Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 1991, 1992 Linus Torvalds
   4 * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
   5 * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
   6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
   7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
   8 *	-  July2000
   9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
  10 */
  11
  12/*
  13 * This handles all read/write requests to block devices
  14 */
  15#include <linux/kernel.h>
  16#include <linux/module.h>
 
  17#include <linux/bio.h>
  18#include <linux/blkdev.h>
  19#include <linux/blk-pm.h>
  20#include <linux/blk-integrity.h>
  21#include <linux/highmem.h>
  22#include <linux/mm.h>
  23#include <linux/pagemap.h>
  24#include <linux/kernel_stat.h>
  25#include <linux/string.h>
  26#include <linux/init.h>
  27#include <linux/completion.h>
  28#include <linux/slab.h>
  29#include <linux/swap.h>
  30#include <linux/writeback.h>
  31#include <linux/task_io_accounting_ops.h>
  32#include <linux/fault-inject.h>
  33#include <linux/list_sort.h>
  34#include <linux/delay.h>
  35#include <linux/ratelimit.h>
  36#include <linux/pm_runtime.h>
 
  37#include <linux/t10-pi.h>
  38#include <linux/debugfs.h>
  39#include <linux/bpf.h>
  40#include <linux/part_stat.h>
  41#include <linux/sched/sysctl.h>
  42#include <linux/blk-crypto.h>
  43
  44#define CREATE_TRACE_POINTS
  45#include <trace/events/block.h>
  46
  47#include "blk.h"
 
  48#include "blk-mq-sched.h"
  49#include "blk-pm.h"
  50#include "blk-cgroup.h"
  51#include "blk-throttle.h"
  52
  53struct dentry *blk_debugfs_root;
  54
  55EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
  56EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
  57EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
  58EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
  59EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
  60EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
  61
  62static DEFINE_IDA(blk_queue_ida);
  63
  64/*
  65 * For queue allocation
  66 */
  67static struct kmem_cache *blk_requestq_cachep;
  68
  69/*
  70 * Controlling structure to kblockd
  71 */
  72static struct workqueue_struct *kblockd_workqueue;
  73
  74/**
  75 * blk_queue_flag_set - atomically set a queue flag
  76 * @flag: flag to be set
  77 * @q: request queue
  78 */
  79void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
  80{
  81	set_bit(flag, &q->queue_flags);
  82}
  83EXPORT_SYMBOL(blk_queue_flag_set);
  84
  85/**
  86 * blk_queue_flag_clear - atomically clear a queue flag
  87 * @flag: flag to be cleared
  88 * @q: request queue
  89 */
  90void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
  91{
  92	clear_bit(flag, &q->queue_flags);
  93}
  94EXPORT_SYMBOL(blk_queue_flag_clear);
  95
  96/**
  97 * blk_queue_flag_test_and_set - atomically test and set a queue flag
  98 * @flag: flag to be set
  99 * @q: request queue
 100 *
 101 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
 102 * the flag was already set.
 103 */
 104bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
 105{
 106	return test_and_set_bit(flag, &q->queue_flags);
 107}
 108EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
 109
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 110#define REQ_OP_NAME(name) [REQ_OP_##name] = #name
 111static const char *const blk_op_name[] = {
 112	REQ_OP_NAME(READ),
 113	REQ_OP_NAME(WRITE),
 114	REQ_OP_NAME(FLUSH),
 115	REQ_OP_NAME(DISCARD),
 116	REQ_OP_NAME(SECURE_ERASE),
 117	REQ_OP_NAME(ZONE_RESET),
 118	REQ_OP_NAME(ZONE_RESET_ALL),
 119	REQ_OP_NAME(ZONE_OPEN),
 120	REQ_OP_NAME(ZONE_CLOSE),
 121	REQ_OP_NAME(ZONE_FINISH),
 122	REQ_OP_NAME(ZONE_APPEND),
 
 123	REQ_OP_NAME(WRITE_ZEROES),
 
 
 124	REQ_OP_NAME(DRV_IN),
 125	REQ_OP_NAME(DRV_OUT),
 126};
 127#undef REQ_OP_NAME
 128
 129/**
 130 * blk_op_str - Return string XXX in the REQ_OP_XXX.
 131 * @op: REQ_OP_XXX.
 132 *
 133 * Description: Centralize block layer function to convert REQ_OP_XXX into
 134 * string format. Useful in the debugging and tracing bio or request. For
 135 * invalid REQ_OP_XXX it returns string "UNKNOWN".
 136 */
 137inline const char *blk_op_str(enum req_op op)
 138{
 139	const char *op_str = "UNKNOWN";
 140
 141	if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
 142		op_str = blk_op_name[op];
 143
 144	return op_str;
 145}
 146EXPORT_SYMBOL_GPL(blk_op_str);
 147
 148static const struct {
 149	int		errno;
 150	const char	*name;
 151} blk_errors[] = {
 152	[BLK_STS_OK]		= { 0,		"" },
 153	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
 154	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
 155	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
 156	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
 157	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
 158	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" },
 159	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
 160	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
 161	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
 162	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
 163	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
 164	[BLK_STS_OFFLINE]	= { -ENODEV,	"device offline" },
 165
 166	/* device mapper special case, should not leak out: */
 167	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
 168
 169	/* zone device specific errors */
 170	[BLK_STS_ZONE_OPEN_RESOURCE]	= { -ETOOMANYREFS, "open zones exceeded" },
 171	[BLK_STS_ZONE_ACTIVE_RESOURCE]	= { -EOVERFLOW, "active zones exceeded" },
 172
 173	/* everything else not covered above: */
 174	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
 175};
 176
 177blk_status_t errno_to_blk_status(int errno)
 178{
 179	int i;
 180
 181	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
 182		if (blk_errors[i].errno == errno)
 183			return (__force blk_status_t)i;
 184	}
 185
 186	return BLK_STS_IOERR;
 187}
 188EXPORT_SYMBOL_GPL(errno_to_blk_status);
 189
 190int blk_status_to_errno(blk_status_t status)
 191{
 192	int idx = (__force int)status;
 193
 194	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
 195		return -EIO;
 196	return blk_errors[idx].errno;
 197}
 198EXPORT_SYMBOL_GPL(blk_status_to_errno);
 199
 200const char *blk_status_to_str(blk_status_t status)
 
 201{
 202	int idx = (__force int)status;
 203
 204	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
 205		return "<null>";
 206	return blk_errors[idx].name;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 207}
 
 208
 209/**
 210 * blk_sync_queue - cancel any pending callbacks on a queue
 211 * @q: the queue
 212 *
 213 * Description:
 214 *     The block layer may perform asynchronous callback activity
 215 *     on a queue, such as calling the unplug function after a timeout.
 216 *     A block device may call blk_sync_queue to ensure that any
 217 *     such activity is cancelled, thus allowing it to release resources
 218 *     that the callbacks might use. The caller must already have made sure
 219 *     that its ->submit_bio will not re-add plugging prior to calling
 220 *     this function.
 221 *
 222 *     This function does not cancel any asynchronous activity arising
 223 *     out of elevator or throttling code. That would require elevator_exit()
 224 *     and blkcg_exit_queue() to be called with queue lock initialized.
 225 *
 226 */
 227void blk_sync_queue(struct request_queue *q)
 228{
 229	del_timer_sync(&q->timeout);
 230	cancel_work_sync(&q->timeout_work);
 231}
 232EXPORT_SYMBOL(blk_sync_queue);
 233
 234/**
 235 * blk_set_pm_only - increment pm_only counter
 236 * @q: request queue pointer
 237 */
 238void blk_set_pm_only(struct request_queue *q)
 239{
 240	atomic_inc(&q->pm_only);
 241}
 242EXPORT_SYMBOL_GPL(blk_set_pm_only);
 243
 244void blk_clear_pm_only(struct request_queue *q)
 245{
 246	int pm_only;
 247
 248	pm_only = atomic_dec_return(&q->pm_only);
 249	WARN_ON_ONCE(pm_only < 0);
 250	if (pm_only == 0)
 251		wake_up_all(&q->mq_freeze_wq);
 252}
 253EXPORT_SYMBOL_GPL(blk_clear_pm_only);
 254
 255static void blk_free_queue_rcu(struct rcu_head *rcu_head)
 256{
 257	struct request_queue *q = container_of(rcu_head,
 258			struct request_queue, rcu_head);
 259
 260	percpu_ref_exit(&q->q_usage_counter);
 261	kmem_cache_free(blk_requestq_cachep, q);
 262}
 263
 264static void blk_free_queue(struct request_queue *q)
 265{
 266	if (q->poll_stat)
 267		blk_stat_remove_callback(q, q->poll_cb);
 268	blk_stat_free_callback(q->poll_cb);
 269
 270	blk_free_queue_stats(q->stats);
 271	kfree(q->poll_stat);
 272
 273	if (queue_is_mq(q))
 274		blk_mq_release(q);
 275
 276	ida_free(&blk_queue_ida, q->id);
 277	call_rcu(&q->rcu_head, blk_free_queue_rcu);
 278}
 279
 280/**
 281 * blk_put_queue - decrement the request_queue refcount
 282 * @q: the request_queue structure to decrement the refcount for
 283 *
 284 * Decrements the refcount of the request_queue and free it when the refcount
 285 * reaches 0.
 
 
 
 286 */
 287void blk_put_queue(struct request_queue *q)
 288{
 289	if (refcount_dec_and_test(&q->refs))
 290		blk_free_queue(q);
 291}
 292EXPORT_SYMBOL(blk_put_queue);
 293
 294void blk_queue_start_drain(struct request_queue *q)
 295{
 
 
 296	/*
 297	 * When queue DYING flag is set, we need to block new req
 298	 * entering queue, so we call blk_freeze_queue_start() to
 299	 * prevent I/O from crossing blk_queue_enter().
 300	 */
 301	blk_freeze_queue_start(q);
 
 302	if (queue_is_mq(q))
 303		blk_mq_wake_waiters(q);
 
 304	/* Make blk_queue_enter() reexamine the DYING flag. */
 305	wake_up_all(&q->mq_freeze_wq);
 306}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 307
 308/**
 309 * blk_queue_enter() - try to increase q->q_usage_counter
 310 * @q: request queue pointer
 311 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
 312 */
 313int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
 314{
 315	const bool pm = flags & BLK_MQ_REQ_PM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 316
 317	while (!blk_try_enter_queue(q, pm)) {
 318		if (flags & BLK_MQ_REQ_NOWAIT)
 319			return -EAGAIN;
 320
 321		/*
 322		 * read pair of barrier in blk_freeze_queue_start(), we need to
 323		 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
 324		 * reading .mq_freeze_depth or queue dying flag, otherwise the
 325		 * following wait may never return if the two reads are
 326		 * reordered.
 327		 */
 328		smp_rmb();
 
 329		wait_event(q->mq_freeze_wq,
 330			   (!q->mq_freeze_depth &&
 331			    blk_pm_resume_queue(pm, q)) ||
 
 332			   blk_queue_dying(q));
 333		if (blk_queue_dying(q))
 334			return -ENODEV;
 335	}
 336
 337	return 0;
 338}
 339
 340int __bio_queue_enter(struct request_queue *q, struct bio *bio)
 341{
 342	while (!blk_try_enter_queue(q, false)) {
 343		struct gendisk *disk = bio->bi_bdev->bd_disk;
 344
 345		if (bio->bi_opf & REQ_NOWAIT) {
 346			if (test_bit(GD_DEAD, &disk->state))
 347				goto dead;
 
 348			bio_wouldblock_error(bio);
 349			return -EAGAIN;
 350		}
 351
 352		/*
 353		 * read pair of barrier in blk_freeze_queue_start(), we need to
 354		 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
 355		 * reading .mq_freeze_depth or queue dying flag, otherwise the
 356		 * following wait may never return if the two reads are
 357		 * reordered.
 358		 */
 359		smp_rmb();
 360		wait_event(q->mq_freeze_wq,
 361			   (!q->mq_freeze_depth &&
 362			    blk_pm_resume_queue(false, q)) ||
 363			   test_bit(GD_DEAD, &disk->state));
 364		if (test_bit(GD_DEAD, &disk->state))
 365			goto dead;
 366	}
 367
 368	return 0;
 369dead:
 370	bio_io_error(bio);
 371	return -ENODEV;
 372}
 373
 374void blk_queue_exit(struct request_queue *q)
 375{
 376	percpu_ref_put(&q->q_usage_counter);
 377}
 378
 379static void blk_queue_usage_counter_release(struct percpu_ref *ref)
 380{
 381	struct request_queue *q =
 382		container_of(ref, struct request_queue, q_usage_counter);
 383
 384	wake_up_all(&q->mq_freeze_wq);
 385}
 386
 387static void blk_rq_timed_out_timer(struct timer_list *t)
 388{
 389	struct request_queue *q = from_timer(q, t, timeout);
 390
 391	kblockd_schedule_work(&q->timeout_work);
 392}
 393
 394static void blk_timeout_work(struct work_struct *work)
 395{
 396}
 397
 398struct request_queue *blk_alloc_queue(int node_id)
 399{
 400	struct request_queue *q;
 
