTO		(1 << 3)
 151#define MASK_MRDATTO		(1 << 2)
 152#define MASK_MRBSYTO		(1 << 1)
 153#define MASK_MRSPTO		(1 << 0)
 154
 155#define MASK_START_CMD		(MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
 156				 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
 157				 MASK_MCRCSTO | MASK_MWDATTO | \
 158				 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
 159
 160#define MASK_CLEAN		(INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE |	\
 161				 MASK_MBUFREN | MASK_MBUFWEN |			\
 162				 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE |	\
 163				 MASK_MCMD12RBE | MASK_MCMD12CRE)
 164
 165/* CE_HOST_STS1 */
 166#define STS1_CMDSEQ		(1 << 31)
 167
 168/* CE_HOST_STS2 */
 169#define STS2_CRCSTE		(1 << 31)
 170#define STS2_CRC16E		(1 << 30)
 171#define STS2_AC12CRCE		(1 << 29)
 172#define STS2_RSPCRC7E		(1 << 28)
 173#define STS2_CRCSTEBE		(1 << 27)
 174#define STS2_RDATEBE		(1 << 26)
 175#define STS2_AC12REBE		(1 << 25)
 176#define STS2_RSPEBE		(1 << 24)
 177#define STS2_AC12IDXE		(1 << 23)
 178#define STS2_RSPIDXE		(1 << 22)
 179#define STS2_CCSTO		(1 << 15)
 180#define STS2_RDATTO		(1 << 14)
 181#define STS2_DATBSYTO		(1 << 13)
 182#define STS2_CRCSTTO		(1 << 12)
 183#define STS2_AC12BSYTO		(1 << 11)
 184#define STS2_RSPBSYTO		(1 << 10)
 185#define STS2_AC12RSPTO		(1 << 9)
 186#define STS2_RSPTO		(1 << 8)
 187#define STS2_CRC_ERR		(STS2_CRCSTE | STS2_CRC16E |		\
 188				 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
 189#define STS2_TIMEOUT_ERR	(STS2_CCSTO | STS2_RDATTO |		\
 190				 STS2_DATBSYTO | STS2_CRCSTTO |		\
 191				 STS2_AC12BSYTO | STS2_RSPBSYTO |	\
 192				 STS2_AC12RSPTO | STS2_RSPTO)
 193
 194#define CLKDEV_EMMC_DATA	52000000 /* 52 MHz */
 195#define CLKDEV_MMC_DATA		20000000 /* 20 MHz */
 196#define CLKDEV_INIT		400000   /* 400 kHz */
 197
 198enum sh_mmcif_state {
 199	STATE_IDLE,
 200	STATE_REQUEST,
 201	STATE_IOS,
 202	STATE_TIMEOUT,
 203};
 204
 205enum sh_mmcif_wait_for {
 206	MMCIF_WAIT_FOR_REQUEST,
 207	MMCIF_WAIT_FOR_CMD,
 208	MMCIF_WAIT_FOR_MREAD,
 209	MMCIF_WAIT_FOR_MWRITE,
 210	MMCIF_WAIT_FOR_READ,
 211	MMCIF_WAIT_FOR_WRITE,
 212	MMCIF_WAIT_FOR_READ_END,
 213	MMCIF_WAIT_FOR_WRITE_END,
 214	MMCIF_WAIT_FOR_STOP,
 215};
 216
 217/*
 218 * difference for each SoC
 219 */
 220struct sh_mmcif_host {
 221	struct mmc_host *mmc;
 222	struct mmc_request *mrq;
 223	struct platform_device *pd;
 224	struct clk *clk;
 225	int bus_width;
 226	unsigned char timing;
 227	bool sd_error;
 228	bool dying;
 229	long timeout;
 230	void __iomem *addr;
 231	u32 *pio_ptr;
 232	spinlock_t lock;		/* protect sh_mmcif_host::state */
 233	enum sh_mmcif_state state;
 234	enum sh_mmcif_wait_for wait_for;
 235	struct delayed_work timeout_work;
 236	size_t blocksize;
 237	int sg_idx;
 238	int sg_blkidx;
 239	bool power;
 240	bool ccs_enable;		/* Command Completion Signal support */
 241	bool clk_ctrl2_enable;
 242	struct mutex thread_lock;
 243	u32 clkdiv_map;         /* see CE_CLK_CTRL::CLKDIV */
 244
 245	/* DMA support */
 246	struct dma_chan		*chan_rx;
 247	struct dma_chan		*chan_tx;
 248	struct completion	dma_complete;
 249	bool			dma_active;
 250};
 251
 252static const struct of_device_id sh_mmcif_of_match[] = {
 253	{ .compatible = "renesas,sh-mmcif" },
 254	{ }
 255};
 256MODULE_DEVICE_TABLE(of, sh_mmcif_of_match);
 257
 258#define sh_mmcif_host_to_dev(host) (&host->pd->dev)
 259
 260static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
 261					unsigned int reg, u32 val)
 262{
 263	writel(val | readl(host->addr + reg), host->addr + reg);
 264}
 265
 266static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
 267					unsigned int reg, u32 val)
 268{
 269	writel(~val & readl(host->addr + reg), host->addr + reg);
 270}
 271
 272static void sh_mmcif_dma_complete(void *arg)
 273{
 274	struct sh_mmcif_host *host = arg;
 275	struct mmc_request *mrq = host->mrq;
 276	struct device *dev = sh_mmcif_host_to_dev(host);
 277
 278	dev_dbg(dev, "Command completed\n");
 279
 280	if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
 281		 dev_name(dev)))
 282		return;
 283
 284	complete(&host->dma_complete);
 285}
 286
 287static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
 288{
 289	struct mmc_data *data = host->mrq->data;
 290	struct scatterlist *sg = data->sg;
 291	struct dma_async_tx_descriptor *desc = NULL;
 292	struct dma_chan *chan = host->chan_rx;
 293	struct device *dev = sh_mmcif_host_to_dev(host);
 294	dma_cookie_t cookie = -EINVAL;
 295	int ret;
 296
 297	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
 298			 DMA_FROM_DEVICE);
 299	if (ret > 0) {
 300		host->dma_active = true;
 301		desc = dmaengine_prep_slave_sg(chan, sg, ret,
 302			DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 303	}
 304
 305	if (desc) {
 306		desc->callback = sh_mmcif_dma_complete;
 307		desc->callback_param = host;
 308		cookie = dmaengine_submit(desc);
 309		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
 310		dma_async_issue_pending(chan);
 311	}
 312	dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
 313		__func__, data->sg_len, ret, cookie);
 314
 315	if (!desc) {
 316		/* DMA failed, fall back to PIO */
 317		if (ret >= 0)
 318			ret = -EIO;
 319		host->chan_rx = NULL;
 320		host->dma_active = false;
 321		dma_release_channel(chan);
 322		/* Free the Tx channel too */
 323		chan = host->chan_tx;
 324		if (chan) {
 325			host->chan_tx = NULL;
 326			dma_release_channel(chan);
 327		}
 328		dev_warn(dev,
 329			 "DMA failed: %d, falling back to PIO\n", ret);
 330		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
 331	}
 332
 333	dev_dbg(dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
 334		desc, cookie, data->sg_len);
 335}
 336
 337static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
 338{
 339	struct mmc_data *data = host->mrq->data;
 340	struct scatterlist *sg = data->sg;
 341	struct dma_async_tx_descriptor *desc = NULL;
 342	struct dma_chan *chan = host->chan_tx;
 343	struct device *dev = sh_mmcif_host_to_dev(host);
 344	dma_cookie_t cookie = -EINVAL;
 345	int ret;
 346
 347	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
 348			 DMA_TO_DEVICE);
 349	if (ret > 0) {
 350		host->dma_active = true;
 351		desc = dmaengine_prep_slave_sg(chan, sg, ret,
 352			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 353	}
 354
 355	if (desc) {
 356		desc->callback = sh_mmcif_dma_complete;
 357		desc->callback_param = host;
 358		cookie = dmaengine_submit(desc);
 359		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
 360		dma_async_issue_pending(chan);
 361	}
 362	dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
 363		__func__, data->sg_len, ret, cookie);
 364
 365	if (!desc) {
 366		/* DMA failed, fall back to PIO */
 367		if (ret >= 0)
 368			ret = -EIO;
 369		host->chan_tx = NULL;
 370		host->dma_active = false;
 371		dma_release_channel(chan);
 372		/* Free the Rx channel too */
 373		chan = host->chan_rx;
 374		if (chan) {
 375			host->chan_rx = NULL;
 376			dma_release_channel(chan);
 377		}
 378		dev_warn(dev,
 379			 "DMA failed: %d, falling back to PIO\n", ret);
 380		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
 381	}
 382
 383	dev_dbg(dev, "%s(): desc %p, cookie %d\n", __func__,
 384		desc, cookie);
 385}
 386
 387static struct dma_chan *
 388sh_mmcif_request_dma_pdata(struct sh_mmcif_host *host, uintptr_t slave_id)
 389{
 390	dma_cap_mask_t mask;
 391
 392	dma_cap_zero(mask);
 393	dma_cap_set(DMA_SLAVE, mask);
 394	if (slave_id <= 0)
 395		return NULL;
 396
 397	return dma_request_channel(mask, shdma_chan_filter, (void *)slave_id);
 398}
 399
 400static int sh_mmcif_dma_slave_config(struct sh_mmcif_host *host,
 401				     struct dma_chan *chan,
 402				     enum dma_transfer_direction direction)
 403{
 404	struct resource *res;
 405	struct dma_slave_config cfg = { 0, };
 406
 407	res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
 408	if (!res)
 409		return -EINVAL;
 410
 411	cfg.direction = direction;
 412
 413	if (direction == DMA_DEV_TO_MEM) {
 414		cfg.src_addr = res->start + MMCIF_CE_DATA;
 415		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 416	} else {
 417		cfg.dst_addr = res->start + MMCIF_CE_DATA;
 418		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 419	}
 420
 421	return dmaengine_slave_config(chan, &cfg);
 422}
 423
 424static void sh_mmcif_request_dma(struct sh_mmcif_host *host)
 425{
 426	struct device *dev = sh_mmcif_host_to_dev(host);
 427	host->dma_active = false;
 428
 429	/* We can only either use DMA for both Tx and Rx or not use it at all */
 430	if (IS_ENABLED(CONFIG_SUPERH) && dev->platform_data) {
 431		struct sh_mmcif_plat_data *pdata = dev->platform_data;
 432
 433		host->chan_tx = sh_mmcif_request_dma_pdata(host,
 434							pdata->slave_id_tx);
 435		host->chan_rx = sh_mmcif_request_dma_pdata(host,
 436							pdata->slave_id_rx);
 437	} else {
 438		host->chan_tx = dma_request_chan(dev, "tx");
 439		if (IS_ERR(host->chan_tx))
 440			host->chan_tx = NULL;
 441		host->chan_rx = dma_request_chan(dev, "rx");
 442		if (IS_ERR(host->chan_rx))
 443			host->chan_rx = NULL;
 444	}
 445	dev_dbg(dev, "%s: got channel TX %p RX %p\n", __func__, host->chan_tx,
 446		host->chan_rx);
 447
 448	if (!host->chan_tx || !host->chan_rx ||
 449	    sh_mmcif_dma_slave_config(host, host->chan_tx, DMA_MEM_TO_DEV) ||
 450	    sh_mmcif_dma_slave_config(host, host->chan_rx, DMA_DEV_TO_MEM))
 451		goto error;
 452
 
 
 
 453	return;
 454
 455error:
 456	if (host->chan_tx)
 457		dma_release_channel(host->chan_tx);
 458	if (host->chan_rx)
 459		dma_release_channel(host->chan_rx);
 460	host->chan_tx = host->chan_rx = NULL;
 461}
 462
 463static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
 464{
 465	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
 466	/* Descriptors are freed automatically */
 467	if (host->chan_tx) {
 468		struct dma_chan *chan = host->chan_tx;
 469		host->chan_tx = NULL;
 470		dma_release_channel(chan);
 471	}
 472	if (host->chan_rx) {
 473		struct dma_chan *chan = host->chan_rx;
 474		host->chan_rx = NULL;
 475		dma_release_channel(chan);
 476	}
 477
 478	host->dma_active = false;
 479}
 480
 481static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
 482{
 483	struct device *dev = sh_mmcif_host_to_dev(host);
 484	struct sh_mmcif_plat_data *p = dev->platform_data;
 485	bool sup_pclk = p ? p->sup_pclk : false;
 486	unsigned int current_clk = clk_get_rate(host->clk);
 487	unsigned int clkdiv;
 488
 489	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
 490	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
 491
 492	if (!clk)
 493		return;
 494
 495	if (host->clkdiv_map) {
 496		unsigned int freq, best_freq, myclk, div, diff_min, diff;
 497		int i;
 498
 499		clkdiv = 0;
 500		diff_min = ~0;
 501		best_freq = 0;
 502		for (i = 31; i >= 0; i--) {
 503			if (!((1 << i) & host->clkdiv_map))
 504				continue;
 505
 506			/*
 507			 * clk = parent_freq / div
 508			 * -> parent_freq = clk x div
 509			 */
 510
 511			div = 1 << (i + 1);
 512			freq = clk_round_rate(host->clk, clk * div);
 513			myclk = freq / div;
 514			diff = (myclk > clk) ? myclk - clk : clk - myclk;
 515
 516			if (diff <= diff_min) {
 517				best_freq = freq;
 518				clkdiv = i;
 519				diff_min = diff;
 520			}
 521		}
 522
 523		dev_dbg(dev, "clk %u/%u (%u, 0x%x)\n",
 524			(best_freq >> (clkdiv + 1)), clk, best_freq, clkdiv);
 525
 526		clk_set_rate(host->clk, best_freq);
 527		clkdiv = clkdiv << 16;
 528	} else if (sup_pclk && clk == current_clk) {
 529		clkdiv = CLK_SUP_PCLK;
 530	} else {
 531		clkdiv = (fls(DIV_ROUND_UP(current_clk, clk) - 1) - 1) << 16;
 532	}
 533
 534	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR & clkdiv);
 535	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
 536}
 537
 538static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
 539{
 540	u32 tmp;
 541
 542	tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
 543
 544	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
 545	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
 546	if (host->ccs_enable)
 547		tmp |= SCCSTO_29;
 548	if (host->clk_ctrl2_enable)
 549		sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
 550	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
 551		SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
 552	/* byte swap on */
 553	sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
 554}
 555
 556static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
 557{
 558	struct device *dev = sh_mmcif_host_to_dev(host);
 559	u32 state1, state2;
 560	int ret, timeout;
 561
 562	host->sd_error = false;
 563
 564	state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
 565	state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
 566	dev_dbg(dev, "ERR HOST_STS1 = %08x\n", state1);
 567	dev_dbg(dev, "ERR HOST_STS2 = %08x\n", state2);
 568
 569	if (state1 & STS1_CMDSEQ) {
 570		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
 571		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
 572		for (timeout = 10000; timeout; timeout--) {
 573			if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
 574			      & STS1_CMDSEQ))
 575				break;
 576			mdelay(1);
 577		}
 578		if (!timeout) {
 579			dev_err(dev,
 580				"Forced end of command sequence timeout err\n");
 581			return -EIO;
 582		}
 583		sh_mmcif_sync_reset(host);
 584		dev_dbg(dev, "Forced end of command sequence\n");
 585		return -EIO;
 586	}
 587
 588	if (state2 & STS2_CRC_ERR) {
 589		dev_err(dev, " CRC error: state %u, wait %u\n",
 590			host->state, host->wait_for);
 591		ret = -EIO;
 592	} else if (state2 & STS2_TIMEOUT_ERR) {
 593		dev_err(dev, " Timeout: state %u, wait %u\n",
 594			host->state, host->wait_for);
 595		ret = -ETIMEDOUT;
 596	} else {
 597		dev_dbg(dev, " End/Index error: state %u, wait %u\n",
 598			host->state, host->wait_for);
 599		ret = -EIO;
 600	}
 601	return ret;
 602}
 603
 604static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
 605{
 606	struct mmc_data *data = host->mrq->data;
 607
 608	host->sg_blkidx += host->blocksize;
 609
 610	/* data->sg->length must be a multiple of host->blocksize? */
 611	BUG_ON(host->sg_blkidx > data->sg->length);
 612
 613	if (host->sg_blkidx == data->sg->length) {
 614		host->sg_blkidx = 0;
 615		if (++host->sg_idx < data->sg_len)
 616			host->pio_ptr = sg_virt(++data->sg);
 617	} else {
 618		host->pio_ptr = p;
 619	}
 620
 621	return host->sg_idx != data->sg_len;
 622}
 623
 624static void sh_mmcif_single_read(struct sh_mmcif_host *host,
 625				 struct mmc_request *mrq)
 626{
 
 
 627	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 628			   BLOCK_SIZE_MASK) + 3;
 629
 
 
 
 630	host->wait_for = MMCIF_WAIT_FOR_READ;
 631
 632	/* buf read enable */
 633	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
 634}
 635
 636static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
 637{
 
 638	struct device *dev = sh_mmcif_host_to_dev(host);
 639	struct mmc_data *data = host->mrq->data;
 640	u32 *p = sg_virt(data->sg);
 641	int i;
 642
 643	if (host->sd_error) {
 
 644		data->error = sh_mmcif_error_manage(host);
 645		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
 646		return false;
 647	}
 648
 
 
 
 
 
 
 
 
 649	for (i = 0; i < host->blocksize / 4; i++)
 650		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
 651
 
 
 652	/* buffer read end */
 653	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
 654	host->wait_for = MMCIF_WAIT_FOR_READ_END;
 655
 656	return true;
 657}
 658
 659static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
 660				struct mmc_request *mrq)
 661{
 
 662	struct mmc_data *data = mrq->data;
 663
 664	if (!data->sg_len || !data->sg->length)
 665		return;
 666
 667	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 668		BLOCK_SIZE_MASK;
 669
 
 
 
 
 
 
 
 
 
 670	host->wait_for = MMCIF_WAIT_FOR_MREAD;
 671	host->sg_idx = 0;
 672	host->sg_blkidx = 0;
 673	host->pio_ptr = sg_virt(data->sg);
 674
 675	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
 676}
 677
 678static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
 679{
 
 680	struct device *dev = sh_mmcif_host_to_dev(host);
 681	struct mmc_data *data = host->mrq->data;
 682	u32 *p = host->pio_ptr;
 683	int i;
 684
 685	if (host->sd_error) {
 
 686		data->error = sh_mmcif_error_manage(host);
 687		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
 688		return false;
 689	}
 690
 691	BUG_ON(!data->sg->length);
 692
 693	for (i = 0; i < host->blocksize / 4; i++)
 694		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
 695
 696	if (!sh_mmcif_next_block(host, p))
 697		return false;
 698
 699	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
 700
 
 
 
 
 
 701	return true;
 702}
 703
 704static void sh_mmcif_single_write(struct sh_mmcif_host *host,
 705					struct mmc_request *mrq)
 706{
 
 
 707	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 708			   BLOCK_SIZE_MASK) + 3;
 709
 
 
 
 710	host->wait_for = MMCIF_WAIT_FOR_WRITE;
 711
 712	/* buf write enable */
 713	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
 714}
 715
 716static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
 717{
 
 718	struct device *dev = sh_mmcif_host_to_dev(host);
 719	struct mmc_data *data = host->mrq->data;
 720	u32 *p = sg_virt(data->sg);
 721	int i;
 722
 723	if (host->sd_error) {
 
 724		data->error = sh_mmcif_error_manage(host);
 725		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
 726		return false;
 727	}
 728
 
 
 
 
 
 
 
 
 729	for (i = 0; i < host->blocksize / 4; i++)
 730		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
 731
 
 
 732	/* buffer write end */
 733	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
 734	host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
 735
 736	return true;
 737}
 738
 739static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
 740				struct mmc_request *mrq)
 741{
 
 742	struct mmc_data *data = mrq->data;
 743
 744	if (!data->sg_len || !data->sg->length)
 745		return;
 746
 747	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 748		BLOCK_SIZE_MASK;
 749
 
 
 
 
 
 
 
 
 
 750	host->wait_for = MMCIF_WAIT_FOR_MWRITE;
 751	host->sg_idx = 0;
 752	host->sg_blkidx = 0;
 753	host->pio_ptr = sg_virt(data->sg);
 754
 755	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
 756}
 757
 758static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
 759{
 
 760	struct device *dev = sh_mmcif_host_to_dev(host);
 761	struct mmc_data *data = host->mrq->data;
 762	u32 *p = host->pio_ptr;
 763	int i;
 764
 765	if (host->sd_error) {
 
 766		data->error = sh_mmcif_error_manage(host);
 767		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
 768		return false;
 769	}
 770
 771	BUG_ON(!data->sg->length);
 772
 773	for (i = 0; i < host->blocksize / 4; i++)
 774		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
 775
 776	if (!sh_mmcif_next_block(host, p))
 
 
 
 777		return false;
 