 401
 402	q = kmem_cache_alloc_node(blk_requestq_cachep, GFP_KERNEL | __GFP_ZERO,
 403				  node_id);
 404	if (!q)
 405		return NULL;
 406
 407	q->last_merge = NULL;
 408
 409	q->id = ida_alloc(&blk_queue_ida, GFP_KERNEL);
 410	if (q->id < 0)
 411		goto fail_q;
 412
 
 
 
 
 
 
 
 
 413	q->stats = blk_alloc_queue_stats();
 414	if (!q->stats)
 415		goto fail_id;
 416
 
 
 
 417	q->node = node_id;
 418
 419	atomic_set(&q->nr_active_requests_shared_tags, 0);
 420
 421	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
 422	INIT_WORK(&q->timeout_work, blk_timeout_work);
 423	INIT_LIST_HEAD(&q->icq_list);
 
 
 
 
 
 424
 425	refcount_set(&q->refs, 1);
 426	mutex_init(&q->debugfs_mutex);
 427	mutex_init(&q->sysfs_lock);
 428	mutex_init(&q->sysfs_dir_lock);
 429	spin_lock_init(&q->queue_lock);
 430
 431	init_waitqueue_head(&q->mq_freeze_wq);
 432	mutex_init(&q->mq_freeze_lock);
 433
 434	/*
 435	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
 436	 * See blk_register_queue() for details.
 437	 */
 438	if (percpu_ref_init(&q->q_usage_counter,
 439				blk_queue_usage_counter_release,
 440				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
 441		goto fail_stats;
 
 
 
 442
 
 443	blk_set_default_limits(&q->limits);
 444	q->nr_requests = BLKDEV_DEFAULT_RQ;
 445
 446	return q;
 447
 448fail_stats:
 
 
 449	blk_free_queue_stats(q->stats);
 
 
 
 
 450fail_id:
 451	ida_free(&blk_queue_ida, q->id);
 452fail_q:
 453	kmem_cache_free(blk_requestq_cachep, q);
 454	return NULL;
 455}
 
 456
 457/**
 458 * blk_get_queue - increment the request_queue refcount
 459 * @q: the request_queue structure to increment the refcount for
 460 *
 461 * Increment the refcount of the request_queue kobject.
 462 *
 463 * Context: Any context.
 464 */
 465bool blk_get_queue(struct request_queue *q)
 466{
 467	if (unlikely(blk_queue_dying(q)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 468		return false;
 469	refcount_inc(&q->refs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 470	return true;
 471}
 472EXPORT_SYMBOL(blk_get_queue);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 473
 474#ifdef CONFIG_FAIL_MAKE_REQUEST
 475
 476static DECLARE_FAULT_ATTR(fail_make_request);
 477
 478static int __init setup_fail_make_request(char *str)
 479{
 480	return setup_fault_attr(&fail_make_request, str);
 481}
 482__setup("fail_make_request=", setup_fail_make_request);
 483
 484bool should_fail_request(struct block_device *part, unsigned int bytes)
 485{
 486	return part->bd_make_it_fail && should_fail(&fail_make_request, bytes);
 487}
 488
 489static int __init fail_make_request_debugfs(void)
 490{
 491	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
 492						NULL, &fail_make_request);
 493
 494	return PTR_ERR_OR_ZERO(dir);
 495}
 496
 497late_initcall(fail_make_request_debugfs);
 
 
 
 
 
 
 
 
 
 498#endif /* CONFIG_FAIL_MAKE_REQUEST */
 499
 500static inline void bio_check_ro(struct bio *bio)
 501{
 502	if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
 
 
 
 
 503		if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
 504			return;
 505		pr_warn("Trying to write to read-only block-device %pg\n",
 506			bio->bi_bdev);
 
 
 507		/* Older lvm-tools actually trigger this */
 
 508	}
 
 
 509}
 510
 511static noinline int should_fail_bio(struct bio *bio)
 512{
 513	if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
 514		return -EIO;
 515	return 0;
 516}
 517ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
 518
 519/*
 520 * Check whether this bio extends beyond the end of the device or partition.
 521 * This may well happen - the kernel calls bread() without checking the size of
 522 * the device, e.g., when mounting a file system.
 523 */
 524static inline int bio_check_eod(struct bio *bio)
 525{
 526	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
 527	unsigned int nr_sectors = bio_sectors(bio);
 528
 529	if (nr_sectors && maxsector &&
 530	    (nr_sectors > maxsector ||
 531	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
 532		pr_info_ratelimited("%s: attempt to access beyond end of device\n"
 533				    "%pg: rw=%d, sector=%llu, nr_sectors = %u limit=%llu\n",
 534				    current->comm, bio->bi_bdev, bio->bi_opf,
 535				    bio->bi_iter.bi_sector, nr_sectors, maxsector);
 536		return -EIO;
 537	}
 538	return 0;
 539}
 540
 541/*
 542 * Remap block n of partition p to block n+start(p) of the disk.
 543 */
 544static int blk_partition_remap(struct bio *bio)
 545{
 546	struct block_device *p = bio->bi_bdev;
 
 547
 
 
 
 
 548	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
 549		return -EIO;
 
 
 
 550	if (bio_sectors(bio)) {
 551		bio->bi_iter.bi_sector += p->bd_start_sect;
 552		trace_block_bio_remap(bio, p->bd_dev,
 553				      bio->bi_iter.bi_sector -
 554				      p->bd_start_sect);
 
 555	}
 556	bio_set_flag(bio, BIO_REMAPPED);
 557	return 0;
 
 
 
 558}
 559
 560/*
 561 * Check write append to a zoned block device.
 562 */
 563static inline blk_status_t blk_check_zone_append(struct request_queue *q,
 564						 struct bio *bio)
 565{
 
 566	int nr_sectors = bio_sectors(bio);
 567
 568	/* Only applicable to zoned block devices */
 569	if (!bdev_is_zoned(bio->bi_bdev))
 570		return BLK_STS_NOTSUPP;
 571
 572	/* The bio sector must point to the start of a sequential zone */
 573	if (bio->bi_iter.bi_sector & (bdev_zone_sectors(bio->bi_bdev) - 1) ||
 574	    !bio_zone_is_seq(bio))
 575		return BLK_STS_IOERR;
 576
 577	/*
 578	 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
 579	 * split and could result in non-contiguous sectors being written in
 580	 * different zones.
 581	 */
 582	if (nr_sectors > q->limits.chunk_sectors)
 583		return BLK_STS_IOERR;
 584
 585	/* Make sure the BIO is small enough and will not get split */
 586	if (nr_sectors > q->limits.max_zone_append_sectors)
 587		return BLK_STS_IOERR;
 588
 589	bio->bi_opf |= REQ_NOMERGE;
 590
 591	return BLK_STS_OK;
 592}
 593
 594static void __submit_bio(struct bio *bio)
 595{
 596	struct gendisk *disk = bio->bi_bdev->bd_disk;
 
 
 597
 598	if (unlikely(!blk_crypto_bio_prep(&bio)))
 599		return;
 600
 601	if (!disk->fops->submit_bio) {
 602		blk_mq_submit_bio(bio);
 603	} else if (likely(bio_queue_enter(bio) == 0)) {
 604		disk->fops->submit_bio(bio);
 605		blk_queue_exit(disk->queue);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 606	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 607}
 608
 609/*
 610 * The loop in this function may be a bit non-obvious, and so deserves some
 611 * explanation:
 612 *
 613 *  - Before entering the loop, bio->bi_next is NULL (as all callers ensure
 614 *    that), so we have a list with a single bio.
 615 *  - We pretend that we have just taken it off a longer list, so we assign
 616 *    bio_list to a pointer to the bio_list_on_stack, thus initialising the
 617 *    bio_list of new bios to be added.  ->submit_bio() may indeed add some more
 618 *    bios through a recursive call to submit_bio_noacct.  If it did, we find a
 619 *    non-NULL value in bio_list and re-enter the loop from the top.
 620 *  - In this case we really did just take the bio of the top of the list (no
 621 *    pretending) and so remove it from bio_list, and call into ->submit_bio()
 622 *    again.
 623 *
 624 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
 625 * bio_list_on_stack[1] contains bios that were submitted before the current
 626 *	->submit_bio, but that haven't been processed yet.
 627 */
 628static void __submit_bio_noacct(struct bio *bio)
 629{
 630	struct bio_list bio_list_on_stack[2];
 
 631
 632	BUG_ON(bio->bi_next);
 633
 634	bio_list_init(&bio_list_on_stack[0]);
 635	current->bio_list = bio_list_on_stack;
 636
 637	do {
 638		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
 639		struct bio_list lower, same;
 640
 
 
 
 641		/*
 642		 * Create a fresh bio_list for all subordinate requests.
 643		 */
 644		bio_list_on_stack[1] = bio_list_on_stack[0];
 645		bio_list_init(&bio_list_on_stack[0]);
 646
 647		__submit_bio(bio);
 648
 649		/*
 650		 * Sort new bios into those for a lower level and those for the
 651		 * same level.
 652		 */
 653		bio_list_init(&lower);
 654		bio_list_init(&same);
 655		while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
 656			if (q == bdev_get_queue(bio->bi_bdev))
 657				bio_list_add(&same, bio);
 658			else
 659				bio_list_add(&lower, bio);
 660
 661		/*
 662		 * Now assemble so we handle the lowest level first.
 663		 */
 664		bio_list_merge(&bio_list_on_stack[0], &lower);
 665		bio_list_merge(&bio_list_on_stack[0], &same);
 666		bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
 667	} while ((bio = bio_list_pop(&bio_list_on_stack[0])));
 668
 669	current->bio_list = NULL;
 
 670}
 671
 672static void __submit_bio_noacct_mq(struct bio *bio)
 673{
 674	struct bio_list bio_list[2] = { };
 
 675
 676	current->bio_list = bio_list;
 677
 678	do {
 679		__submit_bio(bio);
 
 
 
 
 
 
 
 
 
 
 
 680	} while ((bio = bio_list_pop(&bio_list[0])));
 681
 682	current->bio_list = NULL;
 683}
 684
 685void submit_bio_noacct_nocheck(struct bio *bio)
 686{
 687	/*
 688	 * We only want one ->submit_bio to be active at a time, else stack
 689	 * usage with stacked devices could be a problem.  Use current->bio_list
 690	 * to collect a list of requests submited by a ->submit_bio method while
 691	 * it is active, and then process them after it returned.
 692	 */
 693	if (current->bio_list)
 694		bio_list_add(&current->bio_list[0], bio);
 695	else if (!bio->bi_bdev->bd_disk->fops->submit_bio)
 696		__submit_bio_noacct_mq(bio);
 697	else
 698		__submit_bio_noacct(bio);
 699}
 700
 701/**
 702 * submit_bio_noacct - re-submit a bio to the block device layer for I/O
 703 * @bio:  The bio describing the location in memory and on the device.
 704 *
 705 * This is a version of submit_bio() that shall only be used for I/O that is
 706 * resubmitted to lower level drivers by stacking block drivers.  All file
 707 * systems and other upper level users of the block layer should use
 708 * submit_bio() instead.
 709 */
 710void submit_bio_noacct(struct bio *bio)
 711{
 712	struct block_device *bdev = bio->bi_bdev;
 713	struct request_queue *q = bdev_get_queue(bdev);
 714	blk_status_t status = BLK_STS_IOERR;
 715	struct blk_plug *plug;
 716
 717	might_sleep();
 718
 719	plug = blk_mq_plug(bio);
 720	if (plug && plug->nowait)
 721		bio->bi_opf |= REQ_NOWAIT;
 722
 723	/*
 724	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
 725	 * if queue does not support NOWAIT.
 726	 */
 727	if ((bio->bi_opf & REQ_NOWAIT) && !bdev_nowait(bdev))
 728		goto not_supported;
 729
 730	if (should_fail_bio(bio))
 731		goto end_io;
 732	bio_check_ro(bio);
 733	if (!bio_flagged(bio, BIO_REMAPPED)) {
 734		if (unlikely(bio_check_eod(bio)))
 735			goto end_io;
 736		if (bdev->bd_partno && unlikely(blk_partition_remap(bio)))
 737			goto end_io;
 738	}
 739
 740	/*
 741	 * Filter flush bio's early so that bio based drivers without flush
 742	 * support don't have to worry about them.
 