 778
 779	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
 780
 781	return true;
 782}
 783
 784static void sh_mmcif_get_response(struct sh_mmcif_host *host,
 785						struct mmc_command *cmd)
 786{
 787	if (cmd->flags & MMC_RSP_136) {
 788		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
 789		cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
 790		cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
 791		cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
 792	} else
 793		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
 794}
 795
 796static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
 797						struct mmc_command *cmd)
 798{
 799	cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
 800}
 801
 802static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
 803			    struct mmc_request *mrq)
 804{
 805	struct device *dev = sh_mmcif_host_to_dev(host);
 806	struct mmc_data *data = mrq->data;
 807	struct mmc_command *cmd = mrq->cmd;
 808	u32 opc = cmd->opcode;
 809	u32 tmp = 0;
 810
 811	/* Response Type check */
 812	switch (mmc_resp_type(cmd)) {
 813	case MMC_RSP_NONE:
 814		tmp |= CMD_SET_RTYP_NO;
 815		break;
 816	case MMC_RSP_R1:
 817	case MMC_RSP_R3:
 818		tmp |= CMD_SET_RTYP_6B;
 819		break;
 820	case MMC_RSP_R1B:
 821		tmp |= CMD_SET_RBSY | CMD_SET_RTYP_6B;
 822		break;
 823	case MMC_RSP_R2:
 824		tmp |= CMD_SET_RTYP_17B;
 825		break;
 826	default:
 827		dev_err(dev, "Unsupported response type.\n");
 828		break;
 829	}
 830
 831	/* WDAT / DATW */
 832	if (data) {
 833		tmp |= CMD_SET_WDAT;
 834		switch (host->bus_width) {
 835		case MMC_BUS_WIDTH_1:
 836			tmp |= CMD_SET_DATW_1;
 837			break;
 838		case MMC_BUS_WIDTH_4:
 839			tmp |= CMD_SET_DATW_4;
 840			break;
 841		case MMC_BUS_WIDTH_8:
 842			tmp |= CMD_SET_DATW_8;
 843			break;
 844		default:
 845			dev_err(dev, "Unsupported bus width.\n");
 846			break;
 847		}
 848		switch (host->timing) {
 849		case MMC_TIMING_MMC_DDR52:
 850			/*
 851			 * MMC core will only set this timing, if the host
 852			 * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
 853			 * capability. MMCIF implementations with this
 854			 * capability, e.g. sh73a0, will have to set it
 855			 * in their platform data.
 856			 */
 857			tmp |= CMD_SET_DARS;
 858			break;
 859		}
 860	}
 861	/* DWEN */
 862	if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
 863		tmp |= CMD_SET_DWEN;
 864	/* CMLTE/CMD12EN */
 865	if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
 866		tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
 867		sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
 868				data->blocks << 16);
 869	}
 870	/* RIDXC[1:0] check bits */
 871	if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
 872	    opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
 873		tmp |= CMD_SET_RIDXC_BITS;
 874	/* RCRC7C[1:0] check bits */
 875	if (opc == MMC_SEND_OP_COND)
 876		tmp |= CMD_SET_CRC7C_BITS;
 877	/* RCRC7C[1:0] internal CRC7 */
 878	if (opc == MMC_ALL_SEND_CID ||
 879		opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
 880		tmp |= CMD_SET_CRC7C_INTERNAL;
 881
 882	return (opc << 24) | tmp;
 883}
 884
 885static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
 886			       struct mmc_request *mrq, u32 opc)
 887{
 888	struct device *dev = sh_mmcif_host_to_dev(host);
 889
 890	switch (opc) {
 891	case MMC_READ_MULTIPLE_BLOCK:
 892		sh_mmcif_multi_read(host, mrq);
 893		return 0;
 894	case MMC_WRITE_MULTIPLE_BLOCK:
 895		sh_mmcif_multi_write(host, mrq);
 896		return 0;
 897	case MMC_WRITE_BLOCK:
 898		sh_mmcif_single_write(host, mrq);
 899		return 0;
 900	case MMC_READ_SINGLE_BLOCK:
 901	case MMC_SEND_EXT_CSD:
 902		sh_mmcif_single_read(host, mrq);
 903		return 0;
 904	default:
 905		dev_err(dev, "Unsupported CMD%d\n", opc);
 906		return -EINVAL;
 907	}
 908}
 909
 910static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
 911			       struct mmc_request *mrq)
 912{
 913	struct mmc_command *cmd = mrq->cmd;
 914	u32 opc;
 915	u32 mask = 0;
 916	unsigned long flags;
 917
 918	if (cmd->flags & MMC_RSP_BUSY)
 919		mask = MASK_START_CMD | MASK_MRBSYE;
 920	else
 921		mask = MASK_START_CMD | MASK_MCRSPE;
 922
 923	if (host->ccs_enable)
 924		mask |= MASK_MCCSTO;
 925
 926	if (mrq->data) {
 927		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
 928		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
 929				mrq->data->blksz);
 930	}
 931	opc = sh_mmcif_set_cmd(host, mrq);
 932
 933	if (host->ccs_enable)
 934		sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
 935	else
 936		sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
 937	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
 938	/* set arg */
 939	sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
 940	/* set cmd */
 941	spin_lock_irqsave(&host->lock, flags);
 942	sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
 943
 944	host->wait_for = MMCIF_WAIT_FOR_CMD;
 945	schedule_delayed_work(&host->timeout_work, host->timeout);
 946	spin_unlock_irqrestore(&host->lock, flags);
 947}
 948
 949static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
 950			      struct mmc_request *mrq)
 951{
 952	struct device *dev = sh_mmcif_host_to_dev(host);
 953
 954	switch (mrq->cmd->opcode) {
 955	case MMC_READ_MULTIPLE_BLOCK:
 956		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
 957		break;
 958	case MMC_WRITE_MULTIPLE_BLOCK:
 959		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
 960		break;
 961	default:
 962		dev_err(dev, "unsupported stop cmd\n");
 963		mrq->stop->error = sh_mmcif_error_manage(host);
 964		return;
 965	}
 966
 967	host->wait_for = MMCIF_WAIT_FOR_STOP;
 968}
 969
 970static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
 971{
 972	struct sh_mmcif_host *host = mmc_priv(mmc);
 973	struct device *dev = sh_mmcif_host_to_dev(host);
 974	unsigned long flags;
 975
 976	spin_lock_irqsave(&host->lock, flags);
 977	if (host->state != STATE_IDLE) {
 978		dev_dbg(dev, "%s() rejected, state %u\n",
 979			__func__, host->state);
 980		spin_unlock_irqrestore(&host->lock, flags);
 981		mrq->cmd->error = -EAGAIN;
 982		mmc_request_done(mmc, mrq);
 983		return;
 984	}
 985
 986	host->state = STATE_REQUEST;
 987	spin_unlock_irqrestore(&host->lock, flags);
 988
 989	host->mrq = mrq;
 990
 991	sh_mmcif_start_cmd(host, mrq);
 992}
 993
 994static void sh_mmcif_clk_setup(struct sh_mmcif_host *host)
 995{
 996	struct device *dev = sh_mmcif_host_to_dev(host);
 997
 998	if (host->mmc->f_max) {
 999		unsigned int f_max, f_min = 0, f_min_old;
1000
1001		f_max = host->mmc->f_max;
1002		for (f_min_old = f_max; f_min_old > 2;) {
1003			f_min = clk_round_rate(host->clk, f_min_old / 2);
1004			if (f_min == f_min_old)
1005				break;
1006			f_min_old = f_min;
1007		}
1008
1009		/*
1010		 * This driver assumes this SoC is R-Car Gen2 or later
1011		 */
1012		host->clkdiv_map = 0x3ff;
1013
1014		host->mmc->f_max = f_max >> ffs(host->clkdiv_map);
1015		host->mmc->f_min = f_min >> fls(host->clkdiv_map);
1016	} else {
1017		unsigned int clk = clk_get_rate(host->clk);
1018
1019		host->mmc->f_max = clk / 2;
1020		host->mmc->f_min = clk / 512;
1021	}
1022
1023	dev_dbg(dev, "clk max/min = %d/%d\n",
1024		host->mmc->f_max, host->mmc->f_min);
1025}
1026
1027static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1028{
1029	struct sh_mmcif_host *host = mmc_priv(mmc);
1030	struct device *dev = sh_mmcif_host_to_dev(host);
1031	unsigned long flags;
1032
1033	spin_lock_irqsave(&host->lock, flags);
1034	if (host->state != STATE_IDLE) {
1035		dev_dbg(dev, "%s() rejected, state %u\n",
1036			__func__, host->state);
1037		spin_unlock_irqrestore(&host->lock, flags);
1038		return;
1039	}
1040
1041	host->state = STATE_IOS;
1042	spin_unlock_irqrestore(&host->lock, flags);
1043
1044	switch (ios->power_mode) {
1045	case MMC_POWER_UP:
1046		if (!IS_ERR(mmc->supply.vmmc))
1047			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1048		if (!host->power) {
1049			clk_prepare_enable(host->clk);
1050			pm_runtime_get_sync(dev);
1051			sh_mmcif_sync_reset(host);
1052			sh_mmcif_request_dma(host);
1053			host->power = true;
1054		}
1055		break;
1056	case MMC_POWER_OFF:
1057		if (!IS_ERR(mmc->supply.vmmc))
1058			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1059		if (host->power) {
1060			sh_mmcif_clock_control(host, 0);
1061			sh_mmcif_release_dma(host);
1062			pm_runtime_put(dev);
1063			clk_disable_unprepare(host->clk);
1064			host->power = false;
1065		}
1066		break;
1067	case MMC_POWER_ON:
1068		sh_mmcif_clock_control(host, ios->clock);
1069		break;
1070	}
1071
1072	host->timing = ios->timing;
1073	host->bus_width = ios->bus_width;
1074	host->state = STATE_IDLE;
1075}
1076
1077static const struct mmc_host_ops sh_mmcif_ops = {
1078	.request	= sh_mmcif_request,
1079	.set_ios	= sh_mmcif_set_ios,
1080	.get_cd		= mmc_gpio_get_cd,
1081};
1082
1083static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1084{
1085	struct mmc_command *cmd = host->mrq->cmd;
1086	struct mmc_data *data = host->mrq->data;
1087	struct device *dev = sh_mmcif_host_to_dev(host);
1088	long time;
1089
1090	if (host->sd_error) {
1091		switch (cmd->opcode) {
1092		case MMC_ALL_SEND_CID:
1093		case MMC_SELECT_CARD:
1094		case MMC_APP_CMD:
1095			cmd->error = -ETIMEDOUT;
1096			break;
1097		default:
1098			cmd->error = sh_mmcif_error_manage(host);
1099			break;
1100		}
1101		dev_dbg(dev, "CMD%d error %d\n",
1102			cmd->opcode, cmd->error);
1103		host->sd_error = false;
1104		return false;
1105	}
1106	if (!(cmd->flags & MMC_RSP_PRESENT)) {
1107		cmd->error = 0;
1108		return false;
1109	}
1110
1111	sh_mmcif_get_response(host, cmd);
1112
1113	if (!data)
1114		return false;
1115
1116	/*
1117	 * Completion can be signalled from DMA callback and error, so, have to
1118	 * reset here, before setting .dma_active
1119	 */
1120	init_completion(&host->dma_complete);
1121
1122	if (data->flags & MMC_DATA_READ) {
1123		if (host->chan_rx)
1124			sh_mmcif_start_dma_rx(host);
1125	} else {
1126		if (host->chan_tx)
1127			sh_mmcif_start_dma_tx(host);
1128	}
1129
1130	if (!host->dma_active) {
1131		data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1132		return !data->error;
1133	}
1134
1135	/* Running in the IRQ thread, can sleep */
1136	time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1137							 host->timeout);
1138
1139	if (data->flags & MMC_DATA_READ)
1140		dma_unmap_sg(host->chan_rx->device->dev,
1141			     data->sg, data->sg_len,
1142			     DMA_FROM_DEVICE);
1143	else
1144		dma_unmap_sg(host->chan_tx->device->dev,
1145			     data->sg, data->sg_len,
1146			     DMA_TO_DEVICE);
1147
1148	if (host->sd_error) {
1149		dev_err(host->mmc->parent,
1150			"Error IRQ while waiting for DMA completion!\n");
1151		/* Woken up by an error IRQ: abort DMA */
1152		data->error = sh_mmcif_error_manage(host);
1153	} else if (!time) {
1154		dev_err(host->mmc->parent, "DMA timeout!\n");
1155		data->error = -ETIMEDOUT;
1156	} else if (time < 0) {
1157		dev_err(host->mmc->parent,
1158			"wait_for_completion_...() error %ld!\n", time);
1159		data->error = time;
1160	}
1161	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1162			BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1163	host->dma_active = false;
1164
1165	if (data->error) {
1166		data->bytes_xfered = 0;
1167		/* Abort DMA */
1168		if (data->flags & MMC_DATA_READ)
1169			dmaengine_terminate_sync(host->chan_rx);
1170		else
1171			dmaengine_terminate_sync(host->chan_tx);
1172	}
1173
1174	return false;
1175}
1176
1177static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1178{
1179	struct sh_mmcif_host *host = dev_id;
1180	struct mmc_request *mrq;
1181	struct device *dev = sh_mmcif_host_to_dev(host);
1182	bool wait = false;
1183	unsigned long flags;
1184	int wait_work;
1185
1186	spin_lock_irqsave(&host->lock, flags);
1187	wait_work = host->wait_for;
1188	spin_unlock_irqrestore(&host->lock, flags);
1189
1190	cancel_delayed_work_sync(&host->timeout_work);
1191
1192	mutex_lock(&host->thread_lock);
1193
1194	mrq = host->mrq;
1195	if (!mrq) {
1196		dev_dbg(dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1197			host->state, host->wait_for);
1198		mutex_unlock(&host->thread_lock);
1199		return IRQ_HANDLED;
1200	}
1201
1202	/*
1203	 * All handlers return true, if processing continues, and false, if the
1204	 * request has to be completed - successfully or not
1205	 */
1206	switch (wait_work) {
1207	case MMCIF_WAIT_FOR_REQUEST:
1208		/* We're too late, the timeout has already kicked in */
1209		mutex_unlock(&host->thread_lock);
1210		return IRQ_HANDLED;
1211	case MMCIF_WAIT_FOR_CMD:
1212		/* Wait for data? */
1213		wait = sh_mmcif_end_cmd(host);
1214		break;
1215	case MMCIF_WAIT_FOR_MREAD:
1216		/* Wait for more data? */
1217		wait = sh_mmcif_mread_block(host);
1218		break;
1219	case MMCIF_WAIT_FOR_READ:
1220		/* Wait for data end? */
1221		wait = sh_mmcif_read_block(host);
1222		break;
1223	case MMCIF_WAIT_FOR_MWRITE:
1224		/* Wait data to write? */
1225		wait = sh_mmcif_mwrite_block(host);
1226		break;
1227	case MMCIF_WAIT_FOR_WRITE:
1228		/* Wait for data end? */
1229		wait = sh_mmcif_write_block(host);
1230		break;
1231	case MMCIF_WAIT_FOR_STOP:
1232		if (host->sd_error) {
1233			mrq->stop->error = sh_mmcif_error_manage(host);
1234			dev_dbg(dev, "%s(): %d\n", __func__, mrq->stop->error);
1235			break;
1236		}
1237		sh_mmcif_get_cmd12response(host, mrq->stop);
1238		mrq->stop->error = 0;
1239		break;
1240	case MMCIF_WAIT_FOR_READ_END:
1241	case MMCIF_WAIT_FOR_WRITE_END:
1242		if (host->sd_error) {
1243			mrq->data->error = sh_mmcif_error_manage(host);
1244			dev_dbg(dev, "%s(): %d\n", __func__, mrq->data->error);
1245		}
1246		break;
1247	default:
1248		BUG();
1249	}
1250
1251	if (wait) {
1252		schedule_delayed_work(&host->timeout_work, host->timeout);
1253		/* Wait for more data */
1254		mutex_unlock(&host->thread_lock);
1255		return IRQ_HANDLED;
1256	}
1257
1258	if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1259		struct mmc_data *data = mrq->data;
1260		if (!mrq->cmd->error && data && !data->error)
1261			data->bytes_xfered =
1262				data->blocks * data->blksz;
1263
1264		if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1265			sh_mmcif_stop_cmd(host, mrq);
1266			if (!mrq->stop->error) {
1267				schedule_delayed_work(&host->timeout_work, host->timeout);
1268				mutex_unlock(&host->thread_lock);
1269				return IRQ_HANDLED;
1270			}
1271		}
1272	}
1273
1274	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1275	host->state = STATE_IDLE;
1276	host->mrq = NULL;
1277	mmc_request_done(host->mmc, mrq);
1278
1279	mutex_unlock(&host->thread_lock);
1280
1281	return IRQ_HANDLED;
1282}
1283
1284static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1285{
1286	struct sh_mmcif_host *host = dev_id;
1287	struct device *dev = sh_mmcif_host_to_dev(host);
1288	u32 state, mask;
1289
1290	state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1291	mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1292	if (host->ccs_enable)
1293		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1294	else
1295		sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1296	sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1297
1298	if (state & ~MASK_CLEAN)
1299		dev_dbg(dev, "IRQ state = 0x%08x incompletely cleared\n",
1300			state);
1301
1302	if (state & INT_ERR_STS || state & ~INT_ALL) {
1303		host->sd_error = true;
1304		dev_dbg(dev, "int err state = 0x%08x\n", state);
1305	}
1306	if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1307		if (!host->mrq)
1308			dev_dbg(dev, "NULL IRQ state = 0x%08x\n", state);
1309		if (!host->dma_active)
1310			return IRQ_WAKE_THREAD;
1311		else if (host->sd_error)
1312			sh_mmcif_dma_complete(host);
1313	} else {
1314		dev_dbg(dev, "Unexpected IRQ 0x%x\n", state);
1315	}
1316
1317	return IRQ_HANDLED;
1318}
1319
1320static void sh_mmcif_timeout_work(struct work_struct *work)
1321{
1322	struct delayed_work *d = to_delayed_work(work);
1323	struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1324	struct mmc_request *mrq = host->mrq;
1325	struct device *dev = sh_mmcif_host_to_dev(host);
1326	unsigned long flags;
1327
1328	if (host->dying)
1329		/* Don't run after mmc_remove_host() */
1330		return;
1331
1332	spin_lock_irqsave(&host->lock, flags);
1333	if (host->state == STATE_IDLE) {
1334		spin_unlock_irqrestore(&host->lock, flags);
1335		return;
1336	}
1337
1338	dev_err(dev, "Timeout waiting for %u on CMD%u\n",
1339		host->wait_for, mrq->cmd->opcode);
1340
1341	host->state = STATE_TIMEOUT;
1342	spin_unlock_irqrestore(&host->lock, flags);
1343
1344	/*
1345	 * Handle races with cancel_delayed_work(), unless
1346	 * cancel_delayed_work_sync() is used
1347	 */
1348	switch (host->wait_for) {
1349	case MMCIF_WAIT_FOR_CMD:
1350		mrq->cmd->error = sh_mmcif_error_manage(host);
1351		break;
1352	case MMCIF_WAIT_FOR_STOP:
1353		mrq->stop->error = sh_mmcif_error_manage(host);
1354		break;
1355	case MMCIF_WAIT_FOR_MREAD:
1356	case MMCIF_WAIT_FOR_MWRITE:
1357	case MMCIF_WAIT_FOR_READ:
1358	case MMCIF_WAIT_FOR_WRITE:
1359	case MMCIF_WAIT_FOR_READ_END:
1360	case MMCIF_WAIT_FOR_WRITE_END:
1361		mrq->data->error = sh_mmcif_error_manage(host);
1362		break;
1363	default:
1364		BUG();
1365	}
1366
1367	host->state = STATE_IDLE;
1368	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1369	host->mrq = NULL;
1370	mmc_request_done(host->mmc, mrq);
1371}
1372
1373static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1374{
1375	struct device *dev = sh_mmcif_host_to_dev(host);
1376	struct sh_mmcif_plat_data *pd = dev->platform_data;
1377	struct mmc_host *mmc = host->mmc;
1378
1379	mmc_regulator_get_supply(mmc);
1380
1381	if (!pd)
1382		return;
1383
1384	if (!mmc->ocr_avail)
1385		mmc->ocr_avail = pd->ocr;
1386	else if (pd->ocr)
1387		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1388}
1389
1390static int sh_mmcif_probe(struct platform_device *pdev)
1391{
1392	int ret = 0, irq[2];
1393	struct mmc_host *mmc;
1394	struct sh_mmcif_host *host;
1395	struct device *dev = &pdev->dev;
1396	struct sh_mmcif_plat_data *pd = dev->platform_data;
1397	void __iomem *reg;
1398	const char *name;
1399
1400	irq[0] = platform_get_irq(pdev, 0);
1401	irq[1] = platform_get_irq_optional(pdev, 1);
1402	if (irq[0] < 0)
1403		return -ENXIO;
1404
1405	reg = devm_platform_ioremap_resource(pdev, 0);
1406	if (IS_ERR(reg))
1407		return PTR_ERR(reg);
1408
1409	mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), dev);
1410	if (!mmc)
1411		return -ENOMEM;
1412
1413	ret = mmc_of_parse(mmc);
1414	if (ret < 0)
1415		goto err_host;
1416
1417	host		= mmc_priv(mmc);
1418	host->mmc	= mmc;
1419	host->addr	= reg;
1420	host->timeout	= msecs_to_jiffies(10000);
1421	host->ccs_enable = true;
1422	host->clk_ctrl2_enable = false;
1423
1424	host->pd = pdev;
1425
1426	spin_lock_init(&host->lock);
1427
1428	mmc->ops = &sh_mmcif_ops;
1429	sh_mmcif_init_ocr(host);
1430
1431	mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1432	mmc->caps2 |= MMC_CAP2_NO_SD | MMC_CAP2_NO_SDIO;
1433	mmc->max_busy_timeout = 10000;
1434
1435	if (pd && pd->caps)
1436		mmc->caps |= pd->caps;
1437	mmc->max_segs = 32;
1438	mmc->max_blk_size = 512;
1439	mmc->max_req_size = PAGE_SIZE * mmc->max_segs;
1440	mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1441	mmc->max_seg_size = mmc->max_req_size;
1442
1443	platform_set_drvdata(pdev, host);
1444
1445	host->clk = devm_clk_get(dev, NULL);
1446	if (IS_ERR(host->clk)) {
1447		ret = PTR_ERR(host->clk);
1448		dev_err(dev, "cannot get clock: %d\n", ret);
1449		goto err_host;
1450	}
1451
1452	ret = clk_prepare_enable(host->clk);
1453	if (ret < 0)
1454		goto err_host;
1455
1456	sh_mmcif_clk_setup(host);
1457
1458	pm_runtime_enable(dev);
1459	host->power = false;
1460
1461	ret = pm_runtime_get_sync(dev);
1462	if (ret < 0)
1463		goto err_clk;
1464
1465	INIT_DELAYED_WORK(&host->timeout_work, sh_mmcif_timeout_work);
1466
1467	sh_mmcif_sync_reset(host);
1468	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1469
1470	name = irq[1] < 0 ? dev_name(dev) : "sh_mmc:error";
1471	ret = devm_request_threaded_irq(dev, irq[0], sh_mmcif_intr,
1472					sh_mmcif_irqt, 0, name, host);
1473	if (ret) {
1474		dev_err(dev, "request_irq error (%s)\n", name);
1475		goto err_clk;
1476	}
1477	if (irq[1] >= 0) {
1478		ret = devm_request_threaded_irq(dev, irq[1],
1479						sh_mmcif_intr, sh_mmcif_irqt,
1480						0, "sh_mmc:int", host);
1481		if (ret) {
1482			dev_err(dev, "request_irq error (sh_mmc:int)\n");
1483			goto err_clk;
1484		}
1485	}
1486
1487	mutex_init(&host->thread_lock);
1488
1489	ret = mmc_add_host(mmc);
1490	if (ret < 0)
1491		goto err_clk;
1492
1493	dev_pm_qos_expose_latency_limit(dev, 100);
1494
1495	dev_info(dev, "Chip version 0x%04x, clock rate %luMHz\n",
1496		 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff,
1497		 clk_get_rate(host->clk) / 1000000UL);
1498
1499	pm_runtime_put(dev);
1500	clk_disable_unprepare(host->clk);
1501	return ret;
1502
1503err_clk:
1504	clk_disable_unprepare(host->clk);
1505	pm_runtime_put_sync(dev);
1506	pm_runtime_disable(dev);
1507err_host:
1508	mmc_free_host(mmc);
1509	return ret;
1510}
1511
1512static int sh_mmcif_remove(struct platform_device *pdev)
1513{
1514	struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1515
1516	host->dying = true;
1517	clk_prepare_enable(host->clk);
1518	pm_runtime_get_sync(&pdev->dev);
1519
1520	dev_pm_qos_hide_latency_limit(&pdev->dev);
1521
1522	mmc_remove_host(host->mmc);
1523	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1524
1525	/*
1526	 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1527	 * mmc_remove_host() call above. But swapping order doesn't help either
1528	 * (a query on the linux-mmc mailing list didn't bring any replies).
1529	 */
1530	cancel_delayed_work_sync(&host->timeout_work);
1531
1532	clk_disable_unprepare(host->clk);
1533	mmc_free_host(host->mmc);
1534	pm_runtime_put_sync(&pdev->dev);
1535	pm_runtime_disable(&pdev->dev);
1536
1537	return 0;
1538}
1539
1540#ifdef CONFIG_PM_SLEEP
1541static int sh_mmcif_suspend(struct device *dev)
1542{
1543	struct sh_mmcif_host *host = dev_get_drvdata(dev);
1544
1545	pm_runtime_get_sync(dev);
1546	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1547	pm_runtime_put(dev);
1548
1549	return 0;
1550}
1551
1552static int sh_mmcif_resume(struct device *dev)
1553{
1554	return 0;
1555}
1556#endif
1557
1558static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1559	SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
1560};
1561
1562static struct platform_driver sh_mmcif_driver = {
1563	.probe		= sh_mmcif_probe,
1564	.remove		= sh_mmcif_remove,
1565	.driver		= {
1566		.name	= DRIVER_NAME,
1567		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
1568		.pm	= &sh_mmcif_dev_pm_ops,
1569		.of_match_table = sh_mmcif_of_match,
1570	},
1571};
1572
1573module_platform_driver(sh_mmcif_driver);
1574
1575MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1576MODULE_LICENSE("GPL v2");
1577MODULE_ALIAS("platform:" DRIVER_NAME);
1578MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * MMCIF eMMC driver.
   4 *
   5 * Copyright (C) 2010 Renesas Solutions Corp.
   6 * Yusuke Goda <yusuke.goda.sx@renesas.com>
   7 */
   8
   9/*
  10 * The MMCIF driver is now processing MMC requests asynchronously, according
  11 * to the Linux MMC API requirement.
  12 *
  13 * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
  14 * data, and optional stop. To achieve asynchronous processing each of these
  15 * stages is split into two halves: a top and a bottom half. The top half
  16 * initialises the hardware, installs a timeout handler to handle completion
  17 * timeouts, and returns. In case of the command stage this immediately returns
  18 * control to the caller, leaving all further processing to run asynchronously.
  19 * All further request processing is performed by the bottom halves.
  20 *
  21 * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
  22 * thread, a DMA completion callback, if DMA is used, a timeout work, and
  23 * request- and stage-specific handler methods.
  24 *
  25 * Each bottom half run begins with either a hardware interrupt, a DMA callback
  26 * invocation, or a timeout work run. In case of an error or a successful
  27 * processing completion, the MMC core is informed and the request processing is
  28 * finished. In case processing has to continue, i.e., if data has to be read
  29 * from or written to the card, or if a stop command has to be sent, the next
  30 * top half is called, which performs the necessary hardware handling and
  31 * reschedules the timeout work. This returns the driver state machine into the
  32 * bottom half waiting state.
  33 */
  34
  35#include <linux/bitops.h>
  36#include <linux/clk.h>
  37#include <linux/completion.h>
  38#include <linux/delay.h>
  39#include <linux/dma-mapping.h>
  40#include <linux/dmaengine.h>
  41#include <linux/mmc/card.h>
  42#include <linux/mmc/core.h>
  43#include <linux/mmc/host.h>
  44#include <linux/mmc/mmc.h>
  45#include <linux/mmc/sdio.h>
  46#include <linux/mmc/slot-gpio.h>
  47#include <linux/mod_devicetable.h>
  48#include <linux/mutex.h>
 