 
 743	 */
 744	if (op_is_flush(bio->bi_opf) &&
 745	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
 746		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
 747		if (!bio_sectors(bio)) {
 748			status = BLK_STS_OK;
 749			goto end_io;
 750		}
 751	}
 752
 753	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
 754		bio_clear_polled(bio);
 755
 756	switch (bio_op(bio)) {
 757	case REQ_OP_DISCARD:
 758		if (!bdev_max_discard_sectors(bdev))
 759			goto not_supported;
 760		break;
 761	case REQ_OP_SECURE_ERASE:
 762		if (!bdev_max_secure_erase_sectors(bdev))
 763			goto not_supported;
 764		break;
 765	case REQ_OP_ZONE_APPEND:
 766		status = blk_check_zone_append(q, bio);
 767		if (status != BLK_STS_OK)
 768			goto end_io;
 769		break;
 770	case REQ_OP_ZONE_RESET:
 771	case REQ_OP_ZONE_OPEN:
 772	case REQ_OP_ZONE_CLOSE:
 773	case REQ_OP_ZONE_FINISH:
 774		if (!bdev_is_zoned(bio->bi_bdev))
 775			goto not_supported;
 776		break;
 777	case REQ_OP_ZONE_RESET_ALL:
 778		if (!bdev_is_zoned(bio->bi_bdev) || !blk_queue_zone_resetall(q))
 779			goto not_supported;
 780		break;
 781	case REQ_OP_WRITE_ZEROES:
 782		if (!q->limits.max_write_zeroes_sectors)
 783			goto not_supported;
 784		break;
 785	default:
 786		break;
 787	}
 788
 789	if (blk_throtl_bio(bio))
 790		return;
 791
 792	blk_cgroup_bio_start(bio);
 793	blkcg_bio_issue_init(bio);
 794
 795	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
 796		trace_block_bio_queue(bio);
 797		/* Now that enqueuing has been traced, we need to trace
 798		 * completion as well.
 799		 */
 800		bio_set_flag(bio, BIO_TRACE_COMPLETION);
 801	}
 802	submit_bio_noacct_nocheck(bio);
 803	return;
 804
 805not_supported:
 806	status = BLK_STS_NOTSUPP;
 807end_io:
 808	bio->bi_status = status;
 809	bio_endio(bio);
 810}
 811EXPORT_SYMBOL(submit_bio_noacct);
 812
 813/**
 814 * submit_bio - submit a bio to the block device layer for I/O
 815 * @bio: The &struct bio which describes the I/O
 816 *
 817 * submit_bio() is used to submit I/O requests to block devices.  It is passed a
 818 * fully set up &struct bio that describes the I/O that needs to be done.  The
 819 * bio will be send to the device described by the bi_bdev field.
 820 *
 821 * The success/failure status of the request, along with notification of
 822 * completion, is delivered asynchronously through the ->bi_end_io() callback
 823 * in @bio.  The bio must NOT be touched by the caller until ->bi_end_io() has
 824 * been called.
 825 */
 826void submit_bio(struct bio *bio)
 827{
 828	if (blkcg_punt_bio_submit(bio))
 829		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 830
 831	if (bio_op(bio) == REQ_OP_READ) {
 832		task_io_account_read(bio->bi_iter.bi_size);
 833		count_vm_events(PGPGIN, bio_sectors(bio));
 834	} else if (bio_op(bio) == REQ_OP_WRITE) {
 835		count_vm_events(PGPGOUT, bio_sectors(bio));
 836	}
 837
 838	submit_bio_noacct(bio);
 839}
 840EXPORT_SYMBOL(submit_bio);
 841
 842/**
 843 * bio_poll - poll for BIO completions
 844 * @bio: bio to poll for
 845 * @iob: batches of IO
 846 * @flags: BLK_POLL_* flags that control the behavior
 847 *
 848 * Poll for completions on queue associated with the bio. Returns number of
 849 * completed entries found.
 850 *
 851 * Note: the caller must either be the context that submitted @bio, or
 852 * be in a RCU critical section to prevent freeing of @bio.
 853 */
 854int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags)
 855{
 856	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
 857	blk_qc_t cookie = READ_ONCE(bio->bi_cookie);
 858	int ret = 0;
 859
 860	if (cookie == BLK_QC_T_NONE ||
 861	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
 862		return 0;
 
 
 
 
 
 863
 864	/*
 865	 * As the requests that require a zone lock are not plugged in the
 866	 * first place, directly accessing the plug instead of using
 867	 * blk_mq_plug() should not have any consequences during flushing for
 868	 * zoned devices.
 869	 */
 870	blk_flush_plug(current->plug, false);
 
 
 
 
 
 871
 872	if (bio_queue_enter(bio))
 873		return 0;
 874	if (queue_is_mq(q)) {
 875		ret = blk_mq_poll(q, cookie, iob, flags);
 876	} else {
 877		struct gendisk *disk = q->disk;
 878
 879		if (disk && disk->fops->poll_bio)
 880			ret = disk->fops->poll_bio(bio, iob, flags);
 881	}
 882	blk_queue_exit(q);
 883	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 884}
 885EXPORT_SYMBOL_GPL(bio_poll);
 886
 887/*
 888 * Helper to implement file_operations.iopoll.  Requires the bio to be stored
 889 * in iocb->private, and cleared before freeing the bio.
 
 
 
 
 
 
 
 
 
 890 */
 891int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
 892		    unsigned int flags)
 893{
 
 
 894	struct bio *bio;
 895	int ret = 0;
 
 
 896
 897	/*
 898	 * Note: the bio cache only uses SLAB_TYPESAFE_BY_RCU, so bio can
 899	 * point to a freshly allocated bio at this point.  If that happens
 900	 * we have a few cases to consider:
 901	 *
 902	 *  1) the bio is beeing initialized and bi_bdev is NULL.  We can just
 903	 *     simply nothing in this case
 904	 *  2) the bio points to a not poll enabled device.  bio_poll will catch
 905	 *     this and return 0
 906	 *  3) the bio points to a poll capable device, including but not
 907	 *     limited to the one that the original bio pointed to.  In this
 908	 *     case we will call into the actual poll method and poll for I/O,
 909	 *     even if we don't need to, but it won't cause harm either.
 910	 *
 911	 * For cases 2) and 3) above the RCU grace period ensures that bi_bdev
 912	 * is still allocated. Because partitions hold a reference to the whole
 913	 * device bdev and thus disk, the disk is also still valid.  Grabbing
 914	 * a reference to the queue in bio_poll() ensures the hctxs and requests
 915	 * are still valid as well.
 916	 */
 917	rcu_read_lock();
 918	bio = READ_ONCE(kiocb->private);
 919	if (bio && bio->bi_bdev)
 920		ret = bio_poll(bio, iob, flags);
 921	rcu_read_unlock();
 922
 923	return ret;
 
 
 924}
 925EXPORT_SYMBOL_GPL(iocb_bio_iopoll);
 926
 927void update_io_ticks(struct block_device *part, unsigned long now, bool end)
 928{
 929	unsigned long stamp;
 930again:
 931	stamp = READ_ONCE(part->bd_stamp);
 932	if (unlikely(time_after(now, stamp))) {
 933		if (likely(try_cmpxchg(&part->bd_stamp, &stamp, now)))
 934			__part_stat_add(part, io_ticks, end ? now - stamp : 1);
 935	}
 936	if (part->bd_partno) {
 937		part = bdev_whole(part);
 938		goto again;
 939	}
 940}
 941
 942unsigned long bdev_start_io_acct(struct block_device *bdev,
 943				 unsigned int sectors, enum req_op op,
 944				 unsigned long start_time)
 945{
 946	const int sgrp = op_stat_group(op);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 947
 948	part_stat_lock();
 949	update_io_ticks(bdev, start_time, false);
 950	part_stat_inc(bdev, ios[sgrp]);
 951	part_stat_add(bdev, sectors[sgrp], sectors);
 952	part_stat_local_inc(bdev, in_flight[op_is_write(op)]);
 953	part_stat_unlock();
 954
 955	return start_time;
 956}
 957EXPORT_SYMBOL(bdev_start_io_acct);
 958
 959/**
 960 * bio_start_io_acct - start I/O accounting for bio based drivers
 961 * @bio:	bio to start account for
 962 *
 963 * Returns the start time that should be passed back to bio_end_io_acct().
 964 */
 965unsigned long bio_start_io_acct(struct bio *bio)
 966{
 967	return bdev_start_io_acct(bio->bi_bdev, bio_sectors(bio),
 968				  bio_op(bio), jiffies);
 
 
 
 
 
 
 
 
 
 
 969}
 970EXPORT_SYMBOL_GPL(bio_start_io_acct);
 971
 972void bdev_end_io_acct(struct block_device *bdev, enum req_op op,
 973		      unsigned long start_time)
 974{
 
 975	const int sgrp = op_stat_group(op);
 976	unsigned long now = READ_ONCE(jiffies);
 977	unsigned long duration = now - start_time;
 978
 979	part_stat_lock();
 980	update_io_ticks(bdev, now, true);
 981	part_stat_add(bdev, nsecs[sgrp], jiffies_to_nsecs(duration));
 982	part_stat_local_dec(bdev, in_flight[op_is_write(op)]);
 983	part_stat_unlock();
 984}
 985EXPORT_SYMBOL(bdev_end_io_acct);
 986
 987void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
 988			      struct block_device *orig_bdev)
 
 
 
 989{
 990	bdev_end_io_acct(orig_bdev, bio_op(bio), start_time);
 
 
 
 
 
 
 
 
 
 
 
 991}
 992EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 993
 994/**
 995 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
 996 * @q : the queue of the device being checked
 997 *
 998 * Description:
 999 *    Check if underlying low-level drivers of a device are busy.
1000 *    If the drivers want to export their busy state, they must set own
1001 *    exporting function using blk_queue_lld_busy() first.
1002 *
1003 *    Basically, this function is used only by request stacking drivers
1004 *    to stop dispatching requests to underlying devices when underlying
1005 *    devices are busy.  This behavior helps more I/O merging on the queue
1006 *    of the request stacking driver and prevents I/O throughput regression
1007 *    on burst I/O load.
1008 *
1009 * Return:
1010 *    0 - Not busy (The request stacking driver should dispatch request)
1011 *    1 - Busy (The request stacking driver should stop dispatching request)
1012 */
1013int blk_lld_busy(struct request_queue *q)
1014{
1015	if (queue_is_mq(q) && q->mq_ops->busy)
1016		return q->mq_ops->busy(q);
1017
1018	return 0;
1019}
1020EXPORT_SYMBOL_GPL(blk_lld_busy);
1021
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1022int kblockd_schedule_work(struct work_struct *work)
1023{
1024	return queue_work(kblockd_workqueue, work);
1025}
1026EXPORT_SYMBOL(kblockd_schedule_work);
1027
1028int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1029				unsigned long delay)
1030{
1031	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1032}
1033EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1034
1035void blk_start_plug_nr_ios(struct blk_plug *plug, unsigned short nr_ios)
1036{
1037	struct task_struct *tsk = current;
1038
1039	/*
1040	 * If this is a nested plug, don't actually assign it.
1041	 */
1042	if (tsk->plug)
1043		return;
1044
1045	plug->mq_list = NULL;
1046	plug->cached_rq = NULL;
1047	plug->nr_ios = min_t(unsigned short, nr_ios, BLK_MAX_REQUEST_COUNT);
1048	plug->rq_count = 0;
1049	plug->multiple_queues = false;
1050	plug->has_elevator = false;
1051	plug->nowait = false;
1052	INIT_LIST_HEAD(&plug->cb_list);
1053
1054	/*
1055	 * Store ordering should not be needed here, since a potential
1056	 * preempt will imply a full memory barrier
1057	 */
1058	tsk->plug = plug;
1059}
1060
1061/**
1062 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1063 * @plug:	The &struct blk_plug that needs to be initialized
1064 *
1065 * Description:
1066 *   blk_start_plug() indicates to the block layer an intent by the caller
1067 *   to submit multiple I/O requests in a batch.  The block layer may use
1068 *   this hint to defer submitting I/Os from the caller until blk_finish_plug()
1069 *   is called.  However, the block layer may choose to submit requests
1070 *   before a call to blk_finish_plug() if the number of queued I/Os
1071 *   exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1072 *   %BLK_PLUG_FLUSH_SIZE.  The queued I/Os may also be submitted early if
1073 *   the task schedules (see below).
1074 *
1075 *   Tracking blk_plug inside the task_struct will help with auto-flushing the
1076 *   pending I/O should the task end up blocking between blk_start_plug() and
1077 *   blk_finish_plug(). This is important from a performance perspective, but
1078 *   also ensures that we don't deadlock. For instance, if the task is blocking
1079 *   for a memory allocation, memory reclaim could end up wanting to free a
1080 *   page belonging to that request that is currently residing in our private
1081 *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
1082 *   this kind of deadlock.
1083 */
1084void blk_start_plug(struct blk_plug *plug)
1085{
1086	blk_start_plug_nr_ios(plug, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1087}
1088EXPORT_SYMBOL(blk_start_plug);
1089
1090static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1091{
1092	LIST_HEAD(callbacks);
1093
1094	while (!list_empty(&plug->cb_list)) {
1095		list_splice_init(&plug->cb_list, &callbacks);
1096
1097		while (!list_empty(&callbacks)) {
1098			struct blk_plug_cb *cb = list_first_entry(&callbacks,
1099							  struct blk_plug_cb,
1100							  list);
1101			list_del(&cb->list);
1102			cb->callback(cb, from_schedule);
1103		}
1104	}
1105}
1106
1107struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1108				      int size)
1109{
1110	struct blk_plug *plug = current->plug;
1111	struct blk_plug_cb *cb;
1112
1113	if (!plug)
1114		return NULL;
1115
1116	list_for_each_entry(cb, &plug->cb_list, list)
1117		if (cb->callback == unplug && cb->data == data)
1118			return cb;
1119
1120	/* Not currently on the callback list */
1121	BUG_ON(size < sizeof(*cb));
1122	cb = kzalloc(size, GFP_ATOMIC);
1123	if (cb) {
1124		cb->data = data;
1125		cb->callback = unplug;
1126		list_add(&cb->list, &plug->cb_list);
1127	}
1128	return cb;
1129}
1130EXPORT_SYMBOL(blk_check_plugged);
1131
1132void __blk_flush_plug(struct blk_plug *plug, bool from_schedule)
1133{
1134	if (!list_empty(&plug->cb_list))
1135		flush_plug_callbacks(plug, from_schedule);
1136	if (!rq_list_empty(plug->mq_list))
1137		blk_mq_flush_plug_list(plug, from_schedule);
1138	/*
1139	 * Unconditionally flush out cached requests, even if the unplug
1140	 * event came from schedule. Since we know hold references to the
1141	 * queue for cached requests, we don't want a blocked task holding
1142	 * up a queue freeze/quiesce event.
1143	 */
1144	if (unlikely(!rq_list_empty(plug->cached_rq)))
1145		blk_mq_free_plug_rqs(plug);
1146}
1147
1148/**
1149 * blk_finish_plug - mark the end of a batch of submitted I/O
1150 * @plug:	The &struct blk_plug passed to blk_start_plug()
1151 *
1152 * Description:
1153 * Indicate that a batch of I/O submissions is complete.  This function
1154 * must be paired with an initial call to blk_start_plug().  The intent
1155 * is to allow the block layer to optimize I/O submission.  See the
1156 * documentation for blk_start_plug() for more information.
1157 */
1158void blk_finish_plug(struct blk_plug *plug)
1159{
1160	if (plug == current->plug) {
1161		__blk_flush_plug(plug, false);
1162		current->plug = NULL;
1163	}
 
1164}
1165EXPORT_SYMBOL(blk_finish_plug);
1166
1167void blk_io_schedule(void)
1168{
1169	/* Prevent hang_check timer from firing at us during very long I/O */
1170	unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1171
1172	if (timeout)
1173		io_schedule_timeout(timeout);
1174	else
1175		io_schedule();
1176}
1177EXPORT_SYMBOL_GPL(blk_io_schedule);
1178
1179int __init blk_dev_init(void)
1180{
1181	BUILD_BUG_ON((__force u32)REQ_OP_LAST >= (1 << REQ_OP_BITS));
1182	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1183			sizeof_field(struct request, cmd_flags));
1184	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1185			sizeof_field(struct bio, bi_opf));
1186
1187	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
1188	kblockd_workqueue = alloc_workqueue("kblockd",
1189					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1190	if (!kblockd_workqueue)
1191		panic("Failed to create kblockd\n");
1192
1193	blk_requestq_cachep = kmem_cache_create("request_queue",
1194			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1195
1196	blk_debugfs_root = debugfs_create_dir("block", NULL);
1197
1198	return 0;
1199}
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 1991, 1992 Linus Torvalds
   4 * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
   5 * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
   6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
   7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
   8 *	-  July2000
   9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
  10 */
  11
  12/*
  13 * This handles all read/write requests to block devices
  14 */
  15#include <linux/kernel.h>
  16#include <linux/module.h>
  17#include <linux/backing-dev.h>
  18#include <linux/bio.h>
  19#include <linux/blkdev.h>
  20#include <linux/blk-mq.h>
 
  21#include <linux/highmem.h>
  22#include <linux/mm.h>
  23#include <linux/pagemap.h>
  24#include <linux/kernel_stat.h>
  25#include <linux/string.h>
  26#include <linux/init.h>
  27#include <linux/completion.h>
  28#include <linux/slab.h>
  29#include <linux/swap.h>
  30#include <linux/writeback.h>
  31#include <linux/task_io_accounting_ops.h>
  32#include <linux/fault-inject.h>
  33#include <linux/list_sort.h>
  34#include <linux/delay.h>
  35#include <linux/ratelimit.h>
  36#include <linux/pm_runtime.h>
  37#include <linux/blk-cgroup.h>
  38#include <linux/t10-pi.h>
  39#include <linux/debugfs.h>
  40#include <linux/bpf.h>
  41#include <linux/psi.h>
  42#include <linux/sched/sysctl.h>
  43#include <linux/blk-crypto.h>
  44
  45#define CREATE_TRACE_POINTS
  46#include <trace/events/block.h>
  47
  48#include "blk.h"
  49#include "blk-mq.h"
  50#include "blk-mq-sched.h"
  51#include "blk-pm.h"
  52#include "blk-rq-qos.h"
 
  53
  54struct dentry *blk_debugfs_root;
  55
  56EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
  57EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
  58EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
  59EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
  60EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
 
  61
  62DEFINE_IDA(blk_queue_ida);
  63
  64/*
  65 * For queue allocation
  66 */
  67struct kmem_cache *blk_requestq_cachep;
  68
  69/*
  70 * Controlling structure to kblockd
  71 */
  72static struct workqueue_struct *kblockd_workqueue;
  73
  74/**
  75 * blk_queue_flag_set - atomically set a queue flag
  76 * @flag: flag to be set
  77 * @q: request queue
  78 */
  79void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
  80{
  81	set_bit(flag, &q->queue_flags);
  82}
  83EXPORT_SYMBOL(blk_queue_flag_set);
  84
  85/**
  86 * blk_queue_flag_clear - atomically clear a queue flag
  87 * @flag: flag to be cleared
  88 * @q: request queue
  89 */
  90void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
  91{
  92	clear_bit(flag, &q->queue_flags);
  93}
  94EXPORT_SYMBOL(blk_queue_flag_clear);
  95
  96/**
  97 * blk_queue_flag_test_and_set - atomically test and set a queue flag
  98 * @flag: flag to be set
  99 * @q: request queue
 100 *
 101 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
 102 * the flag was already set.
 103 */
 104bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
 105{
 106	return test_and_set_bit(flag, &q->queue_flags);
 107}
 108EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
 109
 110void blk_rq_init(struct request_queue *q, struct request *rq)
 111{
 112	memset(rq, 0, sizeof(*rq));
 113
 114	INIT_LIST_HEAD(&rq->queuelist);
 115	rq->q = q;
 116	rq->__sector = (sector_t) -1;
 117	INIT_HLIST_NODE(&rq->hash);
 118	RB_CLEAR_NODE(&rq->rb_node);
 119	rq->tag = -1;
 120	rq->internal_tag = -1;
 121	rq->start_time_ns = ktime_get_ns();
 122	rq->part = NULL;
 123	refcount_set(&rq->ref, 1);
 124	blk_crypto_rq_set_defaults(rq);
 125}
 126EXPORT_SYMBOL(blk_rq_init);
 127
 128#define REQ_OP_NAME(name) [REQ_OP_##name] = #name
 129static const char *const blk_op_name[] = {
 130	REQ_OP_NAME(READ),
 131	REQ_OP_NAME(WRITE),
 132	REQ_OP_NAME(FLUSH),
 133	REQ_OP_NAME(DISCARD),
 134	REQ_OP_NAME(SECURE_ERASE),
 135	REQ_OP_NAME(ZONE_RESET),
 136	REQ_OP_NAME(ZONE_RESET_ALL),
 137	REQ_OP_NAME(ZONE_OPEN),
 138	REQ_OP_NAME(ZONE_CLOSE),
 139	REQ_OP_NAME(ZONE_FINISH),
 140	REQ_OP_NAME(ZONE_APPEND),
 141	REQ_OP_NAME(WRITE_SAME),
 142	REQ_OP_NAME(WRITE_ZEROES),
 143	REQ_OP_NAME(SCSI_IN),
 144	REQ_OP_NAME(SCSI_OUT),
 145	REQ_OP_NAME(DRV_IN),
 146	REQ_OP_NAME(DRV_OUT),
 147};
 148#undef REQ_OP_NAME
 149
 150/**
 151 * blk_op_str - Return string XXX in the REQ_OP_XXX.
 152 * @op: REQ_OP_XXX.
 153 *
 154 * Description: Centralize block layer function to convert REQ_OP_XXX into
 155 * string format. Useful in the debugging and tracing bio or request. For
 156 * invalid REQ_OP_XXX it returns string "UNKNOWN".
 157 */
 158inline const char *blk_op_str(unsigned int op)
 159{
 160	const char *op_str = "UNKNOWN";
 161
 162	if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
 163		op_str = blk_op_name[op];
 164
 165	return op_str;
 166}
 167EXPORT_SYMBOL_GPL(blk_op_str);
 168
 169static const struct {
 170	int		errno;
 171	const char	*name;
 172} blk_errors[] = {
 173	[BLK_STS_OK]		= { 0,		"" },
 174	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
 175	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
 176	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
 177	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
 178	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
 179	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" },
 180	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
 181	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
 182	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
 183	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
 184	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
 
 185
 186	/* device mapper special case, should not leak out: */
 187	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
 188
 
 
 
 
 189	/* everything else not covered above: */
 190	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
 191};
 192
 193blk_status_t errno_to_blk_status(int errno)
 194{
 195	int i;
 196
 197	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
 198		if (blk_errors[i].errno == errno)
 199			return (__force blk_status_t)i;
 200	}
 201
 202	return BLK_STS_IOERR;
 203}
 204EXPORT_SYMBOL_GPL(errno_to_blk_status);
 205
 206int blk_status_to_errno(blk_status_t status)
 207{
 208	int idx = (__force int)status;
 209
 210	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
 211		return -EIO;
 212	return blk_errors[idx].errno;
 213}
 214EXPORT_SYMBOL_GPL(blk_status_to_errno);
 215
 216static void print_req_error(struct request *req, blk_status_t status,
 217		const char *caller)
 218{
 219	int idx = (__force int)status;
 220
 221	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
 222		return;
 223
 224	printk_ratelimited(KERN_ERR
 225		"%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
 226		"phys_seg %u prio class %u\n",
 227		caller, blk_errors[idx].name,
 228		req->rq_disk ? req->rq_disk->disk_name : "?",
 229		blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
 230		req->cmd_flags & ~REQ_OP_MASK,
 231		req->nr_phys_segments,
 232		IOPRIO_PRIO_CLASS(req->ioprio));
 233}
 234
 235static void req_bio_endio(struct request *rq, struct bio *bio,
 236			  unsigned int nbytes, blk_status_t error)
 237{
 238	if (error)
 239		bio->bi_status = error;
 240
 241	if (unlikely(rq->rq_flags & RQF_QUIET))
 242		bio_set_flag(bio, BIO_QUIET);
 243
 244	bio_advance(bio, nbytes);
 245
 246	if (req_op(rq) == REQ_OP_ZONE_APPEND && error == BLK_STS_OK) {
 247		/*
 248		 * Partial zone append completions cannot be supported as the
 249		 * BIO fragments may end up not being written sequentially.
 250		 */
 251		if (bio->bi_iter.bi_size)
 252			bio->bi_status = BLK_STS_IOERR;
 253		else
 254			bio->bi_iter.bi_sector = rq->__sector;
 255	}
 256
 257	/* don't actually finish bio if it's part of flush sequence */
 258	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
 259		bio_endio(bio);
 260}
 261
 262void blk_dump_rq_flags(struct request *rq, char *msg)
 263{
 264	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
 265		rq->rq_disk ? rq->rq_disk->disk_name : "?",
 266		(unsigned long long) rq->cmd_flags);
 267
 268	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
 269	       (unsigned long long)blk_rq_pos(rq),
 270	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
 271	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
 272	       rq->bio, rq->biotail, blk_rq_bytes(rq));
 273}
 274EXPORT_SYMBOL(blk_dump_rq_flags);
 275
 276/**
 277 * blk_sync_queue - cancel any pending callbacks on a queue
 278 * @q: the queue
 279 *
 280 * Description:
 281 *     The block layer may perform asynchronous callback activity
 282 *     on a queue, such as calling the unplug function after a timeout.
 283 *     A block device may call blk_sync_queue to ensure that any
 284 *     such activity is cancelled, thus allowing it to release resources
 285 *     that the callbacks might use. The caller must already have made sure
 286 *     that its ->submit_bio will not re-add plugging prior to calling
 287 *     this function.
 288 *
 289 *     This function does not cancel any asynchronous activity arising
 290 *     out of elevator or throttling code. That would require elevator_exit()
 291 *     and blkcg_exit_queue() to be called with queue lock initialized.
 292 *
 293 */
 294void blk_sync_queue(struct request_queue *q)
 295{
 296	del_timer_sync(&q->timeout);
 297	cancel_work_sync(&q->timeout_work);
 298}
 299EXPORT_SYMBOL(blk_sync_queue);
 300
 301/**
 302 * blk_set_pm_only - increment pm_only counter
 303 * @q: request queue pointer
 304 */
 305void blk_set_pm_only(struct request_queue *q)
 306{
 307	atomic_inc(&q->pm_only);
 308}
 309EXPORT_SYMBOL_GPL(blk_set_pm_only);
 310
 311void blk_clear_pm_only(struct request_queue *q)
 312{
 313	int pm_only;
 314
 315	pm_only = atomic_dec_return(&q->pm_only);
 316	WARN_ON_ONCE(pm_only < 0);
 317	if (pm_only == 0)
 318		wake_up_all(&q->mq_freeze_wq);
 319}
 320EXPORT_SYMBOL_GPL(blk_clear_pm_only);
 321
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 322/**
 323 * blk_put_queue - decrement the request_queue refcount
 324 * @q: the request_queue structure to decrement the refcount for
 325 *
 326 * Decrements the refcount of the request_queue kobject. When this reaches 0
 327 * we'll have blk_release_queue() called.
 328 *
 329 * Context: Any context, but the last reference must not be dropped from
 330 *          atomic context.
 331 */
 332void blk_put_queue(struct request_queue *q)
 333{
 334	kobject_put(&q->kobj);
 