  49#include <linux/pagemap.h>
  50#include <linux/platform_data/sh_mmcif.h>
  51#include <linux/platform_device.h>
  52#include <linux/pm_qos.h>
  53#include <linux/pm_runtime.h>
  54#include <linux/sh_dma.h>
  55#include <linux/spinlock.h>
  56#include <linux/module.h>
  57
  58#define DRIVER_NAME	"sh_mmcif"
  59
  60/* CE_CMD_SET */
  61#define CMD_MASK		0x3f000000
  62#define CMD_SET_RTYP_NO		((0 << 23) | (0 << 22))
  63#define CMD_SET_RTYP_6B		((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
  64#define CMD_SET_RTYP_17B	((1 << 23) | (0 << 22)) /* R2 */
  65#define CMD_SET_RBSY		(1 << 21) /* R1b */
  66#define CMD_SET_CCSEN		(1 << 20)
  67#define CMD_SET_WDAT		(1 << 19) /* 1: on data, 0: no data */
  68#define CMD_SET_DWEN		(1 << 18) /* 1: write, 0: read */
  69#define CMD_SET_CMLTE		(1 << 17) /* 1: multi block trans, 0: single */
  70#define CMD_SET_CMD12EN		(1 << 16) /* 1: CMD12 auto issue */
  71#define CMD_SET_RIDXC_INDEX	((0 << 15) | (0 << 14)) /* index check */
  72#define CMD_SET_RIDXC_BITS	((0 << 15) | (1 << 14)) /* check bits check */
  73#define CMD_SET_RIDXC_NO	((1 << 15) | (0 << 14)) /* no check */
  74#define CMD_SET_CRC7C		((0 << 13) | (0 << 12)) /* CRC7 check*/
  75#define CMD_SET_CRC7C_BITS	((0 << 13) | (1 << 12)) /* check bits check*/
  76#define CMD_SET_CRC7C_INTERNAL	((1 << 13) | (0 << 12)) /* internal CRC7 check*/
  77#define CMD_SET_CRC16C		(1 << 10) /* 0: CRC16 check*/
  78#define CMD_SET_CRCSTE		(1 << 8) /* 1: not receive CRC status */
  79#define CMD_SET_TBIT		(1 << 7) /* 1: tran mission bit "Low" */
  80#define CMD_SET_OPDM		(1 << 6) /* 1: open/drain */
  81#define CMD_SET_CCSH		(1 << 5)
  82#define CMD_SET_DARS		(1 << 2) /* Dual Data Rate */
  83#define CMD_SET_DATW_1		((0 << 1) | (0 << 0)) /* 1bit */
  84#define CMD_SET_DATW_4		((0 << 1) | (1 << 0)) /* 4bit */
  85#define CMD_SET_DATW_8		((1 << 1) | (0 << 0)) /* 8bit */
  86
  87/* CE_CMD_CTRL */
  88#define CMD_CTRL_BREAK		(1 << 0)
  89
  90/* CE_BLOCK_SET */
  91#define BLOCK_SIZE_MASK		0x0000ffff
  92
  93/* CE_INT */
  94#define INT_CCSDE		(1 << 29)
  95#define INT_CMD12DRE		(1 << 26)
  96#define INT_CMD12RBE		(1 << 25)
  97#define INT_CMD12CRE		(1 << 24)
  98#define INT_DTRANE		(1 << 23)
  99#define INT_BUFRE		(1 << 22)
 100#define INT_BUFWEN		(1 << 21)
 101#define INT_BUFREN		(1 << 20)
 102#define INT_CCSRCV		(1 << 19)
 103#define INT_RBSYE		(1 << 17)
 104#define INT_CRSPE		(1 << 16)
 105#define INT_CMDVIO		(1 << 15)
 106#define INT_BUFVIO		(1 << 14)
 107#define INT_WDATERR		(1 << 11)
 108#define INT_RDATERR		(1 << 10)
 109#define INT_RIDXERR		(1 << 9)
 110#define INT_RSPERR		(1 << 8)
 111#define INT_CCSTO		(1 << 5)
 112#define INT_CRCSTO		(1 << 4)
 113#define INT_WDATTO		(1 << 3)
 114#define INT_RDATTO		(1 << 2)
 115#define INT_RBSYTO		(1 << 1)
 116#define INT_RSPTO		(1 << 0)
 117#define INT_ERR_STS		(INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
 118				 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
 119				 INT_CCSTO | INT_CRCSTO | INT_WDATTO |	  \
 120				 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
 121
 122#define INT_ALL			(INT_RBSYE | INT_CRSPE | INT_BUFREN |	 \
 123				 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
 124				 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
 125
 126#define INT_CCS			(INT_CCSTO | INT_CCSRCV | INT_CCSDE)
 127
 128/* CE_INT_MASK */
 129#define MASK_ALL		0x00000000
 130#define MASK_MCCSDE		(1 << 29)
 131#define MASK_MCMD12DRE		(1 << 26)
 132#define MASK_MCMD12RBE		(1 << 25)
 133#define MASK_MCMD12CRE		(1 << 24)
 134#define MASK_MDTRANE		(1 << 23)
 135#define MASK_MBUFRE		(1 << 22)
 136#define MASK_MBUFWEN		(1 << 21)
 137#define MASK_MBUFREN		(1 << 20)
 138#define MASK_MCCSRCV		(1 << 19)
 139#define MASK_MRBSYE		(1 << 17)
 140#define MASK_MCRSPE		(1 << 16)
 141#define MASK_MCMDVIO		(1 << 15)
 142#define MASK_MBUFVIO		(1 << 14)
 143#define MASK_MWDATERR		(1 << 11)
 144#define MASK_MRDATERR		(1 << 10)
 145#define MASK_MRIDXERR		(1 << 9)
 146#define MASK_MRSPERR		(1 << 8)
 147#define MASK_MCCSTO		(1 << 5)
 148#define MASK_MCRCSTO		(1 << 4)
 149#define MASK_MWDATTO		(1 << 3)
 150#define MASK_MRDATTO		(1 << 2)
 151#define MASK_MRBSYTO		(1 << 1)
 152#define MASK_MRSPTO		(1 << 0)
 153
 154#define MASK_START_CMD		(MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
 155				 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
 156				 MASK_MCRCSTO | MASK_MWDATTO | \
 157				 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
 158
 159#define MASK_CLEAN		(INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE |	\
 160				 MASK_MBUFREN | MASK_MBUFWEN |			\
 161				 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE |	\
 162				 MASK_MCMD12RBE | MASK_MCMD12CRE)
 163
 164/* CE_HOST_STS1 */
 165#define STS1_CMDSEQ		(1 << 31)
 166
 167/* CE_HOST_STS2 */
 168#define STS2_CRCSTE		(1 << 31)
 169#define STS2_CRC16E		(1 << 30)
 170#define STS2_AC12CRCE		(1 << 29)
 171#define STS2_RSPCRC7E		(1 << 28)
 172#define STS2_CRCSTEBE		(1 << 27)
 173#define STS2_RDATEBE		(1 << 26)
 174#define STS2_AC12REBE		(1 << 25)
 175#define STS2_RSPEBE		(1 << 24)
 176#define STS2_AC12IDXE		(1 << 23)
 177#define STS2_RSPIDXE		(1 << 22)
 178#define STS2_CCSTO		(1 << 15)
 179#define STS2_RDATTO		(1 << 14)
 180#define STS2_DATBSYTO		(1 << 13)
 181#define STS2_CRCSTTO		(1 << 12)
 182#define STS2_AC12BSYTO		(1 << 11)
 183#define STS2_RSPBSYTO		(1 << 10)
 184#define STS2_AC12RSPTO		(1 << 9)
 185#define STS2_RSPTO		(1 << 8)
 186#define STS2_CRC_ERR		(STS2_CRCSTE | STS2_CRC16E |		\
 187				 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
 188#define STS2_TIMEOUT_ERR	(STS2_CCSTO | STS2_RDATTO |		\
 189				 STS2_DATBSYTO | STS2_CRCSTTO |		\
 190				 STS2_AC12BSYTO | STS2_RSPBSYTO |	\
 191				 STS2_AC12RSPTO | STS2_RSPTO)
 192
 193#define CLKDEV_EMMC_DATA	52000000 /* 52 MHz */
 194#define CLKDEV_MMC_DATA		20000000 /* 20 MHz */
 195#define CLKDEV_INIT		400000   /* 400 kHz */
 196
 197enum sh_mmcif_state {
 198	STATE_IDLE,
 199	STATE_REQUEST,
 200	STATE_IOS,
 201	STATE_TIMEOUT,
 202};
 203
 204enum sh_mmcif_wait_for {
 205	MMCIF_WAIT_FOR_REQUEST,
 206	MMCIF_WAIT_FOR_CMD,
 207	MMCIF_WAIT_FOR_MREAD,
 208	MMCIF_WAIT_FOR_MWRITE,
 209	MMCIF_WAIT_FOR_READ,
 210	MMCIF_WAIT_FOR_WRITE,
 211	MMCIF_WAIT_FOR_READ_END,
 212	MMCIF_WAIT_FOR_WRITE_END,
 213	MMCIF_WAIT_FOR_STOP,
 214};
 215
 216/*
 217 * difference for each SoC
 218 */
 219struct sh_mmcif_host {
 220	struct mmc_host *mmc;
 221	struct mmc_request *mrq;
 222	struct platform_device *pd;
 223	struct clk *clk;
 224	int bus_width;
 225	unsigned char timing;
 226	bool sd_error;
 227	bool dying;
 228	long timeout;
 229	void __iomem *addr;
 