 335}
 336EXPORT_SYMBOL(blk_put_queue);
 337
 338void blk_set_queue_dying(struct request_queue *q)
 339{
 340	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
 341
 342	/*
 343	 * When queue DYING flag is set, we need to block new req
 344	 * entering queue, so we call blk_freeze_queue_start() to
 345	 * prevent I/O from crossing blk_queue_enter().
 346	 */
 347	blk_freeze_queue_start(q);
 348
 349	if (queue_is_mq(q))
 350		blk_mq_wake_waiters(q);
 351
 352	/* Make blk_queue_enter() reexamine the DYING flag. */
 353	wake_up_all(&q->mq_freeze_wq);
 354}
 355EXPORT_SYMBOL_GPL(blk_set_queue_dying);
 356
 357/**
 358 * blk_cleanup_queue - shutdown a request queue
 359 * @q: request queue to shutdown
 360 *
 361 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
 362 * put it.  All future requests will be failed immediately with -ENODEV.
 363 *
 364 * Context: can sleep
 365 */
 366void blk_cleanup_queue(struct request_queue *q)
 367{
 368	/* cannot be called from atomic context */
 369	might_sleep();
 370
 371	WARN_ON_ONCE(blk_queue_registered(q));
 372
 373	/* mark @q DYING, no new request or merges will be allowed afterwards */
 374	blk_set_queue_dying(q);
 375
 376	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
 377	blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
 378
 379	/*
 380	 * Drain all requests queued before DYING marking. Set DEAD flag to
 381	 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
 382	 * after draining finished.
 383	 */
 384	blk_freeze_queue(q);
 385
 386	rq_qos_exit(q);
 387
 388	blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
 389
 390	/* for synchronous bio-based driver finish in-flight integrity i/o */
 391	blk_flush_integrity();
 392
 393	/* @q won't process any more request, flush async actions */
 394	del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
 395	blk_sync_queue(q);
 396
 397	if (queue_is_mq(q))
 398		blk_mq_exit_queue(q);
 399
 400	/*
 401	 * In theory, request pool of sched_tags belongs to request queue.
 402	 * However, the current implementation requires tag_set for freeing
 403	 * requests, so free the pool now.
 404	 *
 405	 * Queue has become frozen, there can't be any in-queue requests, so
 406	 * it is safe to free requests now.
 407	 */
 408	mutex_lock(&q->sysfs_lock);
 409	if (q->elevator)
 410		blk_mq_sched_free_requests(q);
 411	mutex_unlock(&q->sysfs_lock);
 412
 413	percpu_ref_exit(&q->q_usage_counter);
 414
 415	/* @q is and will stay empty, shutdown and put */
 416	blk_put_queue(q);
 417}
 418EXPORT_SYMBOL(blk_cleanup_queue);
 419
 420/**
 421 * blk_queue_enter() - try to increase q->q_usage_counter
 422 * @q: request queue pointer
 423 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
 424 */
 425int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
 426{
 427	const bool pm = flags & BLK_MQ_REQ_PREEMPT;
 428
 429	while (true) {
 430		bool success = false;
 431
 432		rcu_read_lock();
 433		if (percpu_ref_tryget_live(&q->q_usage_counter)) {
 434			/*
 435			 * The code that increments the pm_only counter is
 436			 * responsible for ensuring that that counter is
 437			 * globally visible before the queue is unfrozen.
 438			 */
 439			if (pm || !blk_queue_pm_only(q)) {
 440				success = true;
 441			} else {
 442				percpu_ref_put(&q->q_usage_counter);
 443			}
 444		}
 445		rcu_read_unlock();
 446
 447		if (success)
 448			return 0;
 449
 
 450		if (flags & BLK_MQ_REQ_NOWAIT)
 451			return -EBUSY;
 452
 453		/*
 454		 * read pair of barrier in blk_freeze_queue_start(),
 455		 * we need to order reading __PERCPU_REF_DEAD flag of
 456		 * .q_usage_counter and reading .mq_freeze_depth or
 457		 * queue dying flag, otherwise the following wait may
 458		 * never return if the two reads are reordered.
 459		 */
 460		smp_rmb();
 461
 462		wait_event(q->mq_freeze_wq,
 463			   (!q->mq_freeze_depth &&
 464			    (pm || (blk_pm_request_resume(q),
 465				    !blk_queue_pm_only(q)))) ||
 466			   blk_queue_dying(q));
 467		if (blk_queue_dying(q))
 468			return -ENODEV;
 469	}
 
 
 470}
 471
 472static inline int bio_queue_enter(struct bio *bio)
 473{
 474	struct request_queue *q = bio->bi_disk->queue;
 475	bool nowait = bio->bi_opf & REQ_NOWAIT;
 476	int ret;
 477
 478	ret = blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0);
 479	if (unlikely(ret)) {
 480		if (nowait && !blk_queue_dying(q))
 481			bio_wouldblock_error(bio);
 482		else
 483			bio_io_error(bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 484	}
 485
 486	return ret;
 
 
 
 487}
 488
 489void blk_queue_exit(struct request_queue *q)
 490{
 491	percpu_ref_put(&q->q_usage_counter);
 492}
 493
 494static void blk_queue_usage_counter_release(struct percpu_ref *ref)
 495{
 496	struct request_queue *q =
 497		container_of(ref, struct request_queue, q_usage_counter);
 498
 499	wake_up_all(&q->mq_freeze_wq);
 500}
 501
 502static void blk_rq_timed_out_timer(struct timer_list *t)
 503{
 504	struct request_queue *q = from_timer(q, t, timeout);
 505
 506	kblockd_schedule_work(&q->timeout_work);
 507}
 508
 509static void blk_timeout_work(struct work_struct *work)
 510{
 511}
 512
 513struct request_queue *blk_alloc_queue(int node_id)
 514{
 515	struct request_queue *q;
 516	int ret;
 517
 518	q = kmem_cache_alloc_node(blk_requestq_cachep,
 519				GFP_KERNEL | __GFP_ZERO, node_id);
 520	if (!q)
 521		return NULL;
 522
 523	q->last_merge = NULL;
 524
 525	q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
 526	if (q->id < 0)
 527		goto fail_q;
 528
 529	ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
 530	if (ret)
 531		goto fail_id;
 532
 533	q->backing_dev_info = bdi_alloc(node_id);
 534	if (!q->backing_dev_info)
 535		goto fail_split;
 536
 537	q->stats = blk_alloc_queue_stats();
 538	if (!q->stats)
 539		goto fail_stats;
 540
 541	q->backing_dev_info->ra_pages = VM_READAHEAD_PAGES;
 542	q->backing_dev_info->io_pages = VM_READAHEAD_PAGES;
 543	q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
 544	q->node = node_id;
 545
 546	timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
 547		    laptop_mode_timer_fn, 0);
 548	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
 549	INIT_WORK(&q->timeout_work, blk_timeout_work);
 550	INIT_LIST_HEAD(&q->icq_list);
 551#ifdef CONFIG_BLK_CGROUP
 552	INIT_LIST_HEAD(&q->blkg_list);
 553#endif
 554
 555	kobject_init(&q->kobj, &blk_queue_ktype);
 556
 
 557	mutex_init(&q->debugfs_mutex);
 558	mutex_init(&q->sysfs_lock);
 559	mutex_init(&q->sysfs_dir_lock);
 560	spin_lock_init(&q->queue_lock);
 561
 562	init_waitqueue_head(&q->mq_freeze_wq);
 563	mutex_init(&q->mq_freeze_lock);
 564
 565	/*
 566	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
 567	 * See blk_register_queue() for details.
 568	 */
 569	if (percpu_ref_init(&q->q_usage_counter,
 570				blk_queue_usage_counter_release,
 571				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
 572		goto fail_bdi;
 573
 574	if (blkcg_init_queue(q))
 575		goto fail_ref;
 576
 577	blk_queue_dma_alignment(q, 511);
 578	blk_set_default_limits(&q->limits);
 579	q->nr_requests = BLKDEV_MAX_RQ;
 580
 581	return q;
 582
 583fail_ref:
 584	percpu_ref_exit(&q->q_usage_counter);
 585fail_bdi:
 586	blk_free_queue_stats(q->stats);
 587fail_stats:
 588	bdi_put(q->backing_dev_info);
 589fail_split:
 590	bioset_exit(&q->bio_split);
 591fail_id:
 592	ida_simple_remove(&blk_queue_ida, q->id);
 593fail_q:
 594	kmem_cache_free(blk_requestq_cachep, q);
 595	return NULL;
 596}
 597EXPORT_SYMBOL(blk_alloc_queue);
 598
 599/**
 600 * blk_get_queue - increment the request_queue refcount
 601 * @q: the request_queue structure to increment the refcount for
 602 *
 603 * Increment the refcount of the request_queue kobject.
 604 *
 605 * Context: Any context.
 606 */
 607bool blk_get_queue(struct request_queue *q)
 608{
 609	if (likely(!blk_queue_dying(q))) {
 610		__blk_get_queue(q);
 611		return true;
 612	}
 613
 614	return false;
 615}
 616EXPORT_SYMBOL(blk_get_queue);
 617
 618/**
 619 * blk_get_request - allocate a request
 620 * @q: request queue to allocate a request for
 621 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
 622 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
 623 */
 624struct request *blk_get_request(struct request_queue *q, unsigned int op,
 625				blk_mq_req_flags_t flags)
 626{
 627	struct request *req;
 628
 629	WARN_ON_ONCE(op & REQ_NOWAIT);
 630	WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
 631
 632	req = blk_mq_alloc_request(q, op, flags);
 633	if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
 634		q->mq_ops->initialize_rq_fn(req);
 635
 636	return req;
 637}
 638EXPORT_SYMBOL(blk_get_request);
 639
 640void blk_put_request(struct request *req)
 641{
 642	blk_mq_free_request(req);
 643}
 644EXPORT_SYMBOL(blk_put_request);
 645
 646static void blk_account_io_merge_bio(struct request *req)
 647{
 648	if (!blk_do_io_stat(req))
 649		return;
 650
 651	part_stat_lock();
 652	part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
 653	part_stat_unlock();
 654}
 655
 656bool bio_attempt_back_merge(struct request *req, struct bio *bio,
 657		unsigned int nr_segs)
 658{
 659	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
 660
 661	if (!ll_back_merge_fn(req, bio, nr_segs))
 662		return false;
 663
 664	trace_block_bio_backmerge(req->q, req, bio);
 665	rq_qos_merge(req->q, req, bio);
 666
 667	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
 668		blk_rq_set_mixed_merge(req);
 669
 670	req->biotail->bi_next = bio;
 671	req->biotail = bio;
 672	req->__data_len += bio->bi_iter.bi_size;
 673
 674	bio_crypt_free_ctx(bio);
 675
 676	blk_account_io_merge_bio(req);
 677	return true;
 678}
 679
 680bool bio_attempt_front_merge(struct request *req, struct bio *bio,
 681		unsigned int nr_segs)
 682{
 683	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
 684
 685	if (!ll_front_merge_fn(req, bio, nr_segs))
 686		return false;
 687
 688	trace_block_bio_frontmerge(req->q, req, bio);
 689	rq_qos_merge(req->q, req, bio);
 690
 691	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
 692		blk_rq_set_mixed_merge(req);
 693
 694	bio->bi_next = req->bio;
 695	req->bio = bio;
 696
 697	req->__sector = bio->bi_iter.bi_sector;
 698	req->__data_len += bio->bi_iter.bi_size;
 699
 700	bio_crypt_do_front_merge(req, bio);
 701
 702	blk_account_io_merge_bio(req);
 703	return true;
 704}
 705
 706bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
 707		struct bio *bio)
 708{
 709	unsigned short segments = blk_rq_nr_discard_segments(req);
 710
 711	if (segments >= queue_max_discard_segments(q))
 712		goto no_merge;
 713	if (blk_rq_sectors(req) + bio_sectors(bio) >
 714	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
 715		goto no_merge;
 716
 717	rq_qos_merge(q, req, bio);
 718
 719	req->biotail->bi_next = bio;
 720	req->biotail = bio;
 721	req->__data_len += bio->bi_iter.bi_size;
 722	req->nr_phys_segments = segments + 1;
 723
 724	blk_account_io_merge_bio(req);
 725	return true;
 726no_merge:
 727	req_set_nomerge(q, req);
 728	return false;
 729}
 730
 731/**
 732 * blk_attempt_plug_merge - try to merge with %current's plugged list
 733 * @q: request_queue new bio is being queued at
 734 * @bio: new bio being queued
 735 * @nr_segs: number of segments in @bio
 736 * @same_queue_rq: pointer to &struct request that gets filled in when
 737 * another request associated with @q is found on the plug list
 738 * (optional, may be %NULL)
 739 *
 740 * Determine whether @bio being queued on @q can be merged with a request
 741 * on %current's plugged list.  Returns %true if merge was successful,
 742 * otherwise %false.
 743 *
 744 * Plugging coalesces IOs from the same issuer for the same purpose without
 745 * going through @q->queue_lock.  As such it's more of an issuing mechanism
 746 * than scheduling, and the request, while may have elvpriv data, is not
 747 * added on the elevator at this point.  In addition, we don't have
 748 * reliable access to the elevator outside queue lock.  Only check basic
 749 * merging parameters without querying the elevator.
 750 *
 751 * Caller must ensure !blk_queue_nomerges(q) beforehand.
 752 */
 753bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
 754		unsigned int nr_segs, struct request **same_queue_rq)
 755{
 756	struct blk_plug *plug;
 757	struct request *rq;
 758	struct list_head *plug_list;
 759
 760	plug = blk_mq_plug(q, bio);
 761	if (!plug)
 762		return false;
 763
 764	plug_list = &plug->mq_list;
 765
 766	list_for_each_entry_reverse(rq, plug_list, queuelist) {
 767		bool merged = false;
 768
 769		if (rq->q == q && same_queue_rq) {
 770			/*
 771			 * Only blk-mq multiple hardware queues case checks the
 772			 * rq in the same queue, there should be only one such
 773			 * rq in a queue
 774			 **/
 775			*same_queue_rq = rq;
 776		}
 777
 778		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
 779			continue;
 780
 781		switch (blk_try_merge(rq, bio)) {
 782		case ELEVATOR_BACK_MERGE:
 783			merged = bio_attempt_back_merge(rq, bio, nr_segs);
 784			break;
 785		case ELEVATOR_FRONT_MERGE:
 786			merged = bio_attempt_front_merge(rq, bio, nr_segs);
 787			break;
 788		case ELEVATOR_DISCARD_MERGE:
 789			merged = bio_attempt_discard_merge(q, rq, bio);
 790			break;
 791		default:
 792			break;
 793		}
 794
 795		if (merged)
 796			return true;
 797	}
 798
 799	return false;
 800}
 801
 802static void handle_bad_sector(struct bio *bio, sector_t maxsector)
 803{
 804	char b[BDEVNAME_SIZE];
 805
 806	printk(KERN_INFO "attempt to access beyond end of device\n");
 807	printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
 808			bio_devname(bio, b), bio->bi_opf,
 809			(unsigned long long)bio_end_sector(bio),
 810			(long long)maxsector);
 811}
 812
 813#ifdef CONFIG_FAIL_MAKE_REQUEST
 814
 815static DECLARE_FAULT_ATTR(fail_make_request);
 816
 817static int __init setup_fail_make_request(char *str)
 818{
 819	return setup_fault_attr(&fail_make_request, str);
 820}
 821__setup("fail_make_request=", setup_fail_make_request);
 822
 823static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
 824{
 825	return part->make_it_fail && should_fail(&fail_make_request, bytes);
 826}
 827
 828static int __init fail_make_request_debugfs(void)
 829{
 830	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
 831						NULL, &fail_make_request);
 832
 833	return PTR_ERR_OR_ZERO(dir);
 834}
 835
 836late_initcall(fail_make_request_debugfs);
 837
 838#else /* CONFIG_FAIL_MAKE_REQUEST */
 839
 840static inline bool should_fail_request(struct hd_struct *part,
 841					unsigned int bytes)
 842{
 843	return false;
 844}
 845
 846#endif /* CONFIG_FAIL_MAKE_REQUEST */
 847
 848static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
 849{
 850	const int op = bio_op(bio);
 851
 852	if (part->policy && op_is_write(op)) {
 853		char b[BDEVNAME_SIZE];
 854
 855		if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
 856			return false;
 857
 858		WARN_ONCE(1,
 859		       "Trying to write to read-only block-device %s (partno %d)\n",
 860			bio_devname(bio, b), part->partno);
 861		/* Older lvm-tools actually trigger this */
 862		return false;
 863	}
 864
 865	return false;
 866}
 867
 868static noinline int should_fail_bio(struct bio *bio)
 869{
 870	if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
 871		return -EIO;
 872	return 0;
 873}
 874ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
 875
 876/*
 877 * Check whether this bio extends beyond the end of the device or partition.
 878 * This may well happen - the kernel calls bread() without checking the size of
 879 * the device, e.g., when mounting a file system.
 880 */
 881static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
 882{
 
 883	unsigned int nr_sectors = bio_sectors(bio);
 884
 885	if (nr_sectors && maxsector &&
 886	    (nr_sectors > maxsector ||
 887	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
 888		handle_bad_sector(bio, maxsector);
 
 
 
 889		return -EIO;
 890	}
 891	return 0;
 892}
 893
 894/*
 895 * Remap block n of partition p to block n+start(p) of the disk.
 896 */
 897static inline int blk_partition_remap(struct bio *bio)
 898{
 899	struct hd_struct *p;
 900	int ret = -EIO;
 901
 902	rcu_read_lock();
 903	p = __disk_get_part(bio->bi_disk, bio->bi_partno);
 904	if (unlikely(!p))
 905		goto out;
 906	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
 907		goto out;
 908	if (unlikely(bio_check_ro(bio, p)))
 909		goto out;
 910
 911	if (bio_sectors(bio)) {
 912		if (bio_check_eod(bio, part_nr_sects_read(p)))
 913			goto out;
 914		bio->bi_iter.bi_sector += p->start_sect;
 915		trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
 916				      bio->bi_iter.bi_sector - p->start_sect);
 917	}
 918	bio->bi_partno = 0;
 919	ret = 0;
 920out:
 921	rcu_read_unlock();
 922	return ret;
 923}
 924
 925/*
 926 * Check write append to a zoned block device.
 927 */
 928static inline blk_status_t blk_check_zone_append(struct request_queue *q,
 929						 struct bio *bio)
 930{
 931	sector_t pos = bio->bi_iter.bi_sector;
 932	int nr_sectors = bio_sectors(bio);
 933
 934	/* Only applicable to zoned block devices */
 935	if (!blk_queue_is_zoned(q))
 936		return BLK_STS_NOTSUPP;
 937
 938	/* The bio sector must point to the start of a sequential zone */
 939	if (pos & (blk_queue_zone_sectors(q) - 1) ||
 940	    !blk_queue_zone_is_seq(q, pos))
 941		return BLK_STS_IOERR;
 942
 943	/*
 944	 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
 945	 * split and could result in non-contiguous sectors being written in
 946	 * different zones.
 947	 */
 948	if (nr_sectors > q->limits.chunk_sectors)
 949		return BLK_STS_IOERR;
 950
 951	/* Make sure the BIO is small enough and will not get split */
 952	if (nr_sectors > q->limits.max_zone_append_sectors)
 953		return BLK_STS_IOERR;
 954
 955	bio->bi_opf |= REQ_NOMERGE;
 956
 957	return BLK_STS_OK;
 958}
 959
 960static noinline_for_stack bool submit_bio_checks(struct bio *bio)
 961{
 962	struct request_queue *q = bio->bi_disk->queue;
 963	blk_status_t status = BLK_STS_IOERR;
 964	struct blk_plug *plug;
 965
 966	might_sleep();
 
 967
 968	plug = blk_mq_plug(q, bio);
 969	if (plug && plug->nowait)
 970		bio->bi_opf |= REQ_NOWAIT;
 971
 972	/*
 973	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
 974	 * if queue is not a request based queue.
 975	 */
 976	if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_mq(q))
 977		goto not_supported;
 978
 979	if (should_fail_bio(bio))
 980		goto end_io;
 981
 982	if (bio->bi_partno) {
 983		if (unlikely(blk_partition_remap(bio)))
 984			goto end_io;
 985	} else {
 986		if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
 987			goto end_io;
 988		if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
 989			goto end_io;
 990	}
 991
 992	/*
 993	 * Filter flush bio's early so that bio based drivers without flush
 994	 * support don't have to worry about them.
 995	 */
 996	if (op_is_flush(bio->bi_opf) &&
 997	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
 998		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
 999		if (!bio_sectors(bio)) {
1000			status = BLK_STS_OK;
1001			goto end_io;
1002		}
1003	}
1004
1005	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
1006		bio->bi_opf &= ~REQ_HIPRI;
1007
1008	switch (bio_op(bio)) {
1009	case REQ_OP_DISCARD:
1010		if (!blk_queue_discard(q))
1011			goto not_supported;
1012		break;
1013	case REQ_OP_SECURE_ERASE:
1014		if (!blk_queue_secure_erase(q))
1015			goto not_supported;
1016		break;
1017	case REQ_OP_WRITE_SAME:
1018		if (!q->limits.max_write_same_sectors)
1019			goto not_supported;
1020		break;
1021	case REQ_OP_ZONE_APPEND:
1022		status = blk_check_zone_append(q, bio);
1023		if (status != BLK_STS_OK)
1024			goto end_io;
1025		break;
1026	case REQ_OP_ZONE_RESET:
1027	case REQ_OP_ZONE_OPEN:
1028	case REQ_OP_ZONE_CLOSE:
1029	case REQ_OP_ZONE_FINISH:
1030		if (!blk_queue_is_zoned(q))
1031			goto not_supported;
1032		break;
1033	case REQ_OP_ZONE_RESET_ALL:
1034		if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
1035			goto not_supported;
1036		break;
1037	case REQ_OP_WRITE_ZEROES:
1038		if (!q->limits.max_write_zeroes_sectors)
1039			goto not_supported;
1040		break;
1041	default:
1042		break;
1043	}
1044
1045	/*
1046	 * Various block parts want %current->io_context, so allocate it up
1047	 * front rather than dealing with lots of pain to allocate it only
1048	 * where needed. This may fail and the block layer knows how to live
1049	 * with it.
1050	 */
1051	if (unlikely(!current->io_context))
1052		create_task_io_context(current, GFP_ATOMIC, q->node);
1053
1054	if (blk_throtl_bio(bio)) {
1055		blkcg_bio_issue_init(bio);
1056		return false;
1057	}
1058
1059	blk_cgroup_bio_start(bio);
1060	blkcg_bio_issue_init(bio);
1061
1062	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1063		trace_block_bio_queue(q, bio);
1064		/* Now that enqueuing has been traced, we need to trace
1065		 * completion as well.
1066		 */
1067		bio_set_flag(bio, BIO_TRACE_COMPLETION);
1068	}
1069	return true;
1070
1071not_supported:
1072	status = BLK_STS_NOTSUPP;
1073end_io:
1074	bio->bi_status = status;
1075	bio_endio(bio);
1076	return false;
1077}
1078
1079static blk_qc_t __submit_bio(struct bio *bio)
1080{
1081	struct gendisk *disk = bio->bi_disk;
1082	blk_qc_t ret = BLK_QC_T_NONE;
1083
1084	if (blk_crypto_bio_prep(&bio)) {
1085		if (!disk->fops->submit_bio)
1086			return blk_mq_submit_bio(bio);
1087		ret = disk->fops->submit_bio(bio);
1088	}
1089	blk_queue_exit(disk->queue);
1090	return ret;
1091}
1092
1093/*
1094 * The loop in this function may be a bit non-obvious, and so deserves some
1095 * explanation:
1096 *
1097 *  - Before entering the loop, bio->bi_next is NULL (as all callers ensure
1098 *    that), so we have a list with a single bio.
1099 *  - We pretend that we have just taken it off a longer list, so we assign
1100 *    bio_list to a pointer to the bio_list_on_stack, thus initialising the
1101 *    bio_list of new bios to be added.  ->submit_bio() may indeed add some more
1102 *    bios through a recursive call to submit_bio_noacct.  If it did, we find a
1103 *    non-NULL value in bio_list and re-enter the loop from the top.
1104 *  - In this case we really did just take the bio of the top of the list (no
1105 *    pretending) and so remove it from bio_list, and call into ->submit_bio()
1106 *    again.
1107 *
1108 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
1109 * bio_list_on_stack[1] contains bios that were submitted before the current
1110 *	->submit_bio_bio, but that haven't been processed yet.
1111 */
1112static blk_qc_t __submit_bio_noacct(struct bio *bio)
1113{
1114	struct bio_list bio_list_on_stack[2];
1115	blk_qc_t ret = BLK_QC_T_NONE;
1116
1117	BUG_ON(bio->bi_next);
1118
1119	bio_list_init(&bio_list_on_stack[0]);
1120	current->bio_list = bio_list_on_stack;
1121
1122	do {
1123		struct request_queue *q = bio->bi_disk->queue;
1124		struct bio_list lower, same;
1125
1126		if (unlikely(bio_queue_enter(bio) != 0))
1127			continue;
1128
1129		/*
1130		 * Create a fresh bio_list for all subordinate requests.
1131		 */
1132		bio_list_on_stack[1] = bio_list_on_stack[0];
1133		bio_list_init(&bio_list_on_stack[0]);
1134
1135		ret = __submit_bio(bio);
1136
1137		/*
1138		 * Sort new bios into those for a lower level and those for the
1139		 * same level.
1140		 */
1141		bio_list_init(&lower);
1142		bio_list_init(&same);
1143		while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
1144			if (q == bio->bi_disk->queue)
1145				bio_list_add(&same, bio);
1146			else
1147				bio_list_add(&lower, bio);
1148
1149		/*
1150		 * Now assemble so we handle the lowest level first.
1151		 */
1152		bio_list_merge(&bio_list_on_stack[0], &lower);
1153		bio_list_merge(&bio_list_on_stack[0], &same);
1154		bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
1155	} while ((bio = bio_list_pop(&bio_list_on_stack[0])));
1156
1157	current->bio_list = NULL;
1158	return ret;
1159}
1160
1161static blk_qc_t __submit_bio_noacct_mq(struct bio *bio)
1162{
1163	struct bio_list bio_list[2] = { };
1164	blk_qc_t ret = BLK_QC_T_NONE;
1165
1166	current->bio_list = bio_list;
1167
1168	do {
1169		struct gendisk *disk = bio->bi_disk;
1170
1171		if (unlikely(bio_queue_enter(bio) != 0))
1172			continue;
1173
1174		if (!blk_crypto_bio_prep(&bio)) {
1175			blk_queue_exit(disk->queue);
1176			ret = BLK_QC_T_NONE;
1177			continue;
1178		}
1179
1180		ret = blk_mq_submit_bio(bio);
1181	} while ((bio = bio_list_pop(&bio_list[0])));
1182
1183	current->bio_list = NULL;
1184	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1185}
1186
1187/**
1188 * submit_bio_noacct - re-submit a bio to the block device layer for I/O
1189 * @bio:  The bio describing the location in memory and on the device.
1190 *
1191 * This is a version of submit_bio() that shall only be used for I/O that is
1192 * resubmitted to lower level drivers by stacking block drivers.  All file
1193 * systems and other upper level users of the block layer should use
1194 * submit_bio() instead.
1195 */
1196blk_qc_t submit_bio_noacct(struct bio *bio)
1197{
1198	if (!submit_bio_checks(bio))
1199		return BLK_QC_T_NONE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1200
1201	/*
1202	 * We only want one ->submit_bio to be active at a time, else stack
1203	 * usage with stacked devices could be a problem.  Use current->bio_list
1204	 * to collect a list of requests submited by a ->submit_bio method while
1205	 * it is active, and then process them after it returned.
1206	 */
1207	if (current->bio_list) {
1208		bio_list_add(&current->bio_list[0], bio);
1209		return BLK_QC_T_NONE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1210	}
 