 230	spinlock_t lock;		/* protect sh_mmcif_host::state */
 231	enum sh_mmcif_state state;
 232	enum sh_mmcif_wait_for wait_for;
 233	struct delayed_work timeout_work;
 234	size_t blocksize;
 235	struct sg_mapping_iter sg_miter;
 
 236	bool power;
 237	bool ccs_enable;		/* Command Completion Signal support */
 238	bool clk_ctrl2_enable;
 239	struct mutex thread_lock;
 240	u32 clkdiv_map;         /* see CE_CLK_CTRL::CLKDIV */
 241
 242	/* DMA support */
 243	struct dma_chan		*chan_rx;
 244	struct dma_chan		*chan_tx;
 245	struct completion	dma_complete;
 246	bool			dma_active;
 247};
 248
 249static const struct of_device_id sh_mmcif_of_match[] = {
 250	{ .compatible = "renesas,sh-mmcif" },
 251	{ }
 252};
 253MODULE_DEVICE_TABLE(of, sh_mmcif_of_match);
 254
 255#define sh_mmcif_host_to_dev(host) (&host->pd->dev)
 256
 257static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
 258					unsigned int reg, u32 val)
 259{
 260	writel(val | readl(host->addr + reg), host->addr + reg);
 261}
 262
 263static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
 264					unsigned int reg, u32 val)
 265{
 266	writel(~val & readl(host->addr + reg), host->addr + reg);
 267}
 268
 269static void sh_mmcif_dma_complete(void *arg)
 270{
 271	struct sh_mmcif_host *host = arg;
 272	struct mmc_request *mrq = host->mrq;
 273	struct device *dev = sh_mmcif_host_to_dev(host);
 274
 275	dev_dbg(dev, "Command completed\n");
 276
 277	if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
 278		 dev_name(dev)))
 279		return;
 280
 281	complete(&host->dma_complete);
 282}
 283
 284static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
 285{
 286	struct mmc_data *data = host->mrq->data;
 287	struct scatterlist *sg = data->sg;
 288	struct dma_async_tx_descriptor *desc = NULL;
 289	struct dma_chan *chan = host->chan_rx;
 290	struct device *dev = sh_mmcif_host_to_dev(host);
 291	dma_cookie_t cookie = -EINVAL;
 292	int ret;
 293
 294	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
 295			 DMA_FROM_DEVICE);
 296	if (ret > 0) {
 297		host->dma_active = true;
 298		desc = dmaengine_prep_slave_sg(chan, sg, ret,
 299			DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 300	}
 301
 302	if (desc) {
 303		desc->callback = sh_mmcif_dma_complete;
 304		desc->callback_param = host;
 305		cookie = dmaengine_submit(desc);
 306		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
 307		dma_async_issue_pending(chan);
 308	}
 309	dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
 310		__func__, data->sg_len, ret, cookie);
 311
 312	if (!desc) {
 313		/* DMA failed, fall back to PIO */
 314		if (ret >= 0)
 315			ret = -EIO;
 316		host->chan_rx = NULL;
 317		host->dma_active = false;
 318		dma_release_channel(chan);
 319		/* Free the Tx channel too */
 320		chan = host->chan_tx;
 321		if (chan) {
 322			host->chan_tx = NULL;
 323			dma_release_channel(chan);
 324		}
 325		dev_warn(dev,
 326			 "DMA failed: %d, falling back to PIO\n", ret);
 327		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
 328	}
 329
 330	dev_dbg(dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
 331		desc, cookie, data->sg_len);
 332}
 333
 334static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
 335{
 336	struct mmc_data *data = host->mrq->data;
 337	struct scatterlist *sg = data->sg;
 338	struct dma_async_tx_descriptor *desc = NULL;
 339	struct dma_chan *chan = host->chan_tx;
 340	struct device *dev = sh_mmcif_host_to_dev(host);
 341	dma_cookie_t cookie = -EINVAL;
 342	int ret;
 343
 344	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
 345			 DMA_TO_DEVICE);
 346	if (ret > 0) {
 347		host->dma_active = true;
 348		desc = dmaengine_prep_slave_sg(chan, sg, ret,
 349			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 350	}
 351
 352	if (desc) {
 353		desc->callback = sh_mmcif_dma_complete;
 354		desc->callback_param = host;
 355		cookie = dmaengine_submit(desc);
 356		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
 357		dma_async_issue_pending(chan);
 358	}
 359	dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
 360		__func__, data->sg_len, ret, cookie);
 361
 362	if (!desc) {
 363		/* DMA failed, fall back to PIO */
 364		if (ret >= 0)
 365			ret = -EIO;
 366		host->chan_tx = NULL;
 367		host->dma_active = false;
 368		dma_release_channel(chan);
 369		/* Free the Rx channel too */
 370		chan = host->chan_rx;
 371		if (chan) {
 372			host->chan_rx = NULL;
 373			dma_release_channel(chan);
 374		}
 375		dev_warn(dev,
 376			 "DMA failed: %d, falling back to PIO\n", ret);
 377		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
 378	}
 379
 380	dev_dbg(dev, "%s(): desc %p, cookie %d\n", __func__,
 381		desc, cookie);
 382}
 383
 384static struct dma_chan *
 385sh_mmcif_request_dma_pdata(struct sh_mmcif_host *host, uintptr_t slave_id)
 386{
 387	dma_cap_mask_t mask;
 388
 389	dma_cap_zero(mask);
 390	dma_cap_set(DMA_SLAVE, mask);
 391	if (slave_id <= 0)
 392		return NULL;
 393
 394	return dma_request_channel(mask, shdma_chan_filter, (void *)slave_id);
 395}
 396
 397static int sh_mmcif_dma_slave_config(struct sh_mmcif_host *host,
 398				     struct dma_chan *chan,
 399				     enum dma_transfer_direction direction)
 400{
 401	struct resource *res;
 402	struct dma_slave_config cfg = { 0, };
 403
 404	res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
 405	if (!res)
 406		return -EINVAL;
 407
 408	cfg.direction = direction;
 409
 410	if (direction == DMA_DEV_TO_MEM) {
 411		cfg.src_addr = res->start + MMCIF_CE_DATA;
 412		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 413	} else {
 414		cfg.dst_addr = res->start + MMCIF_CE_DATA;
 415		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 416	}
 417
 418	return dmaengine_slave_config(chan, &cfg);
 419}
 420
 421static void sh_mmcif_request_dma(struct sh_mmcif_host *host)
 422{
 423	struct device *dev = sh_mmcif_host_to_dev(host);
 424	host->dma_active = false;
 425
 426	/* We can only either use DMA for both Tx and Rx or not use it at all */
 427	if (IS_ENABLED(CONFIG_SUPERH) && dev->platform_data) {
 428		struct sh_mmcif_plat_data *pdata = dev->platform_data;
 429
 430		host->chan_tx = sh_mmcif_request_dma_pdata(host,
 431							pdata->slave_id_tx);
 432		host->chan_rx = sh_mmcif_request_dma_pdata(host,
 433							pdata->slave_id_rx);
 434	} else {
 435		host->chan_tx = dma_request_chan(dev, "tx");
 436		if (IS_ERR(host->chan_tx))
 437			host->chan_tx = NULL;
 438		host->chan_rx = dma_request_chan(dev, "rx");
 439		if (IS_ERR(host->chan_rx))
 440			host->chan_rx = NULL;
 441	}
 
 
 442
 443	if (!host->chan_tx || !host->chan_rx ||
 444	    sh_mmcif_dma_slave_config(host, host->chan_tx, DMA_MEM_TO_DEV) ||
 445	    sh_mmcif_dma_slave_config(host, host->chan_rx, DMA_DEV_TO_MEM))
 446		goto error;
 447
 448	dev_dbg(dev, "%s: got channel TX %p RX %p\n", __func__, host->chan_tx,
 449		host->chan_rx);
 450
 451	return;
 452
 453error:
 454	if (host->chan_tx)
 455		dma_release_channel(host->chan_tx);
 456	if (host->chan_rx)
 457		dma_release_channel(host->chan_rx);
 458	host->chan_tx = host->chan_rx = NULL;
 459}
 460
 461static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
 462{
 463	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
 464	/* Descriptors are freed automatically */
 465	if (host->chan_tx) {
 466		struct dma_chan *chan = host->chan_tx;
 467		host->chan_tx = NULL;
 468		dma_release_channel(chan);
 469	}
 470	if (host->chan_rx) {
 471		struct dma_chan *chan = host->chan_rx;
 472		host->chan_rx = NULL;
 473		dma_release_channel(chan);
 474	}
 475
 476	host->dma_active = false;
 477}
 478
 479static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
 480{
 481	struct device *dev = sh_mmcif_host_to_dev(host);
 482	struct sh_mmcif_plat_data *p = dev->platform_data;
 483	bool sup_pclk = p ? p->sup_pclk : false;
 484	unsigned int current_clk = clk_get_rate(host->clk);
 485	unsigned int clkdiv;
 486
 487	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
 488	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
 489
 490	if (!clk)
 491		return;
 492
 493	if (host->clkdiv_map) {
 494		unsigned int freq, best_freq, myclk, div, diff_min, diff;
 495		int i;
 496
 497		clkdiv = 0;
 498		diff_min = ~0;
 499		best_freq = 0;
 500		for (i = 31; i >= 0; i--) {
 501			if (!((1 << i) & host->clkdiv_map))
 502				continue;
 503
 504			/*
 505			 * clk = parent_freq / div
 506			 * -> parent_freq = clk x div
 507			 */
 508
 509			div = 1 << (i + 1);
 510			freq = clk_round_rate(host->clk, clk * div);
 511			myclk = freq / div;
 512			diff = (myclk > clk) ? myclk - clk : clk - myclk;
 513
 514			if (diff <= diff_min) {
 515				best_freq = freq;
 516				clkdiv = i;
 517				diff_min = diff;
 518			}
 519		}
 520
 521		dev_dbg(dev, "clk %u/%u (%u, 0x%x)\n",
 522			(best_freq >> (clkdiv + 1)), clk, best_freq, clkdiv);
 523
 524		clk_set_rate(host->clk, best_freq);
 525		clkdiv = clkdiv << 16;
 526	} else if (sup_pclk && clk == current_clk) {
 527		clkdiv = CLK_SUP_PCLK;
 528	} else {
 529		clkdiv = (fls(DIV_ROUND_UP(current_clk, clk) - 1) - 1) << 16;
 530	}
 531
 532	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR & clkdiv);
 533	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
 534}
 535
 536static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
 537{
 538	u32 tmp;
 539
 540	tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
 541
 542	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
 543	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
 544	if (host->ccs_enable)
 545		tmp |= SCCSTO_29;
 546	if (host->clk_ctrl2_enable)
 547		sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
 548	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
 549		SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
 550	/* byte swap on */
 551	sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
 552}
 553
 554static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
 555{
 556	struct device *dev = sh_mmcif_host_to_dev(host);
 557	u32 state1, state2;
 558	int ret, timeout;
 559
 560	host->sd_error = false;
 561
 562	state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
 563	state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
 564	dev_dbg(dev, "ERR HOST_STS1 = %08x\n", state1);
 565	dev_dbg(dev, "ERR HOST_STS2 = %08x\n", state2);
 566
 567	if (state1 & STS1_CMDSEQ) {
 568		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
 569		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
 570		for (timeout = 10000; timeout; timeout--) {
 571			if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
 572			      & STS1_CMDSEQ))
 573				break;
 574			mdelay(1);
 575		}
 576		if (!timeout) {
 577			dev_err(dev,
 578				"Forced end of command sequence timeout err\n");
 579			return -EIO;
 580		}
 581		sh_mmcif_sync_reset(host);
 582		dev_dbg(dev, "Forced end of command sequence\n");
 583		return -EIO;
 584	}
 585
 586	if (state2 & STS2_CRC_ERR) {
 587		dev_err(dev, " CRC error: state %u, wait %u\n",
 588			host->state, host->wait_for);
 589		ret = -EIO;
 590	} else if (state2 & STS2_TIMEOUT_ERR) {
 591		dev_err(dev, " Timeout: state %u, wait %u\n",
 592			host->state, host->wait_for);
 593		ret = -ETIMEDOUT;
 594	} else {
 595		dev_dbg(dev, " End/Index error: state %u, wait %u\n",
 596			host->state, host->wait_for);
 597		ret = -EIO;
 598	}
 599	return ret;
 600}
 601
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 602static void sh_mmcif_single_read(struct sh_mmcif_host *host,
 603				 struct mmc_request *mrq)
 604{
 605	struct mmc_data *data = mrq->data;
 606
 607	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 608			   BLOCK_SIZE_MASK) + 3;
 609
 610	sg_miter_start(&host->sg_miter, data->sg, data->sg_len,
 611		       SG_MITER_TO_SG);
 612
 613	host->wait_for = MMCIF_WAIT_FOR_READ;
 614
 615	/* buf read enable */
 616	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
 617}
 618
 619static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
 620{
 621	struct sg_mapping_iter *sgm = &host->sg_miter;
 622	struct device *dev = sh_mmcif_host_to_dev(host);
 623	struct mmc_data *data = host->mrq->data;
 624	u32 *p;
 625	int i;
 626
 627	if (host->sd_error) {
 628		sg_miter_stop(sgm);
 629		data->error = sh_mmcif_error_manage(host);
 630		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
 631		return false;
 632	}
 633
 634	if (!sg_miter_next(sgm)) {
 635		/* This should not happen on single blocks */
 636		sg_miter_stop(sgm);
 637		return false;
 638	}
 639
 640	p = sgm->addr;
 641
 642	for (i = 0; i < host->blocksize / 4; i++)
 643		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
 644
 645	sg_miter_stop(&host->sg_miter);
 646
 647	/* buffer read end */
 648	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
 649	host->wait_for = MMCIF_WAIT_FOR_READ_END;
 650
 651	return true;
 652}
 653
 654static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
 655				struct mmc_request *mrq)
 656{
 657	struct sg_mapping_iter *sgm = &host->sg_miter;
 658	struct mmc_data *data = mrq->data;
 659
 660	if (!data->sg_len || !data->sg->length)
 661		return;
 662
 663	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 664		BLOCK_SIZE_MASK;
 665
 666	sg_miter_start(sgm, data->sg, data->sg_len,
 667		       SG_MITER_TO_SG);
 668
 669	/* Advance to the first sglist entry */
 670	if (!sg_miter_next(sgm)) {
 671		sg_miter_stop(sgm);
 672		return;
 673	}
 674
 675	host->wait_for = MMCIF_WAIT_FOR_MREAD;
 
 
 
 676
 677	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
 678}
 679
 680static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
 681{
 682	struct sg_mapping_iter *sgm = &host->sg_miter;
 683	struct device *dev = sh_mmcif_host_to_dev(host);
 684	struct mmc_data *data = host->mrq->data;
 685	u32 *p;
 686	int i;
 687
 688	if (host->sd_error) {
 689		sg_miter_stop(sgm);
 690		data->error = sh_mmcif_error_manage(host);
 691		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
 692		return false;
 693	}
 694
 695	p = sgm->addr;
 696
 697	for (i = 0; i < host->blocksize / 4; i++)
 698		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
 699
 700	sgm->consumed = host->blocksize;
 
 701
 702	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
 703
 704	if (!sg_miter_next(sgm)) {
 705		sg_miter_stop(sgm);
 706		return false;
 707	}
 708
 709	return true;
 710}
 711
 712static void sh_mmcif_single_write(struct sh_mmcif_host *host,
 713					struct mmc_request *mrq)
 714{
 715	struct mmc_data *data = mrq->data;
 716
 717	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 718			   BLOCK_SIZE_MASK) + 3;
 719
 720	sg_miter_start(&host->sg_miter, data->sg, data->sg_len,
 721		       SG_MITER_FROM_SG);
 722
 723	host->wait_for = MMCIF_WAIT_FOR_WRITE;
 724
 725	/* buf write enable */
 726	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
 727}
 728
 729static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
 730{
 731	struct sg_mapping_iter *sgm = &host->sg_miter;
 732	struct device *dev = sh_mmcif_host_to_dev(host);
 733	struct mmc_data *data = host->mrq->data;
 734	u32 *p;
 735	int i;
 736
 737	if (host->sd_error) {
 738		sg_miter_stop(sgm);
 739		data->error = sh_mmcif_error_manage(host);
 740		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
 741		return false;
 742	}
 743
 744	if (!sg_miter_next(sgm)) {
 745		/* This should not happen on single blocks */
 746		sg_miter_stop(sgm);
 747		return false;
 748	}
 749
 750	p = sgm->addr;
 751
 752	for (i = 0; i < host->blocksize / 4; i++)
 753		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
 754
 755	sg_miter_stop(&host->sg_miter);
 756
 757	/* buffer write end */
 758	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
 759	host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
 760
 761	return true;
 762}
 763
 764static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
 765				struct mmc_request *mrq)
 766{
 767	struct sg_mapping_iter *sgm = &host->sg_miter;
 768	struct mmc_data *data = mrq->data;
 769
 770	if (!data->sg_len || !data->sg->length)
 771		return;
 772
 773	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 774		BLOCK_SIZE_MASK;
 775
 776	sg_miter_start(sgm, data->sg, data->sg_len,
 777		       SG_MITER_FROM_SG);
 778
 779	/* Advance to the first sglist entry */
 780	if (!sg_miter_next(sgm)) {
 781		sg_miter_stop(sgm);
 782		return;
 783	}
 784
 785	host->wait_for = MMCIF_WAIT_FOR_MWRITE;
 
 
 