 
1211
1212	if (!bio->bi_disk->fops->submit_bio)
1213		return __submit_bio_noacct_mq(bio);
1214	return __submit_bio_noacct(bio);
 
 
1215}
1216EXPORT_SYMBOL(submit_bio_noacct);
1217
1218/**
1219 * submit_bio - submit a bio to the block device layer for I/O
1220 * @bio: The &struct bio which describes the I/O
1221 *
1222 * submit_bio() is used to submit I/O requests to block devices.  It is passed a
1223 * fully set up &struct bio that describes the I/O that needs to be done.  The
1224 * bio will be send to the device described by the bi_disk and bi_partno fields.
1225 *
1226 * The success/failure status of the request, along with notification of
1227 * completion, is delivered asynchronously through the ->bi_end_io() callback
1228 * in @bio.  The bio must NOT be touched by thecaller until ->bi_end_io() has
1229 * been called.
1230 */
1231blk_qc_t submit_bio(struct bio *bio)
1232{
1233	if (blkcg_punt_bio_submit(bio))
1234		return BLK_QC_T_NONE;
1235
1236	/*
1237	 * If it's a regular read/write or a barrier with data attached,
1238	 * go through the normal accounting stuff before submission.
1239	 */
1240	if (bio_has_data(bio)) {
1241		unsigned int count;
1242
1243		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1244			count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
1245		else
1246			count = bio_sectors(bio);
1247
1248		if (op_is_write(bio_op(bio))) {
1249			count_vm_events(PGPGOUT, count);
1250		} else {
1251			task_io_account_read(bio->bi_iter.bi_size);
1252			count_vm_events(PGPGIN, count);
1253		}
1254
1255		if (unlikely(block_dump)) {
1256			char b[BDEVNAME_SIZE];
1257			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1258			current->comm, task_pid_nr(current),
1259				op_is_write(bio_op(bio)) ? "WRITE" : "READ",
1260				(unsigned long long)bio->bi_iter.bi_sector,
1261				bio_devname(bio, b), count);
1262		}
1263	}
1264
1265	/*
1266	 * If we're reading data that is part of the userspace workingset, count
1267	 * submission time as memory stall.  When the device is congested, or
1268	 * the submitting cgroup IO-throttled, submission can be a significant
1269	 * part of overall IO time.
1270	 */
1271	if (unlikely(bio_op(bio) == REQ_OP_READ &&
1272	    bio_flagged(bio, BIO_WORKINGSET))) {
1273		unsigned long pflags;
1274		blk_qc_t ret;
1275
1276		psi_memstall_enter(&pflags);
1277		ret = submit_bio_noacct(bio);
1278		psi_memstall_leave(&pflags);
1279
1280		return ret;
 
 
 
 
1281	}
1282
1283	return submit_bio_noacct(bio);
1284}
1285EXPORT_SYMBOL(submit_bio);
1286
1287/**
1288 * blk_cloned_rq_check_limits - Helper function to check a cloned request
1289 *                              for the new queue limits
1290 * @q:  the queue
1291 * @rq: the request being checked
1292 *
1293 * Description:
1294 *    @rq may have been made based on weaker limitations of upper-level queues
1295 *    in request stacking drivers, and it may violate the limitation of @q.
1296 *    Since the block layer and the underlying device driver trust @rq
1297 *    after it is inserted to @q, it should be checked against @q before
1298 *    the insertion using this generic function.
1299 *
1300 *    Request stacking drivers like request-based dm may change the queue
1301 *    limits when retrying requests on other queues. Those requests need
1302 *    to be checked against the new queue limits again during dispatch.
1303 */
1304static int blk_cloned_rq_check_limits(struct request_queue *q,
1305				      struct request *rq)
1306{
1307	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
1308		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1309			__func__, blk_rq_sectors(rq),
1310			blk_queue_get_max_sectors(q, req_op(rq)));
1311		return -EIO;
1312	}
1313
1314	/*
1315	 * queue's settings related to segment counting like q->bounce_pfn
1316	 * may differ from that of other stacking queues.
1317	 * Recalculate it to check the request correctly on this queue's
1318	 * limitation.
1319	 */
1320	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
1321	if (rq->nr_phys_segments > queue_max_segments(q)) {
1322		printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1323			__func__, rq->nr_phys_segments, queue_max_segments(q));
1324		return -EIO;
1325	}
1326
1327	return 0;
1328}
 
 
 
 
1329
1330/**
1331 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1332 * @q:  the queue to submit the request
1333 * @rq: the request being queued
1334 */
1335blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1336{
1337	if (blk_cloned_rq_check_limits(q, rq))
1338		return BLK_STS_IOERR;
1339
1340	if (rq->rq_disk &&
1341	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1342		return BLK_STS_IOERR;
1343
1344	if (blk_crypto_insert_cloned_request(rq))
1345		return BLK_STS_IOERR;
1346
1347	if (blk_queue_io_stat(q))
1348		blk_account_io_start(rq);
1349
1350	/*
1351	 * Since we have a scheduler attached on the top device,
1352	 * bypass a potential scheduler on the bottom device for
1353	 * insert.
1354	 */
1355	return blk_mq_request_issue_directly(rq, true);
1356}
1357EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1358
1359/**
1360 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1361 * @rq: request to examine
1362 *
1363 * Description:
1364 *     A request could be merge of IOs which require different failure
1365 *     handling.  This function determines the number of bytes which
1366 *     can be failed from the beginning of the request without
1367 *     crossing into area which need to be retried further.
1368 *
1369 * Return:
1370 *     The number of bytes to fail.
1371 */
1372unsigned int blk_rq_err_bytes(const struct request *rq)
 
1373{
1374	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1375	unsigned int bytes = 0;
1376	struct bio *bio;
1377
1378	if (!(rq->rq_flags & RQF_MIXED_MERGE))
1379		return blk_rq_bytes(rq);
1380
1381	/*
1382	 * Currently the only 'mixing' which can happen is between
1383	 * different fastfail types.  We can safely fail portions
1384	 * which have all the failfast bits that the first one has -
1385	 * the ones which are at least as eager to fail as the first
1386	 * one.
 
 
 
 
 
 
 
 
 
 
 
 
 
1387	 */
1388	for (bio = rq->bio; bio; bio = bio->bi_next) {
1389		if ((bio->bi_opf & ff) != ff)
1390			break;
1391		bytes += bio->bi_iter.bi_size;
1392	}
1393
1394	/* this could lead to infinite loop */
1395	BUG_ON(blk_rq_bytes(rq) && !bytes);
1396	return bytes;
1397}
1398EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1399
1400static void update_io_ticks(struct hd_struct *part, unsigned long now, bool end)
1401{
1402	unsigned long stamp;
1403again:
1404	stamp = READ_ONCE(part->stamp);
1405	if (unlikely(stamp != now)) {
1406		if (likely(cmpxchg(&part->stamp, stamp, now) == stamp))
1407			__part_stat_add(part, io_ticks, end ? now - stamp : 1);
1408	}
1409	if (part->partno) {
1410		part = &part_to_disk(part)->part0;
1411		goto again;
1412	}
1413}
1414
1415static void blk_account_io_completion(struct request *req, unsigned int bytes)
 
 
1416{
1417	if (req->part && blk_do_io_stat(req)) {
1418		const int sgrp = op_stat_group(req_op(req));
1419		struct hd_struct *part;
1420
1421		part_stat_lock();
1422		part = req->part;
1423		part_stat_add(part, sectors[sgrp], bytes >> 9);
1424		part_stat_unlock();
1425	}
1426}
1427
1428void blk_account_io_done(struct request *req, u64 now)
1429{
1430	/*
1431	 * Account IO completion.  flush_rq isn't accounted as a
1432	 * normal IO on queueing nor completion.  Accounting the
1433	 * containing request is enough.
1434	 */
1435	if (req->part && blk_do_io_stat(req) &&
1436	    !(req->rq_flags & RQF_FLUSH_SEQ)) {
1437		const int sgrp = op_stat_group(req_op(req));
1438		struct hd_struct *part;
1439
1440		part_stat_lock();
1441		part = req->part;
1442
1443		update_io_ticks(part, jiffies, true);
1444		part_stat_inc(part, ios[sgrp]);
1445		part_stat_add(part, nsecs[sgrp], now - req->start_time_ns);
1446		part_stat_unlock();
1447
1448		hd_struct_put(part);
1449	}
1450}
1451
1452void blk_account_io_start(struct request *rq)
1453{
1454	if (!blk_do_io_stat(rq))
1455		return;
1456
1457	rq->part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
1458
1459	part_stat_lock();
1460	update_io_ticks(rq->part, jiffies, false);
 
 
 
1461	part_stat_unlock();
 
 
1462}
 
1463
1464unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1465		unsigned int op)
 
 
 
 
 
1466{
1467	struct hd_struct *part = &disk->part0;
1468	const int sgrp = op_stat_group(op);
1469	unsigned long now = READ_ONCE(jiffies);
1470
1471	part_stat_lock();
1472	update_io_ticks(part, now, false);
1473	part_stat_inc(part, ios[sgrp]);
1474	part_stat_add(part, sectors[sgrp], sectors);
1475	part_stat_local_inc(part, in_flight[op_is_write(op)]);
1476	part_stat_unlock();
1477
1478	return now;
1479}
1480EXPORT_SYMBOL(disk_start_io_acct);
1481
1482void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1483		unsigned long start_time)
1484{
1485	struct hd_struct *part = &disk->part0;
1486	const int sgrp = op_stat_group(op);
1487	unsigned long now = READ_ONCE(jiffies);
1488	unsigned long duration = now - start_time;
1489
1490	part_stat_lock();
1491	update_io_ticks(part, now, true);
1492	part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1493	part_stat_local_dec(part, in_flight[op_is_write(op)]);
1494	part_stat_unlock();
1495}
1496EXPORT_SYMBOL(disk_end_io_acct);
1497
1498/*
1499 * Steal bios from a request and add them to a bio list.
1500 * The request must not have been partially completed before.
1501 */
1502void blk_steal_bios(struct bio_list *list, struct request *rq)
1503{
1504	if (rq->bio) {
1505		if (list->tail)
1506			list->tail->bi_next = rq->bio;
1507		else
1508			list->head = rq->bio;
1509		list->tail = rq->biotail;
1510
1511		rq->bio = NULL;
1512		rq->biotail = NULL;
1513	}
1514
1515	rq->__data_len = 0;
1516}
1517EXPORT_SYMBOL_GPL(blk_steal_bios);
1518
1519/**
1520 * blk_update_request - Special helper function for request stacking drivers
1521 * @req:      the request being processed
1522 * @error:    block status code
1523 * @nr_bytes: number of bytes to complete @req
1524 *
1525 * Description:
1526 *     Ends I/O on a number of bytes attached to @req, but doesn't complete
1527 *     the request structure even if @req doesn't have leftover.
1528 *     If @req has leftover, sets it up for the next range of segments.
1529 *
1530 *     This special helper function is only for request stacking drivers
1531 *     (e.g. request-based dm) so that they can handle partial completion.
1532 *     Actual device drivers should use blk_mq_end_request instead.
1533 *
1534 *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1535 *     %false return from this function.
1536 *
1537 * Note:
1538 *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1539 *	blk_rq_bytes() and in blk_update_request().
1540 *
1541 * Return:
1542 *     %false - this request doesn't have any more data
1543 *     %true  - this request has more data
1544 **/
1545bool blk_update_request(struct request *req, blk_status_t error,
1546		unsigned int nr_bytes)
1547{
1548	int total_bytes;
1549
1550	trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1551
1552	if (!req->bio)
1553		return false;
1554
1555#ifdef CONFIG_BLK_DEV_INTEGRITY
1556	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
1557	    error == BLK_STS_OK)
1558		req->q->integrity.profile->complete_fn(req, nr_bytes);
1559#endif
1560
1561	if (unlikely(error && !blk_rq_is_passthrough(req) &&
1562		     !(req->rq_flags & RQF_QUIET)))
1563		print_req_error(req, error, __func__);
1564
1565	blk_account_io_completion(req, nr_bytes);
1566
1567	total_bytes = 0;
1568	while (req->bio) {
1569		struct bio *bio = req->bio;
1570		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1571
1572		if (bio_bytes == bio->bi_iter.bi_size)
1573			req->bio = bio->bi_next;
1574
1575		/* Completion has already been traced */
1576		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1577		req_bio_endio(req, bio, bio_bytes, error);
1578
1579		total_bytes += bio_bytes;
1580		nr_bytes -= bio_bytes;
1581
1582		if (!nr_bytes)
1583			break;
1584	}
1585
1586	/*
1587	 * completely done
1588	 */
1589	if (!req->bio) {
1590		/*
1591		 * Reset counters so that the request stacking driver
1592		 * can find how many bytes remain in the request
1593		 * later.
1594		 */
1595		req->__data_len = 0;
1596		return false;
1597	}
1598
1599	req->__data_len -= total_bytes;
1600
1601	/* update sector only for requests with clear definition of sector */
1602	if (!blk_rq_is_passthrough(req))
1603		req->__sector += total_bytes >> 9;
1604
1605	/* mixed attributes always follow the first bio */
1606	if (req->rq_flags & RQF_MIXED_MERGE) {
1607		req->cmd_flags &= ~REQ_FAILFAST_MASK;
1608		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1609	}
1610
1611	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1612		/*
1613		 * If total number of sectors is less than the first segment
1614		 * size, something has gone terribly wrong.
1615		 */
1616		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1617			blk_dump_rq_flags(req, "request botched");
1618			req->__data_len = blk_rq_cur_bytes(req);
1619		}
1620
1621		/* recalculate the number of segments */
1622		req->nr_phys_segments = blk_recalc_rq_segments(req);
1623	}
1624
1625	return true;
1626}
1627EXPORT_SYMBOL_GPL(blk_update_request);
1628
1629#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1630/**
1631 * rq_flush_dcache_pages - Helper function to flush all pages in a request
1632 * @rq: the request to be flushed
1633 *
1634 * Description:
1635 *     Flush all pages in @rq.
1636 */
1637void rq_flush_dcache_pages(struct request *rq)
1638{
1639	struct req_iterator iter;
1640	struct bio_vec bvec;
1641
1642	rq_for_each_segment(bvec, rq, iter)
1643		flush_dcache_page(bvec.bv_page);
1644}
1645EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1646#endif
1647
1648/**
1649 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1650 * @q : the queue of the device being checked
1651 *
1652 * Description:
1653 *    Check if underlying low-level drivers of a device are busy.
1654 *    If the drivers want to export their busy state, they must set own
1655 *    exporting function using blk_queue_lld_busy() first.
1656 *
1657 *    Basically, this function is used only by request stacking drivers
1658 *    to stop dispatching requests to underlying devices when underlying
1659 *    devices are busy.  This behavior helps more I/O merging on the queue
1660 *    of the request stacking driver and prevents I/O throughput regression
1661 *    on burst I/O load.
1662 *
1663 * Return:
1664 *    0 - Not busy (The request stacking driver should dispatch request)
1665 *    1 - Busy (The request stacking driver should stop dispatching request)
1666 */
1667int blk_lld_busy(struct request_queue *q)
1668{
1669	if (queue_is_mq(q) && q->mq_ops->busy)
1670		return q->mq_ops->busy(q);
1671
1672	return 0;
1673}
1674EXPORT_SYMBOL_GPL(blk_lld_busy);
1675
1676/**
1677 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1678 * @rq: the clone request to be cleaned up
1679 *
1680 * Description:
1681 *     Free all bios in @rq for a cloned request.
1682 */
1683void blk_rq_unprep_clone(struct request *rq)
1684{
1685	struct bio *bio;
1686
1687	while ((bio = rq->bio) != NULL) {
1688		rq->bio = bio->bi_next;
1689
1690		bio_put(bio);
1691	}
1692}
1693EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1694
1695/**
1696 * blk_rq_prep_clone - Helper function to setup clone request
1697 * @rq: the request to be setup
1698 * @rq_src: original request to be cloned
1699 * @bs: bio_set that bios for clone are allocated from
1700 * @gfp_mask: memory allocation mask for bio
1701 * @bio_ctr: setup function to be called for each clone bio.
1702 *           Returns %0 for success, non %0 for failure.
1703 * @data: private data to be passed to @bio_ctr
1704 *
1705 * Description:
1706 *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1707 *     Also, pages which the original bios are pointing to are not copied
1708 *     and the cloned bios just point same pages.
1709 *     So cloned bios must be completed before original bios, which means
1710 *     the caller must complete @rq before @rq_src.
1711 */
1712int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1713		      struct bio_set *bs, gfp_t gfp_mask,
1714		      int (*bio_ctr)(struct bio *, struct bio *, void *),
1715		      void *data)
1716{
1717	struct bio *bio, *bio_src;
1718
1719	if (!bs)
1720		bs = &fs_bio_set;
1721
1722	__rq_for_each_bio(bio_src, rq_src) {
1723		bio = bio_clone_fast(bio_src, gfp_mask, bs);
1724		if (!bio)
1725			goto free_and_out;
1726
1727		if (bio_ctr && bio_ctr(bio, bio_src, data))
1728			goto free_and_out;
1729
1730		if (rq->bio) {
1731			rq->biotail->bi_next = bio;
1732			rq->biotail = bio;
1733		} else
1734			rq->bio = rq->biotail = bio;
1735	}
1736
1737	/* Copy attributes of the original request to the clone request. */
1738	rq->__sector = blk_rq_pos(rq_src);
1739	rq->__data_len = blk_rq_bytes(rq_src);
1740	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1741		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
1742		rq->special_vec = rq_src->special_vec;
1743	}
1744	rq->nr_phys_segments = rq_src->nr_phys_segments;
1745	rq->ioprio = rq_src->ioprio;
1746
1747	if (rq->bio)
1748		blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask);
1749
1750	return 0;
1751
1752free_and_out:
1753	if (bio)
1754		bio_put(bio);
1755	blk_rq_unprep_clone(rq);
1756
1757	return -ENOMEM;
1758}
1759EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1760
1761int kblockd_schedule_work(struct work_struct *work)
1762{
1763	return queue_work(kblockd_workqueue, work);
1764}
1765EXPORT_SYMBOL(kblockd_schedule_work);
1766
1767int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1768				unsigned long delay)
1769{
1770	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1771}
1772EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1773
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1774/**
1775 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1776 * @plug:	The &struct blk_plug that needs to be initialized
1777 *
1778 * Description:
1779 *   blk_start_plug() indicates to the block layer an intent by the caller
1780 *   to submit multiple I/O requests in a batch.  The block layer may use
1781 *   this hint to defer submitting I/Os from the caller until blk_finish_plug()
1782 *   is called.  However, the block layer may choose to submit requests
1783 *   before a call to blk_finish_plug() if the number of queued I/Os
1784 *   exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1785 *   %BLK_PLUG_FLUSH_SIZE.  The queued I/Os may also be submitted early if
1786 *   the task schedules (see below).
1787 *
1788 *   Tracking blk_plug inside the task_struct will help with auto-flushing the
1789 *   pending I/O should the task end up blocking between blk_start_plug() and
1790 *   blk_finish_plug(). This is important from a performance perspective, but
1791 *   also ensures that we don't deadlock. For instance, if the task is blocking
1792 *   for a memory allocation, memory reclaim could end up wanting to free a
1793 *   page belonging to that request that is currently residing in our private
1794 *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
1795 *   this kind of deadlock.
1796 */
1797void blk_start_plug(struct blk_plug *plug)
1798{
1799	struct task_struct *tsk = current;
1800
1801	/*
1802	 * If this is a nested plug, don't actually assign it.
1803	 */
1804	if (tsk->plug)
1805		return;
1806
1807	INIT_LIST_HEAD(&plug->mq_list);
1808	INIT_LIST_HEAD(&plug->cb_list);
1809	plug->rq_count = 0;
1810	plug->multiple_queues = false;
1811	plug->nowait = false;
1812
1813	/*
1814	 * Store ordering should not be needed here, since a potential
1815	 * preempt will imply a full memory barrier
1816	 */
1817	tsk->plug = plug;
1818}
1819EXPORT_SYMBOL(blk_start_plug);
1820
1821static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1822{
1823	LIST_HEAD(callbacks);
1824
1825	while (!list_empty(&plug->cb_list)) {
1826		list_splice_init(&plug->cb_list, &callbacks);
1827
1828		while (!list_empty(&callbacks)) {
1829			struct blk_plug_cb *cb = list_first_entry(&callbacks,
1830							  struct blk_plug_cb,
1831							  list);
1832			list_del(&cb->list);
1833			cb->callback(cb, from_schedule);
1834		}
1835	}
1836}
1837
1838struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1839				      int size)
1840{
1841	struct blk_plug *plug = current->plug;
1842	struct blk_plug_cb *cb;
1843
1844	if (!plug)
1845		return NULL;
1846
1847	list_for_each_entry(cb, &plug->cb_list, list)
1848		if (cb->callback == unplug && cb->data == data)
1849			return cb;
1850
1851	/* Not currently on the callback list */
1852	BUG_ON(size < sizeof(*cb));
1853	cb = kzalloc(size, GFP_ATOMIC);
1854	if (cb) {
1855		cb->data = data;
1856		cb->callback = unplug;
1857		list_add(&cb->list, &plug->cb_list);
1858	}
1859	return cb;
1860}
1861EXPORT_SYMBOL(blk_check_plugged);
1862
1863void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1864{
1865	flush_plug_callbacks(plug, from_schedule);
1866
1867	if (!list_empty(&plug->mq_list))
1868		blk_mq_flush_plug_list(plug, from_schedule);
 
 
 
 
 
 
 
 
1869}
1870
1871/**
1872 * blk_finish_plug - mark the end of a batch of submitted I/O
1873 * @plug:	The &struct blk_plug passed to blk_start_plug()
1874 *
1875 * Description:
1876 * Indicate that a batch of I/O submissions is complete.  This function
1877 * must be paired with an initial call to blk_start_plug().  The intent
1878 * is to allow the block layer to optimize I/O submission.  See the
1879 * documentation for blk_start_plug() for more information.
1880 */
1881void blk_finish_plug(struct blk_plug *plug)
1882{
1883	if (plug != current->plug)
1884		return;
1885	blk_flush_plug_list(plug, false);
1886
1887	current->plug = NULL;
1888}
1889EXPORT_SYMBOL(blk_finish_plug);
1890
1891void blk_io_schedule(void)
1892{
1893	/* Prevent hang_check timer from firing at us during very long I/O */
1894	unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1895
1896	if (timeout)
1897		io_schedule_timeout(timeout);
1898	else
1899		io_schedule();
1900}
1901EXPORT_SYMBOL_GPL(blk_io_schedule);
1902
1903int __init blk_dev_init(void)
1904{
1905	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1906	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1907			sizeof_field(struct request, cmd_flags));
1908	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1909			sizeof_field(struct bio, bi_opf));
1910
1911	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
1912	kblockd_workqueue = alloc_workqueue("kblockd",
1913					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1914	if (!kblockd_workqueue)
1915		panic("Failed to create kblockd\n");
1916
1917	blk_requestq_cachep = kmem_cache_create("request_queue",
1918			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1919
1920	blk_debugfs_root = debugfs_create_dir("block", NULL);
1921
1922	return 0;
1923}