 786
 787	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
 788}
 789
 790static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
 791{
 792	struct sg_mapping_iter *sgm = &host->sg_miter;
 793	struct device *dev = sh_mmcif_host_to_dev(host);
 794	struct mmc_data *data = host->mrq->data;
 795	u32 *p;
 796	int i;
 797
 798	if (host->sd_error) {
 799		sg_miter_stop(sgm);
 800		data->error = sh_mmcif_error_manage(host);
 801		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
 802		return false;
 803	}
 804
 805	p = sgm->addr;
 806
 807	for (i = 0; i < host->blocksize / 4; i++)
 808		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
 809
 810	sgm->consumed = host->blocksize;
 811
 812	if (!sg_miter_next(sgm)) {
 813		sg_miter_stop(sgm);
 814		return false;
 815	}
 816
 817	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
 818
 819	return true;
 820}
 821
 822static void sh_mmcif_get_response(struct sh_mmcif_host *host,
 823						struct mmc_command *cmd)
 824{
 825	if (cmd->flags & MMC_RSP_136) {
 826		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
 827		cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
 828		cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
 829		cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
 830	} else
 831		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
 832}
 833
 834static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
 835						struct mmc_command *cmd)
 836{
 837	cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
 838}
 839
 840static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
 841			    struct mmc_request *mrq)
 842{
 843	struct device *dev = sh_mmcif_host_to_dev(host);
 844	struct mmc_data *data = mrq->data;
 845	struct mmc_command *cmd = mrq->cmd;
 846	u32 opc = cmd->opcode;
 847	u32 tmp = 0;
 848
 849	/* Response Type check */
 850	switch (mmc_resp_type(cmd)) {
 851	case MMC_RSP_NONE:
 852		tmp |= CMD_SET_RTYP_NO;
 853		break;
 854	case MMC_RSP_R1:
 855	case MMC_RSP_R3:
 856		tmp |= CMD_SET_RTYP_6B;
 857		break;
 858	case MMC_RSP_R1B:
 859		tmp |= CMD_SET_RBSY | CMD_SET_RTYP_6B;
 860		break;
 861	case MMC_RSP_R2:
 862		tmp |= CMD_SET_RTYP_17B;
 863		break;
 864	default:
 865		dev_err(dev, "Unsupported response type.\n");
 866		break;
 867	}
 868
 869	/* WDAT / DATW */
 870	if (data) {
 871		tmp |= CMD_SET_WDAT;
 872		switch (host->bus_width) {
 873		case MMC_BUS_WIDTH_1:
 874			tmp |= CMD_SET_DATW_1;
 875			break;
 876		case MMC_BUS_WIDTH_4:
 877			tmp |= CMD_SET_DATW_4;
 878			break;
 879		case MMC_BUS_WIDTH_8:
 880			tmp |= CMD_SET_DATW_8;
 881			break;
 882		default:
 883			dev_err(dev, "Unsupported bus width.\n");
 884			break;
 885		}
 886		switch (host->timing) {
 887		case MMC_TIMING_MMC_DDR52:
 888			/*
 889			 * MMC core will only set this timing, if the host
 890			 * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
 891			 * capability. MMCIF implementations with this
 892			 * capability, e.g. sh73a0, will have to set it
 893			 * in their platform data.
 894			 */
 895			tmp |= CMD_SET_DARS;
 896			break;
 897		}
 898	}
 899	/* DWEN */
 900	if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
 901		tmp |= CMD_SET_DWEN;
 902	/* CMLTE/CMD12EN */
 903	if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
 904		tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
 905		sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
 906				data->blocks << 16);
 907	}
 908	/* RIDXC[1:0] check bits */
 909	if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
 910	    opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
 911		tmp |= CMD_SET_RIDXC_BITS;
 912	/* RCRC7C[1:0] check bits */
 913	if (opc == MMC_SEND_OP_COND)
 914		tmp |= CMD_SET_CRC7C_BITS;
 915	/* RCRC7C[1:0] internal CRC7 */
 916	if (opc == MMC_ALL_SEND_CID ||
 917		opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
 918		tmp |= CMD_SET_CRC7C_INTERNAL;
 919
 920	return (opc << 24) | tmp;
 921}
 922
 923static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
 924			       struct mmc_request *mrq, u32 opc)
 925{
 926	struct device *dev = sh_mmcif_host_to_dev(host);
 927
 928	switch (opc) {
 929	case MMC_READ_MULTIPLE_BLOCK:
 930		sh_mmcif_multi_read(host, mrq);
 931		return 0;
 932	case MMC_WRITE_MULTIPLE_BLOCK:
 933		sh_mmcif_multi_write(host, mrq);
 934		return 0;
 935	case MMC_WRITE_BLOCK:
 936		sh_mmcif_single_write(host, mrq);
 937		return 0;
 938	case MMC_READ_SINGLE_BLOCK:
 939	case MMC_SEND_EXT_CSD:
 940		sh_mmcif_single_read(host, mrq);
 941		return 0;
 942	default:
 943		dev_err(dev, "Unsupported CMD%d\n", opc);
 944		return -EINVAL;
 945	}
 946}
 947
 948static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
 949			       struct mmc_request *mrq)
 950{
 951	struct mmc_command *cmd = mrq->cmd;
 952	u32 opc;
 953	u32 mask = 0;
 954	unsigned long flags;
 955
 956	if (cmd->flags & MMC_RSP_BUSY)
 957		mask = MASK_START_CMD | MASK_MRBSYE;
 958	else
 959		mask = MASK_START_CMD | MASK_MCRSPE;
 960
 961	if (host->ccs_enable)
 962		mask |= MASK_MCCSTO;
 963
 964	if (mrq->data) {
 965		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
 966		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
 967				mrq->data->blksz);
 968	}
 969	opc = sh_mmcif_set_cmd(host, mrq);
 970
 971	if (host->ccs_enable)
 972		sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
 973	else
 974		sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
 975	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
 976	/* set arg */
 977	sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
 978	/* set cmd */
 979	spin_lock_irqsave(&host->lock, flags);
 980	sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
 981
 982	host->wait_for = MMCIF_WAIT_FOR_CMD;
 983	schedule_delayed_work(&host->timeout_work, host->timeout);
 984	spin_unlock_irqrestore(&host->lock, flags);
 985}
 986
 987static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
 988			      struct mmc_request *mrq)
 989{
 990	struct device *dev = sh_mmcif_host_to_dev(host);
 991
 992	switch (mrq->cmd->opcode) {
 993	case MMC_READ_MULTIPLE_BLOCK:
 994		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
 995		break;
 996	case MMC_WRITE_MULTIPLE_BLOCK:
 997		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
 998		break;
 999	default:
1000		dev_err(dev, "unsupported stop cmd\n");
1001		mrq->stop->error = sh_mmcif_error_manage(host);
1002		return;
1003	}
1004
1005	host->wait_for = MMCIF_WAIT_FOR_STOP;
1006}
1007
1008static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
1009{
1010	struct sh_mmcif_host *host = mmc_priv(mmc);
1011	struct device *dev = sh_mmcif_host_to_dev(host);
1012	unsigned long flags;
1013
1014	spin_lock_irqsave(&host->lock, flags);
1015	if (host->state != STATE_IDLE) {
1016		dev_dbg(dev, "%s() rejected, state %u\n",
1017			__func__, host->state);
1018		spin_unlock_irqrestore(&host->lock, flags);
1019		mrq->cmd->error = -EAGAIN;
1020		mmc_request_done(mmc, mrq);
1021		return;
1022	}
1023
1024	host->state = STATE_REQUEST;
1025	spin_unlock_irqrestore(&host->lock, flags);
1026
1027	host->mrq = mrq;
1028
1029	sh_mmcif_start_cmd(host, mrq);
1030}
1031
1032static void sh_mmcif_clk_setup(struct sh_mmcif_host *host)
1033{
1034	struct device *dev = sh_mmcif_host_to_dev(host);
1035
1036	if (host->mmc->f_max) {
1037		unsigned int f_max, f_min = 0, f_min_old;
1038
1039		f_max = host->mmc->f_max;
1040		for (f_min_old = f_max; f_min_old > 2;) {
1041			f_min = clk_round_rate(host->clk, f_min_old / 2);
1042			if (f_min == f_min_old)
1043				break;
1044			f_min_old = f_min;
1045		}
1046
1047		/*
1048		 * This driver assumes this SoC is R-Car Gen2 or later
1049		 */
1050		host->clkdiv_map = 0x3ff;
1051
1052		host->mmc->f_max = f_max >> ffs(host->clkdiv_map);
1053		host->mmc->f_min = f_min >> fls(host->clkdiv_map);
1054	} else {
1055		unsigned int clk = clk_get_rate(host->clk);
1056
1057		host->mmc->f_max = clk / 2;
1058		host->mmc->f_min = clk / 512;
1059	}
1060
1061	dev_dbg(dev, "clk max/min = %d/%d\n",
1062		host->mmc->f_max, host->mmc->f_min);
1063}
1064
1065static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1066{
1067	struct sh_mmcif_host *host = mmc_priv(mmc);
1068	struct device *dev = sh_mmcif_host_to_dev(host);
1069	unsigned long flags;
1070
1071	spin_lock_irqsave(&host->lock, flags);
1072	if (host->state != STATE_IDLE) {
1073		dev_dbg(dev, "%s() rejected, state %u\n",
1074			__func__, host->state);
1075		spin_unlock_irqrestore(&host->lock, flags);
1076		return;
1077	}
1078
1079	host->state = STATE_IOS;
1080	spin_unlock_irqrestore(&host->lock, flags);
1081
1082	switch (ios->power_mode) {
1083	case MMC_POWER_UP:
1084		if (!IS_ERR(mmc->supply.vmmc))
1085			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1086		if (!host->power) {
1087			clk_prepare_enable(host->clk);
1088			pm_runtime_get_sync(dev);
1089			sh_mmcif_sync_reset(host);
1090			sh_mmcif_request_dma(host);
1091			host->power = true;
1092		}
1093		break;
1094	case MMC_POWER_OFF:
1095		if (!IS_ERR(mmc->supply.vmmc))
1096			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1097		if (host->power) {
1098			sh_mmcif_clock_control(host, 0);
1099			sh_mmcif_release_dma(host);
1100			pm_runtime_put(dev);
1101			clk_disable_unprepare(host->clk);
1102			host->power = false;
1103		}
1104		break;
1105	case MMC_POWER_ON:
1106		sh_mmcif_clock_control(host, ios->clock);
1107		break;
1108	}
1109
1110	host->timing = ios->timing;
1111	host->bus_width = ios->bus_width;
1112	host->state = STATE_IDLE;
1113}
1114
1115static const struct mmc_host_ops sh_mmcif_ops = {
1116	.request	= sh_mmcif_request,
1117	.set_ios	= sh_mmcif_set_ios,
1118	.get_cd		= mmc_gpio_get_cd,
1119};
1120
1121static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1122{
1123	struct mmc_command *cmd = host->mrq->cmd;
1124	struct mmc_data *data = host->mrq->data;
1125	struct device *dev = sh_mmcif_host_to_dev(host);
1126	long time;
1127
1128	if (host->sd_error) {
1129		switch (cmd->opcode) {
1130		case MMC_ALL_SEND_CID:
1131		case MMC_SELECT_CARD:
1132		case MMC_APP_CMD:
1133			cmd->error = -ETIMEDOUT;
1134			break;
1135		default:
1136			cmd->error = sh_mmcif_error_manage(host);
1137			break;
1138		}
1139		dev_dbg(dev, "CMD%d error %d\n",
1140			cmd->opcode, cmd->error);
1141		host->sd_error = false;
1142		return false;
1143	}
1144	if (!(cmd->flags & MMC_RSP_PRESENT)) {
1145		cmd->error = 0;
1146		return false;
1147	}
1148
1149	sh_mmcif_get_response(host, cmd);
1150
1151	if (!data)
1152		return false;
1153
1154	/*
1155	 * Completion can be signalled from DMA callback and error, so, have to
1156	 * reset here, before setting .dma_active
1157	 */
1158	init_completion(&host->dma_complete);
1159
1160	if (data->flags & MMC_DATA_READ) {
1161		if (host->chan_rx)
1162			sh_mmcif_start_dma_rx(host);
1163	} else {
1164		if (host->chan_tx)
1165			sh_mmcif_start_dma_tx(host);
1166	}
1167
1168	if (!host->dma_active) {
1169		data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1170		return !data->error;
1171	}
1172
1173	/* Running in the IRQ thread, can sleep */
1174	time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1175							 host->timeout);
1176
1177	if (data->flags & MMC_DATA_READ)
1178		dma_unmap_sg(host->chan_rx->device->dev,
1179			     data->sg, data->sg_len,
1180			     DMA_FROM_DEVICE);
1181	else
1182		dma_unmap_sg(host->chan_tx->device->dev,
1183			     data->sg, data->sg_len,
1184			     DMA_TO_DEVICE);
1185
1186	if (host->sd_error) {
1187		dev_err(host->mmc->parent,
1188			"Error IRQ while waiting for DMA completion!\n");
1189		/* Woken up by an error IRQ: abort DMA */
1190		data->error = sh_mmcif_error_manage(host);
1191	} else if (!time) {
1192		dev_err(host->mmc->parent, "DMA timeout!\n");
1193		data->error = -ETIMEDOUT;
1194	} else if (time < 0) {
1195		dev_err(host->mmc->parent,
1196			"wait_for_completion_...() error %ld!\n", time);
1197		data->error = time;
1198	}
1199	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1200			BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1201	host->dma_active = false;
1202
1203	if (data->error) {
1204		data->bytes_xfered = 0;
1205		/* Abort DMA */
1206		if (data->flags & MMC_DATA_READ)
1207			dmaengine_terminate_sync(host->chan_rx);
1208		else
1209			dmaengine_terminate_sync(host->chan_tx);
1210	}
1211
1212	return false;
1213}
1214
1215static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1216{
1217	struct sh_mmcif_host *host = dev_id;
1218	struct mmc_request *mrq;
1219	struct device *dev = sh_mmcif_host_to_dev(host);
1220	bool wait = false;
1221	unsigned long flags;
1222	int wait_work;
1223
1224	spin_lock_irqsave(&host->lock, flags);
1225	wait_work = host->wait_for;
1226	spin_unlock_irqrestore(&host->lock, flags);
1227
1228	cancel_delayed_work_sync(&host->timeout_work);
1229
1230	mutex_lock(&host->thread_lock);
1231
1232	mrq = host->mrq;
1233	if (!mrq) {
1234		dev_dbg(dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1235			host->state, host->wait_for);
1236		mutex_unlock(&host->thread_lock);
1237		return IRQ_HANDLED;
1238	}
1239
1240	/*
1241	 * All handlers return true, if processing continues, and false, if the
1242	 * request has to be completed - successfully or not
1243	 */
1244	switch (wait_work) {
1245	case MMCIF_WAIT_FOR_REQUEST:
1246		/* We're too late, the timeout has already kicked in */
1247		mutex_unlock(&host->thread_lock);
1248		return IRQ_HANDLED;
1249	case MMCIF_WAIT_FOR_CMD:
1250		/* Wait for data? */
1251		wait = sh_mmcif_end_cmd(host);
1252		break;
1253	case MMCIF_WAIT_FOR_MREAD:
1254		/* Wait for more data? */
1255		wait = sh_mmcif_mread_block(host);
1256		break;
1257	case MMCIF_WAIT_FOR_READ:
1258		/* Wait for data end? */
1259		wait = sh_mmcif_read_block(host);
1260		break;
1261	case MMCIF_WAIT_FOR_MWRITE:
1262		/* Wait data to write? */
1263		wait = sh_mmcif_mwrite_block(host);
1264		break;
1265	case MMCIF_WAIT_FOR_WRITE:
1266		/* Wait for data end? */
1267		wait = sh_mmcif_write_block(host);
1268		break;
1269	case MMCIF_WAIT_FOR_STOP:
1270		if (host->sd_error) {
1271			mrq->stop->error = sh_mmcif_error_manage(host);
1272			dev_dbg(dev, "%s(): %d\n", __func__, mrq->stop->error);
1273			break;
1274		}
1275		sh_mmcif_get_cmd12response(host, mrq->stop);
1276		mrq->stop->error = 0;
1277		break;
1278	case MMCIF_WAIT_FOR_READ_END:
1279	case MMCIF_WAIT_FOR_WRITE_END:
1280		if (host->sd_error) {
1281			mrq->data->error = sh_mmcif_error_manage(host);
1282			dev_dbg(dev, "%s(): %d\n", __func__, mrq->data->error);
1283		}
1284		break;
1285	default:
1286		BUG();
1287	}
1288
1289	if (wait) {
1290		schedule_delayed_work(&host->timeout_work, host->timeout);
1291		/* Wait for more data */
1292		mutex_unlock(&host->thread_lock);
1293		return IRQ_HANDLED;
1294	}
1295
1296	if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1297		struct mmc_data *data = mrq->data;
1298		if (!mrq->cmd->error && data && !data->error)
1299			data->bytes_xfered =
1300				data->blocks * data->blksz;
1301
1302		if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1303			sh_mmcif_stop_cmd(host, mrq);
1304			if (!mrq->stop->error) {
1305				schedule_delayed_work(&host->timeout_work, host->timeout);
1306				mutex_unlock(&host->thread_lock);
1307				return IRQ_HANDLED;
1308			}
1309		}
1310	}
1311
1312	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1313	host->state = STATE_IDLE;
1314	host->mrq = NULL;
1315	mmc_request_done(host->mmc, mrq);
1316
1317	mutex_unlock(&host->thread_lock);
1318
1319	return IRQ_HANDLED;
1320}
1321
1322static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1323{
1324	struct sh_mmcif_host *host = dev_id;
1325	struct device *dev = sh_mmcif_host_to_dev(host);
1326	u32 state, mask;
1327
1328	state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1329	mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1330	if (host->ccs_enable)
1331		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1332	else
1333		sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1334	sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1335
1336	if (state & ~MASK_CLEAN)
1337		dev_dbg(dev, "IRQ state = 0x%08x incompletely cleared\n",
1338			state);
1339
1340	if (state & INT_ERR_STS || state & ~INT_ALL) {
1341		host->sd_error = true;
1342		dev_dbg(dev, "int err state = 0x%08x\n", state);
1343	}
1344	if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1345		if (!host->mrq)
1346			dev_dbg(dev, "NULL IRQ state = 0x%08x\n", state);
1347		if (!host->dma_active)
1348			return IRQ_WAKE_THREAD;
1349		else if (host->sd_error)
1350			sh_mmcif_dma_complete(host);
1351	} else {
1352		dev_dbg(dev, "Unexpected IRQ 0x%x\n", state);
1353	}
1354
1355	return IRQ_HANDLED;
1356}
1357
1358static void sh_mmcif_timeout_work(struct work_struct *work)
1359{
1360	struct delayed_work *d = to_delayed_work(work);
1361	struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1362	struct mmc_request *mrq = host->mrq;
1363	struct device *dev = sh_mmcif_host_to_dev(host);
1364	unsigned long flags;
1365
1366	if (host->dying)
1367		/* Don't run after mmc_remove_host() */
1368		return;
1369
1370	spin_lock_irqsave(&host->lock, flags);
1371	if (host->state == STATE_IDLE) {
1372		spin_unlock_irqrestore(&host->lock, flags);
1373		return;
1374	}
1375
1376	dev_err(dev, "Timeout waiting for %u on CMD%u\n",
1377		host->wait_for, mrq->cmd->opcode);
1378
1379	host->state = STATE_TIMEOUT;
1380	spin_unlock_irqrestore(&host->lock, flags);
1381
1382	/*
1383	 * Handle races with cancel_delayed_work(), unless
1384	 * cancel_delayed_work_sync() is used
1385	 */
1386	switch (host->wait_for) {
1387	case MMCIF_WAIT_FOR_CMD:
1388		mrq->cmd->error = sh_mmcif_error_manage(host);
1389		break;
1390	case MMCIF_WAIT_FOR_STOP:
1391		mrq->stop->error = sh_mmcif_error_manage(host);
1392		break;
1393	case MMCIF_WAIT_FOR_MREAD:
1394	case MMCIF_WAIT_FOR_MWRITE:
1395	case MMCIF_WAIT_FOR_READ:
1396	case MMCIF_WAIT_FOR_WRITE:
1397	case MMCIF_WAIT_FOR_READ_END:
1398	case MMCIF_WAIT_FOR_WRITE_END:
1399		mrq->data->error = sh_mmcif_error_manage(host);
1400		break;
1401	default:
1402		BUG();
1403	}
1404
1405	host->state = STATE_IDLE;
1406	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1407	host->mrq = NULL;
1408	mmc_request_done(host->mmc, mrq);
1409}
1410
1411static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1412{
1413	struct device *dev = sh_mmcif_host_to_dev(host);
1414	struct sh_mmcif_plat_data *pd = dev->platform_data;
1415	struct mmc_host *mmc = host->mmc;
1416
1417	mmc_regulator_get_supply(mmc);
1418
1419	if (!pd)
1420		return;
1421
1422	if (!mmc->ocr_avail)
1423		mmc->ocr_avail = pd->ocr;
1424	else if (pd->ocr)
1425		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1426}
1427
1428static int sh_mmcif_probe(struct platform_device *pdev)
1429{
1430	int ret = 0, irq[2];
1431	struct mmc_host *mmc;
1432	struct sh_mmcif_host *host;
1433	struct device *dev = &pdev->dev;
1434	struct sh_mmcif_plat_data *pd = dev->platform_data;
1435	void __iomem *reg;
1436	const char *name;
1437
1438	irq[0] = platform_get_irq(pdev, 0);
1439	irq[1] = platform_get_irq_optional(pdev, 1);
1440	if (irq[0] < 0)
1441		return irq[0];
1442
1443	reg = devm_platform_ioremap_resource(pdev, 0);
1444	if (IS_ERR(reg))
1445		return PTR_ERR(reg);
1446
1447	mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), dev);
1448	if (!mmc)
1449		return -ENOMEM;
1450
1451	ret = mmc_of_parse(mmc);
1452	if (ret < 0)
1453		goto err_host;
1454
1455	host		= mmc_priv(mmc);
1456	host->mmc	= mmc;
1457	host->addr	= reg;
1458	host->timeout	= msecs_to_jiffies(10000);
1459	host->ccs_enable = true;
1460	host->clk_ctrl2_enable = false;
1461
1462	host->pd = pdev;
1463
1464	spin_lock_init(&host->lock);
1465
1466	mmc->ops = &sh_mmcif_ops;
1467	sh_mmcif_init_ocr(host);
1468
1469	mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1470	mmc->caps2 |= MMC_CAP2_NO_SD | MMC_CAP2_NO_SDIO;
1471	mmc->max_busy_timeout = 10000;
1472
1473	if (pd && pd->caps)
1474		mmc->caps |= pd->caps;
1475	mmc->max_segs = 32;
1476	mmc->max_blk_size = 512;
1477	mmc->max_req_size = PAGE_SIZE * mmc->max_segs;
1478	mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1479	mmc->max_seg_size = mmc->max_req_size;
1480
1481	platform_set_drvdata(pdev, host);
1482
1483	host->clk = devm_clk_get(dev, NULL);
1484	if (IS_ERR(host->clk)) {
1485		ret = PTR_ERR(host->clk);
1486		dev_err(dev, "cannot get clock: %d\n", ret);
1487		goto err_host;
1488	}
1489
1490	ret = clk_prepare_enable(host->clk);
1491	if (ret < 0)
1492		goto err_host;
1493
1494	sh_mmcif_clk_setup(host);
1495
1496	pm_runtime_enable(dev);
1497	host->power = false;
1498
1499	ret = pm_runtime_get_sync(dev);
1500	if (ret < 0)
1501		goto err_clk;
1502
1503	INIT_DELAYED_WORK(&host->timeout_work, sh_mmcif_timeout_work);
1504
1505	sh_mmcif_sync_reset(host);
1506	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1507
1508	name = irq[1] < 0 ? dev_name(dev) : "sh_mmc:error";
1509	ret = devm_request_threaded_irq(dev, irq[0], sh_mmcif_intr,
1510					sh_mmcif_irqt, 0, name, host);
1511	if (ret) {
1512		dev_err(dev, "request_irq error (%s)\n", name);
1513		goto err_clk;
1514	}
1515	if (irq[1] >= 0) {
1516		ret = devm_request_threaded_irq(dev, irq[1],
1517						sh_mmcif_intr, sh_mmcif_irqt,
1518						0, "sh_mmc:int", host);
1519		if (ret) {
1520			dev_err(dev, "request_irq error (sh_mmc:int)\n");
1521			goto err_clk;
1522		}
1523	}
1524
1525	mutex_init(&host->thread_lock);
1526
1527	ret = mmc_add_host(mmc);
1528	if (ret < 0)
1529		goto err_clk;
1530
1531	dev_pm_qos_expose_latency_limit(dev, 100);
1532
1533	dev_info(dev, "Chip version 0x%04x, clock rate %luMHz\n",
1534		 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff,
1535		 clk_get_rate(host->clk) / 1000000UL);
1536
1537	pm_runtime_put(dev);
1538	clk_disable_unprepare(host->clk);
1539	return ret;
1540
1541err_clk:
1542	clk_disable_unprepare(host->clk);
1543	pm_runtime_put_sync(dev);
1544	pm_runtime_disable(dev);
1545err_host:
1546	mmc_free_host(mmc);
1547	return ret;
1548}
1549
1550static void sh_mmcif_remove(struct platform_device *pdev)
1551{
1552	struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1553
1554	host->dying = true;
1555	clk_prepare_enable(host->clk);
1556	pm_runtime_get_sync(&pdev->dev);
1557
1558	dev_pm_qos_hide_latency_limit(&pdev->dev);
1559
1560	mmc_remove_host(host->mmc);
1561	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1562
1563	/*
1564	 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1565	 * mmc_remove_host() call above. But swapping order doesn't help either
1566	 * (a query on the linux-mmc mailing list didn't bring any replies).
1567	 */
1568	cancel_delayed_work_sync(&host->timeout_work);
1569
1570	clk_disable_unprepare(host->clk);
1571	mmc_free_host(host->mmc);
1572	pm_runtime_put_sync(&pdev->dev);
1573	pm_runtime_disable(&pdev->dev);
 
 
1574}
1575
1576#ifdef CONFIG_PM_SLEEP
1577static int sh_mmcif_suspend(struct device *dev)
1578{
1579	struct sh_mmcif_host *host = dev_get_drvdata(dev);
1580
1581	pm_runtime_get_sync(dev);
1582	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1583	pm_runtime_put(dev);
1584
1585	return 0;
1586}
1587
1588static int sh_mmcif_resume(struct device *dev)
1589{
1590	return 0;
1591}
1592#endif
1593
1594static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1595	SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
1596};
1597
1598static struct platform_driver sh_mmcif_driver = {
1599	.probe		= sh_mmcif_probe,
1600	.remove		= sh_mmcif_remove,
1601	.driver		= {
1602		.name	= DRIVER_NAME,
1603		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
1604		.pm	= &sh_mmcif_dev_pm_ops,
1605		.of_match_table = sh_mmcif_of_match,
1606	},
1607};
1608
1609module_platform_driver(sh_mmcif_driver);
1610
1611MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1612MODULE_LICENSE("GPL v2");
1613MODULE_ALIAS("platform:" DRIVER_NAME);
1614MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");